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EJUMERICAL AXALYSIS OF N O N L I W  PNRlMLlTIC STRUCTURES 

J. T. Ode$ and W. K. Kubitza*-x 

Abstract. 
analysis of nonlinear behavior i n  general pneumatic structures. 
advances i n  the application of the f i n i t e  element method t o  the  evaluation 
of f i n i t e  s t ra ins  and large displacements of e l a s t i c  membranes a re  reviewed 
and extensions of the  method t o  the analysis of large motions of reinforced 
fabrics,  anisotropic metals, p las t ics ,  viscoelast ic ,  and nonlinearly elastic 
materials are  presented. Locai yielding of metall ic elasto-plastic m a -  
branes subjected t o  external pressure i s  also examined. By using l inear  
displacement approxbations and triangular f i n i t e  elements, general non- 
l inear s t i f fness  re la t ions are derived. 
algebraic or ordinary d i f f e ren t i a l  equations in  the  generalized displacements 
and veloci t ies  which are solved numerically. 
along with comparisons with available experinental data, 

This paper presents a systematic numerical procedure for the 
Recent 

These lead t o  systems of nonlinear 

Numerical restilts are included 
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NOTATION 

Indicia1 notation and the summation convention a re  used throughout 

t h i s  paper. Upper-case Latin indices indicate points i n  space and lower- 

case indices indicate elements of an array. I n  general, Greek indices are 

associated with loca l  coordinate systems and range from 1 t o  2. 

following symbols are  used: 

The 

H 

n 

Constants i n  displacement approximation 

Area of deformed and undeformed element 

Thermal load vector a t  node M 

Node displacement coefficients 

Material constants 

Components of rigid-body t ranslat ion 

Deformation r a t e  tensor 

Element ident i f icat ion index 

Total number of f i n i t e  elements 

Elastic moduli 

Multi-dimensional array of material constants 

Yield surface 

Body force per uni t  mass 

A surface tensor 

Shear moduli 

Heat input per uni t  mass 

Strain invariants 

Consistent mass matrices 

Total number of nodes 

Hydrostatic pressure 

Generalized node forces of element e i n  local  coordinates 
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ui 

U 

'Ni 

v,v0 

W 

Xie 

Nie X 

'ie 

'Nie 

'i 

'Ni 

' i je 

'i j 

6 i j  

€ 

H 

x 

Generalized node forces i n  global coordinates 

Ekternal pressure 

Components of heat flux 

Heat input 

Element node forces due to q 

Displacement components i n  loca l  coordinates 

Displacement of node N of element e i n  xi direction i n  
loca l  coordinates 

Total internal  energy 

Displacement of node N i n  Zi-direction i n  global coodina,tes 

Volumes of deformed and undeformed elements 

Strain energy per unit of undeformed volume 

Local coordinates of element e 

Local coordina,tes of node N of element e 

Local coordina,tes of deformed element e 

Local coordinates of node N of dement e a,fter deforma,tion 

Global coordinates 

Global coordinates of node N 

Orthogonal transformation ma,trix of element e 

Lagrangian s t r a i n  tensor 

Kronecker de l ta  

Two-dimensional permutation symbols 

Kinetic energy 

Ext ens ion rat i o  

Poisson's r a t io s  

Internal  energy per unit mass 

Mass densit ies 
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0. Stress tensor 

0 

a@ 

a@ 
- 

Deviatoric s t r e s s  'censor 

R Power of external forces 

R Multi-dimensional array 
iWe 
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1 INTRODUCTION 

1.1 Opening Remarks. Until  recent years, t h e  behavior of the majority of 

prac t ica l  structures could be adequately described by l inear  theory. The 

deformations of most s t ruc tura l  systems under working loads are usually 

so small as t o  be scarcely detectable with the unaided eye, and the s t ress-  

s t r a i n  re lat ions for  such common materials as s t ee l ,  aluminum, and even 

concrete can, for  prac t ica l  purposes, be treated as l inear .  Solutions of 

l inear  problems involving two and three-dimensional structures of general 

shape w i t h  complex boundary conditions, however, are often untractable by 

c lass ica l  means and, even with the gross simplifications afforded by l inear  

theories,  many important problems remain unsolved. 

With the bulk of the  available methods of analysis being applicable 

t o  only l inear systems and with these methods being often inadequate i n  

the face of complex geometries, the engineer must look upon the recent; .trend 

toward the use of highly f lex ib le  pneumatic structures w i t h  some bewilderment. 

The behavior of inf la table  pneumatic structures i s  inherently nonlinear: 

such structures often acquire the i r  primary load-carrying capacity a f t e r  

undergoing deformations which, even under small pressures, may be so large 

tha t  the  or iginal  undeformed shape i s  unrecognizable. Strains appreciably 

greater than unity are not uncommon, and in  such cases Hooke's l a w  i s  not 

applicable. Moreover, the  materials used t o  construct pneumatic structures 

a re  often anisotropic and nonlinearly e l a s t i c  and, t o  further complicate 

matters, the directions and magnitudes of the applied loads change w i t h  the  

deformation. To emphasize this  point, one need only refer  t o  recent 

experimental studies on pneumatic structures wherein discrepancies on the 

order of 400 per cent were encomtered when measured s t resses  were compared 

with those predicted by conventional linear theories. 
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It is  clear t h a t  i n  order t o  accurately analyze general pnewmtic 

structures one must turn t o  the general nonlinear theories of s t ruc tura l  

mechanics, many of which have long been regarded as only academic in te res t .  

Although only a small number of exact solutions t o  general nonlinear s t ruc tura l  

problems are  available i n  the l i t e r a tu re  and although these, without excep- 

t ion,  a r e  concerned with only the most simple geometry, deformation, and 

loading, a t  l ea s t  one can find her&a rigorous and complete foundation on 

on which t o  base nonlinear analyses. 

Fortunately, the  trend toward the use of nonlinear s t ruc tura l  systems 

has been accompanied by significant developments i n  both large-scale d i g i t a l  

computers and general methods of numerical analysis. W i t h  the a id  of these 

tools ,  many of the  nonlineax s t ruc tura l  theories can be employed t o  obtain 

useful information concerning the nonlinear behavior of pneumatic s t ructuresb 

Chief among the numerical schemes i s  the so-called f i n i t e  element method 

wherein continuous s t ruc tura l  systems are replaced by discrete  models whose 

properties are  consistent w i t h  the general f i e l d  equations defining the 

behavior of the continuum. 

applying this  method t o  complex l inear and nonlinear s t ruc tura l  problems. 

A comprehensive review of applications of the f i n i t e  element method t o  the 

Notable progress has recently been made i n  

analysis of nonlinear behavior i n  e l a s t i c  membranes as w e l l  as several 

extensions of the method t o  the analysis of large deformations of e l a s t i c ,  

elasto-plastic,  and viscoelastic pneumatic structures i s  the subject of 

t h i s  paper. 

1.2 Previous Related Work. Since 1950, Lhe technical l i t e r a tu re  has contained 

numerous applications of the f i n i t e  element approach t o  a wide var ie ty  of 

l inear  s t ruc tura l  problems. 

she l l  problems are  available, along with sever 

Solutions t o  complex plane-stress, plate ,  and 

solutions t o  three-ditnens 



e l a s t i c  bodies. 

s ignif icant ly  l e s s  extensive, 

Applications t o  nonlinear problems, however, have been 

It appears that  the first successful appli- 

cation of the f i n i t e  element concept t o  the analysis of geometrically 

nonlinear problems was presented b& Turner e t  a1 c11. These authors 

solved cer ta in  nonlinear problems by dividing a large deformation in to  a 

number of steps. 

l inear ly  and an instanteous ( l inear )  s t i f fness  matrix is  computed i n  the 

deformed geometry. 

were among several investigators who l a t e r  applied t h i s  successive correction 

technique t o  large deflection and s t a b i l i t y  analyses. 

correction t o  the l inear  s t i f fness  matrix i s  often referred t o  as the 

Within each s tep  the structure i s  assumed t o  behave 

Argyris k,31, Gallagher and Padlog Csl, and Martin C5I 

In these papers, the 

geometric" s t i f fness  of the structure,  and it i s  ordinarily a function 11 

of the s t resses  associated w i t h  some reference equilibrium s t a t e .  

of the liteera,ture using th i s  approach i s  contained i n  the paper by Martin 

c'jl and a general formula for  geometric s t i f fness  matrices was presented by 

A survey 

Oden C61. Following a different  approach, Wissmann C7,8J obtained nonlinear 

f i n i t e  element forumlations for  cer ta in  problems involving large displace- 

ments but small s t ra ins  of e l a s t i c  structures. 

&tensions of t he  f i n i t e  element method t o  the analysis of f i n i t e  

deformations of e l a s t i c  membranes and three-dimensional bodies were presented 

by Oden C9,lOl and Oden and Sat0 [111. Using a somewhat different  approach, 

Becker h21 obtained a numerical solution t o  the  problem of f i n i t e  in-plane 

deformations of rubber sheets subjected t o  prescribed boundary displacements. 

These nonlinear formulations contain the l inear  s t i f fness  matrices as 

special  cases and lead t o  systems of nonlinear algebraic equations which 

must be solved numerically. 

general than the successive correction methods mentioned ea r l i e r  i n  that 

A t  the same time, they are considerably more 
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they contain characterist ics which are encountered only i n  highly nonlinear 

s t r uctux a 1 behavior . 
1.3 Scope. 

element representation of f lexible  pneumatic structures i s  presented. 

General kinematic properties of thin membranes are cast  i n  the form of 

algebraic equations defining the motion of an assembly of f i n i t e  elements. 

The f i rs t  law of thermodynamics i s  called upon t o  provide general relation- 

ships between kinematic and kinetic variables associated with the behavior 

of f i n i t e  elements of arbi t rary pneumatic structures. 

general equation of motion of f i n i t e  elements of th in  membranes, and includes 

such properties as  anisotropy, nonlinear viscoelasticity,  thermoviscoelasticity, 

nonhomogenuity, and p las t ic i ty  with no restr ic t ions on the magnitudes of the 

deformations CEq. (20)I. In order t o  obtain quantitative resul ts ,  the  

general formulation is  modified so that  it applies t o  a number of important 

special  cases. These include a review of the aaalysis of f i n i t e  deformations 

of e las t ic  membranes given i n  Refs. 9, 10, and 11 and applications t o  elasto- 

p las t ic  and viscoelastic structures. This  is followed by discussions of 

procedures for assembling the f i n i t e  elements, computing changes i n  loading 

In the  discussion t o  follow, the basic philosophy of the  f i n i t e  

This leads t o  the  

due t o  deformation, and solution of  the nonlinear equations generated i n  the 

analysis. Finally, the solutions of several representative problems are  

presented and numerical values are compared with available experimental 

data. 

2. GEOMETRIC AND KINEMATIC COWSIDERATIONS 

2.1 The Discrete Model. Classically, the analysis of continuous systems 

begins with investigations of the properties of small d i f fe ren t ia l  elements 

of the continuum under investigation. Relationships are  established between 



FIG. 1 Fini te  element representation of a pneumatic s t ruc twe.  
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mean values of various quantit ies associated with the infinitesimal 

elements and p a r t i a l  d i f fe ren t ia l  equations governing the behavior of 

the en t i re  domain a re  obtained by allowing the dimensions of the elements t o  

approach zero as the  number of elements becomes inf in i te ly  large. 

contrast t o  t h i s  c lass ica l  approach, i n  the present study we begin with 

In 

invcc:kigations of the  properties of elements of f i n i t e  dimensions. We 

may employ equations of the continuous system i n  order t o  arr ive a t  the 

properties of these elements; but the dimensions of the elements remain 

f i n i t e  i n  the  analysis, integrations a re  replaced by f i n i t e  summations, and 

the d i f fe ren t ia l  equations of the  continuous structure a re  replaced by 

systems of algebraic or ordinary d i f fe ren t ia l  equations. The continuous 

system with in f in i t e ly  many degrees of freedom i s  thus represented by a 

discrete model which has f i n i t e  ddgrees of freedom. 

kinematic conditions are  sa t i s f ied ,  then, as the number of f i n i t e  elements 

is  increased and the i r  dimensions are decreased, the behavior of the discrete 

Moreover, i f  cer ta in  

system converges monotonically t o  tha t  of the continuous system. 

Consider, for  example, the  general pneumatic structure shown i n  Fig. l a  

subjected t o  a general system of applied loads. To define the i n i t i a l  

geometry of t h i s  system, a fixed rectangular Cartesian coordinate system 

Z Z Z is  established which i s  referred t o  a s  the  global reference frame. 1, 2’ 3 
In  general, an i n f i n i t e  number of coordinates Zi are required t o  completely 

specify the i n i t i a l  configuration of the membrane; but i n  the present 

.inalysis, we reduce t h i s  continuously distributed system t o  a discrete  one 

by representing the structure as an assembly of a f i n i t e  number Ee of f l a t  

triangular elements, as indicated i n  Fig. lb .  The ver t ices  of these 

triangular are referred t o  as the node points of the discrete  model. Thus, 

i f  n denotes the t o t a l  number of nodes i n  the system and if ZNi(N=1,2,.r,n; 



/ *3 

22 

a 

FIG.2 Local and global coordinates of a typical f i n i t e  element, 



i=l ,2,3) denote the global coordinates of a typical  node N, 

of numbers ZNi define the geometry of the discrete  system, 
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then the set 

In the f i n i t e  element method, it is convenient t o  f irst  describe the 

behavior of each element independefitly i n  terms of the displacements of i t s  

nodes; the en t i re  set of elements i s  then connected together by establishing 

cer ta in  dependencies between appropriate node displacements. 

end, fixed loca l  coordinate systems xie(i=1,2,3; e=l,2,. . ,E ) are established 

i n  the neighborhoods of each f i n i t e  element. 

t o  as the local  coordinates of element e. For simplicity, it i s  assumed 

Toward t h i s  

e 
"he quantit ies xie are  referred 

that the middle surface of each element e l i es  i n  the ~ ~ ~ , x ~ ~  - plane of i t s  

loca l  coordinate system. Following a procedure similar t o  that  used for  

global coordinates, the loca l  coordinates of a typical  node N of element e 

are denoted xNie(N,i = 1,2,3; e=1,2,. . .,E ) where, due %o our particular 

choice of coordinates, x 

e 
= 0. These coordinates are i l l u s t r a t ed  i n  Fig. 2, 

We 

i e  A r ig id  rotat ion of a typ ica l  loca l  system xie in to  a loca l  system 

whose coordinate l i nes  are pa ra l l e l  t o  the corresponding global coordinate 

axes, i s  accomplished by the  orthogonal transformation 

- 
x = 6 . .  x (no sum on e )  

i e  J X ~  je 
- 

where 6 , .  i s  the direction cosine of the  r7,ngle between Z (or x ) and x 
J l e  i i e  j e  

The loca l  coordinates of node N para l le l  t o  t he  global coordinates are 

denoted %ie. 
2.1 Strains and Displacements. 

contained, we reproduce i n  t h i s  section the ' derivation of the general nonlinear 

In order that the present discussion be self- 

s t i f fness  re la t ions for f i n i t e  e lemnts  of membrane structures [g,lO,llj For 

the  present, we confine OUT at tent ion t o  a ty-pical f i n i t e  element and we 

temporarily drop the element ident i f icat ion index e for  c la r i ty .  
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Under a general deformation, l i ne  elements or iginal ly  straight in  the 

undeformed structure become curved l ines  i n  the deformed structure. 

an i n i t i a l l y  f la t  element i s  generally deformed in to  a curved surface. 

However, i f  the node p i n t s  a re  selected suff ic ient ly  close of one ano-ther, 

node l ines  i n  the deformed configuration are closely approximated by s t ra ight-  

l i ne  segments. Then plane elements remain plane a f t e r  the deformation, 

This i s  equivalent t o  assuming that the  displacement fields within each 

element are  l inear  functions of the local  coordinates of the element, 

Hence, 

2 Assuming, for simplicity, that the element i s  i n i t i a l l y  i n  the xL, x 

plane and denoting by ui the  components of displacement referred t o  the 

local coordinates of the  element under consideration, it follows that 

ui = di f aiaxa i = 1, 2, 3 ct = 1, 2 (2) 

where d i  are the rigid-body translations of the element and the  aia are 

undetermined constants. 

of the element, we arr ive a t  nine simultaneous equations i n  the nine un- 

knowns di, aia. Solving these we find tha t  

By evaluaking Eq. (2) at each of the three nodes 

d .  = k u  
1 N N i  

and 

a = c  ia dN'Ni 

where \i is the displacement of node N i n  the xi direction, 

1 kl = -( a. x21x32 - X31x22) 

k 2 = l ( x  x - x  x ) 

k = L ( x  x - X  x ) 

2Ao E 31 11 32 

3 a0 11 22 12 31 

(4) 

and 



In these equationq, xNa (N = 1, 2, 3; a = 1, 2) are the loca l  coordinates 

of node N and A. 5,s the  area of the undeformed triangle.  

Substituting Eqs. (3) and (4) in to  Eq. (2) gives 

According t o  Green and Adkins [131, the  Lagrangian strain tensor for 

a th in  membrane is  given by 

Ya3 = 0 

- 1(h2 - 1) 
y33 - 2 

where h i s  a scalar function representing the  exbension r a t i o  a t  the middle 

. surface i n  a direction normal t o  the surface. For very th in  membranes, the 

strains are essent ia l ly  uniform over the thickness and 

h x = -  
ho 

(9) 

where ho and h a re  the thicknesses of the membrane before and a f t e r  deformation 

respectively. 

Introducing Eq. (7) in to  Eqs. ( 8 ) ,  we f ind for the straihs i n  the  discrete  

Ya3 = 0 y33 = $12 - 1) 

a,@ = 1,2 M , N , i  = 1,2,3 



The s t r a in  components are thus constant throughout the f i n i t e  element and, 

since they are  determined from prescribed displacement f ields,  they auto- 

matically sa t i s fy  the equations of compatibility throughout the element. 

Note also that t h e  components of displacement along the boundaries of an 

element are  l inear  functions of the local coordinates, Since each edge 

contains two nodes and since the displacements are l inear  along each edge, 

it follows tha t  the displacements are continuous across element boundariesc 

These properties of the approximation instwe monotonic convergence of the 

solutions as the  finite-element representation is  refined. 

Three invariants can be formed from every symmetric second-order tensor. 

In  the analysis of deformable membranes, it is  convenient t o  form the  

invariants of the deformation tensor (h i j  + 2Y. .), whew! 

delta ('ij = 1 for i = j and hi j  t= 0 for i # j). These invariants are given ' 

is the fionecker =J 

by the formulas 
= X2 + 2(1  + Y,) I1 

4 2  1 = - x  + X I  +-I 
I2  1 A2 3 

where 

and cap, ExtJ. are the two-dimensional permutation symbols (El2 = 1, E21 = -1, 

E: 11 = EZ2 = 0). 

3. THERMODYNAMICS OF FINITE EIXmmS 

3.1 The General Equation of Motion of a Fini te  Element. Having defined the 

discrete  system i n  the  previous section, we now turn  t o  cer ta in  ftmdamental 

principles of mechanics i n  order t o  obtain general equations of motion for  

a f i n i t e  element. We begin with the  f irst  l a w  of thermodynamics: 

i + i r = n + g  (J-3) 



wlicre X i s  the t i m e  r a t e  of change of kinet ic  energy, U i s  the time rate of 

change of internal  energy, CJ i s  the power developed by the external forces, 

and Q i s  the  heat input. By definit ion,  

V 

U = I P S  dv 
V 

= ‘F.G.Pdv + SiGi ds J 1 1  
V S 

PH dv + gini ds s 
v S 

In these equations, P i s  the  mass density, dv i s  the d i f f e ren t i a l  volume, 

Gi are  the  velocity components, 5 i s  the internal  energy per uni t  mass, Fi 

are  the body forces per un i t  mass, S i  are the  surface t ract ions per un i t  of 

surface area s, H i s  the heat input per uni t  mass, qi ape the  components of 

heat flux, and ni are the components of a uni t  vector normal t o  the boundary 

sa-faces of the elment. 

Through arguments similar t o  those used i n  obtaining Eq. (71, it i s  

found tha t  

and 

where uNi i s  the velocity of node N i n  direction i and q 

a t  node N i n  direct ion i, 

densit ies and the volumes of the f i n i t e  element i n  the undeformed and the  

deformed s ta tes  respectively, then according t o  the p r b c i p l e  of conservation 

i s  the heat flux 
N i  

Moreover, i f  Po, vo and P, v denote the mass 

of mass, 
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Povo = Pv (17) 

Introducing Eqs. (15), (;t6), and (17) in to  Eqs. (14) and simplifying, 

we f ind 

where 

The array i s  the so-called consistent mass matrix for the  f i n i t e  element 

and the quantit ies pNi are the  components of generalized force corresponding 

to the  generalized displacements uNi. 

force a t  node N i n  direction i. 

thermal gradients usually referred t o  as thermal loads. 

P 

' Physically, pNi i s  the generalized 

The quantit ies bNi are the generalized 

Note that the 

heat input H i s  regarded as a constant for each f i n i t e  element. 

Introducing Eqs. (18) in to  Eq. (13), we obtain the general result 

.. 
where %i are the components of acceleration of the nodes. 

represents the most general discrete  representation of the equations of 

motion for a f i n i t e  element of a continuous media, 

This re la t ion  

It is applicable t o  the 



analysis of large deformations of nonlinearly e las t ic ,  p las t ic ,  viscoelastic,  

and thermoviscoelastic media since no res t r ic t ions  have as yet been placed 

QD the c ~ n s t i t ~ t i v e  equations f ~ r  the pp3;iteriaZ of.&& .Ithe element is 

composed or the magnitude of the  deformation, 

on the right-hand side of Eq. (20) represcnt thermal effects  on the motion 

of the element. 

The second and th i rd  terms 

. 
The r a t e  of change of internal  energy 5 is ,  i n  general, 

a lso a function of the  heat flux and. the temperature gradients. These effects  

will not be considered fwrther i n  thls discussion; for our purposes, it 

suffices t o  merely point out t ha t  thermal effects  can be easi ly  included 

i n  the analysis by retaining the terms bNiqNi and PovoH i n  Eq, (20) and by 

introducing, i n  addition t o  a consti tutive equation involving the s t r e s s ,  

a second consti tutive equations which relates  heat f lux to thermal gradients , 
deformation rates, s t ra ins ,  e tc .  Thus, w i t h  thermal effects  omitted, 

Eq. (20) reduces t o  

3.2 Internal  Energx. 

necessary to obtain < as  a function of the generalized displacements and 

the i r  time derivatives. 

To apply this  equation to specific kmterials, it i s  . 
According t o  Firingen [141, i f  couple s t resses  and 

thermal effects  a re  omitted, 

where oij i s  the  s t r e s s  tensor and dij i s  the deformation r a t e  tensor, 

the f i n i t e  element representation, it i s  eas i ly  shown that 

For 

0. .d = 0 c (6 + c j M k ) C m  13 i j  i j  i N  k j  

b 

We now assume tha t  the material i s  homogeneous so that f is  no% a 
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function of the loca l  coordinates x. .  

w i t h  respect t o  x 

outside of the Q t e g r a l  i n  Eq. (21). Noting also tha t  

In  view of Eq. (22), it 

for the f i n i t e  element and can therefore be 
1 

i 

P 0 = J i 5 P  

is  a constant 

factored 

where 1 

and (24) into Eq. (21), we ar r ive  a t  the equation 

i s  the third invariant i n  Eq. (12), and introducing Eqs. (22), (23 ) ,  3 

Since this  

It i s  

equation mst hold f o r  a l l  veloci t ies  %i, we have 

now necessmy t o  introduce in to  t h i s  equation the  appropriate 

relakion expressing the stress i n  terms of the s t ra in ,  s t r a in  ra tes ,  higher- 

order s t r a in  ra tes ,  etc. i n  order t o  obtain the f i n i t e  element representation 

for specific materials. 

4. NONLINEAR STIFFNESS RELATIOEJS 

We now examine applications of 

mmbranes . 
4.1 Elastic Materials. In  the  case 

derivable from a potent ia l  M c t i o n  

uni t  of undeformed volume. If each 

Eqs. (21) and (26) t o  various types of 

of e l a s t i c  materials, the  s t ress  a i j  i s  

W which represents the strain energy per 

element i s  homogeneous, then 5 and W a re  

not f'unctions of the spa t i a l  coordinates xi' It follows tha t  

spot dvo = G dvo = vo; 
V V 

where 

t 

Introducing these equations in to  Eq. (21) and simplifying the results, we 



obtain 

This resu l t  must be valid for  arbi t rary node veloci t ies  of the element;, 

Therefore 

Equation (30) i s  the  general equation of motion for f i n i t e  forced oscillaticms 

of an e l a s t i c  membrane. 

must be introduced into t h i s  equation, 

For specific materials, t he  appropria'ke form of W 

The important problem of small osci l la t ions about a s t a t e  of large 

deformation i s  obtained as a special  case of Eq. (30) by denoting 

%i=%i f ?i N i  (31) 
- 

where %i i s  the prescribed large displacement and w 

Then 

is a small perturbation. 
N i  

(32)  
- %yfi + fu(cMi)wm = PNi 

where 

- 
Here f is known a known function of %i and i s  independent of time. "he NM 

EqA (32) is l inear  i n  the  dependent forces 5 
variables w and the i r  derivatives. 

are known functions of t i m e  and 

Ni 

N i  

If the membrane i s  i n  equilibriwn,Eq. 

N i  
P 

For e l a s t i c  membranes, t he  

formulas 

(30) reduces t o  [10,111 

(34) 

stresses a re  calculated by means of the 
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4..1.1 Natural and Synthetic Rubbers. 

materials such as natural  and synthetic rubbers, several forms of the 

s t r a i n  energy function W are  available, Ordinarily, such materials a re  

assumed t o  be incompressible and, for isotropic membranes, t h i s  incom- 

In  the  case of highly e l a s t i c  

press ib i l i ty  

Then, W i s  a 

a re  given by 

condition i s  equivalent t o  the  condition 

I = l  
3 

function of only I1 and I 

E131 

and, instead of Eq, (35), the s t resses  
2 

q-J3 = 0 (37)  

where h2 i s  defined i n  Eq. ( g ) ,  p i s  the hydrostatic pressure, and  

gap = 'a,@ 4- 2 E ~ o E i ~ ~ ~ ~  ( 3 8 )  

It i s  assumed tha t  the membrane i s  very th in  so tha t  the s t ra ins  are  

essent ia l ly  uniform over the thickness a.nd 0 the s t ress  normal t o  the  

deformed surface, i s  negligible i n  compa.rison w i t h  (J 

determined from the condition (5 = 0: 

33 ' 
Then p can be &E3 e 

33 

I L 

Thus / 

Rivlin and Sanders  [15,161 verified experimentally t h a t  the s t r a in  

energy function for m c t s t  isotropic,  incompressible rubbers 5s of the form 

w = C1(Il - 3 )  4- $(I2 - 3) (41) 

where C1 i s  a material constant and the  function $ depends upon the  ty-pe of 

rubber. 1;: analyt ical  work, the most camon form of W i s  the well-known 
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Mooney form C17I: 

where C and C are experimentally determined constants. Treloar C18I, using 

a staft ist ical  approach based on molecular theory, found for incompressible 

1 2 

rubbers 

w = c(1 - 3)  
1 (43) 

where C i s  a constant. Rivlin h 9 1  refers t o  such materials as neo-Hookean, 

To obtain nonlinear s t i f fness  relations for f i n i t e  elements of rubber 

membranes, f irst  note tha t  for incompressi2de membranes 

2 I = h 4- 2(1 -I- y ) 1 010, 

and 

and 

gas = + EwE)$(Cp~u~h + hN I’ N p  c~JvflJ$-Niup.li) 

whereini ,  j , L , M , N , K = l ,  2, 3 ; a , @ ,  h , ! J . = l ,  2. 

Introducing Eq. (42) and Eqs. (44)-(47) into Eqs.  (34) and ( b o ) ,  we 

obtain the following equations for a finibe element of a membrane of Mooney 

(46) 

(47) 
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material C 113, 

where 

Similarly, for neo-Hookean membranes we find 

governing the s t a t i c  behavior of f i n i t e  e1emen:ts of Mooney and neo-Hookean 

membranes. Upon connecting the  elements appropriately and applying boundary ’ 

conditions, these lead t o  systems of nonlinear algebraic equations i n  the 

iiuae dicplzcemants . 
(48b), and (5Ob) t o  obtain f i n a l  s t ra ins  and s t resses  i n  the  struc-bwce. 

Once solved, the resu l t s  are introduced in to  Eqs (LO) , 

4.1.2 Plastics and Nonlinearly Elast ic  Materials. Recent experiments on 

p las t ics  and synthetic materials have attempted t o  arr ive at; approximate 

energy functions for such materials even through their  behavior i s  not always 

perfectly e las t ic .  

potent ia l  function W. For example, experiments on a dimethyl siloxane 

rubber by Hutchinson, Becker, and Landel E201 have indicated an energy 

These have led t o  highly nonlinear forms for the 

where B1, B2, B B4, bl,and b2 aye makerial constants. 
3’ 
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In th i s  case, the nonlinear s t i f fness  re la t ion i s  given by 

4 - 3)1(S,p - “ae> 
Nk 

4 4 2 - 2h - 21 Yw) f baP l l  
as  before, s t resses  a re  computed by means of Eq. (b). 

14.1.3 Metals and Reinforced Fabrics. Deformations of metallic and reinforced 

fabric  pneumatic structures a re  usually characterized by large displacements 

accompanied by s t ra ins  which are small i n  comparison with unity. 

cases, the material i s  assumed t o  be homogeneous and e l a s t i c  within each 

f i n i t e  element and the  well-known Wookean form of the  s t r a i n  energy f’unction 

i s  applicable. Moreover, the s t r a in  normal tm the deformed surface can then * 

be expressed as a l inear  f’unction of thc s t ra ins  i n  the middle surface and 

the  s ta te-of-s t ra in  i s  described by the two-dimansional tensor Yap. 

s t r a in  energy function i s  therefore of the form 

In such 

The 

where E@hV i s  a multi-dimensional array of c l a s t i c  constants. 

tensor i s  given by 

The stress 

1 ( 5 4 4  I 
5 “ @ M 1 - k % i  ‘a@ = Ea@&yXp = % ~ ~ ~ “ x N ( ‘ $ & l  

and the  nonlinear s t i f fness  re la t ion €or the f i n i t e  element i s  obtained by 

introducing Eq. (53) into Eq. (34): 
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and, for  isotropic materials, it i s  given by 

where E i s  Young's modulus and V i s  Poisson's ra t io .  

The form of Eapw i n  Eq. (56) i s  applicable t o  most engineering metals 

( s tee l ,  aluminum, and tungsten, e tc . )  and t o  isotropic fabrics.  

most of the reinforced fabric and composite materials are ei ther  completely 

aniso4xopic or transversely isotropic only with respect t o  a normal t o  the 

middle surface a 

However, 

A typical  example of such a reinforced fabric  i s  indicated i n  Fig. 3. 

Here a fabr ic  core material, which i s  assumed t o  be isotropic and t o  have 

a modulus E and Poisson's rate V ,  i s  reinforced by a network of fibers of 

modulus The fibers form an angle a with respect 

t o  the yl-axis, as shown, When the f iber  spacing i s  re la t ive ly  small, it 

i s  convenient t o  introduce mean values for t he  a3propriate material 

and Poisson's r a t i o  5. 

constants of the composite structure.  Thus, we introduce the  following 

constants h .1 :  

El = kE + (1-k)E 

EZ 
2 kE + (1-112 

GE 
C kG + (1-k)G 

E =  

G =  
(57) 

where k i s  the r a t i o  of the cross-sectional area of the fibers t o  the  t o t a l  

cross-sectional area of the element, G and 5 are  the respective shear moduli 

of the core fabric and the fibers,  El and E2 are respectively the effective 

mean moduli of e l a s t i c i t y  i n  the  y1 and y2 directions,  Gc i s  the mean shear 

modulus, and Vc i s  the  mean Poisson's r a t i o  of the composite material. We 



FIG. 3 Fiber reinforcement pattern i n  composite fabric sheet. 



then have 

a cos 4 a + aZ2sin 4 a + 2(a12 + 2GC)sin% cos2a 

E2222= allsin 4 a f a 2 2 ~ ~ ~  a + 2(a12 + 2Gc)sin2a cos2a 

E1lll= 11 

= (au + a22 - bGc)sin2a cos 2 U + a (sin4a + c o s k )  E1122= E2211 12  

- - - (aLE + a - 2aE)sin2a cos% 
Ek7m= Ea221 - = 5323. 22 

E1112= E1121 - E2212 - E2221 - E1211 - E1222 

4 (58) 

+ ~ , (cos% - s i n k ) 2  

= o  - - - - 

where 

El .- - 
a22 - 2 1 - V E 'E, c l ,  

a 

(59) 

4.2 Viscoelastic Materials. The equati'ons of motion of a f i n i t e  element of 

a viscoelastic material are obtained by introducing the appropriate consti tutive 

equation, writ ten expl ic i t ly  i n  terms of the stress tensor aij, into Eq. (26), 

We confine our at tent ion t o  Lsotropic materials for  which the stress i s  

dependent on the displacement and velocity gradients. 

consti tutive equations for such materials can be wr i t t en ' i n  the form 

In general, the  

T= -02 

w h e r e a  i s  a tensor functional of the  indfcated 

of motion for a f i n i t e  element are 
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Specific forms of these relat ions for given materin.1.s are  obtained by 

introducing the appropriate expanded form of a i n  Eq. (61). 

Although a detailed discussion of f i n i t e  element formulations for 

nonlinearly viscoelastic materials i s  outside the  scope of t he  present 

investigation, the general procedure i s  amply demonstrated by a simple 

exmple. Consider t he  case of plane s t ress  i n  a th in  membrane undergoing 

large displacements but strains which are small i n  comparison with unity, 

and, for simplicity, assume tha t  the membrane i s  constructed of a simple 

l inear ly  viscoelastic material of Voigt type: 

Here  AM^ and Bapxp are arrays of material parameters and may be f'unctions 

of time. Then Eq. (26) becomes 

.. 
%'Mi + caNcxI(si@ + C@~uMi)C&@)$.(dwm + $w',Jm)u& + B@lp(6pm 

We obtain a system of linear d i f f e ren t i a l  equations describing the in-plane 

motion of f l a t  viscoelastic elements by deleting products and squares of the 

displacements and veloci t ies  i n  Eq. (63) and l jmiting the ranges of lower- 

case indices t o  2: 

It i s  seen tha t  the  above procedure provides a systematic and rat ional  means 

for identifying the  material damping coefficients for any material for which 

the stress i s  given expl ic i t ly  as a function of s t ra ins ,  s t r a i n  ra tes ,  and 

other kinematic variables. 

4.3 Elasto-plastic Materials. It is  not d i f f i c u l t  t o  modify f i n i t e  element 



~'ormiilations so as t o  account for yielding and p l a s t i c  deformation of 

metall ic membranes. Since, i n  view of Eqs. (lo), the  s t r a i n  components 

are  uniform throughout each triangular element, so also i n  the  s t ress  

[Eq. (54)l .  Thus, i f  local  yielding i s  imminent, it is  characterized by 

uniform yielding and strain hardening of the associated loca l  f i n i t e  elements. 

This means tha t  e las t ic -p las t ic  boundaries cannot move continuously during 

an incremental loading process; but t h i s  character is t ic  of the discrete  

model need not lead to divergent or inconsistent results. 
b 

In t h i s  investigation, t h e  approach suggested by Pope [22,231 i s  

extended so as t o  apply t o  large displacements of elasto-plastic membranes. 

The elasto-plastic behavior of a typical  f i n i t e  element i s  analyzed through 

an incremental loading process. 

l inear ly ,  bu t  the  overal l  response obtained by summing the  incremental 

During each increment, the  material responds 

values may be highly nonlinear. 

denote %?he known values of the stress, s t r a in ,  0 0 
Let ':@, PNiY and %i 

node forces, and node displacements at  some ref'erence s t a t e  o i n  8. t;flical 

f i n i t e  element and l e t  boa@, hap, 6pNi, and 811s-i denote small imxements i n  

these quantities. 

easi ly  shown tha t  

If these increments a re  suff ic ient ly  small, it can be 

e where 8YaB i s  the  e l a s t i c  s t r a i n  increment and 8Yp i s  the p l a s t i c  s t r a in  

increment. 

large displacements on the  relationship between s t resses  and the node forces, 

aa 
The term (bpi+ c@~u&)  i n  Eq. (65c) represents the  inflxence of 



28 

The term cpMGi an be neglected i n  the case of' sma.11 displacements. 

The e l a s t i c  s t r a in  increment i s  related t o  the s t ress  increment according 

t o  

0 i n  which the arra-y Eo may, i n  general, be a flmction of Yap. aSw 
The yield condition may be represented by a convex yield surface i n  

s t ress  space which is  given by [243 

f ( O i j )  = 0 (67)  

The yield function f i s  symmetrical with respect t o  G 

upon the s t r a in  his tory of the membrane. 

deformation i s  independent of the hydrostatic s t ress ,  we can rewrite (67) i n  

and 0.. and depends 13 J 1  

Since it i s  asswned tha t  'plastic 

the form 

where Tij i s  the  stress devia.tor: 

When the  s t ress  increment bap((J3a = 033 = 0) does not have a positive 

component i n  the direction of an inward normal t o  the yield surface and when 

the  stress point Oap l ies  on the  yield surface, the material yields and the 

p las t ie  s t r a in  increment i s  given by 

The factor P depends upon t h e  s t r a in  history and i s  independent of a l l  

components of boap except t h a t  normal t o  the f i e l d  surface. 

A t  i n i t i a l  yielding, the yield condition (68) is  satisfied. After an 

additional increment of p l a s t i c  s t ra in ,  the yield condition is  given by 



where taE3 describes the strain-hardening properties of the material. 

Introducing Eqs. ( 6 6 ) ,  (681, and (70) into (71) and sirnplifylng the resu l t s ,  

we f ind tha t  

Thus 

where 

(73 ) 

(74 1 

Equation (77) represents the  s t i f fness  re la t ion between the incremental 

loads 6pNi and the i r  cooresponding incremental displacements. 

are inverted for each load increment; the solutions 6u 

Eq. (75) t o  obtain the  associated s t ress  increment. 

and 6Yp are then calculated by means of Eqs.  (66) and (73). 

These equations 

are  introduced into 
e 

N i  

aP 
Incremental strains 6Y 

Once the 
a@ 



and 6Y are determined, they are added 
%if dcraf iy a$ 

i r ~ c r ~ ~ e n t a ~  values 6 

algebraically to those of the  reference state (i.e., Gi' (so ,YO+ a t o  

obtain a new reference state (uo' = Gi + 6 

and the process i s  repeated for  a new load increment. 

procedure indicated by Pope [221, during each cycle the factor P of each 

element i s  examined. If P 

of the membrane and the analysis i s  repeated; i f  the mean stress over a 

a*' = 0'' + boas, etc.) 
N i  %iy a@ up 

Following the 

0, the element i s  added t o  the e l a s t i c  region 

load increment i s  on or outside the  yield surface, the analysis i s  repeated 

*with the  element permitted t o  deform plast ical ly .  

choosing the  load increments such tha t  one element, at  the most, yields 

Accuracy i s  improved by 

during each load increment. 

to those of the small displacement case and can be found In references f-221 

and f-231. 

Other de ta i l s  of the  procedure are  ident ical  

5 .  FORMULBTION, OF THE STRUCTURAL PROBLEM 

5.1 Global Equations of Motion. 

previous section describe the behavior of a single f i n i t e  membrane within 

The nonlinear equations derived i n  the 

i t s  loca l  reference frame; these relations are independen6 of the loading 

on the membrane, the  boundary conditions, or the  location of the element i n  

the  assembled system. It i s  now necessary t o  connect t he  elements a t  

appropriate node points and t o  sum the i r  properties so as t o  represent a 

pneumatic structure of specified shape with specified boundary conditions. 

To accomplish th i s ,  it i s  convenient to first rotate the  node forces, 

displacements, veloci t ies ,  accelerations and loca l  cookdinates associated 

w i t h  each element so tha t  they are  para l le l  t o  the global reference &me Zie 

This i s  accomplished through the transformations 
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where the underscore (e) indicates that  no sum i s  t o  be taken on the repeated 

index e.  In these equations, pMie, uMie, -ke, and %ie are  respectively, 

the  node forces, displa,cements, veloci t ies ,  and a.ccel~erations of node M of 

element e i n  the direction of Zi, xie are the rotated local coordinates 

defined i n  Eq. (I), and Pkie i s  the cosine of the angle between Xie and x 

The ranges of the indices i n  these equa,tions are M, i, k, = 1, 2,  3 and 

- . - - .. 

- 

ke 

e = 1, 2, ..., E, where Ee i s  the t o t a l  number of f i n i t e  elements. 

It was pointed out ear l ie r  tha t  the se t  of numbers Z N i ( i  = 1,2,3; 
q 

N = 1,2, ..., n) describes the geometry of the  assembled (connected) 

system whereas xNie(N, i = 1,2,3; e = 1,2, ..., Ee) decribes tha t  of the 
- 

individual elements. The connectivity of the  system i s  estaklished by 

re la t ing  the members of the set ZNi t o  those of TNie by the tro.xisformtion 

(79) 
- 
X - 0  - z (M = 1, 2, 3; N = 1, 2, ..., n) 
Mie We N i  

where 

1 if node M of element e i s  ident ical  t o  node N i n  
the assembled system 

(80)  
0 i f  otherwise 

hl 
MNe 

The transformation indicated i n  Eq. (79) defines a mapping of points i n  the 
- 

set ZNi in to  points i n  xme and, i n  effect ,  assembles the elements in to  a 

single unit. 

n = 5 i n  Fig. 4. 

The process i s  i l l u s t r a t ed  symbolically far the case E, = 4, 
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2 

LOCAL SYSTEMS 
L 

X 
M ie  

e = 1,2,3,4 (ELEMENT INDEX) 

M = 1,2,3 

i = 1,2,3 

(LOCAL NODE INDEX) 

(COOROINATE INDEX 1 

GLOBAL SYSTEM 

Ni 
2 

N = I ,  2,3,4,6 (GLOBAL NODE INDEX) 

i 8 l ,2,3 (COORDINATE INDEX) 

- x = a  z 
M i e  MNe M i  

FIG. 4 Assembly of elements throii~;'h trnnsformatjons of points In Elobal s e t  

'Ni in to  local se ts  TMie. 
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.. 
Similarly, i f  PNk, U%, Urn, and UNk denote the values of node forces,  

displacements, velocities,and accelerations i n  the  assembled system, it 

can be shown that 

In t h i s  case, the repeated indices M and e are summed throughout the i r  

en t i re  ranges: N= 1, 2, ..., n; e = 1, 2,  ...) Eea 

Application of Eqs, (78) through (81) assembles the  f i n i t e  elements 

in to  a single discrete  system. 

eqwtions of motion [such as Eqs. (21) or (26)I are transformed i n  accordance 

with Eqs. (78) and (81), the resul t ing relat ion is  referred to as a global 

equation of motion, 

When the  loca l  variables appearing i n  loca l  

In par t icular ,  Eq. (21) becomes 

.. . 
P 6 = %U M i  U N i  + Po<dVo N i  N i  

VO 

where Ee 

e = l  

In  t h i s  case N, M = 1, 2 ..., n; R,  S = 1, 2, 3 and the  

carried out over the en t i re  volume Vo of the undeformed s t ructure .  

(82) i s  the general global equation of motion of a f i n i t e  element. 

Lntegration i s  

Equation 

Global equations for the case of static behavior are of special  interest .  

In  t h i s  case,the loca l  equations of motion reduce t o  nonlinear s t i f fness  

relakions of the form 
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where k(ume) is  the  appropriate nonlinear function of the node displacements. 

For example, the function k(% ) for  synthetic rubbers, nonlinear3y e l a s t i c  

materials, and Hookean metals are defined by Eqs. (48a), (52), and (54) 

respectively. When the components of node forces and displacements are  

rotated so tha t  they are  para,llel t o  the coordinates x 

e 

' Eq. (84) becomes ie'  

J? Mie 

Finally, the global s t i f fness  

imlicated i n  Eq. (81): 

where 

(85 I 

relations are obtained through the transformations 

, Boundazy conditions are applied by prescribing generalized (global) d i s  - 

placements a t  appropriate boundary nodes. 

of independent nonlinear algebraic equations i n  the unknown node displacements. 

Then Eqs. (86) reduce t o  a system 

5.2 External Pressure. Up t o  t h i s  point, the  relations derived are applicable 

only t o  si tuations i n  which the  loads do not change i n  direction as the 

structure deforms. Since, for pneumatic structures,  t h i s  is  obviously a 

severe rest r ic t ion,  a procedure [7,111 for accbunting for changes i n  the 

external loading due t o  deformation i s  now examined. 

It i s  f i r s t  assumed tha t  the  dimensions of each f i n i t e  element are 

sufficiently small tha t  the pressure q can be regarded as uniform over 

the surfaces of each f i n i t e  element. 

deformed element, the t o t a l  force exerted normal t o  the plane of the element 

Then, i f  A denotes the area of the 

i s  
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L e t  ni denote the  components of an  outward uni t  vector normal t o  A,  

Then the components of the pressure force < are given by 
N 

qi = "$9 

To determine the components ni, the coordinates of nodes of the deformed 

element are denoted 

For convenience i n  writing, the origin of the  reference frme y 

t o  node 3 of the deformed element. 

denoted zi, it follows tha t  

i s  transferred 
i 

If the resul t ing coordinate system i s  

(91 )  - 
Z N ~  - Y N ~  - Y3i 

Now consider two unit vectors emanating from the or igih of' the coordinates 

z 

the vector product of these two vectors: 

(node 3) .  The components ni of the unit  normal are obtained by forming i 

n i =L a ' i j kZ l jZ2k  (92) 

where Eijk i s  the permutation symbol. Thus, equation (89) can be writ ten 

The net external force at  

t&ee forces, one a t  each 

each node i s  obtained by simply representing q by 

node, whose components are 

Introducing Eq. (91) gives 

This result defines the  generalized external force i n  the deformed elemen% 

produced by external pressure. 

needed since Qi i s  the  same for  each node of the  elementb 

Note that no node ident i f icat ion index is  
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To complete the analysis, these forces a re  now transformed in to  components 
- 
Qi para l le l  to the  loca l  reference frame Zi. The resu l t  for  element e is 

3 

wherein the underscore again indicates t ha t  no sum is  t o  be taken on the 

repeated index e. 

In the case of pressure loadings, the component qie take the place of the 

node forces 5 
these components in to  the global system, however, since it i s  more convenient 

t o  first transform displacements into the zi system w i t h  the  aid of Eq. (1) 

and then t o  transform the resul t ing forces in to  the global system. 

of Eqs. (78) and (85). It i s  seldom necessary t o  transform Nie 

5.3 Solution of Nonlinear Equations, 

f i n i t e  element formulations lead t o  systems of simultaneous nonlinear 

In the  case of time-dependent phenomena,. 

dif ferent ia l  equations of the  form indicated i n  Eqs. (26), (63), and (82). 

The solution of such systems of equations i s  a formidable task, even with 

the aid of modern d i g i t a l  computers. Generalizations of the well-known 

Runga-Kutta techniques may lead t o  acceptable r e su l t s  i n  some cases; but 

general procedures for solving such large systems of coupled nonlinear 

d i f fe ren t ia l  equations are, a t  best ,  s t i l l  i n  the  early stages of development. 

It i s  important t o  note, however, tha t  numerical procedures are  available for 

the solution of nonlinear algebraic equations; and by incrementing the time 

variable t, the or iginal  s e t  of d i f fe ren t ia l  equations reduce t o  a system of 

nonlinear algebraic equations for each time increment. Moreover, f i n i t e  

element representations of s t a t i c  behavior i n  pneumatic structures also lead 

t o  systems of nonlinear algebraic equations. 

of large systems of nonlinear d i f fe ren t ia l  equ&tions i s  not considered further 

In view of th i s ,  the solution 



36 

i n  t h i s  study, 

systems of nonlinear algebraic equations, it being understood tha t ,  a t  

t he  cost of great ly  increasing the computing time, these procedures can 

also be applied t o  certain systems of nonlinear d i f fe ren t ia l  equations. 

Rather, consideration i s  given t o  procedures for solving 

Several numerical schemes for  solving simultaneous non1inea.r 

algebraic equations are available i n  the l i t e r a tu re ;  but not a l l  of these 

are suitable for  systems of equations as  large as those encountered i n  the 

present investigation. A comprehensive review and comparison of numerical 

procedures for equations of t h i s  type was recently contributed by Remmler, 

Cawood , Stanton, and H i l l  [251, wherein numerical experimentat ion showed 

t h a t  the c lass ica l  Newton-Raphson method and the Fletcher-Powell method are 

among the most e f f ic ien t  and re l iab le  techniques available. To these may 

be added the method of incremental loading, which i s  somewhat related t o  

the Newton-Raphson method, except that  the loading i s  assumed t o b e  applied 

small increments during each of which the. s t ructure  responds l inear ly .  This 

l a t t e r  technique i s  par t icular ly  well-suited fo r  the analysis of s t a b i l i t y  

and p l a s t i c  behavior. 

were obtained using variations of the Newton-Raphson method. 

The numerical resu l t s  t o  be presented subsequently 

Thus, for the 

present discussion, it suf f ic ies  t o  merely outline t h i s  procedure. Details 

of t h i s  and other numerical procedures can be found i n  the report by Remmler 

e t  a1 [ 2 5 ]  and i n  t he  papers by Sprang [26I and Brooks [271. 

Consider a system of nonlinear s t i f fness  re la t ions of the  form i n  

Eq. ( 8 6 ) .  Assuming tha t  a f t e r  appropriate boundary conditions have been 

applied there remain r unprescribed components of node displacements, t h i s  

system represents a s e t  of r independent nonlinear equations i n  the unknown 

displacements UNk' For simplicity, suppose t h a t  these equations are  represented 

i n  matrix form as  
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H ( U )  =O (97) 

where H i s  a r x 1 column matrix, each row of which represents an independent 

nonlinear s t i f fness  equation, and u i s  the solution vector. 

equations, we expand H i n  a Taylor ser ies  about an a rb i t ra ry  point uo which 

represents an i n i t i a l  estimate of the solution U . The vector u0 may, 

for example, correspmd to the  linearized solution. 

we find 

To solve these 

Taking only two terms, 

H ( U )  = H( Uo) + J (  #io)( Li - 0 ' )  

where i s  the  jacobian matrix 

Equation (98) is  l inear  i n  u I( Solving th i s  equation, we f ind 

-1 
U= Uo - J (  Uo) H (  Uo) (100) 

The corrected solution U serves as the i n i t i a l  estimate i n  a second cycle, 

and the process i s  continued until a desired degree of accuracy is  obtained. 

6. NUMERICAL AND EXPERIMENTAL RESULTS 

In  th i s  section, we examine numerical resu l t s  obtained by applying the  

theory developed i n  the preceding sections t o  several representative 

problems. Whenever possible, these resu l t s  are compared with available 

experimental or analyt ical  data. 

6.1 Stress Diffussion i n  a Stiffened Panel, Ordinarily, stresses obtained 

from f i n i t e  element analyses based on approximate displacement f ie lds  are 

less accurate than displacements obtained fmm such models, To get an 

indication of the  accuracy of s t resses  derived from a rather coarse f i n i t e  

element representation, and a l so  to examine an el-ementary problem involving 
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composite bar and p la te  elements, the problem of plane stress i n  a reinforced 

panel w a s  considered as a simple first example, In t h i s  case, deformations 

are assumed t o  be small and e l a s t i c  and the  material i s  assumed t o  be homogeneous 

and isotropic. Equations (54) and (56) are  applicable except t ha t  only 

' in-plane deformtions are  considered and products and squares of displacements 

are neglected i n  comparison with the displacements themselves. 

The stiffened panel shown i n  Fig. 5a was analyzed using the  f i n i t e  

element representation i n  Fig. 5b. 

stiffened by longitudinal rods of area 1.613 em2 on the outside and 0,807 cm2 

along the  centerline, i s  subjected t o  concentrated forces of 1,587 kg, a s  i s  

indicated. 

were used. 

longitudinal s t i f feners  with the  distance x from the  fixed edge i s  shown i n  

Fig. 5c compared with resu l t s  obtained fran an approximate theory developed 

Here a rectangular panel 0.127 m r p ~  thick,  

2 An e l a s t i c  modulus of 703,000 kg/cm and a Poisson's r a t i o  of 0.3 

The comwted variation of the ilorma,l s t ress  i n  the exterior 

by Kuhn E281 We observe tha t  the coarse finite-element representation 

yielded s t resses ,  i n  t h i s  case, which are i n  close agreement with those 

predicted by KUhn's theory. 

6.2 Elasto-plastic Behavior of a Metallic Membrane. The f i n i t e  element 

formulation described i n  Section 4.3 was used i n  the  analysts of p las t ic  

behavior of a square aluminum membrane subjected t o  external pressure. 

bi l inear  stress-strain l a w  of the form indicated i n  Fig. 6 was assumed with 

A 

2 = 0.0034, Ee = 20E = 740,000 kg/cm 2 e These properties (3 = 2,514 kg/cm Yy 
Y P 

.correspond t o  the aluminum al loy 2014-73 and agree closely with those used 

i n  experiments on rectangular s h e l l  plating by NeuberL and Sommer C291, A 

t h in  metallic sheet, 60 an. square and 0.14 cm. thick,  i s  subjected t o  a 

uniformly distributed hydrostatic pressure. 

d,r:egion near the center of the  p la te  yields and p las t ic  f low i s  in i t ia ted .  

As the  pressure i s  slowly increased, 
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FIG. 6 Bilinear stress-strain law. 

60cm 

FIG, 7 Finite-element representation of a square metallic membrane. 
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This behavior w a s  ana.l.y-zed numerically by using the f i n i t e  element 

representation Shawn i n  Fig. 7. Figure 8 shows the computed variation i n  the 

center displacement of the sheet with external pressure compared with the  

experimental resu l t s  of Neubert and Sommer [291 and w i t h  resu l t s  obtained 

using approximate theories proposed by Foppl' C301 and Hencky c311. 

note tha t  the  rather coarse network was adequate t o  obtain displacements i n  

Again 
* 

excellent agreement with experimental data. 

6.3 

convergence of the  resu l t s  as  the  finite-element network i s  refined, we 

reproduce here resu l t s  similar t o  those obtained ear l ier  by Oden and Sato h11. 

Fini te  Stretching of a Rubber Sheet. In  order t o  indicate the r a t e  of 

In  t h i s  example, an i n i t i a l l y  square rubber sheet, 0.127 cm. thick, i s  

stretched i n  i t s  plane t o  twice i t s  original length. The material i s  assumed 

t o  be of the Mooney type, with material constants C1 and C2 of 1.75 and 0.15 * 

, kg/cm 2 respectively. Thus, Eqs.  (48) are applicable. 

Various f i n i t e  element representatiorls of the sheet are  shown i n  Fig. 9 

along w i t h  the variations i n  the t o t a l  edge force wi th  the t o t a l  number of 

f i n i t e  elements. 

approximately 16.32 kg . 
6.4 

Smith and Crisp c321 presented experimental data on the inf la t ion of t h in  

In t h i s  example, the edge force converged monotonically t o  

Inflation of an I n i t i a l l y  Flat  Rubber Membrane. I n  a recent paper, Hart- 

rubber membranes. Although these investigators used an exponential form of 

the s t r a in  energy function, sufficient in.formation was given t o  deduce equivalent 

Mooney constants for  the  material used. 

of an i n i t i a l l y  f l a t ,  circular,  synthetic rubber membrane subjected t o  uniform 

external pressure. 

thick and i s  held fixed around i t s  edges i n  a metal clamp. 

In the  f i n i t e  element analysis of t h i s  membrane, it was assumed tha t  the 

Specifically, we consider the inf la t ion  

The membrane i s  i n i t i a l l y  50.8 mm.in diameter and 0.2 mm. 
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rubber possessed a s t r a i n  energy function of the Mooney form I: Eq. (41)I SO 

tha t  t he  nonlinear s t i f fness  re la t ions i n  Eqs. (48) were applicable. 

of the  Mooney constants of C1 = 9.5C2 = 1.75 kg/m were derived from the 

data given i n  C32I. The case considered i s  t h a t  i n  which the membrane i s  

subjected t o  a uniform pressure of 0.097 kg/cm2. 

data, t h i s  corresponds t o  an extension r a t i o  a t  the  crown of 5.5. 

Values 

2 

According t o  the experimental 

It i s  important t o  note t h a t  the inflaking pressure i s  a highly nonlinear 

flmction of the extension r a t i o  at  the crown and, consequently, of the  displace- 

ments. 

pressure. 

a specified pressure were incorporated i n  the present analysis, and the 

particu1a.r configuration obtained depends upon the choice of i n i t i a l  values 

employed i n  the i t e r a t ive  solution of the nonlinear s t i f fness  relations.  

Thus, more than one equilibrium configuration can exist for  a given 

No provisions for determining a l l  possible equilibrium states for  

Several f i n i t e  element networks were used i n  the analysis, beginning 

with a single 30 degree element and eventually using the 10-element represent- 

ation shown i n  Fig. 10. For a given f i n i t e  element network, the r a t e  of 

convergence of the Newton-Raphson method depends on the choice of i n i t i a l  

values of the displacements. 

plane problems (such a s  tha t  i n  Fig. 9 )  than i n  the  case of large out-of-plane 

deformations. 

first analyzing a coarse finite-element representation of the  membrane using 

a small number of i terat ions.  The resu l t s  were then used as s ta r t ing  values 

Convergence r a t e s  a.re considerably higher for  
' 

I n  the  present example, ra tes  of convergence were increased 'by 

for a more refined representation, the  displacements of the added node points 

being obtained through linear interpolation. 

Figure 11 shows the computed prof i le  of t he  inf la ted sheet compared with 

. t h e  profiles obtained experimentally and theoretically by Hart-Smith and 

Crisp. We observe tha t  the agreement is  quite good, the  m a x i m h  difference 
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FIG, 10 (a) Finite-elemegt represcritation of a circular membrane and 
(b) a typical  30 segment. 
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by Hart-Smith and Crisp c3d.  



41 
between the  displacements computed by the finite-element analysis and the  

experimental values being approximakely six per cent. 

6.5 Experiments on Rubber Membranes. 

b r ie f ly  the  resul ts  of experiments performed a t  the Structures and Ma,terials 

A s  a f i n a l  example, we consider 

Laboratory of the University of Alabama Research Ins t i tu te  on th in  natural  

rubber membranes. In  these experiments, circular disks, 0.0068 inc. (0.0173 

cm.) thick and 15.0 i n ,  (38.1 cm.) i n  diameter, of pure gum natural rubber sheet 

were clamped around the i r  edges i n  a metal clamp, 

the center and on t en  equally spaced concentric c i rc les ,  

inflated i n  stages of pressures of approximately 100 mm. of water, which 

The disks were marked at  

The disks were then 

corresponded t o  a polar extension r a t io  of around A= 5. 

maximum pressures for 45 minutes, the specimens were then deflated i n  stages 

u n t i l  a l l  applied pressure was removed. 

After res is t ing 

Figure 12 shows the ex-perimental apparatus and a typical  inflated circular 

Figure 13 indicates the  variation i n  polar extension r a t i o  with 

It i s  seen tha t  the  behavior i s  highly nonlinear and that  some 

membrane. 

pressure. 

energy i s  dissipated i n  the unloading process. A residual extension a t  the  

center of a,pproximately J, = 1.25 was experienced, which was completely 

recovered within 24 hours af%er unloading. 

A f i n i t e  element representation with 96 elements, four nodes 
' along 30° radia,l l ines  was used t o  determine the  inflated prof i le  of a typical 

specimen subjected t o  a pressure of 61 mm. of water. 

assumed t o  be of t he  Mooney type, with constants C1 = 1.14  kg/cm and 

Again, the material was 

2 

~ c2 = 0.14 kg/cm2 determined by the method of Hart-Smith and Crisp C32I and data i n  

Figure 13. 

of the  behavior. 

No attempt was made t o  predict the obvious viscoelastic character 

Results of these calculations are given i n  Fig. 14, 
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Fig. 12 Inflated membrane used i n  experiments. 

-..- 



- MEMBRANE 
-01. FINITE ELEMENT 

19.05 cm h AXIS OF SYMMETRY 

FIG. 14 Comparison of measured profile of an inflated rubber disk with 
prof i le  obtained from finite element analysis. 



ACKNOWLEDGMENT 

It is  a pleasure t o  acknowledge the  assistance of M r .  T, .Sato, 

who developed the  computer programs used i n  a11 of -the calculaLion$, 

This work was supported by %he National Aeronautics and Space 

Administration through General Research Grant NsG-381, and the 

synthetic rubber materials used i n  the  experiment were donated by the 

Materials Laboratory of NASA's.Marshal1 Space FlighL Center* 



43 

REFERENCES 

1. TURNER, M. J., DILL, E. H., MARTIN, H. C., and MELOSH, R. J., " h r g e  
Deflections of Structures Subjected t o  Heating and External Loads , I' Journal 
of the Aero/Space Sciences, V o l .  27, February 1960, pp. 97-106. 

I t  2. 
Progress i n  Aeronautical Sciences , Pergamon Press, Oxford, England, 1964, 

ARGYRIS, J. H., "Recent Advances i n  Matrix Methods of Structural  Analysis, 

PP. 115-1330 

3. 
Small and Large Displacements, 

ARGYRIS, J. H., "Matrix Analysis of Three-Dimensional Elastic Media- 
?l ALAA Journal, V o l .  3, No. 1, January lN5, 

PP* 45-51. 

4. GALLAGHER, R. H. and PADMG, J., "Discrete Element Approach t o  Structural  
Ins tab i l i ty  Analysis," AIAA Journal, V o l .  1, No. 6, June 1963, pp. 1437-1439. 

5. 
of Large Deflection and Stab i l i ty  Problems, " Conference on Matrix Methods 
i n  Structural  Mechanics, Wright-Patterson AFB, Dayton, Ohio, October 1965. 

6. 
Structures," AIAA Journal, Vole 4, No. 6, A u g u s t  1966, pp. 1480-1482. 

7. WISSMAIVN, J. W., Nwnerische Berechnung nichtlinear elastischer Koerper, 
Dissertation, Hannover, 1963. 

8. WISSMANN, J. W. , "Nonlinear Structural Analysis; Tensor Approach,'' 
Conference on Matrix Methods i n  Structural Mechanics, Wright-Patterson AEB, 
Dayton, Ohio, October 1965. 

9- 
Fini te  Element Method," Proceedings, IASS Congress on,..Large Span Shells, 
Leningrad, September , 1966. 

MARTIN, H. C., "On the Derivation of St i f fness  Matrices for the Analysis 

ODEN, J. T., "Calculation of Geometric Stiffness Matrices for Complex 

'I ( 1  

ODEN, J. T., "Analysis of Large Deformations of Elastic Membranes by the 
1 

10. ODEN, J. T . ,  "Numerical Formulation of Nonlinear Elas t ic i ty  Problems, '' 
Journal of the Engineering Mechanics Division, ASCE, June 1967. 

11. ODEN, J. T. and SATO, T., "Finite Strains and Displacements of Elast ic  
Membranes by the Fini te  Element Method,'' International Journal of Solids 
and Structures, June 1967. 

12. BECICER, E. B. , "A Numerical Solution of a Class of Problems of Fini te  
Elastic Deformation," Dissertation, University of California, Berkeley, 
Ca,lifornia, 1966. 

13. GREEN, A. E. and fYDKINS, J. E., Large Elastic Deformations and Non-linear 
Continuum Mechanics, Oxford University Press, London, 1960. 

* 14. ERINGEN, A. C . ,  Nonlinear Theory of Continuous Media, McGraw H i l l  Rook 
Co., New York, 1962. 



15. R I V L I N ,  R. S. and SAUNDERS, D. W., "Large Elastic Deformations of 
of Isotropic Materials. V I 1  Experiments on the Deformation of Rubber, 
Philosophy Transactions of the Royal Society, No. 243, London, 1951, 
pp. 251-288. 

16. RIVLIN,  R. S. and SAUNDERS, D. W., "The Free Energy of Deformation 
for Vulcanized Rubbers, I t  Transactions. of the Faraday Societe, No. 48, 
1952, pp. 200-206. 

It 17. MOONEY, M., 
Applied Physics, No. 11, 1940, pp. 582-592. 

A Theory of Large Elast ic  Deformations," Journal of 

18. TRELOAR, L. R. G. ,  The Physics of Rubber Elast ic i ty ,  2nd Edition, 
Oxford University Press, London, 1958. 

19. RIVLIN,  R. S. , "Large Elast ic  Deformations of Isotropic Materials. I 
Fundamental Concepts, 
No. 240, London, 1948, pp. 459-490. 

11 Philosophy Transactions of the Royal Society, 

( 1  20. HUTCHINSON, W. D., BECKER, G .  W.,  and LANDETJ, R. F., Determination 
of the Stored Energy Function of Rubber-like Materials I t  Bulletin, Fourth 
;a vier , 1965 . 
21. BORESI, A. P., LANGHAAR, H. L. and MILL;ER, It. E., "Buckling of Axially- 
Compr e s s ed Bilayer ed Fiber -Reinforced Elast ic  Cylindr i ca 1 She 11, " Develop- 
ments i n  Theoretical and Applied Mechanics. Vol. 2, Proceedings of the 
Second Southeastern Conference on Theoretical and Applied Mechanics, W. A. 
SHAW Ed., Pergamon Press , London, 1965, pp. 95-115. 

22. POPE, G. G., "The Application of the Matrix Displacement Method i n  
Plane Elasto-Plastic Problems, " Conference on Makrix Methods i n  Structural  
Mechanics, Wright-Patterson AE'B, Dayton, Ohio, October 1965. 

23. POPE, G. G. , "A Discrete Element Method for  the Analysis of Plane 
Elastoplastic Stress Problems , " The Aeronautical Quarterly, Februa.ry 1966. 

24. HILL, R., The Mathematical Theory of Plast ic i t& Oxford University Press, 
London, 1950. 

25. REMMLER, K. L., CAWOOD, D. W., STANTON, J. A., and HILL,  R . ,  "Solutions 
of Systems of Nonlinear Equations, I' Lockheed MSC/HREC , NASA 8-20178, 
October 1966, 

11 26. SPRANG, H. A, ,  "A Review of Minimization Techniques for Nonlinear Functions, 
SLAM Review, Vol. 4, No. 4, October 1962, pp. 343-364. 

27. BROOKS, S. H., "A Comparison of Maximum Seeking Methods , " Journal of 
Operations Resea-rch, V o l .  7, 1959, pp. 430-457. 

28. KUHN, P., Stresses i n  Aircraft  Structwes,  McGraw-Hill Book Co., New 
York, 1956, pp. 105-110. 



29. FJEUBERT, M. and SOMMER, A.,  "Rechteckige Blechhaut unter g l e i c d s s i g  
verteiltem Flusigkeitsdruck," Luftfahrtforschung, Vol. 17, No. 7, July 20, 
1940, pp. 207-210 (also published as NACA Technical Memorandu, 965, December 
1940). 

30. FOPPL, A. and FOPPI;, L., Drang und Zwanq, V o l .  1, Oldenbourg, 1924. 

31. HENCKY, H.,  "Die Berechnung &inner rechteckiger Platten m i t  verschwindender 

(ZAMM), Bd. 1, Heft 

.. 
Biegungsteif igkei't , '' 9 

32. HART-SMITH, L. J. and CRISP, J, D. C., "Large Elast ic  Deformations of 
Thin Rubber Membranes, International Journal of Engineering Science, V o l .  5, 
No. 1, January 1967, p-~?. 1-24. 

If 


