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I. Introduction

The purpose of this paper is fo derive linear and nonlinear optimal
feedback systems which will drive any initial angular velocities of a
space vehicle'fo zero by the suitable application of confrbl torques.

To eliminate time-varying feedback control laws, the control problem is
consfdered on the semi-infinite control time-interval [0,®).

The method used for the solution is based upon the solution of an
inverse optimal control problem so as to obtain a class of cost criteria
and corresponding optimal controls-for the space body. Since the general

inverse problem of optimal conTro|2’3,4

is not completely resolved, this

study is specialized in order to have a rigorous and consistent treatment.
Section 2 contains the differential equations sa?isfiéd by the components

of the angular momentum vector. In section 3, the maximum priﬁciple and

the Hamilton-Jacobi equation are used to prove that a linear time-invariant

feedback system is optimal with respect to a quadratic cost functional

in the angular momenta and control torques. Section 4 contains the main

results which indicate the relationship between a wide class of nonlinear

feedback control systems and the cost functionals that are minimized;

the essential property of these controls and of the associated cost

functionals is that they lead to a minimum cost which is a quadratic function

of the state.




2. Definition of the Problem

’

Consider a body in space. Let 1,2,3 denote the body—fixed principal

axes through its center of mass.

about the principal axes. Let w, ,w

Let | |

1272

TRPY |3 denote the moments of inertia

ws be the angular velocities and let

U ,U, U denote the control forques (generated, say, by gas jets or reaction

wheels) about the principal axes. Using these variables, it is known (see,

for example Athans and

the angular velocities are

Fa|bl pp. 838-841) that the differential equations of

ll&l(f) = (IZ—IB)wZ(T)mS(f) + u|(f)
IZ&Z(f) = (l3-ll)w3(f)wl(f) + uz(f) ()
lsws(f) = (Il-lz)wi(f)wz(f) + us(f)

It is convenient

x(t), as the state variables.

xk(f) = lkmk(f) ’

Using these

xl(f) = a'xz(f)x3(+) + uI(T)
xz(T) = a2x3(f)xl(+) + uz(f)
i3(+) = asx.(T)xz(f) + u3(T)
where
A I=1s A3
f| 1 L B
2'3
Note that

The fact that it is desired fo generate the control torques UjsUs, and u

as a function of the state variables x,,x. ,X

A
u=(u ,u2,u3)'.

to use the components

variables, (1) reduces to

a +ta, +ay=0

of the angular momentum vector,

So define

k=1,2,3 (2)
(3)
-
L, ay &~ (4)
| 2"
(5)

3

is denoted by u = u(x) where

1’72’73



3. Linear Feedback Laws

Since the control time-interval is assumed to be infinite and since
it is‘desired to reduce the state (angular momentum) to zero, iT.follows
that the closed loop system must be asymptotically stable in the large.
Thus, the search for optimal feedback control laws must be confined
to the class of control laws that yield a stable system. The following
lemma shows that this class is non-empty.

Lemma | A The set of feedback controls driving the system (5) foijhe
origin 0, in infinite time, is non-empty.

Proof : Consider the linear control law

u|(+) = -x|(T), uz(f) = —xz(f), u3(+) = —x3(+) 6) .
and the Lyapunov function V(x)
_ 1l r2 2 2
V(x) = Q'Exl o+ x3] (7)
Use of (4), (5), and (6) yields
dV(x)/df.= X, X X XXX, = (o, +0, 40, )X X X+, X FU, X, FU X =—x2-x2-x2 (8)
= 1717272 7373 727737172737 517 727277373 ) T2

so that 9(5) is negative definite. This establishes that there is at least
one stable control law and, hence, the [emma.

Next it will be demonstrated that there is a linear control law that
" minimizes a quadratic performance criterion. It should be noted that linear
control laws do minimize quadratic performance criteria provided that the
state differential equafions are also linear. In this case, the state
equations (5) are nonlinear. Few nonlinear systems admit linear optimal
control laws; this is one of them.

Control Law | Consider the nonlinear system (5) and the quadratic cost

functional (with g > 0)




2 2 2 I 2 2 2
Jl f E'I: {q[xl(f) + XZCT) + x3(f)] + a{ultf) + uz(f) + uBLT)]}dT

= L[ qlxH]]? + L [uenr || Pret | (9)
2 0 - q''=

Then the |inear feedback control law

u(t) = -gx(t) (10)
is optimal. With this control, the closed loop system is asymptotically
stable In the large and the optimal cost J? is given by

I 2
¥ =5 [|x0]] (e

where ||x(0)|| is the initial magnitude of the angular momentum vector.

Elements of Proof : The proof proceeds as follows : One forms the Hamiltonian

of the system with its associated canonical equation for the costate which
is denoted by p'(+) = pl(szz(TL B(T)]. The minimization of the Hamiltonian

yields the relation
u(t) = -gp(t) (12)

Using this relation and the resulting equations for the state and the

costate one concludes the very important relation that '

x(+) = p(t) (13)

In consequence the necessary conditions of optimality are satisfied if
ult) = -gx(+) (14)

In order to prove sufficiency, one simply computes the cost of using the control

(14) and shows that this cost satisfies the Hamilton-Jacobi differential equation.



4/ Nonlinear Feedback Control Laws

I+ was demonstrated in the previous section fﬁaf a linear feedback
control law is optimal for the nonlinear system (5) provided that the
cost functional is quadratic in the state and control vectors. In this

~ section, non-quadratic cost functionals are considered and optimal non-
I inear feedback controls are derived under the added constraint that the
resulting minimum cost is a quadratic function of the initial state.
Furthermore, all the suggested nonlinear control laws yield a closed-loop
system which is asymptotically stable in the large.

Consider the real-valued positive definite functions, fk(.) and

gk(.), (k = 1,2,3) of a single variable such that

£,00 =0, g0 =0 ; k=123

The class of cost functionals under consideration are of the form

J = f:{q[f‘(xl(f)) + fz(xz(f)) + f3(x3(f))]

!
+ 5 g () () + g luy(t) + gty (+))1}dt (15)

2 3

where q > 0 is a wéighting scalar.

Since nonlinear feedback controls are sought it is desiréd to determine
the control torques as an instantaneous function of the anguiar momentum
vector x, i.e.,

u, = ul(f)' u, = u2(§), ug = u3(§) (16)

Finally demand that the minimum cost J*(x) as a function of the state

is the quadratic function

i 2 _ | 2 2 2
J*¥(x) = E'IIEJI =5 [x] + x5 + x5 ] an




To establish the relations between the controls (js)’ t+he cost
functional (|5), and the cost (|7)consider the hamiltonian function H

for the optimal control problem

_ !
H= q[f'(x‘) * folxy) + f3(x3)] + a—[gl(ul) *+g,luy) + 93(u3)]

Q) XoX3p) + 0yX3X | Py + U3X | XoP +‘ulp| + u P, + up= (18)
where Pis» Pps and Ps are the costate variables. Since the optimal control
must minimizevfhe hami ltonian one deduces the relations
%*
Oz.g_H_ =..|_:g_k+pk='_dgk+aJ(i) =L_di+x ’k=l’2’3
U, q »uk q duk A%y q duk k
(19)
Furthermore the Hamilton-Jacobi equation
_ [
0= q[fl(g')+f2(x2)+f3(x3)] +-a [gl(u|)+gz(u2)+93(u3)]
3I*(x) 3 *¥(x) 3J*(x)
Py ek, T e Tk, T e o
A*(x) 3J*(x) 3J*(x)
+ u + U + u (20)
| axI 2 axz 3 8x3

where J*(x) is the minimum cost, must hold along all optimal trajectories in

R3.

From (19) and (20) one obtains the equation (since o, + a, tag = 0)

_ ] T .
0= q[fl(xl)+f2(x2)+f3(x3)] + 3 [gi(ui)+gz(u2)+g3(u3)_,+ulxl+u2x2+u3x3 (21}



Since the functions fk(.) and gk(.) are positive definite, then the optimal

control must have the property that

ux, + u,X, + UzXy <0 for 5{# o (22)

_ C(lIndeed this requirement guarantees the stability of the closed-loop
nonlinear system).

The problem under consideration now is as follows : fix the control

torques u,, u,, and u, to be some convenient and easily implementable
Jorques Uy, 4, 3 y imp _

function of the angular momenta X|» Xps Xg and then determine the functions

. fi(') and gé(.) associated with this control law (and, of course, the

constraint ({7) on the minimum cost).

One of the simplest ways of generating the control is as follows
u = -th(x‘); u, = -qhz(xz); ug = -qh3(x3) , (23)

where the hk(°) are continuous and differentiable scalar-valued functions

of a single variable, such that for k=1,2,3

(a) hk(O) =0 (24)‘
(b) h;!(.) exists everywhere (25)
(c) hk(xk‘)xk >0, X #0 (26)

Clearly (26) and (23)guarantee that (22)‘holds. Furthermore, (24) and
(23) guarantee that (21) holds for x = 0.
It now remains to determine the fk(.) and gk(.). From (21) and (23)

one has

3

3 3
q RZ' fix) + ¢ ) gk.<uk) = q {| h, (x

|
% (27)
q k=1 k= Kk

Frbm(,g) one obtains



dgk dgk

a-u—k- = -d—x—k' = "qu H k=1,2,3 (28)
Since U = -qh(xk), (28) yields

dg dh

E;E = q2xk a;f- k=1,2,3 | (29)

which yields (since gk(O) = 0)

X X=X X
9 = ¢ f “ xdh, (0 = ¢’Ixh, G0 | % - I K, (x)dx] (30)
0 x=0 0 .
and,so;
_ 2 2 *k
9 = 9 xkhk(xk) -q JO hk(x)dx (31)
Substitution of (31) into (27) yields
e 1 [ ‘
f . (x ) = I h, (x)dx (32)
k=l KK k= Jo K A
which implies
Xk
fk(xk) = [0 hk(x)dx (33)

To determine the explicit dependenee of gi(.) on the u; one can simply use

u
~ the Inverse relationship X, = h;' (- -153 in Eq. (31) 1o obtain

\ 9/

u u . u
v AR BTN B -1
g, (u) = q ( ——q) he ( —-q) fk( he ( —q) (34)

In the remainder of this section two specific examples of the theory are

presented.

Example | : Suppose that each control tforque Uy (k = 1,2,3) is generated

from the corresponding angular momentum X (k =1,2,3) by the odd Eover—law

u =-gx, ; nodd ; q>0, k=1,2,3 (35)

In this case, hk(xk) = x:. The functions fk(xk) are computed from (33) to obtain

for k = 1,2,3




X

- K n _ | n+|
fk(xk) = IO X dx = =T %k (36)

The functions gk(uk) are found from (34)

_ | n-1/n  n+l/n
gk(uk) =07 9 u; (37)
To recapitulate : For the system (5) and the cost functional (n odd)
| 3  n+l n n-{/n 3 n+1/n
J=r — T ox M+ __— T (+)| dt (38)
o | 0¥l ke | 3 qn+l) k=1 k .
the optimal ‘control is given by
u, = -gx" (1) (39)
k- TP
and the minimum value of the cost functional J is given by
P = £ BEM) + () + ()] (40)

Note that the use of this type of control functional for large n penalizes
severly the system for large values of the angular momentum vector and if

penal izes the control torques in an almost |inear manner; this means that this
criterion can be used as an approximation fo the case that the control torques:
u  are almost linearly related to the rate-of-flow of fuel consumed by, say,
gas jets used to generate the control torques.

Example 2 Suppose that the control torques are generated by

I/m

U = =9x, ; modd ; k=1,2,3 (41)

k

The functions fk(xk) are then given by

X
J ko (Mmye = M (42)

f (x ) =
k 7k 0 m+! K

and the functions gk(uk) are given by




u u u
_ 2 - KY\[_ kim_ m _ _K\mImtl/m _ | f-m mt!
A ( CH ( qk) m'“'"+|‘( ( q‘) ) w9 % (43)

The implication is, of course, that given the system (5) and the cost functional

(m odd)
m m+|/m I 2 ml
J = CE— 1 < M+ . up () Jat (44)
0 k+1 (m+1)q" k¥l R
then the optimal control is given by
k/m -
U = =X ) ; k=1,2,3 ‘ (45)
and the minimum value of the cost functional is
P = 2 DA+ 52 + ] (46)

Note that if m is chosen large, then the cost functional (44) can be used to
penalize the system very severly for using large control torques while small

or large values of angular momenta are penalized almost in a proportional manner.



5. Conclusions

It has been shown that given the nonlinear differential equations that
describe the behavior of the angular velocities of an arbifrary space vehicle
and given a quadratic dependence of the minimum cost (as a function of the
state variables), then the Hamilton-Jacobi equation together with the maximum
principle can lead to classes of nonlinear feedback controllers which in turn
yield the corresponding (nonquadratic) cost functionals.

Identical techniques can be used to solve the inverse optimal control
problem when the minimum cost is specified to be nonquadratic, e.g.

J*(ﬁ) = Ilzjlzm, where m = |,2,3,.... Distinct classes of nonlinear control
systems and associated cost functionals can be obtained for each value of m.

This type of "inverse" approach to feedback system design has promise
as a design aid to the engineer. It is easy to see that glven The state
differential equations, the engineer specifies the desired minimum cost. For
each class of feedback controllers that he may wish to consider, he obtains
the corresponding state and control penalty functions that define the integrand
of the cost functional. He can then pick the control vs cost functional pair
that reflects both feedback simplicity and a physically appealing state and
control penalty. It should be noted that since the choicg of the cost functional
is oftfen a subjective one, this "inverse" technique can indeed be of value,
since it clearly couples well with the complexity of the feedback controllers
under consideration, and since it does not violate the potential use of optimal

control theory as a tool for design rather than a "straight-jacket."
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