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NOMENCLATURE 

a cons t an t  

b cons t an t  

c cons t an t  

C cons t an t  

d cons t an t  

e cons t an t  

E energy per u n i t  mass 

f cons t an t  

F func t iona l  form defined on p.1 

g func t iona l  form defined on p.1,  
p.3, a c c e l e r a t i o n  due t o  g rav i ty .  

G func t iona l  form defined on p.4, 
u n i v e r s a l  g r a v i t a t i o n a l  cons t an t  

G' remainder o f  G 

h length coordinate  (Fig. 3 .1 )  
angular momentum per u n i t  mass. 

H func t iona l  form defined on p.4 

k length coordinate  (Fig. 3.1),  
cons t an t  defined on p. 20. 

.l length coordinate  (Fig. 3 .1)  

m i n t e g e r ,  mass 

M mass o f  e a r t h  

n i n t e g e r  

P mass o f  payload 

r r a d i u s  from cen te r  of e a r t h  

t independent va r i ab le ,  time 

T t h r u s t  

u c o n t r o l  va r i ab le ,  x component of 
v e l o c i t y  

v v e l o c i t y ,  y component of v e l o c i t y  

V .  exhaust v e l o c i t y  

X s t e e r i n g  angle (Fig. 3.4 and Fig.  3 .5)  

y s t a t e  v a r i a b l e  

z* func t iona l  form defined on p . 4 .  

e 

y t r a j e c t o r y  angle (Fig. 3.1 and Fig. 3.4) 

1 Lagrange m u l t i p l i e r  

p Lagrange m u l t i p l i e r  

(d func t iona l  form defined on p . 1 ,  polar  
ang le  (Fig. 3.4) 

func t iona l  form defined on p.1.  

Subscript  s 

e l . . . v  5 2n + 2 

f f i n a l  point  

h 1. . .2n 

i l . . . n  

j 1. . . n  

k 1. ..m 

.i? l . . . p  5 f ( n  + 1) 

a 1, 3, 5 ... 
2 ,  4 ,  6 ... 

1, 2 ,  3, ... value o f  quanti-ty a t  var ious 
po in t s  

V 



Superscripts 

no non-optimal controal 

o optimal control  

q 1 ... f / 2  

1,2,3 value of  quantity along f i r s t ,  second, and third subarc. 

v i  



ABSTRACT 

The problem of Bolza from the calculus of v a r i a t i o n s  i n  terms of  modern 
c o n t r o l  no ta t ion  has been extended i n  scope t o  include s i t u a t i o n s  i n  which a 
number of subarcs i n  the s t a t e  v a r i a b l e  t r a j ec to ry  may occur i n  a v a r i e t y  of 
ways. The subarcs a r e  allowed to  be overlapping and/or separated.  This 
allows for  s eve ra l  subarcs t o  occur In the same i n t e r v a l  of  the independent 
v a r i a b l e  and f o r  subarcs which a r e  separated by jumps i n  the  independent and 
s t a t e  v a r i a b l e s .  I n  addi t ion,  the d i f f e r e n t i a l  equations of c o n s t r a i n t  and 
the i n t e g r a l  quan t i ty  t o  be extremized are allowed t o  be of  d i f f e r e n t  form 
from subarc t o  subarc. 

The necessary minimizing condi t ions for the extended Bolza problem a r e  
obtained by extremizing a new func t iona l  which i s  r e l a t e d  t o  it. This allows 
the  optimizing condi t ions for  the s t a t e  and c o n t r o l  v a r i a b l e s  t o  be obtained 
by applying the  usual  ca l cu lus  of va r i a t ions  procedures and the optimizjng 
condi t ions f o r  the endpoints of the subarcs t o  be obtained using the ordinary 
theory of m a x i m a  and minima. 

The resul ts  of the theory presented here may be appl ied to  a wide range 
of space t r a j e c t o r y  problems. For a number of s p e c i a l  cases ,  the theory 
reduces t o  r e s u l t s  previously obtained and recorded elsewhere. A number of 
example problems i l l u s t r a t i n g  new appl icat ions which u t i l i z e  the theory are 
presented i n  o rde r  to demonstrate the a p p l i c a b i l i t y  of  the r e s u l t s .  The 
examples include the problem of  i n s e r t i n g  two payloads i n t o  separate  o r b i t s  
wi th  one v e h i c l e  which has two upper s tages  ign i t ed  simultaneously and a 
two v e h i c l e  rendezvous problem. 

v i i  



SECTION I 

INTRODUCTION 

Perhaps one of the most useful formulations of a problem in the cal- 
culus of variations is that of the problem of Bolza. 
formulated by Bliss’, may be written in terms of the modern concepts of 
state and control  variable^.^,^ 
Bolza may be stated as follows: 
piecewise continuous control variable functions 

This problem as 

Using modern notation, the problem of 
Among all continuous state variable and 

which satisfy differential equations, 

j - 1, ..., n 
and endpoint conditions of the form 

Jr  (tl, tf’ Yil, Yif) = 0, e = 1, ..., v 5 2n + 2 (1 .3 )  e 

find the set which minimizes a sum of the form 

It is seen with the above formulation, that the problem of Bolza is limited 
to continuous state variables defined over a single interval from t to t 
and with boundary conditions (1.3) specified only at the endpoints ‘of this 
interval. 

f 

In attempting to formulate a given problem in flight mechanics or space 
mechanics as a problem of Bolza, it becomes apparent that the assumption of 
continuous state variables over a single tjme interval may become somewhat 
restrictive. For example, the flight of a multi-staged rocket vehicle 
represents a situation in which the state variable, mass, will be discontin- 
uous. Numerous other examples can be cited in which a solution will require 
more than one subarc. It is desirable therefore to investigate an extended 
Bolza problem with the possibility of unconnected andlor over lapping subarcs 
such as shown in Figure (1.1) for the case of three subarcs. 

1 



IYi SECOND 
SUBARC 

FIRST 
SUBARC 

0 A I 
- 1  

1 I I I  
! I ! I  

THIRD 

- t  
t l  '3 t2 t4 t5 t6 

FIGURE 1 . 1  MULTIPLE SUBARCS 

In Section 11, the development of necessary conditions for situations 
such as depicted in Figure 1.1 will be obtainedwhich will also allow for 
the possibility of different constraint equations (1.2) along each subarc. 
Two different sets of conditions will be developed; necessary conditions to 
be satisfied along each subarc, and necessary conditions to be satisfied at 
the beginning and end of each subarc. 

The situation depicted in Figure 1.1 is quite general and for certain 
special cases the optimizing conditions contained in Section I1 reduced to 
results previously obtained. For example, if the state variables and time 
are continuous at each corner [yi 
tions of constraint are the same $or each subarc, with no further conditions 
imposed, then the results reduce to the well known Erdmann-Weierstrass 
corner conditions in control notation. If the state variables are discon- 
tinuous, but the time is continuous, then the results of Mason4 are obtained 
and if the state variables and time are discontinuous but not overlapping the 
results of Vincent5 are equivalent to those presented here. 

= Yi3 and t2 = t3 etc.] and if the equa- 

Since numerous examples have already been developed for the special 
cases mentioned above, the examples presented in Section 111 will illustrate 
only the situation of overlapping subarcs. In addition to a geometric 
example there is presented the examples of a multiple satellite vehicle 
launch and a two vehicle rendezvous. 

In the material which follows "endpoint" will refer to the initial point 
and final point of the entire trajectory only. The term "cornerpoint" will 
be used to designate all other endpoints of the subarcs. In Figure 1.1 the 
points 1 and 6 are "endpoints" and the points 2, 3,  4 ,  and 5 are "cornerpoints". 
The total number of points (endpoints plus cornerpoints) and hence the final 
point will be designated by f, and even integer. 

2 



SECTION I1 

AN EXTENDED PROBLEM OF BOLZA 

The Formulation 

Introductory Remarks - The extended problem of Bolza w i l l  be c l o s e l y  
r e l a t e d  t o  the  o r i g i n a l  problem of  Bolza and f o r  the  case of a s i n g l e  subarc,  
they a r e  i d e n t i c a l .  The extended problem of  Bolza i s  formulated as follows: 
Among a l l  s t a t e  and c o n t r o l  va r i ab le  functions,  

y i ( t )  and u k ( t )  i = 1 ,..., n ;  k = 1 ,..., m (2.1) 

between the  i n t e r v a l s  (b, t P )  where a = (2q - l), p = 2q and q takes  on 
values  1,. . . , f f 2 ,  which between the i n t e r v a l s  s a t i s f y  d i f f e r e n t i a l  equa- 
t i o n s  of  the form 

j = l . . . n  

and prescr ibed endpoint and corner point cond i t ions  of the  form 

.$ = 1, . . . , p  S f (n  + 1) 

find the  s e t  which w i l l  minimize a sum of t h e  form 

dt1, tf’ Y i p  Yif ) + ‘f f P  Fq(yi, uk, t ) d t .  (2.4) 
q = l  

ta 

The range on the  s u b s c r i p t s  i, j ,  k, 4, Cr. and f3 w i l l  be as given above 
for  the remainder of  the ma te r i a l  presented i n  t h i s  repor t .  Hence t h e  range 
on these s u b s c r i p t s  w i l l  not  be repeated i n  what follows. 

Necessary Optimizing Conditions 

In t roduc t ion  of Lagrange Mul t ip l i e r s  - Consider now a new func t iona l  z* 
obtained from equations (2.2) and (2.3) and the  func t iona l  form (2.4) by: 

(a)  Multiplying equations (2.2) by the  v a r i a b l e s  X i n t e g r a t i n g  over 
the appropr i a t e  i n t e r v a l  from ta t o  t p  and adding t o  the i n t e g r a l  i n  
express ion  (2.4). 

(b) 
the funct ion g i n  expression (2.4). 

i’ 

Multiplying equations (2.3) by t h e  parameters cl.$ and adding t o  

3 



This results in the definition of z* given by 

The hypothesis is now made that the trajectory y. (t) and the control u (t) 

tl,.. . ,tf which make the functional ( 2 . 4 )  take on a minimal value sutject 
to the constraints ( 2 . 2 )  and ( 2 . 3 )  will also minimize ( 2 . 5 ) .  Under this 
hypothesis, if all of the functions and endpoints/cornerpoints are found 
which minimize z* also satisfy the constraints ( 2 . 2 )  and ( 2 . 3 ) ,  then among 
these functions and endpoints/cornerpoints must also be the solution to the 
extended problem of Bolza as formulated by equations ( 2 . 2 )  and ( 2 . 3 )  and 
the functional form ( 2 . 4 ) .  It will be shown later that any functions and 
endpoints which minimize z* must satisfy the conditions ( 2 . 2 )  and ( 2 . 3 ) ,  
hence it is of interest to examine minimizing solutions to z*. 

between the intervals ta and tp and endpoints/cornerpoints 1 ~ ~ ~ , . . . , y . ~ ,  k 

For convenience, the following functions are defined: 

Thus equation ( 2 . 5 )  may be written as 

z* = G + ff ip [-Hq + A .  1 1  jr.]dt. 
ta q=l 

It is noted that the functional z* is not only a function of the paths 
[yi(t), uk(t), i.(t)] connecting the point a to p but also the quantities 

1 
[tl,-.s,tf, yil,. . .,tif, p i ]  associated with the various points. The 

necessary optimizing conditions for extremizing z* ,  and hence the original 
problem, are obtained by applying the general principle that the optimizing 
conditions which determine the path with all of the endpoints/cornerpoints 
fixed will remain unchanged if the endpoints/cornerpoints are considered as 
free. Hence, two sets of optimizing criteria will, in general, have to be 
satisfied: conditions relating to the path and conditions relating to the 
endpoints /cornerpoints . 

Optimal path conditions - The optimizing conditions related to the path 
are obtained by fixing all of the endpoints/cornerpoints so that z* becomes 

4 



where C i s  a constant .  
g r a l s  w i l l  be a minimum i f  each individual  i n t e g r a l  i s  minimized. Between any 
two p o i n t s  a and 8 ,  equation (2.9) i s  a funct ional  o f  a w e l l  known form i n  the  
ca l cu lus  o f  va r i a t ions6 ,  and t h e  following Euler equat ions r ep resen t  necessary 
condi t ions f o r  extremizing z* i n  t h e  i n t e r v a l  (t 

Since a l l  of t h e  points  are f ixed ,  t h e  sum o f  t h e  i n t e -  

a’ t p )  

+ A - 0  - aHq ayi i 

+ i i = 0  
aHq - -  
ah, 

1 

0. aHq - =  

auk 

(2.10) 

(2.11) 

(2.12) 

Solving t h e  above set  o f  equations f o r  q = 1.. . f / 2  y i e l d s  a path 
[ y i ( t ) ,  uk( t ) ,  A . ( t ) l  between the p o i n t s  0 and B .  It is noted t h a t  equat ions 

(2.11) are j u s t  the  equat ions of cons t r a in t  (2.2), hence the  opt imal  path f o r  
z* s a t i s f i e s  the  same c o n s t r a i n t s  a s  required f o r  t he  func t iona l  (2.4). 

and t is obtained by jo in ing  together  t he  

1 

The t o t a l  s o l u t i o n  between t 1 f 
s e v e r a l  continuous t r a j e c t o r i e s  y .  ( t )  or subarcs between po in t s  0 and B each of 

which s a t i s f i e s  the  above E u l e r  equations. 
1 

Equations (2.10) and (2.12) have as a f i r s t  i n t e g r a l  

dHq aHq - e -  
d t  d t  

(2.13) 

A f u r t h e r  necessary cond i t ion  fo r  minimizing t h e  func t iona l  (2.8) i s  given 

7 
by the  Weierstrass E funct ion condi t ion.  In  modern s t a t e  v a r i a b l e ,  c o n t r o l  
v a r i a b l e  no ta t ion ,  t h i s  condi t ion becomes 

HqO > Hqno (2.14) 

where Hqo r ep resen t s  t he  funct ion Hq evaluated wi th  r e spec t  t o  optimal c o n t r o l  
and Hqno r e p r e s e n t s  t he  funct ion H evaluated w i t h  r e spec t  t o  a n  admissible  non- 
optimal c o n t r o l  va r i ab le .  I t  is  assumed t h a t  t ’ t . 

P a :  
O p t i m a l  endpoint lcornerpoint  conditions - The optimizing cond i t ions  r e l a t e d  

t o  the  endpoints /cornerpoints  may now be obtained by not ing t h a t  f o r  each subarc 
a family o f  t r a j e c t o r i e s  passing through the poi.nts a and p, m u s t  con ta in  2n 
a r b i t r a r y  cons t an t s  y It w i l l  be assumed t h a t  fo r  

each subarc,  such a family is  given and tha t  f i x i n g  n of the  cons t an t s  i n  t he  
family y = yi(t,Chq), w i l l  r e s u l t  i n  a c e n t r a l  f i e l d  with the  c e n t e r  o f  the 

p e n c i l  l oca t ed  a t  one of t he  p o i n t s  a or !3. With t h e  cen te r  o f  t he  p e n c i l  
a t  one p o i n t ,  i t  is assumed t h a t  t h e  other  po in t  is  a s soc ia t ed  wi th  unique v a l -  
u e s  o f  t h e  remaining n constants .  

important t o  examine how y .  changes wi th  r e spec t  t o  t and C q .  
along a p a r t i c u l a r  t r a j e c t d r y  (Chq f i xed )  are  given by 

= yi(t,Chq), h = 1...2n. 
i 

i 

Before s u b s t i t u t i n g  the  above t r a j e c t o r y  i n t o  the  i n t e g r a l  (2.8), i t  is 
Changes i n  yi h 

5 



(2.15) 

whereas arbitrary changes in y i are given by 

ayi 
dYi = at dt + - dChq , 

ach 
(2.16) 

Note that repeated indices here on q does not imply summation. 
the trajectory y 

expression for z* becomes 

By substituting 
= yi(t Chq) into the integral contained in equation (2.8) the i 

(2.17) 

With this substitution, z* becomes a function of the endpointsfcornerpoints 
(tl ,..., tf; yil ,... ) and the parameters p and C 9. From the theory of 

ordinary maxima and minima, a necessary condition that z* be an extremum with 
respect to these quantities is given by dz* = 0.  

,'if a h 

This differential is given by 

dChq (2.18) az* dt + - dt + - + -  
"h 

aZ* aZ* aZ* 
dz* - ape dpe ayi(ydyia aYip dYip ata a at, B + -  az* + -  aZ* 

The first three partial derivatives 

aZ* aG 
- = - t  

ape 

are easily evaluated 

ga 

8 The other partial derivatives are evaluated using Leibniz' formula 

+ Haq - A - aZ* aG - = -  

(2.19) 

(2.20) 

(2.21) 

(2.22) 

6 



By noting that along the trajectory 
n 

(2.23) 

(2.24) 

(2.25) 

equation (2.24) may be written as 

(2.26) 

By substititing equations (2.19) - (2.23) and (2.26) into equation (2.18) and 
utilizing equation (2.16), the following result is obtained 

(2.27) 

4 If the family of trajectories yi y (t, C ) between the points a and $ are 

stationary curves, then by equation (2. IO), the integral term in equation (2.27) 
is identically zero. 

By setting the coefficients of the various differential terms equal to zero 
(by hypothesis, all of the variables contained in Z* are independent) the follow- 
ing necessary endpoint/cornerpoint conditions are obtained 

gQ = 0 , (2.28) 

aG 
I -  

lia ayia 9 
(2.29) 

7 



& 
B d t  
Hq I - 

B 

(2.30) 

(2.31) 

(2.32) 

Equations (2.29) - (2.32) a r e  the  same as  those obtained by Mason9 f o r  t h e  case  
i n  which the s t a t e  v a r i a b l e s  y and m u l t i p l i e r s  maintain the  same i d e n t i t y  f o r  i i 
each o f  t h e  subarcs.  Mason considers  a more general  case where t h i s  i d e n t i t y  
need n o t  be maintained and o b t a i n s  h i s  r e s u l t s  by mapping the seve ra l  subarcs  
i n t o  a s i n g l e  i n t e r v a l .  

Note t h a t  equation (2.28) i s  i d e n t i c a l  t o  the  endpointlcorner condi t ions 
(2.3), t h u s  t he  o p t i m a l  endpoints /cornerpoints  f o r  z* s a t i s f y  the  same condi t ions 
as required f o r  the  func t iona l  (2.4) .  

Spec ia l  Cases 

Because of the  general  way i n  which the  var ious subarcs  were assumed t o  l i e  
a s  shown i n  Figure 1.1, the  resu l t s  presented he re  a r e  app l i cab le  t o  a number of 
d i f f e r e n t  s i t u a t i o n s ,  some o f  which have been previously inves t iga t ed .  A 
number of s p e c i a l  cases  may be s p e c i f i e d .  For b r e v i t y  i n  the following d i scuss ion  
only 3 subarcs w i l l  be assumed f o r  each case.  Extension t o  more subarcs  i s  
obvious. 

Case I - Normal Corners - Assume t h a t  t he  subarcs a r e  of such a na tu re  t h a t  
t h e  s t a t e  v a r i a b l e s  and t i m e  are continuous a t  po in t s  of d i s c o n t i n u i t y  i n  the  
c o n t r o l  a s  shown i n  Figure (2 .1) .  

/-<+ 0 0  

I 
I I 
I I I 1 

I I 1 I 

0 I 

t 
' I  t2= t3 t4' t5 ' 6  

FIGURE 2.1 NORMAL CORNERS 
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By incorporat ing a s  corner condi t ions 

t 2 - t  - 0 , 
3 

t 4 - t  = 0 , 5 

Yi2 - Y i 3  = 0 > 

Yi4 - Yi5 = 0 I 

the  G funct ion may be w r i t t e n  as 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

where G'  is composed of  the remaining endpointfcornerpoint condi t ions.  
assumed t h a t  G' does not  contain t 3' 
these po in t s  can be replaced by a condition on t 

t i o n s  (2.29) - (2.32), the following conditions are obtained f o r  the cornerpoints .  

F i r s t  Corner Point 

It is 

From equa- 

t 5, yi3 o r  Yi5 s i nce  any condi t ion on 

14' t and y 2'  4' 'i2 

(2.38) 

Ai3 = - P3 ? (2.39) 

Second Corner Point 

(2.40) 

(2.41) 

(2.42) 

A i 5  = -P4 ' (2.43) 

dG' + - ,  2 

at4 H4 = P2 

H5 = P2 
2 

(2.44) 

(2.45) 

Eliminating the constant  m u l t i p l i e r s  yields  t h e  following condi t ions f o r  the  
f i r s t  corner  point 

9 



For the second corner point equations (2.42) - (2.45) yield 

2 5 aG' H4 = H4 + - 
at4 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

If G' is composed of endpoint conditions only, the H function and Lagrange 
multipliers are continuous at each corner point. 
H1 = H2 = H = H, then these results are equivalent to the well known Erdmann- 
Weierstrass corner conditions. A derivation of these conditions using control 
notation -is given by Lutz. 

If in addition 
3 

10 

Case I1 - Discontinuous State Variable corners - For the situation in which 
t2 = t3, t4 = t as shown in Figure (2.2) the results of Mason, Dickerson and 5 f. 

L) Smith are easily obtained. 

.. 

0 
f 
I 
I 

I Iq@/-? I 
r 
I 
I 

I I 
I I I# I 
I 

t + I  t 2 =  t 3  tq. t5 t 6  

FIGURE 2 . 2  DISCONTINUOUS STATE VARIABLE CORNERS 

In this case, two of the restrictions are given by 

't - t  1 0  
81 2 3 , (2.50) 
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= t  - t  82 4 5 

The G function in this case is given by 

0 

G = pl(t2 - t3) + p2(t4 - t5) + G' , 

(2.51) 

(2.52) 

where G' is composed of the remaining endpoint and cornerpoint Conditions. 
is assumed that G' does not contain t or t (any conditions on t or t can be 

expressed in terms of t 

given by equations (2.29) - (2.32) will be the following 

It 

3 5 3 5 
and t4). Among the endpointlcornerpoint conditions 2 

1 &' 2 &' 
9 H/+ = + P 2  + H 2 =  + p l  + - 

at2 
2 
H3 = + P1 

3 
> H 5 = + C L 2  

Eliminating ,,1 and between these equations yields 2 

1 2 aG' H2 = + H 3 + -  at2 

H 4 = + R 5 + -  2 3 aG' 

(2.53) 

(2.54) 

The corner conditions related to the Lagrange multipliers remain unchanged 
from equations (2.29) and (2.30). 

(2.55) 

(2.56) 

Case 111 - Unconnected, Non Overlapping Corners - If both the state variables 
and time are discontinuous at the cornerpoints as depicted in Figure (2.3), then 
the endpoint/cornerpoint conditions remain unchanged and are given by equations 
(2.29) - (2.32). 

11 



Y i  

0 

I I '  
I 
I I I 

I 
I 

I I 

t2 t3 t4 t5 t6 t 

FIGURE 2.3 UNCONNECTED, NON OVERLAPPING, TRAJECTORIES 

5 Vincent and Mason have previously inves t iga t ed  problems of t h i s  na tu re  
which cap r e s u l t  from the imposit ion of r e s t r i c t i o n s  on the c o n t r o l  v a r i a b l e .  
They have shown t h a t  i f  the  dynamical equations of c o n s t r a i n t  containing a 
s i n g l e  con t ro l  v a r i a b l e  can be a n a l y t i c a l l y  in t eg ra t ed  along any segment of 
the  t r a j e c t o r y  along which the  con t ro l  law i s  r e s t r i c t e d ,  then the r e s t r i c t e d  
segment can be e f f e c t i v e l y  el iminated and a t r a j e c t o r y  such as shown i n  Figure 
(2.3) i s  obtained. 
such a s i t u a t i o n .  

The r e s u l t s  presented here  can be appl ied d i r e c t l y  t o  

Case I V  - Branched T r a j e c t o r i e s  - The s i t u a t i o n  i n  which an endpoint of one 
t r a j e c t o r y  l ies  on another t r a j e c t o r y  i s  termed branched t r a j e c t o r i e s  because 
of the  appearance of the t r a j e c t o r i e s  as shown i n  Figure 2.4. 

Y i  

fa 
I 1 

t2= t3= t5 t4 

FIGURE 2.4 BRANCHED TRAJECTORIES 

t6  t 

Among t h e  corner condi t ions t h a t  a r e  s p e c i f i e d  for  t h i s  problem w i l l  be the 
f o 1 lowing 

12 



3 = t  t2 

t2 

Yi2 '13 

5 e t  

I 

i2 'i5 

The G function may be written as 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

where G' is composed of the remaining endpoint/cornerpoint conditions but does 
not contain y 

given by equations (2.29) - (2.32) will be the following 
t or t Among the endpoint/cornerpoint conditions i3' 'i5' 3 5' 

(2.62) 

xi3 = - w3 > (2.63) 

xi5 = - v4 > 

ae' + -  1 

at2 
H2 = cll + c12 ? 

3 
H5 = P2 

(2.64) 

(2.65) 

(2.66) 

(2.67) 

Eliminating the multipliers between these equations yields the following con- 
ditions to be satisfied at the branch point. 

3G' - A  + A  - - 
Ai2 i3 i5 ayi2 
1 2 3 &' H2 - H + H 5 +  - 3 

(2.68) 

(2.69) 
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Problems involving branched t r a j e c t o r i e s  o r  overlapping t r a j e c t o r i e s  
represent new s i t u a t i o n s  to which the  theory presented he re  may be r e a d i l y  
appl ied.  Two examples involving branched t r a j e c t o r i e s  and one involving an  
overlapping t r a j e c t o r y  are presented i n  Sect ion I11 i n  order  t o  i l l u s t r a t e  
app l i ca t ions  o f  t he  theory. 

SECTION I11 

APPLICATIONS* 

A Geometric Example 

A Minimum Distance Problem with Branches - The extended problem o f  Bolza 
presented in Sect ion I1 provides a modus operandi f o r  determining optimal t r a -  
j e c t o r i e s  w i th  v a r i a b l e s  which may be multivalued because the  va r ious  subarcs 
over lap.  

I n  order t o  e x h i b i t  the  s a l i e n t  f e a t u r e s  of  branched t r a j e c t o r y  optimiza- 
t i o n ,  a s i m p l e  minimum d i s t ance  problem w i l l  f i r s t  be examined. The problem 
is  t o  determine the  s h o r t e s t  pa th ,  poss ib ly  branched which connects t h r e e  non- 
co l inea r  po in t s .  
a t  point 2 .  

Figure (3.1) shows a candidate  path with a branch occurr ing 

t6=  1 t4= k 

FIGURE 3.1 BRANCHED TRAJECTORY CONNECTING THREE POINTS 

Point  1 i s  assumed t o  l i e  a t  t he  o r i g i n ,  po jn t  4 on the  t ax is  and po jn t  6 
somewhere i n  the  f i r s t  quadrant. The t h r e e  branches correspond t o  t h r e e  

* Numerous app l i ca t ions  t o  the  theory presented i n  Sect ion 11, including those 
9 presented here  are t o  be found i n  Mason's Disse r t a t ion .  
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subarcs of  the extended problem of Bolza. 

The kinematical  r e l a t i o n  to be s a t i s f i e d  a t  every point  along the var ious 
subarcs i s  given by 

Y = tan y , 

where y i s  the  t r a j e c t o r y  angle shown i n  Figure 3.1 and the independent 
v a r i a b l e  t is displacement along the horizontal  a x i s .  
tremized i n  t h i s  case i s  t o t a l  a r c  length given by 

The q u a n t i t y  t o  be ex- 

With the subarcs numbered a s  shown i n  Figure 3.1, the  endpoint/cornerpoint con- 
t i t i o n s  take the form 

g 3 = t 4 - k = 0  , (3.5) 

= t  - a = o  , (3.7) g5 6 

= t  - t  - 0  , (3.9) 87 3 2 

g 8 ' Y 3 - Y 2 = 0  7 

' t  - t  - 0  , 
g9 5 2 

(3.10) 

(3.11) 

gl0 = Y5 - Y2 0 ' (3.12) 

Necessary Conditions - The H funct ion f o r  t h i s  problem w i l l  be the  same f o r  each 

subarc ( i e .  H1 = H2 = H3 H) and is given by 

H = A tan  y - sec  y. (3.13) 
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and 

Thus 

Hence along each subarc, in addition to equation (3.1), the following Euler 
equations must be satisfied: 

A - constant, (3.14) 

(3.15) 2 A sec y - sec y tan y = 0 . 

sin y = X = constant . (3.16) 

Equation (3.16) establishes that the three subarcs are straight line segments. 
The slope of the line segments may now be determined from the endpoint/corner- 
point conditions. The G' function for this case is given by 

G' = (3.17) 

Applicat5on of the endpoint/cornerpoint conditions, equations (2.29) - (2.32) 
at the endpoints 1, 4, and 6 yield no useful information. However, the follow- 
ing information is obtained from equations (2.59) and (2.60) for the branch 
point 

(3.18) 5 '  A2 = A3 + A 

and 
+ H  . 

H2 = H3 5 
(3.19) 

Solution - Substituting equation (3.16) into equation (3.13) yields 

H - COS y. (3.20) 

This information along with equatjon (3.16) may now be substituted into equa- 
tions (3.18) and (3.19). Squaring and adding the resultant expressions yields 
the information 

1 
2 

- -  

Thus the second and third subarc intersect at an angle of 120 degrees. 
Assuming y > y gives the result 5 3  

= y + 120° . 
y5 3 

Substituting equation (3.22) into equation (3.19) yields 

cos y = cos y + cos(y3 + 120O) . 2 3 
16 

(3.21) 

(3.22) 

(3.23) 



By u s e  of  obvious t r i g i m e t r i c  i d e n t i t i e s  the above equat ion can be shown t o  
reduce t o  

cos y = cos(y3 + 60’) . 2 

Thus 

y3 = Y2 - 60° 2 

and from equat ion (3.22) 

(3.24) 

(3.25) 

(3.26) 

The s o l u t i o n  fo r  the  coord ina tes  of  t h e  branch po in t  may now be obtained by 
i n t e g r a t i n g  t h e  c o n s t r a i n t  equat ion on each subarc and us ing  t h e  appropr i a t e  
boundary condi t ions  i n  eva lua t ing  the  constants  of in t eg ra t ion .  
blem shown i n  Figure 3.1, i n t e g r a t i o n  of equation (3.1) f o r  the  f i r s t ,  second, 
and t h i r d  subarc become 

For t h e  pro- 

y2 = t a n  y t 2 2  (3.27) 

(3.28) 

-y2 = tan(y2 - 6Oo)(k - t2) . (3.29) 

By f i x i n g  the  coordinates  of po in t  $(R, h )  t h e  above t h r e e  equat ions may be 
and y , thus f i x i n g  t h e  coordinates  of  t h e  branch poin t .  solved f o r  t 2’ Y2’ 2 

It is  i n t e r e s t i n g  to examine the  geometric so lu t ion  t o  t h i s  problem. Figure 
3.2 i l l u s t r a t e s  t he  so lu t ion  f o r  .l = h - 1 for var ious  va lues  of k. 

/ 

FIGURE 3.2 SOLUTION FOR THE SHORTEST PATH CONNECTING 
THE THREE POINTS (0,O) , (l,l), AND (k ,O) ,  F O R  
VARIOUS VALUES OF k 
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It is apparent from the  geometry o f  t h e  above f i g u r e  t h a t  t h r e e  branches are 
obtained i f  k '  < k < k" where 

t an  60° - and kf1 1 + t a n  15' 
t a n  60° t a n  1 5 O  k '  - (3.30) 

The so lu t ion  t o  the  problem degenerates t o  two subarcs  a t  k = k '  and k = k". 
For k less than k '  o r  g r e a t e r  than k" t he  three-subarc s o l u t i o n  i s  replaced by 
a two subarc so lu t ion .  

Mult iple  S a t e l l i t e  Launch Vehicle 

Description o f  Problem - Consider t he  problem of designing a mul t i s t age  rocket  
capable o f  i n s e r t i n g  two payloads i n t o  d i f f e r e n t  o r b i t s  i n  a s i n g l e  launching. 
Figure 3.3 shows t h e  r e p r e s e n t a t i v e  t r a j e c t o r y  f o r  a rocket  veh ic l e  which s p l i t s  
i n t o  two s t a g e s  a t  t he  branch poin t .  From t h e  branch po in t  on, each s t age  
c a r r i e s  i t s  own payload. It w i l l  be assumed t h a t  when the  veh ic l e  s p l i t s  i n t o  
two s tages ,  the s t r u c t u r a l  mass a f  t h e  f i r s t  s t a g e s  w i l l  be discarded. Hence 
the  t r a j e c t o r y  w i l l  be branched with r e spec t  t o  the  v a r i a b l e s  r ,  d ,  v, and y, 
but w i l r  be discontinuous wi th  r e spec t  t o  the  mass. 

SECOND PAYLOAD INSERTED 
INTO SECOND ORBIT 

FIRST PAYLOAD INSERTED 
INTO FIRST ORBIT 

W 

3 
a 

LAUNCH VEHICLE SPLITS INTO 
TWO STAGES HERE 

RANGE 
FIGURE 3.3 TRAJECTORY FOR A MULTIPLE SATELLITE 

LAUNCH VEHICLE 

Using the  nomenclature defined i n  Figure 3.4 assuming only t h e  g r a v i t a t i o n a l  
and th rus t  fo rces  shown, t h e  dynamical and kinematical  r e l a t i o n s  f o r  each sub- 
a r c  become 

; = v s i n y  , (3.31) 

(3.32) - v  
r d - - c o s y  , 

cos x - 9 s i n  y 
r 

, . Tq 
v - -  m (3 .33)  
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v GM 
s i n  X + (- - 2) cos y r , * Tq 

r v  Y ' ,  (3.34) 

(3.35) 

where q = 1, 2,  3. 

q It is assumed t h a t  f o r  each s t age  the thrus t  Tq and exhaust v e l o c i t y  V e a r e  constants .  
c o n t r o l  v a r i a b l e  X. 

Hence t h e r e  a r e  5 state  va r i ab le s  (r, Q, v, y, m) and one 

LOCAL HORIZON 

TRAJECTORY OF VEHICLE 

SURFACE OF EARTH 

FIGURE 3.4 COORDINATE SYSTEM FOR A MULTIPLE SATELLITE 
LAUNCH VEHICLE 

The performance c r i t e r i a  i n  t h i s  case w i l l  be the minimization of  i n i t i a l  
weight. Thus 

It w i l l  be assumed t h a t  the i n i t i a l  s t a t e ,  except f o r  the mass i s  f ixed.  

= t  = o  , 81 1 

g 2 = r 1 - c  S O  , 
1 

g 3 = Q 1 - c 2 = O  7 

g 4 = v  - c  - 0  , 

g 5 = Y 1 - C 4 = 0  

1 3  

(3.37) 

(3 .38)  

(3.39) 

(3.40) 

(3.41) 
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The terminal s t a t e s  f o r  t he  two payloads w i l l  be assumed t o  be o r b i t s  def ined by 
spec i f ica t j .on  of t he  f i n a l  energy per  u n i t  mass and angular  momentum per  u n i t  
mass for each vehic le .  

2 
= r v  c o s y  - h  = 0 , g7 4 4  4 

COS y - h3 = 0 , 
g9 = '6 v6 6 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

Statements mus t  be made a s  t o  how the  mass is r e l a t e d  a t  t he  branch po in t .  
Following the  methods of Mason, Dickerson, and SmithJ4 i f  the  s t r u c t u r a l  weight 
of each s t a g e  i s  assumed propor t iona l  t o  t h e  weight of  f u e l  and, hence, t he  
burning time (mass flow r a t e  i s  cons tan t ) ,  then the  mass dropped a t  t he  end of 
t he  f i r s t  s t a g e  i s  given by 

(3.46) 
1 

gl0 = m2 - m - m 
3 5  - k (t2 - t l)  = 0, 

1 
where k is  the  cons tan t  of p ropor t iona l i t y  for  the  f i r s t  s tage .  S imi l a r ly  i f  

P and P are the  des i red  va lues  f o r  t he  two payloads, t h e  f i n a l  masses a r e  r e -  
l a t e d  to the  burning t imes of  t h e i r  s t ages  by 

2 3 

3 g12 = m - k (t6 - t2) - P3 = 0 
6 

(3.47) 

(3.48) 

Additional requirements m u s t  now be given t o  a s su re  t h a t  t he  s t a t e  v a r i a b l e  
subarcs w i t h  respec t  t o  r ,  d ,  v ,  and y f i t  toge ther  a t  t h e  branch poin t ;  the 
following boundary condi t ions  a r e  s ta tements  t o  t h a t  e f f e c t .  

= t  - t  = o  , (3.49) '13 3 2 

' t  - t  - 0  , 
'14 5 2 

g15 - r3 - r = 0 2 , 

= r  - r  = O  , '16 5 2 

(3.50) 

(3.51) 

(3.52) 

g17 - d3 - d2 0 , (3.533 

20 



'18 E d 5  - d 2 = o  

' V  - v  - 0  
819 3 2 

820 5 2 

821 = y3 - y 2 = o  

822 = Y5 - Y2 = 0 

= v  - v  = o  

(3.54) 

(3.55) 

(3.56) 

(3.57) 

(3.58) 

O p t i m u m  Switching Time - By s u b s t i t u t i n g  in to  the  H funct ion defined by equat ion 
(2.7) ( in  t h i s  case Fq = 0) t h e  necessary cond i t ions  r e l a t e d  t o  the  optimal path 
of the  rocke t  veh ic l e  f o r  each s t a g e  may be obtained from equat ions (2.10) - 
(2.12). These equations may then be solved f o r  the  opt imal  s t e a r i n g  angle  X. 
For b r e v i t y  these equations w i l l  not  be discussed here ,  except t o  note  t h a t  
s ince  H i s  not  e x p l i c i t l y  a funct ion of time, i t  i s  constant  along each subarc.  
Rathel; t he  following a n a l y s i s  w i l l  i l l u s t r a t e  how the  corner cond i t ions  may be 
used t o  determine the  optimum switching time. 

The G' funct ion f o r  t h i s  case i s  given by 

3 3 
G' = m 1 + cll(tl) + K 2 ( r 1  - C1) + .. . + p12[m6 - k (t6 - t5) - P ] . (3.59) 

Applicat ion of the  endpoint/cornerpoint conditions,  equations (2.29) - (2.32) a t  
t he  endpoints  1, 4, and 6, y i e l d s  

Point 1 : 'r 1 = p2 J 

d 1  = p3 , 

? r l  = p4 ' 

hyl  = I 5  ' 

A 

h 5 1  
m l  , 

p1 - p20 kl 
H' P - 
1 

, 

Point 4 :  

(3.60) 

(3.61) 

(3.62) 

(3.63) 

(3.64) 

(3.65) 

> (3.66) 

A = o  , 
d4 

(3.67) 
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Point 6: 

4 ’  
xv4 = -’ v cos y 

6 4 -’7 ‘4 

4 ’  sin y l y 4  = c17 ‘4 v4 

- -Vll ’ m 4  

2 
4 - -Vl1 k2 , 

A = o  , 
d6 

v6 -p8 v6 -vg r6 cos y 6 ’  

6 ’  sin y ’y6 ’9 ‘6 v6 

’m6 ’12 ’ 

k3 . 3 
H6 -’12 

Application of equations (2.62) and (2.63) at the branch point yield 

- x  + h  ’r2 r3 r 5  

h - A  +‘  
d2 83 d5 ’ 

lV2 %3 + xv5 ’ 

XV2 Y 3  Y5 ’ = x + A  

1 2 3  1 2 
H2 = H3 + H5 - Vl0 k + Pll k + P12 k3 * 

(3.68) 

(3.69) 

(3.70) 

(3.71) 

(3.72) 

(3.73) 

(3.74) 

(3.75) 

(3.76) 

(3.77) 

(3.78) 

(3.79) 

(3.80) 

(3.81) 

(3.82) 

Finally application of  the endpoint/cornerpoint conditions (2.29) - (2.32) at 
the points 2,  3, and 5 for the mass yields 
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(3.83) 

(3.84) 

Am5 -Pl0 Y - (3.85) 

Equations (3.60) - (3.63) and (3.65) y i e l d  no u s a b l e  information.  The c o n s t a n t  
m u l t i p l i e r s  i n  equa t ions  (3.66) (3.68) and (3.67) may be e l imina ted  t o  y i e l d  

] c o s y  = o  . (3.86) s i n y  + A  [ - -  - 4 GM 
V 

4 
GM 

4 - ?I4 2 y4 r4 v r r 
- 

2 Xr4 v4 s i n  y 

4 4 4  

S i m i l a r l y  t h e  c o n s t a n t  m u l t i p l i e r s  i n  equat ions (3.72), (3.74) and (3.75) maybe 
e l imina ted  t o  y i e l d  

] c o s y  = o  . (3.87) s i n y  + X  [- - - 2 
6 GM 

V 

6 
GM Xr6 v s i n  y - A - 

6 6 v6 2 Y6 lr6 
6 '6'6 

Equations (3.70) and (3.71) combine t o  y i e l d  

k 2 = 0  , 2 
H4 'm4 

and equa t ions  (3.76) and (3 .77)  combine t o  y i e l d  

3 - X  k 3 = 0  . 
H6 m6 

(3.88) 

(3.89) 

S u b s t i t u t i n g  equa t ions  (3.83), (3.70), and (3.76) i n t o  equa t ion  (3.82) y i e l d s  

1 1 2 2 3 k ) + (H5 - X k3) . H2 = Ad k + (H3 - Xm4 m6 

S ince  H i s  c o n s t a n t  a long  each suba rc  

2 3 3  
6 .  H i  = H4 and H5 = H 

(3.90) 

Hence e q u a t i o n s  (3.88) and (3.89) may be used t o  reduce equa t ion  (3.90) t o  

(3.91) 

1 
H2 - Xm2 k1 = 0 . (3.92) 
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Fina l ly  equat ions (3.83), (3.84) and (3.85) y i e l d  t he  r e s u l t .  

= x  (3.93) 
m 3  7 

= x  (3.94) 
'm2 m5 

The r e s u l t s  given by equat ions (3.88), (3.89) and (3.92) a r e  o f  t he  same 
form as r e su l t s  given by Mason, Dickerson, and Smith4 f o r  t h e  mul t i s t age  
booster opt imizat ion problem. The a c t u a l  s o l u t i o n  t o  t h e  problem presented 
here  i s  numerically q u i t e  d i f f i c u l t .  A procedure using the  above cond i t ions  
would be as follows: 

1. Guesses are made fo-r- t h e  unknown i n i t i a l  values  ol t he  Lagrange m u l t i -  
p l i e r s .  

2 .  The equat ions of motion p lus  t h e  E u l e r  equat ions f o r  t h e  f i rs t  subarc 
are in t eg ra t ed  u n t i l  the  cond i t ion  (3.92) i s  met. 

3. The changes i n  the  Lagrange m u l t i p l i e r ' s  f o r  t he  next two subarcs  a r e  
made i n  accordance with equat ions (3.78) - (3.81) and (3.93), (3.94). 

4. The equat ions of motion and the  E u l e r  equat ions a r e  i n t e g r a t e d  on the  
second and t h i r d  subarc u n t i l  cond i t ions  (3.88) and (3.89) are  met. 

5. A t  these  po in t s ,  checks must be made t o  see i f  cond i t ions  (3.86) and 
(3.87) have been m e t .  I f  so, a s o l u t i o n  has  been obtained. I f  no t ,  
steps 1 - 4 must be repeated u n t i l  they are. 

Two Vehicle Rendezvous 

Description of Problem - I n  o rde r  t o  demonstrate the  technique o f  so lv ing  a 
rendezvous problem using t h e  methods developed he re  f o r  overlapping t r a j e c t o r i e s ,  
a s implif ied rendezvous s i t u a t i o n  w i l l  be assumed. Motion w i l l  be confined t o  
a plane and i n  add i t ion ,  t he  two v e h i c l e s  are  assumed t o  be of constant  m a s s  
and operate  i n  a uniform g r a v i t a t i o n a l  f i e l d  under a cons t an t  t h r u s t  force .  The 
s i t u a t i o n  i s  depicted i n  Figure 3 .5  

Y 

TRAJECTORY OF 
SECOND VEHICLE 

TRAJECTORY OF 
FIRST VEHICLE 

x 
~~ ~~ ~ ~~ ~ 

FIGURE 3.5 TWO VEHICLE RENDEZVOUS IN THE PLANE 
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The kinematical and dynamical equations of constraint for each vehicle are 
given by 

X'U , (3.95) 

Y D V  , 

= (y cos x , 

(3.96) 

(3.97) 

G = sin x - g , (3.98) 

where q = 1, 2. 

It will be assumed that a minimum time rendezvous is required, hence 

g-2 ' (3.99) 

The initial state of the two vehicles will be assumed fixed at time zero. 
no useful information from the endpoint/corner conditions will be obtained for 
points 1 and 3. To bring the two vehicles together, the time, coordinates and 
velocity must be matched at the branch point. These requirements are given by 
the following conditions 

Hence, 

g 1 = t 2 - t  = o  , 4 

g 2 = x 2 - x  P O  J 

g 3 = Y 2 - Y q - 0  , 

~ 4 ' ~ 2 - ~ 4 - o  9 

4 

g 5 = v 2 - v  = o  4 

Optimum Stearing Angles - The H function for each subarc is given by 
t 

HI = x u + x v + x (x)' cos x + X, [(i)' sin x - g] 

H2 = A u + A v + (x)2 COS X + xv [(;) sin X - gJ 

, X Y u m  

T 2  . 
X Y u m  

(3.100) 

(3.101) 

(3.102) 

(3.103) 

(3.104) 

(3.105) 

(3.106) 

Applying Euler equations (2.10) and (2.12) to each subarc yields identical neces- 
sary conditions 

i P O  , 
X 

(3.107) 
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x = o  ’ 
Y 

1 = -x Y x ?  

x - -A 
V Y ? 

V 

u 

h 

1 -  tan X = - 

(3.108) 

(3.109) 

(3.110) 

(3.111) 

That part of the G function applicable to  the branch point i s  given by 

(3.112) 

Applicat-ion o f  the endpoint/cornerpoint condit ions (2.29)  - (2.32) a t  the points  
2 and 4 y i e l d s  

Point 2: lx2 = -I5 ? (3.113) 

Point 4 :  

A = -P4 ? u2 

xv2 = -P5 ? 

(3.114) 

(3.115) 

(3.116) 

(3.117) 
1 ’  H 2 = 1 + p  

l X 4  - P2 ’ 

xy4 = p3 ’ 

?l4 = P4 ’ 

(3.118) 

(3.119) 

(3.120) 

? r 4  - p5 (3.121) 

H4 = -P1 (3.122) 
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Eliminating the  constant  Lagrange m u l t i p l i e r s  between these  equat ions y i e l d s  

A = -1 
x2 x4 > 

A = -A 
Y2 Y 4  

9 

Au* - -A 
u4 ’ 

A v2 = -Av4 > 

H 2 = 1 - H 4  . 

The m u l t i p l i e r s  A and A are constants  on each subarc and i f  
X Y 

A = a  , 
X 

A = b  , 
Y 

(3.123) 

(3.124) 

(3.125) 

(3.126) 

(3.127) 

(3.128) 

(3.12 9) 

on the  f i r s t  subarc then by equat ions (3.123) and (3.124) 

A = - a  , (3.130) 
X 

A = - b  , (3.131) 
Y 

on the  second subarc.  I n t e g r a t i n g  equations (3.109) and (3.110) on t h e  f i r s t  
subarc y i e l d s  

A = c - a t  , (3.132) 
U 

A a d - b t  , (3.133) 
V 

and €or the  second subarc 

A = e + a t  , (3.134) 
U 

A = f + b t  . (3.135) 

Writing equat ions (3.132) - (3.135) fo r  the rendezvous po in t  and applying 
equations (3.125) and (3.126) y i e l d s  the  r e s u l t  

V 
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e 5 -c 

f m - d  

Thus the control law for the first subarc is given by 

d - bt 
tan X = - c - at 

and for the second subarc 

- (d - bt) tan X = - (c - at) 

(3.136) 

(3.137) 

(3.138) 

(3.139) 

Thus it is concluded that the two vehicles thrust in parallel but opposite dir- 
ections. 

SECTION IV 

DlSCUSSION AND CONCLUSIONS 

The theory pr ented in Section I1 is developed fo problems which are to be 
optimized over a number of subarcs which may or may not be overlapping. 
method used in this section is based on the concept of extremizing a functional 
which is related to the problem of Bolza, but is in such a form that standard 
calculus of variatjons techniques can be used to obtain necessary optimizing 
conditions related to the path and ordinary maxima and minima techniques can be 
used to obtain necessary optimizing conditions related to the endpoints/corner- 
points. 

The 

The results presented in Section I1 are equivalent to the results obtained by 
Mason' although by a 
by extending Denbows" method for handling problems with boundary conditions which 
specify restrictions at corner points lying between the ends of a trajectory. In 
order to develop necessary conditions, Denbow transformed his problem into the 
standard Bolza problem for which a fairly complete theory is available. He then 
inverted the transformation in order to obtain necessary conditions for the ori- 
ginal problem. Mason, using state, control variable notation carried Denbow's 
work another step to include, as was done here, problems whose variables are 
defined over disjoint intervals. 
somewhat simpler method for obtaining the necessary endpointlcornerpoint condi- 
tions than the procedure used by Mason. 

ompletely different procedure. Mason's results were obtained 

The procedure presented here represents a 

The endpointlcornerpoint conditions obtained in Section I1 unify the results 
of previous investigations which may be obtained as special cases. The same 
results may be used to handle problems with normal corners, discontinuous state 
variable corners, and unconnected corners, all of which may have the specifi- 
cation of additional restrictions at the cornerpoints. 
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The a p p l i c a t i o n s  i n  Sect ion I11 by no means exhausts the  uses  t o  which the 
theory of  Section I1 can be appl ied but  a r e  presented t o  i l l u s t r a t e  the procedure 
of using t h e  corner  condi t ions f o r  a solut ion.  
be appl ied to  any opt imiza t ion  problem composed of more than one subarc.  

The r e s u l t s  of Sect ion I1 can 

It i s  i n t e r e s t i n g  t o  note t h a t  the  r e s u l t s  obtained f o r  the two veh ic l e  
rendezvous could a l s o  have been obtained from Zssacsl3 theory of d i f f e r e n t i a l  
games. 
vous" and f a l l s  under the heading of cooperative games. 
arises from t h e  f a c t  t h a t  both veh ic l e s  a r e  attempting t o  minimize the same 
quan t i ty ,  namely the t i m e  t o  rendezvous. 
of the  na tu re  a s  presented  i n  t h i s  example may be t r e a t e d  a s  overlapping tra- 
j e c t o r i e s  wi th  a common f i n a l  point .  

I n  t h a t  context  t h i s  problem could be c a l l e d  the  "two player  rendez- 
The term "cooperative 

It i s  apparent t h a t  cooperat ive games 
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