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ABSTRACT 

This study investigated the effects of those constituents of the space environment which a re  

most damaging to thermal control cmtings and which would be experienced by OAO in about 

one-half year in  space. 

paint. The white paints studied were Pyroniurk Standard White, Goddard 78-2B White, and 

Grumman RTV 602 White. Other surfaces studied were Lexan, Mylar, solar cells, and 

microsheet 

The coatings investigated ?re primarily Alzak and white 

The spectral reflectance of these materials was measured while in the vacuum system after 

exposure to various combinations of ultraviolet radiation, 2.5 kev protons and 3 kev elec- 

trons. Measurements were also performed before and after irradiation in air. Most 

measurements and irradiations were performed at -55OC and 2 

radiation exposure of any sample was 945-equivalent ultraviolet sun hours, 5,6*10 

protons cm , and 5,8 *10 electrons cm The ultraviolet irradiation was performed at  

an  intensity of nominally 1 -equivalent ultraviolet sun hour while the nominal corpuscular 
1 2  -2 -1 12 -2 -1 fluencies were 8.10 protons cm sec End 6.10  electrons cm sec . 

torr. The ultimate 
14 

-2 13 -2 

At the maximum radiation exposure the solar absorptance of Alzak increased by 0.04, 

while Pyromark Standard White showed an increase of 0.08, as compared to a 0.02 increase 

in  solar absorptance for the other two white paints studied. The solar absorptance of 

Lexan and Mylar each degraded by at least 0.24. No change could be noted in the reflect- 

ance of either the microsheet or  the solar cells, 
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SECTION 1 

INTRODUCTION 

Tne adility of a space vehicle to meet its design goal is inseparably linked with maintaining 

the temperature of its contents within the relatively narrow design liinits where they operate 

at maximum efficiency. The controlling factor which determines the temperature of the 

vehicle is the ability of its external surface to exchange energy widh its environment. This 

is determined by the solar absorptance (a! ) and the emittance ( E  ) of its external surface. 

Expedmgntal work to date has shown that it is prima& the solar absorptance, not the 

emittance, which changes upon radiation. 

S H 

It has been realized for some time that the space environment degrades most thermal 

control matepials; however, only recently has the magnitude of the difference between space 

flight and ground based simulation been fully realized. It has recently been shown by a 

number of independent investigators that tfhealingtl (a regression towards the original state) 

occura upon removal of the specimens from vacuum to air. ttHeblingtt caused by annihilation 

of defects through photolysis and annealing have been known and postulated for some time. 

TIealingtt which occurs upon mmwal  of the specimens: from vacuum is generally believed 

dependent upon the presence of oxygen. Because of this, only simulation plkilizing in situ 

reflectance apparatus should be used, unless it has been clearly shown that the material to 

be tested does not fthealtt upon exposure to air after irradiation. 

In order to perform the best simulation possible, synergistic effects should also b-. 0 con- 

sidered (i. e . ,  all the parsmeters of the space environment should be simulated simultanoously). 

Until recently the majority of space simulation studies performed on thermal. control 

materiala consisted of exposing samples to each type of radiation ssaparztaly and sumj 

the results to predict the combined effects, thereby neglecting synergistic effects. (A 
synergistic effect is one .where She change caused by the scm of each constituent of the space 

environment acting separately is not the same as the change caused by all of the constituentt: 

acting simultaneously. ) It should also be noted that the majority of earlier studies computed 

the change in solar absorptance based on reflectance measurements made in a i r  before and 

after irradiation, raA&er than from in si tu  measurements. 

1- 1 



Most of the flight data available on tiZc .nal control coatings is either on materials other 

than those of interest h t  ..e o r  from vehicles %hi& cncmntered a drastically different 

radiption environment (e. g., in 1 hour .ATS-B received a greater proton dose than OAO will 

receive in 1 year). 

The primary purpose of this study was to determine the degradation rate expected for 

coatings contemplated for use on CJAO. A list of the materials studied is given in Table 1-1. 

Also irrluded were backup materials for the white paint and s few miscellaneous aiaterials 

used, or  contemplated for use, in various spacecraft app1icsct:ma. The main coatings of 

interest were Alzak and Pyrorr .rk Standard White. The two white coatiags considered as 

a backup were Goddard White 

at -55 f 5'F. Two different thicknesses of the Alzak coatings were studied. 

. RTV-602 White (Grumman) , A l l  specimens were studied 

The tests included 945 EUVSH (equivalent ultraviolet sun hours) of near ultraviolet irradiation, 

performed at an intensity of 1 EUVS (equivalent ultraviolet sun), 5* lQ14 protons cm 
13 12 2 .5  kev, and 5.10 electrons cm-2 of 3 kev. The nominal dose rates were 8.10 

cm sec and 6.10 electrons cm sec , It is believed thnt the irradiation pw- 

formed wr?s equivalent to 1 year of electrons, more than 1 year of Frotons, and 2 :o 3 months 

of near ultraviolet, 

-2 of 

protcns 
-2 -3. 12 -2 -1 
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Table 1-1. List of Samples hveatigated 

Material 
Class 

Inorganic 

White Paints 

Miscellaneous 
Spacecraft 
Materials 

Material 
Investigated 

Alzak 

Pyromark Standard 
White 

RTV 602 White 

Goddard 78-2B White 

Lexan (dull) 

Lexan (etched) 

Mylar 

Solar Cells 

Microsheet 

Number of 
Samples 

13 

Comments 

Manufactured by Alcoa. 
Nominal thickness of nine 
samples was 0.175 mils and 
0.10 mils on the remaining 
four samples 

Manufactured by Tempi1 
Corporation. 

Grumman formulation 

Formulated by 
Cr. J.B, Schutt 

Over polished aluminum 

Over polished aluminum 

Over crinkled aluminized 
Mylar 

One N/P and one P/N measured 
a s  a combination*. 

Odd sample geometry (not 
circular)*. 

* Part of the specimen holder (copper) was included in the reflectance measurements made 
on these samples, This occurred on the solar cells because of the gap where the two 
cells ITA, and on the microsheet because the sample geometry could not fill the entire 
reflectance beam. Because of this, only relative values will be meaningful on these 
samples. 



SECTION 2 

TECHNICAL APPROACH TO SIMULATION 

The primary constituents of the space environment are (1) ultra high vacuum, (2) near and 

far ultraviolet radiation, (3) energetic charged particles (primarily electrons anu protons), 

and (4) micrometeoroids. Sincz all of these constituents a re  present simultaneously in the 

space environment, one might deduce that a realistic test should simulate all of them simul- 

taneously. This is partially correct, since synergstic effects have been noted by a number 

of investigators; however, concern should be confined to synergistic effects from those 

constituents of the space envionrment which may affect the critical optical properties (a and 

E ) of the thermal control coatings used on the external surface of the space vehicle. 
S 

H 

Those constituents of the space environment which are most efficient in producing changes 

in the critical optical properties of t h e m a l  control coatings can be qualitatively deduced, if 

we consider that, in general, it is primarily the outermost layer of the coatings which 

determines their Q! and E 

vacuum, wbich determines both the compo, 'tion and number of particles striking the surface, 

is important. Similarly, the radiation, which yields the most near-surface interactions 

(and, therefwe, deposited energy), will be more important than the penetrating radiation. 

The ultraviolet region (belcw 0.4~)  is both the most damaging and the least penetrating of 

the solar electromagnetic radiation. The energy deposition per unit path length will increase 

as the energy of the incident particles decreases. Also, the energy deposition per unit path 

length is greater for protons than for  electrons of equal energy. By considering these facts, 

together with the energy distribution of charged particles in space, (References 1, 2, and 3), 

Figure 2-1, and Table 2-1, it is concluded that the low energy protons and low energy 

electrons are most important (in that order), the heavy ions being neglected because of their 

extremely low flux. The flux of micrometeoroids is apparently so small that even though they 

can degrade thermal control coatings, their overall effect can be neglected for most 

missions. 

Since a surface phenomenon is being studied, the ultra high 
S H" 

The intensity of the nesr uitraviolet irradiation should be kept to approximately 1 equivalent 

ultraviolet sun, unless reciprocity relationships a re  available for the coatings to be  studied. 

A mercury-xenon lamp is used as the ultraviolet radiation source, since it combines a rich 

ultraviolet spectrum, stability, and reliability with relatively little line spectrum. 

2-1 



I I -  
Ep > O. 097 MeV INTENSITY PROFILE ALONG THF 

GEOMAGNETIC EQUATOR @/BO =I. 0) AS A FUNCTION OF ENERGY 0.166 .- L - 

L (EARTH RADII) 

Figure 2-1. Integrated Proton Flux at Geomagnetic Equ.ator as a Function of Energy 

Table 2-1. Electron Energy Spectrum for 450-Nautical Mile  Orbit (References 1 and 2) 

OPPITAL INTEGRATION FOR FEOJECTED 1968 ELECTRON ENVIRONMENT - 
I R B I T  ALTITUDE.. 450 N M I  TOTAL TIME.. 24.HOURS TIME INTERVAL.. 1.HIMUTES 

---_-------------_--_________________^__-------------------------------------------------------------------- 

ENERGY ORBITAL FLUX ORBITAL FLUX ORBITAL FLUX ORBITAL FLUX 
MEV 0 D€G 30 DEG 60 OEG 90 DEG ............................................................................................................ 

E l  E2 *E 1 E1-E2 * E l  E l -E2  .E 1 El -EZ . E l  E1-E2 
_---_-----_----------------------______-______^-____--~-----------------~--------------------~------------- 

0. 0 .25  9.17E 0 9  7.02E ~9 4.71E 11 3.94E 11 3.23E 11 2.62E 11 2.65E 11 2 . l f E  11. 
0.25 0.50 2.15E 0 9  1.65E 0 9  7.72E 10 6.42E 10 6.09E 10 4e60E 10 5.15E 10 3.84E 10 
0.50 0.?5 4.91E 08 3.79E 08  1.30E 10 1.07E 10 1.49E 10 9.43E 0 9  1.31E 10 8.13E 0 9  
0 0 7 5  1.00 1.13E 08 8.64E 07 2.27E 0 9  1.85E 0 9  5.49E 0 9  2.9DE 0 9  4.98E 0 9  2.60E 0 9  
1.00 1.25 2.61E 0 7  2.02E 07 4.13E 08 3.00E 08 2-59E 0 9  1.20E 0 9  2.38E 0 9  1.10E 0 9  
1.25 1.50 5.91E 06 3.06E 06 1.13E 08 3.76E 0 7  1.39E 0 9  5.98E 08  1.28E 0 9  5.52E 08 
1.50 1.75 2.05E 06 4.85F 05 7953E 0 7  6.55E 06 7.92E 08 3.27E 08 7.25E 08 3.OlE 08 
1.75 2.00 1.56E 06 3.62E 05 6.87E 07 5.48E 06 4.65E 08 1.84E 08 4.24E 08 1.69E 08 
2.00 2.25 1.20E 06 2.59E 05 6.33E 0 7  4.65E 06 2.81E 08 1.05E 0 8  2.54E 08 9.65E 0 7  
2.25 2.50 9.41E 05 1.93E 05 5.86E 0 7  4.05E 06 1.76E 08 6.14E 0 7  1.58E 08 5.63E 0 7  
2.50 2.75 7.48E 05 1.46E 05 5.46E 0 7  3.72E 0 6  1.14E 08 3.60E 0 7  1.01E 08 3.30E 0 7  

3.00 3.25 4.A?E 05 8.72E 34 4.75E 0 7  3.05E 06 5.67E 0 7  1.34E 07 4.86E 0 7  1.21E 0 7  
3.25 3.50 4.00E 05 7.03E G4 4.44E 0 7  2.80E 06 4.33E 0 7  8.45E 0 6  3.64E 0 7  7.58E 06 
3.50 3.75 3.29E 05 5.56E 04 4.17E 07 2.56E 06 3.48E 0 7  5.54E 0 6  2.88E 0 7  4.91E 0 6  
3.75 4.00 2.74E 05 4.36E U 4  3.91E 07 2.36E 06 2.93E 0 7  3.78E 0 6  2.39E 07 3.30E 0 6  
4.00 4.25 2.30E 05 3.66E 04 3.67E 0 7  2.17E 06 2.55E 0 7  2.71E 0 6  2006E 07 2.32E 06 
4.25 4.50 1.94E 05 2o96E 04 3.46E 0 7  2.05E 06 2.28E 07 2.05E 06 1.83E 07 1.72E 06 
4.50 4.75 1.64E 05 2.46k 04 3.25E 0 7  1.88E 06 2.08E 07 1.60E 0 6  1.66E 07 1.32E 06 
4.75 5.00 1e39E 05 2.04E 04 3.06E 0 7  1.72E 06 1.92E 0 7  1 .31 f  06 1.53E 0 7  1.07E 06 

5.25 5.50 , l .02E U3 1.43E 04 2.73E 0 7  1.53E 06 1.67E 0 7  1.00E 06 1.33E 0 7  7.99E 05 

5.75 6.00 7.54E t4 1.04E 04 2.44E 07 1.38E 06 1.48E 07 8 * 4 6 E  0 5  1.18E 0 7  6.67E 0 5  
6.00 6.25 6.49E 04 8.82€ 0 3  2.30E G7 1.21E 06 1.40E 0 7  7.27E 0 5  1.11E 0 7  5.72E 05 
6 - 2 5  6.50 5.61E 0 4  7.69E 0 3  2e18E 0 7  1.16C 06 1.33E 0 7  6.93E 05 1.05E 0 7  5.43E 0 5  
6.50 6.75 4.84E 04 6.44E 03 2.06E 0 7  1.13E 06 1.26E 0 7  6.65E 05 1.00E 0 7  5.23E 0 5  
6 - 7 5  7.00 4.20E 04 5e60E 33 1.95E 0 7  9.94E 05 1.19E 0 7  5.91E 05 9.48E 0 6  4e64E 0 5  
7.GO 3.64E 04 3.64E 04 1.85E 0 7  1.85t: 07 1.13E 07 1.13E 0 7  9.02E 06 9.02E 0 6  

2.75 3.00 6 0 0 2 E  0 5  1.15E 05 5.0% 0 7  3.35E 06 7.85E 0 7  2.18E 0 7  6.84E 0 7  1.99E 0 7  

5.00 5.25 1 . 1 9 ~  0 5  1 . 7 0 ~  c4 2 . 8 9 ~  ti7 1 . 6 3 ~  06  1 . 7 8 ~  07 1 . 1 3 ~  06 1 . 4 2 ~  07 9 . 0 8 ~  05 

5.50 5.75 8 . 7 6 ~  04 1 . 2 3 ~  0 4  2 . 5 7 ~  0 7  1 . 3 9 ~  06 1 . 5 7 ~  07 e . 7 ~  05 1 . 2 5 ~  07 6 . 8 9 ~  05 
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more detailed description of the vacuum chamber, radiation sources and turntable specimen 

holder is given in Appendix A. 

The in situ ogtical properties measurements consisted of both spectral reflectance and total 

normal emittance. The in s i tu  spectral reflectance measurements a r e  performed with a 

magnesium oxide coated integrated sphere used in the inverted mode. The measurement 

region (from 0.356 to 2.065 microns) is divided into 54 increments for computation purposes. 

The monochromator output is electronically integrated and converted to a digital printout 

which is compute: processed for calculation of solar absorptance and plotting of the spectral 

reflectance. The reflectance measurements are described in greater detail in Section 5. 

The total normal emittance measurements were attempted in situ with a thin film infrared 

detector. These measurements were discontinued after the initial measurements because 

of apparent instability problems. The details of the design and calibration, in addition to 

the initial measurements performed with this apparatus, a r e  given in Appendix B. 
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SECTION 4 

CALIBRATION OF RADIATION SOURCES 

The spatial distribution of the proton and electron flux was measured with a Faraday cup in 

vacuum. The spatial flux disMbution was measured for 2.5 kev protons and for 3, 10, and 

20 kev electrons. The energy of the particles was taken ap a meter reading of the acceler- 

ating voltage. The spatial intensity and spectral distribution of the near ultraviolet radia- 

tion was measured in a i r  with a water cooled thermopile. 

4.1 PROTON AND ELECTRON CALIBRATION 

The proton and electron beams were calibrated separately, using a I. 95 centimeter diameter 

(3 cm area) Faraday cup mounted on the turntable a s  shown ir k’igure 4-1. The current 

from the Faraday cup was read with a Kintel 203A Microvolt-ammeter. The formula used 

to canvert the current readings to flux is: 

2 

where 

i 

q 

A 

is the meter reading in amperes (coulombs/second) 

is the fundamental unit of charge (1.6 9 10’” coulombs per particle) 

is the area of the Faraday cup (3  cm ), and 2 

cos 22 1/2 degrees is used to correct for the angle between the Faraday cup and 
the sample plane. For  this configuration the above formula reduces to: 

-2 -1 
= 1.92 . i particles cm sec (4-2) 

The proton and electron plots, shown in Figure 4-2 through 4-5 inclusive, were obtained by 

measurements perbrmed at every 8 degrees around the turntable. The value computed as 

described above was plotted a s  that of the bisector of the Faraday cup. The average flux at  
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Figure 4-1. Faraday Cup Positioning 
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DATE: 2/2/61 
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I 
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Figure 4-2. 2.5 Kev Proton Flux Map 

SAMPLE POSITION 

Figure 4-3. 3 Kev Electron Flux Map 
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Figure 4-4. 10 Kev Electron Flux Map 
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_I 
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Figure 4-5. 20 Kev Electron Flux Map 
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. 
+ each of the five sample sites used for corpuscular irradiation (Figure 4-1) a re  given in 

Table 4-1. These values were obtzined by averaging the flux over each sample region shown 

In Figures 4-2 through 4-5. The electron flux plots are the average of two measurements 

(both sets of point:s plotted) made on two different days. 

Table 4-1. Average Corpuscular Flux Dktribution 

Corpuscular 
Radiation Position 

A 

B 

C 

D 

E 

- 
-2 -1 Avemge Flux (Particles cm sec ) 

Electrons Protons B 

3 kev 

12 ' 4 - 1 0  1 7 1oI2 

12 

12 

6 10 

7 10 

12 

12 

9 * 10 

9 10 

12 7 * 10l2 1 4 10 

10 kev 

12 5 * 10 

6 10l2 

12 4 ' PO 

12 5 ' 10 

12 3 10 

20 kev 

10 < 10 

12 3 ' 10 

12 6 10 

12 5 .  10 

12 5 ' 10 

The reason measurements were made on two different days was to determine the variation 

wl,'ch may be expected due to resetting of the focus and deflection controls. The proton 

flux map is an average of three measurements mado in the same day. The reason it was 

unnecwsary to make these readings on different days is that variation in the proton flux 

caused by all dnfluencing sources (other than the accelerating voltage) is less than that 

exhibited in the electron plots for the two sets of nieasurements. 

4.2 NEAR ULTRAVIOLET CALIBRATION 

The near ultraviolet spatial intensity was performed with a hdgh intensity eight-junction 

bisnwth-silver thermopile mounted in a water jacketed case. This thermopile has a 60-degree 

(whole angle) field ~4 view. The spectral calibration of the source was made with the afore- 

mentioned thermopile and a set of E;;pley band pass filters. 
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The 5 h v  mercury-xenon lamp was fired and allowed to stabilize before all measurements. 

All measurements were performed at the sample plane witi, the chamber at  atmospheric 

pressure. The thermopile and filters were shielded whenever measurements were not being 

made. A Kintel 203A Microvolt-ammeter wzs used to measure thermopile output. 

* 

A continuous plot of the relative spectral distribution of the lamp is given in Figures 4-6a 

and 4-6b (Reference 4) together with the relative energy of the lamp as  r r -~su red  with the 

band pass filters, The relative energy of the lamp at the sample plane was computed from 

the thermopile output with each filter as shorn in Equation 4-3. 

k T (i) E (i) = R 

is the relative energy of the lamF in the wavelength region trmsmitted by 
filter i. 

is the output of the thermopile with filter i in place. 

is average percent transmittance of the band pass filters over the wave- 
length region in which they transmit as deiemined by in-house calibration. 

is the sensitivity of the thermopile as calibrated by Epplay Laboratories. 

Figure 4-6 also shows the relative energy from the lamp (Reference 4) and the sun at  zero 

air mass (Reference 5) integrated over the same regions as tne fi:te;.s transmit. Since the 

relative spectral irradiance of the lamp at the sample plane is within a few percent of thpt 

as report& in Reference 4 for the visible and ultraviolet regions (Table 4-2), the same 

di&ributios as reported in Reference 4 (Table 4-3) is used for the energy distribution at the 

sample plane. As cm. ts readily seen from TdAe 4-3, the specimens were exposed to about 

one-half the norm?A visible and 40 percent of the noma1 infrared energy for the one EUV6 

intensity .to which they were exposed. 
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Figure 4-6a. Relative Spo,mal Irradfance 
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Figure 4-6b. Relative Spectral Irradiance 
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Table 4-2. 5 kw HgXe Relative Spectral Irradiance 

A s  Measured in Sample Plane 

100 

73. 8 

10. 6 

18 

6.9 

6.9 

0.29 

0.34 - 

Wavelength Rmdpass 
(mp) 

A s  Reported in Reference 4 

100 

71 

7.9 

1.2 

4.5 

5.7 

6. @ 

2.4 

340 - 380 
37'0 - 420 

605 - 690 
790 - 850 
895 - 1020 

1090 - 1300 
I375 - 1640 
1900 - 2125 

Ultraviolet (less than 400 mp) 19 

41 Visible (between 400 and 700 rnp) 

Infrared (above 700 mp) 40 

9 

40 

51 

Table 4-3. Comparison of Emitted Energy of 5 kw HgXe and the Sun 

Percent of Energy 

(Reference 4) (Reference 5) 
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* The spatial intensity was obtained by measuring the output from the unfiltered thermopile 

at various positions on the turntable. This was performed after the lamp was stabilized to 

an intensity of one EUVS at sample position 11, ills determined by Equation 4-3: 

(4-4) 

I (UV) i6 tile EUVS intensity 

V and k are  the same as in equation (4-3), and 

E S (UV) and E (UV) are  the fraction of energy below 400 millimicrons emitted 
by the sun andL the lamp respectively. (See Table 4-3.) 

The spatial distribution obtained from these measurements is given in Figure 4-7. 

1.10 

1.00 

0.99 

X 
9 0.98 
3 
w 

0.97 

SPECIMEN POSITION NUMBER 

Figure 4-7. Spatial Intensity Plot t Sample Positions 
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SECTION 5 

IN SITU REFLECTANCE MEASUREMENT TECHNIQUE 

The reflectance measurement technique will be described in three parts: the'integrating 

sphere, the associated instrumentation, and the computer program for computation and 

plotting. 

5.1 INTEG-RATING SPHERE 

The integrating sphere has an inside diameter of about 5-1/2 inches, and is coated with 

magnssium oxide. It is positioned oveT the turntable so that any sample can be rotated 

under it for reflectance measurements (Figure 5-1). The integrating sphere is used in the 

inverted manner ("white" light is put 'm and the reflected light is put through the monochromator) 

so that a!: Telatively unstalole and unreliable components associated with the reflectance 

measurements are kept outside the vacuum system. The input source for the reflectance 

measurements is a 320OOK tungsten lamp projected through a quartz window. 'l'he output 

from the integrating sphere is channeled through a quartz light pipe and out another quartz 

windm into collecting optics for the monochromator) (Figure 5-2). Twelve specimens 

are shielded from radiation when. the integrating sphere and emissometer (described in 

Appendix B) are in position over the turntable. The remaining eighteen positions can be 

irradiated simultaneously or shielded as desired. Samples in the shielded zones can be used 

as  controls, as standards, o r  rotated into the irradiation zone later in the experiment. 

The magnesium oxide reference specimen used in these measurements is stored in this zone 

during irradiations. 

5.2. ASSOCIATED INSTRUMENTATION 

The associated instrumentation includes a monochL*omator and a digital d a k  acquisition system. 

The Perkin-Elmer Model 99 monochromator is used with a photomultiplier tube as a detector 

in the near ultraviolet and part of the visible spectrum, and with a lead sulfide detector in 

the rerminder of the visible and the near infrared. The output from the monochromator 

detector is put into the input scanner of the digital acquisition system. The digital acquisition 

system electronically integrates the monochromator detector output over prespecified 
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wavelength intervals and prints the value for that interval on digital tape (Figure 5-3). 

The scanner sends the monochromator signal through the voltage to frequency conqerter 

and into the electronic counter. The counter then integrates the output of the voltage to 

frequency converter over the specified wavelength intervals. The intervals are selected by 

an actuator connected to the monochromator drum drive, which is used to externally trigger 

the counter. The counter output is sent to the binary/decimal register, which also receives 

channel and time information from the digital clock. This data is then printed as a single-line 

output by the digital recorder. 

5.3 COMPUTER PROGRAM 

The computer program is then used to convert the digital recorder output to a spectra'i 

reflectance plot and an integrated value for the total solar absorptance. The spectral re- 

flectance measurement is presently divided into 54 intervals (from 356 to 2065 millimicrons). 

The spectral reflectance is measured, using a comparison technique (-with a magnesium oxide 

standard), and computed according to Equation 5-1. 

where: 

R (h.)  is the comput.ed reflectance in the wavelength inlerval represented by A. x 1  I 

R (h.) is the absolute reflectance (References 5 and 6) of the reference (MgO) 
as measured in air hi the wavelength interval represented by A. 

R i .  
I' 

and: 

p 
and zero readmgs, respefctively, obtained from the digital recorder for the wavelength 
interval reprwented by h.. 

(A.), p (A,) and pz (A.) are the dimensionless values of the reference, sample, R i  X i  

1 
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This value is then used in the 4020 plotting routine to produce a spectral reflectance plot. 

The solar absorptance is then computed as shown in the following equations: 

54 

i = l  

a s = l  -Rs (5-4) 

where: 

R (h.) is the fractional solar reflectance in the wavelength interval represented by A. 
s 1  1 

Rs is the fractional solar reflectance (as computed based on J (hi), as defined below) 

J(Ai) .. is fractional energy under the Johnson curve (Reference 7) between 0.356 and 
2.065 microns in the wavelength intervai represented by A .  

1. 

and: 

Q! is the fractional solar absoyptance (as computed based on J(A.), as defined above) s 1 

In addition to printing the fractional solar absorptance, the 7090 output also includes the 

wavelength of computation; the computed absolute reflectance; the computed solar re- 

flectance; the test specimen, reference, and zero readings from the digital recorder; the 

absolute reflectance of the reference; and the fractional energy in the Johnson curve for 

each wavelength region, together with the wavelength subscript. 

The fractional solar absorptance value computed as described above does not consider 

%hz sun's energy outside the region measured; therefore, the computer computated solar 

absorptance must be manually corrected for  these regions. This correction (now added 

into the computer program) is based on reflectance data obtained in air with a Beckman 

DK-IL spectroreflectometer. The correction is made as described in Appendix C. A 
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tabulation of the corrections for each material for the unmeasured region of the spectrum 

is given in Table 5-1. The solar absorptance values given in Section 7 are also corrected 

for  obviously erroneous high and low points (a smoothing of the curves). These correc- 

tions are performed manually with the aid of the 7094 output. A specific example of 

both types of corrections is given in Appendix C. The reflectance curves and their cor- 

responding solar absorptances given in Appendixes D and E are  not corrected as described; 

however, they were used as the basis for corrected values used in all other sections of 

this report. 

Table 5-1. Corrections for Unmeasured Region of Spectrum 

Material I 
Alzak (.175 mils) 

AIzak (. 10 mils) 

Goddard White 

RTV 602 White 

Pyromark Standard 
White 

Lexan (etched) over 
aluminum 

Lexan (dull) over 
aluminum 

Mylar over 
crinkled aluminized 
Mylar 

Solar Cells 

Micros hee t 

Reflectance* 

Below 356 mp 
5.9% of Energy 

.844 

.880 

.llO 

108 

.160 

. i38 

.I17 

.275 

Only change 

Above 2065 mp 
4.9% of Energy 

.930 

.959 

.429 

.559 

.462 

.403 

.417 

.300 

Total Increase 
in Solar Absorptance 

. 01 

. 01 

.07 

.07 

.06 

.05 

.06 

.05 

I meaningful because of copper absorption. 

*Based on Beckman DK-IL measurements tabulated in Appendix F. 
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The specular nature of the Alzak coating results in less light being reflected into the light 

pipe on the integrating sphere, on the erst reflection, than would a diffuse coating with the 

same reflectance. Since the MgO reference used is a diffuse coating, another correction 

(in addition to those previously discussed) znust be performed. The bcsis of this correction 

is a comparison of the reflectance measurements made in the in situ reflectance apparatus 

(on unirradiated Alzak) in a i r  and vacuum, with a MgO reference, against those made in 

this apparatus in a i r  with a vapor deposited aluminum reference. Figure 5-4 is a plot of 

the spectral reflectance D f  Alzak as measured with a lMg0 reference and with the vapor 

dqosited aluminum reference in the in situ reflectance apparatus. The MgO reference 

curve was obtained by using an overlay transparency on each of the before - irradiation 

Alzak measurements and averaging the result. The corrections at each wavelength and 

results of the computation a re  given in Table 5-2. 

1.0 

0.8 

cil 
0.6 

$ 0.4 
W 
d 
h 0 . 2  w 
P; 

0 
0 . 2  0.4 0 .6  0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 

WAVELENGTH (MILLIMICRONS) 

- WITH MgO REFERENCE (AVERAGE OF IN AIR AND VACUUM MEASUREMENTS) 

___- WITH VAPOR DEPOSITED A I  GMINUM REFERENCE (IN AIR) 

Figure 5-4. Reflectance Curves Used to Correct for Specu'sr 
Nature of Alzak 
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Wave length 
Region (mh) 

Total 

0.356 - 0.49 

c.49 - 0.55 

0.55 - 0.72 

0. 72 - 0.80 

0.80 - 0.87 

0.87 - 0.95 

t?.87 - 1.14 

1.14 - 1.26 

1.26 - 1.49 

1.49 - 1.64 

1.64 - 1.80 

1.80 - 2.065 

0.0691 

Table 5-2. Correction lor Specular Nature of Alzak 

Average Fraction Reflectance 1 Fractional 
Difference Between Aluminum and 

MgO Reference 

0.08 

0.06 

0.04 

Q. 08 

0.12 

0.10 

0.08 

0.10 

0.13 

0.1: 

0.09 

0.07 

Energy in 
Region 

0.170 

0.085 

0.203 

0.071 

0.052 

0.050 

0.092 

0.043 

0.058 

0.028 

0.018 

Decrease i?i 
Solar 

Absorption 

0.0136 

0.0051 

0.0080 

0.0057 

0.0062 

0.0050 

0.0074 

0.0043 

0.0075 

0.0031 

0.0016 
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SECTION 6 

EXPERiMENTAL PROGRAM 

Table 6-1 lists all the samples investigated in this program together with the desired test 

temperatures and the ultimate radiation Levels to which the1 were to be irradiated. Tnble 

6-2 lists the actual temperatures and ultimate radiation levels to which the spaoimens werc7 

exposed. The Teason the temperature was changed was that both tamperature extremes 

desired could not be obtained because of the high thermal contact resistance between the 

stationary and the fixed part. of the syecimen tnrntable. Since the major surface areas of 

the vehicle are  at the colder temperature, it was decided, in conjunction with the contract 

ITiCiiifiur, to conduct the test at the lowest temperature readily attainable. This temperature 

was -55 6 5 F for both irradiation and optical property measurements. The only exceptions 

to this was before irradiation (in air and vacuum) and the! final in-air measurements which 

wzre performed at +75 * Sol?. 

0 

14 -2 13 After the initial proton and electron irradiation, 5.10 

electrons cm (3 kev), it was decided, in conjunction with the contract monitor, to elimi- 

nate all future corpuscular radiation. This decision was based on the fact that ei*en at that 

low dose the specimens already had been exposed to the eyivalent of about one-half year of 

electrons and over 1 year of probns, while only completing 200 EUVSH of near u!+raviolat 

protons CM (2 ,5  kev) and 5- 1 0  
-2 

irradiation. The anticipated dose for this conclusion was based on Table 2-1 (References 1 

and 2) and Figure 6-1 (Reference 3). Since the total near uitraviolet irradiation was only 

945 EUVSH (about 2 to 3 months in orbit), it was decided not to perf0r.m any further corpus- 

cular irradiations. The ultraviolet irradiations were pecfcrrmed a t  1 & 0 .1  EUVS. Reflect- 

ance measurements were performed at the radiation increments shown in Table 6-3. 

Al l  multiple irradiations were performed simul:.:meously; that is, the samples under elw- 

tron irradiation were simultaneously irradiated wit? wotons and ultraviolet radiatic. 7 .  The 

converse is not true, 1, ,wever, since the electro . .cdiations were of shorter duration 

than the proton irradiation, which was of ehorter duration than the ultraviolet irradiation. 
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Table 6-1. Original Sample Matrix* 
c 

Goddard White 
RTV 602 

Pyromark*** 
Alzak (t,) 

Alzak 
Alzak 
Goddard White 
Pyromark*** 
RTV 602 

Goddard White 
Alzak 
Alv rk  
Alzak 
MI@ 

Lexan-1 

Alzak (t,) 
Mylsr 

Alzak 
Lexan-2 

Solar Cell 

Alzak (t,) 
Mylar 

Alzak 
Microsheel 

Alzak 

Goddard White 
RTV 602 

Pymmark*** 
Alzak (t,) 

No. 

1 

2 
3 

4 
5 

-- 
6 
7 
6 
9 
10 

11 
12 
13 
19 
25 

14 

15 
16 

17 
18 

20 

21 
22 

23 
24 

26 

27 
28 

29 
30 

Temperature , Radiation (ultimate) 
(OC) uv Protons Electrons 

20 - 10 Electrons/cm 17 17 2-  

at 3 kev 

17 2 
20 at  1 10 Electrons/cm 
20 

20 
20 1 EUVS 1 * 1017 Electrons/cm 

at 10 kev 

2 

at  20 kev 

To be established 
d [ None } ( duringtest of } during test of ] To be eetabMied 

ST} 
20 
20 

-100 

other materials other materials 

-100 (Cor tml) 

2 . 5  kev 

(I 
17 3 -  10 Protons/cm 

at  

2 . 5  kev 

i at  

2 . 5  kev 

7 17 2 3  
1 - 10 Electrons/cm 

~ at 3 kev 

17 2 
1 -  10 Electrons/cm 
at 10 kev 

1. 10 Electrons/cm 
at 20 kev 

1 - 10 Electrons/cm 
at 3 kev 

1 - 10 Electrondcm 
at 10 kev 

1. 10 Electrons/cm 

) 

17 2 

r 2 
17 2 >  

17 2 

) 
17 2 

. at 20 kev 
d 

1 - 10 17 Electrons/cm2] 

~ at 3 kev I 
17 1. 10 Electronb/cm 

at 10 kev 

1. 10 17 Electrons,’cm 

Lat 20 kev 

‘Refer to Table 6-2 for matrix achially used. 
**All Alzak samples were 0.175 mils. except those followed by a ($1, which were 0.100 mils. 

***Pyronark Standard Fhite 
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. . 
Table 6-2. Final Sample Matrix 

Block No. 
Radiation (ultimate) 

I Electrons cm-2 (3 kev) -2 Sample* Protons cm (2 .5  kev) 

Block IV 

Block V 

Lexan-1 
Alzak (t,) 
Mylar 
Alzak 
Lexan-2 

Solar Cell 
Almk (tl) 
Mylar 
Alzak 
Microsheet 

945 EUVSH 

{ ...) 
~ 

14 I 13 4.4 - lol4 

5.0 6 lol4 

5.6 * lol4 
5.6 * lol4 , 

4.4. 10 

5.6 * lol4 

Block VI 
Goddard White 
RTV 602 
Pymmark* * 
Alzak (tl) 

1 3  

5.0 * lol3 

5.8 * lol3 
3.3 * 10 

3.3 - lol3 

5.8 * lol3 

*All Alzak samples were 0.175 mils, except those followed by a (t l) ,  which were 0.100 mils. 
**Pyromark Standard White 
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Table 6-3. Sequence of Reflectance Measurements 

1 

2 

3 

Measurement 
Number 

75" 

-55 

-55 

Measurement 
Temperature 

(OF) 

-55 

-55 

-55 

-c . 

-55 

75* 

Near Ultraviolet 
(EUVSH) 

None 

None 

61 

200 

355 

500 

714 

945 

945 

Radiation Exposure 

2.5 kev Protons 
(p/cm2) 

None 

None 

None 

5 10 

5 10 

5 10 

5 10 

5 10 

6 10 

14 

14 

14 

14 

14 

14 

~ 

3 kev Electrons 
(e/cm2) 

None 

None 

None 

5 * 10 

5 . 10 
5 10 

5. 10 

5 10 

5 10 

13 

13 

13 

13 

13 

13 

*Measurement performed in air, all others were performed in vacuum. 

The composition and preparation of the test specimens a re  given in Table 6-4. The Alzak 

samples were cleaned with MEK and wzped with gauze pads immediately before instdlation 

in the chamber. The white coatings were cleaned with a mild soap and distilled water and 

wiped with gauze pads immediately before installation into the chamber. After the initial 
-7 in-air reflectance measurements the chamber was evacuated to 2 - 10 torr and held there 

for 24 hours before the initial in-vacuum measurements were performed. Malfunctioning 

of the Diatron 20B (the analyzing section of the CEC 21-612 Residual Gas Analyzer) resulted 

in the elimination of the mass spectrometer measurements from the test program. Correc- 

tion of this problem would have required breaking vacuum and remeasuring the reflectance 

of the specimens at least in vaeuum. Both the absence of pressure bursts and the spectral 

reflectance measurements obtained prove that there was no deleterious effect due to out- 

gassed particles from one sample condensing onto other samples during the irradiations. 

The entire te& was performed at  2 . 10 
the pressure was in the high 10 to r r  range. This pressure increase is probably due to 

atomic hydrogen which enters the chamber through the ion source canal Mth the protons. 

-7 torr, except during the proton irradiation, when 
-7 
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General Electric 
Material 
t71A4199 
General Electric 
Process 
Specificat ion 
17U4200 

Table 6-4. Coating Composition and Application 

This is a proprietary coati t~g manufactured by 
the Tempi1 Corporation. I t  is a Ti02 (rutile) 
pigment in a Dow Corning methyl-phenyl silicone 
binder. The binder is probably 805 or 806A. 

. 
1 

None 

I Material 

Dupont R-960 pigment in General Electric 
RTV-602 c:licone resin in  a pigment to binder 
ratio of 2:l parts by weight. The H-960 pigment 
is a silica treated rutile form of Ti02. The 
RTV-602 i s  a dimethyl siloxane catalyzed with 
1.5 to 2.0 percent by weight (of resin) catalyst 

Alzak 

Pyromark 
Standard 
White 

Goddard 

White 
78-2B 

Grumman 

White 
RTV-602 

~~ 

Applicable 
Specifications 

- 
Grumman 

Section 1 
XP-252-TS-26.0 

Composition 
~~ 

Reflective coated bright rolled 1100 aluminum 
alloy reflector sheet of H-18 temper. The front 
surface has  a high purity aluminum clad for 
maximum reflectance and is protected by ? 0.10 
to  0.26 mil anodic oxide coating. 

This material  is composed of 100 par t s  by 
weight (pbw) General Electric RTV-602 silicone 
240 pbw ZnO from New Je r sey  Zink (SP-500) 
and 70 pbw Toluene. 

The total normal emittance values obtained with the in situ emittance measurement apparatus 

were not reproducible and, therefore, discontinued. A description of its construction, 

calibration, and measurements made are given in Appendix B. 

Spectral Reflectance measurements were made, at NASA-Goddard, of all samples tested, 

except Pyromark Standard White and RTV-602 White, betore irradiation. All  samples 

tested were measured after irradiation at NASA-Goddard. One of each'of the samples listed 

in  Table 6-5 was measured at General Electric with a Beclunan DK-IL spectroreflectometer 

before irradiation. Table 6-5 lists the samples on which spectral emittance measurements 

were performed with a Leeds and Northrup hohlraum and a Perkin-Elmer 13-2 spectro- 

photometer. Tables of the spectral reflectance data on samples listed in Table 6-5 are given 

in Appendix F. 
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Table 6-5. Specimens Measured with Conventional . 1- 4 i r  Optical Instruments 

Sample Identification 

Alzak* 11 (0.175 mils) 

Alzak* 24 (6.29 mils) 

Alzak* 30 (0.10 mils) 

Goddard White 

RTV-602 White 

Pyromark Standard White 

Lexan (Etched) 

Lexan (Dull) 

Mylar (Shiny side out) 

Microsheet 

Solar Cells 

Spectral Solar Absorptance 
- 

X 

X 

X 

X 

X 

X 

Both transmittance and 
reflectance over 
polished alumiwm. 

Both transmittance and 
reflectance over 
pulished aluminum. 

Both transmittance and 
reflectance over 
crinkled aluminized 
Mylar. 

X 

Both N/P and P /N cell 

Spectral 
Emittance 

*Sample numbers given are NASA-Goddard code numbers. 
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SECTION 7 

RESULTS AND DISCUSSION 

A comparison of the solar absorptance based on smoothed and unsmoothed reflectance 

curves is given in Table 7-1 (Alzak) and Table 7-2 (white paints and miscellaneous 

spacecraft materials). These values are rounded off to 2 decimal places and a re  smoothed 

but uncorrected for the region of the spectrum not measured, as described in Section 5. 

The values in parentheses a r e  the values before smoothing. If there is no value in 

parentheses, the solar absorptance did not change ilpon smoothing. These values a re  all 

based on the reflectance curves in Appendix D. The reflectance curves in Appendix D are  

just a s  the computer produced them (uncorrected and unsrnoothed). A summary of all 

corrected and smoothed absorptance valucs obtained are given in Table 7-3 (Alzak) and 

Table 7-4 (white coatings and miscellaneous spacecraft mz krials). 

The solar absorptance values presented in this report were obtained by placing the Lexan 

samples over polished aluminum and the Mylar saa?p:is over crinkled aluminized Mylar. 

Table 7-5 compares the solar absorptance values obtained with the in situ apparatus against 

the Beckman DKLIL measurements (Appendix F) and those ohtair:: .I at NASA-Goddard. A31 

vaiuas in this table are based on in-air measurements. The values from the in sitx 

apparatus are  both smoothed and corrected. The Alzak samples a r e  the only ones corrected 

for specular reflection. 

Al l  solar absorptance values from the in situ reflectance apparatus used in this report were  

obtained as described in Sscticin 5 ,  except as follows: 

a. The measurements made on 4/26/67 (61 EUVSH), 5/2/67 (200 E W E  plus e and p), 
and 5/8/67 (335 EUVSH) were reduced manually from a strip chart recording of 
the monochromator output. This was done by averaging the recorder readings 
between event markers on the strip chart over the same wavelength regions that the 
digital acquisition system normally integrates the monochromator output. This datawas 
then computepprocessed in the. normal manner. The digital data acquisition system 
was not used in these measurements, since it was inoperative at tb? time. 

b. The mp7surements made on 6/6/67 (945 EUVSH) and 6/14/67 (945 EUVSH in air) 
are based on triple scans, i. e. , the measurement described in Section 5 was 
repeated three times, The reflectance curves (Appendix D) a d  solar absorptance 
values L. these dates were obtained from a point by point average of the three 
curves. 
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+ 
Table 7-5. Comparihon of Solar Absorptance Values 

I 
++Transmissdon and reflectance measurements made only on Lexan at NASA-Goddard 

+ Unavailable for measurement at NASA-Goddard before testirlg. 
* Based on an average of all samples measured befor e irradiation in ais, except f o r  

**&sed on measurement of one sample. 

I 

before testing. 

Alzak where in vacuum measurements before irradiation were a1w used. 

***A solar absorptance of 0.25 mther than 0.22 is considered more norm2 for 
Pyrornpxii Standard White. 
I -~ 

Material - - 
Alzak (, 175 mils) 

Aizak (. 100 mils) 

Goddard White 

RTV 602 White 

Pyromark Standard White*** 

Mylar (shiny side out) over crinkled 
aluminized Mylar 

Lexan (etched) over polished 
aluminum 

Lexan (dull) over polished 
aluminum 

1 
Solar Absoiptance (in air) 1 - 

In, Situ* 
Apparatus 

.15 

. 13  

.22 

.18 

.25 

. 34  

.33  

.30 

Beckman* * 
DK-IL 

.16 

.15 

.19 

.18 

.22 

.31 

. 3 4  

.30  

- 

NASA - G odda 1’ rd* 

. I 5  

. 1 4  

.21 

+ 

+ 

.31  

+t 

f-t 

- _  - 

In addition tcs pbting the average reflestance from the three scans, separate plots of each 

of the three s c m s  were also made (Appendix E). A compilation of the solar absorptance 

obtained in each separate scan and from the point-by-point averaging of the three scans is 

given in Table 7-6 (for 945 EUVSH data in vacuum) and in Table 9-7 Tor 945 EUVSH data 

in air). All values in both these tables are both unsmoothed and uncorrected (just roundeci 

off t o  2 decimal places). All values which deviate from the average by more than + 0.01 

a re  put in parentheses. Analysis of these two tables shows that only 9 out of the 168 scam 

made deviate by more than - + 0.01 from the average value, for any given sample. Of these 

nine, four are exaggerated by rounding off from 3 to 2 decimal places. B ~ e d  on this, it is 

- 
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believed that most of the values obtained are  reproducible and sex-consistent to - + 0.01, and 

all  values are reproducible and self-consistent to  - 4- 0.02. The smoothed values should be 

even more reproducible and self-consistent. It is believed that an amlysis based on the 

spread in measurements actually performed (such as that above) is more meaningful and 

accurate than a theoretical analysis which consdors the stability of each component of the 

measurement system separately to establish the theoretical reproducibility of the total 

system. It should be noted that the one factor not comidered in the analysis presented is 

proper sample positioning under the integrating sphere (a theoretical analysis would not 

consider this either). 

It should be obvious that the aforementioned analysis does not establish the accuracy of the 

solar absorptance values obtained with the in situ reflectance app~ratiis. Based on the 

comparison of values obtained with two other systems (Table 7-5), it appears that the 

agreement is very good €or some materials and fair in the case of Mylar (shiny side out), 

wnere no adjustment was made for the specular nature of its surface. The question of the 

accuracy of the measurements made with the in situ reflectance apparatcs should not 

hinder the usefulness of the data, however, since any desired correction in the initial 

value stated can be applied to all values listed for the mzterial of interest (a linear 

translation of the curve along the solar absorptance axis). What is most important is that 

the reported change in s o l e  sbsorptance for each radiation exposure listed is believed to 

be accurate to - i 0.01 and cerhiilly accurate to -t - 0.02 (as illustrated by the values listed 

in Tables 7-6 and 7-7). 

The following is an analysis of the data on each material category and each coating, 

separately. 

7 . 1  ALZAK 

The solar absorptance of klzak as a ftrnction of radiation dose is given in Figure 7-1, 

The two different thickness coatings are  plotted separately. The initial sdar absorptance 

values for Figure 7-1 are based on an average of all initial measurements made on each 

thickness of Alzak (Table 7-5). The values at each mdiatfon level are based on an average of 

-- 
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.. the ultraviolet and the combined electron, proton, and ultraviolet irradiated samples 
listed in Table 7-3 (for each thickness). 

0.30 

0.100 MIL THICK 
0.25 

+ P O X F  AT WHICH e AND p W u IRRADIATI3NS WERE PERFORMED z 
4 r n 
d OS2O 
L9 
4 
p: 

8 0.15 
2 

0.10 

0.05 

10 

EWSH 

100 1000 

Figure 7-1. Radiation Degradation of Alzak 

The reason the samples irradiated with slii-a,tioIet radiation alone are col;lbined with those 

which also experienced electron and proton irradiation is that no significark difference 

could be detected, due ta the addition of the corpuscular irradiation (see Table 7-3). A s  

can be seen from Figure 7-1, both thicknesses of Alzak appear to exhibit abortt the same 

incremental change in solar absorptance for each radiation level. Figure 7-2 is a plot 01 

the incremental change in the - Jiar absorptance of Alzak as a function of radiation exposure. 

The result is that the thicker Alzak coating has a higher solar absorptance, but the thinner 

coating exhibits a greater percent of change iri solar absorptance. The most desirable 

thickness of Alzak must then be determined by thermal design,since there will now be a 
tradeoff between maximum desired solar absorptance (or temperature) and maximum 

tolerable change in solar absorptance during the mission !ifetime (or maximum) temperature 

change during flight). The fad that this incremental change in the solar absorptance of 

Alzak ia independait of thickness probably means that all the degradation (for the type of 
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irradiation to which these samples were exposed) was caused by changeR which occurred 
at least within the first G. 100 mils of the coatings. The degradation (change in solar 

absorptance) due to electron and proton irradiation only, (based on the values presented 

in Table 7-3) is 0.01 for the 0.175-mil. Alzak coating and 0.02 for the 0.100-mil Alzak 

coating. 

Based on the spectral reflectance curves in Appendix D and the average values of solar 

absorptance presented in Tables 7-6 and 7-7, it appears that the Alzak coatings do not 

heal when exposed to air after irradiation. 

0.05 

0. '4 

0.01 

0 
0 100 200 300 400 500 600 700 800 900 1000 

EWSH 

Figure 7-2. Radiation Degradation of Alzak 

The use of overlays (as described in Section 5 for correction of the specular nature of 

Aha!<) on the Alzak curves in Appendix D revealed the following: 

, 

a, It WLS observed that the 0.175-mil samples irradiated both with ultraviolet only 
and with the combination of corpuscular and ultraviolet irradiaticm exhibited the 
following spectral reflectance changes: 
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1. After 61 EUVSH there was a general decrease in the reflectance below 0.8 
microns and an increase in the radius of curvature of the absorption edge out 
to 0.6 microns. 

Material 

2. The rounding of the absorption edge continued until it reached 0.8 microns 
after 714 EUVSH. It remained like this €or the duration of the test. 

Increase in Solar Absorptance 

Increment P e rc ent age 

b. The 0. lOO-mil samples exhibited a similar general decrease in reflectance below 
C .8 microns, but the rounding of the absorption edge only was observed below 
0.7 microns. It appears that the electron and proton irradiation at the 200 EUVSH 
radiation.leve1 may have healcd the rounding of the absorption edge on samples 
5 and 15. The absorption edge was rounded again at the next measurement (after 
500 EUVSH). , 

L w r o r n a r k  Standard White 1 0.08 

7.2 WHITE PAINTS 

The change in solar absorptance as a functim of radiation dose for al l  the white paints is 

given in Figure 7-3. The initial solar absorptance values for Figure 7-3 are based on only 

the 91-vacuum measurements. The values at each radiation level are based on one sample, 

except for Godrlard White, where the sample that received only ultraviolet and the sample 

that received both ultraviolet and corpuscular radiation were averaged. These are the 

values listed in Table 7-4 except as stated in the following discussion of each white paint. 

Table 7-8 shows that Pyromark Standard White exhibited thc greatest change in solar 

absorptance and the greatest percent of change of any of the white paints. RTV 602 White 

and Goddard White displayed the same incremental change in solar absorptance; therefore, 

RW-602 White had a slightly higher percent of change in solar absorptance than Goddard 

White, since its initial value was lower. 

33 

Goddard White 

RTV 602 White 

0. 02 

0.02 

0. 02 

0.02 7 10.5  7 10.5  
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7 . 3  GODDARD WHITE 

The value of the solar absorptance in Figure 7-3 at 714 EUVSH is based only on Sample 

The value of Sample 11 was not used to  obtain the average value for  this point because its 

reflectance curve exhibited an abnorm:.illy high reflectance, from 0.6 micron to 1.0 

micron, which is not corrected for  by a simple smoothing of the curve. The reason this 

is not corrected by the smoothing process is because of the large wavelength region which 

it encompasses. The erroneous reflectance curve obtained is almost certainly due to 

improper sample positioning. 

Virtually all the degradation due to ultraviolet irradiation occurred within the first 61 

EUVSH. The degradation was exhibited as a general decrease in the reflectance below 

0.8 micron. There was no change in the sharpness of the absorption edge. No change 

could be noted in this coating due to the electron aniproton bombardment. Analysis of the 

absorption edge and the ref lectace below 0.8 microns of the spectral refleclxmce curves 

in Appendix D shows that this coating did heal slightly (about. 0.01 solar absorptance increase) 

when exposed to air after irradiation. 

7.4 RTV-602 WHITE 
The value for the solar absorptance at 335 ETJVSE is missing because its reflectance 

curve exhibited an abnormally low reflectance in the wavelength regie2 between 0.8 and 

1.4 microns which does not get compensated f o r  in the normal smoothing process, This 

erroneous plot is probably due to  an improper sample positioning for tk. reflectance 

m easslr ement. 

Virtually all of the degradation due to  ultraviolet radiation occurred within the first 200 

EUVSH, and was due, primarily, to a decrease in reflectance below 0.6 micron. There 

was no change in the shage of the absorption edge, as determined with overlays as described 

earlier. No healing was noted when this material was exposed to  air after irradiation. 

The proton and elc . con irradiation produced less than a 0.02 change in the solar absorptance. 
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7 . 5  PYROMARK STANDARD WHITE 
By 335 EUVSH the degradation to this material appeared to reach a threshold. The change 

in the reflectance curve was primarily below 1.0 micron after 61 li:UVSH, and the absorption 

edge became rounded back to 0.6 micron. The reflectance curve decreased out to 1.6 microns 

as  the degradation continued. The electron and proton irradiation caused less than a 

n. 02 change in solar absorptance. 

The solar absorptance of this material exhibited noticeable healing when exposed to air 

after irradiation. The healing was exhibited by an increasa in reflectance iE the entire 

wavelength region where degradation was noted, ixcluding a reduction of the radius of 

curvature of the absorption edge. 

Two samples of Pyromark Standard White were exposed to 2 . 5  kev protons with reflectance 

measurements performed after 

change after the 10 p cm dose; however, after 10 p cm a change in solar absorptance 

of 0.20 and 0.28 was noted on the two specimens (Figure 7-4.) This means that the 

solar absorptance of Pyromark Standard White was  between 0.44 and 0.52, after exposure 

to 10 p cm 

expected that OAO will receive even one tenth of this dose in one year of flight, it becomes 

important when the following facts are considered: 

16 d 5 ,  and 10 p cm-2. There was no significant 
15 -2 16 -2 

16 -2 of 2.5 kev. Although this data may seem irrevelant, since it is ilot 

a. To date, virtually 211 space flight coating experiments have shown that the 
coatings degrade more in space than they do in ground. simulation. 

b. A very recent prelimlnazy investiga.tion by Babjak and Go!dis at General Electric 
has shown that Pyromark Standard White degradation due to  15 kev electrons is 
not dependent on total measured incident dose (when different dose rates are used), 
but is dependent on total irradiation time. Based OD. this work, it has been shown 
that the variation in total dose (performed a t  different flux levels) for an 
equivalent change in reflectance can vary by at least as  much as  450. This can be 
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Figure 7-4. 2.5 Kev Proton Irradiation of Pyromark Standar’d White 
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due either to space charge buildup and/or reaction rate limitation*. If it is 
primarily space charge buildup which is responsible, th i s  eflectively means that 
the flux measured with a Faraday cup over the sampi.: i p  much greater than the 
flux which the sample actually receives. The actual difference in the measured 
flux and the flux incident on the sample can be experimentally determined. 

c. Although it is t rue  that the lower energy particles deposit more energy per  unit 
path length traversed than the higher energy particles, and that the flux o l  lower 
energy particles in space is much greater than that of the higher energy particles, 
one must consider the following details of a coating to determine the proper 
simulation: 

1. The effect of coating thickness on the solar absorption 

2. The range of - ;:r;:iscular radiation (especially protons) in the coating and the 
incremental cqergy deposited. by each typeparticle and energy in the critical 
region of the coating 

The approximations used in selecting 2.5 kev protons and 3 kev electrons could 
feasibly result in as much as a factor of two between the actual dose and the 
equivalent dose for simdation of a continucms energy spectrum (space) with the 
pfmono-energeticf laboratory simulation, 

d. The accuracy to which the anticipated orbital radiation dose is known (fo;: low 
energy particles). 

The combination of the aforementioned three unknowns coiild account for a factor of 1000 o r  

more between the proper equivalent dose and the reported measured dose. This couid 

bring the measured 10 p dose down to an equivalent 1 0  p ern dose, in which 

case the resultant 0.20 to 0.28 degradation in the solar absorptance of Pyromark Standard 

White becomes very meaningful. It should also be mted that both of these samples healed 

appreciably when c,xpooed to air after irradiation. 

16 13 -2 

7.6 MISCELLP,NEOUS SPACECRAFT - MATERIALS 

Based on the measurements listed in Table 7-2 and the fact that both the solar cells and 

the microsheet could move slightly (since t'?p were not single piece circular samples), no 

Setectabie change occurred in ?ither of thesl- :arnples due to the electron and proton 

irradiakion to which they were exposed. 

* A paper is being prepared for publication. 
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7.7 MYLAR 

The reported reflectance measurements were obtained with the shiny side of the 14-mil 

Mylar facing out, with aluminized crinkled Mylar behind it. No change ;vas detected in 

this m 3eri:jI &e to corpuscular radiation. The ultraviolet degradation of this material 

was quite severe, as tloted in Figure 7-5, and did not appear to reach a degradation 

threshold even after 945 EWSH. The value after 61 EWSH was riot plotted in Figure 7-5, 

since it is obvious from the shape of the absorption edge in the reflecl;-iltce curve t'nat the 

wrong specimen was under the integrating sphere, for the region of the s p c t r u m  measured 

with the phototube. The degradation consi,zted primarily of a rounGng IA the absolrption 

edge out to 1 .0  micron and a slight decrease in the refloot;;we above 1.0 micron (originally 

the absorption edge was rounded out to 0.7 microsi). Upon exposaire to ais at the en2 of the 

test a large amourt of healing was noted (see Figure 7-5). Virbally all the degradation 

above 1.0 micron was healed, and an increase in the slope of the absorption edge was also 

noted, although it remained rounded nut to 1.0 micron. 

7,8 LEXAN 

The Lexan samples (one etched and one dull) were measured over polished aluminum, 

Lemn exhibited about the same degree of degradation as Mylar; however, it degraded 

faster initially and then almost leveled off after 500 EUVSH (Figures 7- 6 and 7-7). The 

value of the etched Lexan at 61 EUVSH was not used since it is evident from the spectral 

reflectance curve that the wrmg sample was under the integrating sphere during this 

measurement (based on the shape of the absorption edge). 

During the measurements after 945 EWSH, the dull Lex& sani$e slipped off its polished 

alumiwm substrate, as evidenced by the spectral reflectmce cwve and a later visual 

observation; therefore, thcire i s  no data presented after 714 EUVSH for this sample. The 

ultrav5olet degradation consisted primarily of a sloping of the absorption edge out to about 

1 .1  mGsrons. Originally the absorption edge was very sharp at about .47 micron, Although 

it is :lot I 

exposilre oi Lexan to air at the end of the test. This consisted of a slight increase in the slope 

of the absorption edge, so  that it started falling off at 1 . 0  rather *han 1.1 microns. 

W o u s  as in the c a w  of Mylar, it appears that some healing occurred upon 
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$ -. 
Although no significant change was noticed due to the corpuscular radiation after 200 

EWSH, it cannot be said that, @y itse'lf, the incident corpuscular radiation would not 

cause any damage (since an appreciable degradation had already occurred even after 

61 EWSH). 

I* 

0.801 

POINT AT WHICH e AND p * !RR;\DIATIONS WERE PERFORMED 

0,70.  
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4 0.50, 
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Figure 7-6. Radiation Degradation of Lexan (Etched) 

EVEN AT THIS TIME. 
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Figure 7-7. Radiation Degradation of Lexm (Dull) 
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SECTION 8 

CONCULSIONS AND RECGMMENDATIONS 

Mylar and Lexan degrade severely and rapidly under ultraviolet radiation (over 50 percent 

increase in solar absorptance in 945 EUVSH). No change in solar absorptance was detected 

due to 5' 10 e cm and 59 10 p cm , with either the microsheet o r  the solar cells. 
13 -2 14 -2 

The change in solar absorptance of Alzak after 945 EWSH was about 0.04 for both the 

0.100 mil and the 0.175 mil samples. The electron and proton irradiation caused between 

a 0.01 and 0.02 change in solar absorption. The combination of corpuscular radiation 

with the ultraviolet did not result in a degradation which w8s the s i m  of the two separate1.y. 

In fact, it appears that the corpuscular radiation may have healed some of the ultraviolet 

degradation. 

Pyromark Standard White experienced the greatest degradation of all the white paints studied. 

The following conclusions and recommendations, although based on other studies, are pre- 

sented since, it is believed they a r e  essential facts which a u s t  be considered in order tu 

decide whether o r  not a specific coating will be satisfactory for a particular space vehicle 

mission. 

Virtually all correlations between gromd @.nd flight data have shown that coatings appear to 

degrade more in space than in the supposedly equivslent ground-based simulation. It is believed 

that a recent electron irradiation study performed at General Electric will help to elucidate 

at least a major part of this discrepancy. It has been shown, under experiment, that the 

change in reflectance is independent of the measured dose rate, if f<mnilies of constant 

irradiation times rather than constant total doses a re  plotted. Although this experiment, in 
itself, is not conclusive, it reinforces the suspicion that either a space charge buildup o r  

reaction rate limitation can explain the major discrepancy behveen ground and flight data. 

A space charge on the sample will appreciably reduce the flux indicent on the sample from 

that measured. In addition to this uncertainty, the establishment of the dose of molsoenergetic 

particles which should be used to properly simuXaQe the continuous energy spectrum of 
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space should be experimentally and theoretically justified. Also, the definition of the space 

radiation env+ roment  (especially for the lower energy particles) should be better defined. 

It is recommended that the measured dose rate dependence, monoenergetic simulation, and 

definition of the space environment, (and especially the dose rate dependence) be re-analyzed 

before a decision is made on which coatings should and should not be used in any mission. 
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APPENDIX A 

FACILITY DESCRIPTION 
Bp1 

The Combined Effects Facility (Figure A-lj  simultaneously combines the radiation com- 

ponents of the space environment which are believed to  produce the greatest changes in the 

optical properties of thermal control materials. The system holds thirty specimens, of 

which 21 can be irradiated simultaneously, each receiving various combinations of radiation. 

The solar absorptivity is determined from i~ situ reflectance measurements obtained with 

an integrating sphere in the vacuum system, while the total normal emitkxe is measured 

in s i tu  with a thin film infrared detector. The specimen temperature during irradiation 
0 0 

can be held constant or cycled batween -100 F and +350 F. 

A. 1 VACUUM AND PUMPING SYSTEM 

The basic chamber is constructed of Type 304SS and has eight 2-3/4-inch'feedthrough ports 

around the 22-inch diameter base. The bell proper has nine ports for accommodating the 

radiation sources, mass spectrometer, and optical windows for reflectance mesrsurement, 

in addition to an access port. A rough vacuum is obtained by stage pumping with three 

molecular-sieve sorption pumps from atmosphere to 10 

first baked out and desorbed to  the atmosphere at approximately 15OoC, then capped and 

chilled with liquid nitrogen for use when needed. The three sorption pumps provide two-stage 

pumping to approximately 1 micron with the third unit held in reserve for the Lakeout period. 

-3 to r r  or  less. These pumps are 

Sputter ion, titanium sublimation, and cryosorption pumping are used to obtain ultra high 

vacuum. With a 3OO0C bakeout, the system has been pumped down to 

with a cold cathode trigger gauge. The sputter ion triode pump is rated at 500 liters/second, 

with no impedance between the pump and the chamber. The titanium sublimation filament 

used for getter pumping is rated at 500G liters/second with a total of four filaments which 

can be used sequentially. The cryosorption pumping is performed by an inner aluminum 

cylindrical shroud, cooled with liquid nitrogen and having a low-emissivity outer surface 

and a carbon-black anodized inner surface. Electrophoretically deposited carbon was used 

to avoid problems associated with sublimation of organic coatings at high temperatures. 

torr, as measured 
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The HgXe lamp was chosen as the ultraviolet source for a number of reasons: 

a. It produces a relatively continuous spectrum, due to the high pressure band 
broadening and xenon cornponeit, 

b. It has a sufficient amount of energy in the visible to preclude t L  possibility that 
photolytic healing would occur in space but not under simulation 

c. It combines a rich source of ultraviolet with long lamp life and troublefree operation. 

A. 2.2 FAR ULTRAVIOLET IRRADIATIONS 

Far ultraviolet irradiations a r e  performed with a hydrogen lamp designed and built in the 

Missile and Space Division of General Electric. The spectral irradiance of this lamp is 

between 1100 and 2000 Angstroms, and produces an intensity of about 5 suns in that wavelength 

region, a t  the ;ample plane. The lamp is composed of a Pyrex tube mounted in a stainless 

steel flange with a lithium fluoride window sealed to the end. The spectrum is produced by 

energizing the hydrogen with a microwave generaior and initiating the discharge with a Tesla 

coil. When used, this source replaces either the electron or the proton gun. 

0 
Although the total energy in the electroagnetic spectrum between 1100 and 2000 A is small, 

it is still important to simulate, since it may cause reactions which will not occur with near 

ultraviolet irradiation. This is because a 2000 A photon can only cause reactions which re- 

quire less than 6 ev directly, whereas an 1100 A photon can directly cause reactions requiring 

up to almost 11 ev. 

0 

0 

A.2 .3  THE PROTON IRRADIATIONS 

The proton irradiations can be performed at energies up to 5 k w .  The proton gun (Figure A-2) 

ionizes hydrogen, admitted into the source through a palladium leak, with an rf oscillator. 

These protons are then accelerated through an orfice with TL high voltage power supply. 

The average proton flux at the sample plane is 8.10 

2.5 kev. The proton flux approximately doubles with each.1000-volt increment, from about 

1.0 kev. In comparison to other positive ion sources, the rf ion source has the important 

feature of a high ratio of atomic hydrogen ions to molecules. Two factors contribute to this 

12 -2 -1 protons cm sec at an energy of 
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figure of merit: (1) low atomic recomhnation rate and (2) ion focusing at the canal entrance. 

Low atomic recombination is achieved by the choice of materials inside the plasma region; 

the discharge vessel is Pyrcx glass, all electrodes me a'iuminum, and the probe insulator 

ia sapphire. The purpose of the probe electrode insulator is to shape the plasma boundary; 

thus, the "emitted ions' a r e  effectively focused into the canal entrance. 

A. 2.4 L0';J ENERGY ELECTRON IRRADIATIONS 

Low energy electron irradiations are performed with the el2ctron gun shown in Figure A-2. 

This assembly has 300 milliampere and 20 key capability. The beam assembly is composed 

of a filament, bias cup, X-Y deflection coils, an6 beam. focusing coils. The electron flux 

of 3 kev electrons at the sample plane is nominally 6 x 10 
12 -2 -1 

electrons cm sec . 

A. 3 TURNTABLE SYSTEM 

The turntable (Figures A-3, A-4, and A-5) accommodates thirty samples simultaneously, 

The spcsimens are 0.906 inch in diameter and 0.063 inch thick and are held in contact with 

the rotzting heat exchange block by spring clips. The turntable is composed of two sections: 

one which is stationary and used for support and establishing a heat sink at the lowest 

specimen temperature, a i d  the other for rotating the specimens in and out of irradiation 

an6 -ptical property measuremer;t; zones, as well as for maintaining the desired specimen 

temperatures. The segment heater sections make it possible to obtain five 'different irradiation 

temperatures simultaneously on each of six specimens. The hollow drive shaft provides more 

than adequate accommodations for specimen temperature and radiation semor leads. This 

design combines faster and more economical irradisi.ion with greatez thkimal control and 

monitoring capability. The split table concept, stationary and rotating sections, provides 

reliability through simplicity, and is ideal for incorporation with an integrating sphere and 

emissometer for in situ optical property measurements, as well as a number of other 

important in situ property measurements, 

A. 4 REFERESCES 

A. i Jobson,  F. B., Satellite Environmental Handbook, Stanford University Press, 3.961, 

A-2 Schexnayder, C. J., Jr. , "Tabixlated Values of Bcml Dissociation Energy, Ionization 
Potentials, and Electron Affinities for Some Molecdes Found in High-Temperature 
Reactions, NASA Techmiml Note D-1791, May 1963. 
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APPENDIX B 

IN SITU EMISSOMETER DESIGN, CALIBRATION, AND USE 

The total in situ. emissoxeter is composed of two main parts: detectors and reference 

source. The total emittance is determined by a comparative technique with one detector 

positioned over the specimen, while the other one is over a reference body. The infrared 

detectors used are vapor deposited onto a thin plastic film. A V-grooved reference body 

is used to minimize errors  due to shifts in the reference source. 

The detectors were correlated against each other as a function substrate ternbvLutuse while 

observing the same infrared source,but were not tested before use against knoniz standards 

because of scheduling difficulites. When used in the actual test the results wert  l o t  

reproducible and did not produce results which corresponded io the known emittance values 

of the samples measured. Since correctim of this problem, regardless of its cause, would 

have required the vacuum system to be opened (a time consuming operation after evacuation), 

the emivance measurements were discontinued. 

B. 1 EMISSOMETER DESIGN AND OPERATION 

The total emittance is measured with an emissometes composed of two thin film 17 junction 

tellurium-gold IR detectors, made at the Missile and Space Division of General Electric. 

The two IR detectors haw the same sensitivity (except for some small variation, k(T), which 

is a function of the specular distribution of the incident flux and tlie reference junction), and 

a re  mounted in the same temperature controlled housing. Olie looks at the specimen to 

be measured while the other looks at a blackbody reference held at the same temperature 

as the sample being measured. Since both detectors and radiators are in idefitical situations 

(temperature, solid angle subtended, etc.), the total normal emittance of the specimen is 

given simply by: 

V 

V k E (T) = -- X 

r 
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where: 

E (T) is the total emittance at temperature T, 

V 
raerence respecitvely, 

and Vr are  the outputs of the W. detectors over the specimen and black body 

and: 

k(T) is the correction factor for the dissimilarity between the two IR detectors a t  a 
reference junction temperature T and a specimen temperature obtained from the 
correlation chart. 

The correction factor k(T) is obtained by dividing the output of the detector usually 
positioned over the black body reference by that of the detector normally over the 
specimen when they are  in identical positions over the same radiator. If for each 
referciice junction temperature this measurement is performed as a function of 
specimen temperatwe the resuiting temperature dependent correction factor k(T) 
is obtained. This correction factor will be good for all materials which a r e  approx- 
imately gray bodies (that is, a material whose emitted energy has about the same 
specular distribution as a black body at  the same temperature). 

B. 2 DETECTOR EIXIVIENT FABRICATION AND INSTALLATION 

The 17-j~nction~tellurium-gold detectors a re  each composed of two sets of junctions. The 

set which views the specimen o r  reference source is placed over a hole in the heat sink 

plate (Figure B-I), while the cther set  is attached thermally to the heat sink plate. A 

shield tube is then placed over the set of detector junctions which views the sample, so 

that other than the sample o r  reference source, they see only liquid nitrogen-cooled 

surfaces. 

B. 3 REFERENCE SOURCE DESIGN AND POSITIONING 

A V-groovsd reference source is used to minimize changes in its apparent emissivity due 

to changes which may occur to the emissivity of the coating used on its surface. The 

source material selected was sulfuric acid anodized aluminum prepared the same as  

Specimen Number 65 in Reference B-1. This produced an actual surface emittance of 
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0.71 when measured a s  described in Appendix F. The reference source was composed 

of a number of 0.125-inch thick sheets of aluminum which were machined, polished, anodized 

and assembled, a s  shown in Figure B-2. The anodize process was selected a s  a compromise 

between high emittance and freedvm of outgassing condensables, when in thermal vacuum. 

By machining each %ladeft separately the problem associated with having a "flatf1 at the bottom 

of the V-groove, rather than a sharp angle, was eliminated. Based on Figure B-3, from 

Reference B-2, the apparent emissivity of the resulting reference source was 0.97. A s  

can be seen in Figure B-3, even large changes in the surface emissivity of the blades cause 

only small changes in the apparent emissivity of the reference source. This source was 

then mounted under one of the infrared detectors a s  shown in Figure B-4. During measure- 

ment the reference source is maintained at the same temperature as  the sample which is 

positioned under the other infrared detector. 

HEAT SINK 

EMBEDDED 
THERMOCOUPLE 

-9 
I B 

Figure B-2. Assembly of Reference Source 
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B. 4 CORRELATION MEASUREMENTS AS A FUNCTION OF TEM'PERATURE 

The emissometer was placed over a gray body whose temperature was the same under each 

infrared detector. The millivolt output of each detector was then measured a s  a function of 

the gray body temperature, whlle the emissometer heat sink temperature (the same a s  the 

temperature of the reference junctions) was held ,onstant a t  -250 F (161 K). Figure B-5 

is the plot resulting from this correlation measurement. 

* -- * 

0 0 

To obtain k(T) for Equation B-l,from Figure B-5,the output of the reference source detector 

is divided by that of the specimen detector at whatever temperature the specimen and 

reference body are being measured. 

d 

SPECIMEN DETECTOR 
0 REFERENCESOURCEDETECTOR 

DATE 3/13/61 
DETECTOR REFERENCE JUNCTIONS 

-250'F ( 1 F l O K )  

-220 -180 -140 -1OC -60 -20 +20 +60 +lo0 +140 +IS0 +220 +260 

GRAY BODY TEMPERATURE (OF) 

Figure B-5. Infrared Detector Correiation 

B.  5 EMITTANCE MEASUREMENTS AND ANALYSIS 

The first in situ emittance measurements performed were on a 0.175-mil Alzak coating as  

a function of temperature. The data obtained is listed in Table B-1. The computed 

emittance for this table was obtained according to Equation B-1, except that the resultant 

value was multiplied by 0.97 to account €or the fact that our reference source was not a 

true black body, 
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Table 3-1. Emittance of Alzak In Situ a s  a Function of Temperature 

-88 
-58 
-35 
-lC 
+15 

+68 
4-40 

Detector Outputs (mv) 
-~ ~- 

Specimen I Reference Source 

3 .8  
3 . 2  
5 . 2  
5 . 0  
5 . 5  
6 .7  
9 . 4  

3 . 4  
3 .0  
3 .7  
4 .5  
5 .0  
7 . 0  
8 .2  

0 .70  
0.80 
0.88 
0 .94  
1 . 0  
I. 1 
1.1 

Computed 
Emittance 

0.76 
0, b3 
1.2 
1.0 
1.1 
1.0 
1 .2  

-I 

Tables I3-2 and B-3 list the detector outputs for measurements of the specimens made In 

vacuum before irradiation. The k(T) for these tables was obtained from Figure B-5. The 

computed emittance shown in these tables was obtained the same way a s  that shown in 

Table B-1. 

The values of the computed er,littance in Table B-1, B-2, and B-3 immediately indicate two 

problems: (1) there a r e  emittance values greater than .l, a physically impossible situation 

and (2) the reproducibility of the measured value is inconsistent for the same material, even 

when measured on the same day at the same temperature. 

Tie source of the first problem, computed emittance of greater than 1, is probably ~ 

caused by inaccuracies in the computed apparent emittance of the reference source. This 

problem in itself is not grave, since it can either be calibrated out or  the device can be used 

on a comparative basis. 

The source of the second problem is probably due to instability in the temperature of the 

re%rence source blades an,d/or the detecbr  reference junctions. This is obvious from 

the variations seen in the reference source detector output, while it is supposedly at a 

constant temperature. Thesc tariations were probably the result of two items: (1) the 

control thermocouple could not be located at the detector reference junctions in the 

emissometer o r  on the emitting surfaces of the reference source and (2) the temperature 

was rnaintxiined with an on/off controller which alternated between opening a liquid nitrogen 

valve and powering infrared radiant heaters. No attempt was made ts rectify either of 

these problems since that would ham resulted in an unacceptable slip in schedule. 



0 
Table B-2. Emittance of Specimens In Situ Before Irradiation at -65 F 

Specimen - 
1 

I 
i 
#I 
7 
J 

Goddard White I 

J 
RTV-602 1 
White 

Pyromark 
Standard 
White 

Alzak (t,) 

Alzak 1 

Specimen 
Number 

21 
21 

2 
2 

28 
28 

3 
3 

29 
29 

4 
4 

5 
5 

30 
30 
21 
21 

1 
1 
6 
6 

26 
26 
11 
11 
19 
19 
23 
23 

-. 
pecimeii 

5. d 
4.2 
5.0 
5.0 

4.5 
4.3 
5.4 
5.2 

5.1 
5 .0  
3. I 
3.9 

5.3 
5.4 
5.1 
4.9 
5.0 
5.0 

5.0 
5.0 
5.0 
5.0 
5.0 
5.0 
5.8 
4.2 
5.1 
5 .0  
5.4 
5.2 

Reference Source 

3.3 
2. I 
3.5 
3.0 

3.4 
2.8 
3.1 
3.0 

3.4 
2.8 
3.0 
3.0 

2.9 
3.0 
3.4 
2.9 
3.4 
2.8 

3.4 
2.8 
2.8 
3.0 
2.8 
3.0 
3.3 
2. I 
3.4 
2.8 
3.1 
3.0 

Computed 
E mi ttance 

1.4 
1.2 
1.1 
1.3 

1.0 
1.2 
1.3 
1.3 

1.2 
1.4 
0.92 
1.0 

1.4 
1.4 
1.2 
1.3 
1.2 
1.4 

1.2 
1.4 
1.4 
1.3 
1.4 
1.3 
1.4 
1.2 
1.2 
1.4 
1.3 
1.3 

Table B-3. Emittance of Specimens In Situ Before Irradiation at -80'F 
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APPENDIX C 

EXAMPLE OF SMOOTHING AND CORRECTIGN TECHNIQUE 

The smoothing consists of drawing the most probable line through the computer plotted 

spectral refiectance curve as shown in Figure C-1. This consists of splitting the 

neighboring high and low points and following the m..wth points ta  produce a curve with 

a small rate of change in slope (except at the absorption edge). The 7094 computer is then 

used t o  determine the corrections reqdired for each interval in which the hand drawn curve 

is appreciably different than the computer plotted spectral reflectance. Table C-1 is a copy 

of the 7094 output for the curve shown in Figure C-1. 

The symbols at the top of Table C-1 are  the aame as those given in Section 5 ,  except 

that in Section 5: 

(C-1) 

- SOLAR ABSORPTANCE 0.152 COMPUTER PLOT'?RD 
SOLAR ABSORPTANCE 0.150 * * 0 SMOOTHED CURVE 

1.0 

0.8 

0.6 

0.4 

0.2 

0 
0.2  0.4 0.6 0.8  1 .0  1.2 1.4 1.6 1.8 2.0 2 .2  2.4 2.6 2,8 

WAVELENGTH (MICRONS) 

Figure (7-1. Reflectance Curve of RTV 602 Run 5166'1-3 
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The srnouthing correction is made ky determining the change in reflectance, A Rx (A$ 

(this can be either positive o r  negative,, and the corresponding change in solar reflectance, 

A R (A.), far each wavelength interval requiring correction. According to Section 5 this 

is giver; by: 
s 1  

for Rs (A.) # 3. 
1 

If R (A.) is zero, then the correction must be made according to: 
x 1  

A R (A.' = A Rx (Ad J (A$ 
s 1  

The correctim to the fractional solar absorptance is then given by: 

(C-3) 

where the minus sign corverts from differential solar reflectance to differential solar 

ahsorptame. Table C-2 lists the wavelength increments, She computed reflectance, the 

computed solar reflectance aid the differentia1 corrections required for reflectance and 

solar reflectance in each wavelength increment, based on Figure C-1 and Table C-1. 

This correction is only for smoothing the curve. A s  can be seen in Table C-2, the net 

correction in total solar absorptance from smoothing this curve is -0.002, which does not 

change the value of the solar absorptance wheli rounded off to two decimal places. Tables 

7-1 ant! 7-2 list the smoothed value of the solar absorptance; therefore, 0.15 appears in 

iable 7-2 for RTV-602 Sample 3 after 500 EUVSH. Note that there is no value in parentheses, 

since the solar absorptance when rounded off to two decimal places did not change due to 

smoothing of t M s  surve. 
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Table C-2. Corrected 7094 Output for RTV-602 Run 51667-3 

Wavelength 
( i\ 

0.363 
0.370 
0.377 
0.385 
0.392 
0.400 
0.408 
0.416 
0.424 
0.428 
0.432 
0.441 
0.450 
0.461 
0.472 
0.486 
0.500 
0.515 
0.580 
0.546 
9.555 
0.564 
0.585 
C. 606 
0.630 
0.658 
0.688 
0.723 
0.763 
0.808 
0.860 
0.887 

1.298 
1.368 
1.434 
1.502 
1.537 
1.572 
1.638 
1.692 
1.743 
1.788 
1.832 
1.880 
1.92C 
1.964 
2.012 
2.065 

Leflectance 
R (ai) 
Q. 092 
0.170 
0.201 
0.226 
0.377 
0.546 
0.648 
0.644 
0.788 
0.729 
0.789 
0. e11 
0.838 
0.843 
0.861 
0.880 
0.885 
0.894 
0.891 
0.907 
0.906 
0.913 
0.918 
0.929 
0.926 
0.923 
0.919 
0.915 
0.897 
0.723 
0.910 
0.909 
0.861 
1.002 
0.877 
0.972 
0.831 
0.871 
0.884 
0.886 
0.867 
0.786 
0.819 
0.801 
0.816 
0.758 
0.765 
0.911 
0.861 

.o. 577 
0.671 
0.808 
0.826 
0.704 --- 

liiferential Reflectance 
A R (a;) 

- 
+ .18 - 

- 
+ .04 
- .12 

- .os 
+ .05 
+ .01 

- 

- 
- 
- 

+ .02 - - 
- 

+ .05 
+ .03 
- .12 
- .os 
+ .1P 
+ .07 
- .06 - .10 - 

olar Reflectance 
Rx Pi) 

0.001 
0.001 
0.001 
0.002 
0.002 
0.005 
0.007 
0.008 
0.010 
0.004 
0.005 
0.011 
0.013 
0.016 
0.016 
0.022 
0.020 
0.021 
0.020 
0.024 
0.013 
0.012 
0.030 
0.028 
0.031 
0.035 
0.034 
0.036 
0.037 
0.028 
0.043 
0.019 
0.017 
0.036 
0. G30 
0.034 
0,024 
0.024 
0.022 
v̂. $18 
0.015 
0.013 
0.006 
0.006 
0.010 
0.007 
0.005 
0.006 
0.004 
0.003 
0.003 
0.003 
0.004 
0.003 

Xfferential Solar Reflectance 
A Rx (ai) - - 

+ .0069 

+ ,0008 
- .0044 

- .0031 
+ .0015 
+ .0003 

+ .0003 

- 
+ ,0004 
+ .0002 - .0007 
- .0005 
+ .0010 
+ .0003 - .0003 
- .0004 

I Net Change in Total Solar Reflectance 

c-4 

+ 0.0023 
I 



* 

The correction for the ends of the spectrum not measwed is based on the reflectance 

measurements given in Appendix F, and the spectral a<izixe of the sun at zero air mass. 

(Reference A-1). The end corrections are  made in accordance with the following equations: 

A R  = R  ( U V ) J ( U V ) + R  !IR)J(IR) 
s x  X 

where: 

A R is tlle change in the total solar reflectance (always pcsitive) and 
8 

R (UV) and R (IR) a re  the reflectance below 0.356 micron and above 2.065 x X microns, respectively, as given in Appendix F. 

J (UV) and J (IR) are the fractional energles under the Johnson curve (Reference A-1) 

below 0.356 micron and above 2.065 microns, respectively. 

J (UV) = 0.059 

J (IR) = 0.049 

Since the 3 (h.) in the computer program considers only the region of the spectrum 

measured (89.08 percent), compensation must be made for this when the rest of the spectrum 

is considered. The corrected total solar reflectance will1 be given by: 

L 

R (corrected) = 0.89 R + A R 
S S S 

where R is given hy Equation 5-3 and A R by Equation C-5. 
s S 

Siiice: 

R =l-a 
8 S 

(as given in Equation 5-4), Equation C-6 becomes: 

C-E 



R (corrected) = 0.89  - 0.89  as f A Rs 
S 

The total corrected solar absorptance is, therefore, computed as follows: 

Q (corrected) =- O.il + 0.89 a! S - A JEs 
S 

The CY in Equation C-9 is givm in Tables 7-3 and 7-4. 
s 

The correction for RTV-602 white is now given as an examp,.?. Piom Equation C-5. : 

A RS = 0.108 x 0.059 + 0.559 x 0.849 

A R =0.033 
S 

(C-10) 

where R (UV) = 0.108 and R OR) = 0.559, as given in Table 5-1. The uncorrected solar 

absorptance, used in Equation C-9, i s  obtained by averaging the i n a i r  (before irradiation) 

solar absorptance values listed in Table 7-2 (for white paints and miscellaneous materials) 

and the in air and in-vacuum (before irradiation) solar absorptance values listed in 

Table 7-1 (for Alzak). The average value €or RW-602 white i s  0.113, which when 

substituted into Equation C-9 gives a corrected solar absorptance (rounded to hvo decimal 

places), of: 

X X 

CY rsorrected)= 0.11  + 0 .89  x 0.113 - 0.033 

Q! (corrected)= 0.18 

S ’  

8 

(C- 11) 

The correction for the solar absorptance listed in Table 5-1 for I iW-602 white, therefore, 

is 0.07 as determined from the following equation: 

Q = (Y (corrected) - cy (uncorrected) (C-12) s s  S 
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. 
rhe solar absorptance values for RTV-602 white in Table 7-4 were obtained by adding 

0.07  to  their corresponding value in Table 7-2. The remainder of the values in Table 7-2 

are corrected in a similar manner to obtain the values presented in Table 7-4. The 

corrections for all materials a re  listed in Table 5-1, The values for Alzak in Table 7-1 

are  corrected to  those listed in Table 7-3 by using the correction listed in Table 5-1 togeiher 

with that listed in Table 5-2, which compcmates for the specular nature of Alzak. 

It should be noted for future reference that measurements performed after 22 August 1967 

will not require smoothing as described herein. This is because a seven fold increase in 

sensibLvdy in the lead sulfide detector was obtained by replacing the lead sulfide cell and 

re;.'&ning the monochrometer optics, 

An example of the spectral reflectance curves presently being obtained is given in Figure C-2. 

Modifications are presently being performed on the computer program so that the value 

printed above the spectral reflectance curve by the computer will include the correction €or 

the region of the spectrum not measured. It should also be noted that corrections for 

specular samples should not be necessary in the future since a vapor deposited aluminum 

mirror  is being used as a reference for specular materials. 

SOLAR ABSORPTIVITY = 0.159 
1 .0  

w 
0,8 

u 0.6 
Frl 
I4 
Fr 0.4 w 
CG 

0.2 

0 

2 

0.2 0.4 0.6 0 . 8  1.0 1.2  1.4 1 .6  1 .8  2.0 2.2 2.4 2.6 2.8 

WAVELENGTH (MICRONS) 

Figure C-2, SCH/H-37 Before Irradiation in-air 7SF 82267-15A 



APPENDIX D 

COMPILATION OF ALL SPECTRAL REFLECTANCE CUlEVES USED IN ANALYSIS 

This appendix lisG' all the spectral reflectance curves obtained in this program in the 

order described in Table D-1. These curves were obtained as described in Sections 5 

and 7 of this report. Al l  the curves have 'he same abscissa and ordinate scale. The solar 

absorptance printed above each graph on the right side is the value obtained by the computer 

and, therefore, is both unsmoothed and uncorrected. The computer printed title above 

each graph on the left gives the sample identification, the total radiation exposure of the 

sample, the pressure environment and temperature at which the measurement was performed, 

and a code number. The digits before the dash in the code numbers give the date the 

measurement was performed, the digits dter the dash gives the specimen number a s  used 

in the tables throughout this report (e. g. , 41167-9 indicates the measurement was performed 

on If April 1967, and that the specimen number was nine). The corpuscular irmdiation is 

abbrevia+sd a s  follows: 5 x 10E14P represents 5' 10 

represents 5.10 electrons cm 

14 -2 protons c n  , and 5 x 10E13E 
13 -2 
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Table D-1. Index of Reflectance Measurements in Appendix D 

Type Irradiation Material Page 

Pyromark Std White 
Pyromark Std White 
Pyromark Std White 

Goddard White 
Goddard White 
Goddard White 
Goddard White 

RTV 602 Whife 
RTV 602 White 
RTV 602 White 

Alzak 
Alzak 
Alzak 
Alzak 
Alzak 
Alzak 
Alzak 
Alzak 
Alzak 
Alzak 
Alzak 
hlzak 
Alzak 

Lexan (etched) 
Lexan (dull) 

Mylar 
Mylar 

Solar Cells 

Microsheet 

Specimen Number 

9 
29 
4 

8 
27 
2 

11 

10 
28 
3 

19 
6 
7 

2 1* 
23 
26 
30" 
1 

17 
5* 

15* 
12 
13 

14 
18 

16 
22 

20 

24 

None 
F and P 
UV, E, and P 

None 
E and P 
UV, E, and P 

uv 

None 
E a n d P  
UV, E, tu;d P 

None 
None 
None 

E and P 
E and P 
E a n d P  
E and P 
TJV, E, and P 
UV, E, and P 
UV, E, and P 
UV, E, and P 

uv 
uv 

UV, E, and P 
UV, E, anGP 

UV, E, a n d P  
E, a n d P  

E,  a n d P  

E and P 
.- 

e 

D-3 
D-6 
D-9 

D-12 
D-15 
D-18 
D-21 

D-23 
D-27 
D-30 

D-33 
D-36 
D-38 
D-40 
E-42 
D-44 
D-46 
D-48 
D-51 
D-53 
D-57 
D-59 
D-63 

D-66 
D-69 

D-72 
D-75 

D-77 

33-79 

*Indicates G. If mils, d l  others a re  0.175 mils thick 
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SOLAR ABSORPTIVITY = 0.196 PYROMARK WHITE BEFORE IRRADIATION I N  AIR t 7 5 F  41167-9 
1 .0  

0.0 

E 
F 
L 

C 
T 
A 
N 0.4 
C 
E 

E 0.6 

0.2 

e 
I 

SOLAR ABSORPTIVITY = 0.148 PYROMARK W I T €  BEFORE IRRADIATION I N  VAC t 7 L F  41367-9 
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P Y W A R K  I N  VAC-55F 5-8-67-9 s a A R  ABSORPTIVITY = 0.204 

P'IZCIIARK ! ' I  VAC -55P 5 - 1 6 - G I - 9  SOLAR AOSORPTIVITY = 0.191 

SOLAR ABSORPTfVSTY Z, 0.259 PYROWARK I N  VAC -55F 52667-9 

R 
e 
F 
L 
E 
C 
t 
A 
N 
C 
E 
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_ .  
PIROMARK I N  VAC -53F 6661-9  SOLAR ABSORFTIVITV = 0.204 

WAVELENGTl (WICRO~S) 

PYFWMARK IN AIR 61167-9 SOLAR A B S O R P T I V I T Y  = 0.18e 

WAVELENGTH (WICWPJS 
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R 
E 
F 
L 
E 
C 
T 
A 
I4 
C 
E 

R 
E 
P 

1 .  

0 .  

0 .  

0 .  

Q. 

0 

PYI;O:.tACK IXlOi' lr lP 5X1031JE I N  VAC-BSF 5-16-67-29 SOLAR ABSORPIIVIPP = 0.18i 

:% 
. .- 

4 2.6 e. e 

PYRCMXRK 5XlOEl4P 5XlOEISE I N  VAC-55F 5-8-67-29 SCCAL ABSORPIIYITY = O.Pe7 

A 
N 
C 
E 

PYROHARK SXlOLlSE 5XlOf14P IN VIE -55F 52647-29 SOLAR APSORPTIVITY f 0.207 

WAVELENGTH (Hf<Hc*19)  
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R 
C 
F 
L 
E 
C 
1 

N 
C 
E 

WAVELENGTH (MICRONS) . .  

PYROWIRK SXIOEPSE SXlOEl4P IN k.R 61462-29 SOLAR ABSORPTIVITI = 0.16t 

R 
E 
F 
L 
E 
C 
1 
A 
w 
C 
c 

PIROHARK 5XlOE13E 9XlOEt4P 1N VAC - 5 5 F  6667-2¶ SOLAR A B S O R P T l V l T V  5 @a203 
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PYROMARK WHITE BEFORE IRRADIATION I N  AIR +75F 41167-4 SOLAR ADSORPTIVITY 0.171 

PIROHARK WHITE BEFORE IRRADIATION I N  VAC *75F 41357-4 SOLAR ABSORPTIVITY = 0 . 1 0 7  
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PYROHARK SXlOE 14P l X l O E  13E POOEUVSH XN VAC -55F 5-2-67-4 SOLAR ABSORPTIVITY = 0 . t 4 6  

WAVELENGTH (NICROIIS) 

PYROHARK SX10E14P 5XlOEl3E 335  EUVSH IM VAC-55F 5-8-67-4 S a A R  ABWRPl IV tTY = 0.249 

PYR0:IARK S X l C Z l + P  5XlG213E 5OO;'UVStI IN VAC -55F 5-16-67-4 SCLAR A390;IPTIVITY : 0.249 

I_ 

4 2.6 

.- MAVELERGTH IHXCRWS) 
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J 

R 
E 
F 
L 
E 
C 
t 
A 
N 
C 
E 

SOLAR ABSORPTIVITY = 0.263 PPROHLRK W S 7 E  SX10E13 E SXlOEl4 P 945EUVSH I N  VAC -55F 6667-4 

SOLAR ABSORPTIVITY = 0 .257  PYROMARK 5XlOE13E 5XlGE14P 714 EUVSH I N  VAC -55P 52661-4 

WAVELENGTH (MICRONS) 

PYROWARK S X l O E l 3 E  SXlOEl lP  9 4 1  EUVSH IN A I R  61467-4 SOLAR ABSORPflVITY = 0 . t 0 6  
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~OODARD WE BEFCRE IRRADIATICN XN AIR + 7 5 ~  dii67-8 SOLAR A0X)RPTIVITY = 0.152 

CODDARD hH1ITE BEFORE IRRADIATION I N  VAC t75F <:367-8 SOLAR ABSORPTIVITY = 0.164 

CODDARD WHITE XN VAC -55F 5-2-67-8 SOLAR ABS08PTIVXTY = 0.107 
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W D A R D  WIVE I N  VAC-55F 5-8-67-6 SOLAR A890APTIVf f l  = 0.169 

R 
E 
F 
L 
E 
C 
1 
A 
N 
t 
E 

. . .  

GODDARD WHITE I #  YAC -55F  be$$?-8 SOLAR ABSORPffVfTY = 0.178 
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c 

GODDARD WIT€ I N  AIR 61467-8 SOLAR ABSORPTIVITY = 0.146 

WA YELENS TH t M l C  RONSI 

CODDARD UHlTE IN VAC -5 lF  666?-8 SOLAR ABSORPTIVITY = 0.13S 
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GODDARD WHITE BEFORE IRRADIATION I N  A I R  475F 41167-27 SOLAR ABSORPTIVSTT = 0 . 1 4 0  

GODDARD W I T €  BEFORE IRRADIATION I N  VAC +75F 413G7-27 SOLAR ABSORPTIVITY = 0.150 

- 
WAVELENGTH IHICRONS) 

SOLAR ABSORPTIVITT 0.190 GODDARD WHITE 5XlOE 14P 5XlOE 13E I N  VAC -55F 5-2-67-27 

R 
E 
c 

. I .  
E 
C 

C 
c 
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. 

1.0 

0 . 0  
E 
F 

‘ L  

C 
t 
A * 0.4 
C 
E 

E 0.5  

0.2 

0 
I 

GODDARD WHITE LXPOElSE I X l O E l 4 P  IN VAC -5SF 52667-27 SOLAR ABSORPTIVITY = 0.227 

R 
E 
F 
L 

,-16 



GODDARD W I T E  5 X l a E 1 3 E  5XlOE14P I N  VAC -55F 6667-27 SOLAR ABSORPTIVITY = 0 . 1 6 2  

WAVELENGTH (MICRONS) 

GODDARD WHITE 5X10El3E 5 X l O E i I P  IN AIR 61467-27 SOLAR ABSORPTIV ITY = 0.159 
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MODARD WIT€ BEFOaE IRRADIATION I N  A I R  +75F 41267-2 S U A R  ABSORPTIVITY = 0.179 

WAVELENGTH (MICRONS) 

CODDARD WHITE AFlES 61 EUVSH '.Y4 VAG-55F 47.867-2 SGLAR ABSORPTfV IYF  = 0.177 

1 .o 

0 .0  

E 
F 
L 

C 
1 

E u.e 

n 
0.4 

C 
E 

0.1 

0 
1 
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b 

G O D O A R O  WHITE 5x1017 1 4 P  5XiOE 13E LCCEUVSH I N  VAC -55F 5-2-67-2 ~ O L A R  ABSORPTIVITY = 0.184 

GODDARD WHITE 5XlOEl4P 5XlOE13E SOOEUVSH I N  VAC -5SF 5-1.3-67-e souR A~SORPTIVITY = o.fi70 

R 
E 
F 
L 
E 
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CODOARD M l X t E  3XlOElSE SXlOEl4P 714 EUVSH I N  VAC -5SF 52667-P 
s .n 

. .  

SOLAR ABSORPTfV' /I 0.185 

-- _ _  

CVCOARO WITE 5XlOE13 E 5XlOE14 F 945EUVSH I N  VAC -55F 6667-2 SOLAR ABSORPTIVLTY = 0.177 

WAVELENGTH (MICRONS) 

CODDLRD UHITE 5 X I O E l S E  5XlOE14P 945 EUVSH IN A I R  6 1 4 6 t - t  QOLAR ABSORPTIVITT = 0.168 
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. 

WAVELENGTH (HICRONS) 

GrXUlARD WIT€ BEFORE IRRADIATION IN VkC 475F 41361-11 SOLAR AB!XRPTIVIfY = C.171 

D-21 



SOLAR ABSORPTIVITT 2 0.195 
s.0 

0.8 
L 
f 
L 

C 
f 
4 

C 
L 

E 0.0 

N 0.4 

6.8 

0 
8 

GODJARO WHITE POOEUVSH I N  VAC -55F 2-2-67-11 

CODDARD WlTE 335 EUVSH IN VAC-55F 5-8-6141 SOLAR AescwTxvtrr = 0.156 

SOLAR AOSORPTIVIT7 = 0.180 GODDAXD NIiITE 5OOEUVSH I N  VAC -55F 5-16-67-!1 

WAVELEtdGTH (CI1CRONS) 

1-22 



WDDARD WHITE 714 EUVSH I N  VAC -55F 52667-11 SOLAR ABSORPTIVITY = 0.125 

WAVELENGTH (MICRONS) 

GODDARD WIT€  945 EUVSX IN VAC-55F 6667-11 SOLAR ABSORPTIVITV = 0.180 

~ WAVELENGTH (MICRONS) 

GODDARD M I T E  945  EUVSH 1H AIR 61467-11 SOLAR ABSORf T I V I T Y  = 0.971 
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c 

RTV 602 WHITE BEFORE IRRADIATION I N  A I R  +75F 41167-10 SOLAR ABSORPTIVITY = 0 .095  
1.0 

R 
E 
F 
L 
E 
C 
T 
A 
n 
C 
E 

WAVELENGTH IWICRONS) 

RTVIOL WIT€ BEFORE IRRADIATIOPI I N  VAC +75F 41362-10 SOLAR ABSORPTIVIT1 = 0.120 
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ALZAK (1-1) BERN€ IRRADIATION IN A I R  +75F 41161-5 
1 .Q 

&LZAR (?-it BE. S E  IRRADIATIOM IN VAC +75F 41361-5 SOLAR AB-SXPTIVITY = 0.20i? 

. .  
ALZAK (1-1) AFTER 61 EUVSH I N  YAC-55f  48667-5 SOLAR ABSORPTIVITY 0 .22s  

VA VELENGTH (MI CROI4SI 

D-54 



a '  

. 
A L Z A l i ( T 1 )  S X l O f  14P 5 X l O f  1 3 f  200EUVSH IN VAC -55F 5-2-67-5  SOLAR A B S O R P 7 t V I T T  f 0.2115 

ALZAK(T1) 5XlOEl3E LiXlOEl4P 714 EUVSH IN VAC -55F 52667-3 SOLAR ADSORPTIVfTY = 0.21i 

R 
E 
F 

* L  
E 
C 
T 
A 
N 
C 
E 

D-55 



A L Z A K  (11)  SXlOElSE 5XiOEl4P 945EUVSH IN VAC -SSF 6667-5 
* 

SOLAR A B S J R P T I V I T Y  = 0.223 

WAVELENGTH (MICRONS) 

D-56 



A L Z A K I T - 1 )  BEFORE I R R : D t A T I O N  I N  A I R  +75F 41167-15 

R 
E 
F 
L 

t 
E 

WAVELENGTH (MICRONS) 

SOLAR ABSORPTI VI TI 0.211 ALZAK ( 1 - 1 )  BEFORE I R R A D I A T I O N  I N  VAC +75F 41361-15 

ALZAK 11-1) AFTER 61 EUVSH I N  VAC-55F 42667-15 SOLAR A B S O R P T I V I T Y  0.201 

UA VULENGTH (HI CRGNSE 



I 

I.# 

I J.6 
E 
? 
L 

C 
f 
A 

C 
L 

E 0.s 

0.4 

o.r 

0 

c - c -  - 

I A - /*- 
-e \ / -~  

I T V  - 

-. - 

ALZAK ( T i )  f X l O E l 3 E  5X10El4P 7!4 EUVSH I N  VAC -55F 52667-15 SOLAR ABSORPTIVIT” = 0.PPS 

D-58 



. 
A L Z A K  (TI) SXlOE13E 5X10E14P 945 EUVSH IN VAC-55F 6 G . P - 3 5  SOLAR ABSSRPTIVITY = 0.227 

WAVELENGTH (II ICRONS) 

D-59 



ALZAK BEFORE IRRADIATION I N  AIR +tSF 41t61-lg 5OLAR ABSORPTIVITY = 0.293 

ALZAK BEFORE IRRADIATION I N  VAC +75F 41367-1E SOLAR ABSORPTIVITY = 0.239 

SOLAR ABSORPTIVITT O a t 3 2  ALZAK AFTER 61 EUVSH I N  VAC-55F 42661-18 

D-60 



SOLAR A B S O A P l I V t T V  z 0.24r 

WAVELENGTH (MICRONS; 

ALZAK i'ii EUVSH I N  VAC -55F 52681-12 SOLAR ADSORPTIVIT I  = 0.233 

D-61 



- 
A L Z A K  945EUVSH I N  VAC - 5 5 F  6667-19 SOLAR ABSORPTIVFTY : 0.43)  

1.0 

0 . 6  

E 
f 
L 
E 0 .c  
C 
1 
A 
N 0.4  
C 
L 

0 . t  

8 
0.1 0 - 4  0 . 0  1 . 0  1.4 1.8 l a b  t . 0  t . t  8.4 

HA V E l E M C l H  (MICRONS)  
. I  

D-62 

ACZLR 9 4 5  EUVQH 1N LIR 6146?-1t  SOLAR A B S O R P T Z V I T V  0.84@ 

. .  



4 

S a A R  AB90RPTIVITY = 0.208 ALZAK BEFORE IRRADIATIW I N  A I R  * ? 5 F  41167-13 

ALZAK BEFORE IRRADIATION I N  VAC 475F 41367-53 SOLAR ABSWPTIVITY 5 0.20i 

ALZAK AFTER 61 EUVSH I N  VAC-55F 42667-13 SOLAR ABSORPTIVtTY = 0 . 2 3 1  

WAVELENGTH (HICROPIS) 

D-63 



ALXAK 2OOEUVSH tN VAC -5lF 1-2-67-13 

VAVELENCTR fWICRON3) 

1)-64 



A l . 2 A K  945EUVSH I N  VAC -111: 6681-13 SOLAR A 8 S B R P T I V l T I  0.255 

ALZLU 845 EUVSH 1 M  A I R  : ~ t G i - i S  SOLAR ABSORPTIVITY = 0 . 2 5 6  

D- 55 



LEXAN (ETCHED) BEFCRE IRRADIATION IN AIR +75F 41567-14 S a A R  ABS(3RPTIVITV = 0.279 

0.8 

E 
F 
L 
C E 0 . 6  

? 
A 
N 0.4 
C 
E 

Y--!--L---xJ __ 

- 
1 

I 

LEXAN tEKHEO1 AFTER 61 EUVSH I N  VAC-55F 42667-14 
1 - 0  

1.0 

I 1 1 
0.2 

0 

SOLA? ABSO!?PTIVITY = 0.294 

1 1 

SOLAR ABSORPTIVITY = 0.267 

J 

D-66 



LEXAN(ETCHED1 5XlOE 14P 5XlOE 13E 200EUVSH I N  VAC -55F 5-2-67-14 SCXLAR ABSORPTIVITY = 0.498 

. 
LEXAN (ETCHED) S X l O E 1 3 E  SXlOEl lP  714 EUVSH I N  VAC -fSF Se667-14 SOLAR ABSORPTIVITY = 0.496 

D-67 



. '  
LEXAN (ETCHED) 5 X l O E l Y E  5 X i G C i I P  945  EUVSH I N  VAC-SSF 6667-14 SOLAR ABSORPTIV ITY 0 . 5 0 7  

D-68 . 



' .  
.. 

LEXAN (DULL) BEFORE IRRLQIATION IN +r  F J C Y H - ~ ~  SCLAR ABSORPTIVITY = 0.03s 

LEXAN (DULL) BEFORE XRPADIATION I N  VAC +79F 41367-18 SOLAR AWWRPTIVITY = 0.940 

D-69 



. .  
LEX,::JtuULL) 55!. 114P 5 X l C E i X  500 EUVSII IN VA6-55F 5-1s-67-18 

R 
E 

1. 
E 
C 
1 
A 
N 
C 
E 

P 

LCXAN (DULL) flXlOE13E 5XlOE14P 714 EUVSH I N  VAC -55F 52667-18 SOLAR ABSORBTIVJfl = 0,464 

R 
E 
P 
L 
E 
C 
T 
A 
N 
C 
E 

D-70 



LEXAN (OULL) 5XlOEl3E 5XlOEl4P 945  EUVSH I N  VAC-55F 6667-10 SOLAR A B S O R P T I V I T Y  = 0.211 

D-71 



MYLAR BEFORE IRRADIATIW XN WAC +75F 41367-16 SOLAR ABSORPTIVITY = 0.306 

HILAR AFTER 62 EUVSH IN VAC-55F 42667-16 SOLAR ABSORPTIVITY I 0.243 

WAVELENGTH IHICRONII 

D-7 2 



MYLAR 5XlQE14P 5XlOEiSE 500 EUVQH I N  VAC-55F 5-16-67-16 S ~ A R  m m w 1 v I t r  = 0.41s 

HlLAR dXiOE13E 5XlOEl4P 714 EUVSH I N  VAC -55F 62667-16 SOLAR A 8 5 0 R P t I V I T l  = 0.446 

D-73 



MYLAR S X l O E l I E  5 X l O E l 4 P  945 EUVSH IN A I R  61467-16 SOLAR AQSOWPTIV ITY = 0 . 4 5 1  

D-5'4 



MYLAR BEFORE IRRADIATION I N  VAe +?5F 4367-29 SOLAR ABSORPTIVITY = b 3 4 4  

1.0 

0.8 
E 
F 
L 
E 0.6 
C 
1 
A 

c 
E 

0.4 

0.0 

0 
0.L 0.4 l e t  1.4 1.6 t.8 le.0 e.e 2.4 

WAVELENCTH (MICRONS) 

D-7 5 



MYLAR SXlOEISE 5XlOE14P IN VAC -51F 12667- t t  

4 

SOLAR ABSORPTIVITI f O + t 9 #  

WAVELENGTH C41CRONS) 

MYLkR SXlOEi3E SXlOE14P I N  VAC-SIF 6661-22 SOLAR ABSORPTIVITY f 0.320 
1 .o 

0.8  

E 

L 
E 0.6  
C 
1 
i3 
N 0.4 
C 
E 

I : .  

0.2 

0 
0.2 0 .4  0.6 0.6 1.0 1 .2  i .4 1.6 t - 8  2.0 2.e 2.4 2.8 e,. 

WAVELENGTH (MICRONS) 

D-76. 



. E  
C 
T 
A 
N 
c 
E 

0 

SOLA; CELLS BEFORE IRRAOSATICBd I N  A I R  *75F 43187-20 SOLAR AWORPTIVITY = 0.629 

. -  
SOLAR CELLS BEFORE IRRCDIATIW I N  VAC 475F 4 i 3 6 1 - 2 0  S a A R  ABSCRPTIVITY = 0.816 

WAJELENGTH OMICRQHI) 

E-77 



SOLAR A B S O R P T l V l T I  = 0.79s SOLAR CELLS 5XlOElJE 5XtOE14P IN YAC-SSF 6667-20 

W L I R  CELLS SXIOEIIE 5XlOEt4P 1N AIR 6146t-20 

WAVELENGTH tHlCaONSJ 

.. 
SOLAR ABSORPTIV ITY = 0.8S6 

D-7 8 



- 

HICROSHEET BEFORE IRRADIATION IN A I R  +75F 41167-Z4 

SOLAR ABSURPTIVITY 0.466 ~ICROSHEETBEFORE IRRADIATIW IN VAC +I5 41867-94 

WAVELENGTH (MICRONS) 

HICROSHECT S X l O E  1 4 ?  S X I O L  1st I N  VAC -)SF 5-2-@?-24 

i(AVELENC1H. tHICRON31 e 

D-7 9 



M I C R O S K E E T  SXZOEI~E SXIOEIIP IN VAC -SSF 6 6 6 7 - ~ 4  SOLAR A B S O R P T I V I T I  = 0 - 4 t 6  

R 
E 
F 
L 
E 
C 
I 
A 
ti 
C 
E 

. 

WAVELENGTH (MICRONS) 

HICROSHEET SXlOf13E SXlOEI4P IN A l l  6%46?-24 SOLAR A B S O R P T l V l T Y  = 0 . 4 M  

D-80 



APPENDLX E 

COMPILATION O F  SPECTRAL REFLECTANCE CURVES O F  EACH SINGLE 
SCAN MEASUREMENT $ROM THE 945 EUVSH DATA (IN AIR AND VACUUM) 

This appendix lists the single scan spectral reflectance curves obtained after 945 EUVSH 

in air  and vacuum. The point by point average of these was used to obtain the corresponding 

curves presented in Appendix D. The same nomenclature as described for the spectral 

reflectance curves in Appendix D is applicable to those presented in this appendix. 

The &res curves for eachssingle scan of each sample are  all on the same page. The curves 

a re  in numerical order according to specimen number, with the in vacuum set first 

(starting on page E-2) and the in a i r  set next (starting on page E-31). The randomness 

of the curves above 0.7 micron is due to the low signal to noise ratio obtained with the 

lead sulfide cell. The average of three measurements did help this problc:n, as can be 

seen by comparing corresponding curves in Appendicies D and E. This problem has now 

been solved, as described in Appendix C, without the need for triplicate measurements. 

An example of the spectral reflectance curves now being obtained is given in Figure C-8. 
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HYLAR S X l O E l 3 E  SXlOEl4P 9 4 5  EUVSH I N  VAC-55F 6667-86 SOLAR ABSORPTIVITY = 0.510 
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A L I A K  SXlQEl3L  SXlOEl4P 9 4 5  EUVSH 1N VAC-S5F 6667-17 SOLAR ABSORPIIVlTl  O.Eb4 

WAVELENGTH OIICRCNS) 
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SOUR ABSORPTIVITY = O.LZ5 ALZAK (CONTROL) IXtOElSE I X l O E i 4 P  I N  VAC-SIP 6e82-19 

E-20 



SOLAR CELLS SKlOE13E SXlDEPdP I N  VAL-LSf SB6T-%O 
I .m 

SOLAR CELLS SXlOE13E SXlOE14P I N  VAC-55F 666?-&6 SOLAR ABsoRPTxvxTr = 0.790 

SOLAR CELLS IXlOE13E S X i O E l l P  I N  VAC-S5F 666T .$U SOLAR ABSORPTIVITY = 0 .796  

E-21 



ALZAK (11) SXlOEl3E SXlOEl4P I N  VAC-55F 68S?-e¶ S O l A R  A6S0RFl IVI fY = 0.214 

ALZAK (11) 5XlOEl3E 5XiOE14P IN VAC-55F 666T-21 SOLAR ABSORPlIVI l l  : 0.220 

WA VELEWClH WICROWI) 

SOLAR A B a 4 P T l V t f ?  f: 0.224 

E-22 



WlLAR SXlOElSE SXlOEl4P I N  VAC-5SF 6667-E2 SOLAR ABSORPTSVITI = o * S o @  

MYLAR bXlOEl3E I X l O E l 4 P  I N  VAC-55F 6667-W . SOLAR ABSOBPTIVXTY = 0.321c 

FAVELENCTH (HICRONSJ 

. I  

HILAR SXlOEiJE SXlOEi4P IN VAC-Slf 6667-2t SOLAR ABSORPTIVITY = 0.550 

WAVELFNQTH (WICROHSJ . 

E -23 



* .- 
ALZAK SXlOElSE SXlOEl4P IN VAC -) IF 66ST-LO SOLAR ABSORPTIVITY = O.LL1 

ALZAK SXl0615E SXlDE34r IN VAC -)SF 66W-23 
i .a 

1 .0 

0.8 
E 
F 

0.8 
C 
1 
A 
N 0.4 
C 
e 

0.2 

m 

SOLAR ABSORPf lVIT I  O.LB2 

A L Z I K  5YlOEl5E 5Xl7EP4P '@, VhC -55F 666t-LS SOLAR ABSORPTIVITt = 0.2ZS 

E-24 



/ S O L A R  ABSORPTIVITt 5 0.4PO WICROSHEET 5XlOE'ldE SXlOEl4P I N  VAC -55F 6667-24 

WICROSHEET 5 X l r 5 1 3 E  SXlOEl4P I N  VAC -55F 6667-24 SOLAR ABSORPTPVIT~ = 0 . 4 ~ 7  

R 
t 
F 
L 
E 
C 
T 
A 
N 
C 
E 

SOLAR ABSORPTIVITV = 0:4Sl WICROSHtET SXlOEl3E 5XLOEl4P IN VAC -5YF 6667-24 
1 .J I 

~ a.8 
E 
t s 0.8 
C 
1 
A .  
td 0.4 
E 
E 

O.t 

8 
Q.t 0 . 4  0.6 0.8 t .o 1.2 1 e 4  1.6 1.8 2.0 t . 2  t .4 t . 6  t . 0  

WAVELENGTH WICRONS) 

E-25 



ALZAK 5 X l O E l I E  5XlQEI4P IN VAC -55F 6661-26 
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WAVLLENSTH (WICRONS) 

. 6 M D A R O  WXTE SXlOElSE S l l O E l 4 P  I N  V IE  -SSF 6661-2I SOLAR ABSORPTlVITI = 0.166 
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COMPILATION OF sr .WTRAL REFLECT'INCE DATA FROM THE BECKMAF DK-IL 
MEASUREMENTS L'. ND FROM THE LFkEIS AND NORTHRUP HOHLRAUM/13-2 PERKIN- 

ELMETS MEASUREMENTS 

Table F-1 lists the wavelength intervals, the reference values (MgO for diffuse and 

aluminum for the spzcular materials), and the energy in the intervals used for computation 

of solar absorptance values presented in this  appendix. Table F-2 lists the reflectance of 

the three thicknesses of P 1zaI- and the white coatings. Table F-3 lists the reflectance and 

transmission of both b x a n  samples together with their reflectance over a polished 

aluminwn substrate. T&le E'-4 lists the reflectance and transmission of the Mylar, the 

reflectance of Mylsr wer .-%:inkled aluminized Mylar, and the reflectance of the two solar 

celfs and the microsheet. 

Table F-5 lists &e wavslength intervals, the average energy in the irabrvals, axid the hfrared 

reflectance of the Alzak ?ne. the white paints used to comgute the total normal emittance 

values presented in this appendix. 

Table F-1. Wavelength Intervals, Reference, and Energy Increments Used for Solar 
Absorptance Computation 

lavelength Interval 
(microne) 

0 - 0.30 
0.30 - 0.38 
0.38 - 0.43 
0.43 - 0.47 
0.47 - 0.51 
0.51 - 0.55 
0.55 - 0.60 
0.60 - 0.65 
0.65 - 0.70 
0.70 - 0.76 
0.16 - 0.84 
0.84 - 0.93 
0.93 - 1.04 
1.04 - 1.08 
1.08-1.13 
1.13 - 1.18 
1.16-1.24 

, 1.24-1.30 
1.30 - 1.38 
1.38 - 1.47 
1.47 - 1.58 
1.58 - 1.71 
1.71 - 1.90 
1.90 - 2.17 
2.17 - 2.60 
2.60 - 10.00 

Referei 
irgo (diffuse) 

0.950 
0.960 
0.968 
0.912 
0.974 
0.974 
0.973 
0.971 
0.969 
0.966 
0.964 
0.960 
0.958 
0.956 
0.956 
0.955 
0.954 
0.953 
0.951 
0.950 
0.951 
0.949 
C. 946 
0.942 
0.946 --- -- - 

3 Reflectance Energy in the 
Interval Almlnum (8pecular) 

3.022 
0.921 
0.923 
0.922 
0.920 
0.917 
0.913 
0.908 
0.902 
0.893 
0.870 
0.880 
0.930 
0.946 
0.951 
0.956 
0.960 
0.962 
0.965 
0.967 
0.968 
0.970 
0.971 
0.972 
0.973 -_- - 

0.06 
0.06 
0.06 
9.06 
0.06 
0.06 
0.06 
0.06 
0.06 
0.06 
0.06 
0.06 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.03 
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Table F-2. Reflectance of Alzak and White Paints 

0 - 0.30 
0.30 - 0.38 
0.38 - 0.43 
0.43 - 0.47 
0.41 - 0.51 
0.51 - 0.55 
0.55 - 0.60 
0.60 - 0.65 
0.65 - 0.70 
0.70 - 0.76 
0.76 - 0.84 
0.84 - 0.93 
0.93 - 1.04 
l.rJ4 - 1.08 
1.08 - 1.13 
1.13 - 1.18 
1.18 - 1.24 
1.24 - 1.30 
1.30 - 1.38 
1.38 - 1.47 
1.47 - 1.58 

I 

0.880 
0.880 
0.852 
0.943 
0.834 
0.832 
0.821 
0.823 
0.819 
0.806 
0.780 
0. SO6 
0.873 
0.914 
0.888 
0.885 
0.921 
0.919 
0.903 
0.939 
0.945 

0.100 
Wavelength 

Interval 
(microns) 

0.884 
0.884 
0.835 
0.835 
0.830 
0.828 
0.819 
0.821 
0.812 
0.800 
0.169 
0.804 
0.671 
0.693 
0.911 
0.905 
0.913 
0.909 
0.922 
0.936 
0.932 
0.944 
0.937 
0.927 
0.930 
0.930 

0.150 

0.821 
0.821 
0.829 
0.P31 
0.824 
0.825 
0.817 
0.819 
0.806 
0.791 
0.761 
0.802 
0.869 
0.901 
0.902 
0.899 
0.909 
0.913 
0.917 
0.920 
0.936 
0.933 
0.935 
0.922 
0.905 
0.905 

0.157 

Alzak -. 
0 . 1 7 5 E i  m i l s  Goddard 

Whlte 

0.110 
0.110 
0.530 
0.966 
0.960 
0.947 
0.942 
0.941 
0.938 
0.938 
0.935 
0.929 
0.920 
0.917 
0.910 
0.900 
0.872 
0.901 
0.884 
0.839 
0.842 
0.798 
0.717 
0.689 
0.429 
0.429 

0.189 

Standard 
White 

0.160 
0.160 
0.463 
0.940 
0.944 
0.927 
0.923 
0.919 
0.916 
0.904 
0.895 
0.885 
0.855 
0.842 
0.932 
0.817 
0.812 
0.805 
0.790 
0.753 
0.739 
0.688 
0.649 
0.621 
0.462 
0.462 

0.224 

RTV-60: 
White 

0.108 
0.108 
0.638 
0.929 
0.952 
0.951 
0.950 
0.949 
0.939 
0.930 
0.925 
0.910 
0.902 
0.890 
0.884 
0.865 
0.875 
0.670 
0.872 
0.869 
0.863 
0.820 
0.772 
0.817 
0.559 
0.559 

0.178 

-- 

.- 

Table F-3. Reflectance of Lexan Samples 

Wavelength 
Interval 

(microns) 

0 - 0.30 
0.30 - 0.38 
0.38 - 0.43 
0.43 - 0.47 
0.47 -0 .51  
0.51 - 0.55 
0.55 - 0.60 
0.60 - 0.65 
0.65 - 0.70 
0.70 - 0.76 
0.76 - 0.84 
0.84 - 0.93 
0.93 - 1.04 
1.04-1.08 
1.08- 1.13 
1.13 - 1.18 
1.18 - 1.24 
1.24 - 1.30 
1.30 - 1.38 
1.38 - 1.47 
1.47 - 1.58 
1 .58-  1.71 ' 
1.71 - 1.90 
1.90 - 2.17 
2.17 - 2.60 
2.60 - 10.00 

Solar 
Absorptance 

Reflectance of Lexan 
Etched 
I 

0.135 
0.135 
0.442 
0.639 
0.618 
0.588 
0.554 
0.540 
0.538 
0.512 
0.492 
0.461 
0.438 
0.410 
0.360 
0.354 
0.354 
0.342 
0.310 
0.272 
0.253 
0.165 
0.140 
0.122 
0.065 
0.065 

0.008 
0.006 
0.172 
0.314 
0.345 
0.365 
0.380 
0.419 
0.442 
0.454 
0.485 
0.518 
0.548 
0.578 
0.572 
0.582 
0.613 
0.642 
0.658 
0.680 
0.720 
0.670 
0.728 
0.735 
0.581 
0.581 

0.136 

Over 
Aluminum 

0.136 
0.138 
0.457 
0.737 
0.749 
0.727 
0.715 
0.720 
0.736 
0.740 
0.736 
0.738 
0.762 
0.782 
0.752 
0.726 
0.760 
0.795 
0.775 
0.762 
0.793 
0.619 
0.676 
0.642 
0.403 
0.403 

0.340 

Reflectance 

0.095 
0.095 
0.448 
0.642 
0.620 
0.592 
0.556 
0.539 
0.539 
0.513 
0.493 
0.462 
0.437 
0.408 
0.378 
0.352 
0.352 
0.340 
0.289 
0.262 
0.242 
0.162 
0.132 
0.110 
0.062 
0.060 

Dull 

rranemission 

0.008 
0.008 
0.170 
0.311 
0.340 
0.361 
0.315 
0.422 
0.445 
0.455 
0.487 
0.520 
0.550 
0.581 
0.582 
0.591 
0.628 
0.650 
0.667 
0.692 
0.730 
0.678 
0.735 
0.749 
0.593 
0.593 

0.137 

Over 
Aluminuu 

0.117 
0.117 
0.462 
0.786 
0.788 
0.779 
0.761 
0.769 
0.180 
0.788 
0.786 
0.785 
0.814 
0.825 
0.805 
0.766 
0.809 
0.852 
0.823 
0.809 
0.642 
0.651 
0.712 
0.623 
0.417 
0.417 

0.302 
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Table E -4. Reflectance of Mylar, Solar Cells and Microsheet 

m Crlnkle~. 

1 0.275 0.010 
0.275 0.170 
0.533 0.162 
0.691 0.159 
0 134 0.141 
0.152 0.129 
0.162 0.119 
0.159 0.099 
0.162 0.099 
0.760 0.098 
0.151 0.105 
0.710 0.112 
0.800 0.129 
0.820 0.171 
0,804 0.206 
0.800 0.222 
0.622 0.231 
0.832 0.239 
0.815 0.245 
0.794 0.257 
0.823 0.269 
0.653 0.278 
0.117 0.288 
0.664 0.310 
0.300 0.305 
0.300 0.305 

Mylar 

I Peflectance 

Wavelength 
Intervzl 
(microns) 

1 '  h 
1- 

Reflectance 

- - - -  ~ 

-- 

0 - 0.30 
0.30 - 0.38 
0.38 - 0.43 

0.41 - 0.51 
0.51 - 0.55 
0.55 - 0.60 
0.60 - 0.65 
0.65 - 0.70 
0.70 - 0.16 
0.16 - 0.84 
0.84 - 0.93 
0.93 - 1.04 
1.04 - 1.08 
1. 08 - 1.13 
1.13 - 1.18 
1.18 - 1.24 
1.24 - 1.30 
1.30 - 1.38 
1.38 - 1.41 
1.41 - 1.58 
1.58 - 1.71 
1.71 - 1.90 
1.90 - 2.11 
2.17 - 2.60 
2.60 - 10.00 

0.43 - 0.41 

0.123 
0.123 
0.182 
0.199 
0.198 
0.193 
0.182 
0.113 
0.115 
0.172 
0.169 
0.165 
0.162 
0.158 
0.152 
0.148 
0,152 
0.153 
0.152 
0.144 
0.143 
0.122 
0.128 
0.124 
0.068 
0.068 

Solar 
Absorptance 

Trammi6aion 

0.115 0.314 0.838 

- 

0.362 
0.362 
0.662 
0.142 
0.770 
0.784 
0.7 88 
0.182 
0.187 
0.789 
0.792 
0.803 
0.199 
0.799 
0.788 
0.185 
0.791 
0.7~8 
0.790 
0.188 
0.802 
0.143 
0.746 
0.707 
0.418 
0.418 

Energy in 
Region 
(LOOOF) 

0.03 
0.32 
1.37 

03.11 
04.89 
06.20 
06.87 
.07.03 
06.81 
06.39 
05.86 
05.29 
04.73 
04.21 
03.73 
03.31 
02.92 
02.61 
02.28 
02.02 
01.80 
01.60 
16.62 

0.100 0.175 0.290 
mils mils mils 

0.182 0.232 0.285 
0.184 0.288 0.436 
0.120 0.141 0.242 
0,088 0.126 0.235 
0.110 0.217 0.341 
0.369 0.562 0.129 
0.825 0.813 0.929 
0.829 0.824 0.966 
0.739 0.945 0.951 
0.800 0.899 0.889 
0.824 0.841 0.846 
0.845 0.815 0,827 
0.848 0.792 0.811 
0.870 0.785 0.811 
0.872 0.765 0.808 
0.906 0.172 0.612 
0.912 0.154 0,810 
0.922 0.750 0.811 
0.920 0.752 0.818 
0.908 0.158 0.817 
0.812 0.755 0.801 
0.839 0.748 0.184 
0.839 G.748 0.784 - 

Goddard 
White 

0.603 
0.882 
0.863 
0.913 

0.944 
0.951 
0.912 
0.921 
0.958 
0.9i3 
0.911 
0.826 
0.785 
0.767 
0.774 
0.762 
3.770 
0.783 
0.803 
0.803 
0.77 4 
0.714 

0.924 ' 

.- 

P/N 

- 
0.010 
0.090 
0.109 
0.090 
0.079 
0.011 
0.074 
0.062 
0.064 
0.061 
0.012 
0.085 
0.096 
0.106 
0.121 
0.129 
0.135 
0.141 
0.148 
0.150 
0.158 
0.159 
0.158 
0.166 
0.148 
0.148 

0.903 
- 

- 

Pyromark 
Standard 

white 

0.639 
0.839 
0.761 
0.782 
0.8'19 
0.898 
0.947 
0.933 
0.945 
P. 968 
0.934 
0.832 
0.748 
0.703 
0.698 
0.693 
0.672 
0.674 
0.705 
0,134 
0.732 
0.662 
0.662 - 

Microsheel 
(6.0 mils) 

0.925 
0.925 
0.921 
0.941 
0.962 
0.966 
0.964 
0.910 
0.916 
0.974 
0.978 
0.916 
0.968 
0.910 
0.963 
0.960 
0.963 
0.965 
0.969 
0.965 
0.964 
0.960 
0.962 
0.962 
0.953 
0.953 

0.040 

Table F-5. Znfrared Refleckme of Alzak and the White Paints 

Wavelength 
Interval 

(microns) 

7 -  8 
8 -  9 
9 - 10 

10 - 11 
11 - 12 
12 - 13 
13 - 14 
14 - 15 
15 - 16 
16 - 17 
17 - 18 
18 - 19 
19 - 20 
20 : 21 
21 - 22 
22 - 23 
23 - 24 
24 - 

Total Normal 

I Infrared Reflectance 

I Alzak White paints 

RTV-602 
White 

.___ 

0.418 
0.743 
0,613 
0.797 
0.894 
0.936 
0.951 
0.928 
0.927 
0.952 
0.926 
0.934 
0.942 
0.952 
0.963 
0.950 
0 880 
0.802 
0,753 
0,741 
0.699 
0.688 
0.688 

0.864 

- 
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