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Section 1
INTRODUCTION

1.1 PURPOSE OF STUDY

The objective of the Adaptive Compressive Telemetry Techniques study
was the selection and development of an optimum adaptive data compression
system for future manned spacecraft. Key interim objectives which supported
this goal were:

a. Analysis and classification of existing and proposed compression tech-

niques for selecting the most promising for exhaustive evaluation.

b. Evaluation of the selected techniques by testing their effectiveness in
compressing a wide variety of actual spacecraft data signals.

c. Analysis of the queueing problem involved in adapting the randomly
occurring compressed data samples to a fixed-rate transmission
system, and the development of design procedures for solving this
problem in practical compression systems.

d. Development of the complete system design for an adaptive data com~
pression system incorporating the optimum compression methods and

including adaptive control of the output queue.

1.2 SCOPE OF STUDY

~

The medical, experimental, and engineering control data used in this study
spanned the type of data expected in space probes in the near future. Pulse analog
signals (EKG and spacecraft attitude control-pitch data), undulatory signals (res-
piration data), step function signals (spacecraft roll-rate data), and noiselike signals
(vibration data) were used to evaluate a broad spectrum of compression techniques.



Geometric aperture techniques (Zero-Order Prediction, First-Order Pre-
diction, and First-Order Interpolation methods), a purely analytical technique:
the Karhunen-Loéve compression method, and quasi-analytical techniques

involving fixed and variable reduced sampling rates with such analytical methods
sin x

as , Straight-line, optimum linear, and Lagrange interpolation used to
recover the reduced data, were simulated on a digital computer with the repre-
sentative experimental data.

Autocorrelation functions and power spectral densities were computed for
the experimental data to obtain insight into possible compression techniques as
well as to estimate the amount of compression that could be obtained for each
type of data.

The compression techniques simulated were evaluated on the basis of peak
and rms error versus compression ratio as well as estimated implementation
complexity. In addition to the calculated error performances, overlays of recon-
structed and original data were made to permit visual comparison of different
compression techniques with the various types of experimental data.

The problem of multiplexing multiple sensor channels into a time-shared
compression unit capable of performing more than one compression algorithm
was investigated. A system design for such a unit was performed using stored-
logic concepts, and requirements were determined for an output buffer to effi-
ciently combine the individual sensor channels, with their associated time gaps
arising from data compression, without permitting overflow or underflow.

The problem of transmission errors in the compressed data was also
investigated, and the effect of error on the two compression methods recom-

mended for implementation was determined.
1.3 CONCLUSIONS OF STUDY

1.3.1 No Single Compression Technique ""Best" for All Data Tested

Two relatively simple variable sampling rate aperture techniques—the Zero-
Order Predictor (ZOP) and the First-Order Interpolator with Two Degrees of
Freedom (FOI-2DF)—achieve, for all data tested, performances in terms of
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compression ratio for a given rms error which cannot be improved upon sig-
nificantly by any of the higher-order aperture techniques, fixed sampling rate
techniques, or more exotic Transformation Compressors. This conclusion can

be drawn even without considering implementation factors which are of paramount
importance in the development of a practical, spaceborne data compression system.
When implementation is considered, these two techniques have the advantage over
the other techniques tested. However, neither technique is ""best" for all data
tested.

1.3.2 ACT System Should be Flexible to Reduce Probability of Obsolescence

The main advantage of an adaptive compressive telemetry system is its
ability to increase the bandwidth utilization efficiency for incompletely specified
data. This is achieved by reducing the data redundancy which necessarily results
from conservatively choosing sample rate-bandwidth combinations for experimental
data.

Because this study revealed that no single compression algorithm is "best"
for all representative data tested, an ACT system should have the ability to per-
form two or more algorithms in the same processor. This reduces the probability
of obsolescence if asyet unforeseen types of telemetry data are encountered which
require different compression algorithms.

1.3.3 Flexibility Can be Obtained With Stored-Logic Concept

Flexibility can be realized by implementing sequence logic in a read-only
store (memory) which replaces hard-wired decoding logic in identifying the
commands to be performed. Thus, the ZOP and FOI-2DF compression methods
can be implemented with the same stored-logic digital circuitry. This system
approach provides flexibility in that multiplexed sensors with different types of
data can be compressed with different algorithms at different aperture levels on
a time-domain basis with the same equipment. In addition, other algorithms of
the same order of complexity can be implemented by simple changes in the mem-
ory containing the logic instructions.
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1.3.4 Adaptive Buffer Control Recommended

A large reduction in the size of the output buffer required for a compression
system can be achieved by adaptive control of the compression aperture of non-
priority data. For example, instead of requiring at least a 100 sample buffer to
achieve an overflow probability of 0.0001, the same performance can be achieved
with a buffer size of 25 words by doubling the aperture of nonpriority data when
overflow is imminent. ‘



Section 2

CLASSIFICATION OF COMPRESSION TECHNIQUES
AND
DESCRIPTION OF TECHNIQUES SIMULATED

2,1 INTRODUCTION

The first part of this section considers the problem of classification of the
various compression techniques and algorithms into categories. The fidelity
criteria for evaluation of the compression algorithms is also discussed, The
second part of this section describes in detail the algorithms chosen for com-
parison on the data. The largest algorithms which have received the most
attention by engineers in the field and for which there are many variations are
the polynomial predictor and interpolators. Rather than test all of the variations
of these algorithms, it was decided to select those which have been found to be
effective in compression of data and which appeared to be easy to implement.
Those chosen were:

a. Zero Order Predictor (floating, fixed, and offset aperture)
b. First-Order Predictor
c. First-Order Interpolator—Two Degrees of Freedom
d. First-Order Interpolator—Four Degrees of Freedom.
In addition to these techniques, the following techniques which do not appear to
have received much attention were simulated on the data:
1. Optimum Linear Prediction
2. Fourier Filter
3. Optimum Discrete Filter (Karhunen Loéve)
4

.  Reduced sampling rate and reconstruction interpolation at the
receiver

5, Variable Sampling Rate.

2-1



2.2 CLASSIFICATION AND EVALUATION OF COMPRESSION

TECHNIQUES

The classification and evaluation of compression techniques is not a trivial
problem. Because both the classification problem and the evaluation problem
are of paramount importance, they will be discussed in some detail, Classifica-
tion is always an aid to understanding the problem. Unfortunately, the classifi-
cation of compression techniques does not have a unique solution. Terms such
as entropy reducing, information preserving, redundancy reduction, adaptive
sampling, encoding, signal reduction and others have been used to classify com-
pression techniques.

To describe the effect the compression technique has on the form of the
information or signal being transmitted, it was found that the compression tech-
niques could be divided into four categories.

Direct Data Compression

Transformation Compression

Parameter Extraction Compression

A O T O

. Selective Monitoring Compression.

Figure 2-1 shows a chart of data compression techniques by category. The four
categories are defined and the best methods of evaluating the compression tech-

nique in that group are discussed.

2.2.1 Direct Data Compression

A direct data compressor is one which operates on the data in such a way
that the outputs of the data compressor are the actual sample values of the input
waveform or the actual sample values within a tolerance. Most previous work
in data compression falls into this category. A further useful subdivision of
Direct Data Compression is made into variable rate and fixed rate, Variable-
rate compressors have received the most attention and have been extensively
discussed in the literature. A good example of this type of compressor is the
Zero Order Predictor Floating Aperture technique origina.lly developed by Jet
Propulsion Laboratory and refined by Léckheed Corporation, Other examples
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of variable-rate compressors include interpolators, polynomial predictors,
and bit-plane encoding.

Variable-rate compressors have great potential, however, they require
tagging of the data with a time or sensor tag, and in some cases, may result in
more data bits being transmitted than was in the original data. Fixed-rate com-
pressors are characterized by the fact that the data is sent at a fixed rate.
Examples of fixed-rate compressors are encoding and optimum linear prediction
with difference coding. One method of fixed-rate compression which has received
little, if any, attention (perhaps because most engineers do not consider this as a
compression technique) is to simply sample the data at a rate close to the Nyquist
rate and use reconstruction interpolation on the receiving end. Currently, most
sensors are sampled for more than the theoretical minimum of twice the highest
frequency component (assuming the signal is band limited). As shown from the
power spectra of the datagiven in Section 3, the samplingrate is at least twice the

highest significant frequency and more in most cases.

2.2.2 Transformation Compressors

A transformation compression is defined as any compression technique which
trar\lsforms either analog or digital data by nonlinear or linear transformation.
The output of the compressor must then go through an inverse transformation to
obtain the actual analog waveform on the sampled digital data. Examples of trans-
formation compressors are such preprocessing filters (signal conditioners) as
compandors, logrithmic amplifiers, filters (low pass, band pass, high pass),
limiters/clippers and compandors. Because the use of preprocessing filters
depends on the nature of the signal and the user's requirements, the use of pre-
processing is usually tailored to each sensor, therefore, no attention was given in
this study to preprocessing filtering. Other types of transformation compressors
which did receive attention during this study were Fourier Filtering and Optimum
Discrete Filter compression (Karhunen-Loéeve compressors) which are described
in Section 2.3.4.



2.2.3 Parameter Extraction Compressors

Parameter extraction compressors are those which extract a particular
characteristic or parameter of the signal. These parameters are then trans-
mitted over the data link. Unlike the direct data and the transformation compres-
sors, the parameter extraction compressor is not an information preserving
operation and the original signal cannot be reconstructed from the extracted
parameters. An example of this type of compression technique is the measure~
ment of the probability distribution of the signal and the transmission of the quan-
tiles of the distribution. Another example is the extraction of the power spectrum
of the signal and the transmission of the amplitude of the spectral components.
Still another example would be event recognition. Rather than send all of the
relevant signal data to the ground to be monitored for a significant event or criti-
cal situation, an on-board event detector would detect the event and send extracted
information such as time of event or amplitude. Like the use of preprocessing
compressors, a parameter extraction compressor must be designed for the spe-
cial parameter to be extracted and for the particular sensor characteristics. For
this reason, the use of pérameter extraction received little attention during this
study.

2.2.4 Selective Monitoring Compression

Selective monitoring techniques may be defined as processes which monitor
either the sensor or the state of the system or subsystem to select the data for
transmission. Selective monitoring systems, that use the sensor outputs in
establishing the priorities, are more complex than those that have a fixed priority
rating. However, these systems would be capable of determining which informa-
tion was important and then transmit this information. For example, if a tempera-
ture sensor indicated overheating in a particular element, this temperature and all
other sensors, which might yield helpful information in diagnosing the difficulty,
would be considered as highest priority sensors for a period of time. It would be
possible to combine the selective monitoring in this case with parameter extrac-

tion and transmit the extracted information rather than the sensor signal itself.



An example of a selective monitoring system which monitors the state of the
subsystem to control the data for transmission can be found in the case when a
variable rate output of a direct data compression exceeds the rate of transmis~
sion for a period of time. If all sensors are treated as high priority then the
probability exists of a buffer overflow. The probability of buffer overflow will
be dependent on the length of the buffer and the ratio of the average rate at which
bits are removed from the buffer to the average bit rate into the buffer. (The
buffer problem is discussed in detail in Section 4.3.) The possibility of buffer
overflow can be prevented by monitoring the buffer occdpancy and taking action
in one of two ways. One way is to consider certain sensors as low priority and
ignore these sensors whenever the buffer occupancy exceeds a certain level. The
other way is to decrease the quantization levels per sample on low priority

sensors by increasing aperture size for the compression algorithm being used.

2.2.5 Evaluation of Compression Techniques

Previously, compression techniques have been evaluated by a measure known
as compression ratio. Compression ratio is the ratio of the samples/sec into
the compressor to the average samples/sec out of the compressor, or the ratio of
the bits/sec into the compressor to the bit/sec out of the compressor. Unfortun~
ately, compression ratio by itself is a meaningless number. If the input data has
artificially introduced redundancy from using a much higher sampling rate than is
required, then large compression ratios may be obtained. To effectively compare
compression techniques, they must be applied to exactly the same data, and com-
pression ratios for a given fidelity criteria of the reconstructed data should be
compared. Ideally, the best measure of fidelity is the data user. Unfortunately,
the data user was not available on a day~to-day basis during the study. Also, the
fidelity criteria of a user is subjective and two users of the same data may have
different criteria. It was necessary therefore to compare the compression ratios
for a secondary fidelity measure. The fidelity measures used were the peak error
and root mean square (RMS) error of the reconstructed data. The simulation pro-
grams written for the IBM 7090 actually provided a plot of the histogram of the
error as well as the peak and RMS error.
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In addition to comparing the effectiveness of compression techniques in terms
of compression ratio for a given fidelity, criteria considerations must also be
given to the equipment penalties, system penalties, computation time requirements,
and effect of transmission noise on reconstructed data. All of these factors were
taken into consideration in the development of the recommended system as dis-
cussed in Section 4.4.

2.3 DESCRIPTION OF COMPRESSION TECHNIQUES SIMULATED

To choose those techniques that would be used for evaluation of the available
data, a review of known techniques as well as possible new techniques was first
made. Because such techniques as parameter extraction, and such transformation
techniques as preprocessing must be designed for a specific application or tailored
to a specific sensor or user requirements, these techniques were not pursued.
Selective monitoring techniques must also be designed for a given mission in mind.
The compression techniques that will have the most general application to com-
pression of data fall into the class of Direct Compression and Transformation
Compression. Extensive amounts of literature exist on data compression tech-
niques and bibliographies are also availalble:,l therefore, a bibliographj’ will not be
repeated here.

In choosing the compression technique, preliminary consideration was given to
anticipated compression ratio, equipment complexity and system complexity. The
methods chosen for simulation with the data and descriptions of the technique are

given in this section.

2.3.1 Polynomial Predictors

The predicting equations for polynomial predictors are based on a finite dif-
ference technique which permits an n'th order polynomial to be passed through
n + 1 data points. The polynomial is extrapolated one unit at a time, which produces
a predicted data point. A polynomial of the type

yt) = ag+a;t+ a2t2 L antn 2-1)
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may be fitted to the data points by means of a difference equation

A _ 2 n )

yt = yt-l + A.Vt_l + A yt_l +...+ A yt"'l (2-2)
where:

/"}t = predicted value at time ¢

Vi1 data sample value at one sample period prior to t

n+1 n n
ATy, = Ay - AV

A¥y = Vi " Yip -

Here, the n + 1 previous values, Yi-10 Vi Yoz - -+ Vi ~@+1) are known and Yy
is to be predicted. The various implementations of this approach will be discussed.

2.3.1.1 Zero-Order Predictor Fixed Aperture

The simplest polynomial predictor described above is the zero-order pre-~

dictor where n = ¢. In this case

A
V¢ T Yt (2-3)

and the predicted value is merely the previous data point. A set of fixed tolerance
bands are then set up with a width K each. This is done by truncating the last

few bits from a binary data word. If two data words have the same truncated

value, they belong to the same tolerance band. A prediction is made by Equation (2-3)
that the new data point falls in the same tolerance band as the previous point. If the
new data point falls outside the tolerance band of the previous point, then this new
point is transmitted and the process is repeated.



2.3.1.2 Zero-Order Predictor Floating Aperture

In the floating aperture algorithm of the zero-order predictor, an aperture
of 2K is placed about the last transmitted data point. If each new data point lies
within the aperture placed about the last transmitted data point, then the new data
points are not transmitted. If a new data point falls outside tﬁe aperture placed
about the last transmitted data point, then the present data point is transmitted
and the process is repeated. ‘The predicted point in this case is the last trans-
mitted data point with a tolerance of + K placed about it. The aperture, then, has

the effect of "floating' with the last transmitted value.

2.3.1.3 Zero-Order Offset Predictor

The zero-order offset method is a modification of the zero-order, floating
aperture technique. This approach takes advantage of data trends by offsetting
the predicted point by a predetermined amount. The sign of the offset is deter-
mined by the last out of tolerance value. If the last transmitted point was out of
tolefance in a positive sense, the offset has a positive sign and vice versa. Thus,
the predicted value is the last transmitted value plus an offset. A floating aper-
ture of width 2K (+ K) is placed about the predicted value. If the new data point
falls inside the aperture then that point is not transmitted. If a new data point
falls outside the aperture, then that data point is transmitted and the process is
repeated.

2.3.1.4 First-Order Predictor

The first-order predictor utilizes Equation (2-2) to obtain a first-order
extrapolation polynomial of the form:

A
Ve = Wiq T Vig (2-4)
The extrapolation equation is a straight line drawn between the last two data

points. Initially, the first two data points are transmitted and a straight line is
drawn through them. An aperture of width 2K is placed about the straight line,



The predicted value of the new data points is the point on the straight line. If

the new data point is within + K of the predicted value, then that point is not trans-
mitted. If the new data point is outside the aperture, then that point is transmitted
and a new straight line for prediction is drawn through the present data point, which
was transmitted, and the previous predicted data point.

2.3.2 Optimum Linear Predictor

. The optimum linear predictor predicts the next sample point by using linear
combinations of past samples as given by

H

vy, = 2-5

Yo = [Pk Vik (2-9)
k=1

where:
A
Yy = predicted value of present data sample value
yt'_k = data sample value at kth period prior to present

sample at t

Vi = present data sample value.

The optimum linear predictor uses a set of coefficients which minimizes the mean
square error between the predicted and the actual value. Thus, the following

expression is minimized:

E{y, - §} (2-6)

where:
E{ } denotes expected value.

The optimum set of coefficients are found by solving a set of N linear equa-

tions involving the autocorrelation matrix as given by:
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H

— = = 1 9 5 o N 2—7
zaakqiy{ﬁ-oyr} Ry{hﬂ1ﬂT} T , 2 (2-7)
o=1
where:
Ry {r-0)T} = autocorrelation function of the signal for

a lag of (r-0)T

s = number of sample periods since last sample
point, for which the prediction is to be made.

Two methods of estimating the autocorrelation function for use in Equation (2-7)
were used and are called the direct and indirect method. The direct method uses

the autocorrelation function given by

N
RAGIT} = % ) ylw-dT} yioHT) (2-9
n=1
where:
N = number of points used.

The indirect method uses an autocorrelation function given by

N
R {0DT} = i 2 y@T) y{n-(1-)}T . (2-9)
n=i+j+1

Two methods of applying the optimum linear predictor for compression were
simulated on the data. In the first method, the predicted value of the present data
point was found using N previous actual sample data points. The difference between
the predicted x}alue and the actual value was then coded and transmitted. Thus, at
each new data point the difference between the actual and predicted data value was

transmitted. If the receiver uses the same set of coefficients in the predictor
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equation, then the actual sample data value can be obtained at the receiver. In
this algorithm, there is no error between the actual sample values on-board the
spacecraft and the reconstructed value obtained on the ground.

In the second method, an aperture was placed about the predicted value. In
starting off the process, the first N sample values are transmitted. The predicted
value of the N+ 1 sample‘ is obtained using the past N actual sample values. An
aperture is then placed about the present predicted value (N + 1 value). If the
actual sample data value lies within the aperture placed about the predicted value,
then that point is not transmitted. The present predicted value is then used in the
prediction equation to obtain a predicted value for the next sample value. If the
next actual sample value is within the aperture, then that point is not transmitted
and the predicted value is used in the prediction equation. When an actual sample
value falls outside an aperture, then that point is transmitted and the actual sample
value is used in the prediction equation for predicting the next data point.

The prediction Equation (2-5) is the optimum linear nonrecursive filter (only
past values of input are used to obtain the output). The optimum linear recursive
filter can be obtained from solving the Wiener Hopf equations for discrete data
and is given in Appendix E. Because the results indicated that the effectiveness of
the optimum nonrecursive filter did not increase as the number of coefficients
were increased above five, the use of a nonrecursive filter would not increase the
effectiizeness and was not simulated.

Note that to obtain the optimum predictor, the power spectrum of the data
must be known a priori. If, as may be the case, the exact nature of the data from
a new experiment is not known then a power spectrum must be assumed, which will

result in a suboptimum predictor.

2.3.3 Interpolation Compressors

Interpolators differ from predictors because all sample values between the
last transmitted value and the present value will effect the interpolation. Two types
of first-order interpolators were simulated on the data. These were the First-Order
Interpolator —Two Degrees of Freedom and the First-Order Interpolator—Four

Degrees of Freedom, which are discussed in the following sections.
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2.3.3.1 First-Order Interpolator—Two Degrees of Freedom

The first-order interpolator —-two degrees of freedom draws a straight line
between the present sample and the last transmitted sample so that all inter=
mediate data points are within a tolerance of the interpolated value on the straight
line. In this algorithm, the first point is transmitted. A line is drawn between
the transmitted point and the second sampled data value after the transmitted
point. If the first point after the transmitted value is within a tolerance K of the
interpolated value, then a straight line is drawn between the transmitted point
and the third point after the transmitted point. The interpolated value of the first
and second points are now checked to see if they are within a tolerance of the
actual values. If at the Kth sample value after the last transmitted sample value,
a line is drawn and the actual value differs from the interpolated value by a
quantity greater than the tolerance, then the (K- 1) sample is transmitted and
the process is repeated. A method of implementing the FOI-2DF which does not
require the storage of all the actual data points between the last transmitted point
and the present point has been described by L. W. Gardenhire.2

2.3.3.2 First-Order Interpolator —Four Degrees of Freedom

The first-order interpolator—four degrees of freedom draws a line between
the sample points such that the most positive error and the most negative error
between the sample value and the interpolated value are equal and within the
prescribed tolerance. The computed value of both ends of the line are transmitted.
The next straight line is started from the next sample value after the last trans-
mitted point.

2.3.4 Transformation Compressors

Two types of transformation compression techniques applied to the data were
the Fourier Filter technique and the Karhunen-Loéve technique and are discussed
below.
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2.3.4.1 Fourier Filter

The Fourier Filter compression technique is one in which the Fourier trans-~
form of the sampled data is obtained and complex coefficient of the transform are
obtained at discrete frequencies. The coefficients of the lower frequency com-
ponents are then transmitted and the data is reconstructed by finding the Fourier
transform of the received coefficients. Let the sampled data be represented by

N
xX*(t) = Zx(nT) 6(t-nT) (2-10)
n=1
where:
T = sample interval
8(t) = Dirac delta function.

Taking the Fourier transform of Equation (2-10) we obtain

N
X*(f) = Zx(nT) g i2mnT (2-11)

n=1

The complex value of the Fourier transform is then obtained at frequencies given
by:

f = §T k =0,1,2,...,N/2. (2-12)

Thus, the Fourier transform at these frequencies is given by

N
X*G%{;I—) = Zx(nT)e-J(ZWkn/ N) (2-13)
n=1

k=090,1,2,...,N/2
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Equation (2-13) may be written

X*(ﬁl%) = Ak -j Bk (2-14)
‘where:

N

A = Zx(nT) cos(2rkn/N) (2-15)
n=1
N

B, = ZX(HT) sin (2rkn/N) (2-16)
n=1

Note that the Fourier transform need only be found for positive frequencies because
the Fourier transform at negative frequencies is given by:

-k \ _ i
X*(ﬁ—> = A_+iB,. (2-17)

In the Fourier Filter compression, a large number of sample points are taken and
the Féurier transform is evaluated. If the original signal is oversampled, then
only the lower frequency complex values need be transmitted. At the ground sta-
tion, the inverse process is performed. Assume that only M complex values of
the Fourier transform are transmitted, then the received Fourier transform may
be written as

M M
X*(f) = ZAk 56‘ —%) +j EBk 5( ——DII{TI‘) . (2-18)

=-M k: —M

Taking the Fourier transform of Equation (2-18) the reconstructed signal can be

written as
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N

X¥(t) = ZCn 6(t-nT) (2-19)
n=1
where:
M M
C, = Aj*sz ZAk cos( ) + % ZB sin( ) (2-20)
k=1 k=1

From inspection of Equation (2-20), note that for N data points and M trans-
mitted values of the Fourier transform, that the onboard compressor is required
to make 2MN multiplications and additions. For a single channel which is sampled
at a slow speed, this method of compression may be useful, however, when a multi-
plexed system is considered this method is not practical. |

Equation (2-14) may be used to calculate the power spectrum of the data by
what is called the direct method. The power spectrum is given by

2 2

P(k/NT) = A + B . (2-21)

2.3.4.2 Optimum Discrete Filter Compression (Karhunen-Loéve)

The optimum discrete filter compressor (Karhunen-Loéve compressor) is a
process similar to the Fourier technique described in Section 2.3.4.1. Whereas
the Fourier filter uses sines and cosines as the orthogonal function in the expan-
sion, the optimum discrete filter uses an optimum set of orthonormal basis func-
tions, The orthonormal set is optimum because the least number of orthonormal
functions are needed for a given RMS error.

Let the sequence of sample data points be given by

x(T), X2T), . .., X(NT) . (2-22)
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We seek a set of functions ¢ such that

M
R(KT) = Zaiq;(kT) (2-23)
i=1
‘where:
;}( KT) = the reconstructed value of the data
point
a, = coefficients to be transmitted to the
ground,
The ¢ are eigenvectors of the autocorrelation matrix of the x's. 3 The M

eigenvectors chosen to represent the data are those with the largest eigenvalue.
The coefficients to be transmitted are obtained by taking the inner product of

the data points with the eigenvector. Thus, the coefficient is found from

M

a, = Zxa'r) ¢,47T). (2-24)
j=1

Thus, each coefficient requires N multiplications and additions. If M eigenvectors
are used, then MN multiplications and additions are required. If prior knowledge
of the signal statistics is not avallable, then the autocorrelation matrix must first
be obtained and the matrix diagonalized to obtain the eigenvalues and eigenvectors.
The number of eigenvectors used to obtain a given RMS must then be determined.
If the M eigenvectors with the largest eigenvalues are used to represent the signal,
then the mean square error is given by

€ = ZAk (2-25)
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where:

Ak = eigenvalue of autocorrelation matrix,

From the above discussion, the implementation of this method is impractical,
however, it was usefi to obtain a comparison of its compression .gffeétiveness
against other techniques. ‘
i
|

2.3.5 Reconstruction Interpolation’

The principle of reconstruction interpolation is to sample the signal at a
reduced sampling rate and then reconstruct the signal by interpolai‘tion filtering at
the receiver. Because most of the signals studied were dver-sampled by as much
as 20 times the Nyquisf rate, it should be possible to use 'a lower sampling rate
onboard and reconstruct the signal on the ground. The reconstruction interpolation
technique was evaluated by taking every kth sample (where k is an integer) ofthe
original sampled data and assuming that these samples were transmitted. The
reconstruction interpolation was applied to these data points to obtain interpoiéfejd
values of the nontransmitted data points. The original and reconstructed values

were then compared to obtain the errors. Five reconstruction interpolations simu-
sin x

, Lagrange, and Fourier. These
methods are described in the following sections. In all cases the interpolation

lated were straight line, optimum,

formula can be represented in the same general form.

Let the input signal be sampled values of the signal at intervals of T.
Interpolated values are to be obtained at intervals T/L where L is an -ihteger. The
interpolated values in an interval of T for which an equal number of input samples
are used on each side of the interval is given by \

g(—IlLI‘) = Z x(mT) h (%) (2-26)
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where:

x(mT)

sample value of input data at time mT

hm(—n]._—:r> = weighting function of interpolation filter
for mth sample at time nT/L

g(BLI) = interpolation value at time nT/L
n = 1,2,...,L-1
k = number of input samples used on each

side of interpolation interval.

2.3.5.1 Straight Line Reconstruction

The simplest type of reconstruction interpolation is straight-line interpola-
tion. A straight line is drawn between the two input sample values on each side
of the interval and interpolated values are obtained along the straight line. The

interpolation formula is given by

g(—I-II—:I-‘> = kO + %[X(T) - XO]

(2-27)

2.3.5.2 Optimum Interpolation Filter

The optimum interpolator seeks an optimum linear combination of the sample
values such that the error in interpolation is minimized in the mean square sense.
Thus, we seek a linear combination of the sample values of the form:

gr) = Zki x(iT) (2-28)

2-19



which will minimize the mean square error. The error is given by
€ = g1 -x(n. (2-29)

The set of coefficients ki which minimize the mean square error is given by the
following set of linear algebraic equations:

N
ij Rx{(i—j)T} = -Rx(iT -T) (2-30)
j::-N+1
fori = -N+1,~N,...,0,1,2,...,N
where:
Rx{(i—j)T} = autocorrelation function of the signal for lag of

(i-j)T.

Note that in obtaining Equation (2-30), it was assumed that the signal was a
wide sense stationary stochastic process. In general, the signals will not fall
into this classification. The direct and indirect methods can be used to obtain
the estimate of the autocorrelation function. The direct method uses an auto-
correlétion function given by

N
. 1 . .
R 0T} = § ) x{@-0T} x{@-nT) @-31
n=1
where:
N = total number of data points used.

The indirect method uses an autocorrelation given by:
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N

R AGDT} = 7o z X(nT) x{n-(-)} T . (2-32)
n=i+j+1

2.3.5.3 Sin x/x Reconstruction

The Si2 X reconstruction interpolation used approximates the ideal low-
pass filter weighting function by a truncated %—5 weighting function. The
interpolation formula in this case is given by:

T k sin mT - % T
g(f) = z x(mT) =
mekr1 mT - I T (2-33)
n = 1,2,...,L-1,

2.3.5.4 Lagrange Reconstruction Interpolation

The standard Lagrange interpolation formulas 4 were used to obtain the
interpolated value of the signal in an interval. An equal number of received data
points were used on each side of the interpolation interval to obtain the interpo-
lated value. Thus, the Lagrange interpolation with 2N coefficients indicates that

five data points on each side of the interval were used.

2.3.5.5 Fourier Reconstruction Interpolation

The Fourier filter reconstruction uses the same mathematical techniques
as described in Section 2.3.4.1 on Fourier filter compression. The Fourier trans-
form of the 2N data points is obtained and then the inverse Fourier transform is
found. The inverse Fourier transform is then evaluated in the middle interval of

the 2N data points to obtain interpolated values.

2.3.6 Variable Sampling Rate

The variable sampling rate technique combines the floating aperture zero

order predictor technique with a variable sampling rate technique to compress
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the data. Tolerance bands are selected and a sampling rate is associated with
each tolerance band. Each sampling rate is a multiple of two of the slowest rates,
A particular implementation of this technique which was simulated utilized two
sampling rates. The high rate was 160 samples per second and the low rate was
40 samples per second. The sampling is switched from the low rate to the high
rate when the first, second, third, or fourth high rate sample exceeds a tolerance
band of + 4 units from the last low rate sample transmitted. The sampling
proceeds at the high rate until four successive samples occur which do not
exceed a tolerance band of + 1 units. When this occurs, the sampling is switched
to the lower rate.

Interpolation techniques as described in the previous section may be used

for reconstruction interpolation.
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Section 3

EVALUATION OF COMPRESSION TECHNIQUES
BY SIMULATION

3.1 INTRODUCTION

Of the four general classes of compression techniques presented in Section 2,
two classes (Direct Data Compressors and Transformation of Variable Compres-
sors) were investigated by digital computer simulation of representative methods.

The remaining classes (Selective Monitoring Compressors and Parameter
Extraction Compressors) require detailed knowledge of the information to be
extracted from the data and are not amenable to general evaluation. No methods
in these two classes were simulated.

The class of Direct Data Compressors represents the area in which the
greatest effort has been expended to date by other investigators. In general, the
methods in this class are the most economical to implement at the present state-
of-the-art, and yield results comparable to the more "exotic' transformation of
variable compressors.

The class of Direct Data Compressors can be divided into fixed sampling
rate and variable sampling rate methods. The variable sampling rate methods
appear to be the most efficient in terms of compression versus distortion, as will
be evident from the computer simulation results.

All the methods investigated are compared on the basis of simulated com-
pression ratios versus rms and peak error performance for particular types of
data.

3.2 TEST DATA

Five different types of data were used in the simulation studies. The data was

provided in 8-bit digital form and is considered representative of the medical,



experimental, and engineering-control data encountered in space program
telemetry. The five types of data are identified by source and code name below;
the sample sizes used in the simulations are also listed:

a. FCEKG1l~Flight Commander EKG1, Orbit 2, 1 min,. into tape.
ENGRES—Engr. Respiration Orbit 2, 1 min. into tapes.
FAO1—Attitude Control-Pitch, Orbit 2, 1 min. into tape.
ASMRV3-—Apollo (BP-15) SM Radial Vibration-3

EA02-—Roll Rate, Orbit 2, 1 min. into tape.

° po F

Autocorrelation functions R(T) for the five types of data are shown in
Figures 3-1, 3-3, 3-5, 3-7, and 3-9. Power spectral density for each type of
data was obtained by taking the Fourier transform of the autocorrelation func-
tions described in Section 2. The power spectral densities are shown in
Figures 3-2, 3-4, 3-6, 3-8, and 3-10.

The autocorrelation functions were used, in addition to obtaining the power
spectral density, to obtain the rms signal power, since R(T = 0) is the rms signal
power.

The power spectral densities were useful in estimating the amount of com-
pression that could be obtained by reducing the sampling rate for each type of
data. For example, the Engineer Respiration data was sampled at 80 samples/sec
and Figure 3-4 shows that most of the signal power lies below 2 cps. Therefore,
one would expect to obtain compression ratios in the order of 40. However, most
compression methods simulated provided compression ratios from 10-40 with
5 percent rms distortions for this data. In actual préctice, the data is usually not
specified sufficiently to calculate a reasonably accurate power spectral density.
If it were, the sampling rate could be specified such that redundancy removal
would not be necessary. However, as research tools, the autocorrelation function

and power spectral density were invaluable.

3.3 COMPRESSION METHODS SIMULATED

The compression methods simulated are described briefly to explain the
captions in Figure 11-32.
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i.

ZOP ~The zero order predictor is a variable sampling rate aperture
technique which was simulated with fixed aperture, floating aperture,
and offset floating aperture. 3000 sample points were used in each

simulation.

FOI-2DF—A first-order interpolator with two degrees of freedom in
which the first and last points of the interpolation line are nonredundant

sample points. 3000 sample points were used.

FOI-4DF —A first-order interpolator with four degrees of freedom in
which the first and last points of the interpolation line are constrained
to an aperture about the true data values.

LP-i—The optimum linear aperture predictor with i coefficients was
simulated with i =3 and 5. 1000 sample points were used from the

first minute of test data.

FO—Fixed sampling rate at 1/10 original rate. This method uses opti-
mum linear interpolation with 8 coefficients to reconstruct the samples

not transmitted. 3000 sample points were used.

FL—This method also uses a fixed sampling rate at 1/10 original rate;
however, straight-line interpolation is used for reconstruction. 3000

-

sample points were used.

sin x
X

FS—Fixed sampling rate at 1/10 original rate with interpolation.

3000 sample points were used.

FLG—Fixed sampling rate method with the sampling rate at 1/¢ original
rate using the ten coefficient Lagrange interpolation formula for recon-

struction; ¢ is the compression ratio. 3000 sample points were used.

FF1—A method in which the Fourier transform of the data is taken and
only 300 Fourier coefficients are retained. The data is reconstructed

from the inverse Fourier transform. 3000 sample points were used.

FF2—Fixed sampling rate at 1/10 original rate with reconstruction by

Fourier filter as described in Section 2. 3000 sample points were used.
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k. VO—Variable sampling rate method with sampling at 1/4 or 1/16 original
rate. Tolerances (apertures) of 4 and 1, respectively, determine the
sample rate switching. Optimum linear interpolation with four coefficients
is used for reconstruction. 3000 sample points were used.

1. VS—Similar to the VO method except straight-line interpolation was used
for reconstruction. 3000 sample points were used.

m. Karhunen-Loéve—A transformation of variable technique in which the sig-
nal is expressed in terms of a truncated Karhunen-Loéve expansion.
Ten- and 50~point expansions were calculated.

n. Linear Prediction With Difference Coding—This is a method in which the
next sample point is predicted by optimum linear prediction using previ-~
ous sample points. The predicted sample is subtracted from the actual
sample and the difference is coded and transmitted. As explained in
Section 2, 2~ and 10-bit coding, and 2-, 5-, and 13-bit coding schemes were
simulated.

3.4 COMPRESSION OF EKG DATA

All the methods presented above were simulated with FCEKG1 data. The com-
pression ratios obtained vs. rms error are presented in Figure 3-11, Because the
data was obtained in 8-bit quantized form, all simulation results are presented in
terms of quanta (255 quantum levels for an 8-bit code).

The rms signal power was determined to be 8.4 quanta; thus, the rms com-
pression errors are also presented as percent of rms signal.

Compression ratio is presented as sample/samples sent, which does not allow
for sensor and time tags which may be required for some methods. The variable
sample rate techniques require sensor tags because a particular time slot in a
multiplexed frame cannot be allocated to a particular sensor. Whether or not a
sensor transmits a sample point during a frame depends upon whether or not a
nonredunda.nt sample is available at the time. The number of bits required per

sensor or time tag is dependent upon the particular implementation; therefore, the
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compression ratios of all the methods simulated except one are plotted as
sample/samples sent. The linear prediction with difference coding method
achieves compression by sending all samples, but with a reduced number of bits
on the average. Thus, for this method the compression ratio is represented as
data/data sent. |

The linear prediction with difference coding scheme was applied to the data:
FCE 102 Flight Commander EKG-1, Orbit-2, 1 min. into tape, 1000 points, with
3, 5, and 10 coefficients using exact and assumed autocorrelation functions. The
prediction error is plotted in the form 6f a histogram which is used for the cal-
culations which follow.

Two coding schemes were postulated for the difference between the pre-
dicted points. These are shown in Figure 3-12 for the exact autocorrelation
function simulation. The first scheme is called 2- and 10-bit coding and is
shown in the Figure 3-12., Two bits give four possibilities. Three of these possi~
bilities are used to code differences of -1, 0, and 1. The fourth is used to
indicate that a full 8-bit word will follow, giving a sum of 10 bits.

The second scheme, called 2-, 5-, and 13-bit coding, permits coding of +2,
+3, and +4. These six possibilities require 3 bits plus the 2-bit indicator, giving
a total of 5 bits. A 5-bit indicator is used to imply that the difference is greater
than 4 and a full 8-bit word follows. This gives three types of code words of
2, b, and 13 bits.

The compression with three prediction coefficients and the first difference
coding scheme may be obtained from Figure 3-12. The total number of bits
required with the regular 8-bit coding is 997 x 8 = 7976. The total number of bits
required for the compression methods may be obtained by multiplying the number
of occurrences of each difference times the number of bits in the code for that
difference. The sum of these products is then the total number of required bits
or 3090. The compression in terms of data-over-data sent is then 7976/3090=2.58,

For the second coding scheme, the compression is 3.23. The improvement in
coding efficiency is due to a better match between the probability of a difference
and the number of bits used to describe it. The desired results would be that the

products of the probability and the corresponding number of bits be equal.
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The 2~ and 10-bit coding and the 2-, 5-, and 13-bit coding schemes were
tried on the same data with 5-coefficient and 10-coefficient predictors. The
former scheme gave compressions of 2.56 and 2.69, respectively. The latter
scheme gave compressions of 3.16 and 3.34, respectively. These compressions
are obtained with zero error.

From the results of the linear prediction algorithm applied to the FA 01
Attitude Control-Pitch it was found that the peak error was much larger than
that obtained on EKG data. There are several reasons for this. First, the
FA 01 data is not as oversampled as the EKG data. The FA 01 data was sampled
at 20 samples per second and there is some power in the spectrum out to 5 cps
whereas the EKG is sampled at 640 samples per second and the spectrum extends
to about 40 cps. Secondly, the FA 01 data is characterized by long periods of
quiescence with a periodic triangle shape pulse.

It was found that with the 2~ and 10-bit coding for the case with 3 coefficients
derived from the actual autocorrelation matrix, the compression ratio in terms
of data-over-data sent is 2.34. The 2-, 5-, and 13-bit coding scheme results in
a compression ratio in terms of data-over-data sent of 2.55. When using the
assumed autocorrelation function and a 2-, and 10-bit coding, a compression
ratio in terms of data-over-data sent of 0.915 is obtained. When a 2-~, 5-, and
13-bit coding scheme is used a compression ratio of 1.63 is obtained. Because
this method provided relatively small compression ratios and requires consider-
able computation time, it was not extended to the other data types. However,
where relatively small compression ratios with low distortion (zero for the ideal
case) is desired, this method is suitable.

The simulation results indicate that when sensor tagging is considered (the
samples/samples sent values are reduced by a factor of approximately 2 for the
aperture techniques), the Karhunen-Loéve method provided maximum compres-
sion. However, the advantage lessens rapidly as the rms distortion approaches
3 percent. The excessive computation required for the Karhunen-Loéve method
limits its usefulness to theoretical considerations.

However, the LP-3, and FOI-2DF, ZOP methods are quite practical with the
ZOP method being about the simplest of all the variable sample rate techniques.
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The FOI-4DF method provides greater compression than the FOI-2DF method
up to approximately 12 percent rms distortion. However, as discussed in Section 4,
the computation complexity of the FOI-4DF is much greater than the 2DF method.
The small improvement in compression does not warrant further consideration of
the FOI-4DF method.

The FOI-2DF method is second only to the Karhunen-Loéve method above
approximately 7 percent rms distortion (not counting the 4DF method). However,
for practical analog data, the rms distortion is usually limited to 5 percent.
Therefore, on the basis of rms distortion the ZOP-floating aperture method is the
most efficient of the "practical" compression techniques and (ignoring sensor tags)
can provide compression ratios of nearly 4 With‘ 5 percent rms distortion. Because
of this efficiency compared with other ZOP techniques, the ZOP-floating aperture
method will be referred to as the ZOP method for simplicity purposes.

Figure 3-13 shows the relationship between rms error and peak error for the
methods simulated with FCEKG1 data. Note the excessive peak errors obtained
for the fixed sampling rate with reconstruction interpolation methods and the
variable sample rate straight-line interpolator. The similarity of the relationship
for the other methods (except the ZOP-fixed aperture method) is somewhat sur-
prising and indicates that percent peak error increases more rapidly than percent
rms error with increased compression ratios.

Figure 3-14 shows the relationship between compression ratio and peak error
for the ZOP and the two FOI methods. The advantage of both FOI methods reduces
rapidly as the peak error approaches aperture values which yield practical rms

error values of less than 5 percent (peak error < 1 quantum).

3.5 COMPRESSION OF RESPIRATION DATA

Figure 3-15 presents simulation results with the ENGRES data for several of
the more promising methods as determined by the FCEKG1 data simulation results.
The fixed sampling rate and variable sample rate with interpolation methods were
not applied because of the poor peak error performance with the FCEKG1 data.

Figuré 3-16 shows the relationship between rms and peak errors for the
methods simulated with the ENGRES data. The results are very similar to those
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obtained with the FCEKG1 data as presented in Figure 3-13. Peak error is not
presented as a percentage of peak-to-peak signal because the respiration data
has nonstationary peak-to-peak values.

3.6 - COMPRESSION OF ATTITUDE CONTROL AND VIBRATION DATA

Simulation results for the ZOP and FOI-2DF methods obtained with the
FA 01 Attitude Control-Pitch and ASMRV3-Apollo SM Radial Vibration data
samples are presented in Figure 3-17. The results are obvious, the vibration
data is essentially non-compressible for reasonable rms distortion.

The Attitude Control data, however, is highly compressible with the ZOP
method having a clear advantage over the FOI-2DF method when implementation
complexity is considered and the results are extended to practical rms error
values. ’

Figure 3-18 presents the Attitude Control data simulation results in terms
of compression ratio versus peak error for the ZOP, FOI-2DF, and FOI-4DF
methods. Again, the ZOP method has a clear advantage.

3.7 COMPRESSION OF ROLL RATE DATA

The ZOP and FOI-2DF methods were simulated with EA 02 Roll Rate data.
The compression ratio results are presented in Figure 3-19 versus rms error.
For this data, the FOI-2DF method shows a clear advantage for practical per-
cent rms distortion (less than 10 percent), unless the ZOP trend of sharp roll-off
at lower percent distortion changes drastically.

Figure 3-20 and 3-21 present the relationships between rms error and peak
error for the ZOP and FOI-2DF methods, respectively, for all five data samples
used in the simulation studies. The results are significant in that whereas
compression ratios obtained varied significantly for different data types and
for different compressive methods, the rms error is a relatively constant
Iunction of peak error (aperture, for the two methods considered) for all give
five types of data for both compression methods.
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3.8 EVALUATION OF ZOP AND FOI-2DF METHODS

The previous results have indicated how various compression methods fared
with the different types of test data. However, the problem remains of deter-
mining a method for systematic evaluation of any compression method for a wide
range of data types.

It is proposed that a rating factor similar to the well known gain-bandwidth
amplifier factor be employed. Consider the factor

R(K) = —ﬁl"‘zk
p2(K¥)

where:

¢ (k) the compression ratio in sample/samples
sent as a function of peak error or

aperture k

D(k)

the percent rms distortion as a function
of k

o = anormalizing constant.

The second power of D(k) (mean square distortion) is used to stress the impor-
tance of low distortion in the reconstructed signal. It is, desirable to choose the
method with maximum R(Kk) for a specified k.

Now normalize the factor R(k) such that for ¢(k) = 2, and D(k) = 5 percent,
R(k) = 1. R(k) could be normalized to other values of ¢ and D, but these values
appear reasonable because a compression ratio of 2 is the minimum integral
compression ratio greater than 1 (which is no compression); and 5 percent is a

conservative upper bound on allowable rms distortion. Therefore,

R(K) = 12.5—‘%1—1.
D2(k)

The effect of sensor tags can be accounted for by multiplying R(k) by the ratio:

T bits/sample
= bits sent/sample sent °
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Apply this rating factor to the ZOP and FOI-2DF simulation results with the
five typés of fest data and take the average R(k) with equal weighting for each
data type. We obtain the results shown in Figure 3-22.

Figure 3-22 indicates that the FOI-2DF method has an average advantage
over the ZOP method. However, for most of the data tested, the range of prac-
tical rms distortion was obtained with peak errors of approximately one quantum.
Thus, Figure 3-22 emphasizes that for low distortion, the ZOP method is com-~
petitive with the more complex FOI-2DF method. The results are based upon the
assumed values for the normalization of R(Kk).

In summary, the two aperture techniques ZOP and FOI-2DF yielded better
compression performance than the other techniques studied (when implementa-
tion is considered). However, when averaged over all five types of test data for
practical values of distortion, the two methods give comparable performance.

A reasonable conclusion appears to be the implementation of both methods; each
method to be used on the data types that yielded the best simulated compression
ratios.

3.9 COMPARISON OF ORIGINAL AND RECONSTRUCTED SIGNALS

The previous sections have considered the results of the simulated compres-
sion techniques in terms of such calculable parameters as compression ratio,
peak error, rms error, and percent rms distortion. These are valid perform-
ance criteria; however, one more is needed in evaluating compression methods
for various types of data. This additional criterion is: 'how does it look?"

Certain data such as EKG signals are evaluated by visual study. Thus, peak
and rms error performance may be similar for two different compression
methods, but one method may be totally unacceptable because of some peculiar
perturbations introduced in the reconstructed signal.

Therefore, to obtain a measure of reconstructed signal fidelity, original
sample data and reconstructed sample data were plotted with a California Com-
puter Products, Inc., plotter. Because the ZOP and FOI-2DF methods gave the
best performance of all the practical compression techniques, these two methods
were compared with large and small apertures (k = 5, 1) for all data tested. The
results for all data types except the radial vibration data, which did not compress
well, are shown in Figures 3-23 through 3-32.
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In addition to the ZOP and FOI-2DF methods, several fixed sample rate
interpolation methods were evaluated with the EKG data to determine the distri-
bution of peak errors because only the aperture compression techniques are
peak limited with the peak error known before reconstruction. Figures 3-25

and 3-26 show the reconstructed EKG signal obtained with Lagrange, S‘i 2. , and

Fourier filter interpolation. The results were similarly deficient in reproducing
the relatively sharp pulse peaks; whereas, the variable sample rate aperture
methods (ZOP and FOI-2DF) reproduced the peaks very well because, probably,
all sample points occurring during the pulses were transmitted without deletion.
This limitation of peak error is the very feature of the aperture techniques
which makes them so well suited to compressing data which is to be evaluated
on a point-by-point basis upon reconstruction rather than upon a statistical, or
averaged error basis. Because most medical and scientific data is still evalu-
ated by the human eye, the ZOP and FOI-2DF aperture techniques appear to have
great advantage over the other methods which are not peak error limited.
Figures 3-27 through 3-32 present comparisons between the ZOP and
FOI-2DF methods for the other types of data tested. Both methods provided
good reconstruction fidelity for the aperture k = 1 on all data shown except the
EA 02 Roll Rate data. However, this data was too low in signal power for the
8-bit quantizing used in the analog-digital conversion. The signal should have
been amplified before quantizing, or the quantum levels should have been normal-
ized to the signal level. Thus, we find that the Roll Rate data provided compres-
sion ratios of 41 and 30 for the ZOP and FOI-2DF methods with rms distortion
levels of 15 percent and 11 percent, respectively, with an aperture of one quantum
level. Surely, a finer grained quantizing would have yielded less but still accept-
able compression ratios at acceptable levels of distortion. This could be done
without increasing the number of bits per sample by employing a gain factor code

word before transmission of the sampled data.
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Figure 3-30. FA 01, Attitude Control-Pitch

3-41



&
&
ettt

}

R
Tk
R

o

]

won,

3-42

nal and Reconsivucted Data Aftey Compress

081
EA 02, Roll Rate

Or

Figure 3-31.




won,

nal and Reconstructed Data After Compress

g1
EA 02, Roll Rate

ori,

Figure 3-32.

3-43



Section 4
SYSTEM DESIGN

4.1 INTRODUCTION

The discussion of the design of a complete, adaptive, multipurpose data com-
pression system is divided into three sections. Section 4.2 discusses a tradeoff
study which compares significant aspects of a variety of data compressors.
Section 4.3 discusses the problems of adaptive buffering and control of compres-
sion parameters, while Section 4.4 presents the basic design of a complete,
adaptive data compression system which is directed particularly toward data
systems of the type planned for manned spacecraft.

4.2 TRADEOFF ANALYSIS

Section 3 evaluated the relative effectiveness of a variety of data compres-
sion methods by observing the compression ratios they achieved as a function of
both the rms and peak errors in the reconstruction for several representative
types of manned spacecraft telemetry data. This section will extend the evalua-
tion work by considering the relative hardware penalty that might be incurred by
the implementation of each method, and by relating various aspects of this
penalty factor to the relative effectiveness, will develop a comprehensive trade-
off analysis.

In using the term '"'relative effectiveness,' it is recognized that this is a
difficult judgement to make. The data presented in Section 3 makes it clear that
there is no method which is superior for all data types and under all conditions
of allowable rms and/or peak error. For example, although Figure 3-15 shows
the FOI-2DF technique to have a distinct advantage over the others tested on this

particular data type, this advantage does not appear in Figure 3-11 except at large
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rms error levels, and at low rms error levels, the FOI-2DF rapidly becomes the
least effective method of those tested. If only one technique is to be used in a given
data system, it must therefore be carefully selected, and for a wide variety of data
sources, there is a strong case for having more than one technique at the disposal
of the system.

The following section will discuss each technique tested in sufficient detail to
permit clear comparisons of various features to be made. In discussing the imple-
mentatioh of each technique, it will be assumed that the compressor is to be used
in a manned spacecraft data system such as that found in the Gemini spacecraft.
The input to the compressor will be a multiplexed PCM data stream derived from
analog and digital sensors.

In developing a critical comparison of the various proposed compression
methods, the following general criteria will be considered:

a. Effectiveness of performance as measured in terms of rms and peak
errors as functions of compression ratio for the various data types
(reference is made to Section 3).

b. Implementation cost in terms of arithmetic capability required,
program complexity, and storage requirements.

c. Other factors which may be significant for particular compression
methods, such as impact on ground equipment, excessive coding,

and transmission difficulty.

4.2.1 Aperture Techniques

This section considers the implementation of those aperture techniques that
were evaluated in Section 3, with the exception of the First-Order Predictor and
the Zero-Order Predictor, Fixed Aperture; their poor performance on the EKG
data in comparison with the other techniques precludes their consideration as a

generally useful compression method. Each of the other aperture algorithms is

discussed below.



4.2,1.1 Zero-Order Predictor (ZOP)

There are several forms of aperture compression algorithms which employ
zero-order prediction; the one which has been most extensively evaluated, and
which has consistently given the best results is the floating aperture type. A flow
diagram for this computation is shown in Figure 4-1. The computations required
per data point in the ZOP are very simple, consisting of only two subtractions
and a zerd-comparison together with several transfer operations and two memory
cycles. The storage requirements for this method also are minimal, because
only the previously transmitted sample, the tolerance values and the number of
samples, n, since the last transmission need be stored. Assuming 8-bit data
samples, five 3-bit alternate tolerance values, and 8 bits for n, a total of 31 bits
of storage per channel is required.

The computational simplicity of the ZOP technique, coupled with its minimal
hardware complexity and its generally effective performance give it a very
advantageous position in a tradeoff study of practical compression techniques, as
has been recognized by previous investigators. Its only disadvantage is that for
most data types a somewhat higher compression ratio can be achieved by more
sophisticated techniques. Note that it is entirely feasible to implement the ZOP
calculation by analog techniques resulting in even greater hardware savings,
whereas the general complexity of the computation program required by all the

other techniques dictates the use of a digital processor for their implementation.

4.2.1.2 First-Order Interpolator —Two Degrees of Freedom
Method (FOI1-2DF)

Of several first-order interpolation techniques, the FOI-2DF method requires
significantly simpler implementation and produces results which are comparable
to or improve upon, the others. A flow diagram showing the required computations
for each data point is given in Figure 4-2, The computation by the longest flow
diagram path requires seven additions or subtractions and two divisions. The
storage requirements for this method are greater than those of the ZOP, because
it is necessary to store the two slope limits, L and U_. , and the sample

max min
value immediately preceding the present value. With the same assumptions as for
the ZOP, the total storage is 53 bits per channel.
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The implementation of the FOI-2DF method requires a divider (or multiplier)
and an adder-subtractor. The multiply function can be accomplished in the proc-
essor by repeated additions and shifts, therefore, the arithmetic capability required
is not appreciably more than that of the digital implementation of the ZOP; the chief
penalty is the approximate doubling of memory size with its attendant weight
increase, and a longer computation time.

Note that the results presented in Section 3 show that the FOI-2DF and ZOP
techniques are in a sense complementary, with the FOI-2DF exhibiting good com -
pression performance at larger peak error (aperture) values, while the ZOP per~
formance is good at smaller aperture values where the effectiveness of the
FOI-2DF decreases sharply. Figure 4-3 shows the general shape of the perform-
ance curves for both methods. Note that the performance curves for most other
techniques (except, notably, the Karhunen-Loéve method) fall to the lower right of
a composite curve made up of the best sections of the FOI-2DF and ZOP curves.

4.2,1.3 First-Order Interpolator —Four Degrees of Freedom
Method (FOI-4DF)

This technique was investigated principally because of its academic interest
as the optimum first-order interpolation method. By constraining neither end of
the approximating line to lie on a data point, the longest straight line within a fixed
peak error of all points lying along the line is achieved. Its performance, however,
does not appear to be markedly better than the FOI-2DF method for the cases
studied, primarily because of the necessity of transmitting two data points (i.e.,
the beginning and end) for each line segment. In the FOI-2DF method, only one
point per line segment is required, thus although more line segments are needed
to approximate the signal, the FOI-2DF is not necessarily inferior to the FOI-2DF
method.

Implementation of the FOI-4DF method presents several difficult problems.
The most significant of these is that the storage requirements increase as the
number of redundant points since the last transmission increases, since each inter-
mediate point must be tested during every computation. Thus, the storage capacity

required is theoretically unlimited, although in practice a limit could be set by
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requiring a sample to be sent at certain intervals, regardless of the compressor,
and restarting the computation. Even with this relief, the storage requirement
rapidly becomes impractical. In addition, the computations associated with the
FOI-4DF method are lengthy, and not only vary with the number of redundant
points, but also are dependent upon the shape of the signal being compressed.
Because of these difficulties, the FOI-4DF interpolation method was not con-
sidered as a serious candidate for implementation.

4.2,1.4 Linear Predictor Aperture Method

This method operates in principle in a similar manner to the ZOP method,
except that the prediction of the next data point is made by a linear combination

of N previous points according to the relation: -

N
% =)%Y

n=1

For N =1, and ay approximately equal to unity, this is the exact equivalent
of the ZOP technique. The coefficients used in the prediction are functions of
the statistics of the signal, and are constant only for stationary signals.

For a small number of fixed coefficients, the implementation of the linear
predictor is not difficult, and can be accomplished with N + 2 multiplications and
additions in a digital processor. The results obtained for this method were con-
sistently poorer than either the ZOP or the FOI-2DF techniques, and these results
deteriorated as more terms were used in the prediction. Also, for optimum
results the prediction coefficients should vary adaptively as the autocorrelation
function of the signal changes. This variation requires computational capacity

far beyond that used in the compression calculations.

4.2.2,1 Reconstruction Interpolation Techniques

It was noted early in the study that a large proportion of the data signals

were sampled at a rate considerably in excess of the minimum indicated by the



calculation of their power spectra. Therefore, the possibility of reducing the
data sampling rate by improving the interpolation technique during the data
reconstruction was investigated. By this approach, the implementation penalty

in the spacecraft is held to a minimum, because no additional hardware is
required; the data system is designed to provide close to Nyquist-rate sampling
on all analog channels, which in some of the cases studied reduces the sampling
rate by a much as a factor of ten. This reduction in sampling rate requires more
sophistication in the data interpolation performed on the ground. Several inter-

polation methods were investigated, and are listed below.

a. Optimum linear interpolation—8 coefficients
b. Straight-line interpolation

c¢. Lagrange interpolation—8 coefficients

d. Sin x/x interpolation

c. Fourier filtering

The chief drawback in the fixed sampling rate methods is that, unlike the
aperture techniques, the peak error in the recovered data is not limited, because
the interpolation algorithms are derived by minimizing the rms error. The test
results show that although the rms error may be within acceptable levels, the
peak error can be quite large (see Figure3-13). This lack of control of peak error
is a serious shortcoming because the experimenter can never know what confidence
to place in his data, and it is probably a sufficient argument for eliminating the
fixed-rate compression in spite of its hardware advantages. In addition fo the peak
error problem, the overall performance curves of the fixed-rate compression
methods are consistently poorer than those of the simpler aperture techniques for
all cases tested.

4.2,2,2 Linear Prediction With Difference Coding

A very different approach to fixed sample rate compression is represented by
the linear prediction and difference coding technique. In this method, a linear com-
bination of points is used to predict the next data point. The difference between the

predicted value and the actual value is coded and transmitted.
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Although this method permits exact reconstruction ‘of the data on the ground,
the coding used to represent the successive differences requires variable length
words. This variation in word length introduces serious problems into the PCM
transmission and ground recovery equipment, which operate on a fixed word
length basis. Although the computations per point are not excessive, the problem
of handling the resulting random-length word data stream was considered suf-
ficiently difficult to eliminate this method from practical consideration.

4.2,3 Variable Sampling Rate

The variable sample rate compression method, as it was conceived and
tested in this program, is in effect a combination of the aperture techniques and
the fixed sample rate techniques. The data sample rate is switched between two
submultiples of the basic rate in response to a simple measure of data activity
implemented by observing when the difference between successive points exceeds
a given aperture,

The effectiveness of the variable sampling rate is, like that of the fixed rate,
strongly dependent upon the accuracy of the interpolation used on the ground. Two
methods were tested, one using optimum linear interpolation with four coefficients
and one using straight-line interpolation. The optimum linear method gave results
measured against rms error that were quite good, however, its peak error per-
formance was poor. The straight-line interpolation gave comparable rms error
performance, but the peak error was very poor,

The implementation of the variable sample rate method is not different in
concept from that of the aperture methods. A digital processor is used to test
each sample against the algorithm and determine whether or not it should be
transmitted, and also whether the sample rate should be changed. The compressor
output is random, and a buffer is required ahead of the transmitter. Sensor identi-
fication and current sampling rate must be transmitted along with each data sample.
The general implementation complexity is roughly equivalent to that of the FOI-2DF,
and while its rms error performance for a given compression ratio is only slightly
worse, its poor peak error performance and its requirement for sophisticated

ground interpolation equipment cannot be ignored.
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4.2.4 Transformation Compressors

Data was obtained on two transformation compressors: the Karhunen-Loéve
expansion and the Fourier transform. Both of these techniques are described in
some detail in Section 2. The Karhunen-Loéve expansion is a highly effective
compression technique in terms of performance, and some work was done during
the study toward using Karhunen-Loéve coefficients as a measure of an upper
limit of data compressibility. The Fourier filter was also a reasonably effective
interpolation technique. Both methqu, however, are only of academic interest
as far as implementation is concerned, because the computations involved in
determining the coefficients of the expansions are far beyond the capability of a
spaceborne processor. For example, a 50-point Karhunen-Loéve expansion
requires the inversion of a 50 x 50 matrix. Similarly, the computation of Fourier

coefficients in real time on a multiplexed data stream is impractical.

4.2.5 Summary and Conclusions

This section has presented the salient points both in favor of and against
each of the methods tested. These points are summarized in Table 4-1 where the
algorithms are compared according to three general criteria: effectiveness of
compression, implementation cost, and impact on the data system design. From
this presentation, there are two techniques, the ZOP and the FOI-2DF, which have
favorable comments in all three categories. All of the other methods have a
disadvantage of more or less seriousness in at least one area, Because the ZOP
and the FOI-2DF tend to complement each other in performance, implementation
should at least have the capability of executing either of these algorithms on
selected data channels. If a compression system is designed to use these two
algorithms, then it may be desirable to extend its capability to include other
algorithms of comparable complexity to increase the ability of the system to meet
the requirements of a data system having a wide variety of sensors. This extra
capability would also permit critical evaluations to be made in a real system
environment. '

This section has discussed the comparative aspects of several data compres-

sors. Section 4.3 will consider in some detail the problems associated with the
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second major subsystem—that of adaptive buffering of a compressed, multiplexed
data stream. Section 4.3 will describe briefly an approach to the design of a com-
plete adaptive data compression system having considerable flexibility and including
adaptive buffer control.

4.3 BUFFER CONSIDERATIONS

4,3.1 Introduction

Design of the output buffer is one of the most important tasks to be faced in
implementing ACT. Upon proper design of the buffer, including such parameters
as size, input-output data rates, and occupancy control, rests the overall com~
pression efficiency and error performance of ACT.

The buffer permits the efficient merging of nonredundant samples from several
sensor channels into one constant rate data stream for transmission. The samples
from different sensors could have been operated upon by different compression
methods.

The problems of efficient buffer design are manifold. Even for a single sta-
tionary compressed sample stream, the variance in individual runs of deleted
(redundant) samples produces problems of overflow and emptying of the buffer.

Overflow causes data samples to be lost, all the more undesirable because the
redundancy of the data has been reduced. Underflow, or buffer emptying, leaves
information gaps in the transmitted signal that could have been used to improve
received error performance by either lengthening the transmitted sample period, or
reducing the compression ratio, or both.

It is desirable, therefore, that the buffer be designed to neither overflow nor
underflow. This, as will be shown, is difficult to achieve without using a buffer with
greater capacity than necessary unless a system using adaptive control is
considered.

For most of the compression methods considered, including the two methods
which yielded the best overall ‘results (ZOP and FOI-2DF), the compressor opera-
tion time per sample point is constant, or very nearly constant. Because the input

to the compressor consists of a synchronous multiplexed stream of sampled data,
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and the buffer output is also synchronous for transmission purposes, the buffer
implementation would be synchronous. Thus, the queueing analysis required for
efficient buffer design is based upon the binomial distribution rather than the
usual queue model Poisson distribution.

The details of the analysis, including the derivation of equations for the
probabilities of overflow and no readout, the required buffer length, expected
fill and variance as functions of average compression ratio ¢, and input-output
transmission rates C are presented in Appendix C. Because most of the derived
relationships are recursive, digital 'computer solutions were necessary. In this
section we will use the results of the buffer analysis to outline methods for
efficient buffer design for ACT.

4.3.2 Computer Solutions of Buffer Equations

There are three independent buffer parameters which must be specified in
a buffer design. They are: ¢, the average compression ratio; C, the input-output
transmission ratio; and R, the probability of overflow. As shown in Appendix C,
the ratio C/¢ is usually called p, the buffer activity factor, and must be equal to
or less than unity for equilibrium to occur. That is, if p > 1, the buffer will have
on the average more incoming data than oufgoing data and will eventually over-
flow with the resultant loss of data.

For the Poisson distribution model of input data, which is a reasonable model
for a high-speed asynchronous buffer, the dependent parameters such as average
buffer fill, and required buffer length for a specified overflow probability R are a
function of p. However, for the synchronous buffer with binomial input distribu-~
tion, the parameters are a function of ¢ and C; thus, the design parameters can-
not be expressed solely as a function of p = C/¢.

Note that ¢, the average compression ratio, when applied to the buffer analysis,

. . . Zdata bits into ACT .
is the average ratio: Y data bits out of ACT for all multiplexed sensor data. The

simple relationship between individual sensor compression ratios and the average
compression ratio needed for buffer design is derived in Appendix C.
It is assumed that all sensor data is statistically regular; i.e., we assume

that short duration sensor compression ratios do not deviate greatly from the long
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term average compression ratios. If this is not the case, detailed transient
buffer studies must be undertaken. This would probably be most tractable with
computer simulation. However, even for the stationary case, it will be shown
that a transient analysis is desirable to aid in designing an adaptive controlled
buffer.

Results of the computer solutions to the buffer equations are shown in
Figures 4-4 through 4-7. Figure 4-4 shows the relationship between buffer
length -L, average buffer fill -E(n), and average percent fill -E (n)/L as functions
of the average compression ratio ¢ for several values of R; the probability that
an input event will overflow the buffer.

The results agree with intuition in that as p = C/¢ —1, the required buffer
length for a particular R increases rapidly. The expected buffer fill E(n) behaves,
as would be expected, similarly to L. Note that as p— 1, the percent buffer fill
E(n)/L increases rapidly. However, even for p ~ 1, E(n)/L is quite small for
R = 0.0001. Thus, we have our first indication that restricting overflow by
increasing buffer size is relatively inefficient.

Figure 4-5 presents buffer length L as a function of C, the input-output trans-
mission ratio. Here again, the extreme sensitivity of buffer size top as p—+1 is
apparent. Figures 4-6 and 4-7 present the probability of overflow R, and the
probability of no readout 1- p(1 - R), which is discussed in detail in Appendix C,

as functions of buffer size and average compression ratio respectively.

4.3.3 Adaptive Buffer Control

The point of interest in Figures 4-6 and 4-7 is the difference between the
probabilities of no readout and overflow. The two approach equality as p—~1.

Thus, for maximum efficiency in both buffer utilization and compression (the
larger C can be made, the greater the transmission bandwidth reduction) the
buffer should be designed to operate with p ~ 1. However, as shown in Figure‘ 4-4,
this would require a large capacity buffer (L > 100 for ¢ > 4, with R = 0.0001).
The probability of overflow can never be made exactly zero for all sensor data no
matter how large L is made (it can be made arbitrarily small, but the required

buffer size increases rapidly); therefore, the following system is recommended.
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The buffer should be designed with a fairly good estimate of the average
compression ratio ¢ that will be achieved for all the sensor data (the composite ¢
is discussed in Appendix C). Any data that is considered too important to risk
a small but finite probability of loss due to buffer overflow should be designated
priority sensor data. The total bandwidth of the uncompressed priority sensor
channels should be no greater than the total transmission bandwidth, Thus, the
low priority data is compressed and transmitted in the transmission bandwidth
obtained by compression of the priority sensor data, When buffer overflow
becomes imminent, the low priority data is heavily compressed, or excluded
from transmission altogether. Thus, priority data is always guaranteed
transmission bandwidth. The statistics of such a priority system are considered
in more detail in Appendix C.

Assuming the system average compression ratio is known (computer simula-
tion may be necessary on typical sensor data), the input-output transmission
ratio C should be chosen such that p = C/¢ ~ 0.98. This will provide the proba-
bility of overflow approximately equal to the probability of no readout in the
vicinity of R = 0.01, and requires a buffer size less than 1/4 of that required
for R = 0.0001 (see Figure 4-5).

Overflow and no readout probabilities of approximately 0.01 would probably
not be acceptable for most applications. Therefore, an adaptive control is
required to reduce R without increasing the buffer size. Figure 4-7 is of assist-
ance in estimating the change in ¢ required to reduce R to a desirable range for
a fixed L.

, Consider an average compression ratio ¢ = 8, such that with C = 8,
p = 0.98. From Figure 4-5, L is found to be 25, Using the curve for L = 20,
C = 8 in Figure 4-7, we find that ¢ must be increased from approximately 8.2
by 9.5 to reduce R from 0.01 to 0.0001; thus ¢ must be increased by a factor
of 1,16. A buffer load register such as an up-down counter, could be used to
trigger a change in compression ratio when the buffer appeared in danger of
overflowing or becoming empty.

Appendix C shows that for all five types of data tested, with the aperture

compression techniques simulated, an increase in aperture by a factor of two
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yields a new compression ratio c,bz which lies in the range: 1.2 q)l < ¢2 £2.3 ¢l’
Thus, for our example, a doubling of the apertures in the compression algorithms
would more than provide the required increase in compression to decrease R
from 0.01 to 0.0001, If a priority system was involved, the nonpriority data
compression would have to be increased by more than a factor of 1.16 to offset
the constant compression probably required for the priority data.

The previous example considered the buffer control problem from a quasi-
stationary standpoint; i.e., the time required to reach equilibrium after the
change in ¢ was neglected. Whereas, in fact, the rate of change would be of
utmost importance to determine the probability of data loss before equilibrium is
attained. As stressed in Appendix C, the buffer equations derived (from which
Figures 4-4 through 4-7 evolved) are valid for the system in equilibrium.

It will be necessary to analyze the transient conditions before a detailed

buffer control design can be undertaken.
4.4 SYSTEM DESCRIPTION

4.4,1 Introduction

The algorithm performance study of Section 3 and in the preceding trade-off
analysis show that a compression system capable of performing both the FOI-2DF
and the ZOP compression methods on any selected combination of data channels
would be a highly effective compressor. In addition, it is desirable, particularly
in the evaluation phase of system development, to incorporate the maximum flexi-
bility that can economically be implemented. This section describes a design
approach to such a data compression system which uses the concepts of micro-
programming to achieve the capability of executing both of the recommended
algorithms, as well as being able to be reprogrammed for other algorithms of
comparable complexity. The particular algorithm to be applied to each data chan~
nel is selectable by ground-station command. In addition, flexible control over
the tolerances used in the compression calculations is provided to control the

data rate out of the compressor and maintain the output buffer occupancy at a
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nominal level. To place these ideas in their proper context, the discussion of the
compression subsystem will be preceded by a brief description at a general level
of a typical complete data compression system from data source to transmitter,

4.4.2 General Data Compression System

A broad-level block diagram of a typical data compression system is shown
in Figure 4-8. Data is derived from both analog and digital sensors and combined
by a digital multiplexer at sampling rates appropriate to the individual data
sources by super and subcommutation. The output of the digital multiplexer is a
gerial-by-word data stream conforming to a predetermined format, Because the
compression subsystem must be able to identify the source of any given data
sample, sufficient information must be available to permit this determination to
be made, The necessary identity information can be derived from the data stream
by a frame sync recognition and word counting process similar to that performed
at the ground receiving station, or it may be made directly available by the multi~
plexer. In either case, each data sample appearing at the input to the compressor
is accompanied by a sensor identification word.

' Upon receipt of an input sample, the compressor uses the sensor identifica-
tion word to address its storage. This storage carries, for each sensor, all the
reference data (previous points, slope limits, tolerances, etc.) required to per-
form the necessary calculations, upon the basis of which the sample is either
transmitted or eliminated. After the calculation, the new reference data is stored
and the nonredundant sample is sent to the buffer storage, accompanied by sensor
identification and any other data that may be required, such as tolerance limits,
compression algorithm used, etec. The buffer storage is provided as a rate buffer
between the random rate output of the compressor and the fixed rate of the trans-
mitting subsystem. To prevent either data loss from buffer overflow during
periods of high data activity or inefficient use of the link resulting from buffer
emptying during quiescent periods, a feedback control path is provided from the
buffer to the compressor. This control path varies the tolerance limits applied in
the compression process according to a fixed priority in response to detection of

the level of buffer occupancy. This variation of tolerance limits adjusts the
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average output rate of the compressor to match the transmission rate. The
foregoing discussion lays the groundwork for a detailed description of the design
of the compression subsystem.

4.4.3 Compression Subsystem

The essential design requirements which must be met by the compression
subsystem are summarized below:

a. Accept a fixed-rate, commutated data stream in digital form with
associated sensor identification data and word timing.

b. Perform upon each channel the appropriate compression algorithm.

¢. Transmit nonredundant data to a buffer storage for transmission.

d. Accept and implement ground commands as to the compression
algorithm to be applied to each channel. This includes the capability
to command that selected channels be transmitted without compression
or eliminated entirely.

e. Respond to a control signal which is a function of buffer occupancy by
adjusting the tolerance limits applied ih the compression calculation

to control the data rate out of the compressor.

4.4.3.1 Compression Algorithms

The evaluation of the effectiveness of various compression algorithms given
in this section has shown that the ZOP and FOI-2DF methods of compression are
both effective in redundancy removal, in addition to which they both require only
relatively simple calculations. Figures 4-1 and 4-2 show detailed flow diagrams
in which the computations are expressed entirely in terms of addition, subtraction,
division and comparison with zero. Section 4.4.3.2 describes the development of
a central processing unit that will perform the necessary arithmetic bperations,
and shows how this central processor can be incorporated into a compression

subsystem which fills all the requirements listed above.
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4,4.3.2 Central Processing Unit (CPU)

In discussing the implementation of the central processing unit, the FOI-2DF
algorithm will be used as a specific example wherever necessary; it will become
evident that the implementation of the ZOP will present no additional problems.

The general philosophy in developing the CPU is to provide a general-purpose
arithmetic unit which performs all the necessary calculations on a sequential basis,
and to develop a programming subsystem whichperforms the necessary routing and

sequencing functions.

4.4.3.2.1 Arithmetic Unit

Figures 4-1 and 4-2 show that the FOI-2DF and ZOP algorithms, and indeed,
most other algorithms, can be performed by the operations of addition, subtraction,
division, and comparison with zero (combined with a subtraction, this permits com-
parison of any two numbers). An arithmetic unit is required, therefore, which will
add, subtract, or divide a given pair of numbers upon command and present the
results in bi-polar form using a sign bit in the answer to indicate polarity.

Because the detailed design of such a device is Straightforward, it will not be dis-
'cussed here; the Arithmetic Unit will be considered as a functional building block
in the development of the CPU. The relationship of the Arithmetic Unit to the other
elements in the CPU is shown in Figure 4-9. Upon receipt of a signal upon one of
the three input command lines, it forms the sum, difference, or quotient of the

contents of registers A and B, and stores the result in Register Rl‘

4.4.3.2.2 Storage Registers and Selector Gating

Figure 4-4 shows the configuration of the CPU. The reference data for a
particular calculation (shown for the FOI-2DF algorithm) are brought from storage
to a set of registers, along with the new data point. Registers A and B are the
input registers to the Arithmetic Unit, Register R1 is for the Arithmetic Unit
result, and Registers Rz, R3, and R 4 are for temporary storage of intermediate

results.
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The actual execution of the algorithm consists of sequentially executing the
instructions shown in Figure 4-5. To do this, each instruction is broken down
into elementary commands. For example, the instruction: Subtract Yt n "~ Yt=Y

would be executed by the following sequence of commands:

a., Transfer Y to A
t+n

b. Transfer Yt to B
c. Subtract

This sequence leaves the result, AY, in Rl‘ The actual transfer operations are
accomplished by control signals which are applied to the source and destination
gating, A transfer consists of gating the selected source register onto the com~
mon data line, and gating the data line into the selected destination register.
Arithmetic operations are accomplished by placing a signal on the appropriate
inputbto the Arithmetic Unit. The actual sequence of commands which performs

a complete algorithm calculation is generated in a Program Control subsystem.

4.4.3.3 Program Control Subsystem

A block diagram of the Program Control Subsystem is shown in Figure 4-10.
It consists essentially of a Read-Only Storage (ROS), and ROS Address Generator,
and a Command Decoder. The ROS contains as many words as there are possible
commands fo be executed by the CPU., The extraction of a particular ROS word
causes the CPU to execute that particular command. The command words are
read out of the ROS in the correct sequence by the ROS Address Generator, and
decoded into actual control signals by the Command Decoder. A typical ROS
word format is shown below.

SOURCE

REGISTER DESTINATION ARITHMETIC MEMORY ROS OTHER

IDENTITY IDENTITY COMMAND ADDRESS PER COMMANDS -
4 bits 4 bits 2 bits Sgn R1 3 bits

2 bits
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The command sequence required to execute a particular compression algorithm
can be written from the detailed flow diagram. A section of a typical sequence,
complete with ROS addresses, is given in Table 4-2. Each command in the

sequence is identified by the address, which is made up of several parts:

a. The algorithm being executed—In the system being considered there
are four possibilities:
1. FOI-2DF |
2. ZOp
3. No compression

4. Eliminate

Two bits are required for this part of the address, which comes
from the main storage.

b. The state of control bits, C1 and Cz, which are used to record the result
of branch point decisions in the program.

c. The actual step of the program being executed—This is simply an index
register which advances one count after each corhmand. The allocation
of six bits to this section permits sequences having up to 64 commands.
Thus, 10 bits are required for the ROS address in the system under

consideration.

The sequence of events in a typical calculation is initiated by a timing signal
from the external system. This signal indicates that the required data has been
placed in the registers, and the part of the ROS address which identifies the
algorithm to be executed has been supplied from main storage. The index register
is set to step one, and the first command in the sequence is read out of the ROS,
This command is executed, and after its completion the index register is advanced
and the next command is read out and executed. This continues through the entire
calculation, until the last command in the sequence, which is a STOP command,
indicates that the calculation is complete.

It is evident from the foregoing description that this approach to system
imblementation offers considerable flexibility in the programs that can be executed.

A single set of commands is developed which operate upon a simple CPU. The

4-29



Table 4-2, Program Sequence—FOI-2DF Algorithm (Sheet 1 of 2)

ROS Adress
Command
Index 0102 Algorithm
0O 0 0 0 1 0 1 Transfer Yt +n to A
‘0 0O 0 1 0 0 1 Transfer Yt to B
O 0 0 1 1 . 0 1 Subtract (R1 = y)
0O 0 1 0 0 0 1 Transfer R1 to A
o 0 1 o0 1 0 1 Transfer nto B
0 0 1 1 o0 0 1 Divide (R1 = §)
0 0 1 1 1 0 1 Transfer R1 to A and R2
o 1 0 0 o 0 1 Transfer L max to B
o 1 0 o0 1 0 1 Subtract (R1 = Sl)
o 1 0 1 O 0 1 Set C1 per sign R1
o 1 o0 1 1 o0 0 1 Do not decode
o0 1 0 1 1 1 0 1 Transfer U_. to A
min
0 1 1 0 0 O 0 1 Do not decode
0 1 1 o0 o0 1 0 1 Transfer 32 to B
0 1 1 o0 1 o0 0 1 Do not decode
o 1 1 o0 1 1 0 1 Subtract (R1 = SZ)
o 1 1 1 o0 o 0 1 Do not decode
0 1 1 1 o0 1 0 1 Set C2 per sgn R1
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Table 4-2, Program Sequence—FOI-2DF Algorithm (Sheet 2 of 2)

Note: At this point in the program the state of 02
defines which main branch of the flow
diagram is to be followed, and CJ1 is no
longer needed, Two complete sets of instruc-
tions are needed from this point on, depending

on 02.
ROS Address
Command
Index C,Cy Algorithm
1 1 1 1 0 0 1 Transmit Yiin
1 1 1 1 1 0 1 Transfer k to A
0 0 0 o0 0 0 1 Transfer Yiin to A
0 0 0 O 1 0 1 Transfer n to B
0 0 o0 1 0 0 1 Transfery, . toB
0 0 0 1 1 0 1 Divide (R, = )
0O 0 1 O 0 0 1 Subtract (R1 = S%)
ete., to end of program
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sequence in which the commands are executed determines the nature of the cal-
culation performed, and this sequence is determined by the ROS and its Address
Generator,

4,4.3.4 Compression Subsystem Description

A functional diagram of the compression subsystem is shown in Figure 4-11,
The principal features yet to be discussed are the Main Storage and its character-
istics, the incorporation of the ground command subsystem, the Buffer Status
control path, and the overall system operation,

4,4,3.4.1 Main Storage

The Main Storage contains for each sensor a data word which includes all
required previous data, tolerances to be used under different buffer conditions,
number of samples since the last transmitted sample, and compression
algorithm presently being used for that sensor. The storage is addressed by
the sensor identification word received from the external system. A typical word
format for a FOI-2DF algorithm is described below, All the required data is

_contained in a 55-bit word,

Bits 1-8

<

last transmitted sample

t

Bits 9-16 Yt -1 previous sample
Bits 17-24 Lmax lower slope limit
Bits 25-32 Umin upper slope limit
Bits 33-35 K1 tolerance limit
Bits 36-38 KZ tolerance limit
Bits 39-41 K3 tolerance limit
Bits 42-44 K 4 tolerance limit
Bits 45-47 K5 tolerance limit
Bits 48-53 n number of samples since Yt
Bits 54, 55 Algorithm

identification

4-32



wWaISKSQNS UO0LS SIAJULOD —~UDASDYT 4201 ‘TI-F 2ANS1]

NOLY ALV o
Q0SN3S ‘
2NN ———
[ 211" 5 702 4M0D INVIW/L
IN/SS7000d |—
4nasne TWELNID Wreoodd -
FoNpII?0L
@L2377S]
—_—
sLpsS A74ME T | Zomp 3704 pIHQ
s |
w.gi\%mu& FoHI0LS NO/LYIIFIINIY
VLA T X05NM38
— 2| s o027
»W 27778

DIV NN ﬁ

X0LIF43Q

PONIQ/ION 10D

ﬁ»

Seyaqeey

QN YWWOo

INOY ————p | 2290
oV yYwmoo wozs }.\\i\ Qo2

4-33



4,4,3.4.2 Adaptive Control

An essential feature of an adaptive compression system such as the one
being described is the ability to regulate the rate of data flow through the com-
pressor in response to variations in data activity as reflected in the occupancy
of the queueing buffer which stores the data for transmission., This regulation
is accomplished in the proposed system by providing several different tolerance
limits for each data source. During periods of data activity, the tolerances will
be increased, thus reducing the data flow, while during quiescent periods a
decrease in tolerances will increase the data flow, This tolerance selection is
accomplished by a multi-level control signal déri_ved from the buffer queue
length monitor, This control signal is essentially a direct control over system
compressidn ratio, and it acts by selecting one of the tolerance values stored
for each channel for actual use in the CPU calculation.

4,4.3.4.3 Ground Control

Provision is made for the ground monitoring station to select the compres-
sion algorithms to be used in each channel, and also to command that a particular
channel either be transmitted without compression or eliminated entirely. The
ground command is stored in the compressor along with its sensor address.
Each input address to the main storage is compared with the command address,
and when coincidence is detected, the commanded algorithm code is gated into |
the program control rather than the code in the storage. After the computation
is complete, the new code is returned to storage, and the new algorithm is used
until a change is commanded. Thus, the ground station has considerable control
over the data compression system.

4.4.3.4.4 Output Data Format and Sensor Identification

The actual data stream being transmitted to the ground must contain certain
information that is not required in a system which has no compression. Because
the regular format has been destroyed, sensor identification must be transmitted
with each data sample. Because the tolerance level being used is variable, it
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must also be transmitted., To permit accurate time placement of the data, it is
desirable that the main frame sync pattern be transmitted each time it occurs,
with appropriate identification. If real time is transmitted as a data sample at
a very low subcommutated sampling rate, then the time occurrence of any
sample can be computed by counting the number of main frames from the last
time data word.

4.,4.5 Sundmary

This section has described a hardware implementation of an adaptive data
compression system capable of executing the ZOP and FOI-2DF algorithms upon
a multiplexed data stream of the type normally encountered in PCM telemetry
systems., The system is flexible in its ability to apply different algorithms to
different channels, and in responding to data flow, increases or decreases as
reflected in the buffer activity. A ground command may alter the algorithm
applied to a particular channel, or may cause a channel to be transmitted without
compression or eliminated entirely.

These features provide the system with the versatility that is needed in a
compression system which is to be used with a variety of sensors and data types,

and which can be reprogrammed to fit the requirements of different missions.

4.5 PROGRAM FOR IMPLEMENTATION OF RECOMMENDED
SYSTEMS

4.,5,1 Phasing
The program will be broadly divided into three phases:

Phase I—System Design and Subsystem Specification
Phase II—Hardware Design, Fabrication, and Checkout
Phase INI—System Evaluation

Phase I will be concerned with establishing the requirements for the overall
compression system—the input data characteristics, the sensor types and

statistical properties, sampling rates and algorithms to be implemented; also
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the transmitter characteristics, the output format design, and the specification
of interfaces between the data compressor and the adjoining system elements.
This system definition will lead naturally into the preparation of specifications
for the compression subsystem, and for the buffer and adaptive control charac-
teristics. The end result of Phase I will be a detailed set of specifications for
hardware development.

Phase II will consist of the detailed design, fabrication, and checkout of a
model of the adaptive data compressor. The end result of this effort will be a
working model for verification of the concepts of adaptive compression. Also
during Phase II, a detai_led and comprehensive evaluation plan will be prepared
for use in Phase III.

Phase III will consist of an evaluation program for testing the effectiveness
of the compression system in a live-data system. Key parameters to be studied
will include: error rate in the reconstructed data; overall compression ratio
achievable; effects of transmission channel errors, optimum coding methods,
transmission efficiency, etc. This phase will result in a final report which will
include the final design of a spacecraft compression system.

4,5,2 Task Breakdown

This section will consider each of the phases described above in some
detail, and will discuss the tasks which must be accomplished to support the
overall objectives of the program.,

4.5.2,1 System Design and Subsystem Specification

This task is concerned with detailed technical specification of the system
to be implemented, and the effort will be directed toward the achievement of
three objectives,

a. Overall System Specification—The compression system must be
designed around the characteristics of the spacecraft data system type
to which it will be applied. The specification of the compressor will
require a detailed study of the data source—the probable number and
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type of sensors, multiplexing and formatting characteristics, the
statistical parameters of the individual data channels, required accu-
racies, and compression algorithms to be applied. In addition, the
compressor output format must be carefully specified to be compatible
with existing or proposed data reconstruction facilities. The desirability
of command links with either the astronaut or the ground to permit con-
trol of the compressor characteristics must be considered. The entire
system design must be guided by the requirement for maximum generality
in the resulting equipment.

b. Compression Subsystem Specification—Specification of the compression
subsystem must include: main store characteristics, size, and cycle
time; arithmetic unit requirements in terms of operation times, word
lengths, and functions to be performed; local store and data flow charac-
teristics; specification of the read-only store and its ancillary addressing
and command decoding functions; microprogramming; and input/output
interfaces.

c. Buffer Requirements and Adaptive Compressor Control Loop
Definition—The effort supporting this task will interact strongly with the
source data analysis undertaken in the overall system design. The system
buffer requirements will be largely a function of the statistical character-
istics of the data, as will the adaptive conirol loop parameters. The
buffer and control analysis is a crucial item in the development of an
effective compressor. The result of this task will be a buffer design and
specification of the control to be applied by the compressor in terms of

channel priorities, accuracies, etc,

4.5,2.2 Hardware Model Development and Test

The objective of the hardware development program will be the construction
of a laboratory model of a practical compressive telemetry system. Its functional
operating characteristics will be stressed rather than its physical characteristics,
however, where economically feasible, use will be made of components which will
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be most easily adapted to a spacecraft environment. The system will be designed
to accept '"live' data and to operate in a functional environment which simulates
as closely as possible that of an actual spacecraft data system., Its purpose will
be verification of the feasibility of an adaptive compression system, The tasks
supporting the main objective are outlined below.

4,5.2.2,1 Compression Subsystem

The development effort for the compression subsystem can be divided into
four parallel efforts which can be pursued somewhat independently,

a, Central processor design, fabrication,' and test

b. Main store design, fabrication, and test

c. ROS and microprogram design, development, and test
d. Mechanical packaging, system integration, and testing

4.5.2,2,2 Buffer and Control System, System Integration

The hardware development effort involved in the buffer and control element
design is minimal compared to that required for the remainder of the system.
This overall task also includes the design and development of all system elements
which do not fall into the categories of compression computer, buffer, or control
system. This will include any interface equipment for input/output compatibility,
also command interface elements. Also included is the integration of the system
components,

4.5.3 System Evaluation

During the fabrication of the hardware model, effort will be directed toward
preparation of a comprehensive evaluation plan which will permit the effectiveness
of such a compressor to be measured by operation upon ''real' data in a realistic~-
ally simulated operational environment.

The parameters for evaluation will include: compression ratio as a function
of peak and rms errors in the reconstructed data, for various compression
schemes; effectiveness to buffer and control in minimizing both data loss and
blank transmission; optimum formatting schemes; and evaluation of the system

effectiveness for various data types.
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Section 5
RECOMMENDATIONS FOR FUTURE WORK

This study demonstrated that no single compression method is "best" for
all experimental data likely to be encountered in space telemetry systems. Two
relatively simple aperture techniques (ZOP and FOI-2DF) provided the maximum
compression of all the "practical" methods simulated for all data considered.
Because neither of the two aperture methods has a lcear advantage, it is recom-
mended that a full-scale working model using both compression algorithms be
implemented with stored-logic circuitry as presented in Section 4.

The advantage accruing from a stored-logic system is the flexibility in
applying different compression algorithms to different data on a time-division
basis. In addition, other algorithms of similar complexity can be implemented
by simply changing the stored-logic memory.

The output buffer is a very important unit in an adaptive compressive telem-
etry system., Equations were derived for a steady-state analysis of the buffer
design parameter, Also, it was shown how a large reduction in required buffer
capacity could be obtained by employing adaptive control of the compression
algorithm aperture for nonpriority sensor data.

To complete the buffer design, a transient analysis is necessary to deter-
mine the necessary rate of change of aperture for specified buffer size. This
information is also necessary to estimate the resultant increase in rms distortion
of nonpriority data. The buffer study should be continued as part of an overall
system implementation.

The simulation of the recommended aperture compression methods revealed
that rms distortion was approximately a linear function of aperture for the data
tested. However, this does not assure all data would behave in the same manner.

In addition, one of the main limitations of the interpolation compression method



was the "unpredictable" peak errors in the reconstructed data. Therefore, a
monitoring system should be studied for possible inclusion in an adaptive com-
pression system. The sbo_red—logic system concept would appear to provide the
capability of sampled peak and/or rms distortion calculations without added
complexity. The sampled distortion calculations could be done on a Monte Carlo
basis to reduce the required number of samples, and the calculations could be
used to control changes in compression algorithms or in aperture values.

The effect of transmission noise on the fidelity of the received data with
and without compression was analyzed. This analysis was done for two com-
pression methods: the Zero-Order Predictor, and First Order Interpolator—
Two Degrees of Freedom. Expressions for the rms error in the reconstructed
signal as a function of the bit-error probability were developed for errors in
either the sensor word or data word. The noisy transmission channel should
be simulated to determine the effect of noise on the reconstructed signal for
Vafious compression algorithms. The effect on compression ratio and recon-
struction fidelity should also be studied when error correcting coding is used

on the transmitted data.
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Appendix A
ANALOG AND HYBRID IMPLEMENTATIONS

This appendix presents a discussion of a number of analog and hybrid tech-
niques for implementation of compression algorithms. Paragraph A.l discusses
possible analog compression configurations in which the compressor is imple-
mented in each sensor line, ahead of the multiplexer and digitizer, and mentions
the problem areas in designing such a system. A description of a hybrid arith-
metic unit which can replace part of a digital compressor for certain algorithms,
is contained in A .2.

A1l ANALOG COMPRESSION TECHNIQUES

A.l.1 System Aspects of Analog Compression

The main elements in a digital compressive data system are a multiplexer, a
digitizer, a data compressor, and a data buffer and transmitter. The general
configuration is shown in Figure A-1. The compressor in this system follows
the digitizing unit, which is constrained to be common to a number of data chan-
nels by size and weight limitations, and thus must follow the multiplexer. An
analog compression unit must, however, precede the digitizer and will, in
general, be implemented in each channel separately (although there may be cases
where the compressor could be common to a number of channels). The essential
difference between analog and digital compression techniques is that while the
digital approach seeks to eliminate data points already digitized and stored, the
analog approach is to prevent an unnecessary or redundant sample from being
stored at all. The decision process as to whether data is redundant or not is
made ahead of the digitizer, by operating on an analog signal. The important

aspects of an analog compression scheme are, therefore, clearly:
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1. The development of an analog decision-making process which will,
upon quasi-instantaneous evaluation of a signal, determine whether or not a
data point need be transmitted or, alternately, establish a sampling rate.

2. The development of a multiplexing and digitizing system that will be
respfonsive to varying sampling rate requirements in each data channel. This
will include provision for sensor identification and time data to be inserted as
required in the transmitted data stream. These two aspects of the problem are
discussed below. |

A.1.2 Possible Multiplexing Approaches

In an analog compression system where the compressor is implemented in
each channel separately, the transmission rate for each channel is established
by that channel's compressor, independently of the activity of the other channels.

- The multiplexer must, therefore, be capable of varying the sampling rate in each
channel ivndependently. There are two general ways of accomplishing this,
depending primarily upon the technique of compression that is used, In either
approach there must be a sample rate control signal of some type sent from
each channel to the multiplexer. The system configuration is shown in Figure A-2.
The two approaches differ in the nature of the sample rate control signal which
is transmitted to the multiplexer. In one method, each channel may be sampled
at any one of a discrete number of sample rates; each a multiple of the basic
multiplexer rate. The sample rate control signal in each channel, which may be
either analog or digital, fs capable of taking on as many values as there are
discrete sampling rates.

The multiplexer proceeds as follows. Each frame begins by sampling all
channels callipg for maximum-rate sampling. Every second frame continues
b'y sampling all channels calling for half-rate sampling. Every fourth frame
includes those channels calling for one-fourth rate sampling, and this process
continues through as many frames as there are sampling rates. After the com-
plétion of the last frame, the cycle begins again. Every channel is scanned
during every frame, but only those channels calling for the appropriate sampling
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rates are sampled during any particular frame. The second sampling method is
- used when the compression criterion is such that each channel simply indicates
whether or not it should be sampled at the next opportunity. In this approach the
multiplexer simply scans each channel and samples those which indicate through
the sample rate control signal (in this case a binary indication) that non-redundant
data is available. Both of these techniques result in a variable frame length, and
‘it is understood that sensor identification and time data must be added to each
message. An alternate approach to adapting the sample rate in the multiplexer
proper is to allow the multiplexer and digitizer fo operate at a fixed rate, thus
sampling and converting every channel during every frame as would be the case
in a non-compressive system. The sample rate control signal generated by the
compressor in each channel would by-pass the multiplexer and operate directly
on the pre-ti‘ansmission buffer, either permitting or inhibiting buffer loading
dﬁring that particular channel time, This approach may be simpler, however,

a study of the hardware factors involved will be required before any decision
can be reached.

A.1.3 Analog Compression Criteria

The basic restriction that is imposed upon any analog compression fechnique
is the same as that for digital approaches; namely, that any decision to either
change sample rates or eliminate samples must be done such that the receiving
terminal is aware of the change or can supply the deleted sample on the basis of
data it already has. Since the receiver data is in discrete form, compressor
redundancy determinations must be made using the same discrete values, hence
a memory capacity of the sample-and-hold variety is required for sample elimi-
nation techniques., For a variable sample rate compression scheme, the current
sample rate can be digitized and transmitted as part of the data word for each
channel, or this information may be included only when a change in sample rate
occurs.



A.13.1 Variable Sample Rate Compression

In this compression technique, the sample rate is varied discretely in
response to a measurement of the difference between the present value of the
parameter and the last transmitted value. When the difference exceeds a thres-
hold associated with the sample rate, the rate is increased and a larger threshold
established. The analog implementation of this technique is shown in Figure A-3.
Each time a sample is taken by the multiplexer, the sample-and-hold memory
stores the transmitted value. This value is continuously subtracted from the
current value, and the difference is compared with a threshold value which is
determined by the present sample rate. The sample rate is increased whenever
the threshold is exceeded, and is reduced when the threshold is not exceeded for
two successive samples. The memory is cleared and re-sampled each time the
channel is sampled by the multiplexer, therefore, the threshold computation is
always made by comparing the present value with the last transmitted value.
This compressor makes use of the first multiplexing approach, where the sample
rate control.signal is capable of taking on any of a discrete number of states,
each one corresponding to a particular sampling rate.

A.1.3.2 Linear Prediction and Difference Coding

Figure A-4 shows a possible analog implementation of the prediction and
difference computation. Two memory stages are required to implement the
prediction, which is simply a first-order extrapolation of the form:

t
y(t) = y(t-1) + S [e(t-2) - e(t-1) ] dt
t-1

More accurate predictions could be used, with corresponding increase in equip-
ment complexity. This approach requires somewhat more circuitry that the
variable sample approach or the aperture techniques, but it makes use of a
fixed-rate multiplexer.
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A.1.3.3 Aperture Techniques—Prediction

.

The general approach of the aperture techniques is to predict the present
data point and to compare the predicted point with the actual point. If they agree
within a predetermined error tolerance, the point is judged redundant, and is
deleted. The prediction must always be made on the basis of data available to
the ground terminal, so that uncontrollable errors do not occur in data recovery.

An analog vérsion of the zero-order, floating tolerance band aperture com-
pressor (ZOP) is shown in Figure A'—S. A single memory circuit retainsg the
last value transmitted, and subtracts it from the present value. The difference
is compared with a predetermined error threshold. H the difference exceeds
the threshold, the data.is sampled and transmitted during the next multiplexer
frame in response to the sample rate control signal which is sent to the multi-
plexer by the threshold circuit. The second, and simpler, multiplexer approach
is used in this compression technique. The relative simplicity of this imple-
mentation is quite attractive, particularly when it is considered that this was
found to be the most generally effective technique of all the aperture schemes
tested. .

A first-order floating tolerance band aperture technique is shown in Figure A-6.
The prediction used is a first-order polynomial approximation identical to that
used in the difference coding compressor. The tests made on actual data indicate
that this technique is not as effective as the zero order method, possibly due to

the inherent difficulty in making a prediction in a noise environment.

A2 A HYBRID COMPRESSOR

This section gives a brief description of an analog-digital hybrid computing
technique which may have hardware advantages over completely digital imple-

mentations for certain types of compression algorithms.

A.2.1. Signal Conversion

The principles and hardware techniques of analog-to-digital and digital-to-
analog signal conversion are well known, and will not be discussed in detail here.



AOJIIPIAT AIPAD 047 [O UOUDIUdWIIUL] SOIPUY G-V 24Nt

A0SS24GUOD 241JLIGY SUIDO1T

Xoy oL <

LSIN03Y
v F1IINS

(PL070582)
Q70NSISHL

TVN3 s

(1-2)?

Q70N
FIlawrs

XOSMzS

I 7S

ﬁ QU oS

A-10



A0SS2AGUOD 24n)4IGY Suriv0]d

A0JOIPIUT AIPAQ -1SAWT JO UOYDUIMIIGUW] SOIPUY  9-Y PANSIT

XM 0L a—
(34170588) \
LS WQ\&\WM.» Q704532 /
E
.\, Q70/7 3 [Te7o7,7 OSN35
F79WPS 7MW @ﬂl\é‘u
TYN OIS a =1 » 71 *
FraWPS <] led

A-11



Some general remarks must be made, however, in order to establish a frame~
work upon which a discussion of the possible advantages of hybrid implementation
can be based. Certain inherent characteristics of each type of computation are
generally recognized. Digital computation can be made arbitrarily precise, and
digital memory implementations are less expensive and more reliable than their
analog counterparts. While sacrificing a certain amount in precision, analog
computation techniques generally have a speed advantage over digital, being
capable of providing solutions to complex problems essentially in real time.
Conversion from digital to analog is quite easily implemented in hardware,
while analog to digital signal conversion is generally complex and expensive.
Since the sampled data in a telemetry system is normally digitized and stored,
and is thus available to the compressor in digital form, the type of computation
which would benefit from hybrid techniques would be one in which the digital
contents of certain storage locations are converted to analog, a computation
performed, and the results of the computation expressed as a logical decision
rather than a number. If the result of the computation were a number to be used
in future computations, the necessity would arise for either an analog storage
device or a reconversion to digital, both of which are undesirable. Most com~
pression techniques fall into this category, and therefore are not conveniently
implemented in hybrid form. All predictions which are made on the basis of
previously predicted points (as required by the receiving terminal), such as the
optimum linear predictor, and all higher-than-zero order polynomial predictors,
are of this type, as are all interpolation methods. For two of the compression
methods which have been studied, i.e., the variable sample rate and the zero-
order predictor, the necessary computation consists of taking the difference
between the present data point and the last transmitted point, and making a
logical decision as to a course of action based upon whether this difference does
or does not exceed a predetermined threshold level. There is no requirement
in either of these two algorithms for either reconversion to digital or for analog
storage, hence they are particularly suited to being implemented in hybrid form.
The hybrid implementation of the compression algorithms has the same
general configuration as does a digital compressor described in Section 4.4 of
this report.
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The hybrid section replaces the Central Processing Unit in performing the
arithmetic operations. Figure A-7 shows a hardware implementation of the

ZOP algorithm computation and the threshold determination using hybrid cir-
cuitry. The contents of the Yer Ven? and K registers are converted to analog
form in the conventional manner, by use of weighted resistive summing networks.
'The aperture value, K, is also stored, since it is adjusted as a function of out-
put buffer',activity. The analog difference between the Vi and y t+n registers is
compared by threshold circuits with both the positive and negative of K. The
threshold circuits are such that the output is a binary one if input 1 exceeds

input 2, and a binary zero, otherwise. The gated output is one if ‘ Vi~ Yitn <K,
and zero, otherwise. Thus, this hybrid circuit accepts digital inputs, and pro-
vides a binary decision as its output, while the internal computations are in
analog form. This approach makes maximum use of the desirable features of
both types of computation, and results in an efficient hardware implementation,
although it is quite limited in its capabilities.

A-13
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Appendix B
ADAPTIVE ANALOG LOW-PASS FILTERS

This appendix documents the work which was done during the study on the
subject of analog low-pass filters. This investigation is an outgrowth of the
study of fixed sampling rate compression methods. In fixed sampling near the
Nyquist rate it is sometimes desirable to pre-filter the signal before sampling
to eliminate aliasing errors. For a signal which has a varying bandwidth, it
may also be desirable to vary the cutoff frequency of the pre-filter in an adap-
tive manner. This appendix is intended to amplify on low pass filter theory,
and to discuss possible realization methods which could be used for adaptive
filtering.

B.1 APPROXIMATION OF LOW-PASS CHARACTERISTICS

The two essential steps in the network synthesis process are approximation
and realization. The approximation procedure consists of developing the realiza-
ble transfer function that most closely approximates the desired transfer function.
The desired transfer function for a filter network can be expressed in any of a
number of ways. The most common are given in terms of voltage transfer ratio,
which is generally specified in terms of amplitude, phase, or both. In the case
of the data signal prefiltering requirement, the basic objectives are to realize
as closely as possible the amplitude characteristics of the ideal low pass filter,
The filter phase response is not particularly important for this application, as
long as it does not become excessive in the passband. There are two types of
functions which are commonly used in low pass filter design. Each is derived
using a different approximating criterion. The first to be considered is the

Butterworth function. The basic steps in the derivation of the Butterworth



approximation are first, to express the approximating amplitude function as a
Taylor series expansion, with coefficients Bi’ about the point w = 0. The pass-
band error between the approximating function and the desired function (which
is normalized to unity amplitude) is then written as a Taylor series in terms of

the Bi‘ If the approximating amplitude-squared function is:

2 1 1
2 2 1 2n

P(w") 1+Blw + Byw” 4.+ B

Then the error function in the passband is:

2 4 2n
2 P(wz) -1 Blw + Bzw SERRE S an
1 - Glw) = 5 = 3 7 o0
P(w") 1+ Bjw" + Byw +:::+ B o

In order for G(wz) to approximate the ideal characteristic as closely as possible,
the maximum possible number of error derivatives at w = 0 must vanish. It

can be shown that in order for the k'th derivative of the error to be zero, it must
be true that Bk = 0 for an n'th order approximation of the low pass characteris-
tic, therefore:

2 1
G(w?) = 2n
1+ an
for Bn = 1, this becomes:
2 1
Glw) = 2n
1+ )

which is the familiar Butterworth low pass amplitude characteristic, In order
to realize this amplitude function, it must be expressed as a rational function
of s such that the pole locations can be determined. It can be shown that the n
poles of this function lie equally spaced on a unit semicircle in the left half s-
plane, and are symmetrically placed with respect to the real axis. The general

expression for this function is:



1
2 n
1+bls+bzs oot bns

F(s) =

where the denominator is known as the n'th order Butterworth polynominal, The
characteristic feature of the Butterworth approximation, which arises directly
from the nature of the Taylor expansion, is that the error is minimum at the
point about which the expansion is made (w = 0 for a low pass filter), and the
approximation is less and less accurate at greater distances from this point,

A second type of approximation is the Tchebyscheff approximation. This
technique seeks to distribute the error evenly across the passband rather than
favoring one end as the Butterworth approach does. In the Tchebyscheff approxi-
mation, the derived function oscillates about the desired flat response with equal
peaks both above and below. The resulting amplitude response which minimizes
the error peaks is:

1
1+ ezTnz(w)

H(w?) =

where e is the peak-to-peak error deviation, and where Tn(w) is known as the
n'th order Tchebyscheff polynominal, and is defined as:

T (@) = cos(n cosulw)

It is found that the pole locations of the function of s corresponding to this
amplitude function are distributed along a semi-ellipse in the left half s-plane, -
whose major axis is the imaginary axis and whose minor axis is the real axis.
For given values of n and e, the pole locations are found by a simple geometri-
cal construction.

The Butterworth and Tchebyscheff low pass approximations each have
features which may be applicable to particular data types. One criterion of
choice between the two for prefiltering applications is the ratio between average
spectrum bandwidth and maximum bandwidth. For a data source where most of



the energy is concentrated near the low end, a Butterworth filter will give the
best results, whereas for a source with a more uniform spectrum, the distributed
error features of the Tchebyscheff design may be more desirable. The fact that
the Butterworth filter has somewhat less oscillatory transient response, however,
makes it probable that it would be more likely to be chosen for general low pass
applications,

While this discussion has mentioned only two approximation criteria, it
should be noted that there are many others; for example, the amplitude approxi-
mation could be made on a least squares error basis, or a new class of criteria
could be derived involving phase response (delay characteristics) or transient
response shape. Since this application is concerned primarily with amplitude
response, these subjects will not be discussed except to point out their existence

for specialized applications.

B.2 REALIZATION OF LOW-PASS CHARACTERISTICS

The preceding discussion of the Butterworth and Tchebyscheff approxima-
tions to a low-pass filter revealed that the poles of both filter types of order 2n
or 2n+l occur in n conjugate pairs or n conjugate pairs plus one pole on the real
axis. This discussion has assumed no finite zeros in the response characteris-
tic, although it could be extended to cover finite zeros. One approach to the
realization of a transfer function consisting of a number of conjugate pole-pairs
and at most one negative, real, pole is to realize a single ""building block" having
one conjugate pole-pair, and to place these blocks in series, with appropriate
component values to correctly place the pole-pairs. This technique cannot be
used directly if only passive RLC components are permitted in the realization
because of the impedance matching problem between ''building blocks," and
classical synthesis techniques must be employed. The use of active RC circuits
for realizing the building block makes it possible to approach the required high
input impedance and low output impedance that is mandatory if the building block
method is to be successfully used. The use of RC circuits also eliminates the

necessity for large, heavy inductors for low frequency filters.



The transfer function corresponding to one conjugate pole-pair and no
finite zero is:

1
%*
(5-8,) (s-8, )

Z(s) =

= - : 5 > where Sk = - (Tk + jwk

This can be written in the form of the transfer function of a damped, second-
order system;

2
w
c

Z(s) = 3 )
s + 2,§wcs + w,

where wc is the cutoff frequency and ¢ is the damping factor. The familiarity
of this function in the synthesis and simulation of dynamical systems makes it
natural to seek a realization in terms of analog simulation networks. Several
have been investigated, and the most attractive both in terms of component
economy and in eé.se of parameter variation is the operational amplifier network
shown in Figure B-1.

1
__0 _ RZCZ
e, 2 2 1
1 B +Rcs+ 55

The realization of a Butterworth low-pass circuit of ordér 2n requires the cas-
cading of n circuits of this type with appropriately placed pole positions.

B.3 REALIZATION OF ADAPTIVE LOW-PASS FILTERS

The realization problem for an adaptive filter - that is, one whose characteristics
can be varied in a predictable manner by means of an external control signal - may
be divided infto two parts. The first requirement is to realize a circuit configuration
which gives the desired filter characteristics and which lends itself to characteristic
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variations by means of a number of parameter changes. The second part of the
problem is to develop a hardware technique that will achieve the desired component
variation in the most economical and reliable manner,

There are two general approaches to the variation of filter parameters in a
given data channel. One is to switch the parameters between discrete values, and
the second is to vary them continuously in linear response to an applied control
signal. A brief consideration of the necessity of transmitting not only the data
itself, but also sufficient information concerning the filter bandwidth (and sam-
ple rate, if applicable) to permit reproduction of the original signal leads to the
conclusion that the switched characteristics are preferable. With the filter
capable of assuming only discrete variable, predetermined characteristics, the
only information which must be transmitted is the time of occurrence of a change.
Alternatively, two, or at the most, three bits in the data word could be reserved
for transmission of the filter bandwidth. Two bits would permit up to four dis-
crete bandwidths to be used, which is probably sufficient for most data types,

The implementation of the discretely variable filter can also follow one of
two possible approaches. The different filter characteristics can be assumed by
physical switching of discrete components, either by solid state or mechanical
means, or it may be more attractive and more versatile to use a filter whose
parameter effective values are varied continuously by means of gain-controlled
elements, In the latter approach the control voltage would be permitted to
assume only discrete values, thus the filter characteristics would in effect be
discretely switched. The realization of a sixth order Butterworth filter, for
example, would require three adaptive building blocks. It is feasible to consider
a filter of this type being capable of changing its overall response nature from
Butterworth to Tchebyscheff by means of external control signals.

The foregoing conclusion of the probable desirability of switched character-
istics is based upon the assumption that the entire adaptation process takes
place in the spacecraft, and that for the data to be successfully recovered com-
plete information on the current status of the adaptive system must be transmit-
ted to the ground station. A further possibility is that the adaptation of filter
characteristics might be done for various experimental purposes on command



from the ground. Since knowledge of the filter characteristics is under these
circumstances already available at the receiving terminal, the restrictions under
filter adaptation imposed by the desire to conserve down-link capacity are re-

moved, and continuous control of the filter characteristics becomes quite
practicable.

B.4 REFERENCES
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Appendix C
BUFFER ANALYSIS

C.1 INFINITE LENGTH SYNCHRONOUS BUFFER
WITH BINOMIAL INPUT DISTRIBUTION

This analysis begins with the single channel, infinite length, buffer with
constant service time and binomial input distribution. This is a good model for
a large synchronous buffer with stationary input data. After considering this
model, and investigating the effects of parameter variations, consideration will
be given to finite length buffers and methods of controlling them.

Most papers on buffer design have considered the data inputs to be Poisson
distributed. This yields a conservative buffer design since the Poisson is the
"most random" of possible discrete input distributions. However, in any practical
attempt at optimization, one must know the cost incurred in using the easier to
analyze conservative model. The Poisson distribution allows discrete inputs to
appear anywhere over a time interval; whereas, for synchronous buffers the data
may or may not appear at discrete time instants (neglecting clock jitter). There-
fore, the binomial distribution is used to describe the probability of input events,
assuming that the buffer output clock rate is commensurate with the buffer input
clock rate.

The expected queue length (average fill for an infinite length buffer) for
arbitrary input and holding-time (buffer output word period) distributions is
derived in Reference 1, p. 336. We will therefore begin with Equation (23-4) from
Goode and Machol which assumes that buffer fill transients have ended and that

the system is in a state of equilibrium with a stationary input process.
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where:

= number of entries in buffer immediately after a buffer output
= m/M (p< 1 for equilibrium to be attained)
mean number of inputs per unit time

= buffer output clock rate (events per unit time)

H 2B m
i

= number of input events in time T = _1\171-

2 data bits into ACT and consider
> data bits out of ACT ’ L

the probability P of a nonredundant data sample point appearing at a time mark at

Now, define compression ratio: ¢ =

the output of the compressor and feeding into the buffer. Over the time span for

which ¢ is measured, P = % .

Define C = Z&TE (C is an integer), where T is the buffer o‘utput events period
and At is the buffer input event period. Note that C is the ratio of input to ocutput
transmission rates. The term "event'" is used rather than "word" because different
compression methods require different numbers of bits per nonredundant samples,
and the buffer analysis is intended to be sufficiently general to include all methods.
This will be of importance when parallel and serial transfer between compressor
and buffer are considered.

Therefore, the probability of r inputs in time T becomes:

P(r) = (C)Pr(l -p°T @)

r

The expected value for the binomial distribution is: E(r) = CP = % ; and the

variance o-z(r) = CP(1 - P).
E(r) _

The mean number of inputs per unit time: m = CAL = -—i—— ; therefore:
c 2 2. -2 ¢
p = m/M = s = E(r). Since: ¢ (r) = E(r”) - E°(r), we have:
2 2
E(r“) = CP(1 - P) - (CP)“. (3)



Substituting Eq. (3) into Eq. (1), and letting P = (% , we obtain:

2
= p ‘Q/Q
Em) = n = p+2(1_p) . {4)

This function is plotted in Figure C-1 for several values of C.

It is of interest to compare this result for the binomial input distribution
with the result Goode and Machol obtain for the Poisson input distribution with
constant holding-time (fixed output clock rate).

From Eq. (23.5) of Reference 1:

02
Ey@ = p* 505 ()

Thus, for large compression ratios the results coincide.
Consider the reduction in expected buffer fill between the binomial and
. . . 1 C
0 emm————— = — <
Poisson cases. The difference is: 260h - 1) Remember that p 1

¢

for stability. Now compute the percent difference in the expected buffer fill:

P/
E () - E@) -
AE(n) =—E—E—(ro= 2(21 p) x 100 =$T21—0_9'—)'%. (6)
p p+p°/2(1-p) P
. 100% . : .
In the limit as p > 1, AE—~> 6 which for ¢ < 10 yields an error greater

than 10 percent. It is later shown that it is desirable to operate the buffer with p

as close to 1 as is possible. From the computer simulation of compression methods
it is known that ¢ < 10 for most of the test data compressed with resulting peak
error of 1 quantum level. Therefore, in designing an optimum buffer, the binomial
input distribution should be used rather than the Poisson, even though the Poisson

kS

is more tractable.

Having found the expected buffer fill, consider the rate of change of E(n) with

. Substituting p = Re: into Equation (4) and taking the derivative with respect
¢

to ¢, we obtain:

¥

dE(m) _ 2Co[C+1-¢]-CAHC+1)

)
d¢ 26%(¢ - ©)°
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Then, multiplying by ¢/E(n), we obtain a sensitivity function S(n) of E(n) for
small changes in ¢. That is, S(n) is the percent change in E(n) per percent
change in ¢.

- _ An/n _ 1-C )
S0 = a4/5 " 2<¢>-3c-1+—(——-—)-ch;’1 - ©

S(n) is plotted versus ¢ for several values of C in Figure C~2. The important
thing to consider is the sharp break in the sensitivity curves near ¢ = C+ 1,
Since C is the ratio of input to output transmission rates it would be desirable for
any average compression ratio to operate with as high a C as possible. This would
minimize the probability of transmission error (more time per bit) and reduce
transmission bandwidth., However, it is evident that as (—Cp- = p -1, the expected
buffer fill increases rapidly. Not only does the fill increase, but it increases at
a rapidly increasing rate. Thus, for C =4, and ¢ = 4.2, a 1% change in ¢ results
in a 20 percent change in the expected buffer content after equilibrium is regained.

Only the quasi-stationary condition of small changes in compression ratio has
been considered and the effect after equilibrium has been attained. For control
design considerations the transient conditions should be examined to determine
the rate that ACT parameters must be modified to prevent overflow and underflow.
This will be considered in more detail for the finite length buffer.

The important conclusions obtained from the infinite length buffer are the
need to use the binomial input distribution for optimum buffer design, and the
sensitivity of average buffer fill to the input-output transmission ratio C. The
analysis will nowbe extended to the practical case of the finite length buffer.

C.2 FINITE LENGTH SYNCHRONOUS BUFFER
WITH BINOMIAL INPUT DISTRIBUTION
Beginning with Eq, (11) of Reference 2, let P(n) be the probability thatn -
events are stored in the buffer immediately after an attempt to remove an entry.
Pr(r > x) is the probability that more than x events are fed into the buffer during
output event period T. Then: )
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P(n) = [P(n—l) P (r 22) + P(n-2) P_(r> 3)

1
P _(r=0)
t.. .+ P0) P (r2> n+1)] , (9)

for 1< n <L -1, where L is the buffer length in "events."

Now, for the binomial distribution,

C
P(r>%) = Z (g) PY1-p)C T

r=x

and Pr(r=0) = (1-P)C; therefore,

n-1 C

P(m) - z P(j) Z (S) (qb-)-r (10)

j=n-C+1 r=n-j+1

This, of course, is a recursive relationship in P(n), and holds for infinite and
finite length buffers. To solve for P(n), we must first determine P(n=0).

For an infinite length buffer, the probability of removing an entry is
simply p. For the finite length buffer the probability is reduced by the amount
of overflow, Calling the fractional event loss R for the finite buffer, P(Removing
an event) = p(1-R), and P(Not removing an event) = 1 - p(1-R). Now, an event
will not be removed only if the buffer became empty (or was empty) at the last
removal time, and no arrivals occurred before the removal attempt being con-
sidered. Therefore:

o) - o - AR ay
=

for the binomial distribution.



It still remains to express the fractional event loss R in terms of buffer
length L. We shall use the result derived in Reference 2 and substitute P(n)
for the binomial input distribution. From the reference:

- -

L-1

1- 2 PI(n)

R = (1;10) LI—ITO (12)

Z PI(n)

n=0

where PI(n) is the probability of queue length n in the infinite length buffer, It
can be shown that P(n) = [1 +% P (n).

PI(n) for n # 0 is expressed in Equation (10). For n = 0, Equation (11) with
R =0 is used. Finally, after substitution and simplification, we obtain the follow-
ing set of equations for the finite buffer of length L in terms of PI(n):

Pfn=0) = 1-Cl

, 13)
_1\° (
3

n-1 C r
P = > P ) (S>(¢—1> , .
j=n-C+1 r=n-j+1
1<n<L-1
L-1
Pfn) = —p— : (15)
=0 g/c-1 T 1



Expected value:

L-1
Em = |1+ 57’3_7:'1 Z nPyn). (16)
n=
Variance:
L-1
o) = [1 + g g‘_ 1] z n’Pn)| - E%m). 1
n=0

These relationships were programmed for digital computer solution for
representative values of R, C, and ¢. The results were used in Figures 1 to 4
in Section IV-3,

Before considering data transfer between the compressor and the buffer and
methods of controlling the buffer, consider the following problem of buffer design.
It would appear desirable to design the buffer such that the probability of over-
flow equals the probability of underflow (no entry available during a readout
interval). The probability of no readout is P (Not removing an event) = 1 -p(1-R);
the probability of an event overflowing the finite buffer is P (overflow) = R,

Let: 1-p(1-R) = KR, K some constant, (18)
1-KR rey
Then, p= 1R < 1 for equilibrium to occur, (19)

Therefore, K >1, which indicates that without added control the probability of
blank output periods must be greater than the probability of overflow, K can be
made as close to one as desired, however, the cost is a larger buffer for the same
compression ratio ¢. This can be seen in Figure C-1 for the infinite buffer. The
expected buffer content increases rapidly as p = C/¢— 1.



The above results, of course, are intuitively obvious from the definition of

mean number of input events per unit time
buffer output rate ’

p:

C.3 DATA TRANSFER FROM COMPRESSOR TO BUFFER

The transfer of data from the compressor to the output buffer is considered
here., The previous analysis has been in terms of compression ratios and input-
output transmission ratios. It will be shown that the analysis holds for both
serial and parallel data transfer to the buffer,

Consider an ¢ bit sample into the Compressor as an event occurring in
time At, After compression, all nonredundant samples appear as g bit events
occurring in time At., g will usually be greater than « because time and sensor
tags may be required at the output of the ACT. In any case, the time per event
must be the same at the input and output; otherwise a buffer would be required
(in addition to the buffer we are considering).

The actual bit rate of transmission between the compressor and buffer may
be greater or less than that into the compressor depending upon whether serial

or parallel transfer is used. For both cases, the compression ratio

Tdata bits into ACT _ o [Esamples in] . The probability of an

® = S data bits out of ACT B | =samples out

event or sample appearing at the input to the buffer in a At period is:

2 samples out

P = S 2
Zsamples in B¢ ”

Thus, in the previous analysis, the compression

ratio would have to be modified by the factor 8/« since it makes its appearance
through the binomial probability of occurrence P,
Note also that the ratio /o appears in the ratio of transmission rates with

and without compression:

Bits per sec. with compression _ B8/T _ _.3_(_1_ >
a /At ’

Bits per sec, without compression

C.4 BUFFER CONTROL

There are several parameters at the designer's command in specifying the

"optimum' ACT for a given mission, Some are more readily controlled than

C-10



others. For example, p = C/¢ so that changing C and/or ¢ will vary p.
However, if C is changed by modifying the transmission rate out of the buffer
there results a difficult control problem at the receiver station,

Changing C by modifying the input event period At essentially changes the
data sampling rate. Adaptive sampling has been considered as a possible data
compression method but has been shown to be inferior to the zero and first order
interpolation methods., Thus, C will be considered a fixed design parameter; a
parameter to be optimized and then considered constant.

Compression ratio ¢ and buffer length 1. are the remaining buffer inde~
pendent parameters. Probability of overflow and underflow will be considered
dependent parameters.

Obviously one does not change buffer length during a mission to prevent
data loss as the data changes its characteristics. However, the buffer designer
needs a trade-off function between cost of buffer length for a maximum allow-
able R (fractional event loss) and cost of adapting ¢ (in resulting data error as
well as circuit costs).

Therefore, expressions are required for the change in overflow probability
as a function of L. and ¢. From Equation (12) we have:

Ploverflow] = R = (1’;") L—ll -1 . (20)
P(n)
=0

Since buffer length change is constrained to integral values, we have:

AP(overflow) _ AR(L) _ [R(L+AL) - R(L)]
AL AL AL

(21)
i ] [ L+AL-1 ]
| Y Ben
- 1-p 1 -1\ 1 -1 _ 1-p n=0
PpAL I+AL-1 L-1 PAL AL-1 L-1
z PI(n) Z PI(n) z PI(n) z PI(n)
n= n= \ n=0 n=0

b - =3 -
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For incremental change in L(AL = 1), we obtain, after some simplication;:

AP(overflow) _ (R-1) +1/p 29
AL - 1 1-p s (22)
+1
P(L) (p(R-l) +1)
AL=1

where PI(L) is obtained from Equation (14) withn = L,
For R << 1, Equation (22) reduces to:

AP(overflow) | . _1-(1/p) (23)
AL - )
1+ PI(L)
L=1

Now consider the change in the probability of overflow as a function of com-
pression ratio ¢. We have:

8P(overflow) _ ©8R(¢) _ BR(9)
o¢ 3

From Equations (14) and (15):

9
ﬁ(&;QL:%(_g_) 1 -1\ |. (29

L-1 n-1 C
Z Z PO) 2 T DT

n=0 j=n-C+1 r=n-j+1

Equations (21) and (24) can be solved graphically from the computer solutions
of Equations (13) through (17).

Application of Equation (24) is made easier by the observation that compres-
sion ratio ¢ is approximately a linear log function of peak error (aperture) K for
the ZOP and FOI -2DF compression methods simulated on a digital computer with
test data.’
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In addition, both methods have approximately the same slope for a particu-
lar type of data. Thus, for the methods considered an adaptive discrete change
in aperture K will result in a known change in ¢.

Therefore, for a particular method with known qSl, and Kl’ we have:

Log o ¢p - Logyy ¢, = m(log,, K, - Log,, K,) . (25)

e

where the slope m depends upon the data being compressed.

Thus:

For the five types of data considered in this report, the slope m ranged
from 0,3 to 1.2, This means that for an increase in aperture by a factor of two
(which yields doubled peak error) the new compression ratio lies somewhere in
the range: [1.2 ¢>1 < ¢>2§ 2.3(1)1].

C.5 AVERAGE COMPRESSION RATIO ¢ FOR MULTIPLEXED
SENSOR DATA
In determining buffer requirements for multiplexed sensor data, it becomes
necessary to consider the system average compression ratio ¢. In examining
only stationary systems, the expression for ¢ in terms of individual sensor
compression ratios ¢i is quite simple.

Let each sensor compression ratio over message time T be:

T samples o Ny N,

¢i ~ T samples sent Ni - BiNi ‘ (26)

Then, for S sensors, the average compression ratio ¢ over time T becomes:

S
Z Zsamples

— _ i=l

¢ =3
z ZSamples sent

i=1

(27)
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If we let: Ni = miN, where m, is the number of appearances sensor i
makes in the basic multiplexed frame, and N is the number of frames in the
time T, we obtain:

S S
Z m, N m,
_— i=1 i=
—_— = g (28)
S S m1
ZﬁimlN —
& Y
i= i=1

Therefore, for the case in which all sensors are sampled at the same

rate,

In addition, if all sensors have the same value compression ratio o, ¢ = S/a - a,
In the buffer analysis presented in this appendix it is assumed that the

system average compression ratio ¢ is known or can be calculated. Actually,

in designing a compression system with buffer control, ¢ could only be estimated

and the probability of underflow and overflow would depend upon the accuracy of

the estimate, This in itself is a major reason for buffer controls since the sta-

tionarity and value of ¢ can never be known exactly in advance.

C.6 PRIORITY SYSTEM TO GUARANTEE AGAINST OVERFLOW
OF SENSOR DATA
The probability of buffer overflow can be made as small as one desires by
several different methods such as increasing the buffer size, increasing compres-
sion ratios, increasing the output-input transmission rate, or combinations of all
three. However, with these methods, the probability of overflow remains finite
for all sensors; although, with added expense it could be made as small as desired,
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A relatively simple method to guarantee zero overflow for certain sensor
channels is to design the system such that the total system transmission band-
width equals the sum of the high priority sensor channel bandwidths without
compression, The low priority channel data is compressed and transmitted in
the bandwidth obtained by compression of the high priority data. If buffer over-
flow is imminent, non-priority sensor data is either further compressed or
eliminated completely from the buffer input until the buffer content is stabilized
at an acceptable level.

For the general case of P priority channels each with bandwidth W b and
compression ratio ¢p’ and N non-priority channels each with bandwidth Wn and
compression ratio c/;n, the total bandwidth available for non-priority channels
is:

P
W, o= ZWp(l—l/qbp).
p=1

_The bandwidth available to a particular non-priority sensor « is:

W
_ _ n
Wa = 9, ZWp(l—l/qbp) z ruk (29)
p

nkxao

In designing such a system, ¢p will usually be a random variable, Assume
that the mean ¢7p and variance 02( qbp) are known, and the P priority channels
have bandwidth W, Then it can be shown that the expected available bandwidth
for the non-priority sensor channels is: Wn = WP [1 -1/ ¢p)], and the
2p?(1/ ¢y

The mean and variance of 1/ ¢p can, of course, be obtained from the distri-
bution of ¢p'

variance: 0'2(Wn) =W
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Appendix D
TRANSMISSION ERROR ANALYSIS

D.1 INTRODUCTION

To evaluate the utility of a compression technique for a telemetry system,
it is necessary to determine the effects of channel (transmission) noise on the
data with and without compression. To study the effects of transmission noise
on compressed data, the channel error(s) must be expressed in a form which is
readily combined with the error in the expanded data due to disturbances in the
analog-to-digital conversion and the compression processes. For the digital
channel, the bit error probability (p) is normally used to characterize the
effects of transmission noise. Using a bit error probability (p), which represents
the sum total of all errors in the transmission chain (nonlinearities of the various
stages, rf leakage, intermodulation cross products, etc.) and not just the channel
per se, the problem is to transform p such that it may be easily combined with
the compression error. Because the RMS error interior (due primarily to its
mathematical convenience) is commonly used in the evaluation of compression
techniques, it is desirable to convert the bit error probability to an equivalent
RMS error.

If a formatted message structure (similar to the structure employed in the
Gemini and planned for the Apollo telemetry systems) is used, the resultant
compressed data word consists of two separate parts. The first part contains
the actual samples of sensor outputs and the second is the sensor tag or the word
location number as it is referred to in the Gemini format., The conversion of the
bit error probability (p) to an equivalent rms error must then be performed on
each part, and combined to obtain the complete expression for the transmission

error for operation in the compressed mode. A fundamental assumption in the



conversion of p is that the error in any data bit is independent of that occurring
in any other bit. Because the bit errors are independent, it is logical to assume
the rms error resulting from each of the foregoing two types of data are likewise
independent. Thus, the conversion for each type of data may be done separately
and then summed to obtain the total equivalent rms error.

- D.2 CONVERSION OF BIT ERROR PROBABILITY (p) TO AN
EQUIVALENT RMS ERROR FOR AN ACTUAL DATA SAMPLE

For this analysis, the transmission system is characterized as a binary
symmetric channel. The transmitted and received symbols are X, and y.,

J
respectively, The symbols occur with probabilities p(xi) and p(yj).

P = Py = /%, =0) = P(y; = 0/%; = 1) (1)
q = P(yj =1/x,=1) = P(yj = 0/, = 0) (2)
Probability of error = P(yj = 1) P(x; = o/yj = 1)
+ P(yj = 0) P(x, = 1/yj = 0)
= P(yj = 1p + P(y; = 0)p. (3)

Probability of error p since p(yj =1) + P(yj =0) =1,

Let U represent the amplitude of the bit error,which is illustrated in Figure D-1.
Whenever an error occurs, the amplitude is unity and otherwise it is zero.
The bit error causes an amplitude error which may be considered as a
binomial random variable with
P(U=1) = p and P(U=0) = 1-p = q.

The variance of the error U is given by

2 _
oy = Pq. “)

D-2
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Figure D-1. Bit Evror Probability Amplitude (U)



The above error is for a single bit error which causes an amplitude error of 1,
If we consider a binary word of length m, the amplitude error in the word must
be weighted by the bit position in the binary word. Let the total amplitude error
in y be designated by the random variable R, then

m
_ m-n
R = 22 R . (5)
n:

where:

Rm-—n = bit error with amplitude of one,

Because the bit errors are independent the variance in the amplitude error

of an m bit binary word is given by

= 2
2 m-n 2
o = Z @) 0y (6)
n=1
where:
a?{ = Variance in word amplitude error,

Substituting from Equation ) and simplifying Equation (6) we obtain

2m
% = (2__3_-_1.>pq, (7)

. The rms word error in a noncompressed word is then given by:

1/2
| 22m -1
rms word errory .~ = — rq . (8)
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Equation ( 8 ) is the equivalent rms word error in quanta for noncompressed
data. If the data is compressed then each received data word represents
essentially C data words in the expanded data stream, where C is the net
compression defined as the ratio of samples to samples sent. In other words,
the effects of noise in the transmission system are amplified in proportion to
the amount of net compression, A compressed word or a word representing C
words at the output of the data expander would have its variance multiplied by C
(the net compression factor). Using then Equation ( 7 ), the variance for the
compressed word would be as follows:

2 2
R R ° (9)
Therefore, the rms word error for the compressed word is

rms word error, = VC [rms word error

xc! (10)

1/2
22m _ 4
C(——3——> pq . (11)

D.3 CONVERSION OF BIT ERROR PROBABILITY (p) TO AN
EQUIVALENT RMS ERROR FOR DATA CONTAINING ONLY SENSOR
TAGGING INFORMATION—ZOP ALGORITHM

li

One method of deriving the expression for the transmission error in a
sensor tag word or word location number is to consider the effect of the produc-
tion of wild points in the transmitted data of any of the operating sensors, In
addition to the two assumptions: (1) that the channel is binary symmetric;
and (2) that the data bit errors are independent; the following conditions are
necessary to obtain a useful expression for the sensor tag error:

a. Channels are independent.
b. All channels are statistically the same.
c. Net compression(C) defined as the ratio of samples to samples sent

is the same for each operating sensor.



d. The bit error amplitude distribution is a binomial random variable
(see conversion of p for actual data sample).

e. A sensor tag word (data group) is lost when one or more bits in the
word are in error,

f. Compression technique employed for all sensors is zero-order
prediction,

g. Number of bits in a sensor tag word is m,

h, Number of spacecraft sensors in operation is k.

Considering the sensor tag word to be lost when only one bit is in error eliminates
the complex problem of weighting as to the degree of error that results as the bit
error occurs in the different bit position throughout the sensor tag word. If p is
the bit error probability, then the probability of correct bit reception=1 -p = q,
and the probability of correct reception of an m bit sensor word = (q)m. Then

the probability of a sensor tag word being lost (PSW) = (1 - q)m.

Let:

Sin = number of samples per second into the compressor
Sout = number of samples per second out of the compressor
Sout = Sin/ C where C is the net compression ratio.

Assuming a sensor tag word is transmitted for each sample out of the compressor,
the number of sensor tag words (N s) in error per second is
Sin

Ny = PowSout = PewC (12)
Ns’ the total number of sensor tags in error per second, is considered to be
uniformly distributed across k - 1 (where k is the number of active sensors in the
spacecraft) operating channels or sensors, in terms of producing wild points.
Therefore, the number of sample points in error per second per channel is
Psw Sin
N —

se (k1) C - (13)



A

Because there are k - 1 operational sensors, each with its sensor tag error
uniformly distributed across the remaining number of sensors, the total number
of sample points in error (wild points) in any channel per second is (k - 1) N sc’
which is equal to Ns‘

In Figure D-2, the data amplitude versus time (sample points) for one of the
k sensors is illustrated to show the occurrence of a wild point caused by sensor
tagging error(s). The time scale of Figure D-2 (between points A and B) is
expanded in Figure D-3 to see resultant error in the received data caused by the
wild point. The data is compressed by zero-order prediction, Considering the
location of the wild point, yW(nt), to have a uniform probability distribution through-
out the nontransmitted sample points, such as between points A and B in Figure D-3,
then on the average, one-half of the nontransmitted samples will be in error
because of the received wild point, The number of nontransmitted sample points
between two transmitted points is determined by the net compression, C. There-
fore, a wild point resulting from sensor tag word errors will, on the average, cause
an error in C/2 sample points in the reconstructed data. Referring to Figures D-2
and D-3, the mean square error (MSE) in the expanded data because of the wild
point yW(nt) is given by

c/2

1 2
MSE = T8 E 2 [yw(nt) - x(nt)] (14)
e in
=1
where:
E[y(ot)] = E[xnt)] = 0
T = time for the occurrence of one sensor tag
€ word error = 1/N S
Te Sin = number of sample points over which the

sensor tag error must be averaged,
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Expanding Equation (14):

MSE = 5mo=—E {[ Y (nt)] 2} - 71,—;%-1-;- Eﬁx(nt) () ]}

+ -Z—TQ-S—— Eﬁx(nt)] 2} :
e 1n

(15)

Because channels are independent, the correlation between x(nt) and yw(nt) is

zero. Thus,

Then,

Let:

Then,

E{{x(nt) y(ot)]} = 0.

C 2 2
MSE = 3T S E{[yw(nt)] } + Eﬁx(nt)] } . (16)
e in
2 _ 2 _ . - :
Uy = E [yW(nt)] = mean signal power in ‘wild point, and
2 _ 2 _ . . .
o, = Eﬁx(nt)] } = mean signal power in sample point.
\
_ C 2 2
e 1n /x

The mean powers in each channel are equal because the channel statistics are
identical, Thus,

2 _ 2 _ 2
O'y O'X g
2 2
_ Co - 9
MSE =15 = T s (18)
e 1 e out

D-10



and because

1
T = 1/N = ’
€ s Psw Soui:
then,

_ 2
MSE = Psw o) (19)

rms sensor _ 2
tag error, =VPew (20)

The resultant partial expression for the rms error in compressed data due to
transmission error in a sensor tag word indicates that the tagging error is pro-
portional to the signal power and the probability of a sensor tag word error.
Thus, the expression for the first part of the sensor tag error appears to be
reasonable,

The foregoing expression for the rms sensor tag error has a one subscript
because this expression constitutes only part of the total rms error in com-
pressed data due to sensor tagging error. A second part of the error occurs in
the channel in which the wild point originated. In Figure D-4, the data sampling
and selection of the sensor which lost the transmitted sample point is illustrated.
Because this channel is operating at the same rates and with an identical proba-
bility of sensor tag word error, the mean square error for this sensor is

C
MSE = —T—ls—-——E Z[xz(nt) —xl(nt)]2 . (21)
e 1in n=1

Because of the lost sample point, on the average, C sample points will be in
error in the reconstructed data. Expanding the foregoing expression, the mean
square error is given by

D-11
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Figure D-4. Data Sampling and Selection of Sensor that Lost Sample
Point at D Because of Sensorv Tag Error
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MSE = T_§, E{xz(nt)]z} - 2E[x,(nt) x (nt)]

+ Eéxl(nt) ]2} . (22)

Assuming the compression has reduced the natural redundancy to the extent that
adjacent sample points are independent, then their autocorrelation is zero.

Then,
_ C 2 2
MSE T Eﬁxz(nt)] } + E{Xl(nt)]} (23)
e in
2
2Co
MSE = T g (24)
e in
2
20
MSE = =" (25)
Te Sout
where:
1
T - L]
e Psw Sout
Therefore,
Tms sensor 2
tag error, 2Psw? - (26)

2

rms sensor
tag error,

V2 rms sensor tag word error, .
The rms error in the second channel due to the distortion of one of its sensor
tag words because of transmission noise is identical to that for the first channel
except for a constant multiplier. The multiplier v2 , results because the number
of sample points in error is twice that in the first channel. Combining the two
expressions, the total rms error in the compressed data because of sensor
tagging error is |

D-13



I

Total rms sensor tag error

[~ 2
24P o (27)

2.4 /] 1-ap™e? . (28)

]

Notice the expression for the total rms sensor tag error is independent of the
net compression ratio, C, defined as the ratio of samples-to-samples sent. The
offsetting factors here, making the sensor tag error insensitive to C, are (1) the
probability of a éensor tag error occurring in any given channel, .and (2) the
number of actual sample points represented by the transmitted point-in error,
If for any given channel C is small, then a large number of sample points are
actually transmitted. The probability of a sensor tag word error occurring in
that channel is then increased as C decreases because more samples must be
transmitted, However, when the error occurs, the number of reconstructed
sample points which are in error is small, As C is increased, the number of
samples transmitted per channel is less, and therefore, the probability of a
sensor tag word error occurring in a given channel is reduced. This reduction
in word error probability per channel is directly offset when the error occurs
because it affects an increased number of actual sample points in the recon-
structed data,

D.4 SENSOR TAG ERROR—FOI-2DF ALGORITHM

Suppose the compression technique employed for all the sensors is the
FOI-2DF technique rather than the zero-order predictor originally assumed.
In Figure D-5 the data amplitude versus time (sample points) is illustrated to
show the resultant error in the reconstructed data caused by a wild point,
Using the FOI-2DF technique, the sampled data is reconstructed by connecting
adjacent transmitted sample points with a straight line between them, This
line connecting the samples is such that the redundant points do not deviate
more than some preestablished tolerance band (this actually defines the peak
error), With no wild point occurring due to a sensor tag error, the data is

reconstructed along line AC with a slope, m,. When the wild point occurs at

t

D-14
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some point such as B, the received data is reconstructed using line segments AB
and BC which have slopes m_. and mw2’ respectively, Considering the location
of the wild point, yw(nt), to be uniformly distributed throughout the redundant
sample points, then on the average, the wild point will occur half way between the
transmitted samples. As shown in Figure D=2, the wild point, yW(nt), resulting
from the sensor tag error, causes an error in C (net compression) sample points
in the reconstruction data., However, because of the method of reconstruction of
the data using the fan technique, the resultant error varies with each redundant
sample between the {ransmitted points, A and C. Therefore, the error must be
weighted in accordance with the difference slopes between m, and mo. and mo,e
The mean square error (MSEl) in the expanded data because of the wild point,
yw(nt) is

g

c/2
MSE, = = ls E{ iwln [y, (nt) - x(nt)] 2
e 1n n=1
L ¢ ] (29)
C
P B ) wonlyglmt) - xat) 2
n=C/2
~ -’
where:
Win = (@ -my) |- nt
Won = l(mWz - mt) | nt .

D-16



c/2 c/2
MSE, = = |EC Z Wy {yw(nt)lz 2EQ ) w, Y, (nt) xnt)

n=1
L .
(c/2
+ E< Wy, [X(at)] 2 + z Won [V (2] 2
n=1 n=C/2

\.

(30)

- 2E\ 2 Wy Vo (nt) X(nt)

=C/2
1

+ EJ Z w,_ [x(nt)]?

| n=C/2

Because the channels are independent, the correlation between Y (0t) and x(nt)
is zero, and thus,

C/2 C
E z Yin yw(nt) X(nt) = E 2 Won ¥ W(n1:) X(nt) = 0.
n=1 n=C/2
Therefore:
c/2 Cc/2
MSE;, = 7 ls. E Z Won[Ve@t)] 2 + E z Wi [X0b)] 2
e in n=1 n=1
L

(31)

C C
D Wanlvgmmn®y + EC ) wy ot
n=C/2 n=C/2
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The variance of a weighted sum of random variables is equal to the weighted
sum of their variances. Therefore since

i

E{[ ¥, (nt)] 2 } mean signal power in wild point = 0'?,

E{[x(nt)]z} = mean 8ignal power in sample point = ai
Then,
C/2 C
_ 1 2 2 2 2)
MSEy = T s 2 V1nloy * %) * z‘”zn("y toy
= n=C/2
02 +0_2
=y x|C c
MSE; =55 |2%av ¥ 2 Voav |- (32)
e "in
Since, T = i,——lé-—— , and S, = CS_.;
€ sw ouf n
P_ (W + W, )
sw' lav 2av 2 2
MSEI = 5 (o-y + GX\) . (33)
Therefore,
1/2
P (W +t Wy, )
rms sensor tag error, = sw__l1av 5 2av (aszr + o—i) . (34)

The second portion of the total sensor tagging error occurs in the channel
in which the wild point originated. Figure D-6 illustrates the data sampling and
selection of the sensor losing the transmitted sample point. Using the fan tech-
nique, the data would be reconstructed with lines DE and EF which have
slopes m, and m, o, respectively. Because the transmitted sample at E is lost

D-18
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because of sensor tag error, the data segment between transmitted samples D
and F is reconstructed using a straight line between the points with a slope m,..
Because of the lost sample point, there are 2C sample points in error in the
reconstructed data. The mean square error for the sensor losing a sample is

given by
C
MSE L1 e{ YL, [y,nt) - y.(ot) 2
2 - T_S, 1n Y2 4
e in —
n=1
L - (35)
2C
2
+ E 2 Lo, [¥oat) - y,(nt)]
n=C
e
where:
Lin = |myq -mg |- nt
Ly, = lmlz - m, |+ nt.
Expanding the foregoing expression,
o
{ c c
_ 1 2
MSE, = 7 5 E ZLln[yz(nt)] - 2E ZLln yy(nt) y; (nt)
n=1 n=1
L \
(
C 2C
+ E< ZL [y (Jflt)]2 + E ZL [y (11'3)]2 (36)
In*’1 2n*v 2
n=1 n=C
~
2C 2C
' 2
- 2E z Ly, Yo(nt) y;(t)y + E z LG[yl(nt)] .
=C n=C
J
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Assuming the compression has reduced the natural redundancy to the extent that
adjacent sample points are independent, then correlation is zero. Then,

_
C C
MSE, = =% E< L. [y,(nt)]? + E L, [y (nt)]?
2 " T S 1n'Y2 1n Y1
n=1 n=1
\
L . (37)
-
2C 2C
2 2
P Ly lymin®y + B ) Ty [y
n=_C n=C
L
-~
0s? | C 2C
S TS len * szn (38)
n= n=C
-
2002 i
= 75 Mav ¥ Doav (39)
e m
2P 0% |L. _ + L (40)
sW y lav 2av
) 1/2
rms sensor tag error, = [2 Psway (Ll av L2av):] (41)

Combining the expressions in Equations (34) and (41), the total rms error in the
expanded data caused by transmission noise disturbing the sensor tagging is

SwW-

1/2
Total rms sensor tag error = | 2P (Wlav M WZaVXGZ + 02)
2 p:4 y

1/2 (42)

2
2Psway(Llav * Lav)

D-21



| 1/2 w,__+W 1/2
Total rms sensor tag error = [1 - (1—p)m] [( lav 2av (o‘i + 03)

2
9 1/2 (43)
* (2 Uy(Llav * 12a\;
If all channels were of equal power, then
ml 2 1/2 1/2
Total rms sensor tag error = 1-(1-p) | ¢ [wlav + WZaVJ
(44)

[ o * L))

D.5 TOTAL TRANSMISSION ERROR

For a formatted message structure like that employed in the Gemini and planned
for the Apollo telemetry systems, the total transmission error is the combined errors
which occur in the actual sample data and the sensor tag or the word location num-
ber., The data format framework eliminates the need for individual sample time
tags. The timing information is transmitted on only a frame and subframe basis or
as required by the ground synchronizing circuitry. Because a formatted message
structure is assumed in designing the ACT System, the total error due to transmis-
sion noise is the sum of the two foregoing errors. Because the bit errors are inde-
pendent, the rms error in an actual data sample is likewise independent of the sensor
tag error, Therefore, the expression for the total rms transmission error for
operation in a compressed mode using the ZOP algorithm is as follows:

Total rms transmission error = rms word error C

+ total rms sensor tag error
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~ om : 31/2
Total rms transmission error = |C (&_3:__1_)_ pq

| | 1/2
¥ 2.4[{1 - (1'~p)n} 02]

1/2

(45)

Using the FOI-2DF algorithm,
_ : o ) (22m _ 1)
Total rms transmission error = | C-= 3 pq
- 1/2 1/2
ml| 2 ,
o [1 - (1-p) JG [Wlav * WZav]

/
* [2<L1av * Loy )] 2 . (46)

If chamnels have different powers and the compression technique is zero-order
prediction then,

' om 1/2
Total rms transmission error = { C 1—2——5;1—1;;(1

1/2
J1/2 02+0'2
+ [1 —(1-p)mJ (1 3 2)
: 1/2
* (?"3) ] . (47)
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Appendix E

SOLUTION OF THE WIENER-HOPF EQUATION
FOR SAMPLED DATA FILTERS

The problem of designing a filter which is optimum in a least square sense
has been solved by Wiener (Ref. 1 p. 392). Wiener also gives a solution to the
optimum sampled data predicting filter (Ref. 2 p. 79), which is in error. This
note is an attempt to formulate a more useful expression for the optimum least
square sampled data filter, The z-transform was found to be advantageous in
this formulation,

Let h(t) be the impulse response of a filter which has input fi(t) and output fO(t).

These functions are related by the convolution integral

fo(t) = S fi(t =) h(7) dr. (1)

Let the desired output be £ 4t One wishes to find a filter hopt(t) which minimizes
the mean square error between f d(t), the desired output, and fO(t), the actual output.
This minimization leads to the Wiener-Hopf equation (Ref. 1 p. 369).

$g(m) = X 6(r -0) by (o)do, T 20, (2)

where ¢(7) and ¢ d('r) are correlation functions given by

T

. 1

lim 1

$(1) = 1 wFT f £(t +7) £,(8) dt (3)
1 1 --T1



and

T
) 1
lim 1
(1 = 455 5 £ (t +7) £.(t) dt. 4)
i\ Tyl J g d i

The symbol T1 appears here, rather than T, because T will be used later to indi-
cate sampling interval.,
The solution of Equation (2) is (Ref. 1 p. 392)

o0 o0

. ® (u) .
B 1 ~jwt § d jut
Hopt(w) ) S;e dt_w_-VIr'(u) e’ du, (5)

where & glw is the Fourier transform of o4(7) and ¥ (w) is the complex conju-
gate of ¥ (w).

The transform ¥(w) is found from &(w), the Fourier transform of ¢(r), by a pro-
cedure called factorization (Ref. 1 p. 376). Factorization permits one to find
¥(w) such that

(W) = ¥(w) ¥w) (6)
and

P = 0, t<o, (7)
where P(t) is the inverse Fourier transform of ¥(w).

Now, the case of an optimum predictive filter will be considered for continuous
and sampled data signals, K a predictive filter is desired, in Eqguation (5):

Bw) = @(w) Y, (8)

where « is the interval of prediction. From Equation (6)



Bge) = W) Fw) gJwa

and

d (w) X
_fi = ¥ (w) erof
¥ (w)

Equation (5) then becomes (Ref. 2 p. 64)

Hopt®@) = Iqw).:zml(w) S; oIt dtS@(w) JUB ) gy

- 00

(9)

(10)

(11)

One now desires to find K(w) for sampled data signals. Let the input be the

sampled data function
o0
£t = Zf(nT) 5(t-nT)
n=-oco

where 6(t-nT) is a delta function

3(t-nT) = 0, t#nT

o0
Sa(t-nT) a = 1,

- OO

and T is the sampling interval.

(12)

(13)

(14)



The correlation function is

T
. 1
lim 1 * *
p@r) = __m———S £5(t + 1) £5(t) dt. (15)
( T1 2T1 _Tll i
Since
f;"(t +7) = z £(KT) 6(t+7-kT), (16)
k=00
o) = o e 3T, z 2 £(KT) f(nT) g S(t+7-KT) 8(t-nT)dt.  (17)
1 k——oo n=-c 1
Let
T, = (N+3T (18)
1 2) b

The properties of delta functions imply that the integral is zero for n > N and
n < -N, therefore

o) = Il\Ii_"f‘w(zNﬂ)T 2 Zf(kT) f(nT) 6(r+nT-KT). (19)

k=-c0 n=-N

Now, let

k = n+m, (20)



The correlation function becomes

. N
Li 1
s = & ) | Nmgmm ), faTmD) fam) | sr-m)
ms=-—oo n=-N
3} (21)
= L -
= T Z qub('r mT),
m=-co m
where
N
1
. = I\]'I—I:looé—N_:!-l-_l z f(nT+mT) £(nT). (22)
n=-N

Factorization (Ref. 1 p. 376) of ®(w), the Fourier transform of ¢(r), gives

Bw) - lT_ Z¢me'jmwT
m==~o0
jwT JoT ey
i ;((ijw'l‘))lg(ejw'g) T M -
e e
whence
-jwT < -j
¥ = E(sw_Tl - Z"’m“mwT’ (24)
Qe ) m=0

where P and Q are polynomials. The terms in the’expansion for ¥(w) may be

obtained from the Fourier integral
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T/T .
- 2 g ™ Tao, (25)

()
m -7/T

the inverse Fourier transform of ¥(w) gives

() = ZIPmﬁ(t-mT), (26)
m=0
therefore,
(K = 0, t<0 (27)

as required, Expression of &(w) in the rational polynomial form of Equation (23)
may first require the use of a method, such as Prony's method (Ref. 3), to
approximate ¢m by a sum of exponentials in m,

Now, one can proceed to find K(w) for sampled data functions. From
Equation (11)

K©) = 5570 mIlf(w) S;e-jwtdt S' W(u) SUED) gy, (28)

—c0
The integral on the right is just the inverse Fourier transform
1 ("% ju(tr
or X w) Py = ytra). (29)
-0

and from Equation (26)

Pp(tta) = 2 ¢m6(t+a -mT). (30)

m=0



Because only sampled values are of interest, one may let

a = 4T. (31)
Then
B 1 (Pt N
Kw) = T((_U_)S.e dt Zzpma(tﬂT—mT)
0 m=0
= —l—gw‘jwtdt N 5 (t4T-mT 32
- \If(w) € d)m ( m )s ( )

0 m={

for, since t > 0 in the integral, the omitted terms of the sum are zero.
Letting

m = k+1{ (33)
in Equation (32), one has

L1 (2wt _
‘If(w)S'Oe dt kzozpkﬂa(t KT)

B
E
i

(34)

1 jwt E
A —— o : -
w) S:e dt (;P]Hé(t kT),

due to the fact that the integral is zero for t < 0. The indicated Fourier trans-
form of Equation (34) yields



_ 1 < -jkwT
Koy = ww>§ﬁhf , (35)

k=0
and Equation (25) gives
/T .
T k+§uT
Vices =§§hww‘“w (36)
-
from which
= /T . .
Kw) = EFWT_GS Ee'Jk“’TS T(w) SEDT g, (37)
( k=0 -/T
When T = 1, Equation (37) becomes
1 N ke O ket
KO) = oo o IKw Sqf(u)ej( Wy, (38)
k=0 o

Equation (38) checks with Wiener's result (Ref. 2 p. 79) excepty for the absence
of the parameter £ in his equation. Since £ = 0 implies that K(w) = 1, one
would assume that Equation (38) is correct.

The factor ejwt appearing in these equations is rather cumbersome. The
expressions may be simplified and a certain insight may be gained if one employs

the z~transform,

z = %7, (39)



Making this substitution in Equation 24, one has

=1 %
¥(z) = _P_i___l = b Z
QUz 1) m . (40)
m=0
This is a Laurent series (Ref. 4 p. 141), the general term of which is
_ L m dz |
Ym = o g\II(Z) z o (41)

where the contour integral is taken around the origin, Equation (41) is just an
explicit expression for the inverse z-transform. Now, Equation (35) becomes

1 -k
Kz) () Z*”m z
k=0

(42)

= ———21rjé 5 2z'k§\1f(z')(z')k+£ %Z—,—' .
k=0

There is an interesting similarity between this equation for the optimum sampled
data filter and Equation (28) for the optimum continuous filter. Equation (42) may
also be derived from Equation (37) by the substitutions

z = &%t (43)
and

2 = Y, (44)
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To derive K(z) from ¥(z), one may write
-1 %
_ -m -4 -k
¥(z) = z;bmz + Z Zzbkﬂ z". (45)
m=0 k=0
Solving Equation (45) for the desired expression, one has
0 -1
-k -m
Z dg? = 7| M) - Zwmz : (46)
k=0 m==0

From Equation (40) and algebra

1
z ) 0 Pl Z W

Kz) = AZ -
ph @D &,
(47)
2-1
2 |2 - QEh ) v, 2
_ Q(z—l) m=0
Pz Q=
Finally,
2-1
2ApeYy - e Z A
K(z) = =0 , 48)

Pz Y

where K(z) is a rational polynomial in z_l.

E-10



In a manner similar to the derivation of Equation (42) for the predicting
filter, the more general optimum sampled data filter may be shown to be

N & (2') '
B 1 -k “d nk dz
Hopt(z) T 27rj¥(z) kzoz T(z") (=) z' (49)

the specific z-transform may be found by an equation analogous to Equation (48).
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Appendix F
FUTURE TELEMETRY SYSTEM REQUIREMENTS

The purpose of studying future telemetry requirements is not to classify
and organize the telemetry needs of a single space mission or series of space
missions within the constraints of space and gfound equipment requirements,
mission goals, vehicle destination, or the scientific and physiological experi-
mental program. This task is itself, with different degrees of emphasis and
orientation, the major problem considered under various study programs. The
intent here is simply to consider all of the forseeable future telemetry data
requirements for the purpose of characterizing the data that will be in use.

Among the reports, articles, and papers studied, references 1 through 18,
a paper entitled, "Space Data Handling (With Emphasis on Data Compaction)"
by M. A. Hyman, IBM, Federal Systems Division, deals most directly with the
problem of characterizing future space data requirements, In this paper, the
author analyzes the space data handling requirements for the decade 1965-1975
and discusses some recently developed techniques for data compaction. Of par-
ticular interest is a table reproduced here as Table F-1, which presents
space data according to its quantitative nature (such as scientific, physio-
logical, graphic, etc.) and according to the link over which the data is to
be transmitted.

The following categories are enumerated:

a. Tracking and control
b. Scientific

c. PhySiological

d. Voice

e. Graphics
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Of these categories, it appears that tracking and control, voice and graphics
are areas where the characteristics of the data will not change greatly in the near
future. This hypothesis permitted the use of current representative data to be used
in the simulation program described in this report.

The characteristics of scientific and physiological data for future manned
space flights will possibly change from present comparable data requirements.
Because the number and variety of experiments will undoﬁbtedly increase, it
appears that a corresponding increase in the types and characteristics of the
data will follow. Thei'efore, it will be necessary to continually check all data
sources in these two areas and develop compression systems with flexibility to
avoid obsolescence.
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Appendix G
A CRITIQUE OF BIT-PLANE ENCODING COMPRESSION

G.1 INTRODUCTION

Bit Plane Encodingl is a source encoding technique in which consecutive
samples from a particular sensor are divided into subgroups so that some of
the subgroups can be represented in an abbreviated form (compressed) and
thus reduce the binary data required to describe the samples. The term bit
plane evolves from a cuboid magnetic core memory in which the bits of a given
order from the various samples of a sensor are arranged such that they are
parallel to each other. Then the n order bits of each of the sample words
form a horizontal plane called a bit plane. Bit plane encoding is accomplished
by reading words into the columns of the memory, then reading out and encoding

the planes.

G.2 Characteristics of the Bit-Plane Encoding Algorithm

A representative compression system using bit-plane encoding is shown in
Figure G-1. To obtain consecutive samples of any sensor, the PCM output of the
analog-to-digital converters is demultiplexed for storage in the central memory.
While the data is stored, the monitor makes measurements on each of the bit
planes to determine the method of encoding the various planes. The monitor
controls the readout of the memory on a bit plane basis, and then selects the
encoding operations in accordance with the bit-plane measurements, to be
performed by the parallel encoder or the code box. The monitor identifies all
monovalued planes and describes them summarily by noting the value assumed

by all the bits in the plane. Another operation performed by the monitor is to

1R. C. Barker, J. W. Schwartz, "Bit Plane Encoding: A Technique for Source

Encoding,'" IEEE Trans. on Aerospace and Electronic Systems, Vol. AES-2,
No. 4, pages 385-392, July 1966.
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determine the count-of-changes (C c), which is the number of times adjacent bits
in a bit plane are different. For M consecutive samples of a sensor output, run-
end encoding is used if:

<M
c— log2M

O C "'10

c 2 EE%M ,
the bit plane is transmitted bit by bit. Run length encoding may be used in place
of run-end, if desired.

The monitor unit, through its measurements on the bit planes, essentially
divides each sampled sensor outputs into three groups of data for transmission
to the ground. The first data group identifies the operations to be performed on
the bit planes such as whether they are monovalued or run-end encoded. The
second group designates the value of the first sample in the M consecutive
samples being processed. The third data segment called the bit plane data group
contains both the bit planes which are run-end encoded and those transmitted
bit by bit. The sequencing of the foregoing three data groups into the multiplexer is
is controlled by the monitor. Each bit plane which is not monovalued is read out
from the memory through the parallel encoder and is either run-end/run-length
encoded or left unaltered before being fed into the multiplexer and then to the
output buffer.

G.3 Implementation Problems of Bit Plane Encoding

One of the unique problems in implementing this technique is the choice of
group size or the number of consecutive samples of the sensor which should be
considered in the coding procedure. According to the developer of this technique ,2
the selection of the group size depends upon the relative and absolute duration of
the periods of activity for the sensor (frequency spectrum) the multiplexing for-
mats, transmission delays that can be tolerated, and the fading characteristics
of the down-line.

2Ref. 1, p. 389.



The group size determines the storage required per sensor and the rate at
which the sensors may be sequenced into the output buffer. The group size is
also used for buffer control. The group size is decreased if buffer underflow
exists and is increased when overflow occurs. The group size number of bits
in the sample words, data transmission rate, and the number of sensors which
can be handled simultaneously by the monitor unit are the principal factors in
determining the size of the central memory. For a system required to operate
on a large number of sensors with a reasonable large group size, the weight
and power penalties may become excessive for the spacecraft environment.
This would also be dependent on the time required for the monitor to make all
the measurements on each bit plane, possibly store the operations and first
value data, and sequence the respective data groups to either the buffer or the
digital multiplexer.

Notice the digital multiplexer in Figure G-1 is blocked out with dashed
lines. If the first value and operations data are stored in the monitor, it may be
possible to eliminate the multiplexer by combining directly the two stored data
groups in the monitor with the appropriate channel outputs of the parallel
encoder. In essence, the multiplexing function is being done by the monitor unit.

A more conventional design would store the first value and operations data
groups in the central memory. The two data groups would be read out of memory
in sequence with the third (bit planes) data group out of the encoder. The multi-
plexer would then perform the sequencing of the three data groups from each
sensor in accordance with a preselected transmission format.

The multiplexing problem with the selection of an optimum transmission
format is considerably more difficult in the bit~plane encoding compression
system than in a polynomial compressor with regard to timing because the
frames and subframes must be elastic to accommodate the variation in the num-
ber of bits in any of the three data groups. The number of bits in the first value
data group is dependent upon the group size selected. The number of bits in the
operations data group may be held constant for a given number of operating
sensors. When the number of operational sensors is changed, the size of the

operations data group will likewise change. The maximum number of bits
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in the bit planes (third) data group is dependent on the number of bit planes which
simultaneously may exhibit periods of high activity, With the variation in size of
the data groups the formatting technique must facilitate the marking of the end of
each group and the insertion of the frame synchronization pattern at periodic
times as required by the ground recovery circuitry. The timing problem in the
spacecraft associated with multiplexing the three data groups could be relieved
somewhat by sensor tagging each data group and letting the ground processor
combine the appropriate groups.

The number of channels or sensors on which the monitor unit must simul-
taneously make bit-plane measurements is a tradeoff among memory size,
group size of each sensor, the number of operational sensors, time required
for the bit-plane measurements, the time necessary to encode or transmit bit
by bit a maximum number of bit planes for a given sensor and the maximum
transmission rate. Thus, the changing of group size of the number of operating
sensors for buffer control directly effects the number of sensors which must be
handled simultaneously by the monitor. Timing for buffer control and simultane-
ous measurements on the bit plane of a number of sensors are simplified if the
sensors being handled have identical group size.

The complexity and cost of implementing bit-plane encoding for a space-
craft telemetry system are contingent upon the large amount of storage required
in the spacecraft, the inefficiency in processing (multiplexing and demultiplexing
operations are required), and the timing control required to handle a practical
formatting system, channel identification, and buffer control. There are suf-
ficiently large with present technology to jlistify ruling out this compression
technique for the first generation of the ACT System.



