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Section 1 

INTRODUCTION 

1.1 PURPOSE OF STUDY 

The objective of the Adaptive Compressive Telemetry Techniques study 
was the selection and development of an optimum adaptive data compression 
system for future manned spacecraft. Key interim objectives which supported 
this goal were: 

a. Analysis and classification of existing and proposed compression tech- 
niques for selecting the most promising for exhaustive evaluation. 

b. Evaluation of the selected techniques by testing their effectiveness in 
compressing a wide variety of actual spacecraft data signals. 

c. Analysis of the queueing problem involved in adapting the randomly 
occurring compressed data samples to a fixed-rate transmission 
system, and the development of design procedures for solving this 

problem in practical compression systems. 
Development of the complete system design for an adaptive data com- 
pression system incorporating the optimum compression methods and 
including adaptive control of the output queue. 

d. 

1.2 SCOPE OF STUDY 

The medical, experimental, and engineering control data used in this study 
spanned the type of data expected in space probes in the near future. Pulse analog 
signals (EKG and spacecraft attitude control-pitch data), undulatory signals (res- 
piration data), step function signals (spacecraft roll-rate data), and noiselike sigmils 
(vibration data) were used to evaluate a broad spectrum of compression techniques. 
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Geometric aperture techniques (Zero-Order Prediction, First-Order Pre- 
diction, and First-Order Interpolation methods), a purely analytical technique: 
the Karhunen-Lo&e compression method, and quasi-analytical techniques 
involving fixed and variable reduced sampling rates with such analytical methods 

, straight-line, optimum linear, and Lagrange interpolation used to sin x as  - 
recover the reduced data, were simulated on a digital computer with the repre- 
sentative experimental data. 

X 

Autocorrelation functions and power spectral densities were computed for 
the experimental data to obtain insight into possible compression techniques as 
well as to estimate the amount of compression that could be obtained for each 
type of data. 

The Compression techniques simulated were evaluated on the basis of peak 
and rms error  versus compression ratio as  well as estimated implementation 
complexity. In addition to the calculated error  performances, overlays of recon- 
structed and original data were made to permit visual comparison of different 
compression techniques with the various types of experimental data. 

The problem of multiplexing multiple sensor channels into a time-shared 
compression unit capable of performing more than one compression algorithm 
was investigated. A system design for such a unit was performed using stored- 
logic concepts, and requirements were determined for an output buffer to effi- 

ciently combine the individual sensor channels, with their associated time gaps 
arising from data compression, without permitting overflow or underflow. 

The problem of transmission errors  in the compressed data was also 
investigated, and the effect of error  on the two compression methods recom- 
mended for implementation was determined. 

1.3 CONCLUSIONS OF STUDY 

1.3.1 No Single Compression Technique ''Best" for All  Data Tested 

Two relatively simple variable sampling rate aperture techniques-the Zero- 
Order Predictor (ZOP) and the First-Order Interpolator with Two Degrees of 
Freedom (FOI-2DF)-achieve, for all data tested, performances; in terms of 
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compression ratio for a given rms  er ror  which cannot be improved upon sig- 
nificantly by any of the higher-order aperture techniques, fixed sampling rate 
techniques, o r  more exotic Transformation Compressors. This conclusion can 
be drawn even without considering implementation factors which are of paramount 
importance in the development of a practical, spaceborne data compression system. 
When implementation is considered, these two techniques have the advantage over 
the other techniques tested. However, neither technique is I1bestI1 for all data 
tested. 

1.3.2 ACT System Should be Flexible to Reduce Probability of Obsolescence 

The main advantage of an adaptive compressive telemetry system is its 
ability to increase the bandwidth utilization efficiency for incompletely specified 
data. This is achieved by reducing the data redundancy which necessarily results 
from conservatively choosing sample rate-bandwidth combinations for experimental 
data. 

Because this study revealed that no single compression algorithm is *Ibest1' 
for all representative data tested, an ACT system should have the ability to per- 
form two or more algorithms in the same processor. This reduces the probability 
of obsolescence if as yet unforeseen types of telemetry data are  encountered which 
require different compression algorithms. 

1.3.3 Flexibility Can be Obtained With Stored-Logic Concept 

Flexibility can be realized by implementing sequence logic in a read-only 
store (memory) which replaces hard-wired decoding logic in identifying the 
commands to be performed. Thus, the ZOP and FOI-2DF compression methods 
can be implemented with the same stored-logic digital circuitry. This system 
approach provides flexibility in that multiplexed sensors with different types of 
data can be compressed with different algorithms at different aperture levels on 
a time-domain basis with the same equipment. In addition, other algorithms of 
the same order of complexity can be implemented by simple changes in the mem- 
ory containing the logic instructions. 
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1.3.4 Adaptive Buffer Control Recommended 

A large reduction in the size of the output buffer required for a compression 
system can be achieved by adaptive control of the compression aperture of non- 
priority data. For example, instead of requiring at least a 100 sample buffer to 
achieve an overflow probability of 0,0001, the same performance can be achieved 
with a buffer size of 25 words by doubling the aperture of nonpriority data when 
overflow is imminent. 
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Section 2 

CLASSIFICATION OF COMPRESSION TECHNIQUES 

DESCRIPTION OF TECHNIQUES SIMULATED 
AND 

2 1 INTRODUCTION 

The first part of this section considers the problem of classification of the 
various compression techniques and algorithms into categories. The fidelity 
criteria for evaluation of the compression algorithms is also discussed. The 
second past of this section describes in detail the algorithms chosen for com- 
parison on the data. The largest algorithms which have received the most 
attention by engineers in the field and for which there are  many variations are  
the polynomial predictor and interpolators. Rather than test all of the variations 
of these algorithms, it was decided to select those which have been found to be 
effective in compression of data and which appeared to be easy to implement. 
Those chosen were: 

a. Zero Order Predictor (floating, fixed, and offset aperture) 
b. First-Order Predictor 
c. 
d. 

First-Order Interpolator -Two Degrees of Freedom 
First-Order Interpolator-Four Degrees of Freedom. 

'h addition to these techniques, the following techniques which do not appear to 
laave received much attention were simulated on the data: 

1. Optimum Linear Prediction 
2. Fourier Filter 

3. 

4. 

5. Variable Sampling Rate. 

Optimum Discrete Filter [Karhunen Loeve) 
Reduced sampling rate and reconstruction interpolation at the 
receiver 
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2.2 CLASSIFICATION AND EVALUATION OF COMPRESSION 
TECHNIQUES 

The classification and evaluation of compression techniques is not a trivial 
problem. Because both the classification problem and the evaluation problem 
are of paramount importance, they will be discussed in some detail. Classifica- 
tion is always an aid to understanding the problem. Unfortunately, the classifi- 
cation of compression techniques does not have a unique solution. Terms such 
as entropy reducing, information preserving, redundancy reduction, adaptive 
sampling, encoding, signal reduction and others have been used to classify com- 
pression techniques. 

To describe the effect the compression technique has on the form of the 
information or signal being transmitted, it was found that the compression tech- 
niques could be divided into four categories. 

a. Direct Data Compression 
b. Transformation Compression 
c. Parameter Extraction Compression 
d. Selective Monitoring Compression. 

Figure 2-1 shows a chart of data compression techniques by category. The four 
categories are defined and the best methods of evaluating the compression tech- 
nique in that group are discussed. 

2.2.1 Direct Data Compression 

A direct data compressor is one which operates on the data in such a way 
that the outputs of the data compressor are the actual sample values of the input 
waveform or  the actual sample values within a tolerance. Most previous work 
in data compression falls into this category. A further useful subdivision of 
Direct Data Compression is made into variable rate and fixed rate. Variable- 
rate compressors have received the most attention and have been extensively 
discussed in the literature. A good example of this type of compressor is the 
Zero Order Predictor Floating Aperture technique originally developed by Jet 
Propulsion Laboratory and refined by Lockheed Corporation. Other examples 
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of variable -rate compressors include interpolators, polynomial predictors, 
and bit-plane encoding. 

Variable-rate compressors have great potential, however, they require 
tagging of the data with a time o r  sensor tag, and in some cases, may result in 
more data bits being transmitted than was in the original data. Fixed-rate com- 
pressors are characterized by the fact that the data is sent at a fixed rate. 
Examples of fixed-rate compressors are  encoding and optimum linear prediction 
with difference coding. One method of fixed-rate compression which has received 
little, if any, attention (perhaps because most engineers do not consider this as a 
compression technique) is to simply sample the data at  a rate close to the Nyquist 
rate and use reconstruction interpolation on the receiving end. Currently, most 
sensors a re  sampled for more than the theoretical minimum of twice the highest 
frequency component (assuming the signal is band limited). As shown from the 
power spectra of the datagiven inSection3, the samplingrate is a t  least twice the 
highest significant frequency and more in most cases. 

2.2.2 Transformation Compressors 

A transformation compression is defined as any compression technique which 
\ 

transforms either analog or  digital data by nonlinear or linear transformation. 
The output of the compressor must then go through an inverse transformation to 
obtain the actual analog waveform on the sampled digital data. Examples of trans- 
formation compressors are  such preprocessing filters (signal conditioners) as  
compandors, logrithmic amplifiers, filters (low pass, band pass, high pass), 
limiters/clippers and compandors . Because the use of preprocessing filters 
depends on the nature of the signal and the user's requirements, the use of pre- 
processing is usually tailored to each sensor, therefore, no attention was given in 
this study to preprocessing filtering. Other types of transformation compressors 
which did receive attention during this study were Fourier Filtering and Optimum 
Discrete Filter compression (Karhunen-Loeve compressors) which a re  described 
in Section 2.3.4. 
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2.2.3 Parameter Extraction Compressors 

Parameter extraction compressors are  those which extract a particular 
characteristic or parameter of the signal. These parameters are then trans- 
mitted over the data link. Unlike the direct data and the transformation compres- 
sors, the parameter extraction compressor is not an information preserving 
operation and the original signal cannot be reconstructed from the extracted 
parameters. An example of this type of compression technique is the measure- 
ment of the probability distribution of the signal and the transmission of the quan- 
tiles of the distribution. Another example is the extraction of the power spectrum 
of the signal and the transmission of the amplitude of the spectral components. 
Still another example would be event recognition. Rather than send all of the 
relevant signal data to the ground to be monitored for a significant event or criti- 
cal situation, an on-board event detector would detect the event and send extracted 
information such as time of event or amplitude. Like the use of preprocessing 
compressors, a parameter extraction compressor must be designed for the spe- 
cial parameter to be extracted and for the particular sensor characteristics. For 
this reason, the use of parameter extraction received little attention during this 
study . 

2.2.4 §elective Monitoring Compression 

§elective monitoring techniques may be defined a s  processes which monitor 
either the sensor or  the state of the system o r  subsystem to select the data for 
transmission. §elective monitoring systems, that use the sensor outputs in 

establishing the priorities, are more complex than those that have a fixed priority 
rating. However, these systems would be capable of determining which informa- 
tion was important and then transmit this information. For example, if a tempera- 
ture sensor indicated overheating in a particular element, this temperature and all 
other sensors, which might yield helpful information in diagnosing the difficulty, 
would be considered as highest priority sensors for a period of time. It would be 
possible to combine the selective monitoring in this case with parameter extrac- 
tion and transmit the extracted information rather than the sensor signal itself. 
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An example of a selective monitoring system which monitors the state of the 
subsystem to control the data for transmission can be found in the case when a 
variable rate output of a direct data compression exceeds the rate of transmis- 
sion for a period of time. If all sensors are  treated as high priority then the 
probability exists of a buffer overflow. The probability of buffer overflow will 
be dependent on the length of the buffer and the ratio of the average rate at which 
bits are  removed from the buffer to the average bit rate into the buffer. (The 
buffer problem is discussed in detail in Section 4.3.) The possibility of buffer 
overflow can be prevented by monitoring the buffer occupancy and taking action 
in one of two ways. One way is to consider certain sensors as low priority and 
ignore these sensors whenever the buffer occupancy exceeds a certain level. The 
other way is  to decrease the quantization levels per sample on low priority 
sensors by increasing aperture size for the compression algorithm being used. 

2.2.5 Evaluation of Compression Techniques 

Previously, compression techniques have been evaluated by a measure known 

as compression ratio. Compression ratio is the ratio of the samples/sec into 
the compressor to the average samples/sec out of the compressor, or  the ratio of 
the bits/sec into the compressor to the bit/sec out of the compressor. Unfortun- 
ately, compression ratio by itself is a meaningless number. If the input data has 
artificially introduced redundancy from using a much higher sampling rate than is 
required, then large compression ratios may be obtained. To effectively compare 
compression techniques, they must be applied to exactly the same data, and com- 
pression ratios for a given fidelity criteria of the reconstructed data should be 
compared. Ideally, the best measure of fidelity is the data user. Unfortunately, 
the data user was not available on a day-today basis during the study. Also, the 
fidelity criteria of a user is subjective and two users of the same data may have 
different criteria. It was necessary therefore to compare the compression ratios 
for a secondary fidelity measure. The fidelity measures used were the peak er ror  
and root mean square (RMS) error  of the reconstructed data. The simulation pro- 
grams written for the IBM 7090 actually provided a plot of the histogram of the 
error  as well as the peak and RMS error.  
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In addition to comparing the effectiveness of compression techniques in terms 
of compression ratio for a given fidelity, criteria considerations must also be 
given to the equipment penalties, system penalties, computation time requirements, 
and effect of transmission noise on reconstructed data. All of these factors were 
taken into consideration in the development of the recommended system as dis- 
cussed in Section 4.4. 

2.3 DESCRIPTION OF COMPRESSION TECHNIQUES SIMULATED 

To choose those techniques that would be used for evaluation of the available 
data, a review of known techniques as well as possible new techniques was first 
made. Because such techniques as parameter extraction, and such transformation 
techniques as  preprocessing must be designed for a specific application or  tailored 
to a specific sensor o r  user requirements, these techniques were not pursued. 
Selective monitoring techniques must also be designed for a given mission in mind. 
The compression techniques that will have the most general application to com- 
pression of data fall into the class of Direct Compression and Transformation 
Compression. Extensive amounts of literature exist on data compression tech- 
niques and bibliographies are also available, therefore, a bibliography will not be 
repeated here. 

1 

In choosing the compression technique, preliminary consideration was given to 
anticipated compression ratio, equipment complexity and system complexity. The 
methods chosen for simulation with the data and descriptions of the technique are 
given in this section. 

2.3.1 Polynomial Predictors 

The predicting equations for polynomial predictors are based on a finite dif- 
ference technique which permits an n'th order polynomial to be passed through 
n + 1 data points. The polynomial is extrapolated one unit at a time, which produces 
a predicted data point. A polynomial of the type 

2 n 
~ ( t )  = a. + a1 t + a2 t  + . . . + ant 

2-7 



may be fitted to the data points by means of a difference equation 

A - 2 n 
Yt 

- Yt-1 + AYt-1 + A Yt-1+ * 0 + A Yt-1 

where: 

A 
yt = predicted value at  time t 

= data sample value at one sample period prior to t Yt -1 

An+lyt = Anyt - Aytel n 

Here, the n + 1 previous values, yt-l, Y ~ - ~ ,  ytm3 . . . yt -(n+l) are hown and yt 
is to be predicted, The various implementations of this approach will be discussed. 

2.3.1.1 Zero-Order Predictor Fixed Aperture 

The simplest polynomial predictor described above is the zero-order pre- 
dictor where n = Cp. In this case 

- A 

Yt - Yt-1 (2 -3) 

and the predicted value is merely the previous data point. A set of fixed tolerance 
bands are then set up with a width K each. This is done by truncating the last 
few bits from a binary data word. If two data words have the same truncated 
value, they belong to the same tolerance band. A prediction is made by Equation (2-3) 

that the new data point falls in the same tolerance band as the previous point. If the 
new data point falls outside the tolerance band of the previous point, then this new 
point is transmitted and the process is repeated. 
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2.3.1.2 Zero-Order Predictor Floating Aperture 

In the floating aperture algorithm of the zero-order predictor, an aperture 
of 2K is placed about the last transmitted data point. If each new data point lies 
within the aperture placed about the last transmitted data point, then the new data 
points are not transmitted. If a new data point falls outside the aperture placed 
about the last transmitted data point, then the present data point is transmitted 
and the process is repeated. The predicted point in this case is the last trans- 
mitted data point with a tolerance of 2 K placed about it. The aperture, then, has 
the effect of "floating" with the last transmitted value. 

2.3.1.3 Zero-Order Offset Predictor 

The zero-order offset method is a modification of the zero-order, floating 
aperture technique. This approach takes advantage of data trends by offsetting 
the predicted point by a predetermined amount. The sign of the offset is deter- 
mined by the last out of tolerance value. If the last transmitted point was out of 
tolerance in a positive sense, the offset has a positive sign and vice versa, Thus, 
the predicted value is the last transmitted value plus an offset. A floating aper- 
ture of width 2K & K) is placed about the predicted value. If the new data point 
falls inside the aperture then that point is not transmitted. If a new data point 
falls outside the aperture, then that data point is transmitted and the process is 
repeated. 

2.3.1.4 First -Order Predictor 

The first-order predictor utilizes Equation (2-2) to obtain a first-order 
extrapolation polynomial of the form: 

Yt -2 

The extrapolation equation is a straight line drawn between the last two data 
points. Initially, the first two data points are transmitted and a straight line is 
drawn through them. An aperture of width 2K is placed about the straight line. 
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The predicted value of the new data points is the point on the straight line. If 
the new data point is within 2 K of the predicted value, then that point is not trans- 
mitted. If the new data point is outside the aperture, then that point is transmitted 
and a new straight line for prediction is drawn through the present data point, which 
was transmitted, and the previous predicted data point. 

2.3.2 Optimum Linear Predictor 

The optimum linear predictor predicts the next sample point by using linear 
combinations of past samples as given by 

where : 
A 
yt = predicted value of present data sample value 

= data sample value at kth period prior to present 
't-k sample at t 

yt = present data sample value. 

The optimum linear predictor uses a set of coefficients which minimizes the mean 
square error  between the predicted and the actual value. Thus, the following 
expression is minimized: 

where: 

E { } denotes expected value. 

The optimum set of coefficients are found by solving a set of N linear equa- 
tions involving the autocorrelation matrix as given by: 
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where: 

R ((7-u)T) = autocorrelation function of the signal for 
Y a lag of (T-cT)T 

s = number of sample periods since last sample 
point,forwhich the prediction is to be made. 

Two methods of estimating the autocorrelation function for use in Equation (2-7) 

were used and are called the direct and indirect method. The direct method uses 
the autocorrelation function given by 

where: 

N = number of points used. 

The indirect method uses an autocorrelation function given by 

N 

y(nT) y{n-(i-j)}T . Ry{(i-j)T} = N-(i-j) 
n=i+j+l 

Two methods of applying the optimum linear predictor for compression were 
simulated on the data. In the first method, the predicted value of the present data 
point was found using N previous actual sample data points. The difference between 
the predicted value and the actual value was then coded and transmitted. Thus, at  
each new data point the difference between the actual and predicted data value was 
transmitted. If the receiver uses the same set of coefficients in the predictor 

2-11 



equation, then the actual sample data value can be obtained at the receiver. In 
this algorithm, there is no er ror  between the actual sample values on-board the 
spacecraft and the reconstructed value obtained on the ground. 

In the second method, an aperture was placed about the predicted value. In 
starting off the process, the first N sample values are transmitted. The predicted 
value of the N -I- 1 sample is obtained using the past N actual sample values. An 
aperture is then placed about the present predicted value (N + 1 value), If the 
actual sample data value lies within the aperture placed about the predicted value, 
then that point is not transmitted. The present predicted value is then used in the 
prediction equation to obtain a predicted value for the next sample value. If the 
next actual sample value is within the aperture, then that point is not transmitted 
and the predicted value is used in the prediction equation. When an actual sample 
value falls outside an aperture, then that point is transmitted and the actual sample 
value is used in the prediction equation for predicting the next data point. 

The prediction Equation (2-5) is the optimum linear nonrecursive filter (only 
past values of input are  used to obtain the output). The optimum linear recursive 
filter can be obtained from solving the Wiener Hopf equations for discrete data 
and is given in Appendix E. Because the results indicated that the effectiveness of 
the optimum nonrecursive filter did not increase as  the number of coefficients 
were increased above five, the use of a nonrecursive filter would not increase the 
effectiveness and was not simulated. 

Note that to obtain the optimum predictor, the power spectrum of the data 
must be known a priori. If, as may be the case, the exact nature of the data from 
a new experiment is not known then a power spectrum must be assumed, which will 
result in a suboptimum predictor. 

2.3.3 Interpolation Compressors 

Interpolators differ from predictors because all sample values between the 
last transmitted value and the present value will effect the interpolation. Two types 
of first-order interpolators were simulated on the data. These were the First-Order 
Interpolator -Two Degrees of Freedom and the First-Order Interpolator-Four 
Degrees of Freedom, which are discussed in the following sections. 
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2.3.3.1 First-Order Interpolator-Two Degrees of Freedom 

The first-order interpolator -two degrees of freedom draws a straight line 
between the present sample and the last transmitted sample so that all inter- 
mediate data points are  within a tolerance of the interpolated value on the straight 
line. In this algorithm, the first point is transmitted. A line is drawn between 
the transmitted point and the second sampled data value after the transmitted 
point. If the first point after the transmitted value is within a tolerance K of the 
interpolated value, then a straight line is drawn between the transmitted point 
and the third point after the transmitted point. The interpolated value of the first 
and second points are now checked to see if they are within a tolerance of the 
actual values. If at the Kth sample value after the last transmitted sample value, 
a line is drawn and the actual value differs from the interpolated value by a 
quantity greater than the tolerance, then the ( K  - 1) sample is transmitted and 
the process is repeated. A method of implementing the FOI-2DF which does not 
require the storage of all the actual data points between the last transmitted point 
and the present point has been described by L. W. Gardenhire.2 

2.3.3.2 First-Order Interpolator-Four Degrees of Freedom 

The first-order interpolator-four degrees of freedom draws a line between 
the sample points such that the most positive error and the most negative error  
between the sample value and the interpolated value are equal and within the 
prescribed tolerance. The computed value of both ends of the line are transmitted. 
The next straight line is started from the next sample value after the last trans- 
mitted point. 

2.3.4 Transformation Compressors 

Two types of transformation compression techniques applied to the data were 
the Fourier Filter technique and the Karhunen-Loe"ve technique and are discussed 
below. 
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2.3.4.1 Fourier Filter 

The Fourier Filter compression technique is one in which the Fourier trans- 
form of the sampled data is obtained and complex coefficient of the transform are 
obtained at discrete frequencies. The coefficients of the lower frequency com- 
ponents are then transmitted and the data is reconstructed by finding the Fourier 
transform of the received coefficients. Let the sampled data be represented by 

x*(t) = fx(nT) 6(t-nT) 
n=l 

where: 

T = sample interval 

6(t) = Dirac delta function. 

Taking the Fourier transform of Equation (2-10) we obtain 
r 

N 
X*(Q = z x ( n T ) e  -j2n-fnT 

n=l 

(2-10) 

(2-11) 

The complex value of the Fourier transform is then obtained at frequencies given 
by: 

f = -  k k = 0’1’2 , . . .  ’N/2. NT ’ 

Thus, the Fourier transform at these frequencies is given by 

N 
X*(&) = E @ T ) e  - j (27rkdN) 

n=l 

(2-12) 

(2-13) 

k = 0 , 1 , 2  , . . . ,  N/2 
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Equation (2-13) may be written 

= Ak - j Bk 

where: 

n=l 

Bk = fx(nT) sin(2nkn/N) 
n=l  

(2-14) 

(2-15) 

(2-16) 

Note that the Fourier transform need only be found for positive frequencies because 
the Fourier transform at negative frequencies is given by: 

(2-17) 

In the Fourier Filter compression, a large number of sample points are taken and 
the Fourier transform is evaluated. If the original signal is oversampled, then 
only the lower frequency complex values need be transmitted. At the ground sta- 
tion, the inverse process is performed. Assume that only M complex values of 
the Fourier transform are transmitted, then the received Fourier transform may 
be written as 

(2-18) 

Taking the Fourier transform of Equation (2-18) the reconstructed signal can be 
written as 

2-1 5 



x*(t) = 2. G(t-nT) (2-19) 
n=l 

where: 

Cn = A. + (2-20) 
k=l  k=l 

From inspection of Equation (2-20), note that for N data points and M trans- 
mitted values of the Fourier transform, that the onboard compressor is required 
to make 2MN multiplications and additions. For a single channel which is sampled 
at a slow speed, this method of compression may be useful, however, when a multi- 
plexed system is considered this method is not practical. 

Equation (2-14) may be used to calculate the power spectrum of the data by 
what is called the direct method. The power spectrum is given by 

2 2 P(k/NT) = Ak + Bk . (2-21) 

2.3.4.2 Optimum Discrete Filter Compression (Karhunen-Loe've) 

The optimum discrete filter compressor (Karhunen-Lo6ve compressor) is a 
process similar to the Fourier technique described in Section 2.3.4.1. Whereas 
the Fourier filter uses sines and cosines as the orthogonal function in the expan- 
sion¶ the optimum discrete filter uses an optimum set of orthonormal basis func- 
tions. The orthonormal set is optimum because the least number of orthonormal 
functions are needed for a given RMS error.  

Let the sequence of sample data points be given by 

x(T), X(2T), . . . X(NT) (2-22) 
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We seek a set of functions Cp such that 

(2-23) 
i= 1 

where: 
A 
x(kT) = the reconstructed value of the data 

point 

a. = coefficients to be transmitted to the 
1 ground. 

The Cpi are eigenvectors of the autocorrelation matrix of the X I S ?  The M 
eigenvectors chosen to represent the data are those with the largest eigenvalue. 
The coefficients to be transmitted are obtained by taking the inner product of 
the data points with the eigenvector. Thus, the coefficient is found from 

a. 1 = ?x(jT)Ci(jT). 
j = l  

(2 -24) 

Thus, each coefficient requires N multiplications and additions. If M eigenvectors 
are used, then MN multiplications and additions are required. If prior knowledge 
of the signal statistics is not available, then the autocorrelation matrix must f irst  
be obtained and the matrix diagonalized to obtain the eigenvalues and eigenvectors. 
The number of eigenvectors used to obtain a given RMS must then be determined. 
If the M eigenvectors with the largest eigenvalues are used to represent the signal, 
then the mean square error  is given by 

(2-25) 
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where : 
hk = eigenvalue of autocorrelation matrix. 

From the above discussion, the implementation of this method io impractical, 
however, it  was use to obtain a comparison of its compression effectiveness P 

1 against other techniques. I 

I 
i 1 

I 
! 2.3.5 Reconstruction Interpolation ' 

The principle of reconstruction interpolation is to sample the signal at a 
reduced sampling rate and then reconstruct the signal by interpolation filtering a t  
the receiver. Because most of the signals studied were over-sampled by as much 
as 20 times the Nyquist rate, it should be possible to use a lower sampling rate 
onboard and reconstruct the signal on the ground. The reconstruction interpolation 
technique was evaluated by taking every kth sample (where k is an integer 
original sampled data and assuming that these samples were transmitted. 
reconstruction interpolation was applied to these data points to obtain interpolated 
values of the nontransmitted data points. The original and reconstructed values 
were then compared to obtain the errors.  Five reconstruction interpolations simu- 

lated were straight line, optimum, - sinx , Lagrange, and Fourier. 
methods a re  described in the following sections. In all cases the interpolation 
formula can be represented in the same general form. 

These 
X 

Let the input signal be sampled values of the signal at intervals of T. 
Interpolated values are to be obtained at  intervals T/L where L is an integer. The 
interpolated values in an interval of T for which an equal number of input samples 
are  used on each side of the interval is given by 

(2-26) 
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where : 

x(mT) = sample value of input data at time mT 

h m ( T )  = weighting function of interpolation filter 
for mth sample at time nT/L 

g(F) = interpolation value at time nT/L 

n = 1, 2 , .  . . , L-1 

k = number of input samples used on each 
side of interpolation interval. 

2.3.5.1 Straight Line Reconstruction 

The simplest type of reconstruction interpolation is straight -line interpola- 
tion. A straight line is drawn between the two input sample values on each side 
of the interval and interpolated values are obtained along the straight line. The 
interpolation formula is given by 

= x0 +&[x(T) L - xo] 
(2-27) 

L = 1 , 2 , .  . . , L-1 

2.3.5.2 Optimum Interpolation Filter 

The optimum interpolator seeks an optimum linear Combination of the sample 
values such that the e r ror  in interpolation is minimized in the mean square sense. 
Thus, we seek a linear combination of the sample values of the form: 

(2-28) 
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which will minimize the mean square error.  The e r ro r  is given by 

The set of coefficients ki which minimize the mean square e r ro r  is given by the 
following set of linear algebraic equations: 

{(i-j)T} = .R,(iT - 7 )  

j=-N+l 
(2-30) 

f o r i  = - N + l , - N  , . . . ,  0,1,2 , . . . ,  N 

where: 

Rx{(i-j)T} = autocorrelation function of the signal for lag of 
(i-j)T. 

Note that in obtaining Equation (2-30), it was assumed that the signal was a 
wide sense stationary stochastic process. In general, the signals will not fall 
into this classification. The direct and indirect methods can be used to obtain 
the estimate of the autocorrelation function. The direct method uses an auto- 
correlation function given by 

N 
. P  

Rx {(i-j)T} = Lx{(n-i)T} x{(n-j)T} 
n=l 

where: 

N = total number of data points used. 

(2 -3 1) 

The indirect method uses an autocorrelation given by: 
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N 

Rx{(i-j)T) = N-(i-j) ), x(nT) x{n-(i-j)}T . 
n=i+j+l 

(2-32) 

2.3.5.3 Sin x/x Reconstruction 

The - sin reconstruction interpolation used approximates the ideal low- 
X 

pass filter weighting function by a truncated 7 sin weighting function. The 
interpolation formula in this case is given by: 

k 

m=-k+l (2-33) 

n = 1 , 2 , .  .. , L - 1 .  

2.3.5.4 Lagrange Reconstruction Interpolation 

The standard Lagrange interpolation formulas were used to obtain the 
interpolated value of the signal in an interval. An equal number of received data 
points were used on each side of the interpolation interval to obtain the interpo- 
lated value. Thus, the Lagrange interpolation with 2N coefficients indicates that 
five data points on each side of the interval were used, 

2.3.5.5 Fourier Reconstruction ,Interpolation 

The Fourier filter reconstruction uses the same mathematical techniques 
as described in Section 2.3.4.1 on Fourier filter compression. The Fourier trans- 
form of the 2N data points is obtained and then the inverse Fourier transform is 
found. The inverse Fourier transform is then evaluated in the middle interval of 
the 2N data points to obtain interpolated values. 

2.3.6 Variable Sampling Rate 

The variable sampling rate technique combines the floating aperture zero 
order predictor technique with a variable sampling rate technique to compress 
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the data. Tolerance bands are selected and a sampling rate is associated with 
each tolerance band. Each sampling rate is a multiple of two of the slowest rates, 
A particular implementation of this technique which was simulated utilized two 
sampling rates. The high rate was 160 samples per second and the low rate was 
40 samples per second. The sampling is switched from the low rate to the high 
rate when the first,  second, third, o r  fourth high rate sample exceeds a tolerance 
band of 5 4 units from the last low rate sample transmitted. The sampling 
proceeds at  the high rate until four successive samples occur which do not 
exceed a tolerance band of 2 1 units. When this occurs, the sampling is switched 
to the lower rate. 

Interpolation techniques as described in the previous section may be used 
for reconstruction interpolation. 
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Section 3 

EVALUATION OF COMPRESSION TECHNIQUES 
BY SIMULATION 

3.1 INTRODUCTION 

Of the four general classes of compression techniques presented in Section 2, 

two classes (Direct Data Compressors and Transformation of Variable Compres- 
sors) were investigated by digital computer simulation of representative methods. 

The remaining classes (Selective Monitoring Compressors and Parameter 
Extraction Compressors) require detailed knowledge of the information to be 
extracted from the data and are not amenable to general evaluation. No methods 
in these two classes were simulated. 

The class of Direct Data Compressors represents the area in which the 
greatest effort has been expended to date by other investigators. In general, the 
methods in this class are the most economical to implement at the present state- 
of-the-art, and yield results comparable to the more "exotic" transformation of 
variable compressors. 

The class of Direct Data Compressors can be divided into fixed sampling 
rate and variable sampling rate methods. The variable sampling rate methods 
appear to be the most efficient in terms of compression versus distortion, as will 
be evident from the computer simulation results. 

Al l  the methods investigated are  compared on the basis of simulated com- 
pression ratios versus rms and peak er ror  performance for particular types of 
data. 

3.2 TESTDATA 

Five different types of data were used in the simulation studies. The data was 
provided in 8-bit digital form and is considered representative of the medical, 

3 -1 



experimental, and engineering-control data encountered in space program 
telemetry. The five types of data are identified by source and code name below; 
the sample sizes used in the simulations are also listed: 

a. 
b. 
e. 
d. 
e. 

FCEKG1-Flight Commander EKG1, Orbit 2, 1 min. into tape. 
ENGRES-Engr. Respiration Orbit 2, 1 min. into tapes. 
FAOl-Attitude Control-Pitch, Orbit 2, 1 min. into tape. 
ASMRV3-Apollo (BP-15) SM Radial Vibration-3 
EA02-Roll Rate, Orbit 2, 1 min. into tape. 

Autocorrelation functions R(7) for the five types of data are shown in 
Figures 3-1, 3-3, 3-5, 3-7, and 3-9. Power spectral density for each type of 
data was obtained by taking the Fourier transform of the autocorrelation func- 
tions described in Section 2. The power spectral densities are shown in 
Figures 3-2, 3-4, 3-6, 3-8, and 3-10. 

spectral density, to obtain the rms signal power, since R(7 = 0) is the r m s  signal 
power. 

The autocorrelation functions were used, in addition to obtaining the power 

The power spectral densities were useful in estimating the amount of com- 
pression that could be obtained by reducing the sampling rate for each type of 
data. For example, the Engineer Respiration data was sampled at  80 samples/sec 
and Figure 3-4 shows that most of the signal power lies below 2 cps. Therefore, 
one would expect to obtain compression ratios in the order of 40. However, most 
compression methods simulated provided compression ratios from 10-40 with 
5 percent rms distortions for this data. In actual practice, the data is usually not 
specified sufficiently to calculate a reasonably accurate power spectral density. 
If it were, the sampling rate could be specified such that redundancy removal 
would not be necessary. However, as research tools, the autocorrelation function 
and power spectral density were invaluable. 

3.3 COMPRESSION METHODS SIMULATED 

The compression methods simulated are described briefly to explain the 
captions in Figure 11-32. 
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a. 

b. 

6. 

d. 

e. 

f. 

g* 

h. 

i. 

ZOP-The zero order predictor is a variable sampling rate aperture 
technique which was simulated with fixed aperture, floating aperture, 
and offset floating aperture. 3000 sample points were used in each 
simulation. 

FOI-2DF-A first-order interpolator with two degrees of freedom in 
which the first and last points of the interpolation line are nonredundant 
sample points. 3000 sample points were used. 

FOI-4DF -A first-order interpolator with four degrees of freedom in 
which the first and last points of the interpolation line are constrained 
to an aperture about the true data values. 

LP-i-The optimum linear aperture predictor with i coefficients was 
simulated with i = 3 and 5. 1000 sample points were used from the 
first minute of test data. 

FO-Fixed sampling rate a t  1/10 original rate. This method uses opti- 
mum linear interpolation with 8 coefficients to reconstruct the samples 
not transmitted. 3000 sample points were used. 

FL-This method also uses a fixed sampling rate at 1/10 original rate; 
however, straight-line interpolation is used for reconstruction. 3000 

sample points were used. 

interpolation. sin x FS-Fixed sampling rate at 1/10 original rate with x 
3000 sample points were used. 

FLG-Fixed sampling rate method with the sampling rate at l / C p  original 
rate using the ten coefficient Lagrange interpolation formula for recon- 
struction; Cp is the compression ratio. 3000 sample points were used. 

FF1-A method in which the Fourier transform of the data is taken and 
only 300 Fourier coefficients are retained. The data is reconstructed 
from the inverse Fourier transform. 3000 sample points were used. 

FF2-Fixed sampling rate a t  1/10 original rate with reconstruction by 
Fourier filter as  described in Section 2. 3000 sample points were used. 
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k. VO-Variable sampling rate method with sampling at 1/4 or  1/16 original 
rate. Tolerances (apertures) of 4 and 1, respectively, determine the 
sample rate switching. Optimum linear interpolation with four coefficients 
is used for reconstruction. 3000 sample points were used. 

VS-Similar to the VO method except straight-line interpolation was used 
for reconstruction. 3000 sample points were used. 

m. Karhunen-Logve-A transformation of variable technique in which the sig- 
nal is expressed in terms of a truncated Karhunen-Lo6ve expansion. 
Ten- and 50-point expansions were calculated. 

1. 

n. Linear Prediction With Difference Coding-This is a method in which the 
next sample point is predicted by optimum linear prediction using previ- 
ous sample points. The predicted sample is subtracted from the actual 
sample and the difference is coded and transmitted. As explained in 
Section 2, 2- and 10-bit coding, and 2-, 5-, and 13-bit coding schemes were 
simulated. 

3.4 COMPRESSION OF EKG DATA 

All the methods presented above were simulated with FCEKGl data. The com- 
pression ratios obtained vs. rms error  are presented in Figure 3-11. Because the 
data was obtained in 8-bit quantized form, all simulation results are presented in 
terms of quanta (255 quantum levels for an 8-bit code). 

The rms signal power was determined to be 8.4 quanta; thus, the rms com- 
pression e r rors  are also presented as percent of rms signal. 

Compression ratio is presented as sample/samples sent, which does not allow 
for sensor and time tags which may be required for some methods. The variable 
sample rate techniques require sensor tags because a particular time slot in a 
multiplexed frame cannot be allocated to a particular sensor. Whether o r  not a 
sensor transmits a sample point during a frame depends upon whether o r  not a 
nonredundant sample is available at the time. The number of bits required per 
sensor o r  time tag is dependent upon the particular implementation; therefore, the 
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compression ratios of all the methods simulated except one are plotted as 
sample/samples sent. The linear prediction with difference coding method 
achieves compression by sending all samples, but with a reduced number of bits 
on the average. Thus, for this method the compression ratio is represented as 
data/data sent. 

The linear prediction with difference coding scheme was applied to the data: 
FCE 102 Flight Commander EKG-l,Orbit-2, 1 min. into tape, 1000 points, with 
3, 5, and 10 coefficients using exact and assumed autocorrelation functions. The 
prediction e r ror  is plotted in the form of a histogram which is used for the cal- 
culations which follow. 

Two coding schemes were postulated for the difference between the pre- 
dicted points. These are shown in Figure 3-12 for the exact autocorrelation 
function simulation. The first scheme is called 2- and 10-bit coding and is 
shown in the Figure 3-12. Two bits give four possibilities. Three of these possi- 
bilities are used to code differences of -1, 0, and 1. The fourth is used to 
indicate that a full 8-bit word will follow, giving a sum of 10 bits. 

The second scheme, called 2-, 5-, and 13-bit coding, permits coding of 22, 

- +3, and 54. These six possibilities require 3 bits plus the 2-bit indicator, giving 
a total of 5 bits. A 5-bit indicator is used to imply that the difference is greater 
than 4 and a full 8-bit word follows. This gives three types of code words of 
2,  5, and 13 bits. 

The compression with three prediction coefficients and the first difference 
coding scheme may be obtained from Figure 3-12. The total number of bits 
required with the regular 8-bit coding is 997 x 8 = 7976. The total number of bits 
required for the compression methods may be obtained by multiplying the number 
of occurrences of each difference times the number of bits in the code for that 
difference. The sum of these products is then the total number of required bits 
or  3090. The compression in terms of data-over-data sent is then 7976/3090=2.58. 

For the second coding scheme, the compression is 3.23. The improvement in 
coding efficiency is due to a better match between the probability of a difference 
and the number of bits used to describe it. The desired results would be that the 
products of the probability and the corresponding number of bits be equal. 
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The 2- and 10-bit coding and the 2-, 5-, and 13-bit coding schemes were 
tried on the same data with 5-coefficient and 10-coefficient predictors. The 
former scheme gave compressions of 2.56 and 2.69, respectively. The latter 
scheme gave compressions of 3.16 and 3.34, respectively. These compressions 
are obtained with zero error.  

From the results of the linear prediction algorithm applied to the F A  01 
Attitude Control-Pitch it was found that the peak er ror  was much larger than 
that obtained on EKG data. There are several reasons for this. First, the 
FA 01 data is not a s  oversampled as the EKG data. The F A  01  data was sampled 
at 20 samples per second and there is some power in the spectrum out to 5 cps 
whereas the EKG is sampled at 640 samples per second and the spectrum extends 
to about 40 cps. Secondly, the FA 01 data is characterized by long periods of 
quiescence with a periodic triangle shape pulse. 

It was found that with the 2- and 10-bit coding fqr the case with 3 coefficients 
derived from the actual autocorrelation matrix, the compression ratio in terms 
of data-over-data sent is 2.34. The 2-, 5-, and 13-bit coding scheme results in 
a compression ratio in terms of data-over-data sent of 2.55. When using the 
assumed autocorrelation function and a 2-, and 10-bit coding, a compression 
ratio in terms of data-over-data sent of 0.915 is obtained. When a 2-, 5-, and 
13-bit coding scheme is used a compression ratio of 1.63 is obtained. Because 
this method provided relatively small compression ratios and requires consider - 
able computation time, it was not extended to the other data types. However, 
where relatively small compression ratios with low distortion (zero for the ideal 
case) is desired, this method is suitable. 

The simulation results indicate that when sensor tagging is considered (the 
samples/samples sent values are reduced by a factor of approximately 2 for the 
aperture techniques), the Karhunen-Lo&e method provided maximum compres- 
sion. However, the advantage lessens rapidly as  the rms distortion approaches 
3 percent. The excessive computation required for the Karhunen-Lo&e method 
limits its usefulness to theoretical considerations. 

However, the LP-3, and FOI-2DF, ZOP methods are quite practical with the 
ZOP method being about the simplest of all the variable sample rate techniques. 

3-18 



The FOI-4DF method provides greater compression than the FOI-ZDF method 
up to approximately 12 percent rms distortion. However, as discussed in Section 4, 

the computation complexity of the FOI-4DF is much greater than the 2DF method. 
The small improvement in compression does not warrant further consideration of 
the FOI-4DF method. 

The FOI-ZDF method is second only to the Karhunen-Lo6ve method above 
approximately 7 percent rms  distortion (not counting the 4DF method). However, 
for practical analog data, the rms distortion is usually limited to 5 percent. 
Therefore, on the basis of rms distortion the ZOP-floating aperture method is the 
most efficient of the "practical" compression techniques and (ignoring sensor tags) 
can provide compression ratios of nearly 4 with 5 percent rms distortion. Because 
of this efficiency compared with other ZOP techniques, the ZOP-floating aperture 
method will be referred to as the ZOP method for simplicity purposes. 

Figure 3-13 shows the relationship between rms  er ror  and peak error for the 
methods simulated with FCEKGl data. Note the excessive peak er rors  obtained 
for the fixed sampling rate with reconstruction interpolation methods and the 
variable sample rate straight-line interpolator. The similarity of the relationship 
for the other methods (except the ZOP-fixed aperture method) is somewhat sur- 
prising and indicates that percent peak error  increases more rapidly than percent 
rrns er ror  with increased compression ratios. 

Figure 3-14 shows the relationship between compression ratio and peak er ror  
for the ZOP and the two FOI methods. The advantage of both FOI methods reduces 
rapidly as the peak er ror  approaches aperture values which yield practical rms 
error  values of less than 5 percent (peak error  1 quantum). 

3.5 COMPRESSION OF RESPIRATION DATA 

Figure 3-15 presents simulation results with the ENGRES data for several of 
the more promising methods as determined by the FCEKGl data simulation results. 
The fixed sampling rate and variable sample rate with interpolation methods were 
not applied because of the poor peak er ror  performance with the FCEKGl data. 

Figure 3-16 shows the relationship between rms  and peak errors  for the 
methods simulated with the ENGRES data. The results a re  very similar to those 
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Figure 3-13. RMS E r r m  us Peak Error for Aperture Techniques, 
FCE 102, Flight Commander, EKG 1 
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Methods o f  Compression as Applied fo  Data: 

Figure 3-14. Methods of Compression, Peak Error,  
Flight Commander, EKG 1 
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obtained with the FCEKG1 data as  presented in Figure 3-13. Peak er ror  is not 
presented as  a percentage of peak-to-peak signal because the respiration data 
has nonstationary peak-to-peak values. 

3.6 COMPRESSION OF ATTITUDE CONTROL AND VIBRATION DATA 

Simulation results for the ZOP and FOI-2DF methods obtained with the 
F A  01 Attitude Control-Pitch and ASMRV3-Apollo SM Radial Vibration data 
samples are presented in Figure 3-17. The results are obvious, the vibration 
data is essentially non-compressible for reasonable rms  distortion. 

The Attitude Control data, however, is highly compressible with the ZOP 
method having a clear advantage over the FOI-2DF method when implementation 
complexity is considered and the results a re  extended to practical rms  er ror  
values. 

Figure 3-18 presents the Attitude Control data simulation results in terms 
of compression ratio versus peak er ror  for the ZOP, FOI-2DF, and FOI-4DF 
methods. Again, the ZOP method has a clear advantage. 

3.7 COMPRESSION O F  ROLL RATE DATA 

The ZOP and FOI-2DF methods were simulated with EA 02 Roll Rate data. 
The compression ratio results are presented in Figure 3-19 versus rms error.  
For this data, the FOI-2DF method shows a clear advantage for practical per- 
cent rms distortion (less than 10 percent), unless the ZOP trend of sharp roll-off 
at lower percent distortion changes drastically. 

Figure 3-20 and 3-21 present the relationships between rms er ror  and peak 
error  for the ZOP and FOI-2DF methods, respectively, for all five data samples 
used in the simulation studies. The results are significant in that whereas 
compression ratios obtained varied significantly for different data types and 
for different compressive methods, the rms er ror  is a relatively constant 
function of peak er ror  (aperture, for the two methods considered) for all give 
five types of data for both compression methods. 
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Figure 3-17. Methods of Compression, RMS E r v m ,  FA 01, 
Attitude Control-Pitch 
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3.8 EVALUATION OF ZOP AND FOI-2DF METHODS 

The previous results have indicated how various compression methods fared 
with the different types of test data. However, the problem remains of deter- 
mining a method for systematic evaluation of any compression method for a wide 
range of data types. 

It is proposed that a rating factor similar to the well known gain-bandwidth 
amplifier factor be employed. Consider the factor 

where: 

$(k) = the compression ratio in sample/samples 
sent as a function of peak er ror  or  
aperture k 

D(k) = the percent rms distortion as a function 
of k 

01 = a normalizing constant. 

The second power of D(k) (mean square distortion) is used to stress the impor- 
tance of low distortion in the reconstructed signal. It is, desirable to choose the 
method with maximum R(k) for a specified k. 

Now normalize the factor R(k) such that for $(k) = 2, and D(k) = 5 percent, 
R(k) = 1. R(k) could be normalized to other values of $ and D,  but these values 
appear reasonable because a compression ratio of 2 is the minimum integral 
compression ratio greater than 1 (which is no compression) ; and 5 percent is a 
conservative upper bound on allowable rms distortion. Therefore, 

R(k) = 12.5 As&* 
D 2 M  

The effect of sensor tags can be accounted for by multiplying R(k) by the ratio: 

2: bits /sample 
Z bits sent/sample sent 
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Apply this rating factor to the ZOP and FOI-2DF simulation results with the 
five types of test data and take the average R(k) with equal weighting for each 
data type. We obtain the results shown in Figure 3-22. 

Figure 3-22 indicates that the FOI-2DF method has an average advantage 
over the ZOP method. However, for most of the data tested, the range of prac- 
tical rms distortion was obtained with peak er rors  of approximately one quantum. 
Thus, Figure 3-22 emphasizes that for low distortion, the ZOP method is com- 
petitive with the more complex FOI-2DF method. The results are based upon the 
assumed values for the normalization of R(k). 

In summary, the two aperture techniques ZOP and FOI-2DF yielded better 
compression performance than the other techniques studied (when implementa- 
tion is considered). However, when averaged over all five types of test data for 
practical values of distortion, the two methods give comparable performance. 
A reasonable conclusion appears to be the implementation of both methods; each 
method to be used on the data types that yielded the best simulated compression 
ratios. 

3.9 COMPARISON OF ORIGINAL AND RECONSTRUCTED SIGNALS 

The previous sections have considered the results of the simulated compres - 
sion techniques in terms of such calculable parameters as compression ratio, 
peak error ,  rms error ,  and percent rms  distortion. These are valid perform- 
ance criteria; however, one more is needed in evaluating compression methods 
for various types of data. This additional criterion is: "how does it look?" 

Certain data such as EKG signals are evaluated by visual study. Thus, peak 
and rms er ror  performance may be similar for two different compression 
methods, but one method may be totally unacceptable because of some peculiar 
perturbations introduced in the reconstructed signal. 

Therefore, to obtain a measure of reconstructed signal fidelity, original 
sample data and reconstructed sample data were plotted with a California Com- 
puter Products, Inc., plotter. Because the ZOP and FOI-2DF methods gave the 
best performance of all the practical compression techniques, these two methods 
were compared with large and small apertures (k = 5, 1) for all data tested. The 
results for all data types except the radial vibration data, which did not compress 
well, are  shown in Figures 3-23 through 3-32. 

3 -31 



In addition to the ZOP and FOI-2DF methods, several fixed sample rate 
interpolation methods were evaluated with the EKG data to determine the distri- 
bution of peak er rors  because only the aperture compression techniques are 
peak limited with the peak er ror  known before reconstruction. Figures 3-25 

9 and sin x and 3-26 show the reconstructed EKG signal obtained with Lagrange, 7 
Fourier filter interpolation. The results were similarly deficient in reproducing 
the relatively sharp pulse peaks; whereas, the variable sample rate aperture 
methods (ZOP and FOI-2DF) reproduced the peaks very well because, probably, 
all sample points occurring during the pulses were transmitted without deletion. 

This limitation of peak er ror  is the very feature of the aperture techniques 
which makes them so well suited to compressing data which is to be evaluated 
on a point-by-point basis upon reconstruction rather than upon a statistical, or 
averaged er ror  basis. Because most medical and scientific data is still evalu- 
ated by the human eye, the ZOP and FOI-2DF aperture techniques appear to have 
great advantage over the other methods which a re  not peak er ror  limited. 

Figures 3-27 through 3-32 present comparisons between the ZOP and 
FOI-2DF methods for the other types of data tested. Both methods provided 
good reconstruction fidelity for the aperture k = 1 on all data shown except the 
EA 02 Roll Rate data. However, this data was too low in signal power for the 
8-bit quantizing used in the analog-digital conversion. The signal should have 
been amplified before quantizing, or the quantum levels should have been normal- 
ized to the signal level. Thus, we find that the Roll Rate data provided compres- 
sion ratios of 41 and 30 for the ZOP and FOI-2DF methods with rms  distortion 
levels of 15 percent and 11 percent, respectively, with an aperture of one quantum 
level. Surely, a finer grained quantizing would have yielded less but still accept- 
able compression ratios at acceptable levels of distortion. This could be done 
without increasing the number of bits per sample by employing a gain factor code 
word before transmission of the sampled data. 
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Figure 3-22. Average Rating Factor E(K) us Peak E r r o r  K for ZOP 
and FOI-2DF Compression Methods 
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Figure 3-23. Cb-iginal and Reconstructed Data After Compression, 
Flight Commander, EKG 1 
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Figure 3-24. Oviginal and Reconstructed Data After Compression, 
Flight Commander, EKG 1 
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Figure 3-25. Oviginal and Reconstructed Data Ajter Compression, 
Flight Commander, EKG 1 
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F&we 3-26. Oviginal and Reconstructed Data After Compression, 
Flight Commander, EKG 1 
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Figure 3-27. Original and Reconstmcted Data After Compression, 
Engineer Respiration 
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Figure 3-28. Original and Reconstructed Data After Compression, 
Engineer Respiration 
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Figure 3-30. FA 01, Attitude ConCvol-Pitch 
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Figure 3-31. Oviginul and Reconsimccted Data After Compression, 
EA 02, Roll Rate 
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Figure 3-32. Original and Reconstructed Data After Compression, 
EA 02, Roll Rate 
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Section 4 

SYSTEM DESIGN 

4.1 INTRODUCTION 

The discussion of the design of a complete, adaptive, multipurpose data com- 
pression system is divided into three sections. Section 4.2 discusses a tradeoff 
study which compares significant aspects of a variety of data compressors. 
Section 4.3 discusses the problems of adaptive buffering and control of compres- 
sion parameters, while Section 4.4 presents the basic design of a complete, 
adaptive data compression system which is directed particularly toward data 
systems of the type planned for manned spacecraft. 

4.2 TRADEOFF ANALYSIS 

Section 3 evaluated the relative effectiveness of a variety of data compres- 
sion methods by observing the compression ratios they achieved as a function of 
both the rms  and peak errors in the reconstruction for several representative 
types of manned spacecraft telemetry data. This section will extend the evalua- 
tion work by considering the relative hardware penalty that might be incurred by 
the implementation of each method, and by relating various aspects of this 
penalty factor to the relative effectiveness, will develop a comprehensive trade- 
off analysis. 

In using the term "relative effectiveness," it is recognized that this is a 
difficult judgement to make. The data presented in Section 3 makes it clear that 
there is no method which is superior for all data types and under all conditions 
of allowable rms and/or peak error.  For example, although Figure 3-15 shows 
the FOI-2DF technique to have a distinct advantage over the others tested on this 
particular data type, this advantage does not appear in Figure 3-11 except at large 
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rms er ror  levels, and at low rms er ror  levels, the FOI-2DF rapidly becomes the 

least effective method of those tested. If only one technique is to be used in a given 
data system, it must therefore be carefully selected, and for a wide variety of data 
sources, there is a strong case for having more than one technique at  the disposal 
of the system. 

The following section will discuss each technique tested in sufficient detail to 
permit clear comparisons of various features to be made. In discussing the imple- 
mentation of each technique, it will be assumed that the compressor is to be used 
in a manned spacecraft data system such as that found in the Gemini spacecraft. 
The input to the compressor will be a multiplexed PCM data stream derived from 
analog and digital sensors. 

In developing a critical comparison of the various proposed compression 
methods, the following general criteria will be considered: 

a. Effectiveness of performance as  measured in terms of rms  and peak 
er rors  as functions of compression ratio for the various data types 
(reference is made to Section 3). 

b. Implementation cost in terms of arithmetic capability required, 
program complexity, and storage requirements. 
Other factors which may be significant for particular compression 
methods, such as impact on ground equipment, excessive coding, 
and transmission difficulty. 

c. 

4.2.1 Aperture Techniques 

This section considers the implementation of those aperture techniques that 
were evaluated in Section 3, with the exception of the First-Order Predictor and 
the Zero-Order Predictor, Fixed Aperture; their poor performance on the EKG 
data in comparison with the other techniques precludes their consideration as a 
generally useful compression method. Each of the other aperture algorithms is 
discussed below. 
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4.2.1.1 Zero-Order Predictor (ZOP) 

There are several forms of aperture compression algorithms which employ 
zero-order prediction; the one which has been most extensively evaluated, and 
which has consistently given the best results is the floating aperture type. A flow 
diagram for this computation is shown in Figure 4-1. The computations required 
per data point in the ZOP are very simple, consisting of only two subtractions 
and a zero-comparison together with several transfer operations and two memory 
cycles. The storage requirements for this method also are minimal, because 
only the previously transmitted sample, the tolerance values and the number of 
samples, n, since the last transmission need be stored. Assuming 8-bit data 
samples, five 3-bit alternate tolerance values, and 8 bits for n, a total of 31 bits 
of storage per channel is required. 

The computational simplicity of the ZOP technique, coupled with its minimal 
hardware complexity and its generally effective performance give it a very 
advantageous position in a tradeoff study of practical compression techniques, as 
has been recognized by previous investigators. Its only disadvantage is that for 
most data types a somewhat higher compression ratio can be achieved by more 
sophisticated techniques. Note that it is entirely feasible to implement the ZOP 
calculation by analog techniques resulting in even greater hardware savings, 
whereas the general complexity of the computation program required by all the 
other techniques dictates the use of a digital processor for their implementation. 

4.2.1.2 First-Order Interpolator-Two Degrees of Freedom 
Method (FOI-2DF) 

Of several first-order interpolation techniques, the FOI-2DF method requires 
significantly simpler implementation and produces results which are comparable 
to or  improve upon, the others. A flow diagram showing the required computations 
for each data point is given in Figure 4-2. The computation by the longest flow 
diagram path requires seven additions or  subtractions and two divisions. The 
storage requirements for this method are greater than those of the ZOP, because 
it is necessary to store the two slope limits, L 

value immediately preceding the present value. With the same assumptions as for 
the ZOP, the total storage is 53 bits per channel. 

and Umin, and the sample max 
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Figure 4-1. Flow Diagram- ZOP Algorithm 
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Figure 4-2. Flow Diagram- FOI-2DF Algorithm 
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The implementation of the FOI-2DF method requires a divider (or multiplier) 
and an adder-subtractor. The multiply function can be accomplished in the proc- 
essor by repeated additions and shifts, therefore, the arithmetic capability required 
is not appreciably more than that of the digital implementation of the ZOP; the chief 
penalty is the approximate doubling of memory size with its attendant weight 
increase, and a longer computation time. 

Note that the results presented in Section 3 show that the FOI-2DF and ZOP 

techniques are  in a sense complementary, with the FOI-2DF exhibiting good com- 
pression performance at larger peak er ror  (aperture) values, while the ZOP per- 
formance is good at smaller aperture values where the effectiveness of the 
FOI-2DF decreases sharply. Figure 4-3 shows the general shape of the perform- 
ance curves for both methods. Note that the performance curves for most other 
techniques (except, notably, the Karhunen-Lo&e method) fall to the lower right of 
a composite curve made up of the best sections of the FOI-2DF and ZOP curves. 

4.2.1.3 First-Order Interpolator-Four Degrees of Freedom 
Method (FOI-4DF) 

This technique was investigated principally because of its academic interest 
as the optimum first-order interpolation method. By constraining neither end of 
the approximating line to lie on a data point, the longest straight line within a fixed 
peak er ror  of all points lying along the line is achieved. Its performance, however, 
does not appear to be markedly better than the FOI-2DF method for the cases 
studied, primarily because of the necessity of transmitting two data points (i.e., 
the beginning and end) for each line segment. In the FOI-2DF method, only one 
point per line segment is required, thus although more line segments a re  needed 
to approximate the signal, the FOI-2DF is not necessarily inferior to the FOI-2DF 
method . 

Implementation of the FOI-4DF method presents several difficult problems. 
The most significant of these is that the storage requirements increase as the 
number of redundant points since the last transmission increases, since each inter- 
mediate point must be tested during every computation. Thus, the storage capacity 
required is theoretically unlimited, although in practice a limit could be set by 
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f i g w e  4-3. ZOP and FOI-2DF Performance Outline 
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requiring a sample to be sent at certain intervals, regardless of the compressor, 
and restarting the computation. Even with this relief, the storage requirement 
rapidly becomes impractical. In addition, the computations associated with the 
FOI-4DF method are lengthy, and not only vary with the number of redundant 
points, but also are dependent upon the shape of the signal being compressed. 
Because of these difficulties, the FOI-4DF interpolation method was not con- 
sidered as  a serious candidate for implementation. 

4.2.1.4 Linear Predictor Aperture Method 

This method operates in principle in a similar manner to the ZOP method, 
except that the prediction of the next data point is made by a linear combination 
of N previous points according to the relation: 

For N = 1, and al approximately equal to unity, this is the exact equivalent 
of the ZOP technique. The coefficients used in the prediction a re  functions of 
the statistics of the signal, and are constant only for stationary signals. 

For a small number of fixed coefficients, the implementation of the linear 
predictor is not difficult, and can be accomplished with N + 2 multiplications and 
additions in a digital processor. The results obtained for this method were con- 
sistently poorer than either the ZOP or the FOI-2DF techniques, and these results 
deteriorated as more terms were used in the prediction. Also, for optimum 
results the prediction coefficients should vary adaptively as the autocorrelation 
function of the signal changes. This variation requires computational capacity 
far beyond that used in the compression calculations. 

4.2.2.1 Reconstruction Interpolation Techniques 

It was noted early in the study that a large proportion of the data signals 
were sampled at a rate considerably in excess of the minimum indicated by the 
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calculation of their power spectra. Therefore, the possibility of reducing the 
data sampling rate by improving the interpolation technique during the data 
reconstruction was investigated. By this approach, the implementation penalty 
in the spacecraft is held to a minimum, because no additional hardware is 
required; the data system is designed to provide close to Nyquist-rate sampling 
on all analog channels, which in some of the cases studied reduces the sampling 
rate by a much a s  a factor of ten. This reduction in sampling rate requires more 
sophistication in the data interpolation performed on the ground. Several inter- 
polation methods were investigated, and are  listed below. 

a. Optimum linear interpolation-8 coefficients 
b. Straight-line interpolation 
c. Lagrange interpolation-8 coefficients 
d. Sin x/x interpolation 
c. Fourier filtering 

The chief drawback in the fixed sampling rate methods is that, unlike the 
aperture techniques, the peak er ror  in the recovered data is not limited, because 
the interpolation algorithms are  derived by minimizing the rms  error .  The test 
results show that although the rms er ror  may be within acceptable levels, the 
peak error  can be quite large (see Figure3-13). This lack of control of peak e r ro r  
is a serious shortcoming because the experimenter can never know what confidence 
to place in his data, and it is probably a sufficient argument for eliminating the 
fixed-rate compression in spite of its hardware advantages. In addition to the peak 
error  problem, the overall performance curves of the fixed-rate compression 
methods are consistently poorer than those of the simpler aperture techniques for 
all cases tested. 

4.2.2.2 Linear Prediction With Difference Coding 

A very different approach to fixed sample rate compression is represented by 
the linear prediction and difference coding technique. In this method, a linear com- 
bination of points is used to predict the next data point. The difference between the 
predicted value and the actual value is coded and transmitted, 
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Although this method permits exact reconstruction of the data on the ground, 
the coding used to represent the successive differences requires variable length 
words, This variation in word length introduces serious problems into the PCM 
transmission and ground recovery equipment, which operate on a fixed word 
length basis. Although the computations per point are not excessive, the problem 
of handling the resulting random-length word data stream was considered suf- 
ficiently difficult to eliminate this method from practical consideration. 

4.2.3 Variable Sampling Rate 

The variable sample rate compression method, as it was conceived and 
tested in this program, is in effect a combination of the aperture techniques and 
the fixed sample rate techniques. The data sample rate is switched between two 
submultiples of the basic rate in response to a simple measure of data activity 
implemented by observing when the difference between successive points exceeds 
a given aperture. 

The effectiveness of the variable sampling rate is ,  like that of the fixed rate, 
strongly dependent upon the accuracy of the interpolation used on the ground. 
methods were tested, one using optimum linear interpolation with four coefficients 
and one using straight-line interpolation. The optimum linear method gave results 
measured against rms  er ror  that were quite good, however, its peak er ror  per- 
formance was poor. The straight-line interpolation gave comparable rms  error  
performance, but the peak er ror  was very poor. 

Two 

The implementation of the variable sample rate method is not different in 
concept from that of the aperture methods. A digital processor is used to test 
each sample against the algorithm and determine whether o r  not it should be 
transmitted, and also whether the sample rate should be changed. The compressor 
output is random, and a buffer is required ahead of the transmitter. Sensor identi- 
fication and current sampling rate must be transmitted along with each data sample. 
The general implementation complexity is roughly equivalent to that of the FOI-BDF, 

and while its rms er ror  performance for a given compression ratio is only slightly 
worse, its poor peak er ror  performance and its requirement for sophisticated 
ground interpolation equipment cannot be ignored. 
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4.2.4 Transformation Compressors 

Data was obtained on two transformation compressors: the Karhunen-Lo6ve 
expansion and the Fourier transform. Both of these techniques are described in 
some detail in Section 2. The Karhunen-Lo6ve expansion is a highly effective 
compression technique in terms of performance, and some work was done during 
the study toward using Karhunen-Logve coefficients as a measure of an upper 
limit of data compressibility. The Fourier filter was also a reasonably effective 
interpolation technique. Both methods, however, are  only of academic interest 
as far as implementation is concerned, because the computations involved in 
determining the coefficients of the expansions are far beyond the capability of a 
spaceborne processor. For example, a 50-point Karhunen-Lo&e expansion 
requires the inversion of a 50 x 50 matrix. Similarly, the computation of Fourier 
coefficients in real time on a multiplexed data stream is impractical. 

4.2.5 Summary and Conclusions 

This section has presented the salient points both in favor of and against 
each of the methods tested. These points are summarized in Table 4-1 where the 
algorithms are  compared according to three general criteria: effectiveness of 
compression, implementation cost, and impact on the data system design. From 
this presentation, there are two techniques, the ZOP and the FOI-2DF, which have 
favorable comments in all three categories. Al l  of the other methods have a 
disadvantage of more or  less seriousness in at least one area. Because the ZOP 

and the FOI-2DF tend to complement each other in performance, implementation 
should at least have the capability of executing either of these algorithms on 
selected data channels. If a compression system is designed to use these two 
algorithms, then it may be desirable to extend its capability to include other 
algorithms of comparable complexity to increase the ability of the system to meet 
the requirements of a data system having a wide variety of sensors. This extra 
capability would also permit critical evaluations to be made in a real system 
environment. 

This section has discussed the comparative aspects of several data compres- 
sors. Section 4.3 will consider in some detail the problems associated with the 
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second major subsystem-that of adaptive buffering of a compressed, multiplexed 
data stream. Section 4.3 will describe briefly an approach to the design of a com- 
ple te adaptive data compression sys tem having considerable flexibility and including 
adaptive buffer control. 

4.3 BUFFER CONSIDERATIONS 

4.3.1 Introduction 

Design of the output buffer is one of the most important tasks to be faced in 
implementing ACT. Upon proper design of the buffer, including such parameters 
as size, input-output data rates, and occupancy control, rests the overall com- 
pression efficiency and er ror  performance of ACT. 

The buffer permits the efficient merging of nonredundant samples from several 
sensor channels into one constant rate data stream for transmission. The samples 
from different sensors could have been operated upon by different compression 
methods. 

The problems of efficient buffer design are manifold. Even for a single sta- 
tionary compressed sample stream, the variance in individual runs of deleted 
(redundant) samples produces problems of overflow and emptying of the buffer. 

redundancy of the data has been reduced. Underflow, or  buffer emptying, leaves 
information gaps in the transmitted signal that could have been used to improve 
received er ror  performance by either lengthening the transmitted sample period, or 
reducing the compression ratio, or  both. 

Overflow causes data samples to be lost, all the more undesirable because the 

It is desirable, therefore, that the buffer be designed to neither overflow nor 
underflow. This, as will be shown, is difficult to achieve without using a buffer with 
greater capacity than necessary unless a system using adaptive control is 
considered. 

For most of the compression methods considered, including the two methods 
which yielded the best overall results (ZOP and FOI-2DF), the compressor opera- 
tion time per sample point is constant, or  very nearly constant. Because the input 
to the compressor consists of a synchronous multiplexed stream of sampled data, 
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and the buffer output is also synchronous for transmission purposes, the buffer 
implementation would be synchronous. Thus, the queueing analysis required for 
efficient buffer design is based upon the binomial distribution rather than the 
usual queue model Poisson distribution. 

probabilities of overflow and no readout, the required buffer length, expected 
f i l l  and variance as functions of average compression ratio 9, and input-output 
transmission rates C are presented in Appendix C. Because most of the derived 
relationships are  recursive, digital computer solutions were necessary. In this 
section we will use the results of the buffer analysis to outline methods for 
efficient buffer design for ACT. 

The details of the analysis, including the derivation of equations for the 

4.3.2 Computer Solutions of Buffer Equations 

There are  three independent buffer parameters which must be specified in 
a buffer design, They are: Cp , the average compression ratio; C, the input-output 
transmission ratio; and R, the probability of overflow, As  shown in Appendix C, 
the ratio C/Cp is usually called p ,  the buffer activity factor, and must be equal to 
o r  less than unity for equilibrium to occur. That is, if p > 1, the buffer will have 
on the average more incoming data than outgoing data and will eventually over - 
flow with the resultant loss of data. 

For the Poisson distribution model of input data, which is a reasonable model 
for a high-speed asynchronous buffer, the dependent parameters such as average 
buffer fill, and required buffer length for a specified overflow probability R are  a 
function of p. However, for the synchronous buffer with binomial input distribu- 
tion, the parameters are a function of @ and C ;  thus, the design parameters can- 
not be expressed solely as a function of p = C/@. 

Note that @, the average compression ratio, when applied to the buffer analysis, 
is the average ratio: 2 :iiz ",E: ;::ET for all multiplexed sensor data. The 
simple relationship between individual sensor compression ratios and the average 
compression ratio needed for buffer design is derived in Appendix C. 

It is assumed that all sensor data is statistically regular; i.e., we assume 
that short duration sensor compression ratios do not deviate greatly from the long 
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term average compression ratios. If this is not the case, detailed transient 
buffer studies must be undertaken. This would probably be most tractable with 
computer simulation. However, even for the stationary case, it will be shown 
that a transient analysis is desirable to aid in designing an adaptive controlled 
buffer. 

Results of the computer solutions to the buffer equations are shown in 
Figures 4-4 through 4-7. Figure 4-4 shows the relationship between buffer 
length -L, average buffer f i l l  -E(n), and average percent f i l l  -E(n)/L as  functions 
of the average compression ratio @ for several values of R; the probability that 
an input event will overflow the buffer. 

The results agree with intuition in that as p = C/@ "1, the required buffer 
length for a particular R increases rapidly. The expected buffer f i l l  E(n) behaves, 
as  would be expected, similarly t0.L. Note that as  p d  1, the percent buffer f i l l  

E(n)/L increases rapidly. However, even for p M 1, E(n)/L is quite small for 
R = 0.0001, Thus, we have our first  indication that restricting overflow by 
increasing buffer size is relatively inefficient. 

Figure 4-5 presents buffer length L as  a function of C, the input-output trans- 
mission ratio. Here again, the extreme sensitivity of buffer size to p a s  p-c l  is 
apparent. Figures 4-6 and 4-7 present the probability of overflow R, and the 
probability of no readout 1 - p (1 - R), which is discussed in detail in Appendix C, 
as functions of buffer size and average compression ratio respectively. 

4.3.3 Adaptive Buffer Control 

The point of interest in Figures 4-6 and 4-7 is the difference between the 
probabilities of no readout and overflow. The two approach equality as p+ 1. 

Thus, for maximum efficiency in both buffer utilization and compression (the 
larger C can be made, the greater the transmission bandwidth reduction) the 
buffer should be designed to operate with p NN 1. However, as  shown in Figure 4-4, 
this would require a large capacity buffer (L > 100 for @ > 4, with R = 0.0001). 
The probability of overflow can never be made exactly zero for all sensor data no 
matter how large L is made (it can be made arbitrarily small, but the required 
buffer size increases rapidly) ; therefore, the following system is recommended. 
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Figure 4-4.  Buffer Length-L, Average Buffer Fill-E(n), 
and E(n)/L us Compression Ratio CP for 
Constant Probability of Overflow-R 

4-16 



15 1 
lo t 

/' 

I b L _ - - c _ _ .  . .-I 

I 2 3 4 5 G 7 8 9 10 
lip+- Oufpu f  Gafismission &no - C 

Figure 4-5. Buffer Length vs Input-Ckctput Transmission Ratio-C 

4-17 



Figure 4-6. Probabilities of Overflow and No Readout 
us &fler Length 

4-18 



Figure 4-7. Probabilities of Overflow and No Readout 
vs Compression Ratio + 
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The buffer should be designed with a fairly good estimate of the average 
compression ratio Cp that will be achieved for all the sensor data (the composite Cp 
is discussed in Appendix C). Any data that is considered too important to risk 
a small but finite probability of loss due to buffer overflow should be designated 
priority sensor data. The total bandwidth of the uncompressed priority sensor 
channels should be no greater than the total transmission bandwidth. Thus, the 

low priority data is compressed and transmitted in the transmission bandwidth 
obtained by compression of the priority sensor data. When buffer overflow 
becomes imminent, the low priority data is heavily compressed, o r  excluded 
from transmission altogether. Thus, priority data is always guaranteed 
transmission bandwidth. The statistics of such a priority system are  considered 
in more detail in Appendix C. 

Assuming the system average compression ratio is known (computer simula- 
tion may be necessary on typical sensor data), the input-output transmission 
ratio C should be chosen such that p = C/Cp 

bility of overflow approximately equal to the probability of no readout in the 
vicinity of R = 0.01, and requires a buffer size less than 1/4 of that required 
for R = 0.0001 (see Figure 4-5). 

0.98. This will provide the proba- 

Overflow and no readout probabilities of approximately 0.01 would probably 
not be acceptable for most applications. Therefore, an adaptive control is 
required to reduce R without increasing the buffer size. Figure 4-7 is of assist- 
ance in estimating the change in Cp required to reduce R to a desirable range for 
a fixed L. 

, Consider an average compression ratio Cp E 8, such that with C = 8, 

p = 0.98. From Figure 4-5, L is found to be 25. Using the curve for L = 20, 
C = 8 in Figure 4-7, we find that Cp must be increased from approximately 8.2 
by 9.5 to reduce R from 0.01 to 0.0001; thus Cp must be increased by a factor 
of 1.16. A buffer load register such as  an up-down counter, could be used to 
trigger a change in compression ratio when the buffer appeared in danger of 
overflowing o r  becoming empty. 

Appendix C shows that for all five types of data tested, with the aperture 
compression techniques simulated, an increase in aperture by a factor of two 
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yields a new compression ratio Cp which lies in the range: 1.2 $1 5 Cp2 5 2.3 +l. 
Thus, for our example, a doubling of the apertures in the compression algorithms 
would more than provide the required increase in compression to decrease R 
from 0.01 to 0.0001. If a priority system was involved, the nonpriority data 
compression would have to be increased by more than a factor of 1.16 to offset 
the constant compression probably required for the priority data. 

The previous example considered the buffer control problem from a quasi- 
stationary standpoint; i.e., the time required to reach equilibrium after the 
change in Cp was neglected. Whereas, in fact, the rate of change would be of 
utmost importance to determine the probability of data loss before equilibrium is 
attained. A s  stressed in Appendix C, the buffer equations derived (from which 
Figures 4-4 through 4-7 evolved) are valid for the system in equilibrium. 

buffer control design can be undertaken. 

2 

It will be necessary to analyze the transient conditions before a detailed 

4.4 SYSTEM DESCRIPTION 

4.4.1 Introduction 

The algorithm performance study of Section 3 and in the preceding trade-off 
analysis show that a compression system capable of performing both the FOI-2DF 

and the ZOP compression methods on any selected combination of data channels 
would be a highly effective compressor. In addition, it is desirable, particularly 
in the evaluation phase of system development, to incorporate the maximum flexi- 
bility that can economically be implemented. This section describes a design 
approach to such a data compression system which uses the concepts of micro- 
programming to achieve the capability of executing both of the recommended 
algorithms, as well as being able to be reprogrammed for other algorithms of 
comparable complexity. The particular algorithm to be applied to each data chan- 
nel is selectable by ground-station command. In addition, flexible control over 
the tolerances used in the compression calculations is provided to control the 
data rate out of the compressor and maintain the output buffer occupancy at a 
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nominal level. To place these ideas in their proper context, the discussion of the 
compression subsystem will be preceded by a brief description at a general level 
of a typical complete data compression system from data source to transmitter. 

4.4.2 General Data Compression System 

A broad-level block diagram of a typical data compression system is shown 
in Figure 4-8. Data is derived from both analog and digital sensors and combinad 
by a digital multiplexer a t  sampling rates appropriate to the individual data 
sources by super and subcommutation. The output of the digital multiplexer is a 
serial-by-word data stream conforming to a predetermined format e Because the 
compression subsystem must be able to identify the source of any given data 
sample, sufficient information must be available to permit this determina 
be made, The necessary identity information can be derived from the d a h  strswm 
by a frame sync recognition and word oounting process similar to that performed 
at the ground receiving station, o r  it may be made directly available by the multim 
plexar. In either case, each data sample appearing at the input to the oomprassor 
is aooompanied by a sensor identifioation word. 

tion word to address its storage. This storage carries, for each sensor, all the 
reference data (previous points, slope limits, tolerances, etc.) required to per- 
form the necessary calculations, upon the basis of which the sample is either 
transmitted or  eliminated. After the calculation, the new reference data is stored 
and the nonredundant sample is sent to the buffer storage, accompanied by sensor 
identification and any other data that may be required, such as tolerance limits, 
compression algorithm used, etc. The buffer storage is provided as  a rate buffer 
between the random rate output of the compressor and the fixed rate of the trans- 
mitting subsystem. To prevent either data loss from buffer overflow during 
periods of high data activity or  inefficient use of the link resulting from buffer 
emptying during quiescent periods, a feedback control path is provided from the 
buffer to the compressor. This control path varies the tolerance limits applied in 
the compression process according to a fixed priority in response to detection of 
the level of buffer occupancy. This variation of tolerance limits adjusts the 

Upon receipt of an input sample, the compressor uses the sensor identifica- 
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average output rate of the compressor to match the transmission rate. The 
foregoing discussion lays the groundwork for a detailed description of the design 
of the compression subsystem. 

4.4.3 Compression Subsystem 

The essential design requirements which must be met by the compression 
subsystem are  summarized below: 

a. 

b. 
C. 

d. 

e. 

4.4.3.1 

Accept a fixed-rate, commutated data stream in digital form with 
associated sensor identification data and word timing. 
Perform upon each channel the appropriate compression algorithm. 
Transmit nonredundant data to a buffer storage for transmission. 
Accept and implement ground commands as  to the compression 
algorithm to be applied to each channel. This includes the capability 
to command that selected channels be transmitted without compression 
o r  eliminated entirely. 
Respond to a control signal which is a function of buffer occupancy by 
adjusting the tolerance limits applied in the compression calculation 
to control the data rate out of the compressor. 

Compression Algorithms 

The evaluation of the effectiveness of various compression algorithms given 
in this section has shown that the ZOP and FOI-2DF methods of compression are 
both effective in redundancy removal, in addition to which they both require only 
relatively simple calculations. Figures 4-1 and 4-2 show detailed flow diagrams 
in which the computations are  expressed entirely in terms of addition, subtraction, 
division and comparison with zero. Section 4.4.3.2 describes the development of 

a central processing unit that will perform the necessary arithmetic operations, 
and shows how this central processor can be incorporated into a compression 
subwstem which fills all the requirements listed above. 
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4.4.3.2 Central Processing Unit (CPU) 

In discussing the implementation of the central processing unit, the FOI-2DF 
algorithm will be used as a specific example wherever necessary; it will become 
evident that the implementation of the ZOP will present no additional problems. 

The general philosophy in developing the CPU is to provide a general-purpose 
arithmetic unit which performs all the necessary calculations on a sequential basis, 
and to develop a programming subsystem whichperforms the necessary routing and 
sequencing functions 

4.4.3.2.1 Arithmetic Unit 

Figures 4-1 and 4-2 show that the FOI-2DF and ZOP algorithms, and indeed, 
most other algorithms, can be performed by the operations of addition, subtraction, 
division, and comparison with zero (combined with a subtraction, this permits com- 
parison of any two numbers). An arithmetic unit is required, therefore, which will 
add, subtract, or divide a given pair of numbers upon command and present the 
results in bi-polar form using a sign bit in the answer to indicate polarity. 
Because the detailed design of such a device is straightforward, i t  will not be dis- 
cussed here; the Arithmetic Unit will be considered as a functional building block 
in the development of the CPU. The relationship of the Arithmetic Unit to the other 
elements in the CPU is shown in Figure 4-9. Upon receipt of a signal upon one of 
the three input command lines, it  forms the sum, difference, o r  quotient of the 
contents of registers A and B, and stores the result in Register R1. 

4.4.3.2.2 Storage Registers and Selector Gating 

Figure 4-4 shows the configuration of the CPU. The reference data for a 
particular calculation (shown for the FOI-2DF algorithm) are  brought from storage 
to a set of registers, along with the new data point. Registers A and B are the 
input registers to the Arithmetic Unit, Register R1 is for the Arithmetic Unit 
result, and Registers R2, R3, and R are for temporary storage of intermediate 
results. 

4 
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The actual execution of the algorithm consists of sequentially executing the 
instructions shown in Figure 4-5. To do this, each instruction is broken down 
into elementary commands. For example, the instruction: Subtract Yt+n - Yt=Y 
would be executed by the following sequence of commands: 

a. Transfer Yt+n to A 

b. Transfer Yt to B 

c. Subtract 

This sequence leaves the result, AY, in R1. The actual transfer operations a re  
accomplished by control signals which are  applied to the source and destination 
gating. A transfer consists of gating the selected source register onto the com- 
mon data line, and gating the data line into the selected destination register. 
Arithmetic operations are accomplished by placing a signal on the appropriate 
input to the Arithmetic Unit. The actual sequence of commands which performs 
a complete algorithm calculation is generated in a Program Control subsystem. 

4.4.3.3 Program Control Subsystem 

A block diagram of the Program Control Subsystem is shown in Figure 4-10. 
It consists essentially of a Read-only Storage (ROS), and ROS Address Generator, 
and a Command Decoder. The ROS contains as many words as there a re  possible 
commands to be executed by the CPU. The extraction of a particular ROS word 
causes the CPU to execute that particular command. The command words are 
read out of the ROS in the correct sequence by the ROS Address Generator, and 
decoded into actual control signals by the Command Decoder. A typical ROS 
word format is shown below. 

SOURCE 
REGISTER DESTINATION ARITHMETIC MEMORY ROS OTHER 
IDENTITY IDENTITY COMMAND ADDRESS PER COMMANDS - 

4 bits 4 bits 2 bits sgn R1 3 bits 

2 bits 
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The command sequence required to execute a particular compression algorithm 
can be written from the detailed flow diagram. A section of a typical sequence, 
complete with ROS addresses, is given in Table 4-2. Each command in the 
sequence is identified by the address, which is made up of several parts: 

a. The algorithm being executed-In the system being considered there 
are four possibilities: 
1. FOI-2DF 
2. ZOP 
3. No compression 
4. Eliminate 

Two bits are required for this part of the address, which comes 
from the main storage. 
The state of control bits, C1 and C2, which are used to record the result 
of branch point decisions in the program. 
The actual step of the program being executed-This is simply an index 
register which advances one count after each command. The allocation 
of six bits to this section permits sequences having up to 64 commands. 
Thus, 10 bits are required for the ROS address in the system under 
consideration. 

b. 

c. 

The sequence of events in a typical calculation is initiated by a timing signal 
from the external system. This signal indicates that the required data has been 
placed in the registers, and the part of the ROS address which identifies the 
algorithm to be executed has been supplied from main storage. The index register 
is set  to step one, and the first  command in the sequence is read out of the ROS. 
This command is executed, and after its completion the index register is advanced 
and the next command is read out and executed, This continues through the entire 
calculation, until the last command in the sequence, which is a STOP command, 
indicates that the calculation is complete. 

It is evident from the foregoing description that this approach to system 
implementation offers considerable flexibility in the programs that can be executed. 
A single set  of commands is developed which operate upon a simple CPU. The 
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Table 4-2. Program Sequence-FOI-2DF Algorithm (Sheet 1 of 2) 

ROS Adress 

clc2 Index 

0 0 0 0 0 1  

0 0 0 0 1 0  

0 0 0 0 1 1  

0 0 0 1 0 0  

0 0 0 1 0 1  

0 0 0 1 1 0  

0 0 0 1 1 1  

0 0 1 0 0 0  

0 0 1 0 0 1  

0 0 1 0 1 0  

0 0 1 0 1 1 0  

0 0 1 0 1 1 1  

0 0 1 1 0 0 0  

0 0 1 1 0 0 1  

0 0 1 1 0 1 0  

0 0 1 1 0 1 1  

0 0 1 1 1 0 0  

0 0 1 1 1 0 1  

Algorithm 

0 1  

0 1  

0 1  

0 1  

0 1  

0 1  

0 1  

0 1  

0 1  

0 1  

0 1  

0 1  

0 1  

0 1  

0 1  

0 1  

0 1  

0 1  

Command 

Transfer Yt+n to A 

Transfer Yt to B 

Subtrad(R1 = y) 

Transfer R1 to A 

Transfer n to B 

Divide (R1 = S) 

Transfer R1 to A and R2 

Transfer Lmax to B 

Subtract (R1 = S1) 

Set C1 per sign R1 

Do not decode 

Transfer Umin to A 

Do not decode 

Transfer R2 to B 

Do not decode 

Subtract (R1 = S2) 

Do not decode 

Set C2 per sgn R1 
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Table 4-2. Program Sequence-FOI-2DF Algorithm (Sheet 2 of 2) 

- Note: At this point in the program the state of C2 

defines which main branch of the flow 
diagram is to be followed, and C1 is no 
longer needed. Two complete seta of inatruc- 
tions are needed from this point on, depending 
on C2. 

Command 

0 . 0  1 1  1 1  Transfer k to A 

0 1 0 0 0 0  0 0 1 Transfer yt+n to A 

0 1 0 0 0 0  Transfer n to B 

0 1 0 0 0 1  0 0 1 Transfer yt+n-l to B 

0 1 0 0 0 1  

0 1 0 0 1 0  0 0 1 Subtract(R1 =S*) 

etc., to end of program 
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sequence in which the commands are executed determines the nature of the cal- 
culation performed, and this sequence is determined by the ROS and its Address 
Generator. 

4.4.3.4 Compression Subsystem Description 

A functional diagram of the compression subsystem is shown in Figure 4-11. 
The principal features yet to be discussed are the Main Storage and its character- 
istics, the incorporation of the ground command subsystem, the Buffer Status 
control path, and the overall system operation, 

4.4.3.4.1 Main Storage 

The Main Storage contains for each sensor a data word which includes all 
required previous data, tolerances to be used under different buffer conditions, 
number of samples since the last transmitted sample, and compression 
algorithm presently being used for that sensor. The storage is addressed by 
the sensor identification word received from the external system. A typical word 
format for a FOI-2DF algorithm is described below. Al l  the required data is 
contained in a 55-bit word. 

yt 

yt+n-l 

Lmax 

25-32 'min 

K1 

K2 

K3 

K4 

K5 

Bits 1-8 

Bits 9 -16 

Bits 17 -24 

Bits 

Bits 33-35 

Bits 36-38 

Bits 39 -41 

Bits 42 -44 

Bits 45 -47 

Bits 48 -53 n 

Bits 5 4 , 5 5  Algorithm 
identification 

last transmitted sample 

previous sample 

lower slope limit 

upper slope limit 

tolerance limit 

tolerance limit 

tolerance limit 

tolerance limit 

tolerance limit 

number of samples since Y t 

4-32 



4 -33 



4.4.3.4.2 Adaptive Control 

An essential feature of an adaptive compression system such as the one 
being described is the ability to regulate the rate of data flow through the com- 
pressor in response to variations in data activity as reflected in the occupancy 
of the queueing buffer which stores the data for transmission. This regulation 
is accomplished in the proposed system by providing several different tolerance 
limits for  each data source. During periods of data activity, the tolerances will 
be increased, thus reducing the data flow, while during quiescent periods a 
decrease in tolerances will increase the data flow. This tolerance selection is 
accomplished by a multi-level control signal derived from the buffer queue 
length monitor. This control signal is essentially a direct control over system 
compression ratio, and it acts by selecting one of the tolerance values stored 
for each channel for actual use in the CPU calculation. 

4.4.3.4.3 Ground Control 

Provision is made for the ground monitoring station to select the compres- 
sion algorithms to be used in each channel, and also to command that a particular 
channel either be transmitted without compression or  eliminated entirely. The 
ground command is stored in the compressor along with its sensor address. 
Each input address to the main storage is compared with the command address, 
and when coincidence is detected, the commanded algorithm code is gated into 
the program control rather than the code in the storage. After the computation 
is complete, the new code is returned to storage, and the new algorithm is used 
until a change is commanded. Thus, the ground station has considerable control 
over the data compression system. 

4.4.3.4.4 Output Data Format and Sensor Identification 

The actual data stream being transmitted to the ground must contain certain 
information that is not required in a system which has no compression. Because 
the regular format has been destroyed, sensor identification must be transmitted 
with each data sample. Because the tolerance level being used is variable, it 
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must also be transmitted. To permit accurate time placement of the data, it is 
desirable that the main frame sync pattern be transmitted each time it occurs, 
with appropriate identification. If real time is transmitted as a data sample at 
a very low subcommutated sampling rate, then the time occurrence of any 
sample can be computed by counting the number of main frames from the last 
time data word. 

4.4.5 Summary 

This section has described a hardware implementation of an adaptive data 
compression system capable of executing the ZOP and FOI-2DF algorithms upon 
a multiplexed data stream of the type normally encountered in PCM telemetry 
systems. The system is flexible in its ability to apply different algorithms to 
different channels, and in responding to data flow, increases or decreases as 
reflected in the buffer activity. A ground command may alter the algorithm 
applied to a particular channel, or may cause a channel to be transmitted without 
compression o r  eliminated entirely. 

These features provide the system with the versatility that is needed in a 
compression system which is to be used with a variety of sensors and data types, 
and which can be reprogrammed to f i t  the requirements of different missions. 

4.5 PROGRAM FOR IMPLEMENTATION O F  RECOMMENDED 
SYSTEMS 

4.5.1 Phasing 

The program will be broadly divided into three phases: 

Phase I-System Design and Subsystem Specification 
Phase DI-Hardware Design, Fabrication, and Checkout 
Phase III-System Evaluation 

Phase I will be concerned with establishing the requirements for the overall 
compression system-the input data characteristics, the sensor types and 
statistical properties, sampling rates and algorithms to be implemented; also 
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the transmitter characteristics, the output format design, and the specification 
of interfaces between the data compressor and the adjoining system elements. 
This system definition will lead naturally into the preparation of specifications 
for the compression subsystem, and for the buffer and adaptive control charac- 
teristics. The end result of Phase I will be a detailed set of specifications for 
hardware development. 

Phase II will consist of the detailed design, fabrication, and checkout of a 
model of the adaptive data compressor. The end result of this effort will be a 
working model for verification of the concepts of adaptive compression. Also 
during Phase 11, a detailed and comprehensive evaluation plan will be prepared 
for use in Phase III. 

Phase IT1 will consist of an evaluation program for testing the effectiveness 
of the compression system in a live-data system. Key parameters to be studied 
will include: error rate in the reconstructed data; overall compression ratio 
achievable; effects of transmission channel errors,  optimum coding methods, 
transmission efficiency, etc. This phase will result in a final report which will 
include the final design of a spacecraft compression system. 

4.5.2 Task BreaMown 

This section will consider each of the phases described above in some 
detail, and will discuss the tasks which must be accomplished to support the 
overall objectives of the program. 

4.5.2.1 System Design and Subsystem Specification 

This task is concerned with detailed technical specification of the system 
to be implemented, and the effort will be directed toward the achievement of 
three objectives. 

a. Overall System Specification-The compression system must be 
designed around the characteristics of the spacecraft data system type 
to which it will be applied. The specification of the compressor will 
require a detailed study of the data source-the probable number and 
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type of sensors, multiplexing and formatting characteristics, the 
statistical parameters of the individual data channels, required accu- 
racies, and compression algorithms to be applied. In addition, the 
compressor output format must be carefully specified to be compatible 
with existing or  proposed data reconstruction facilities. The desirability 
of command links with either the astronaut or the ground to permit con- 
trol of the compressor characteristics must be considered. The entire 
system design must be guided by the requirement for maximum generality 
in the resulting equipment. 

b . Compression Subsystem Specification-Specification of the compression 
subsystem must include: main store characteristics, size, and cycle 
time; arithmetic unit requirements in terms of operation times, word 
lengths, and functions to be performed; local store and data flow charac- 
teristics; specification of the read-only store and its ancillary addressing 
and command decoding functions ; microprogramming; and input/output 
interfaces. 

c. Buffer Requirements and Adaptive Compressor Control Loop 
Definition-The effort supporting this task will interact strongly with the 
source data analysis undertaken in the overall system design. The system 
buffer requirements will be largely a function of the statistical character- 
istics of the data, as will the adaptive control loop parameters. The 
buffer and control analysis is a crucial item in the development of an 
effective compressor. The result of this task will  be a buffer design and 
specification of the control to be applied by the compressor in terms of 
channel priorities, accuracies, etc. 

4.5.2.2 Hardware Model Development and Test 

The objective of the hardware development program will be the construction 
of a laboratory model of a practical compressive telemetry system. Its functional 
operating characteristics will be stressed rather than its physical characteristics, 
however, where economically feasible, use will be made of components which will 
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be most easily adapted to a spacecraft environment. The system will be designed 
to accept ffliveff data and to operate in a functional environment which simulates 
as closely as possible that of an actual spacecraft data system. Its purpose will 
be verification of the feasibility of an adaptive compression system. The tasks 
supporting the main objective a re  outlined below. 

4.5.2.2.1 Compression Sub system 

The development effort for the compression subsystem can be divided into 
four parallel efforts which can be pursued somewhat independently. 

a. 
b. 
c. 
d. 

Central processor design, fabrication, and test 
Main store design, fabrication, and test 
R06 and microprogram design, development, and test 
Mechanical packaging, system integration, and testing 

4.5.2.2.2 Buffer and Control System, System Integration 

The hardware development effort involved in the buffer and control element 
design is minimal compared to that required for the remainder of the system. 
This overall task also includes the design and development of all system elements 
which do not fall into the categories of compression computer, buffer, or control 
system. This will include any interface equipment for input/output compatibility, 
also command interface elements. Also included is the integration of the system 
components. 

4.5.3 System Evaluation 

During the fabrication of the hardware model, effort will be directed toward 
preparation of a comprehensive evaluation plan which will permit the effectiveness 
of such a compressor to be measured by operation upon "realff data in a realistic- 
ally simulated operational environment. 

The parameters for evaluation will include: compression ratio as a function 
of peak and rms errors  in the reconstructed data, for various compression 
schemes; effectiveness to buffer and control in minimizing both data loss and 
blank transmission; optimum formatting schemes ; and evaluation of the system 
effectiveness for various data types. 
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Section 5 

RECOMMENDATIONS FOR FUTURE WORK 

This study demonstrated that no single compression method is "best" for 
all experimental data likely to be encountered in space telemetry systems. Two 

relatively simple aperture techniques (ZOP and FOI-2DF) provided the maximum 
compression of all the frpractical" methods simulated for all data considered. 
Because neither of the two aperture methods has a lcear advantage, it is recom- 
mended that a full-scale working model using both compression algorithms be 
implemented with stored-logic circuitry as presented in Section 4. 

The advantage accruing from a stored-logic system is the flexibility in 
applying different compression algorithms to different data on a time-division 
basis. In addition, other algorithms of similar complexity can be implemented 
by simply changing the stored-logic memory. 

The output buffer is a very important unit in an adaptive compressive telem- 
etry system. Equations were derived for a steady-state analysis of the buffer 
design parameter. Also, it was shown how a large reduction in required buffer 

capacity could be obtained by employing adaptive control of the compression 
algorithm aperture for nonpriority sensor data. 

To complete the buffer design, a transient analysis is necessary to deter- 
mine the necessary rate of change of aperture for specified buffer size. This 
information is also necessary to estimate the resultant increase in rms  distortion 
of nonpriority data. The buffer study should be continued as part of an overall 
system implementation. 

The simulation of the recommended aperture compression methods revealed 
that rms  distortion was approximately a linear function of aperture for the data 
tested. However, this does not assure all data would behave in the same manner. 
In addition, one of the main limitations of the interpolation compression method 
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was the *9unpredictable*1 peak er rors  in the reconstructed data. Therefore, a 
monitoring system should be studied for possible inclusion in an adaptive com- 
pression system. The stored-logic system concept would appear to provide the 
capability of sampled peak and/or rms  distortion calculations without added 
complexity. The sampled distortion calculations could be done on a Monte Carlo 
basis to reduce the required number of samples, and the calculations could be 
used to control changes in Compression algorithms o r  in aperture values. 

The effect of transmission noise on the fidelity of the received data with 
and without compression was analyzed. This analysis was done for two com- 
pression methods: the Zero-Order Predictor, and First Order Interpolator- 
Two Degrees of Freedom. Expressions for the rms  er ror  in the reconstructed 
signal as a function of the bit-error probability were developed for e r rors  in 
either the sensor word o r  data word. The noisy transmission channel should 
be simulated to determine the effect of noise on the reconstructed signal for 
various compression algorithms e The effect on compression ratio and recon- 
struction fidelity should also be studied when error  correcting coding is used 
on the transmitted data. 
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Appendix A 

ANALOG AND HYBRID IMPLEMENTATIONS 

This appendix presents a discussion of a number of analog and hybrid tech- 
niques for implementation of compression algorithms, Paragraph A .1 discusses 
possible analog compression configurations in which the compressor is imple- 
mented in each sensor line, ahead of the multiplexer and digitizer, and mentions 
the problem areas in designing such a system. A description of a hybrid arith- 
metic unit which can replace part of a digital compressor for certain algorithms, 
is contained in A.2. 

A. l  ANALOG COMPRESSION TECHNIQUES 

A. l . l  System Aspects of Analog Compression 

The main elements in a digital compressive data system are a multiplexer, a 
digitizer a data compressor, and a data buffer and transmitter. The general 
configuration is show@ in Figure A-1 . The compressor in this system follows 
the digitizing unit, which is constrained to be common to a number of data chan- 
nels by size and weight limitations, and thus must follow the multiplexer. An 
analog compression unit must, however, precede the digitizer and will, in 
general, be implemented in each channel separately (although there may be cases 
where the compressor could be common to a number of channels). The essential 
difference between analog and digital compression techniques is that while the 
digital approach seeks to eliminate data points already digitized and stored, the 
analog approach is to prevent an unnecessary or redundant sample from being 
stored at all. The decision process as to whether data is redundant or not is 
made ahead of the digitizer, by operating on an analog signal. The important 
aspects of an analog compression scheme are, therefore, clearly: 
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1. The development of an analog decision-making process which will, 
upon quai-instantaneous evaluation of a signal, determine whether or not a 
data paint need be transmitted or, alternately, establish a sampling rate. 

2.  The development of a multiplexing and digitizing system that will be 
responsive to varying sampling rate requirements in each data channel. This 
will include provision for sensor identification and time data to be inserted as 
required in the transmitted data stream. These two aspects of the problem are 
discussed below. 

A .$ .2 Possible Multiplexing Approaches 

In an analog compression system where the compressor is implemented in 
ea& channel separately, the transmission rate for each channel is established 
by that ahannel's compressor, independently of the activity of the other channels. 
The multiplexer must, therefore, be capable of varying the sampling rate in each 
channel independently. There @re two general ways of accomplishing this, 
depending primarily upon the technique of compression that is used. In either 
approach there must be a sample rate control signal of some type sent from 
eqch chaqel to the multiplexer. The system configuration is shown in Figure A-2. 

The WQ approauhes differ in the nature of the sample rate control signal which 
is transmitted to the multiplexer. In one method, each channel may be sampled 
at any one of a discrete number of sample rates ; each a multiple of the basic 
multiplexer rate. The sample rate control signal in each channel, which may be 
either analog or digital, is capable of taking on as many values as there are 
discrete sampling rates. 

The multiplexer proceeds as follows. Each frame begins by sampling all 
cbnnels callipg for maximum-rate sampling. Every second frame continues 
by sampling all channels calling for half-rate sampling. Every fourth frame 
includes those channels calling for one-fourth rate sampling, and this process 
continues through as many frames as there a re  sampling rates. After the com- 
pletion 9f the last frape, the cycle begins again. Every channel is scanned 
during every frame, but only those channels calling for the appropriate sampling 
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rates are sampled during any particular frame. The second sampling method is 
used when the compression criterion is such that each channel simply indicates 
whether or not it should be sampled at the next opportunity. In this approach the 
multiplexer simply scans each channel and samples those which indicate through 
the sample rate control signal (in this case a binary indication) that non-redundant 
data is available. Both of these techniques result in a variable frame length, and 
it is understood that sensor identification and time data must be added to each 
message. An alternate approach to adapting the sample rate in the multiplexer 
proper is to allow the multiplexer and digitizer to operate at a fixed rate, thus 
sampling and converting every channel during every frame as would be the case 
in a qon-compressive system. The sample rate control signal generated by the 
compressor in each channel would by-pass the multiplexer and operate directly 
on the pre-transmission buffer, either permitting or inhibiting buffer loading 
during that particular channel time, This approach may be simpler, however, 
a study of the hardware factors involved will be required before any decision 
can be reached. 

A.1.3 Analog Compression Criteria 

The basic restriction that is imposed upon any analog compression technique 
is the same as that for digital approaches; namely, that any decision to either 
change sample rates or eliminate samples must be done such that the receiving 
terminal is aware of the change or can supply the deleted sample on the basis of 

data it already has. Since the receiver data is in discrete form, compressor 
redundancy determinations must be made using the same discrete values, hence 
8 memory capacity of the sample-and-hold variety is required for sample elimi- 
nation techniques. For a variable sample rate compression scheme, the current 
sample rate can be digitized and transmitted as part of the data word for each 
channel, or this information may be included only when a change in sample rate 
occurs. 
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A.1.3.1 Variable Sample Rate Compression 
In this compression technique, the sample rate is varied discretely in 

response to a measurement of the difference between the present value of the 
parameter and the last transmitted value. When the difference exceeds a thres- 
hold associated with the sample rate, the rate is increased and a larger threshold 
established. The analog implementation of this technique is shown in Figure A-3. 
Each time a, sample is taken by the multiplexer, the sample-and-hold memory 
stores the transmitted value. This value is continuously subtracted from the 
current value, and the difference is compared with a threshold value which is 
determined by the present sample rate. The sample rate is increased whenever 
the threshold is exceeded, and is reduced when the threshold is not exceeded for 
two successive samples. The memory is cleared and re-sampled each time the 
channel is sampled by the multiplexer, therefore, the threshold computation is 
always made by comparing the present value with the last transmitted value. 
This compressor makes use of the first multiplexing approach, where the sample 
rate control.signa1 is capable of taking on any of a discrete number of states, 
each one corresponding to a particular sampling rate. 

A.1.3.2 Linear Prediction and Difference Coding 

Figure A-4 shows a possible analog implementation of the prediction and 

difference computation. Two memory stages are  required to implement the 
prediction, which is simply a first-order extrapolation of the form: 

y(t) = y(t-1) -E- f [e(t-2) - e(t-1) ] dt 
t- 1 

More accurate predictions could be used, with corresponding increase in equip- 
ment complexity. This approach requires somewhat more circuitry that the 
variable sample approaoh or the aperture techniques, but it makes use of a 
fixed-rate multiplexer. 

A-6 



A-7 



A-8 



A.1.3.3 Aperture Techniques-Prediction 

The general approach of the aperture techniques is to predict the present 
data point and to compare the predicted point with the actual point. If they agree 
within a predetermined er ror  tolerance, the point is judged redundant, and is 
deleted. The prediction must always be made on the basis of data available to 
the ground terminal, so that uncontrollable errors  do not occur in data recovery. 

An analog version of the zero-order, floating tolerance band aperture com- 
pressor (ZOP) is shown in Figure A-5. A single memory circuit retains the 
last value transmitted, and subtracts it from the present value. The difference 
is compared with a predetermined error  threshold. If the difference exceeds 
the threshold, the data is sampled and transmitted during the next multiplexer 
frame in response to the sample rate control signal which is sent to the multi- 
plexer by the threshold circuit. The second, and simpler, multiplexer approach 
is used in this compression technique. The relative simplicity of this imple- 
mentation is quite attractive, particularly when it is considered that this was 
found to be the most generally effective technique of all the aperture schemes 
tested, 

A first-order floating tolerance band aperture technique is shown in Figure A-6. 
The prediction used is a first-order polynomial approximation identical to that 
used in the difference coding compressor. The tests made on actual data indicate 
that this technique is not as effective as  the zero order method, possibly due to 
the inherent difficulty in making a prediction in a noise environment. 

A.2 A HYBRID COMPRESSOR 

This section gives a brief description of an analog-digital hybrid computing 
technique which may have hardware advantages over completely digital imple- 
mentations for certain types of compression algorithms. 

A .2 .l. Signal Conversion 

The principles and hardware techniques of analog-to-digital and digital-to- 
analog signal conversion are well known, and will not be discussed in detail here. 
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Some general remarks must be made, however, in order to establish a frame- 
work upon which a discussion of the possible advantages of hybrid implementation 
can be based. Certain inherent characteristics of each type of computation are 
generally recognized. Digital computation can be made arbitrarily precise, and 
digital memory implementations are less expensive and more reliable than their 
analog counterparts. While sacrificing a certain amount in precision, analog 
computation techniques generally have a speed advantage over digital, being 
capable of providing solutions to complex problems essentially in real time. 
Conversion from digital to analog is quite easily implemented in hardware, 
while analog to digital signal conversion is generally complex and expensive. 
Since the sampled data in a telemetry system is normally digitized and stored, 
and is thus available to the compressor in digital form, the type of computation 
which would benefit from hybrid techniques would be one in which the digital 
contents of certain storage locations are converted to analog, a computation 
performed, and the results of the computation expressed as a logical decision 
rather than a number. If the result of the computation were a number to be used 
in future computations, the necessity would arise for either an analog storage 
device or a reconversion to digital, both of which are undesirable. Most com- 
pression techniques fall into this category, and therefore are not conveniently 
implemented in hybrid form. All predictions which a re  made on the basis of 
previously predicted points (as required by the receiving terminal), such as the 
optimum linear predictor , and all higher-than-zero order polynomial predictors, 
are of this type, as a re  all interpolation methods. For two of the compression 
methods which have been studied, i.e., the variable sample rate and the zero- 
order predictor, the necessary computation consists of taking the difference 
between the present data point and the last transmitted point, and making a 
logical decision as to a course of action based upon whether this difference does 
or does not exceed a predetermined threshold level. There is no requirement 
in either of these two algorithms for either reconversion to digital or for analog 
storage, hence they are particularly suited to being implemented in hybrid form. 

The hybrid implementation of the compression algorithms has the same 
general configuration as does a digital compressor described in Section 4.4 of 
this report. 
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The hybrid section replaces the Central Processing Unit in performing the 
arithmetic operations. Figure A-7 shows a hardware implementation of the 
ZOP algorithm computation and the threshold determination using hybrid cir- 
cuitry. The contents of the yt, yt+n, and K registers are converted to analog 
form in the conventional manner, by use of weighted resistive summing networks. 
The aperture value, K, is also stored, since it is adjusted as a function of out- 
put buffer activity. The analog difference between the yt and yt +n registers is 
compared by threshold circuits with both the positive and negative of K. The 
threshold circuits are such that the output is a binary one if input 1 exceeds 

input 2, and a binary zero, otherwise. The gated output is one if 1 yt - yt +n 1 < K ,  
and zero, otherwise. Thus, this hybrid circuit accepts digital inputs, and pro- 
vides a binary decision as  its output, while the internal computations a re  in 
analog form. This approach makes maximum use of the desirable features of 
both types of computation, and results in an efficient hardware implementation, 
although it is quite limited in its capabilities. 
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Appendix B 

ADAPTIVE ANALOG LOW-PASS FILTERS 

This appendix documents the work which was done during the study on the 
subject of analog low-pass filters. This investigation is an outgrowth of the 
study of fixed sampling rate compression methods. In fixed sampling near the 
Nyquist rate it is sometimes desirable to pre-filter the signal before sampling 
to eliminate aliasing errors.  For a signal which has a varying bandwidth, it 
may also be desirable to vary the cutoff frequency of the pre-filter in an adap- 
tive manner. This appendix is intended to amplify on low pass filter theory, 
and to discuss possible realization methods which could be used for adaptive 
filtering . 

B.l APPROXIMATION OF LOW-PASS CHARACTERISTICS 

The two essential steps in the network synthesis process are  approximation 
and realization. The approximation procedure consists of developing the realiza- 
ble transfer function that most closely approximates the desired transfer function. 
The desired transfer function for a filter network can be expressed in any of a 
number of ways. The most common a re  given in terms of voltage transfer ratio, 
which is generally specified in terms of amplitude, phase, or both. In the case 
of the data signal prefiltering requirement, the basic objectives are to realize 
as closely as possible the amplitude characteristics of the ideal low pass filter. 
The filter phase response is not particularly important for this application, as 
long as it does not become excessive in the passband. There are two types of 
functions which are commonly used in low pass filter design. Each is derived 
using a different approximating criterion. The first to be considered is the 
Butterworth function. The basic steps in the derivation of the Butterworth 
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approximation are first, to express the approximating amplitude function as a 
Taylor series expansion, with coefficients Bi, about the point o = 0. The pass- 
band error  between the approximating function and the desired function (which 
is normalized to unity amplitude) is then written as a Taylor series in terms of 
the Bi. If the approximating amplitude-squared function is: 

1 
2 4 2n 

= 2 1 I F(jo) l2 = G(o ) = 
W2) 1 + BIW + B2U + a * * +  BnU 

Then the e r ror  function in the passband is: 
2 4 2n B1u + B20 + a * * +  Bn@ 

1 + B1w + B2w + * e - +  Bnw 
2 P(02) - 1 - - 

2 4 2n 1 - G(o ) = 
P(w2) 

2 In order for G(o ) to approximate the ideal characteristic as closely as possible, 
the maximum possible number of e r ror  derivatives at w = 0 must vanish. It 
can be shown that in order for the k'th derivative of the error  to be zero, it must 
be true that Bk = 0 for an n'th order approximation of the low pass characteris- 
tic, therefore; 

2 1 G(o ) = 
1 + Bnw2n 

for Bn = 1, this becomes: 

which is the familiar Butterworth low pass amplitude characteristic. 
to realize this amplitude function, it must be expressed as  a rational function 
of s such that the pole locations can be determined. It can be shown that the n 
poles of this function lie equally spaced on a unit semicircle in the left half s- 
plane, and are  symmetrically placed with respect to the real axis. The general 
expression for this function is: 

In order 
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1 

1 + blS + b2s 2 n F(s) = 
+ * . e +  b S n 

where the denominator is known as the n'th order Butterworth polynominal. The 
characteristic feature of the Butterworth approximation, which arises directly 
from the nature of the Taylor expansion, is that the e r ror  is minimum at the 
point about which the expansion is made (o = 0 for a low pass filter), and the 
approximation is less and less accurate at greater distances from this point. 

A second type of approximation is the Tchebyscheff approximation. This 
technique seeks to distribute the e r ror  evenly across the passband rather than 
favoring one end as the Butterworth approach does. In the Tchebyscheff approxi- 
mation, the derived function oscillates about the desired flat response with equal 
peaks both above and below. The resulting amplitude response which minimizes 
the error  peaks is: 

where e is the peak-to-peak error deviation, and where Tn(w) is known as the 
n' th order Tchebyscheff polynominal, and is defined as: 

-1 Tn(o) = cos(n cos o) 

It is found that the pole locations of the function of s corresponding to this 
amplitude function a re  distributed along a semi-ellipse in the left half s-plane, 
whose major axis is the imaginary axis and whose minor axis is the real axis. 
For given values of n and e ,  the pole locations are  found by a simple geometri- 
cal construction. 

The Butterworth and Tchebyscheff low pass approximations each have 
features which may be applicable to particular data types. One criterion of 
choice between the two for prefiltering applications is the ratio between average 
spectrum bandwidth and maximum bandwidth. For a data source where most of 
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the energy is concentrated near the low end, a Butterworth filter will give the 
best results, whereas for a source with a more uniform spectrum, the distributed 
error  features of the Tchebyscheff design may be more desirable. The fact that 
the Butterworth filter has somewhat less oscillatory transient response, however, 
makes it probable that it would be more likely to be chosen for general low pass 
applications. 

While this discussion has mentioned only two approximation criteria, it 
should be noted that there are many others; for example, the amplitude approxi- 
mation could be made on a least squares error  basis, or a new class of criteria 
could be derived involving phase response (delay characteristics) or transient 
response shape. Since this application is concerned primarily with amplitude 
response, these subjects will not be discussed except to point out their existence 
for specialized applications. 

B.2 REALIZATION OF LOW-PASS CHARACTERISTICS 

The preceding discussion of the Butterworth and Tchebyscheff approxima- 
tions to a low-pass filter revealed that the poles of both filter types of order 2n 
or 2n+l occur in n conjugate pairs or n conjugate pairs plus one pole on the real  
axis. This discussion has assumed no finite zeros in the response characteris- 
tic, although it could be extended to cover finite zeros. One approach to the 
realization of a transfer function consisting of a number of conjugate pole-pairs 
and at most one negative, real, pole is to realize a single "building block!' having 
one conjugate pole-pair, and to place these blocks in series, with appropriate 
component values to correctly place the pole-pairs. This technique cannot be 
used directly if only passive RLC components are permitted in the realization 
because of the impedance matching problem between "building blocks ,I) and 
classical synthesis techniques must be employed, The use of active RC circuits 
for realizing the building block makes it possible to approach the required high 
input impedance and low output impedance that is mandatory if the building block 
method is to be successfully used. The use of RC circuits also eliminates the 
necessity for large, heavy inductors for low frequency filters. 
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The transfer function corresponding to one conjugate pole-pair and no 
finite zero is: 

k where Sk = - c + j w  1 - 
- 2  2 k 

This can be written in the form of the transfer function of a damped, second- 
order system: 

2 
0 

where w is the cutoff frequency and t is the damping factor. The familiarity 
of this function in the synthesis and simulation of dynamical systems makes it 
natural to seek a realization in terms of analog simulation networks, Several 
have been investigated, and the most attractive both in terms of component 
economy and in ease of parameter variation is the operational amplifier network 
shown in Figure B-1. 

C 

1 

R2C2 
1 

R2 C2 
el 

The realization of a Butterworth lowpass circuit of order 2n requires the cas- 
cading of n circuits of this type with appropriately placed pole positions. 

B.3 REALIZATION OF ADAPTIVE LOW-PASS FILTERS 

The realization problem for an adqtive filter - that is, one whose characteristics 
can be varied in a predictable manner by means of an external control signal - may 

be divided into two parts. The first requirement is to realize a circuit configuration 
which gives the desired filter characteristics and which lends itself to characteristic 

B -5 



Figure B-1. Adaptive Analog Filter "Building Block" 
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variations by mans of a number of parameter changes. The second part of the 
problem is to develop a hardware technique that will achieve the desired component 
variation in the most economical and reliable manner. 

There are two general approaches to the variation of filter parameters in a 
given data channel. One is to switch the parameters between discrete values, and 
the second is to vary them continuously in linear response to an applied control 
signal. A brief consideration of the necessity of transmitting not only the data 
itself, but also sufficient information concerning the filter bandwidth (and Sam- 
ple rate, if applicable) to permit reproduction of the original signal leads to the 
conclusion that the switched characteristics are  preferable. With the filter 
capable of assuming only discrete variable, predetermined characteristics, the 
only information which must be transmitted is the time of occurrence of a change. 
Alternatively, two, or  at the most, three bits in the data word could be reserved 
for transmission of the filter bandwidth. Two bits would permit up to four dis- 

crete bandwidths to be used, which is probably sufficient for most data types, 
The implementation of the discretely variable filter can also follow one of 

two possible approaches. The different filter characteristics can be assumed by 
physical switching of discrete components, either by solid state or mechanical 
means, or it may be more attractive and more versatile to use a filter whose 
parameter effective values a re  varied continuously by means of gain-controlled 
elements. In the latter approach the control voltage would be permitted to 
assume only discrete values, thus the filter characteristics would in effect be 
discretely switched. The realization of a sixth order Butterworth filter, for 
example, would require three adaptive building blocks. It is feasible to consider 
a filter of this type being capable of changing its overall response nature from 
Butterworth to Tchebyscheff by means of external control signals, 

The foregoing conclusion of the probable desirability of switched character- 
istics is based upon the assumption that the entire adaptation process takes 
place in the spacecraft, and that for the data to be successfully recovered com- 
plete information on the current status of the adaptive system must be transmit- 
ted to the ground station. A further possibility is that the adaptation of filter 
characteristics might be done for various experimental purposes on command 
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from the ground. Since knowledge of the filter characteristics is under these 
circumstances already available at the receiving terminal, the restrictions under 
filter adaptation imposed by the desire to conserve down-link capacity a re  re- 
moved, and continuous control of the filter characteristics becomes quite 
practicable. 
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Appendix C 

BUFFER ANALYSIS 

C.l INFINITE LENGTH SYNCHRONOUS BUFFER 
WITH BINOMIAL INPUT DISTRIBUTION 

This analysis begins with the single channel, infinite length, buffer with 
constant service time and binomial input distribution. This is a good model for 
a large synchronous buffer with stationary input data. After considering this 
model, and investigating the effects of parameter variations, consideration will 
be given to finite length buffers and methods of controlling them. 

Most papers on buffer design have considered the data inputs to be Poisson 
distributed. This yields a conservative buffer design since the Poisson is the 
"most random" of possible discrete input distributions. However, in any practical 
attempt at optimization, one must know the cost incurred in using the easier to 
analyze conservative model. The Poisson distribution allows discrete inputs to 
appear anywhere over a time interval; whereas, for synchronous buffers the data 
may o r  may not appear at discrete time instants (neglecting clock jitter). There- 
fore, the binomial distribution is used to describe the probability of input events, 
assuming that the buffer output clock rate is commensurate with the buffer input 
clock rate. 

The expected queue length (average f i l l  for an infinite length buffer) for 
arbitrary input and holding-time (buffer output word period) distributions is 
derived in Reference 1, p. 336. We will therefore begin with Equation (23-4) from 
Goode and Macho1 which assumes that buffer f i l l  transients have ended and that 
the system is in a state of equilibrium with a stationary input process. 

c -1 



2 E(r ) - 
Y p f l  E(n) = p + 

2 0  - P) 

where: 

n = number of entries in buffer immediately after a buffer output 

p = m/M (pc  1 for equilibrium to be attained) 
m = mean number of inputs per unit time 
M = buffer output clock rate (events per unit time) 

1 r = number of input events in time T = E 

Z data bits into ACT , and consider cp = 2 data bits out of ACT Now, define compression ratio: 

the probability P of a nonredundant data sample point appearing at a time mark at 
the output of the compressor and feeding into the buffer. Over the time span for 

1 which @ is measured, P = - . cp 
T 

At Define C = - (C is an integer), where T is the buffer output events period 
and At is the buffer input event period. Note that C is the ratio of input to output 
transmission rates. The term l!event'* is used rather than "word" because different 
compression methods require different numbers of bits per nonredundant samples, 
and the buffer analysis is intended to be sufficiently general to include all methods. 
This will be of importance when parallel and serial transfer between compressor 
and buffer a re  considered. 

Therefore, the probability of r inputs in time T becomes: 

C The expected value for the binomial distribution is: E(r) = CP = q- ; and the 
variance u (r) = C P ( l  - P). 2 

The mean number of inputs per unit time: m = EO = ; therefore: CAt $ A t  
= E(r). Since: u (r) = E(r ) - E (r), we have: 2 2 2 

F p = m/M = 

(3) 
2 E(r ) = C P ( l  - P) - (CP)2. 

c-2 



Substituting Eq. (3) into Eq. (l), and letting P = , we obtain: F 
p2 - PhP E(n) = = p + 
2(1 - P )  (4) 

This function is plotted in Figure C-1 for several values of C. 
It is of interest to compare this result for the binomial input distribution 

with the result Goode and Macho1 obtain for the Poisson input distribution with 
constant holding-time (fixed output clock rate). 
From Eq. (23.5) of Reference 1: 

(5) P 2  
Ep(n) = P + 2(1 - p )  

Thus, for large compression ratios the results coincide. 
Consider the reduction in expected buffer f i l l  between the binomial and 

Remember that p = <1 Poisson cases. The difference is: 2+(l/p - l). 
for stability. Now compute the percent difference in the expected buffer fill: 

1 
T 

In the limit as  p -+ 1, AE* - '0°% which for @ e 10 yields an e r ror  greatbr 9 
than 10 percent. It is later shown that it is desirable to operate the buffer with p 
as close to 1 as  is possible. From the computer simulation of compression methods 
it is known that @ < 10 for most of the test data compressed with resulting peak 
error  of 1 quantum level. Therefore, in designing an optimum buffer, the binomial 
input distribution should be used rather than the Poisson, even though the Poisson 
is more tractable. 

Having found the expected buffer f i l l ,  consider the rate of change of 
@. Substituting p = _c into Equation (4) and takihg the derivative with 
to cp,  we obtain: 

cp 

dE(n) - - 2 C 4 p  + 1 - 41 - C2(C + 1) 

d@ 2@2(@ - Q2 

9 

E@) with 
respect 

(7 1 
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Then, multiplying by Cp/E(n), we obtain a sensitivity function S ( 6 )  of E(n) for 
small changes in Cp. That is, S ( 6 )  is the percent change in E(n) per percent 
change in Cp. 

1 - c  C(C + 1) -l]. 

Cp 
2Q, - 3C - 1 + 

A i h  sea = m= 

S{g) is plotted versus Cp for several values of C in Figure C-2. The important 
thing to consider is the sharp break in the sensitivity curves near Cp = C + 1. 

Since C is the ratio of input to output transmission rates it would be desirable for 
any average compression ratio to operate with as high a C as possible. This would 
minimize the probability of transmission error  (more time per bit) and reduce 
transmission bandwidth. However, it is evident that as - = p + 1, the expected 
buffer f i l l  increases rapidly. Not only does the f i l l  increase, but it increases at 
a rapidly increasing rate. Thus, for C = 4, and Q, = 4.2, a 1% change in Q, results 
in a 20 percent change in the expected buffer content after equilibrium is regained. 

Only the quasi-stationary condition of small changes in compression ratio has 

C 
Cp 

been considered and the effect after equilibrium has been attained. For control 
design considerations the transient conditions should be examined to determine 
the rate that ACT parameters must be modified to prevent overflow and underflow. 
This will be considered in more detail for the finite length buffer. 

The important conclusions obtained from the infinite length buffer are the 
need to use the binomial input distribution for optimum buffer design, and the 
sensitivity of average buffer fi l l  to the input-output transmission ratio C. The 
analysis will now be extended to the practical case of the finite length buffer, 

C.2 FINITE LENGTH SYNCHRONOUS BUFFER 
WITH BINOMIAL INPUT DISTRIBUTION 

Beginning with Eq. (11) of Reference 2 ,  let P(n) be the probability that n . 

events are stored in the buffer immediately after an attempt to remove an entry. 
Pr(r 2 x) is the probability that more than x events are  fed into the buffer during 
output event period T. Then: 
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P(n-1) Pr(r 2 2) + P(n-2) Pr(rl  3) P (r=O) P(n) = 
r 

+ . . + P(0) Pr(rL n+l) , (9) 1 
for 15 n 5 L - 1, where L is the buffer length in llevents.ll 

Now, for the binomial distribution, 

C -r P (rLx) = r 1 

r=x 

C and Pr(r=O) = (l-P) ; therefore, 

This, of course, is a recursive relationship in P(n), and holds for infinite and 
finite length buffers. To solve for P(n), we must first determine P(n=O). 

For an infinite length buffer, the probability of removing an entry is 
simply p. For the finite length buffer the probability is reduced by the amount 
of overflow. Calling the fractional event loss R for the finite buffer, P(Removing 
an event) = p(1-R), and P(Not removing an event) = 1 - p(1-R). Now, an event 
will not be removed only if the buffer became empty (or was empty) at the last 
removal time, and no arrivals occurred before the removal attempt being con- 
sider ed. Therefore: 

1 -P(l-R) - 1 -p(l-R) - 
P,(r=O) P(n=O) = 

for the binomial distribution. 
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It still remains to express the fractional event loss R in terms of buffer 
length L. We shall use the result derived in Reference 2 and substitute P(n) 
for the binomial input distribution. From the reference: 

(1 - PI 
P R =  

where Pfin) is the probability of queue length n in the infinite length buffer. It 

can be shown that P(n) = +ep]PI(n). 
Pfin) for n # 0 is expressed in Equation (10). For n = 0, Equation (11) with 

R = 0 is used. Finally, after substitution and simplification, we obtain the follow- 
ing set of equations for the finite buffer of length L in terms of Pfin): 

L-1 
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Expected value: 

E(n) = 

Variance: 

02(n) = 

r 1 

These relationships were programmed for digital computer solution for 
representative values of R, C, and @. The results were ueed in Figures 1 to 4 
in Section IV-3. 

Before considering data transfer between the compressor and the buffer and 
methods of controlling the buffer, consider the following problem of buffer design. 
It would appear desirable to design the buffer such that the probability of over- 
flow equals the probability of underflow (no entry available during a readout 
interval). The probability of no readout is P (Not removing an event) = 1 -p(l-R); 

the probability of an event overflowing the finite buffer is P (overflow) = R. 

(18) Let: 1 -p(l -R) = KR, K some constant. 

Then, p = - l - K R < l  1 - R  for equilibrium to occur. (19) 

Therefore, K > 1,  which indicates that without added control the probability of 
blank output periods must be greater than the probability of overflow. K can be 
made as close to one as desired, however, the cost is a larger buffer for the same 
compression ratio @. This can be seen in Figure C-1 for the infinite buffer. The 

expected buffer content increases rapidly as p = C/@+ 1. 
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The above results, of course, are intuitively obvious from the definition of 
mean number of input events per unit time 

buffer output rate P =  

C.3 DATA TRANSFER FROM COMPRESSOR TO BUFFER 

The transfer of data from the compressor to the output buffer is considered 
here. The previous analysis has been in terms of compression ratios and input- 
output transmission ratios. It will be shown that the analysis holds for both 
serial and parallel data transfer to the buffer. 

Consider an a! bit sample into the Compressor as an event occurring in 
time At. After compression, all nonredundant samples appear as  p bit events 
occurring in time At. p will usually be greater than a because time and sensor 
tags may be required at the output of the ACT. In any case, the time per event 
must be the same at the input and output; otherwise a buffer would be required 
(in addition to the buffer we are considering). 

The actual bit rate of transmission between the compressor and buffer may 
be greater or less than that into the compressor depending upon whether serial 
or  parallel transfer is used. For both cases, the compression ratio - - 

Zdata bits into ACT = [ 'ssples in . The probability of an ' = Zdata bits out of ACT /3 Zsamples out 
event or sample appearing at the input to the buffer in a A t  period is: 

= -  a 
Zsamples in P @ "  

Thus, in the previous analysis, the compression Zsamples out P =  

ratio would have to be modified by the factor p/a since it makes its appearance 
through the binomial probability of occurrence P. 

Note also that the ratio p / a  appears in the ratio of transmission rates with 
and without compression: 

Bits per sec. with compression - - p 
Bits per sec. without compression a /At  

C.4 BUFFER CONTROL 

There are several parameters at the designer's command in specifying the 
"optimum" ACT for a given mission. Some are more readily controlled than 
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others. For example, p = C/$ so that changing C and/or $ will vary p .  

However, if C is changed by modifying the transmission rate out of the buffer 
there results a difficult control problem at the receiver station. 

data sampling rate. Adaptive sampling has been considered as a possible data 
compression method but has been shown to be inferior to the zero and first order 
interpolation methods. Thus, C will be considered a fixed design parameter; a 
parameter to be optimized and then considered constant. 

Changing C by modifying the input event period At essentially changes the 

Compression ratio $ and buffer length L are the remaining buffer inde- 
pendent parameters. Probability of overflow and underflow will be considered 
dependent parameters. 

Obviously one does not change buffer length during a mission to prevent 
data loss as the data changes its characteristics. However, the buffer designer 
needs a trade-off function between cost of buffer length for a maximum allow- 
able R (fractional event loss) and cost of adapting $ (in resulting data error  as 
well as circuit costs). 

Therefore, expressions are required for the change in overflow probability 
as a function of L and $ . From Equation (12) we have: 

Since buffer length change is constrained to integral values, we have: 

AP(overflow) - - AR(L) - - [R(L+AL) - R(L)] 
AL AL AL 

-l-p 
- P f i  

c-11 



For incremental change in L(AL = l ) ,  we obtain, after some simplication: 

AI?( overflow) 
A L  

AL=l 

where P L is obtained from Equation (14) with n = L. Io 
For R << 1, Equation (22) reduces to: 

I AP(overflow) 
A L  

L=l 

Now consider the change in the probability of overflow as a function of com- 
pression ratio Cp. We have: 

From Equations (14) and (15): 

L 

Equations (21) and (24) can be solved graphically from the computer solutions 
of Equations (13) through (17). 

Application of Equation (24) is made easier by the observation that compres- 
sion ratio Cp is approximately a linear log function of peak error  (aperture) K for 
the ZOP and FOI - 2DF compression methods simulated on a digital computer with 
test data. 
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In addition, both methods have approximately the same slope for a particu- 

lar type of data. Thus, for the methods considered an adaptive discrete change 
in aperture K wi l l  result in a known change in Cp. 

Therefore, for a particular method with known Cpl, and $, we have: 

Thus: 

where the slope m depends upon the data being compressed. 

from 0.3 to 1.2. This means that for an increase in aperture by afactor of two 
(which yields doubled peak error) the new compression ratio lies somewhere in 
the range: b.2  Cpl 5 Cp2 5 2.3~pJ. 

For the five types of data considered in this report, the slope m ranged 

C.5 AVERAGE COMPRESSION RATIO T FOR MULTIPLEXED 
SENSOR DATA 

In determining buffer requirements for multiplexed sensor data, it  becomes 
necessary to consider the system average compression ratio +. In examining 
only stationary systems, the expression for 6 in terms of individual sensor 
compression ratios 9. is quite simple. 

1 
Let each sensor compression ratio over message time T be: 

Ni cy. N. 
1 1  = - = -  - I: samples 

@i - C samples sent Ni PiNi * 

Then, for S sensors, the average compression ratio ;;f; over time T becomes: 

2 zsamples  
$ =  i=l 

zsamples  sent 
i=l 

(27) 
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If we let: N. = miN, where mi is the number of appearances sensor i 
makes in the basic multiplexed frame, and N is the number of frames in the 
time T, we obtain: 

1 

i 
C m i  N 
i=l 
S 

S 
m. 

12 
1 

i=l 
S 

i=l 

Therefore, for the case in which all sensors are sampled at the same 
rate, 

iF S 
S 2 lhi 
i=l 

- s  In addition, if all sensors have the same value compression ratio a, @ = = a. 
In the buffer analysis presented in this appendix it is assumed that the 

system average compression ratio $ is known or can be calculated. Actually, 
in designing a compression system with buffer control, 6 could only be estimated 
and the probability of underflow and overflow would depend upon the accuracy of 
the estimate. This in itself is a major reason for buffer controls since the sta- 
tionarity and value of can never be known exactly in advance. 

C.6 PRIORITY SYSTEM TO GUARANTEE AGAINST OVERFLOW 
OF SENSOR DATA 

The probability of buffer overflow can be made as small as one desires by 
several different methods such as increasing the buffer size, increasing compres- 
sion ratios, increasing the output-input transmission rate, or combinations of all 
three. However, with these methods, the probability of overflow remains finite 
for all sensors; although, with added expense it could be made as small as desired. 
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A relatively simple method to guarantee zero overflow for certain sensor 
channels is to design the system such that the total system transmission band- 
width equals the sum of the high priority sensor channel bandwidths without 
compression. The low priority channel data is compressed and transmitted in 
the bandwidth obtained by compression of the high priority data. If buffer over- 
flow is imminent, non-priority sensor data is either further compressed or 
eliminated completely from the buffer input until the buffer content is stabilized 
at an acceptable level. 

For the general case of P priority channels each with bandwidth W and 
P 

compression ratio @ 
compression ratio @n, the total bandwidth available for non-priority channels 
is: 

and N non-priority channels each with bandwidth Wn and 
P' 

Wn = Z W p ( l  - l/@p)* 

p=l 

.The bandwidth available to a particular non-priority sensor a! is: 

w, = @a 

In designing such a system, @ will usually be a random variable. Assume 
2 p  that the mean $ and variance o ( @  ) are known, and the P priority channels 

have bandwidth W. Then it can be shown that the expected available bandwidth 
P P 

- - 
for the non-priority sensor channels is: wn = W P  - e/@ )], and the 

P 2 2 2  variance: (T (w,) = w Po (I/@ ). 
13 

The mean and variance of 114 can, of course, be obtained from the distri- 
P 

P' 
bution of @ 
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Appendix D 

TRANSMISSION ERROR ANALYSIS 

D.l INTRODUCTION 

To evaluate the utility of a compression technique for a telemetry system, 
it is necessary to determine the effects of channel (transmission) noise on the 
data with and without compression. To study the effects of transmission noise 
on compressed data, the channel error(s) must be expressed in a form which is 
readily combined with the error  in the expanded data due to disturbances in the 
analog-to-digital conversion and the compression processes. For the digital 
channel, the bit e r ror  probability (p)  is normally used to characterize the 
effects of transmission noise. Using a bit e r ror  probability (p), which represents 
the sum total of all e r rors  in the transmission chain (nonlinearities of the various 
stages, rf leakage, intermodulation cross products, etc.) and not just the channel 
per se, the problem is to transform p such that it may be easily combined with 
the compression error. Because the RMS er ror  interior (due primarily to its 
mathematical convenience) is commonly used in the evaluation of compression 
techniques, it is desirable to convert the bit e r ror  probability to an equivalent 
RMS error. 

If a formatted message structure (similar to the structure employed in the 
Gemini and planned for the Apollo telemetry systems) is used, the resultant 
compressed data word consists of two separate parts. The first part contains 
the actual samples of sensor outputs and the second is the sensor tag or  the word 
location number as it is referred to in the Gemini format. The conversion of the 
bit e r ror  probability (p) to an equivalent rms  er ror  must then be performed on 
each part, and combined to obtain the complete expression for the transmission 
error  for operation in the compressed mode. A fundamental assumption in the 
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conversion of p is that the e r ror  in any data bit is independent of that occurring 
in any other bit. Because the bit e r rors  are independent, it is logical to assume 
the rms error  resulting from each of the foregoing two types of data are likewise 
independent. Thus, the conversion for each type of data may be done separately 
and then summed to obtain the total equivalent rms error. 

D.2 CONVERSION OF BIT ERROR PROBABILITY (p) TO AN 
EQUIVALENT RMS ERROR FOR AN ACTUAL DATA SAMPLE 

For this analysis, the transmission system is characterized as a binary 
symmetric channel. The transmitted and received symbols are xi and y 
respectively. The symbols occur with probabilities p(xi) and p(y.). 

j’ 

J 

p = P(y. = l /Xi  = 0) = P(y. = 0/Xi = 1) 
J J 

q = P(y. = l /Xi  = 1) = P(y. = o/x. = 0) J J 1 

Probability of e r ror  = P(y. = 1) P(xi = O/y. = 1) 
J J 

J J 
+ P(y. = 0) P(Xi = l/y. = 0) 

= P(y. = l )p  + P(y. = 0)p. J J (3) 

Probability of e r ror  = p since p(y. = 1) + P(y. = 0) = 1. 
J J 

Let U represent the amplitude of the bit error,which is illustrated in Figure D-1. 

Whenever an error  occurs, the amplitude is unity and otherwise it is zero. 
The bit e r ror  causes an amplitude error which may be considered as a 

binomial random variable with 

The variance of the e r ror  U is given by 

2 qJ = Pq.  

D-2 
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Figure D-1. Bit Error Probability Amplitude (v) 
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The above error  is for a single bit error  which causes an amplitude e r ror  of 1. 
If we consider a binary word of length m, the amplitude error  in the word must 
be weighted by the bit position in the binary word. Let the total amplitude e r ror  

in y be designated by the random variable R, then 

n=l 

where: 

= bit error  with amplitude of one. 
Rm-n 

Because the bit errors  are independent the variance in the amplitude error 
of an m bit binary word is given by 

where: 

a2 R 
= Variance in word amplitude error. 

Substituting from Equation(4) and simplifying Equation (6) we obtain 

2 = (22-,- 
R Q 

The rms word error  in a noncompressed word is then given by: 

rms word errorNC - - [ (22; - l)p~]1’2. 

(7) 
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Equation ( 8 ) is the equivalent rms word error in quanta for noncompressed 
data. If the data is compressed then each received data word represents 
essentially C data words in the expanded data stream, where C is the net 
compression defined as the ratio of samples to samples sent. In other words, 
the effects of noise in the transmission system are amplified in proportion to 
the amount of net compression. A compressed word or a word representing C 

words at the output of the data expander would have its variance multiplied by C 

(the net compression factor). Using then Equation ( 7 ), the variance for the 
compressed word would be as  follows: 

2 
= COR . 2 

0 
RC 

(9) 

Therefore, the rms word error  for the compressed word is 

rms word er ror  = ./C [rms word error NC] (10) C 

0 . 3  CONVERSION OF BIT ERROR PROBABILITY (p) TO AN 
EQUIVALENT RMS ERROR FOR DATA CONTAINING ONLY SENSOR 
TAGGING INFORMATION-ZOP ALGORITHM 

One method of deriving the expression for the transmission error in a 
sensor tag word or word location number is to consider the effect of the produc- 
tion of wild points in the transmitted data of any of the operating sensors. In 
addition to the two assumptions: (1) that the channel is binary symmetric; 
and (2) that the data bit e r rors  are independent; the following conditions are  
necessary to obtain a useful expression for the sensor tag error: 

a. Channels are independent. 
b. 
c. 

All  channels are statistically the same. 
Net compression(C) defined as the ratio of samples to samples sent 
is the same for each operating sensor. 
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d. 

e. 

f. 

g* 
h. 

The bit error  amplitude distribution is a binomial random variable 
(see conversion of p for actual data sample). 
A sensor tag word (data group) is lost when one or more bits in the 
word are in error. 
Compression technique employed for all sensors is zero-order 
prediction. 
Number of bits in a sensor tag word is m. 
Number of spacecraft sensors in operation is k. 

Considering the sensor tag word to be lost when only one bit is in e r ror  eliminates 
the complex problem of weighting as  to the degree of error  that results as the bit 
error occurs in the different bit position throughout the sensor tag word. I€ p is 
the bit e r ror  probability, then the probability of correct bit reception = 1 - p = q, 
and the probability of correct reception of an m bit sensor word = (gm. Then 
the probability of a sensor tag word being lost (Psw) = (1 - q)m. 
Let: 

= number of samples per second into the compressor 

= number of samples per second out of the compressor 

= Sin/C where C is the net compression ratio. 

sin 

sout 

sout 

Assuming a sensor tag word is transmitted for each sample out of the compressor, 
the number of sensor tag words (Ns) in e r ror  per second is 

- - 'in 
Ns - psw sout - p s w c '  

N , the total number of sensor tags in error  per second, is considered to be 
uniformly distributed across k - 1 (where k is the number of active sensors in the 
spacecraft) operating channels or  sensors, in terms of producing wild points. 
Therefore, the number of sample points in error per second per channel is 

S 

'sw 'in 
(k-1) C ' N =  s c  t 13) 
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Because there are k - 1 operational sensors, each with its sensor tag error  
uniformly distributed across the remaining number of sensors, the total number 
of sample points in error  (wild points) in any channel per second is (k - l)NsC, 
which is equal to Ns. 

k sensors is illustrated to show the occurrence of a wild point caused by sensor 
tagging error(s). The time scale of Figure D-2 (between points A andB) is 
expanded in Figure D-3 to see resultant error  in the received data caused by the 
wild point. The data is compressed by zero-order prediction. Considering the 
location of the wild point, yw(nt), to have a uniform probability distribution through- 
out the nontransmitted sample points, such as between points A and B in Figure D-3, 
then on the average, one-half of the nontransmitted samples will be in error  
because of the received wild point. The number of nontransmitted sample points 
between two transmitted points is determined by the net compression, C. There- 
fore, a wild point resulting from sensor tag word errors  will, on the average, cause 
an error  in C/2 sample points in the reconstructed data. Referring to Figures D-2 

and D-3, the mean square error (MSE) in the expanded data because of the wild 
point yw(nt) is given by 

In Figure D-2, the data amplitude versus time (sample points) for one of the 

where: 

= time for the occurrence of one sensor tag 
Te worderror = l/Ns 

= number of sample points over which the 
sensor tag error  must be averaged. Te 'in 
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Expanding Equation (14): 

Because channels are independent, the correlation between x(nt) and yw(nt) is 
zero. Thus, 

Then, 

C MSE = 
Te 'in 

Let: 

= mean signal power in Wild point, and 

U = E k ( n t ) ]  '1 = mean signal power in sample point. 
X 

Then, 

, 
+. : 7 )  

i/' 
MSE = 

The mean powers in each channel are equal because the channel statistics are 
identical. Thus, 

2 cu2 U 

Te sin Te 'out 
MSE = - = 
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and because 
Te = l/Ns = 1 

psw sout ' 

then, 

MSE 2 
psw (T 

rms sensor -fpT - tag errorl sw 

The resultant partial expression for the rms  error  in compressed data due to 
transmission error  in a sensor tag word indicates that the tagging error is pro- 
portional to the signal power and the probability of a sensor tag word error.  
Thus, the expression for the first part of the sensor tag er ror  appears to be 
reasonable. 

The foregoing expression for the rms sensor tag error  has a one subscript 
because this expression constitutes only part of the total rms error in com- 
pressed data due to sensor tagging error. A second part of the error occurs in 
the channel in which the wild point originated. Ih Figure 0-4, the data sampling 
and selection of the sensor which lost the transmitted sample point is illustrated. 
Because this channel is operating at the same rates and with an identical proba- 
bility of sensor tag word error,  the mean square error for this sensor is 

Because of the lost sample point, on the average, C sample points will be in 
error  in the reconstructed data. Expanding the foregoing expression, the mean 
square error is given by 
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x 0 0 0  
x: &) 

0 0 0 0  0 0 0  

0 0 0  a 0  0 0 

x 

Figzcre 0-4. &ta Sampling and Selection of Sensor that Lost Sample 
Point at D Because of Sensor Tag Error  
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c MSE = - 
Te 'in 

Assuming the compression has reduced the natural redundancy to the extent that 
adjacent sample points are independent, then their autocorrelation is zero. 
Then, 

2 c  cr2 

Te 'in 
MSE = - 

2u2 
Te 'out 

MSE = 

where: 
-3 I - 

psw Sout e 
Te - 

Therefore 

rms sensor - tag error2 - J2Pswcr2 . 
rms sensor - - Jz" rms  sensor tag word error 

1' 2 tag er ror  

The rms error in the second channel due to the distortion of one of its sensor 
tag words because of transmission noise is identical to that for the first channel 
except for a constant multiplier. The multiplier 42 , results because the number 
of sample points in error  is twice that in the first channel. Combining the two 
expressions, the total rms error  in the compressed data because of sensor 
tagging error  is 

D -13 



Total rms  sensor tag er ror  = 2.4 

= 2.4 

2 
Jpsw (T 

Jti - (l-p)m] a 2  . 
Notice the expression for the total rms sensor tag er ror  is independent of the 
net compression ratio, C, defined as  the ratio of samples-$0-samples sent. The 
offsetting factors here, making the sensor tag er ror  insensitive to C, are (1) the 
probability of a sensor tag er ror  occurring in any given channel, and (2) the 
number of actual sample points represented by the transmitted point in error. 
E for any given channel C is small, then a large number of sample points are 
actually transmitted. The probability of a sensor tag word er ror  occurring in 
that channel is then increased as C decreases because more samples must be 
transmitted. However, when the error occurs, the number of reconstructed 
sample points which a re  in error  is small. As C is increased, the number of 
samples transmitted per channel is less, and therefore, the probability of a 
sensor tag word error  occurring in a given channel is reduced. This reduction 
in word error  probability per channel is directly offset when the error  occurs 
because it affects an increased number of actual sample points in the recon- 
structed data. 

D.4 SENSOR TAG ERROR--01-2DF ALGORITHM 

Suppose the compression technique employed for all the sensors is the 
FOI-2DF technique rather than the zero-order predictor originally assumed. 
In Figure D-5 the data amplitude versus time (sample points) is illustrated to 
show the resultant error  in the reconstructed data caused by a wild point. 
Using the FOI-2DF technique, the sampled data is reconstructed by connecting 
adjacent transmitted sample points with a straight line between them. This 
line connecting the samples is such that the redundant points do not deviate 
more than some preestablished tolerance band (this actually defines the peak 
error). With no wild point occurring due to a sensor tag error,  the data is 
reconstructed along line AC with a slope, mt. When the wild point occurs at 
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some point such as B, the received data is reconstructed using line segments AB 
and BC which have slopes mwl and mw2, respectively. Considering the location 
of the wild point, yw(nt), to be uniformly distributed throughout the redundant 
sample points, then on the average, the wild point will occur half way between the 
transmitted samples. As shown in Figure D-2, the wild point, yw(nt), resulting 
from the sensor tag error,  causes an error  in C (net compression) sample points 
in the reconstruction data. However, because of the method of reconstruction of 
the data using the fan technique, the resultant error  varies with each redundant 
sample between the transmitted points, A and C. Therefore, the error must be 
weighted in accordance with the difference slopes between mt and mwl and m 
The mean square error  (MSE1) in the expanded data because of the wild point, 

w2' 

Y W ( W  is 

where: 
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1 MSEl = 
Te 'in In 

n=l I 
- 2E { W2n 

n=c/2 

Because the channels are  independent, the correlation between yw(nt) and x(nt) 
is zero, and thus, 

Therefore: 
c 

1 MSEl = - 
Te 'in 

+ 
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The variance of a weighted sum of random variables is equal to the weighted 
sum of their variances. Therefore since 

2 2 ) = mean signal power in wild point = cr 
Y E{[ yw(nt) ] 

2 = mean signal power in sample point = crx E{[x(nt)l2) 

Then, 

C 
+ 

Since, 9 and Sin = c Sout ; 
1 - 

Te - psw Sout 

Therefore, 

Psw(w1av + w2av) (cr: + .:,1'" . (34) c 2  rms sensor tag error  = 1 

The second portion of the total sensor tagging er ror  occurs in the channel 
in which the wild point originated. Figure D-6 illustrates the data sampling and 
selection of the sensor losing the transmittedkample point. Using the fan tech- 
nique, the data would be reconstructed with lines DE and EF which have 
slopes mll and m respectively, Because the transmitted sample at E is lost 12' 
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because of sensor tag error,  the data segment between transmitted samples D 

and F is reconstructed using a straight line between the points with a slope me, 
Because of the lost sample point, there are 2C sample points in error  in the 
reconstructed data. The mean square error  for the sensor losing a sample is 
given by 

MSE2 = A- Te 'in ~ { ~ L 1 ~ [ y 2 ( n t )  - 

where: 

L~~ = 
lmll - m I o  nt e 

L~~ - - JmI2 - m I nt * e 

Expanding the foregoing expression, 

P 

L 

+ E  + 

(35) 

. 
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Assuming the compression has reduced the natural redundancy to the extent that 
adjacent sample points are independent, then correlation is zero. Then, 

1 MSE2 = - 
Te 'in 

+ ") 

n=l n=C 

1 [Llav + L2av 
2 CO2 

Te 'in 
-2 - 

= 2 ~ s w a y  2 [.,, + ~2av-j 

1/2 
rms sensor tag error 2 = C 2 p s w ~ ~ ~ l a v  + L 2 a ~ 3  

(37) 

(39) 

Combining the expressions inEquations (34) and (41), the total rms error in the 
expanded data caused by transmission noise disturbing the sensor tagging is 

r - 
Total rms sensor tag e r ror  = (wla.v + w2av) 

2 
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If all channels were of equal power, then 

1 ’2 
Total rms sensor tag e r ror  = {[ 1 - ( l - ~ ) ~ ]  .) ”’( blav + w2av] 

\ 

+ [ ‘(Llav + 

D.5 TOTAL TRANSMISSION ERROR 

(43) 

For a formatted message structure like that employed in the Gemini and planned 
for the Apollo telemetry systems, the total transmission error  is the combined errors  
which occur in the actual sample data and the sensor tag or the word location num- 
ber. The data format framework eliminates the need for individual sample time 
tags. The timing information is transmitted on only a frame and subframe basis or 
as required by the ground synchronizing circuitry. Because a formatted message 
structure is assumed in designing the ACT System, the total error due to transmis- 
sion noise is the sum of the two foregoing errors. Because the bit errors are inde- 
pendent, the rms error  in an actual data sample is likewise independent of the sensor 
tag error. Therefore, the expression for the total rms transmission e r ror  for 
operation in a compressed mode using the ZOP algorithm is as follows: 

C Total rms transmission e r ror  = rms word error 

+ total rms sensor tag error 
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. 1/2 
Zm - 1 

Total rms transmission error = [ c (2 

pq] 

Using the FOI-2DF algorithm, 

1/2 
Total rms transmission error = 

(45) 

I€ channels have different powers and the compression technique is zero-order 
prediction then, 

+ czb"]. (47) 
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Appendix E 

SOLUTION OF THE WIENER-HOPF EQUATION 
FOR SAMPLED DATA FILTERS 

The problem of designing a filter which is optimum in a least square sense 
has been solved by Wiener (Ref, 1 p. 392). Wiener also gives a solution to the 
optimum sampled data predicting filter (Ref. 2 p. 79), which is in error. This 
note is an attempt to formulate a more useful expression for the optimum least 
square sampled data filter. The z-transform was found to be advantageous in 
this formulation. 

Let h(t) be the impulse response of a filter which has input fi(t) and output fo(t). 
These functions are related by the convolution integral 

fo(t) = fi(t - 7 )  h(7) d7. 3, 
Let the desired output be fd(t). One wishes to find a filter h 
the mean square error  between fd(t), the desired output, and fo(t), the actual output. 

(t) which minimizes 
opt 

This minimization leads to the Wiener-Hopf equation (Ref. 1 p. 369). 

where # ( T )  and #d@) are correlation functions given by 

I1 
fi(t + 7 )  fi(t) dt lim 1 

$(7)  = T1+*2T1 S, 
1 

(3) 
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and 

'1 
= (4) 

The symbol T1 appears here, rather than T, because T will be used later to indi- 
cate sampling interval. 

The solution of Equation (2) is (Ref, 1 p. 392) 

where &d(u) is the Fourier transform of @d(T) and V(u) is the complex conju- 

gate of @ (0). 

The transform @(w) is found from +(w), the Fourier transform of @ ( T ) ,  by a pro- 
cedure called factorization (Ref. 1 p. 376). Factorization permits one to find 
9 ( w )  such that 

and 

+(t) = 0, t <  0, (7) 

where +(t) is the inverse Fourier transform of P(u). 

Now, the case of an optimum predictive filter will be considered for continuous 
and sampled data signals. If a predictive filter is desired, in Equation (5): 

where a is the interval of prediction. From Equation (6) 
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and 

Equation (5) then becomes (Ref. 2 p. 64) 

One now desires to find K(o) for sampled data signals. Let the input be the 
sampled data function 

* 
fi(t) = z f ( n T )  G(t-nT) 

where G(t-nT) is a delta function 

tS(t-nT) = 0, t f n T  

00 

&(t-nT)dt = 1 ,  

and T is the sampling interval. 
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The correlation function is 

($(TI = T.jy lim 1 2T1 "f;(t + T )  f:(t) dt. 
-T, 

Since 

Let 

The properties of delta functions imply that the integral is zero for n > N and 
n < -N, therefore 

Now, let 

k = n + m .  
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The correlation function becomes 

# ( T )  = $ [ lim f f(nT+mT) f(nT) 6(T-mT) 1 N-"O 2N+1 
m=-m n=-N 

m=- 00 

where 

- lim f f(nT+mT) f(nT). 
n=-N 

+rn - N+.o 2N+1 

Factorization (Ref. 1 p. 376) of @(o), the Fourier transform of #(T ) ,  gives 

00 

whence 

where P and Q are polynomials. The terms in the expansion for a(w) may be 
obtained from the Fourier integral 
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the inverse Fourier transform of * (w)  gives 

00 
P 

m=O 

therefore, 

+(t) = 0 ,  t < O  (27) 

as required. Expression of @(a) in the rational polynomial form of Equation (23) 
may first require the use of a method, such as Prony’s method (Ref. 3), to 
approximate #m by a sum of exponentials in m. 

Equation (11) 

Now, one can proceed to find K(w) for sampled data functions. From 

The integral on the right is just the inverse Fourier transform 

and from Equation (26) 

00 
P 

$(t+a) = 2 qm 6( t+a -mT) . 
m=O 
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Because only sampled values are of interest, one may let 

a! = IT .  

Then 

for, since t 2 0 in the integral, the omitted terms of the sum are zero. 
Letting 

m = k + L  

(31) 

in Equation (32), one has 

due to the fact that the integral is zero for t < 0. The indicated Fourier trans- 

form of Equation (34) yields 
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m -- 
-j koT 

@k+i e 
1 No) = qq 9 

k=O 

and Equation (25) gives 

from which 

When T = 1, Equation (37) becomes 

(35) 

Equation (38) checks with Wiener's result (Ref. 2 p. 79) except for the absence 
of the parameter I in his equation. Since I = 0 implies that No) = 1, one 
would assume that Equation (38) is correct. 

The factor ejwt appearing in these equations is rather cumbersome. The 
expressions may be simplified and a certain insight may be gained if one employs 
the z-transform. 

(39) 
jw T z = e  . 
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Making this substitution in Equation 24, one has 

This is a Laurent series (Ref. 4 p. 141), the general term of which is 

where the contour integral is taken around the or-gin. Equation (41) is just an 
explicit expression for the inverse z-transform. Now, Equation (35) becomes 

k=O 

There is an interesting similarity between this equation for the optimum sampled 
data filter and Equation (28) for the optimum continuous filter. Equation (42) may 
also be derived from Equation (37) by the substitutions 

j w t  z = e  (43) 

and 
jut Z ' = e .  
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To derive K(z) from @(z), one may write 

Solving Equation (45) for the desired expression, one has 

r 7 
1-1 00 

-k 

m=O 
1 $k+1 
k=O 

From Equation (40) and algebra 

1-1 

We) = - m=O c.,.-m] 

(47) 

z1 [P(z-') - Q ( Z - ' ) ~ $ ~ Z - ~ ]  
- &( z-') m=O - 

P(Z-1) Q(Z-5 

Finally, 

1-1 
z1 P(Z-1) - Q(Z-1) c $mz 1-m 

K = O  
K(z) = 

P(z-l) 
9 (48) 

where K(z) is a rational polynomial in z-l. 
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In a manner similar to the derivation of Equation (42) for the predicting 
filter, the more general optimum sampled data filter may be shown to be 

the specific z-transform may be found by an equation analogous to Equation (48). 
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Appendix F 

FUTURE TELEMETRY SYSTEM REQUIREMENTS 

The purpose of studying future telemetry requirements is not to classify 
and organize the telemetry needs of a single space mission or series of space 
missions within the constraints of space and ground equipment requirements, 
mission goals, vehicle destination, or the scientific and physiological experi- 
mental program. This task is itself, with different degrees of emphasis and 
orientation, the major problem considered under various study programs. The 
intent here is simply to consider all of the forseeable future telemetry data 
requirements for the purpose of characterizing the data that will be in use. 

Among the reports, articles, a* papers studied, references 1 through 18, 

a paper entitled, "Space Data Handling (With Emphasis on Data Compaction)11 
by M. A. Hyman, IBM, Federal Systems Division, deals most directly with the 
problem of characterizing future space data requirements. In this paper, the 
author analyzes the space data handling requirements for the decade 1965-1975 
and discusses some recently developed techniques for data compaction. Of par- 
ticular interest is a table reproduced here as Table F-1, which presents 
space data according to its quantitative nature (such as scientific, physio- 
logical, graphic, etc.) and according to the link over which the data is to 
be transmitted. 

The following categories are enumerated: 

a. Tracking and control 
b Scientific 
c. Physiological 
d. Voice 
e. Graphics 
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Of these categories, it appears that tracking and control, voice and graphics 
are  areas where the characteristics of the data will not change greatly in the near 
future. This hypothesis permitted the use of current representative data to be used 
in the simulation program described in this report. 

The characteristics of scientific and physiological data for future manned 
space flights will possibly change from present comparable data requirements. 
Because the number and variety of experiments will undoubtedly increase, it 
appears that a corresponding increase in the types and characteristics of the 
data will follow. Therefore, it will be necessary to continually check all data 
sources in these two areas and develop compression systems with flexibility to 
avoid obsolescence. 
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Appendix G 

A CRITIQUE OF BIT-PLANE ENCODING COMPRESSION 

G. 1 INTRODUCTION 
1 Bit Plane Encoding is a source encoding technique in which consecutive 

samples from a particular sensor are divided into subgroups so that some of 
the subgroups can be represented in an abbreviated form (compressed) and 
thus reduce the binary data required to describe the samples. The term bit 
plane evolves from a cuboid magnetic core memory in which the bits of a given 
order from the various samples of a sensor are  arranged such that they a re  
parallel to each other. Then the n order bits of each of the sample words 
form a horizontal plane called a bit plane. Bit plane encoding is accomplished 
by reading words into the columns of the memory, then reading out and encoding 
the planes. 

th - 

G.2 Characteristics of the Bit-Plane Encoding Algorithm 

A representative compression system using bit-plane encoding is shown in 
Figure 6-1. To obtain consecutive samples of any sensor, the PCM output of the 
analog-to-digital converters is demultiplexed for storage in the central memory. 
While the data is stored, the monitor makes measurements on each of the bit 
planes to determine the method of encoding the various planes. The monitor 
controls the readout of the memory on a bit plane basis, and then selects the 
encoding operations in accordance with the bit-plane measurements, to be 
performed by the parallel encoder o r  the code box. The monitor identifies all 
monovalued planes and describes them summarily by noting the value assumed 
by all the bits in the plane. Another operation performed by the monitor is to 

'R. C. Barker, J. W. Schwartz, "Bit Plane Encoding: A Technique for Source 
Encoding," IEEE Trans. on Aerospace and Electronic Systems, Vol. AES-2, 
No. 4, pages 385-392, July 1966. 
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determine the count-of-changes (Cc), which is the number of times adjacent bits 
in a bit plane are different. For M consecutive samples of a sensor output, run- 
end encoding is used if: 

If: 

M o c  < - -1. c- log2M 

M 
c- log2M ’ c ’- 

the bit plane is transmitted bit by bit. Run length encoding may be used in place 
of run-end, if desired. 

The monitor unit, through its measurements on the bit planes, essentially 
divides each sampled sensor outputs into three groups of data for transmission 
to the ground. The first data group identifies the operations to be performed on 
the bit planes such as whether they are  monovalued or  run-end encoded. The 
second group designates the value of the first sample in the M consecutive 
samples being processed. The third data segment called the bit plane data group 
contains both the bit planes which a re  run-end encoded and those transmitted 
bit by bit. The sequencing of the foregoing three data groups into the multiplexer is 
is controlled by the monitor. Each bit plane which is not monovalued is read out 
from the memory through the parallel encoder and is either run-end/run-length 
encoded or left unaltered before being fed into the multiplexer and then to the 
output buffer . 
G.3 Implementation Problems of Bit Plane Encoding 

One of the unique problems in implementing this technique is the choice of 
group size or the number of consecutive samples of the sensor which should be 
considered in the coding procedure. According to the developer of this technique, 
the selection of the group size depends upon the relative and absolute duration of 
the periods of activity for the sensor (frequency spectrum) the multiplexing for- 
mats, transmission delays that can be tolerated, and the fading characteristics 
of the down-line. 

2 

2Ref. 1, p. 389. 
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The group size determines the storage required per sensor and the rate at 
which the sensors may be sequenced into the output buffer. The group size is 
also used for buffer control. The group size is decreased if buffer underflow 
exists and is increased when overflow occurs. The group size number of bits 
in the sample words, data transmission rate, and the number of sensors which 
can be handled simultaneously by the monitor unit are the principal factors in 

determining the size of the central memory. For a system required to operate 
on a large number of sensors with a reasonable large group size, the weight 
and power penalties may become excessive for the spacecraft environment. 
This would also be dependent on the time required for the monitor to make all 
the measurements on each bit plane, possibly store the operations and first 
value data, and sequence the respective data groups to either the buffer or the 
digital multiplexer. 

Notice the digital multiplexer in Figure El is blocked out with dashed 
lines. If the first value and operations data a re  stored in the monitor, it may be 
possible to eliminate the multiplexer by combining directly the two stored data 
groups in the monitor with the appropriate channel outputs of the parallel 
encoder. In essence, the multiplexing function is being done by the monitor unit. 

A more conventional design would store the first value and operations data 
groups in the central memory. The two data groups would be read out of memory 
in sequence with the third (bit planes) data group out of the encoder. The multi- 
plexer would then perform the sequencing of the three data groups from each 
sensor in accordance with a preselected transmission format. 

The multiplexing problem with the selection of an optimum transmission 
format is considerably more difficult in the bit-plane encoding compression 
system than in a polynomial compressor with regard to timing because the 
frames and subframes must be elastic to accommodate the variation in the num- 
ber of bits in any of the three data groups. The number of bits in the first value 
data group is dependent upon the group size selected. The number of bits in the 
operations data group may be held constant for a given number of operating 
sensors. When the number of operational sensors is changed, the size of the 
operations data group will likewise change. The maximum number of bits 
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in the bit planes (third) data group is dependent on the number of bit planes which 
simultaneously may exhibit periods of high activity. With the variation in size of 
the data groups the formatting technique must facilitate the marking of the end of 
each group and the insertion of the frame synchronization pattern at periodic 
times as required by the ground recovery circuitry. The timing problem in the 
spacecraft associated with multiplexing the three data groups could be relieved 
somewhat by sensor tagging each data group and letting the ground processor 
combine the appropriate groups. 

The number of channels or  sensors on which the monitor unit must simul- 
taneously make bit-plane measurements is a tradeoff among memory size, 
group size of each sensor, the number of operational sensors, time required 
for the bit-plane measurements, the time necessary to encode or transmit bit 
by bit a maximum number of bit planes for a given sensor and the maximum 
transmission rate. Thus, the changing of group size of the number of operating 
sensors for buffer control directly effects the number of sensors which must be 
handled simultaneously by the monitor. Timing for buffer control and simultane- 
ous measurements on the bit plane of a number of sensors are simplified if the 
sensors being handled have identical group size. 

The complexity and cost of implementing bit-plane encoding for a space- 
craft telemetry system are contingent upon the large amount of storage required 
in the spacecraft, the inefficiency in processing (multiplexing and demultiplexing 
operations are required), and the timing control required to handle a practical 
formatting system, channel identification, and buffer control. There are suf- 
ficiently large with present technology to justify ruling out this compression 
technique for the first generation of the ACT System. 

G-5 


