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NUMERICAL ANATLYSIS OF NONLINEAR PNEUMATIC STRUCTURES
Je Te Oden* and W, K. Kubibtza*¥

Absgtract. This paper presents a systematic numerical procedure for the
analysis of nonlinear behavior in general pneumatic structures. Recent
advances in the application of the finite element method to the evaluation
of finite strains and large displacements of elastic membranes are reviewed
and extensions of the method to the analysis of large motions of reinforced
fabrics, anisotropic metals, plastics, viscoelastic, and nonlinearly elastic
‘materials are presented. Tocal yielding of metallic elasto-plastic mem-
branes subjected to exbternal pressure is also examined. By using linear
digplacement approximations and triangular finite elements, general non-
linear stiffness relations are derived. These lead to systems of nonlinear
algebraic or ordinary differential equations in the generalized displacements
and velocities which are solved mmerically. Numerical results are included
along with comparisons with awvallable experimental data.
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NOTATION

Indicial notation and the summation convention are used throughout
this paper. Upper-case latin indices indicate points in space anhd lower-
case indices indicate elements of an array. In general, Greek indices are
assoclated with local coordinate systems and range from 1 to 2. The

following symbols are used:

aiq Constants'in displacement approximation
ALAg Area of deformed and undeformed element
bis Thermal load vector at node N

Cony Node displacement coefficients

C,Cl,C2 Material constants

ds Components of rigid-body transliation
" dij Deformation rate tensor

e Element identification index

Ee Total number of finite elements
E,El,Ez,E Flastic moduli

EGBXH Multi-dimensional array of material constants
f(Uij) Yield surface

Fi Body force per unit mass

gaB A surface tensor

G,E,Gc Shear moduli

H Heat input per unit mass

Il’Ig’I3 Strain invariants

mNM’MNM Consistent mass matrices

n Total number of nodes

§o) Hydrostatic pressure

b Generalized node forces of element e in local coordinates



ENK Generalized node forces in global coordinates
q External pressure
qi’qu Components of heat flux
Q Heat input
Qi’aie Element node forces due to q
uy Displacement components in local coordinates
uNie Displacemen? of node N of element e in x5 direction in
local coordinates
U Total internal energy
UNi Displacement of node N in Zi-direction in global coodinates
VsV, Volumes of deformed and undeformed elements
W Strain energy per unit of undeformed volume
Xie Local coordinates of element e
XNie Local coordinates of node N of element e
yie Local coordinates of deformed element e
yNie Tocal coordinates of node N of dement e after deformation
Zy Global coordinates
Zo Global coordinates of node N
ije Orthogonal transformation matrix of element e
Yij Tagrangian strain tensor
6ij Kronecker delta
€48 Two-dimensional permutation symbols
n Kinetic energy
A Extension ratio
V,U;vc Poisson's ratios
g Internal energy per unit mass

p,pP Mass densities



CyocB
aB

Q
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NMe-

Stress tensor
Deviatoric stress tensor
Power of external forces

Multi~dimensional array



1. INTRODUCTION

1.l Opening Remarks. Untll recent years, the behavior of the majority.of

practical structures could be adequately described by linear theory. The
‘deformations of most structural systems under working loadé are usually
so small as to be scarcely detectable with the unaided eye, and the stress-
strain relations for such common materials as steel, aluminum, and even
concrete can, for practical purposes, be treated as linear. Solutions of
linear problems involving two and three-dimensional structures of general
shape with complex boundary conditions, however, are often untractable by
classical means and, even with the gross simplifications afforded by linear
theories, many important problems remain ﬁnsolved.
With the bulk of the available methods of analysis being applicable
to only linear systems and with these methods being often inadequate in
the face of complex geometries, the engineer must look upon the recent trend
toward the use of highly flexible pheumatic structures with some bewilderment.
The behavior of inflgtable pneumatic structures is inherently nonlinear:
such structures often acquire their primary load—carrying capacity after
undergoing deformations which, even under small pressures, may be so large
that the original undeformed shape is unrecognizable. Strains appreciably
greater than unity are not uncommon, and in sﬁch cases Hooke's law is not
applicable. Moreover, the materials used to construct pneumatic structures
are often anisotropic and nonlinearly elastic and, to further complicate
matters, the directions and magnitudes of the applied loads change with the
deformation., To emphasize this point, one need only refer to recent
experimental studies on pneumatic structures wherein discrepancies on the
order of 40O per cent were encountered when measured stresses were compared

with those predicted by conventional linear ‘theories.



It is clear thét in order to acéurateiy analyze general pneumatic
structures one must turn to the general nonlinear theories of gtructural
‘mechanics, many of which have long been regarded as only acadenmic interesﬁ.
Although only a small number of exact solutions to general nqnlinear structural
Problems aré'ayailabie in the 1iterature’and althdugﬁ these, without excep-
tion, are concerned with only the most simple geometry, deformation, and
loading, at least one can find herééa rigorous and complete foundation on
on which to base nonlinear analyses.

Fortunately, the trend.toward the use of nonlinear structural systems
has‘been accompanied by gignificant developments in both large-scale digital
computers and general methods of numerical analysis. With the aid of these
tools, many of the nonlinear structural theories can be employed to obtain
useful information concerning the nonlinesr behavior of pneumatic structures.
Chief among the numerical schemes is the so-called finite element method
wherein continuous structural systems are replaced by discrebe models whose
properties are consistent with the general field equationsg defining the
" behavior of the continumumm. Notable progress has recently been made in
applying this method to complex linear and nonlinear structurallprdblems.

A comprehensive review of applications of the finite element method to the
analysis of nonlinear behavior in elastic membranes as well as several
extensions of the method to the analysis of large deformations of elastic,
elasto-plastic, and viscoelastic pneumatic structures is the subject of
fhié paper.

1.2 Previous Related Work. Since 1950, Lhe technical literature has contained

numerous applications of the finite element apprbach to & wide variety of
linear structural problems. Solutions to complex plane-stress, plate, and> ‘

shell problems are available, along with several solutions to three-dimensional



elastic bodies. Applications to nonlinear problems, however, have been
significantly less extensive. It appears that the first successful appli-
cation of the finite element concept to the analysis of geometrically |
nonlinear problems was presented b? Turner et al [1]. These authors

solved certain nonlinear problems by dividing a large déformation into a
number of steps. Within each step the sbructure is assumed to behave
1inearly and an instanteous (linear) stiffress matrix is computed in the i
deformed geometry. Argyris [2,3], Gallagher and Padlog Eh], and Martin [5]
were among several investigators who later applied this successive correction
technique to large deflection and stability analyses. 1In theseApapers, ‘the
correction to the iinear stiffness matrix is often referred to as the
"seometric” stiffness of the structure, and it is ordinarily a function

of the stresses associated with some reference equilibrium state. A survey
of the literature using this approach is contained in the paper by Martin
[51 and a general formula for geometric stiffness matrices was preéented by
oden [6]. Following a different approach, Wissmenn L7,8] obtained nonlinear
finite element forumlations for certain problems involving large displace-
ments but small strains of elastic structures.

Extensions'of the finite element method to the analysis of finite
deformations of elastic membranes and three-dimensional bodies were presented
by Oden [9,10] and Oden and Sato.[11]. Using a somewhat different approach,
Becker L12] obtained a numerical solution to the problem of finite in-plane
déformations of rubber sheets subjected to prescribed boundary displacements.
These nonlinear formulations contain the linear stiffness matrices as
specilal cases and lead to systems of nonlinear algebraic equations which
must be solved numerically. At the same time, they are considefably more

general than the successive correction methods mentioned earlier in that



they contain characteristics which are encountered only in highly nonlinear
structural behavior.

1.3 Scope. In the discussion to follow, the basic philosophy of the finite
element representation of flexible pneumatic structures is presented.

General kinematic properties of thin membranes are cast in the form of
algebraic equatiohs defining the motion of an asgsembly of finite elements.
The first law of ‘thermodynamics is called upon to provide general relation-
ships between kinematic and kinetic variables associated with the behavior
of finite elements of arbitrary pneumatic structures. This leads to the
general equation of motion of finite elements of thin membranes, and includes
such properties as anisotropy, nonlinear viscoelasticity, thermoviscoelasticity,
nonhomogenuity, and plasticity with no restrictions on the magnitudes of the
deformations [Eq. (20)]. In order to obtain quantitative results, the
general formulation is modified so that it applies to a number of important
speclal cases. These include a review of the analysis of finite deformations
of elastic membranes given in Refs. 9, 10, and 11 and applications to elasto-
plasgtic and viscoelastle structures. This is followed by discussions of
procedures for assembling the finite elements, computing changes in loading
due to deformation, and solution of the nonlinear equations generated in the
analysis. Finally, the solutlons of geveral representative problems are
presented and numerical values are compared with avail&ble_ekperimental

data.

2. GEOMETRIC AND KINEMATIC CONSIDERATTONS

2.1 The Discrete Model. Classically, the analysis of continuous systems

begins with investigations of the properties of small differential elements

of the continuum under investigation. Relationships are established between



(b)

FIG., 1 TFinite element representation of a rreumatic sbructure.
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mean values of various quantities associated with the infinitesimal
elements and partial differential equations governing the behavior of
the entire domain are obtained by allowing the dimensions of the elements to
approach zero as the number of elements becomes infinitely large. In
contrast to this classical approach, in the present study‘we begin with
inventigations of the properties of elements of finite dimensions. We
may employ eguations of the continuous system in order to arrive at the
properties af these elements; but the dimensions of the elements remain
finite in the analysis, integrations are replace@ by finite summations, and
the differential equations of the continuous structure are’replaced by
systems of algebraic or ordinary differential equations. The continuous
system with infinitely many degrees of freedom is thus represented by a
discrete model which has finite defsrees of freedom. Moreover, if certain
kinematic conditions are satisfied, then, as the number of finite eiements
is increased and their dimensions are decreased, the behavior of the discrete
system converges monotonically to that of the continuous system.»

Consider, for example, the general pneumatié structure shown in Fig. la
subjected to a general system of applied loads. To define the initial
- geometry of this system, a fixed rectangular cartesian coordinate system

Z13Z2,Z is established which is referred to ag the global reference frame,

3
In general, an infinite number of coordinates Z; are required to completely
specify the initial configurétion of the membrane; Eut in the present
snalysis, we reduce this continuously distributed system to a discrete one
by representing the structure as an assembl& of a finite number Eé of flat
triangular elements, as indicated in Fig. 1b. The vertices of these

triangular are referred to as the node points of the discrete model. Thus,

if n denotes the total number of nodes in the system and if ZNi(Nﬁl,E,s..n;



FIG 2 Local and global coordinates of a typical finite eiement.
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i=1,2,3) denote the global coordinates of a typical node N, then the set
of numbers ZNi_define the geometry of the discrete system.

In the finite element method, it is convenient to first describe the
behavior of each element independefitly in terms of the displacements of its
nodes; the entire set of elements is then connected together by establishing
certain dependencies between appropriate node displacements. Toward this
end, fixed local coordinate systems xie(i=l,2;3; e=l,2,...,Ee) are established
in the neighborhoods of each finite element. The quantities X 2Te referred
- to as the local coordinates of element e. For simplicity, it is assumed
that the middle surface of each element e lies in the xle,x2e ~ plane of its
local coordinate system. Following a procedure similar to that used for
global coordinates, the local coordinates of a typical hode N of element e
are denoted xNie(N,i = 1,2,3; e=l,2,...,Ee) where, due to our particular

choice of coordinates, XN3e= 0. These coordinates are illustrabed in Fig. 2.
A rigid rotation of a typlcal local system X: 0 into a local s&stem.%ie
whoge coordinate lines are parallel to the corresponding global coordinate

axes, 1s accomplished by the orthogonal transformation

—

X, = Bjiﬁ?ﬁé (no sum on e) (1)

where B.. is the direction cosine of the angle between Z, (or %, ) and x_ .

Jjie ) i ie Jje
The local coordinates of node N parallel to the global coordinates are
denoted i

2.1 Strains and Digplacements. In order that the present discussion be self-

COntained, we reproduce in this section the derivation of the general nonlinear
stiffness relations for finite elements of membrane structures E9,10,113. For
the present, we confine our attention to a typical finite element and we

temporarily drop the element identification index e for clarity.
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Under a general deformation, line elements originally straight in the
 undeformed structure become curved lines in the deformed structure. Hence,
an initially flat element is generally deformed into a curved surface.
However, if the node points are selected sufficiently close of one another,
node lines in the deformed configuration are closely approximated by straight-
line segments. Then plane elements remain plane after the deformation.
This is equivalent to asguming that the displacement fields within each
element are linear functions of the local coordinates of the element.
Assuming, for simplicity, that the element is initially in the X5 x2
plane and denoting by uy the coﬁponents of displacement referred to the

local coordinates of the element under consideration, it follows that

ug =dy taggXy 1=21,2,3 O=1,2 (2)

where d; are the rigid-body translations of the element and the a,  are

ia
undetermined constants. By evaluating Eq. (2) at each of the three nodes
of the element, we arrive at nine simultaneous equations in the nine un-

knowns 4, 50,0 Solving these we find that

d; = Ky (3)

and

= u L
#ja T Con ni ()
where s is the displacement of node N in the x; direction,

k, = —l—(x Xnn =~ X37%X00)
17 Zag\¥21¥32 -~ ¥31%22

k= —i~(x X =X .X__) (5)

and
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Xop = ¥3p ¥3p T F1p Hyp 7 Fpy

(6)

‘ 1
c Sy
aN ~ 24, X3 = Epy Ky - Kgy Kyy - xll

In these equations, xp, (N =1, 2, 3; & = 1, 2) are the local coordinates

of node N and A is the area of the undeformed triangle.

Substituting Egs. (3) and (4) into Eq. (2) gives

u; = kNuNi‘% caNufoa ( )
T
a=123; N,i=1,2,3

According to Green and Adkins [13], the Lagrangian strain tensor for

a, thin membrane is given by
' auu' oy aui Ny

R X B i
Yoo " 2 T e TR
Yog = 0 (8)

=12
Y33 =547 - 1)

where A is a scalar function representing the exbension ratio at the middle
_ surface in a direction normal to the surface. For very thin membranes, the

strains are egsentlally uniform over the thicknesgs and
h
A= (9)
[s)

where hy and h are the thicknesses of the membrane before and after deformation

respectively.

Introducing Eq. (7) into Egs. (8), we find for the strains in the discrete

sysﬁem
_1
Yas = 5(CardyB * CpyVne ¥ ConCEyi Uy )
- _1n2
Ya3 =0 Y33 "E(X 1) (10)
a,B = 1,2 M,N,i = 1,2,3
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The strain components are thus ¢onstant throughout the finite element and,
since they are determined from prescribed displacement fields, they auto-
matically satisfy the equations of compatibility throughout the element.
Note also that the components of displacement along the boundaries of an
element are linear functions of the local coordinates. Since each edge
contains two nodes and since the displacements are linedr along each edge,
it follows that the displacements are continuous across element boundaries.
These properties of the approximation insure monotonic convergence of the
solutions as the finite-element representation is refined.

Three invariants can be formed from every symmetric second-order tensor.
In ﬁhe analysis of‘deformable membranes, it is’conveniént to form the
invariants of the deformation tensor (6ij + 2Yij), where 6ijvis the Kronecker

.

delta (855 =1 for i.=j and 6ij = 0 for i # j). These invariants are given
by the formulas

2
Il = A" + 2(1 + Yaa)
L 2 1
= - A =
I, AT+ Il + )\213 (11)
I3 = Kgsé

where

$ =1+ 2Yaa + D€ (12)

€
o8 a1 "an "B
and €3, CXH are the two-dimensional permutation symbols (612 =1, 621 = -1,

Gll = 622 = O).

3, THERMODYNAMICS OF FINITE EIEMENTS

3.1 The General Equation of Motion of a Finite Element, Having defined the‘
discrete system in the previous section, we now turn to certain fundamental
principles of mechanics in order to obtain general equations of motion for

a finite element. We beginkwith the first law of thermodynemics:

A +U=0+ Q (13)



15

where % is the time rate of change of kinetic energy, U is the time rate of
change of internal energy, £ is the power developed by the external forces,

and Q is the heat input. By definition,

—lrl £
n =5 quiuidv
v
U= {pE av
[}
v ;
Qo . (1k)
= ‘Fiuipdv + J Siui ds
v 8
Q= {PH dv + f 90y ds
v s

In these equations, P is the mass density, dv is the differential volume,

s

; are the velocity components, € is the internal energy per unit mass, Fi

are the body forces per unit mass, S; are the surface tractions per unit of
gurface area s, H is the heat input per unit mass, qi are the components of
heat flux, and n; are the components of a unit vector normal to the boundary
surfaces of the element.

Through arguments similar to those used in obtaining Eq. (7), it is

found that
. aui . .
ui - at = Nu‘Nj_ + CaNuNix(I. (15)
and
4; = quNi + ConyiXo (16)

.where Uy; is the velocity of node N in direction i and qu is the heat flux
at node N in direction i. Moreover, if Pos Vs and P, v denote the mass
densities and the volumes of the finite element in the undeformed and the
deformed gtates respectively, then according to the principle of ccnservabioh

of mass,
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PV, =PV (17)

Introducing Egs. (15), (16), and (17) into Egs. (14) and simplifying,

we find
n o= .]_‘. TRR:
) P Vs
rl
U= J PLE dv,
. o (18)
= Pi%yg
=D +
i * %ol
where

M = J‘ Polly + coyxe) (i + cgypglavy
VO
Py, = j Py (g + 0oty )PV, + I 8, (i * ey x )as (19)

Vo s
byy = .f (y + copy Ing ds
S

The array mNM is the so-called consistent mass matrix for the finite element

and the quantities Py are the components of generalized force corresponding

to the generalized displacements u Physically, Py ig the generalized

Ni®
force at node N in direction i. The quantities bNi are the generalized
thermal gradients usually referred to as thermal loads. Note that the

heat input H is regarded as a constant for each finite element.

Introducing Egs. (18) into Eq. (13), we obtain the general result

ot + : = o+ +p -
e V) ipog Wo = Py Pyaw t PoVol (20)
o)
where Hﬁi are the components of acceleration of the nodes. This relation
represents the most general discrete representation of the equations of

motion for a finite element of a continuous media. It-is'applicable to the
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analysis of large deformations of nonlinearly elastic, plastic, viscoelastic,
and thermoviscoelastic media since no restrictions have as yet been placed

on the constitutive equations for the material of which the element is
composed or the magnitude of the deformation. The second and third terms

on the right-hand side of Eq. (20) represent thermal effects on the motion

of the element. The rate of change of internal energy é is, in general,

also a function of the heat flux and the temperature gradients. These effects
will not be considered further in this discussion; for our purposes, it
suffices to merely point out that thermal effects can be eagily included

in the analysis by rebtaining the terms b and P v H in Eg. (20) and by

i%wi

introducing, in addition to a constitutive equation involving the stress,
a second constitutive equations which relates heat flux to thermal gradients,
deformation rates, strains, etc. Thus, with thermal effects omitted,

Eq. (20) reduces to

W, =m U Ug. + ] P € av 21
Prana T M i M Jo o (21)
v

o)

3.2 Inbernal Energy. To spply this eguation to specific materials, it is

necessary to obtain & as a function of the generalized displacements and
their time derivatives. According to Eringen [lh], if couple gtresses and
thermal effects are omitted,

PE =0 (22)

. .d
13743

where oij is the stress tensor and dij is the deformstion rate tensor. For

"the finite element representation, it is easily shown that

O..d,. =0, .c,.(d ¥
13d13 OlJClN( kJj * CjMPMk)uNk (23)

We now assume ‘that the material is homogeneous so that § is not a
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function of the local coordinates X, . In view of Eq. (22), it is a constant
with respecf to Xy for the finite element and can therefore be factored

outside of the integral in Eq. (21). Noting also that

Py =V P (2k)

where I3 is the third invariant in Eq. (12), and introducing Egs. (22), (23),

and (24) into Eq. (21), we arrive at the equation

[mNMﬁMi +/I, 0 Ors rN( sMPMl) B PN1 uNl (25)

Since this equation must hold for all velocities ﬁNi’ we have

nﬁn;" 4‘/*5 rs rN( s T CSMPMi) = pNi(t) (26)

It is now necessary to introduce into this equation the appropriate
relation expreésing the stress in terms of the strain, strain rates, higher-
order strain rates, etc. in order to obtain the finite element representation

for specific materials.

4., NONLINEAR STIFFNESS RELATTIONS
We now examine applications of Eqs. (21) and (26) to various types of
membranes.

L.l Elastic Materials. In the case of elastic materials, the stress Oi5 is

derivable from a potential function W which represents the strain energy per
unit of undeformed volume. If each element is homogeneous, then § and W are

not functions of the spatial coordinates x;. It follows that

:L‘
jpog av, = j Wavy = vl (27)
where
. a o
W g (28)
Ouy;

Introducing these equations into Eq. (21) and simplifying the results, we
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obtain
\{bn aw »
S - o=
oot ¥ Vo 5 ot Pyi Vs = © (29)

This result must be valid for arbitrary node velocities of the element.

Therefore
.o oW (30)
ml\]MUMl Yo auNi - PNi 3

Equation (30) is the general equation of motion for finite forced oscillations

of an elastic membrane. For specific materials, the appropriate form of W
must be introduced into this equation.
The important problem of small oscillations about a state of large

deformation is obtained as a special case of Egq. (30) by denoting

U = Yyt g (31)

where Gﬁi igs the prescribed large displacement and wNi is a small perturbation.

Then
M+ Tu (T iy = Ty (32)
where ()
Py = Py~ Vo gg'gl—.l'rji— (33)
Ni

Here f  is known a known function of Eﬁi and is independent of time. The

forces E&i are known functions of time and Eq: (32) is linear in the dependent

variables‘wNi and their derivatives.

If the membrane is in equilibrium,Ey. (30) reduces to [10,11]

P =7, G (34)

Ni 9
* Ui
For elagtic membranes, the stresses are calculated by means of the

formilas

0'.,:—-;1'.—.- aw aW
1 Evié (5v— + 37—

) (35)
ij ji
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L.1.1 Natural and Synthetic Rubbers. In the case of highly elastic

materials such as natural and synthetic rubbers, several forms of the
strain energy function W are available. Ordinarily, such materials are
assumed to be incompressgible and, for isoﬁropig membranes, this incom-
pressibility condition is equivalent to the condition

I =1 (36)

Then, W is a function of only Il and 12 and, instead of Eq. (35), the stresses

weghmnby[ﬁ]

oW 2 oW 2

[e) = 28 A

Q,B 2 C('B(BI + aIg) ()‘.2 aI P)gG.B

gz = O (37)
_ N2 0% .2 2y W _

033 = A 3T, + A(L, - A ) oL, + p

where A is defined in Eq. (9), p is the hydrostatic pressure, and

€ = %5 2%5%ApYuA (38)
It is assumed that the membrane is very thin so that the strains are
essentially uniform over the thickness and 033, the stress normal to the

deformed surface, is negligible in comparison with OUB' Then p can bhe

determined from the condition 033 = 0:
9
= P2 a8, - a?) I (39)
1y oI,
Thus /
oW Bw
~ nb 2 oW 2. 32
Oug = 2 OLB(aIl + A '3"§> + [(x + X A21 » aI A ]ga (Lo)

Rivlin and Saunders [15,16] verified experimentally that the strain
energy function for most isotropic, incompressible rubbers is of the form
= C(1; - 3) + ¥(1, - 3) (41)
where Cl is a material constant and the function U depends upon the type of

rubber. In analytical work, the most common form of W is the well-known
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Mooney form [17]:
W=0y(1; - 3) +C, (I, - 3) (42)
where Cl and 02 are experimentally determined constants. Treloar [lS],»ﬁsing

a statistical approach based on molecular theory, found for incompressible

rubbers
W= c(I, - 3) (143)
where C is a constant. Rivlin [19] refers to such materials as neo-Hookean.

To obtain noﬁlinear stiffness relations for finite elements of rubber

membranes, first note that for incompressible membranes

Il = A2 4 2(1 + Yao)
Tp =yt A0 ) ()
2 -1
AT = (1 + 2Yﬂﬂ,+ eaB€XuYaXYBH)
and NG o\ 3(LAZ) _ o
= e g =
Y8 B YoB of
o1
1 L
= = o(b., - A
P ) (45)
oT
2 =21\ - any,) + 226 g
avaB

where gaB is defined in Eq. (38). For the finite element,

2 1

M= C(IN(U'NU. ts Copysi) * eonBem(CaNum

N -1
+‘§'caNchMyNiuMi)(CBLuHJ * CurtB8 + CBKcuLquuLk)] (16)

and.

= 6@6 + euaehB(cHNuNX + S gt + CKMQUNuNiuMi) (47)

gaB
wherein i, j, L, M, N, K =1, 2, 3; &, B, A, M =1, 2.
Introducing Eq. (42) and Egs. (44)-(47) into Egs. (3L4) and (L0), we

obtain the following equations for a finite element of & membrane of Mooney
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material [11],
L
B = 20Con(®a5 * Cpyithy) (01 (B + M 'egp) + Colegg(n - 2A®
- 2N, + 3%8e1)

! ) " L (48a,b)
04g = aMoy (85 - A gug) * 0000 + (1 - 2AF - 2ty e o]
where |
- 1
Yoo = ¥ 2% (k9)
Similarly, for neo-Hookean membranes we find
Py = 2VocanC(Pap + Cpping) (Pop - Xugaﬁ)
50a,b
Oug = 2k C(Bg - xhgaa) (50a,b)

Equations (L48a) and (50a) are general nonlinear stiffness relations
governing‘the static behavior of finite elements of Mooney and neo-Hookean
membranes. Upon connecting the elements appropriately and applying boundary
conditiong, these lead to systems of nonlinear algebraic equations in the
node displacements. Once solved, the results are introduced into Egs. (10),

(L8b), and (50b) to obtain final strains and stresses in the structure.

4.,1,2 Plastics and Nonlinearly Elastic Materials. Recent experiments on

plastics and synthetic materials have attempted to arrive at approximate
energy functions for such materials even through their behavior is not always
perfectly elastic. These have led to highly nonlinear forms for the
potential function W. For example,‘experiments on a dimethyl siloxane
rubber by Hutchinson, Becker, and Landel [20] have indicated an energy
function of the form

W= By(Iy - 3) + By(T, - 3)° + By{1 - explp, (1, - 3)7}

+ Bu{l - explo, (1, - 3)1} (51)

where By, By, B3’ Bh’ bl,and b2 are material constants.
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In this case, the nonlinear stiffness relation is given by

ka = 2veon(Bap + CBMUMK){[BJ- + 232(11 - 3)'](60”3 - )\.hgcﬁ)

- (T - 3){}33101 exp[bi(IB -3)1 + Bb, exp[b2(12 - 3)]}[%8(1
- oWt ooy + 2% o) (52)

as before, stresses are computed by means of Eq. (ko).

,1.3 Metals and Reinforced Fabrics. Deformations of metallic and reinforced

fabric pneumatic structures are usually characterized by large displacements
accompanied by strains which are small in comparison with unity. In such
cases, the material is assumed to be homogeneous and elastic within each
finite element and the well-known Hookean form of the strain energy function
is applicable. Moreover, the strain normal to the deformed surface can then
be expressed as a linear function of the strains in the middle surface and
the state-of-strain is described by the two-dimensional tensor Yaﬁ' The

strain energy function is therefore of the form
W=2E o YoV (52)

oML OB AL

where Eaﬁku is a multi-dimensional array of elastic constants. The stress

tensor is given by
1 &
%98 = Egpauu = B (U * 5 Cont V) (Sha)

and the nonlinear stiffness relation for the finite element is obtained by

introducing Eq. (53) into Eq. (34):
- 1
P = VoCor(®8M * capine ) Faprucrr(Pus * ‘g‘quuJi)uIi

I’Jﬁmﬁwﬂiﬁkﬂ = 1,2,3; 04389)‘:“ = 1,2 (51”3)

The array of material constants, EGBKH’ possess the symmetric properties

Eagau = Bgop = Fosur = Enuop (55)
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and, for isotropic materials, it is given by

Foont = 3y (Cad’n * foaleu + £y asti) (56)
where E is Young's modulusg and V is Poisson's ratio.

The form of EGBXH in Eq. (56) is applicable to most engineering metals
(steel, aluminum, and tungsten, etc.) and to isotropic fabrics. However,
most of the reinforced fabric and composite materials are either completely
anisotropic or transversely isotropic only with respect to a normal to the
middle surface.

A typical example of such a reinforced fabric ig indicated in Fig. 3.
Here a fabric core material, which is assumed to be isotropic and to have
a modulus E and Poisson's rate V, is reinforced by a network of fibers of
modulus E and Poisson's ratio V. The fibers form an angle O with respect
‘o the yl-axis, as shown. When the fiber spacing is relatively small, it
is convenient to introduce mean values for the appropriate material
constants of the composite structure. Thus, we introduce the following

congbants [21]:

E, = KE + (1-k)E
L
E = —
2 kE + (1-1)E
¢ . GG (57)

¢ kG + (1-k)@

\Y

o KV + (1-k)V

il

where k is the ratio of the cross-sectional area of the fibers to thé total
cross~sectional area of the element, G and G are the respective shear moduli

of the core fabric and the fibers, E; and E, are regpectively the effective

2

mean modull of elasticity in the vy and Jo directions, Gc is the mean sghear

modulus, and V, is the mean Poisson's ratio of the composite material. We



FIG. 3 Fiber reinforcement pattern in composite fabric sheet,



25

then have

= b il .2 o
Eii11° a,,cos % + ay,sin @ + 2(3,12 + ZGG)Sln o cosa.

Byyop™ Bpppy = (817 * agp = 6,)s1n?% cos?n + a, ,(sin' + cos'o)

L ]
Eppoo™ 894800 + aezcosha + 2(a12 + 2GC)31n2a cos?0. (58)
Eio10= Frzo1 = Boygp = Boupy = (35 * 8y, - 28;5)sina cos?a

+ Gc(cosza - sinza)2

B110" Biao1 = Foprp = ooy = Bypyy = Bypoy =By, =0
where
_ E2
a1 = N
1-V, El/E2
E
o2 T 5, VglF = (59)
G1p = 85y < VgEl
o1 ;
-V n
1 c E1/E2

L.2 Viscoelastic Materials. The equations of motion of a finite element of

a viscoelastic material are obtained by introducing the appropriate consbitubive
equation, written explicitly in terms of the stress tensor oij’ into Eq. (26).
We confine our attention to isotropic materials for which the stress is
dependent on the displacement and velocity gradients. In general, the

constifutive equations for such materials can be written in the form
T=t

a ®
oy =, 2x (60)
ox ayr

T= =
, wherezliﬂ a tensor functional of the indicated arguments. Then the equations

of mobion for a finite element are
....-t

-
muing * LA | o 55) G0y + i) = By® ()

T—- -~
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Specific forms of these relations for given materials are obtained by
introducing the appropriate expanded form of ;fdleq. (61).

Although a detailed discussion of finite element formulations for
nonlineariy viscoelastic materials is outside the scope of the present
investigation, the general procedure is amply demonstrated by a simple
example. Consider the case of plane stress in a thin membrane undergoing
large displacements but strains which are small in comparison with unity,
and, for simplicity, assume that the membrane is constructed of a simple

linearly viscoelasgtic material of Voigt type:

I = Bapau¥au * Baprudyp (62)

Here AGBKH and Byg)u are arrays of material parameters and may be functions

of time. Then Eq. (26) becomes
ee .];‘
mods + Concrar(®is * eyt )Aaprn (B + Fopstn)umm *+ Bogau (O
+ y =
gty im] = B(E) (63)
We obtain a system of linear differential equations describing the in-plane
motion of flat viscoelastic elements by deleting products and squares of the

displacements and velocities in Eq. (63) and limiting the ranges of lower-

case indices to 2:
u + + = 6
Modao  BeouCByCantmt * Agay puCaySymtm %%L) (61)
It is seen that the above procedure provides a systematic and rational means
for identifying the material damping coefficients for any material for which

the stress is given explicitly as a function of gtrains, strain rates, and

other kinematic variables.

4,3 Elasto-plastic Materials. It is not difficult to modify finite element
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formulations so as to account for yielding and plastic deformation of
metallic membranes. Since, in view of Eqs. (10), the strain components

are uniform throughout each triangular element, so also in the stress

[Eq. (5h)3. Thus, if local yielding is imminent, it is characterized by
uniform yielding and strain hardening of the associated local finite elements.
This means that elastic-plagtic boundaries cannot move continuously during

an incremental loading process; but this characteristic of the discrete

model need not lead to divergent or inconsistent results.

In this invegtigation, the approach suggested by Pope [22,23] is
extended so as to apply to large displacements of elasto-plagtic membranes.
The elasto-plastic behavior of a typical finite element is analyzed through
an incremental loading process. During each increment, the material responds
linearly, but the overall response obtained by summing the incremental
values may be highly nonlinear.

Let 083, Y;B, p§i,'and u%i denote the known values of the stress, strain,
node forces, and node displacements at some reference state o in a typical
finite element and let 8048, 8Yyg, Opy,, and duy; denote small increments in
these quantities. If these increments are sufficiently small, it can be

easily shown that

= - o = 0 € & P

6YG.B YC(,B YC('B Y(],B + YaB

e P _ o
ag T Mg = comey * o)y (658,D,¢)

_ ) o
Opys = Com(®61* ot )8 * ConCerCopUy

where 5Y§B is the elastic strain increment and 6Y§E is the plastic strain
increment. The term (5Bi+ cBMpﬁi) in Eq. (65c¢) represents the influence of

large displacements on the relationship between stresses and the node forces,



The term.cBMuﬁi an be neglected in the case of small displacements.

The elastic strain increment is related to the stress increment according

to
60’05 = gOLﬁ - 088 = EO 6Y§p‘ (66)
aBhL

in which the array may, in general, be a function of Y;B.

T
The yield condition may be represented by a convex yield surface in
stress space which is given by Loh]
£(935) = 0 (67)
The yield function f is symmetrical with respect to Gij and Oji and depends

upon the strain history of the membrane. Since it is assumed that plastic

deformation is independent of the hydrostatic stress, we can rewrite (67) in

the form
£(C;4) = 0 (68)
where Eij is the stress deviator:
Oi5 = %5 - B % ¥k (69)

a w

i 0 = = i 3
When the stress increment 80,g(0y 33 0) does not have a posibive
component in the direction of an inward normal to the yield surface and when
the gtress point OGB lies on the yield surface, the material yields and the

plastic strain increment 1is given by
P of
By, = M—— (70)
oB aoaB
The factor U depends upon the strain history and is independent of all
components of 60&6 except that normal to the field surface.
At initial yielding, the yield condition (68) is satisfied. After an

additional increment of plastic strain, the yield condition is given by

of 500'6 ::‘0 (71)

£+ tagévgg + s
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where tcB describes the strain-hardening properties of the material.

Introducing Egs. (66), (68), and (70) into (71) and simplifying the results,
we find that

> X 60&8
= Q
" 0 3f_9f  _ . OF (72)
Thus
p _
Yo = Gy (73)
where
of of
B\ 4)
= a
GG.BMJ. (7
B of 3f . df
Endp Fgq Sgap &N gy
introducing Bgs. (73) and (66) into (65b) and solving for 80,5, we
«hbain
| o
= ) v
%op Hgﬁkuckm(buj * CUMUMJ‘) U5 (75)
© i : o "o,
where Hﬁﬁkp is the inverse of GdBXM + EGBKH'
° 50 =8 8 ¢
HaB)\u(Gxupv * Emp\)) ap AM (76)

Finally, Eq. (65c) becomes

_ o o] O 5 0]
Soy; = Ceon(®p1 * i ) Hopantrr (Ous* Cahys) * iJCaNCBR"aBJGuRj (77)

Equation (77) represents the stiffness relation between the incremental

loads 6pNi and their cooresponding incremental displacements. These equations
are inverted for each load increment; the solutions 6uNi are introduced into
Eq. (75) to obtain the associated stress increment. Incremental strainsg 5Y§

B
and 5Y§B are then calculated by means of Egs. (66) and (73). Once the
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incremental values GuNi’ 69,8, and GYQB are determined, they are added
algebraically to those of the reference state (i.e., uﬁi, Ugﬁ,Ygﬂ) to
obtain a new reference state (u§; = ugi + 5uNi,03é = Ggé + 60&5’ e?c.)
and the process is repeated for a new load increment. Following the
procedure indicated by Pope [22], during each cycle the factor M of each
element is examined. If M < O, the element is added to the elastic region
of the membrane and the analysis is repeated; if the mean stress over a
load iﬁcrement is on or oubside the yield surface, the analysis is repeated
-with the element permitted to deform plastically. Accuracy is improved by
choosing the load increments such that one element, at the most, yields
_during each load increment. Other details of the procedure are identical
to those of the small displacement case and can be found in references L22]

and [23].

5. FORMUILATION OF THE STRUCTURAL PROBLEM

5.1 Global Equations of Motion. The nonlinear equations derived in the

previous section describe the behavior of a singie finite membrane within
its local reference frame; these relations are independent of the loading
on the membrane, the boundary conditions, or the location of the element in
the assembled system. It is now necessary to connect the elements at
appropriate node points and to sum their propefties s0 ags to represent a
pneﬁmatic structure of specified shape with gpecified bouridary conditions.
’To accomplish this, it is convenient to first rotate the node forces,
displacements, velocities, accelerations, and local coordinates associated

with each element so that they are parallel to the global reference frame 2y

This is accomplished through the transformations
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Puie = BkigpMKE

Yo = Pricmie ,
e = PricTuie (78)
1.imz;e - Bk;é&m;g

x = B

ie kig?kg

where the underscore (e) indicates that no sum is to be taken on the repeated
index e. In these equations,'gMie, Gﬁie’ ﬁﬁie’ andﬁ%Mie are respectively,
the node forces, displacements, velocities, and accelerations of node M of
element e in the direction of 245 Eie are the rotated local coordinates
defined in Eq. (1), and By; is the cosine of the angle between.Eie and x__.
The ranges of the indices in these equations are M, i, k, = 1, 2, 3 and
e =1, 2, «sa, Ee where Ee ilg the total number of finite elements.

Tt was pointed out earlier that the set of numbers ZNi(i =1,2,3;
N =1,2, ..., n) describes the gcometry of the assembled (connected)
system whereas Xy; (N, 1 = 1,2,3; e = 1,2, ..., E,) decribes that of the
individual elements. The comnectivity of the gystem is established by

to those of x

relating the members of the set Z Nie by the transformation

Ni

vy =

XMie = MieZNi M = 1, 2, 3; N=1, 2, «0u, n) (79)

where
1 if node M of element e is identical to node N in
0 _ the assembled system

MNe (80)
0 if otherwige

The transformation indicated in Eq. (79) defines a mapping of points in the
set Zy; into points in ;Mie and, in effect, assembles the elements into a
single unit. The process is illustrated gymbolically for the cage Ee = l,

n=5 in Fig. L.
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FIG. 4 Assembly of elements through transformations of points in f:],obal set

ZNi into local sets _iMie‘



32

Similarly, if PNk UNk Nk’ and Uﬁk denote the values of node forces,

displacements, velocities,and accelerations in the assembled system, it

can be shown that

P =0 7
Nk MNe Mke
Y Q

UMke Uk

. g (81)
u'Mke = MNeUNk

uMke MNeUNk

In this case, the repeated indices N and e are summed throughout their
entire ranges{ N= 1, 2, essy N3 =1, 2, cou, Ee.

Application of Egs. (78) through (81) assembles the finite elements
into a single discrete system. When the local variables appearing in local
equations of motion Lsuch as Eqs. (21) or (26)] are transformed in accordance -
with Eqs. (78) and (81), the resulting relation is referred to as a global

equation of motion. In particular, Eq. (21) becomes

PNiUNi = Ml\m"uM1 i f Po §dv (82)
O
where
Mo =ZQRMeQSNemRSe (83)
e=1

In this case Ny, M =1, 2 ..., n3 R, S =1, 2, é and the integration is
carried out over the entire volume Vb of the undeformed structure. Equation
(82) is the general global equation of motion of a finite element.

Global equations for the case of static behavior are of special interest.
In this case,the local equations of motion reduce to nonlinear stiffness
relations of the form

= k( (84)

PMme uNke)
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where k(uNke) is the appropriate nonlinear function of the node displacements. -
For example, the function k(uNke) for synthetic rubbers, nonlinearly elastic
materials, and Hookean metals are defined by Egs. (48a), (52), and (54)
respectively. When the components of node forces and displacements are

rotated so that they are parallel to the coordinates ;ie’ Eq. (84) becomes

Pyic = Bimek(ﬁkjgumjg) (85)
Finally, the global stiffness relations are obtained through the transformations
indicated in Eq. (81):
p <K () (86)
where
U =Q ok Q

]‘;k( Rs) MNeBlke (ﬁje SReURs) (®7)

Boundary conditions are applied by prescribing generalized (global) dis-

placements at appropriate boundary nodes. Then Egs. (86) reduce to a system

of independent nonlinear algebraic equations in the unknown node displacements.

- 5.2 External Pressure. Up to this point, the relations derived are applicable

only to situations in which the loads do not change in direction as the
structure deforms. 8ince, for pneumatic structures, this is obviously a
severe restriction, a procedure [7,11] for accbunting for changes in the
external loading due to deformation is now examined.,

It is first assumed that the dimensions of each finite element are
sufficiently small that the pressure 4 can be regarded as uniform over
the surfaces of each'finite element. Then, if A denotes the area of the
deformed element, the total force exerted normal to the plane of the element
is

q = Aq (88)
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Let n; denote the components of an outward unit vector normal to A,
Then the components of the pressure forcela are given by
q, = n;Aq (89)

To determine the components n;, the coordinates of nodes of the.deformed

element are denoted

Vs = gt i (90)
For convenience in writing, the origin of the reference frame yi is transferréd
to node 3 of the deformed element. If the resulting coordinate system is
denoted Zs 5 it follows that
Zyi T Vs T V31 (91)
Now consider two unit vectors emanating from the origin of the coordinétes

z5 (node 3). The components n; of the unit normal are obtained by forming

the vector product of these two vectors:

= 1 s e
ni = _2-A_. elelezzk (92)

where eijk is the permutation symbol. Thus, equation (89) can be written

= i €. .
G =5 9t Py (93)

The net external force at each node is obtained by simply representing g by

three forces, one abt each node, whose components are
Q = % €3 5k%15%2k (9h)
Tntroducing Eq. (91) gives
Qg = % a8y ¥ + Vgt + Vagy) (95)
This result defines the’generalized external force in the ﬁeformed eiement

produced by external pressure. Note that no node identification index is

needed since Qi is the same for each node of the element.
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To complete the analysis, these forces are now transformed into components

Q parallel to the local reference frame Xi' The result for element e is

—

e = 12 q ZPMN 1Jk( Nje uNJe)(kae uMke (96)
wherein the underscore again indicates that no sum is to be taken on the
repeated index e.

In the case of pressure loadings, the componentlﬁie take the place of the
node forces ENie of Egs. (78) and (85).. It is seldom necessary to transform
these components into the global system, however, since it is more convenient
to first transform displacements into the EE system with the aid of Eg. (1)

and then to transform the resulting forces into the global system.

5.3 Solution of Nonlinear Equations. In the case of time-dependent phenomena.,.

finite element formulations lead to systems of simultaneous nonlinear
differential equations of the form indicated in Egs. (26), (63), and (82).
The solution of such systems of equations is a formidable task, even with
the aid of modern digital compubters. Generalizations of the well-known
Runga~-Kutta techniques may lead to acceptable results in some cases; but
general procedures for solwving such large systems of coupled nonlinear
differential equations are, at best, still in the early stages of development.
It is important to note, however, that numerical procedures are available for
the solution of nonlinear algebraic equations; and by incrementing the time
variable t, the original set of differential equations reduce to a system of
nonlinear algebraic equations for each time increment. Moreover, finite
element representations of gtatic behavior in pneumatic structures also lead
to systems of nonlinear algébraic equations. In view of thig, the molution

of large systems of nonlinear differential equations is not considered further
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in this study. Rather, consideration is given to procedures for solving -
systems of nonlinear algebraic equations, it being understood that, at
the cost of greatly increasing the computing time, these procedures can
also be applied to certain systems of nonlinear differential equations.

Several numerical schemes for solving simultaneous nonlinear
algebraic equations are available in the literature; but not all of these
are suitable for systems of equations as large as those encountered in the
present investigation. A comprechensive review and comparison of numerical
procedures for equations of this type was recently contributed by Remmler,
Cawood, Stanton, and Hill [25], wherein numerical experimentation showed
that the classical Newbon-Raphson method and the Flebcher-Powell method are
among the most efficient and reliable techniques available. To these may
be added the method of incremental loading, which is somewhat related to
the Newton-Raphson method, except that the loading is assumed to be applied
small increments during each of which the structure responds linearly. This
latter technique is particularly well-suited for the analysis of stability
and plastic behavior. The numerical results to be presented subsequently
were obtained using variations of the Newbon-Raphson method. Thus, for the
present discussion, it sufficies to merely oubline this procedure. Details
of this and other numerical procedures can be found in the report by Remmler
et al [25] and in the papers by Sprang [26] and Brooks [27].

Congider a system of nonlinear stiffness relations of the form in
Eq. (86). Assuming that after appropriate boundary conditions have been
applied there remain r unprescribed components of node displacements, this
system represents a set of r independent nonlinear equations in the unknown
displacements U . For simplicity, suppose that these equations are represented

Nk

in matrix form as
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H(U) =0 (97)

where H is a r x 1 column mabrix, each row of which represents an indepehdent
nonlinear stiffness equation, and U is the solution vector. To solve these
equations, we expand il in a Taylor series about an arbitrary point u° which
represents an initial estimate of the solution U . The vector uo may,

for example, correspond to the linearized solution. Taking only two terms,

we find
H(u) = H(U®) + J(KO) (U - u°) (98)
where is the jacoblan matrix
oH,
1= [-»—i (99)
BUj

Equation (98) is linear in y. Solving this equation, we find

-1
u= u% - 5(u°) H(uO) (100)
The corrected solution U serves as the initial estimate in a second cycle,

~and the process is continued until a desired degree of accuracy is obtained.

6. NUMERICAL AND EXPERIMENTAL RESULTS
In this section, we examine numerical results obtained by applyihg the
theory developed in the preceding sections to éeveral representative
problems. Whenever possible, these results are compared with available
experimental or analytical data.

6.1 Stress Diffussion in a Stiffened Panel. Ordinarily, stresses obtained

from finite element analyses based on approximate displacement fields are
less accurate than displacements obtained from such models. To get an
indication of the accuracy of stresses derived from a rather coarse finite

element representation, and also to examine an elementary problem involving
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composite bar and plate elements, the problem of plane stress in a reinforced
panel was considered as a simple first example. In this case, deformations
are assumed to be small and elagtic and the material is assgsumed to be homogeneous
and isotropic. Equations (54) and (56) are applicable except that only
in-plane deformations are considered and products and squares of displacements
are neglected in comparison with the displacements themselves.

The stifféned panel shown in Fig. 5a was analyzed using the finite
element representation.in Fig. 5b. Here a rectangular panel 0,127 mm thick,
stiffened by longitudinal rods of area 1.613 em? on the outside and 0.807 em?
along the centerline, is subjected to concentrated forces of 1,587 kg, as is
indicated. An elastic modulus of 703,000 kg/cm? and a Poisson's ratio of 0.3
were used. The computed variation of the normal stresg in the exterior

longitudinal stiffeners with the distance x from the fixed edge is shown in

~Fig. 5¢ compared with results obtained fram an approximate theory developed

by Kuhn [28]. We observe that the coarse finite~element representation
yielded stresses, in this case, which are in close agreement with those
predicteéed by Kuhn's theory.

6.2 Elasto-plastic Behavior of a Metallic Membrane. The finite element

formulation described in Section 4.3 was used.in the analysis of plastic
behavior of a square aluminum membrane subjected to external pressure. A
bilinear stress-strain law of the form indicated in Fig. 6 was assumed with
Oy = 2,514 kg/cme, Yy = 0.003k4, Eg = QOE,p = 740,000 kg/cmg. These properties
‘correspond to the aluminum alloy 201L4-73 and agree closely with those used
in experiments on rectangular shell plating by Neubert and Sommer [29]. A
thin metallic sheet, 60 cm. square and O.14 cm. thick, is subjected to a

uniformly distributed hydrostatic pressure. As the pressure ig slowly increased,

d;fégion near the center of the plate yields and plastic flow is initiated.
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FIG. 5 Plane stress in a stiffened panel.
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FIG., 6 Bilinear stress-strain law.
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FIG, 7 Finilte-element representation of a square metallic membrane.



39

This behavior was analyzed numerically by using the finite element
representation shown in Fig. 7. Figure 8 shows the computed variation in the
center displacement of the sheet with external pressure compared with the-
experimental results of Neubert and Sommer [29] and with results obtained
using approximate theories proposed by Foppl'[303 and Hencky [31]. Again
note that the rather coarse network was adequate to obtain displacements in
-excellent agreement with experimental data.

6.3 TFinite Stretching of a Rubber Sheet. In order to indicate the rate of

convergence of the results as the finite-element network is refined, we
reproduce here results similar to those obtained earlier by Oden and Sato L11l.
In this example, an initially square rubber sheet, 0.127 cm. thick, is
stretched in its plane to twice its original length. The material is assumed
and C

to be of the Mooney type, with material constants C of 1.75 and 0.15

1
.kg/cm2 respectively. Thus, Egs. (48) are applicable.

2

Various finite element representations of the sheet are shown in Fig. 9
along with the variations in the total edge force with the total number of
finite elements. In this example, the edge force converged monotonically to
approximately 16.32 kg.

6.4 Inflation of an Initially Flat Rubber Membrane. In a recent paper, Hart-

Smith and Crisp [32] presented experimental data on the inflation of thin

rubber membranes. Although these investigators used an exponential form of

the strain energy. function, sufficient information was given to deduce equivalent
Mooney constants for the material used. Specifically, we consider the inflation
of an initially flat, circular, synthetic rubber membrane subjected to uniform
external pressure. The membrane is initially 50.8lmm.in diameter and 0.2 mm.
thick and is held fixed around its edges in a metal clamp.

In the finite element analysis of this membrane, it was assumed that the
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rubber possessed a strain energy function of the Mooney form [ Eg.(41)] so

that the nonlinear. stiffness relations in Eqs. (48) were applicable. Values

of ‘the Mooney constants of Cl = 9.502 = 1,75 kg/cm? were derived from the

data given in [32]; The case considered is that in which the menbrane is
subjecfed to a uniform pressure of 0;097 kg/cme. According to the experimental
data, this corresponds to an extension ratio at the crown of 5.5.

It is important to note that the inflating pressure is a highly nonlinear
funétion of the extension ratio at the crown and, consequently, of the displace-
ments. Thus, more than one equilibrium configuration can exist for a given
pressure. No provisions for determining all possible equilibrium states for
a specified pressure were incorporated in the present analysis, and the
particular configuration obtained depends upon the choice of initial values
employed in the iterative golution of the nonlinear stiffness relations.

Several finite element networks were used in the analysis, beginning
with a single 30 degree element and eventually using the 10-element represent-
ation shown in Fig. 10. For a given finite element network, the rate of
‘convergence of the Néwton;Raphson method depends on the choice of initial
values of the displacements. Convergence rates are congiderably higher for
plane problems (such as that in Fig. 9) than in the case of large out-of-plane
deformations. In the present example, rates of convergence were increased by
first analyzing a coarse finite-eiement representation of the membrane using
a small number of iterations. The results were then used as starting values
for a more refined representation, the displacements of the added node points
being obtained through linear interpolation.

Figure 11 shéws the computed profile of the inflated sheet compared with

.the profiles obtained experimentally and theoretically by Hart-Smith and

Crisp. We observe that the agreement is quite good, the maximim difference
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between the displacements computed by the finite-element analysis and the
experimental values being approximately six per cent.

6.5 Experiments on Rubber Membranes. As a final example, we consider

briefly the results of experiments performed at the Structures and Materials
Laboratory of the University of Alabama Research Institute on thin natural
rubber membranes. In these experiments, circular disks, 0.0068 inc. (0.0173

cm. ) thick and 15.0 in. (38.1 cm.) in diameter, of pure gum natural rubber sheet
were clamped around their edges in a metal clamp. The disks were marked at

the centér and on ten equally spaced concentric circles. The disks were then
inflated in stages of pressures of approximately 100 mm. of water, which
corresponded to a polar extension ratio of around )= 5. After resisting

maximum pressures for 45 minutes, the specimens were then deflated in stages
until all applied pressure was removed.

Figure 12 shows the experimental apparatus and a typical inflated circular
membrane. Figure 13 indicabtes the variation in polar extension ratio with
pressure. It is seen that the behavior is highly nonlinear and that some
energy 1s dissipated in the unloading process. A residual extension at the
center of approximately ) = 1.25 was experienced, which Wés completely
recovered within 24 hours after unloading.

A finite element representation with 96 elements, four nodes
along 3CP radial lines was used to determine the inflated profile of a typical
specimen subjected to a pressure of 61 mm. of water. Again, the material was
assumed to be of the Mooney type, with constants C, = l.lﬁ-kg/cmg and
Cp = 0. 14 kg/cm2 determined by the method of Hart-Smith and Crisp [32] and data in
Figure 13. No attempt was made to predict the obvious viscoelastic character

of the behavior. Results of these calculations are given in Fig. 1h.
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