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"Beauty is truth, truth beauty",—that is all
Ye know on earth, and all ye need to know.

Ode on a Grecian Urn

John Keats
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THE DIELECTRIC CLAD AXIAL SLOT ANTENNA

C. M. Knop, J. J. ﬁgier,~and 0. K. Kim
SUMMARY

The input admittance of a rectangular waveguide whose
opening forms an‘axial slot on a metal cylinder of outer
radius, a, which is coated with a concentric layer of homo-
geneous dielectric of outer radius, b, and of relative |
dielectric constant, €., is analyzed. The analysis is
accomplished by reléting this input admittance to the ex~-
ternal admittance by equating the complex power flow on
each side of the slot. The external admittance is found
by expanding the fields ih the exterior of the cylinder in
the form of a Fourier mode expansion following Wait, and
casting the expression for the integration of Poynting's
vector over the physical space of the slot into one over mode
space via Parseval's theorem. The slot width is made small
enough so that the higher order modes produced at the slot
in the waveguide due to the slot~-cylinder transition are
negligible., Additionally, the guide is dielectric loaded,
so as to realize sufficiently high attenuation at the slot
location of the higher order modes produced at the excitation
point for a given length of guide.

Consideration to both the axial and azimuthal surface
waves which can exist and which are excited on the dielectric
coated cylinder is given. The cutoff conditions for the
axial surface wave modes which can be excited are derived

by the determination of the singularities in the integrand



expression for the external admittance. By comparing these
results with those for an unslotted dielectric coated cylin-
der, it is shown that TM and hybrid EH axial Surface wave
modes are not excited by this thin axial slot and that only
TE and hybrid HE axial surface wave modes can be excited.
The dominant of these is shown to be the TE, mode. The
coating thickness for the given dielectric constant and
frequency range is then chosen under the thickness required
for this mode to exist, so that no axial surface waves are
excited.

Examination of the azimuthal surface waves which can
exist shows that the lowest drder TM, mode has a zero cutoff
frequency and is excited. However, it is shown that this
and all other possible azimuthal surface waves which can
exist appear as leakage radiation and the contribution
they make to the conductance is already taken into account
in the external admittance expression, i.e., they are not
singularity contributions.

Using the derived expressions, computations of input
admittance were made over the range of frequencies corres-
ponding to 1.40 < C < 1.60, with a center frequency
corresponding to C=1,50 (£=1.905 gc for a=1.482 iﬁches),
where C=Bva = Efé is the circumference in free space
wavelengths of tXe metal cylinder. The following coating
conditions were considered: no coating, a Teflon coating

(e,=2.10) of several thicknesses corresponding to W=b/a=1.0,



1.2 and 1.5; and a plasma éoating (oiﬁril) of the same
thickness.

The measured values for the input admittance seen
by the coaxial feed line and the theoretical'values for
this admittance (obtained from the theoretical value of
waveguide input admittance and the measured values of the
scattering matrix eleﬁents) were obtained and compared.
The measured and computed values for this admittance for
the no coating case agree within'IO% for conductance values
over the entire 10% bandwidth (1.80 to 2.00 gc) and within
10% for susceptance values over approximately a 2% band-
width (1.945 to 1.980 gc).

A comparison for the coating case could not be made,
since only the external conductance was computed, and in
going from the waveguide admittance to the coaxial line
admittance, both external conductance and susceptance are
required. However, since the measured values of input
admittance for the Teflon coating case have a smoother
behavior with respect to frequency, as compared to the
ho coating case, it is anticipated that equally good or
better agreement with theory will be found. The computed
external conductance values were checked by considering
the limiting case of zero coating thickness (W=1.00)
which gave, as should be, the no coating results.

It is shown that an admittance comparison of theory
and experiment cannot meaningfully be made in waveguide,

due to the nature of the scattering matrix elements and



the high value of reflection coefficient in this guide.
Comparison with theory and experiment should only be made
in the coaxial line.

Equatorial plane radiation pat&erns, both computed
and measurgd, are in excellent agreement for both the
no coating case and the Teflon coating cases.

Generalizing from the given findings, it is concluded
that the analyses given for both the input admittance and
equatorial plane radiation patterns of the axial slot wave-
guide fed dielectric clad antenna are accurate enough for
predicting these quantities a priori within state-of-the-art
accuracies. Application of this knowledge to plasma diag-

nostics is then discussed.



I. INTRODUCTION

The radiating structure considered consists of an
axial slot~dielectric clad cylinder, where the slot is
the open end of a rectangular waveguide, as depicted in
Fig. 1, which defines all the dimensions. The basic problem
is to determine the normalized input waveguide admittance,

Yi,r as a function of all the parameters. To accomplish
this the idealized model of an- infinitely long perfectly
conducting cylinder is adopted and an assumed form for the
tangential electric fields across the slot is made.

Following the work of Wait [1], the fields exterior to the
cylinder, i.e., p>a, are then expanded in their appropriate
Fourier mode representation as a standing radial wave in

the coating region, a<p<b, and as a traveling radial wave

in the air region b<p<=. These total fields contain six

unknown mode transform coefficients which are determined

by applying the six tangential boundary conditions (two at

p=a and four at p=b). This then determines all the field
transforms in the coating and air regions in terms of the
tangential field transforms across the slot. The pertinent
tangential electric and magnetic fields across the slot

give the power flow through the slot. This power is the

same on either side of the slot. This fadt enables one to

relate the input admittance in the guide to the external
admittance of the slot. This is facilitated by using Parseveal's

theorem to express the required Poynting vector integration

over physical space to one over mode space.
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The expression for Yin is so obtained and the signi-
ficance of the singularities in the integrand of this
expression as related to axial surface waves is brought
out, and the cut-off conditions of these axial surface
Qaves are derived: It is shown that the contribution of
the a#ial surface waves to the conductance appear as explicit
pole contributions in the form of residues at these‘
singularities. Azimuthal surface waves can and do also
exist, but their contribution to the conductance does not
appear explicitly, since it is already included in the
integration. The physical reason for this is that, whereas
axial surface waves carry power only axially, azimuthal
surface waves radiate into the air region.

The expression for Yin is then rationalized into
real and imaginary parts representing the conductance and
susceptance, respectively. These parts take on different
forms for each coating case considered: no coating, Teflon
coating, and a plasma coating, and are explicitly given in
a normalized form ready to be programmed and computed.

Computations for these cases are given,>where in all
cases the coating thickness is chosen sufficiently thin,
so0 that no axial surface waves exist. Experimental results
for the no coating and Teflon coating cases are given and
compared with computations. A sufficiently detailed des-
cription of the antenna construction and measurement method

is given to ascertain their wvalidity. Generalizations based



on these comparisons between theory and experiment are

then made.

II. FORMAL SOLUTION PROCEDURE

a. Formulation of External Admittance Expression

Since the method of expanding the fields in terms
of cylindrical Fourier transforms is clearly described
in Wait {1], it will only be outlined, as required, here.
If we let y(p,¢,2) represent any scalar component of either

[E or i, then it can be represented by

m=+ow ]
- ~-jhz -9gm¢

w(pr‘t’rz-) = 2 f ‘Pm(hrp)e ] dh e ] (1)

mses=co -
where Jﬁ(h,p) is the transform of ¢, and is

- 1 o +3jh +3

vy (h,p) = '(’" S’ vip,o,2)e 2 laz & Mg, (2)
(21)2 do1 4o

Referring to Fig., 1, if it is assumed that the

tangential electric fields are

{ 0 off slot )
E,(a,¢,2) , 3
¢ Eo cos(%i) on slot

I
[}

Ez(a,¢,z) (4)

then the corresponding transforms are



hy,
%i; Vo cos(57)

27 (%)(hzzz-nz)

E¢m(h,a) = B =

¢ (5)

where Vo=EgWw = voltage across center of slot, and
— 2
.My
SLn(—E“)

ap = | —wWe5
(—3—)

From (339) of Wait, the transform of Hz(a,¢,z) is then

Hyn(h,a) = H, = u? [by Hm(z)(ua) + By Jp(ua)) (6)

Similarly, all the required fields in both the coating region
(a<p<b) and the air region (b<p<=) ére given by (336),

(337), (339), (340) and (342), (343), (345), (346) of

Wait, respectively. For the sake of brevity, these exp-
ressions will not be rewritten here, but it is noted that

the following difference in notation. is used:

Wait's Notation Notation of this paper
H My
Yo Yy
ko By

Furthermore, it is noted that in Table I of Wait (p. 128),
that the coefficient b,; should be multiplied by u, and
the coefficient apg is lacking a minus sign.

The complex power, P, flowing through the slot is



1
= 5 £ slot WMgiot d$530t (7)

which can, by Parseveal's theorem, Knop and Swift [2],

can be cast into the form

m=te 3 -
=2 2 f E O
P > (27) gw 3 E, H, dh. (8)

Using the six tangential boundary conditions
(continuity of Ey, E,, Hy, H, at p=b and continuity of
E¢ and E, at p=a) and determinants gives expressions
for By, by and Dy, respectively, where D, is the determi-
nant formed by the coefficients app, etc., in Table I,
p. 128, of Wait. Explicitly solving for By, b ,and D,

(see Reference 3) and substituting into P gives for the

normalized external slot admittance, y,, defined by

Yo = Yoy (9a)
. where Y. is the external slot admittance defined by
2p
Y, = (9b)

2
Vol

the expression,

4 E?:“. an _S' yN2-y2 cosz(‘"—y)nm(y) Y (10)
= J—'_———_

(By2) 2 m=b ~ (1+8™ o [2 (——)] dn (y)

10



where

ng (y) = (N2-y2) (1-y2) (CW) 2 [NZ {1-y2U Hy ~|N2-y2VpH '1- (1)

2
[\‘l-—yzUmHm - Nz—yzvmﬂm']—(my)z(Nz-l) Vi ?Hp, ?

2 5 .. '
dm(y)=(N2—y2)2(l—y2)(CW) [N2 1—y2Umnm—{§5~y2VmHm ]

[ 1y 2 Tyt~ {N2-y 2LyHy "1 - (my) 2 (N2-1) *Vp Ly Hy 2

with
(U = Ty (ua) iy (2 (ub) -3y (ub) Hy (?) (ua)
Vp = Jp(ua)Hy ¢?) (ub) -3, (ub) Hy, (2) (ua)
{ Ly = Jmlub)E, ) (ua) -3 (wa) iy ¢2) (ub)
T = I, (ub)Hp (¥ ' (va) =dp' (ua)Hy (3) " (ub)
u = By er—y2
Hy = Hm(z)(uvb)
Uy = By 1-y2, y=h/By, £m= {z :;Z , N2=er
Prime denotes differentiation with respect to entire
(2)" aHp (2) (x)
argument, e.g., Hpy (ub) = =

To ob

x=ub

tain (16) the relations

11

(12)

(13)



I_pn (X)=(-1)"3,(X), Y (X)=(-1)™yp(X), and (14)
(2) |
Hop o (0=(-1"1,®) (0, n_ ()= (v), d__(y)=dy(y)

were used, as well as the symmetry of all functions with
respect to f;

It is noted that both n (y) and dp(y) are complex
functions of the real variable y, and hence, (10) must be
rationalized to obtain the real and imaginary parts, dc
and b, respectively, of y, (yc=9ct] be). Before doing
this, however, let us obtain the expression relating the
normalized input waveguide admittance to the normalized

external admittance.

b. Relation of External to Waveguide Input

Admittance

The pertinent fields which exist in the wavegquide
are,

28

1B, 2 J 2
En(E,n,Z)=E° e 1 cos(%g)(l+re 1 )+(h.t.)E (15)

-> -jB8

z 328
Eo e 1 cos(%g)(l—re

Hg(E.n,Z)=-Y

12 (16)
10 )+(h.t.)H

where T is the reflection coefficient of the dominant

TEq o mode in the waveguide, 83 is the guide wavelength of
this mode, and Ylo is the characteristic waveguide admit-
tance of this mode. Eo is the arbitrary source constant

for the exciting TE;, mode and is the only specified quantity.

12

0



The reflection coefficient, I', and the magnitude and phase
of the higher order mode dielectric (h.t.)E and magnetic,
(h.t.)H, are unknown. The problem is to determine T or

the input wave admittance, Y;,, of the TE; o mode which is

related to I' through the relation

Yin = Gin*IBin = - Heloon0) =Y t2-h)
En(grﬂlo) (1+T)

4
TE10 mode

It is convenient to define the normalized input waveguide

(17)

admittance, Yin’ by
Yin = 3 = 9in*d Pip = T - (18)

Assuming that the higher order terms vanish, i.e.,
(h.t.)p=(h.t.) =0, (the validity of this assumption will
be discussed shortly), the complex power flowing through

the slot in terms of the fields inside the quide is

- > 2 * _ Wi
P = |E | (1+T) (1 Y, p (19)
which is obtained by integration of the complex Poynting
vector over a cross-section of the guide. Using the.

relation defining T,

Eq = —2 = E(1+T) (20)

€

13



€ |v,]? 2w (1+T) 10

thus,

A
Yin = 2;%)(;3) Yo (22)

which relates the normalized input admittance (a measurable
quantity) to the normalized external admittance ( a quantity

which can be computed via (10)).

c. Application to Specific Coatings

The expression (10) holds for any fr, real or complex,
but, as pointed out,'both n,(y) and am(y) can be complex,
and it remains to rationalize (10) to obtain g, and b..

_ This rationalization differs for each coating type and
each will be described separately. However, regardless
of what coating is considered, the fact that the radial
portion of the wave must be outward—-going and bounded
means that the choice of positive real parts and negative
imaginary parts of the corresponding propagation factors

must be made, i.e., one must choose

ReJer-y3’> 0 Revl-y2.> 0

(23)
" .
I, \jer-yZ <0 I,\l-y¢ < 0
for all values of e, and y2.

14
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1. Dielectric Coating (er real and erll)
For this case the range of integration over 0O<y<«
can be split into the three regions;0<y<l, l<y< e,., and
er<yse.
’ . I
In the range 0O<y<1, both\jl—yZ andVer-y2 are greater
than zero and (23) with (10) gives both a real, 9eyr and

an imaginary, b contribution to y., as given by (I) and

cl,
(V) , respectively, of Table I, in this range.
. - 2
In the range 1l<y< €., l—y‘=~jdy‘-l, causing Hm( )
1
— - 2

[cw ‘/l—y“]=(§/1r) jm+1xm[c»vJy2—1] and Hm( ) [CW{l-y?] =

m_ ! 2 . . , .
~(2/7) 3 Kn [CW{y -1]. Examination of (10) then gives a

purely imaginary contribution, j bc to y, in this range,

2’
as given by (VII) of Table 1I.

| A

In the range l<y<~, the term Jer—y2= ~j\y%-e_ and
. frre— . :
also |l-y?= —jdyz—l, causing the appropriate Hankel functions
to become modified Bessels (as above) and thus (10) gives
a purely imaginary contribution, j b¢3, as given by (IX) of
Table I, to Yo in this range.
Thus, for e, real and e,>1, the total external

admittance is given by
YC = gc+j (bcl+bc2+bc3) ’ (24)

ep>l
as given in Table I.

15



2., ©Plasma Coating

For the case of a lossless plasma coating having
ex=l-up?/w? with 0<(up/w)®<l, i.e., for O<e <1, the exp-
ression (10) can be split into the ranges OiYidE;r vz;iyil,
and liy:?.‘ |

In the range Oiyivz;, both 1l-y*4 and er—yZ are
greater than zero and (10) gives both a real, gcpl’ and
an imaginafy, bcpl’ (subscript p for plasma) contribution
to y., as given by (XII) and (XV), respectively, of Table I.

In the range {Z}jyil, v;;:;3= —jV;E:Z;, causing the
Hankel functions to become Modified Bessels, as above, and -
causing (10) to have both a real, gcpz' and an imaginary,

b or Part as given by (XIII) and (XVI), respectively, of

cp
Table I.

In the range l<y<=, «er~y2= -jfy?-¢, and /I:;? =
—j{;iti, causing similar changes of Hankels to Modified
Bessels and causing (10) to only have an imaginary part,
bcp3’ as given by (XVIII) of Table I.

Thus, for the plasma coating, the total external

admittance is

b )=g +j b (25)

Yo =ycp=gcp1+gcp2+3(bcpl+ cp2+bcP3 cp cp

O<e_<1
—r—-

as given in Table I.
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3. No Coating

For no coating (i.e., for a coating of er=l, free
space, and/or a coating of zero thickness, W=1l), the limi-

ting form of the above two cases give the result

Yo = ycv = gcv+j bcv (26)

er=l

and/or W=l
where the subscript v is for vacuum (free space) and where
goy and bgy are given by (XIX) and (XXI) of Table I. 1In
this limiting process use is made of the Wronskian relations,

Jm(X)Ym (X)-J, (X)Y¥y(X) = ;; (27)

and

L (X Ky (X)-In' (X)Kq(X) (28)

i
L Ly

The result (26) is identical with that obtained by
considering the no coating case initially [4] and, hence,
serves as a partial check on>a11 the admittance expressions

for the dielectric and plasma cases.
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III. AXIAL SURFACE WAVES_

The dielectric clad metallic cylinder can act as a
waveguide, since it can support surface modes travelling
along the axis of the cylinder (axial surface waves). The
cutoff conditions for these modes can be obtained by con-
sidering an‘infinite metal cylinder (with no slots) coated
with the given dielectric and insisting that the boundary
conditions be satisfied, i.e., treating the waveguide prob-
lem, as is done in Appendix I. However, not all of these
allowable modes are excited by a thin finite axial slot
cut in the metal cylinder. The modes excited by this slot
are determined by an examination of the integrand of the
external admittance expression (10); any singularities
which exist are due to axial surface waves.

Intuitively, one would anticipate that, since the
axial slot is assumed very thin and, hence, has no exciting
E, component, that modes having only axial electric or
predominantly axial electric fields, i.e., either TM or
hybrid EH modes, respectively, will not be excited. As
will be shown, this is precisely what is revealed by the
integrand singularities.

a. Cutoff Condition Equations

The essential quantity in (10) is np(y)/dm(y), since
no singularities can occur due to the other gquantities.
By factoring out the term (Hm')2 in both np(y) and dm(y),
as defined by (11) and (12), and realizing that singulari-

ties can only occur in the surface wave range of 1 < y ivE;?

22
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since the surface wave is a slow wave, causing the factors
Uns Vi Lp, and Ty to become =30, —jV&, -jLy, and -3Ty,
respectively, as defined in Table I, and causing'Hm/Hm' to
become -jK _(pb)/Ky'(pb), and \Il-—y2 = -jP/B,,, the ratio

np(y) /dm(y) becomes

| T T | P
npu(y) _ Pszzuz[;r pU ET~+uﬁ][pU ET +uV] (29}
p2B zuz[;r pU — +uV] pT = +ul
1ey< ey K K

-3 gt (e 1) T2 (KL
b ' v r K

h, 2 = =—,K 2
2 -G By (epm1) 2V L)

where the subscripts on the quantities U, K, etc., are
understood.

It is immediately noted that, if the denominator
of this guantity is equated to zero, this gives the trans-
cendental equation for the axial surface wave modes on an
unslotted dielectric coated metal cylinder, as derived
independently in Appendix I. However, what one must do
“here is equate (29) to » to obtain the axial surface wave
modes on the axially slotted dielectric coated metal cylin-
der. As we will see shortly, this will eliminate the TM

and EH modes. For example, for m=0, (29) reduces to
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| K
n,(y) - Epﬁo K—Q-o. +uV;| (30)
-~ dm(y) T2 4ul
o (70 (2

and examination of this quantity shows that the only way it
K

can equal » is for pT, -2 +uL, = 0, which is the TE,
]

mode equation (see Appendgx I). The equation for the TM,

Ko

mode, i.e., ‘er pﬁs ;—T +uVo = 0 has been eliminated, since
this term also occursoin the numerator. 'Physically, this
means that the TMy mode cannot be excited by a thin axial
slot (even though its'cuﬁoff frequency is zero, whereas
that of the TE, mode, as will be shown, is finite). This
is because there .is no exciting Ez component in the slot to
excite this mode. It will also be shown that the hybrid
modes having predominantly axial electric axial fields
cannot be excited, i.e., no EH modes will bé excited.

To prove this, consider first the case of finite
frequency (C>0), for which all the factors U, V, T, and L

are bounded, and examine (29) for the cutoff condition of

p=0. For this purpose, one notes that

Lim K, (pb)
0—__.————

p -+ = - (BB) + ap (31)
K,' (pb) m

where Ay, approaches zero faster than (pb)!. Then it follows

that (29) becomes
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Lim nm(y)

p+0 - (32)
C>0 dm(y)

p?By2u? [u¥] [u¥]- () *p " (e,-1) 272 [—P- Sn ]
p?8y?u? [u7) (ull - mh) *g % (¢ -1) 27 L[( 2(E%) 5 ]

but as p+0, h+8, and u+B, er-l/ hence

Lim ¥ (33)
p+0 dm(y)
c>0

2p 6 _1y2552_,.2¢4 6 _qy 2752, 2pm 6 _1y 2552
P*By (e,.-1) “Vi-p®B, " (e,-1) *V+ b Bv(erl)vam

29 6 2T Tep2p § _1y 25 T, 2pm 6 ~1V25 T
P28, (e.-1) *V T-p?B,° (e,~1) *V L+ _E— B,° (e,~1) %V LA

Vm'
. —p=0
|
p=0
ng, (y)
Examination of (33) reveals that the only way can
- dm(y)
become infinite for C>0, since Vm' is bounded, is to

have

‘ﬁmp_o=o=.:rm(cw (e,~1) Y ' (C {e,~1) =T ' (CVe ~1) Y (CW fe ~1) (34)
which is recognized from Appendix I as the cutoff condition
for the HE modes. The cutoff condition for the EH modes,

namely Gm =0, has, like that for the TM, mode, been
p=0
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suppressed because of the numerator.

Repeating the above procedure, but removing the re-
striction of bounded frequency, i.e., allowing the frequency
to approach zero (B,+0), and using the small argument approxi-
mations for U, V, T, and T, as given in Appendix II, and
simplifying (29) for the cutoff condition (p+0) gives

o) 8,2 (w—‘%"—f + WLy

= (35)

-1 _ 1
dm (y) m (W =T

which is seen to approach zero for all m>1 and W>1 and,

hence, cannot be «; therefore, there can be no hybrid modé

excited by the axial slot having a zero cutoff frequency.

It is noted in Appendix I that the first hybrid EH; mode

.on the unslotted coated cylinder root has a zero cutoff

frequency. This corresponds to the vanishing of dm(y) | =0,
p=0,C=0,m=1

but for the axial slotted cylinder, here again the numerator

term np(y) nullifies this mode, since it vanishes with B,

also, but at a faster rate; hence, this EH1 mode cannot

exist on the axial slotted cylinder.

From the above, it is concluded that only the TE, and

HE modes can exist on the subject antenna consisting of a

finite thin axial slot cut in the wall of a metal cylinder
concentrically coated with dielectric. To determine if
they actually do exist for a specified frequency and cylin-

der dielectric conditions, the cutoff conditions must be

evaluated.
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b. Cutoff Condition Computations

1. TE, Mode
The TE, mode transcendental equation was found
to be pT6Ko/KO' + uﬁo = 0, which can be written as
K, (pb) _ Tb (36)

(pb)K (pb)  (ub)L,

Inspection of the L.H.S. of (36) shows that, as cutoff
is approached (p+0), it becomes positively infinite. Inspec-
tion of the R.H.S. shows that it is bounded for BV=0 and,
hence, the cutoff frequency of the TE, modes are all finite.
Inspection of Tb/ub shows that it is bounded for all 8v>0;
it follows that the only way the R.H.S. can become infinite
is for the term fol to vanish. Thus, the cutoff condition

p=0
for the TE, modes is

LOP=O=O=J1(C Je=1) Y (CW (e ~1) =Jo (CW € ~1) ¥ (Cile,~1) . (37)
The first root of (37) will give the first TEp mode and
successive roots the successively higher TE, roots, each
with successively higher cutoff frequency. In this work,
no second subscript will be used, since only the first
roots are of interest.

The roots of (37) can be found graphically. Only the
first root will be found here. A plot (using tabulated
values of Bessel and Neumann functions [5] and a Friden

calculating machine) of fb for a fixed value of W and
. p:.-o
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with CW er—l as a variable was made and the value of C er—l

required for ﬂb' to vanish was determined graphically.
This was then rgggated for another value of W, etc. The
corresponding Cle,.-1 roots versus W are given in Table II
for 1§W52.4,‘and are plotted in Fig. 2. From this curve,
one can determine the cutoff thickness factor W for a spe-
cified frequency and dielectric constant factor C €,.~1.
Suppose, for example, that the operating conditions corres-
pond to C|e, -1=3; then from Fig. 2 it is seen that for any
thickness of dielectric corresponding to W<1.575, the TE,
mode cannot exist. Alternatively, for a specified W, the
éutoff frequency can be found. For example, if W=2.0, then
from Fig. 2, for any C €y~1 < 1.80, the TE, mode cannot
exist. Fig. 2 also shows a plot of cVE;:I = 1/2(W-1),
which is the cutoff equation for the first TE root on a
dielectric coated metal plane. This is seen as follows:
The TE, mode cutoff condition for a dielectric coated plane
is that the thickness of the dielectric slab (b-a), is a

quarter of a wavelength in the slab measured in the direc-

tion perpendicular to the surface and evaluated at cutoff
A
1

. v .
A - - b- = - hich be r d
v/Ver , i.e., (b-a) 2 JE;:E’ which can be rearrange

to read C er-l = 7/2(W-1). It is seen that, as C becomes
larger (larger cylinder radius for a given frequency), that
the cutoff curve for the cylinder begins to coincide with

that for the plane, as it should.



TABLE II

AXIAL SURFACE WAVE CUTOFF ROOTS FOR FIRST TE, MODE

Plane
] CW\e -1 Cle,-1 %é%
1.00 ® © ®
1.10 17.619 16.0172 | 15.7079
1.20 9.772 8.1433 7.8539
1.40 5.875 - 4,1964 3.9269
1.50 5.103 3.402 3.1415
1.60 | 4.592 2.870 2.6179
1.80 3.961 2.2005 1.9634
2.00 3.586 1.7930 1.5707
2.20 3.295 1.4977 1.3089
2.40 3.171 1.3212 1.1219

2. HE, Mode

Repeating the above graphical procedure as for m=0,
for m=1 to obtain the roots of fl _0=0 of (34), gives the
results of Table III for the firsg—hybrid HE, mode, as
also plotted in Fig. 2. It is noted that the cutoff con-
dition for this first hybrid HE, mode 1is slightly higher
than that for the first TE, mode. For successively larger
values of m, the corresponding curves have a higher C er-l‘
value for a given W and were not computed, since primary

interest in this work was to determine the cutoff condition

for the lowest order mode.
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FIG. 2 CUTOFF CONDITIONS FOR LOWEST ORDER TE, AND HE, AXIAL SURFACE WAVE
MODES ON DIELECTRIC COATED METAL CYLINDER EXCITED BY A THIN AXIAL SLOT
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TABLE IIX

AXIAL SURFACE WAVE CUTQFF ROOTS FOR

FIRST HE, HYBRID MODE

W ~ CWVE;:P c\e -1

1.00 ® ©

1.40 6.005 4.289 |
| 1.50 5.271 3.514 ;

1.60 4.792 2.995

1.80 4.226 2.348

2.00 3.916 1.958

2.20 | 3.736 1.698

2.40 3.622 1.509

J

c. Conclusions for Axial Surface Waves

From the universal curves of Fig. 2, it is seen that
if one chooses the operating frequency and cylinder-dielectric
parameters (i.e., C, €pr and W), such as to fall in the
shaded region, then no axial surface waves will exist on

the axial slotted-dielectric coated metal cylinder.
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Iv. AZIMUTHAL SURFACE WAVES

.The foregoing discussion has considered what types
of axial surface waves can exist and are excited on the
given structure. These axial surface waves propagate in
the axial (z) direction. -

The possibility of the structure supporting azimuthal
(circumferential) surface waves also exists. These waves
travel in the circumferential (¢) direction. In general,
this type of wave, either of TM or TE type, will have the

form e-(Yb)¢

f(p)g(z) where Yb need not be an integer, and
where y=a+jB is the complex propagation constant for the
azimuthal surface wave. For the case of no axial (z) varia-
tion, i.e., g(z) ‘a constant, the transcendental equations
governing the propagation factor y for both the TM and TE
waves has been obtained by Elliott [6], as reviewed by
Walter [7]. Examination of these equations reveals that the
lowest order TM azimuthal surface has a zero cutoff frequency,
whereas the lowest order TE azimuthal surface wave has a
cutoff frequency, chE' of approximately (Zi%%—§%$ approxi_
mation improving for increasing C) chEdz ———EE—— ; corres=—
ponding to a coating thickness, d, at cutoff of a quarter of
a wavelength in the radial direction.

For the axial slot antenna, examination of the field
structure discloses that a strong E¢ component across the
slot exists and this will excite the azimuthal TM surface

wave. This TM wave will then be the dominant and only azi~

muthal surface wave for a coating thickness, T, satisfying
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< V= .
? 4Ve -1

r
The above work [6,7] also shows that for large Bva, that

Y.1is almost purely imaginary and is given approximately by the
work of Baechle [7,8], but that the attenuation factor, «,
though small, is not zero and represents radiation (o only
vanishes for the limiting case of infinite cylinder radius,
i.e., the plane case). This radiation contributes to the
radiation field, which can be seen as follows.

In the axial slot antenna under consideration, one notes
from symmetry, that azimuthal surface waves in both the
forward-going and backward-going ¢ direction are excited in
equal strengths and carry power densities of, say, S¢+ and

S¢ , respectively, where

S+_So -2 (ab) ¢
6 ~ 2 °©
S
- o -(2ab) (27=¢)
= __ 38
Sy 5 (38)
8, = Slot power density coupled into azimuthal

surface wave.
Suppose one considers the total power conservation theorem,
which states that within a closed area energy cannot be
created or destroyed, and applies it to an arbitrary pie
slice extending from as<psp, and from ¢l§¢§¢2, where ¢2=
¢1+A¢, as shown in Fig. 3. Assuming no field variation in
the z direction (the allowance of variation in the z direction
will not change the conclusions and only unnecessarily compli-
cates the argument), then applicatibn of conservation principle

gives
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FIG. 3 POWER FLOW FOR AZIMUTHAL SURFACE WAVE
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P P

o o
+_g - - *s 7). do= 3
lj; (S¢l Sd)l Ydp ££ (S¢2 S¢2 Yy - dp Spolpomp (39)

where £ is an arbitrary length in the z direction, and Spo

is the radial power density at the radius po, i.e.,
AP¢ = AP (40)
where AP¢ is the l.h.s. of (39) and AP, is the r.h.s. of (39);

that is, the difference in azimuthal power flow in the given

sector appears as radial power flow, i.e., radiation.

+ - -
¢1=S¢1' S¢2=S¢2, i.e.,
AP¢=0, and hence, APr=0, i.e., no radiation would occur.

It is noted that if o=0, then S

Thus, the curved surface must have a>0 (as it does) for
radiation to occur due to the azimuthal surface wave.

As such, the effect of the azimuthal surface waves
‘which exist contribute directly to the radiation conductance
of the slot. ©No explicit pole contribution is made (as is
the case for the axial surface waves which only carry power
in the axial direction and do not radiate for the case of an
infinite cylinder) in the form of a surface wave conductance.
The conductance contributed by the azimuthal surface waves
only exists in the radiation conductance term, and is already
included in the conductance expression (equation (I) of Table
II) obtained previously; indeed, the existence of the azimu-
thal surface wave is manifested by the dependence in shape

of the radiation patterns on the coating parameters W and €pe
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V. NUMERICAL COMPUTATIONS OF EXTERNAL ADMITTANCE

a. No Coating

After determining the pertinent antenna parameters

(as discussed in Section VI), the computations of external
admittance for the no coating case were performed. In
particular, computations of 9oy and bcv’ as given by (XIX)
and (XXI) of Table I, for 1.40<C<1.60 in increments in C of
AC=0.01, and for %/a=2.388 (corresponding to 2=3.540 inches
and a=1.482 inches), with ¢,=0.1687 radians (corresponding
to w=0.250 inches and a=1.482 inches) were made. The
programming* for both g and b, are given in Appendix X.
The results (rounded off to four significant figures) are
tabulated in Table IV and plotted in Fig. 4., A partial
check was made on these computer results {(since these no
coating results will later be used as a check on the cases
for a coating by letting W=1.00) by manually computing both
doy and b, for C=1.50. These manual computations are
given in Appendix IV and agree within two significant
figures for'gcv and within one significant figure for
bcv’ as such,confidence in the computer results was estab-
lished, so that the coating cases could then be considered.

It is noted that the values of ggoy are not too much
different from a thin half wavelength slot on an infinite

ground plane (gcv = 0,388).

*All programming and associated analysis for this work
was done by Dr. V. Gylys of IITRI.
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TABLE IV

COMPUTED VALUES OF EXTERNAL ADMITTANCE - NO COATING

(2/a=2.388, $,=0.1687)

¢ 9ev bey

1.40 : 0.3511 0.3751
1.41 0.3562 0.3934
1.42 0.3613 0.4116
1.43 0.3664 0.4296
1.44 0.3716 0.4470
1.45 0.3768 0.4645
1.46 0.3820 0.4814
1.47 0.3873 0.4980
1.48 0.3926 0.5146
1.49  0.3980 0.5321
1.50 0.4034 0.5492
1.51 0.4088 0.5655
1.52 0.4142 0.5817
1.53 0.4200 0.5978
1.54 0.4252 0.6138
1.55 0.4307 0.6302
1.56 0.4363 0.6461
1.57 0.4418 0.6618
1.58 0.4474 0.6777
1.59 0.4531 0.6933
1.60 0.4587 | 0.7088
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b. Teflon Coating

The external conductance, g., for a Teflon coating
(e,=2.10), as given by (I) of Table I, was computed over
the same frequency range as for the no coating case
(1.40<C<1.60) for céating thicknesses corresponding to
W=1.00, 1.20 and 1.50, respectively. The case of W=1.00
serves as a check on the computer program, since it repre-
sents the no coating case and must give (as it did) the
same results as for g, of Fig. 4. The program for these
coating cases is given in Appendix XI. The results are
tabulated in Table V and are plotted in Fig. 5.

It is seen that the effect of the coating is to increase
the external conductance as the coating thickness is increased.
For infinite coating thickness, the expression for g reduces
to that given in Appendix V which has, as yet, not been
computed. For the sake of curiosity, the value of normalized

admittance JE; is also plotted in Fig. 5.

gcvl

c. Plasma Coating

The external conductance, g and susceptance,

cp’

b expressions for the case of a plasma coating having

cp’
0<e, <1, (corresponding to a plasma frequency to operating
frequency range of Oimp/wil, i.e., wimp for the idealized
plasma model of erp=l—wp2/w2) are given by (XI) and (XIV)
of Table I.

Only two limiting cases were considered thus far.
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TABLE V

COMPUTED VALUES OF g, EXTERNAL CONDUCTANCE-TEFLON COATING

(ey=2.10, 2/a=2.388, ¢,=0.1687)

C  W=1.00 W=1.20 W=1.50
1.40 0.3511 0.4476 0.7002
1.41 0.3562 0.4551 0.7146
1.42 0.3613 0.4627 0.7291
1.43 0.3664 0.4703 0.7438
1.44 0.3716 0.4780 0.7586
1.45 0.3768 0.4857 0.7736
1.46 0.3820 0.4935 0.7887
1.47 0.3873 0.5013 0.8040
1.48 0.3926 0.5093 0.8194
1.49 0.3980 0.5171 0.8349
1.50 0.4034 0.5252 0.8506
1.51 0.4088 0.5375 0.8664
1.52 0.4142 0.5414 0.8824
1.53 0.4197 0.5496 0.8985
1.54 0.4252 0.5578 0.9147
1.55 0.4307 0.5660 0.9311
1.56 0.4363 0.5746 0.9477
1.57 0.4418 0.5826 0.9638
1.58 0.4474 0.5910 0.9812
1.59 0.4531 0.5994 0.9982
1.60 0.4587 0.6079 1.0154
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(1) Case of Zero Thickness (W=1) and/or Zero
Plasma Frequency (wEéOL

For this case (W=1 and/or er=1) the expressions
(XI) and (XIV) of Table I reduce to (XIX) and (XXI) of Table

I as they should, since this represents the no coatin§ case.

(2) cCase of Infinite Thickness at Plasma Resonance
For the case of infinite thickness, it is seen
from Appendix V, that if w

=w, i.e., =0, then Iep wvanishes,

p €rp

i.e., from (6) of Appendix V.

Lin g_ =0 (41)
w-rw P

W-roo
although the susceptance does not vanish (b,;+0 and bczfconstant).
This is perhaps an anticipated result, since for infinite
thickness the external conductance should be directly pro-
portional to the characteristic admittance of the infinite
medium, WE;;/”V and, as such, should vanish with Erp'
Thus, at plasma resonance (m=mp), one can anticipate from
this result a reduction in external conductance which, for
the ideal case of no collisions and infinite thickness,
will vanish. It can also be expected that if the collisions
are finite, but small, and W is sufficiently large so that
the outgoing wave is sufficiently attenuated at the radius
p=b, then one can approximate this situation by the infinite

coating case, but replace €y with

P
m z/wz
€,...=1 - "P——""—‘r":i—(w 2/w?) (143 v/w) for v/w<<l, which for w=w
P 1-3 v/w P P
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- -
becomes V—jv/mp x'il_llfvv/wp; thus, one can anticipate
2

that for this case gcp will be proportional to‘Vv/wS, i.e.,

Lim Iy A V0 (42)
W w cp ~ d p

v/wg<<1
W sufficiently large
Actual computations should be done to ascertain this anti-
cipation, as well as to find the constant of proportionality.
As noted previously, [9], at plasma resonance the
equatorial plane radiation patterns approach a circle for
the limiting case of zero collisions. It appears, then,

that these two observations taken together, and/or separately,

may, perhaps, be useful in diagnosing the plasma layer.

VI. ANTENNA DESIGN AND CALIBRATION

a. Design Considerations

The parameters entering into the antenna design
are C, &, and w for the non-coated case and, additionally,
€y and W for the coated case.

The choice of C is, in part, dictated by the previous
observation [10] that too large a value of C (say, above 20)
causes too critical a dependence of the external admittance
on the coating parameters W and Eps since, in effect, one is
then considering the input admittance of a transmission line
which is many (C/2) wavelengths long, and a small change in
its propagation factor or characteristic impedance (realized

by a change in either ¢, or W) can result in a very large
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change in the input admittance. For this reason, the .lowest
value of C that can be physically realized is preferred.

The lowest value of C is limited by the fact that
a pure cosine field distribution must be produced along
the length of the slot, so that the theory above is valid,
and this means that the run of rectangular waveguide (of
inner cross-section £ by w) must be long enough so that
only the dominant TEy o mode remains after the excitation
point. This length can be nominally taken as at least 3/4
of a guide wavelength, or approximately a free space wave-
length; thus, 2ax),, i.e., C=w«l.5, is the minimum value
of C that should be used. A lower value will make the higher
order modes introduced at the excitation point too large
to be neglected.

The length of the slot, %, and the dielectric loading
of the wavequide, are to be such that for a specified C near
1.5 the first higher order (TE;g and TE3p) modes are suffi-
ciently attenuated at the slot location.

The width, é, of the slot must be made sufficiently
small so that the assumption of circumferential and rectan-~
gular electric field equality across the slot width is
valid.

All these factors are considered in detail in Appendix
VI, which also describes the means of exciting the TE;g
mode in the waveguide. The pertinent dimensions arrived

at in the design are (with a Teflon loaded waveguide)
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a = 1.482 inches
£ = 3.540 inches (43)
w = 0.250 inches

(The above value of outer cylinder radius, a, gives an
approximate operafing range of 1.40<C<1.60 over a frequency
range of 1.80<£<2.00 gc. It was specified that £=1.90 gc
(C=1.50) be the center frequency).

A sketch of the complete antenna waveguide feed
assembly is shown in Fig. 6 (with a detailed drawing given
in Figqg. VI—? of Appendix VI).

| The coating parameters e, and W were chosen such
that no axial surface waves could be excited. A Teflon
coating was chosen for ease of machining and because its
‘dielectric constant (epy=2.10) is representative of ablative
méterials. From Fig. 2, one then notes that for the opera-
ting frequency range of 1.40<C<1.60, giving a maximum
Clye,~1 ~ 1.68, that the choice of W must be chosen such
that W<2.05. Thus, for W<2.05 and C<1.60, no axial surface
waves can exist.

The choices of W=1.00 (no coating), 1.20 and 1.50
were then made since, it was believed, that these thickness
increments of AW=0.20, being about 20% of a quarter wave-
length, would be sufficient to reveal the dependence of
both admittance and pattern behavior versus coating thick-

ness for the condition of no axial surface waves.
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b. Relationship between Coaxial Line Admittance

and Waveguide Admittance

The coaxial feed-axial slot antenna can be charac-
terized by a black box, as shown in Fig. 7, since both the
input port (at its coaxial connector) and the output port
(the rectangular waveguide termination at the slot location)
carry only one propagating mode (the coaxial TEM mode and
the TE, g mode, respectively). The reflection coefficients
'y and Ty existing at the input and output ports are related
through the scattering matrix coefficients (S;3, S;» and

S;3) through the relation [11]

rl =5y + —— (44)

where
511’512’322 = Complex scattering matrix coefficients

of coax-waveguide networkb

r, = Complex reflection coefficient of TEM
mode as measured at input of coaxial
line.

P2 = Complex reflection coefficient of TE;,
mode as measured in waveguide at the

slot location.

Y1 = = Normalized admittance (relative to 50 ohm (45)

coaxial line) at input of coaxial 1line.
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= Normalized (relative to Y0 of (46)
l+P2

TE;p mode) input waveguide admittance.
Of course, Y, is the same as Yi,’ as given by (18) and the
relationship of Yin to the external normalized (with respect
to the admittance -of free space) admittance, y,, is given by
(22) . Thus, once Sy;, S;, and S,, are known, (44) can be
used to determine Fl from PZ, or vice versa.

¢c. Measurement of Scattering Matrix (Antenna Calibration)

To calibrate the antenna, the DesChamps method
[12,13,14] was used. 1In this method at a given frequency,
a moveable short circuit is placed at the I'; location and
the value of r} recorded. This is repeated for 8 successive
sixteenth wavelength displacements of the short circuit, and
then the values of Sll' Sqo and §,, are determined via
graphical constructions based on these measurements. The
details are given in Appendix VIII. This procedure must be
repeated at a sufficient number of frequencies in the fre-
guency range of interest such that a smooth curve for each
scattering matrix element is realized.

In the present application, an extension of the wave-
guide (but not filled with Teflon) was made in conjunction
with an adjustable short circuit piston. This was attached
to the slot-cylinder as shown in the photograph of Fig. 8,
which also shows the coaxial feed line attached to a G.R.
slotted line and associated conventioﬂal Klystron, frequency
meter, and VSWR meter gear. The measurement of admittance

in the slotted line was made in the conventional way
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(placing a short circuit on the slotted line, replacing it
with the antenna, and noting the shift in minimum points,
and reading the VSWR). However, since high VSWR's were to
be measured, it was found necessary to calibrate the crystal-
VSWR meter combination, since it departed from a square law
curve. This was done by terminating the slotted line with
a short circuit and recalling that the relative voltage
distribution must then follow the law cos(27X/Ay). A new
dial, based on this calibration was put on the VSWR meter
scale. The calibration was done at 1.90 gc, and was assumed
flat over the band of 1.80 to 2.00 gc, since the crystal
law is probably not that frequency sensitive.

Following the procedure given in Appendix VIII gave
the S11v S12 and S,, curves shown in Figs. 9, 10 and 11,
respectively. It is noted that these values of S;4, S12
and S,, are the same for both the non-coated and coated
cases, since they relate I'y (at the coaxial line input) to
Ty (at the waveguide-slot interface), i.e., the coating
does not enter into the equivalent network of Fig. 7.

VII. EXPERIMENTAL RESULTS AND COMPARISON WITH THEORY

a. Input Admittance

The normalized input admittance was measured in
the coaxial feed line referred to the plane of the input
coaxial connector for both the no coating and coating cases.
The measurement procedure was the standard one, as used to

determine the scattering matrix coefficients above.
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1. No Coating

The measured values of the normalized input
coaxial line admittance, yl, are shown as the dotted line
in Fig. 12, on a Smith Chart, across the entire band from
1.80 to 2.00 gc. The corresponding theoretical value of
this admittance was obtained from the computed values of
Iy and bCv of Table IV to give Yov and from (22) to compute
Yin=Yy- Then, from (46), F2 was computed from Yy and
finally using the measured values of Sy1v 812 and 522 of
Figs. 9, 10 and 11, (44)* and (45) were used to compute
the theoretical value of Yy These theoretical values are
shown in Fig. 12 as the solid line. From the Smith Chart,

the values of g; and b, are obtained and are plotted in

1
Figs. 13 and 14, respectively, for ease of comparison of
theory and experiment.

From Fig. 13, it is seen that the theoretical and
experimental values of conductance agree within 10% over
the entire band of 1.80 to 2.00 gc, i.e., over approximately
a 10% bandwidth, whereas Fig. 14 shows that the theoretical
and experimental values of susceptance agree within this
same percentage only over the narrower bandwidth of 1.945
to 1.980 gc, i.e., over apbroximately a 2% bandwidth. It
is suspected that the reason for this is that the scattering
matrix element S,, was more accurately measured in the

higher frequency range, since at the lower end of the band

it (especially its angle) did not vary too smoothly, as

*Calculations of T; using (44) were made using the program
described in Appendix XII.
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seen from Fig. 11. It is noted from Fig. 12 that, in going
through the frequency range of 1.80 to 2.00 gc, a large
loop around the origin of the Smith Chart is made by the

admittance.

2. Teflon Coatings

The above measurements were repeated for two
Teflon (€,=2.10) coatings of thickness 0.741" and 0.296",
corresponding to W=1.50 and W=1.20, respectively. The set-
up for all admittance measurements is shown in Fig. 15,
which shows the Teflon coating in place. The coatings were
machined to press fit on the metal cylinder, and were made
in three pieces for ease of application. It was observed
that no effect oh input admittance was found if one placed
metal foil or metal objects at the top or bottom ends of
the Teflon coating, indicating that no axial surface waves
were present, as should be, since, as was shown earlier,
for these to exist for a Teflon coating in the frequency
range of this antenna, one must have W>2.05.

The measured values of coaxial input admittance for
these coating cases are shown in Figs. 16a and 16b, where
it is seen, by comparison with Fig. 12, that the effect of
adding a coating is to smooth out the admittance variation
with frequency (for example, the loop traversed at roughly
the center frequency becomes smaller with increasing coating
thickness), as well as to improve the match over a wider
bandwidth. This is more clearly seen by the cartesian plots

of Figs. 17a and 17b for the conductance and susceptance,
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FIG. 15 PHOTOGRAPH OF COATED ANTENNA AND ADMITTANCE

MEASUREMENT SET UP
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Fe

respectively. These plots also show the no coating case
(W;l.OO) for ease of comparison.

It was not possible to compare theory with experi-
ment in the coaxial line, since both 9. and bc computed
values are required in going from y, to y; and only 9.
has, thus far, been computed. |

It is, of course, possible to go from Yy to y, and
compare y, measured with Yo theoretical; however, as shown
in Appendix IX, such a comparison can result in an ampli-
fication of the percent measurement error, and always
results in a larger absolute error in Yor because of the
large value of |P2|. This results in too much of a scat-
tering of the measured values of Yo about their theoretical
values. For this reason, it is concluded that only com-
parisons of Yy (theoretical and measured) are meaningful

for the subject antenna.

b. Eguatorial Plane Radiation Patterns

The equatorial plane (6=7m/2) radiation field
is given by (355) of Wait [1l] and will not be rewritten
here. It is known that the normalized equatorial plane
radiation pattern for a thin finite length axial slot is
the same as that for a thin infinite length axial slot.
Recently, Swift [15] has considered the infinite axial slot
antenna coated with an arbitrary non-homogeneous coating

which includes, as a special case, the homogeneous coating.
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Using his work, he has computed normalized power patterns,

Ea (O)

Ee(¢)

f=7/2

for the range of parameters in the range of C=x1l.50, er=2.10,
W=1.00 (no coating), 1.20 and 1.50. The patterns for a
given C were found to sharpen slightly with increasing
coating thickness, and all have a null ot approximately
¢=i130°, the severity of which increases with coating

. thickness. Representative computed patterns are shown

in Figs. 18a, b and c, for the cases of C=1.405, 1.500

and 1.635, respectively.

Measured patterns for the representative case of C=1.50
are shown in Figs. 19a and b for the no coating condition
(W=1,00) and for the coating condition of er=2.10 and W=1,20,
respectively. The agreement with theory is seen to be
excellent (within +0.10 db); the effect of the coating for
this case being to increase the back lobe by about 1.0 db,
and to increase the null at approximately 142° by slightly
more than 1.0 db.

This pattern agreement is typical of others taken and,
as such, these others will not be reported here., All pétterns

were taken at NASA, Langley Field, Hampton, Virginia.
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FIG. 18a. COMPUTED EQUATORIAL PLANE RADIATION PATTERNS, C=1.405
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FIG. I8c COMPUTED EQUATORIAL PLANE RADIATION PATTERNS, C=1.635
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VI1I. APPLICATION TO PLASMA DIAGNOSTICS

The basic idea for the pursuit of this work is to
use the calibrated antenna as a diagnostic tool by measu-
ring, essentially, the dielectric constant of the material
coating thé antenna. = Thus, the antenna is to be used as
a dielectrometer. In reentry plasma work, the dielectric
coating ié the plasma layer. For a homogeneous coating,
using the theory and scattering matrix measurement scheme
described above, one can prepare theoretical curves of
both 94 and/or bl (normalized values of coaxial line input
conductance and susceptance, respectively) as a function
of frequency with W and €, as parameters, as suggested
in Fig. 20 for gq- Here, for a specified known coating
thickness (i.e., a known value of W, say W=1,20) theoreti-
cal curves of g, versus frequency for a given set of
values of €, are prepared as in Fig. 20a. The increments
taken in e, must be sufficiently small, so that one can
then prepare a smooth curve of €, versus g, for a given
frequency (say £=1.90 gc), as suggested in Fig. 20b.

Thus, at a given frequency from a measured value of gl,
one can determine €pe This should be repeated for several
frequencies to insure uniqueness. Thus, the axial slot-
cylinder antenna can be used as a diagnostic tool. A pho-
tograph of the subject antenna shown in a carrying case
with its associated calibrating moveable short circuit and

Teflon rings is shown in Fig. 21.
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FIG. 20 SUGGESTED CURVES FOR DIELECTROMETER USE
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FIG. 21 - PHOTO OF DIAGNOSTIC AXIAL SLOT-
CYLINDER ANTENNA AND CARRYING CASE



Of course, more realistic models of the plasma sheath
should be used, but these, too, can, in principle, be diag-
nosed as above, since once the antenna is calibrated (i.e.,
the relation between Y1 and y, is known) one can use the work
of Swift to obtain y, for a variety of non-homogeneous
plasma distributions typifying reentry plasmas to obtain
the corresponding value of Y1~

However, the basic first step in this work is to
ascertain that the antenna is, indeed, properly calibrated.
This could be done by preparing curves like that of Fig. 20
for, say a Teflon coating range of dielectric material, to
see if the measurements would give €y=2.10. Secondly, the
next step would be to measure a homogeneous laboratory
plasma sheath.

IX. CONCLUSIONS AND RECOMMENDATIONS

From the preceeding, the following conclusions and
recommendations are made:

(1) The input admittance of a thin axial slot cylinder
antenna, as measured in the coaxial line feeding the wave-
guide whose end forms this slot, can be predicted using the
thebry outlined in conjunction with the measured scattering
matrix elements of the coaxial-slot network.

In particular, for any given frequency, the normalized

input admittance in the coaxial line, Y1, can be predicted

using (44) with (45) and the measured values of S )

117 ~12
and 822, along with the theoretical value of F2, as obtained

from (46) using (22) to obtain Yin in terms of the normalized
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external admittance, y., as given by Table I.

(2) Theoretical and measured values of this y; input
admittance for the case of no coating agreed within 10 per-
cent in conductance over approximately a 10 percent bandwidth
(1.80 to 2.00 gc) and within 10 percent in susceptance over
approximatel§ a 2 percent bandwidth (1.945 to 1.980 gc),
as shown in Figs. 12, 13 and 14,

(3) Measured values of this input admittance with a
Teflon coating show that the frequency sensitivity of this
admittance decreases with increasing coating thickness, as
seen from Figs. 16 and 17, This suggests that perhaps such
a coating be used between the cylinder and a plasma layer
to be diagnosed to control the frequency dependence of the
admittance.

(4) Due to the nature of the network (811 S12 and
822) and the high value of reflection in the waveguide
(|T5]=1) it is not meaningful to compare theoretical and
measured values of admittance in the waveguide, since the
errors are too large (as discussed in Appendix IX). It is,
therefore, recommended that only measurements in the coaxial
feed line (i.e., of yl) be used to compare with theory.

This observation is, in part, due to the desire to make

the cylinder electrically small (C#~1.5). If & larger cylinder
(say, C=6) can be used, this problem could be overlooked,
since then measurements of admittance could be made directly

in the waveguide. However, as the cylinder becomes larger

(C increasing), the previously noted problem, [10],
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of extreme critical dependence of external admittance on
the coating parameters exists.

(5) Computations of the normalized external conduc-
tance of the axial slot, g, with a Teflon (er=2.10),coating
indicate that it increases with coating thickness in the
manner shown by Fig. 5.

(6) Since only/computations of external conductance
were made for the Teflon coating case, a comparison with
theory could not be made, due to conclusion (4) above, and
since a knowledge of external susceptance is also required

to determine the coaxial line input admittance.

(7) Equatorial plane radiation patterns were measured
and computed for both the non-coated and Teflon coated

cases, and are in excellent agreement (Figs. 18 and 19).

(8) From the established ability to predict the
antenna input admittance, suggestions for application to
plasma diagnostics using the antenna as a dielectrometer
are made in Section V~c and Section VIII. This could be
supplemented by radiation pattern diagnostics.

(9) It is emphasized that the critical factor relating
theoretical to measured values of coaxial line input admit-
tance is the ability to measure the scattering matrix
élements sll' 512 and S92 accurately throughout the frequency
range of interest. A smooth curve for these elements as a
function of frequency should be obtained (see Figs. 9, 10

and 11) .
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(10) Throughout this work, the coating conditions
were selected so that no axial surface waves could be ex-
cited. It is shown that no TM, or EH modes can be excited
on a dieleqtric coated metal cylinder by a thin axial slot,
and that the dominant axial surface wave mode for such a
slotted cylinder is the TE, mode. The cutoff condition
for this mode is given in Fig. 2.

If this mode or higher axial surface wave modes are
excited, their contribution to the external conductance
appears as a singularity contribution (since they only
carry power down the axis of the cylinder), as can be
evaluated by the method discussed in Appendix III.

(11) Azimuthal surface waves can and do exist on the
axial slotted dielectric coated cylinder. The dominant
azimuthal surface wave is a TMy wave having a zero cutoff
frequency, or, i.e., which for a finite frequency can exist
even for an arbitrarily small coating thickness. However,
the contribution these azimuthal surface waves make to the
external conductance is automatically included in the inte-
gration, i.e., they do not appear as singularities, since
the power associated with them ultimately appears as radiation.

(12) It is suggested that perhaps axial surface wave
launching conditions also be examined és to suitability for

plasma diagnostics and/or related antenna applications.
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APPENDIX I

THE DIELECTRIC COATED METAL CYLINDER

SURFACE WAVEGUIDE

Consider a metal cylinder (with no slots) concentri-

cally coated with a homogeneous dielectric material of

relative dielectric constant e,, as depicted in Fig. 1

of the text.

From Maxwell's equations, it follows that the perti-

nent field components which can exist are of the form

(Region 1 a<p<b)

(a) Hzl
(b) Ez1

(c) E¢1

(d) Hy,y

and Region 2,

(a) HzZ
(b) EzZ

(c) E¢2

(d) H¢2

= Ay (I, (up) ¥y ' (ua) = J,. ' (ua)¥,(up)]

= Cyuldp(ue) ¥y (ua) - Jp(ua)Y (ue)]

(1)
= %; {jwuvuAm[Jm'(up)Ym'(ua)—Jm'(ua)Ym'(up)]
- %E Cm[Jm(up)Ym(ua)—Jm(ua)Ym(up)]}
=- 2 {‘;‘—*l A [ (40) ¥y (ua) =Jyy " (ua) ¥ (u0) ]
+jwe e u Cp [Jp' (up) ¥y (ua)-Jp (ua)Y ' (up)]
b<p<®
Ky (pP)
Ky, (pb)
- a7, Xulpe)
Lo e o Kaee) ) (2)
= - =< juuph Ay ————— + — CpV ———
P K, (pb) P K (pb)
_ Ky(pp) _ Kp'(pp)
= l? mh - - waVpCme-———————}
p* |° Ky (Pb) K, (pb)
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'wt_. --
where the factor eJ e the meé is understood, and

u? = szer-hz, u=+BVVer—h2/Bv2, (3)

* = n?-g,?%, p=+Jh2-ev2, By < h < By\E. (4)

p=
Ln = 9, (ub) Y ' (ua) -3y ' (ua)Y, (ub) (5)
Vi = I, (va) ¥, (ub) -3y, (ub) ¥, (ua) (6)

and where A, and C, are arbitrary non-zero source constants,

and prime denotes differentiation with respect to the entire
dKp, (X)

ax x=pb.
The above equations describe the axial and tangential

argument, e.g., K, '(pb) =

fields of a particular (mth mode) surface wave propagating

down the z axis with a phase velocity, v, = 2, which falls
h

P
in the range of = < Vo <c, i.e., is a slow wave. At

€

cutoff (p=0) the pﬁase velocity becomes equal to c. The
relationship which exists between the wave numbers p, h,
and u is obtained by insisting that the circumferential

boundary conditions at p=b be satisfied, i.e.,

(@) Eyy = By

at p=b (7

(b)  Hyy = Hy,

since the other two tangential boundary conditions
(Ezl=EzZ and Hz1=H22 at p=b) are already satisfied by (1)
and (2).

Using the two equations of (7) to eliminate A and

Cn gives the transcendental equation
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0 = pzuZszlerpﬁh EE— + uv ] [pTy 55 + uL] (8)

Kml Kml
- @hy?g ve 1) T (B
b v ‘°r m K"

as the equation relating p, u and h, which is seen to be
equal to dj(y) of the text. It is this equation which
must be satisfied to have fields of the form (1) and (2).

Cutoff Conditions

At cutoff (p=0) the factor h-+g,, and u+6v sr—l, and

(pb)
pin P2 pBy Am (9)
p+0 Km'(pb) m .

where Ap goes to zero faster than (pb)!. Substitution of

this relation into (8) and taking the limit gives the identity
0=0, which is true (since at cutoff the transcendental
equation must be satisfied), but is not helpful for the
general case of m>l. However, for the case of m=0, one
obtains:

Case of m=0

I1f one considers first the special case of m=0, the
second term of (8) drops out, and (8) can then be satisfied

by either, or both, of the following equations:

K, (pb) e,.0

1 = & o_ (TM, modes) (10)
(pb) K (pb) (ub)V
Kq (pb) T

1 = o (TE, modes) (11)

“(pb)Ky(pb)  (ub)L
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which are recognized [16] as the transcendental equations
for the relatively well-known TM, (Hz=0, m=0) and TEo
(E,=0, m=0) axial surface wave modes, respectively. It is
noted that, since each individually satisfy (8), that these
modes can exist independently, i.e., alone, or together,
which is not the case for m#0, where both E, and H, must,
in general, be finite and (8) for m#0 must be satisfied.

Cutoff Conditions for the m=0 Modes

By letting p=0 in (10) and (11), one can obtain the
cutoff conditions for the TM, and TE, modes, respectively.
(Only the first (lowest order) mode for a given m wili be
found here and, hence, no second subscript after the first
subscript will be used.)

First TM, Mode Cutoff Condition

For p=0, the L.H.S. of (10) becomes positively infi-
nite; inspection of the R.H.S. of (10) shows that (using
small argument approximations, for the Bessel and Neumann

functions, as given in Appendix II),

€xUo Er

lim — = (12)

cle -1 » 0 (ub)V, 1" (CW) % (e -1)log W

which also approaches positive infinity; hence, the first
root of (10) occurs for C=0, €,=1, or W=1l. That is, the

cutoff condition for the dominant TMg mode is zero cutoff
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frequency for a specified W and €,; zero thickness (W=1)

for a specified frequency and €., Or a dielectric constant
of &=1 for a specified frequency and coating thickness.

This is the well known result for this Goubau line mode [16].

Cutoff Conditions for the First TEo Mode

If p=0, the L.H.S. of (11) becomes positively infinite;

inspection of the R.H.S. of (11) shows that

1, (13)
2

lim e —_— = .1 (1 -
2 W

cwder-l + 0 (ub)Lg o

Hence, it is bounded for all W and thus the TE, mode does
not have a zero cutoff frequency. Inspection of To/ub shows
that it is bounded for finite C er-l and, hence, the only
way the R.H.S. of (1l1l) can become infinite is for the ib
term to vanish at p=0, i.e., the cutoff condition for the
TE, modes are

To | ™00 (W ier=1) Yo" (C fep-1) “Io" (€ Yer~DYo(ew D) (14)

The_first root of (14) has been found in the text, and is

plotted in Fig. 2 of the text.
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Cutoff Condition for Hybrid Modes

For m>1 the modes that can exist are hybrid modes;
i.e., both E; and Hz will be finite and dependent on one
another. This dependence comes about becuase for m>1, Cm

and Ay are related by (via (1d) and (2d) with (6b))

A (B Ty wny (ep-1)

Cn - (15)
jpu [perﬁmi-uvm —KE—]
Kin
and, hence, if An is finite, Cn» too, will, in general, be
finite. Thus, from (1) and (2), both H, and E, will be
finite. (It is noted that if m=0, Cp and A, are not depen-
dent; allowing m=0 in (15) would give C,=0 for A, #0 only if
the denominator were finite,lbut the denominator must vanish,
since the term pe, U +u¥ ;2— = 0 is the TM, mode equation.
Thus, both A, and C, can beofinite and are independent for
m=0.)
As mentioned earlier, the substitution of p=0 into
the transcendental equation (8) for m>1l leads to the identity
of 0=0. To obtain the cutoff roots for the hybrid modes is,
apparently, somewhat more involved. Recently, Savard [17]

has obtained the cutoff equations as (using the notation of

this report)

EH v | =0
(16)
HE L, I =0
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and additionally, has shown that the first hybrid EHy mode,

like the TMo’ has, for a given €r and W a cutoff frequency
of zero, or a coating thickness of zero (W=1l) for a given
C and €., or an g,=1 for a given C and W (i.e., C er—1=0
and/or a W=l).

His method will not be given here, but an appeal to
physical intuition will be given to support his results,
as follows:

EH Mode Cutoff Condition

It is known that for TM (and similarly for the TM
portion of a hybrid mode) modes the surface impedance looking
down into the dielectric surface must be inductive, and at
cutoff (p=0) it vanishes. This impedance for an EH mode is
E,1/H l . This can vanish only if E | vanishes, since

¢1 z1
p=Db p=b
p=0 p=0
H¢l is always bounded. From either (1lb) or (2b), since

Cnh#0, it then follows that the hybrid EH mode cutoff condi-

' tion must be:

Vhplo=0=Jm(CVer-l)Ym(CW er-l)-Jm(CWVEr—l)Ym(CVer—l). (17)

HE Mode Cutoff

In a similar way, at cutoff the surface impedance
presented by the surface to the TE component of a hybrid HE
mode must be an infinite capacitive reactance, i.e.,

H
z;-p=b

p=0

= =je (18)
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Since E¢1 must be bounded, it follows that Hzl must vanish;
from (la) or (2a) one then obtains, since Am#o, the hybrid

EH mode cutoff condition as
Eﬁ I éQ=Jm(CWV€r~1)Ym'(C er-l)—Jm'(CVer-l)Ym(CWVer-l), (19)
p=0 i .

which agree with Savard [17].
The cutoff conditions for the EH modes (i.e., (17))
were not found in this report, since, like the TM modes,

these modes cannot be excited, despite their cutoff frequency,

by a thin axial slot, as shown in the text.

It is interésting to note that Savard correctly
points out that numerical errors were made by Hersch [18]
in obtaining the cutoff conditions for the hybrid surface

wave modes, and the statement made in Barlow and Brown

[19] concerning his work is also incorrect. The correct

conditions are as given above.
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APPENDIX II

SMALL ARGUMENT APPROXIMATIONS FOR

BESSEL-NEUMANN TYPE FUNCTIONS

Using the small argument approximations [20] for the

Bessel and Neumann functions of (for m > 1)

1l m
J (X) & —=— X
n 2!
1 m-1
J "(X) X ———— X
m 2™ (m-1) !
2M(m-1)! X °
Ym(x) ~ -
b
My x~ +L)
Yo' (X) =

2
T X 1- 2z
4
-X
J_'"(X) x—
° 2
2

Y (x) = 2
X
cause the Vﬁ, Uy, Ty, and L, functions to become

for CVer-l + 0 and p=0 for m=0:
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and for m > 1l

3 BC.‘I a<|

t
. |

2
T log W
——2
nCWVer-l
-Lw-d
1r W
2
nC er-l
LW - L
mm ¢ Wm)
1 1 n-1
( + W )
icfe -1 Wil
m -1 1l
W - =)
nc2(e ~1) W
1w+l
e ~1

88

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)



APPENDIX IIIX

CONTRIBUTION TO CONDUCTANCE DUE TO AXIAL SURFACE WAVES

Equation (10) of the text gives the total external
condqctance, as seen at the cylinder-slot interface, as
an integration over real normalized mode space, y, from
Oﬁyfe. The possibility exists that a singularity (or sin-
gularities) exist in this région of integration. In
particular, in the region liyivg;, corresponding to axially
slow waves, singularities may exist; if they do, they
correspond to axial surface waves of discrete mode numbers,
u, h, in the dielectric and p, h, in the air region, res-
pectively, where the first wave number is that in the
radial direction and the second that in the axial direction,
with Bvihisévz;. Whether or not such a wave can exist has
been found in the text by determining the singularity points,
i.e., the cutoff conditions. Even though the coating-fre-
quéncy conditions in this work were chosen such as to
operate below cutoff of the dominant TE, mode of the axially
slotted dielectric coated cylinder so that no surface waves
were excited, this appendix will outline a method to obtain
the surface wave conductance contribution to the total
conductance of a surface wave, if excited, for future use.

Consider the case where a single (say, for the dominant
TE, mode, i.e., m=0 - first root) singularity, yo. exists,
somewhere between 15y05¢E;, as shown in Fig. III-1. 1In this

event, the path of integration can be indented in the form
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of a small circle of radius § about y, (on the negative
imaginary side so as to preserve the bounded outgoing wave
criteria) then (10) of the text can be written (symbolically)

as

© 1

2 Yo~ 0 bt
yc=f=Limf+I + J‘+ \9 (1)

o 8+0} o 1 yo+6

where the last integration is that over the semi-circle

about y,. Now, if the integrand of (10) of the text

(call it fo(y), has a simple pole at Yor i.e., is of the

form
Ro(Yo)

foly) = —— + ¢(y) (2)

(y-yo)

where Ry(yg) is the residue at y,, and ¢(y) is analytic

and bounded in the neighborhood of y,; then, since on the

semi-circle y=y°+GeJ¢, o<¢<m, so that

ﬂ
N . T . .
Lim = Lim foly)jée™ "d¢ = jRym (3)
§-0 §+0 o :
Thus, (1) becomes
Yo = J. + JR W (4)

o

But, for a simple pole, the residue Ry is given by [21]
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numerator of f,(y)
R = ' (5)
© derivative of denominator of fo(y) with respect to y
Y=Yo

Here, fo(y) is given by (10) of the text with m=0; hence,

jz(Bvl) C COS (E_-Y)[PUQ ......__+uv ][y -(B_T) ] fT'

Ry= -
a [pr, % v,
dy K,' Y=Yo
Thus, from (4),
(-]
Yo = 9 + [ (7)
C SWO (e

where g is the contribution to y, due to the residue at

SWO
Yo (we note this contribution is purely real) given by

c.2
27 Er'Yoz{;°sz[§(;)Y€I}

9swo ~ ) (8)

% n? :

3 2 2

C (;) [yo - _..._...__-]
2 2

where -

(2)
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Equation (8) is ready to be.computed once y, is found.

It is noted that a plot of do(y) versus y in the range
1<y< €, could be used to determine y, and would look some-
thing like Fig. III-2. If drawin sufficiently accurate,
the term d4,°'(yy) could be obtained difectly from the plot.

Thus, Jswo - Can be fbund.‘ If more than one axial sur-
face wave can exist (as can be determined from the cutoff
conditions given in the text), then the above procedure
would have to be repeated for each such wave (assuming each
pole wave a simple pole).

As noted earlier, throughout this work the coating
conditions and frequency were chosen such that no axial
surface waves could exist, i.e., here no y, exists and,

therefore, here
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do (Y) I
e L (w-o KolcwNEr-i) 2
I €r-1 m (w w ) K, (cw\ler_|) ¥ mwe

FIG. -2 ROUGH PLOT OF dg(y)
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APPENDIX IV

MANUAL COMPUTATION OF EXTERNAL

ADMITTANCE - NO COATING

The external admittance, denoted by You? is given by

Yoy = Jev * 3 bey (1)
where g, the external conductance, and bu.y, the external
susceptance, are given by (XIX) and (XXI) of Table I of
the text, respectively.

To serve as a check on the computer results, the case
for C=1.50 was manually computed* using Tables [5,22].

The resulting manually computed integrals of equations
(XX), (XXII) and (XXIII) of Table I, i.e., the integrands
of 1

and I are plotted in Figs. IV-1, IV-3 and IV-5,

mg’ Iin 2m

respectively. The integrations (i.e., the computation of

the area under a given value of m curve) of I Iy @nd Iyn

mg’
were performed using these plots with a planometer and are
tabulated in Table IV-1 and plotted in Figs. IV-2, IV-4, IV-6,
respectively. It is noted from either the plots or Table

Iv-1l, that the convergence of the conductance integral-
summation is much faster than that for the susceptance integral-
summation; the conductance computatipn required only four

terms in the sum (m=0,1,2,3), whereas the susceptance com-

putations required 36 terms (although 36 were actually

*In this computation, the values of Bessel functions
required were obtained using a computer, and the re-
ferences sited were used to check these values.
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TABLE IV~1

CALCULATED VALUES OF

Ing: Iy, AND IZE INTEGRANDS

anl a (I, -1

n o a,/ ‘1"5om) +Ing (f:‘:gg;’ In Iom Tim~Tom (i‘: i:) 2L
0 0.5 2.305 1.i52 -0.303 +0.3258 0.6288 ~0.3144

1 0.9888 2.342 2.316 -0.271 ~0.566 0.2950 +0.2917

2 0.9901 1,039 1.029 =-0.220 ;0.934 0.7640 0.7564

3 0.9786 0.059 0.058 ~0.184 -0.616 0.432 0.4227

4 0.9627 ~0,153 -0.409 0.256 0.2464

5 0.9172 -0,133 -0.3195 0.1865 0.1711

6 0.9174 ~0,.116 ~0.262 0.146 0.1339

7 0.8887 -0.102 =0.2215 0.1195 0.1062

8 0.8571 ~0.092 -0.1945 0.1025 0.0875

9 0.8219 -0.087 ~0.1711 0.0841 0.06912
10 0.7840 =0.089 -0.1565 0.0675 0.05292
11 0.74394 -0.073 -0.1371 0.0641 0.04768
12 0,.7019 ~0.0685 -0.1273 0.0588 0.04127
13 0.6581 -0.065 -0.1203 0.0553 0.03639
14 0.61332 =0.060 -0,1101 0.0501 0.03073
15 0.5679 -0.056 ~0.1023 0.0463 0.02629
16 0.5224 ~-0.053 -0.0956 0.0426 0.02225
17 0.4471 ~-0.050 -0.0900 0.0400 ' 0.01788
18 0.4324 «0.048 -0.0832 0.0352 0.01522
19 0.3887 «0.046 ~-0,0803 0.0343 0.01333
20 0.3464 ~0.0432 -«0.0750 0:0318 0.01105
21 0.3058 -0.041 ~-0.072 0.0310 0.009479
22 0.2672 -0.0383 =0.06%92 0.0309 0.008256
23 0.2309 -0.037 =-0.065 0.028 0.006465
24 0.1970 -0.035 -0,063 0.028 0.005516
25 0.1657 -0.034 -0.060 0.026 0.004308
26 0.1371 =-0.032 -0,059 0.027 0.003701
27. 0.1114 ~-0.031 -0.0506 0.0196 0.002183
28 0.0885 -0.029 «0.0504 0.0214 0.00189
29 0.0685 -0,028 =-0.0502 0.0222 0.00152
3o 0.0513 -0,027 =0,0500 0.0230 0.00118
3l 0.0369 =0.0255 -0.049 0.0235 0.000867
32 0.0251 -0.024 -0.048 0.024 0.000602
33 0.0196 =-0.0215 =-0.047 0.025% 0,0004998
34 0.0040 ;0-02 -0,0465 0.0265 0.000106
35 0.0012 -0.01% +«0.046 0.027 0.0000324
SUM 4.5555 +2.652
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computed, as indicated in Table IV-1l, not all the plots are
shown, for clarity, since, as seen from Table IV-1l, all the
terms beyond 24 only change b, by approximately 2 parts in
265) for three significant figure accuracy in each.

The summing of all terms to give 9ev and bcv then give

(also indicated in Table IV-1l)

8

= e (4.555)=(0.0882) (4.555) = 0.4017 (1)
Jov nc* (&) 2
Cc=1.50 a
(four terms)
4 .
bcv = Y L2 (2.652)=(0.21869) (2.652) = 0.5799 (2)
mC* (-)
C=1.50 a
(36 terms)

These manually computed results agree reasonably well
with the machine computed results of gcv = 0.4034 and b, _
0.5492 (C=1.50), and hence serve as a partial check on the

latter's computer programming.
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APPENDIX V

EXTERNAL ADMITTANCE FOR CASE OF

INFINITE COATING THICKNESS

Considering the case of an infinite coating thickness
causes the problem to become one of a single region. For
the same assumed slot distribution of (3) and (4) of the
text, one obtains, directly, (5) and instead of (6), the
result

u E
H = $

Z jeuy Hyp(?) ' (up)

(1)

where
Bv\’er-—y2 er>y2
: 2 2 (2)
u = =3B (Y -eyp €,<Y

Use of (1) above and (5) of the text then causes (9a) of

the text to become, realizing that for y2>er,

m+l
Ho (2 (ua) = 2 57k (cfy?-e)) (3)
' 2 m+l
i e = 3 25" g (cfyPeep) (4)
Yo = gotibg (5)
We= o
€y real
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where

°© o®iymeo (1+8™ 9
a o
with 8
€
3o cosz(—zi y) dy
I 2
9 .",2 2 2
° [?2- 1 H' (C\e p-v?)
(By2)?
be = bgy + b,
- -4 om
bey = Ilm

with
B L
Ve ep~y? [3T'+Y¥'Jcos? (- y) dy
2

I1m = S' "
2
(By2)?

with the arguments of J, J', ¥ and Y' being Cder-yz, and

2

' (C\e~v?)

4 W
2 , m=0 (1+5™
o

2m
cr (&
a

B. %
SFO 4y2-5r cosz(—g— y)Km(CVyz-er)dY

2 2
[yz__ w ] 1 (C yz,-e )
",6—,“ (sz) 2 Km r

with

2m
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(6)

(7)

(8)

(9)



As a partial check, it is noted that for no coating,(i.e.,
free space er=l), that (5) through (9) give the results of

(XIX) and (XXI) of Table I of the text, as should be.
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APPENDIX VI

DETAILS OF ANTENNA DESIGN

(a) Determination of Slot Length and Dielectric Loading

For design purposes, two parameters C and k are defined

as,
2na '
c = 5 (1)
Av
2a
k = T~ (2)
g
where C = Electrical circumference of cylinder in
free space wavelengths.
a = Outer radius of the cylinder.
Av = Free space wavelength at operating
frequency.
Ag = Waveguide wavelength, given by
A
v
A = (3)
g AL 2
v
U€r~(x—)
c
with e, = Dielectric constant of the material

filling waveguide.

Ag = 2% = Cutoff wavelength of the dominant
TE1,0 mode.
2 = Internal width of waveguide = slot length.

Then, from (1) and (2) it follows that

C = ___EE;_~_ (4)
2
v
e_=(=—)
r )\c
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For the purpose of operation of this antenna, the first

higher mode (TE ) above the principal TE; o mode should be
14

2,0
sufficiently attenuated at the slot location. This requires

that the dielectric constant, Epr

be such that this mode

(and hence all other higher modes) be below cutoff.

The phase constant, Bl’ of the dominant TElo-mode may
be expressed in terms of Av and lc as,
A 2 '
v
Bl = Béver - (T;) (5)

For TE; , mode to propagate down the guide, it is required
4

that
A, 2
er—(—!) >0
2%
i.e.,
A, 2
1 v
g > = (— (6)
r 4 9,)

whereas for TE, | not to propagate down the guide, it is
r
required that
A 2

- () <o

€
r 2

i.e.,
A 2
v
€, < (-R"'-') ’ (7)

Therefore, the restriction of €p is

A2 A2
(Y <e < (D
4 3 L
or,
A, 2 .
e_ < (_Z) < 4 ¢ * (8)
r . r
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Fig. VI-1 shows the relation (8) of the allowable ¢

size of the squared slot length normalized with respect to

free space wavelength, (z/xv)z.

The parameters & and e, are determined by insisting

that the TE, 3 mode be attenuated by at least 20 db over the
7 .

guide length from the excitation point (probe location) to

the slot, which is taken as (3/4) (2a). The attenuation, A,

of the TE, o mode at (3/4) (2a) is
r

(3/4) (2a)a

A= 20 log10 e db
where
Av 2
a = Bv (T;) -€. nepers/meter
i.e.,
Av 2
A, = 30¢C (Z—) -€, (logloe) db
A
Setting A = 20 db and solving (11) for (-Y)
L
Ao, 2 2.35644
(=) =g, + ——
2 c?
From (4)
A
1 2 2
e, = = (=) " 4+ (ko
4 3 c
From (12) and (13)
2
e = Q:78548 (43 (KT,
c? c

As discussed in the text, a value of C = 1.5 is desirable,

hence (12) and (14) give,
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A

v. 2

(—0) = e, + 1.04731 (15)

2

e, = 5.84272 k? + 0.3491 (16)

respectively.
lv 2 23(2/Av)
The parameters {(—) and €, (as well as /a = ————)
’ 2 C

are plotted in Fig. VI~2 as a function of 2a/Ag. These plots
give the values of the parameters for C = 1.5 and 20 db
attenuation of the TE2’0 mode over the guide length 2a(3/4).

From these curves, one can determine k for a specified
value of Epr and from this k, determine %/a. 1In this antenna,
it is desirable to use Teflbn filler, since this material has
very low loss and also eventually the cylinder will be coated
with this material and the use of the same material for the
filler may result in superior matching properties.

Hence, from Fig. VI-2, one obtains‘for Teflon* (er =

2,028 at the frequency of £=1,902 MHz, corresponding to C = 1.5

for 2a = 2.964 in.),
€y = 2.028
k = 0.536
L/a = 2.388

For 2a = 2.964",
L = 3.54"

Having determined the parameters £ and ér at the center

design frequency corresponding to C = 1,50, it remains to

*The dielectric constant of the Teflon material used in the
waveguide was measured over the frequency range of interest,
as discussed in Appendix VII.
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determine the change in higher order mode attenuation over
the specified operating bandwidth (about +10%).
Using (9) and (10), the attenuation A3 for TE3 o mode
14

is given as

(logloe) db. (17)

A, 2
Ay = 30c) 9/4 (5 - e

The attenuations A, and A3 for er=2.028, 2=3.54" are plotted
in Fig. VI-3. The plots show that these attenuation levels
are +2 db about 20 db for TEz,o mode and +1 db about 43.2 db
for TE3’0 mode. These levels are sufficient to justify the

neglection of these modes at the slot.

(b) Slot Width Determination

The slot width, w, is chosen as small as possible to
validate the assumption of circumferential and rectangular
equality of field components, as discussed in the text.
Essentially, this is equivalent to insisting that the elec-
trical distance A/Ag, as depicted in Fig. VI-4, be suffi-
ciently small so that the impedance transformation over this
distance is negligible.

From Fig. VI~-4, it is seen that
w2
8a

AR

(18)

For a choice of w = 0.25 inches (which is the minimum prac-
tical choice of w for conventional fabrication processes) the
ratio A/Ag over the operating bandwidth has a maximum value
of 0.00106, as shown in Fig. VE5. Thus, the resulting impe-
dance transformation over the gap length, A, is negligible,

as seen from a Smith Chart.
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c. Loop-Feed Design

To guide the principal TE,,; mode to the slot opening,
a straight run of rectangular waveguide (with internal
cross-section of 0.25" x 3.54") extends from the slot to
the rear of the cxlinder, where it is curved along the
inner wall of the cylinder (see Fig. 6 of the text). This
curved section of waveguide extends approximately a quarter
of a guide wave length back from the probe position at the
center frequency, so as to insure that all the incident
power to the probe goes toward the slot.

To excite the TE,, wave in the waveguide, a combined
type of E plane loop coupling and cross-bar transition [23]
was used. This combination was found to have good matching
properties for the narrow height (w/Avcz Ei)waveguide used.

The probe was fed through the narrow wall and part
was tapped off in a bend to the wide wall to form a loop,
while the main probe was extended to a coaxial short plunger
(1/4" inner diameter) at the opposite narrow wall for tuning
purposes, as shown in Fig. VI-6.

The probe position, S,was determined approximately by
neglecting the probe thickness and assuming that the wave-
guide is matched in both directions at the probe. Assuming
that the current on the wire varies as costz where £ is a
length of the loop and 8, is the phase constant along the
wire, the input circuit resistance was determined as,

following Harrington [24],
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.. S .
sin E— sin Bvd

Ry = (%) (2, ) (19)
* w " TEjp ByW cos B (S+d)
where:
R, = input circuit resistance
A
ZTElO = characteristic wave impedance = n,, Xg

v
Ag = xvasr—(xv/z 2) 2

% = waveguide width
w = waveguide height

S = loop probe position

Setting d = % and Ri = 50Q (the impedance of the
coaxial line), the probe position, S, was found to be 4.5
cm.

The actual input impedance may differ from 50Q because
the probe has a finite thickness. To determine that probe
thickness which gives a smooth transition from the coaxial
line to the waveguide, the guide was assumed to behave like
a slab line in the region of the feed. This assumption holds,
since the width of the guide, w, is much smaller than the
distance from the end of the guide to the probe position.

From the work of Chrisholm [25], the characteristic

impedance of the slab line is determined approximately as

1 oy +2153 (@"
Z, 2 ZTE 5— In{(—) =- P (20)
w P 1—5.682(;;) "

where w = guide height

P

H

probe radius
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Setting 2, = 50Q in (20), the probe diameter (2P) was
determined to be approximately %5: Using the above design
parameters, a position of the adjustable short circuit
coaxial plupger was found to match the antenna fairly well
near the center frequency. The match over the band of 1.80

to 2.00 GHz is as shown in Fig. 12 of the text.

d. Final Antenna Assembly

The final antenna was constructed using the above
dimensions on a cylindrical section of about a six inch
length with threaded ends, so as to add a 16 inch length
on each end. It was found necessary to connect the coaxial
line feed directly into the waveguide as shown, rather
than using a conventional type N connector, to reduce in-
sertion loss. For this reason also, a low loss flexible
Andrew Type H4-50 air dielectric coaxial line feed was used.

The complete antenna assembly is shown in Fig. VI-7.
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MEASUREMENT OF DIELECTRIC CONSTANT OF TEFLON

There are a variety of methods of measuring the dielec-
tric constant of a solid material. These include transmission
line or waveguide methods, cavity measurements or cavity
perturbation technkques. Among these vafious techniques, a
relatively simple transmission line method (Von Hipple),
involving the solution of a transcendental equation, was

used to measure the dielectric constant, € of Teflon.

r’

The Teflon sample was fabricated into a coaxial cylin-
drical shape, as shown in Fig. VII-1l, to fit in the General
Radio Type 900-L2 Reference Air Line as the sample holder.
The sample was held tight to prevent air gaps between the
sample material and the inner and outer conductors, and one
end of the holder was accurately terminated by a short
circuit.

Since the loss tangent of Teflon is around 0.0001, the
measurements and analysis were performed using the justi-
fiable assumption of a lossless material. The method con-

sists of measuring the input impedance, Z of the short

in’
circuited sample in the holder and solving a transcendental

equation. The analysis follows:

Z;, = Zp tanh yL (1)
where

%2;n = Input impedance looking into the input reference

plane of the sample.
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FIG. ¥II-1 DIELECTRIC SAMPLE GEOMETRY
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ip = ZO E! = Characteristic wave impedance of the
° coaxial line containing the sample.
Yy = a+jB = Complex propagation constant of the
coaxial line containing the sample.
o = Attenuation constant of the coaxial line con-
taining the sample.
R = B;VE; = Phase constant of the coaxial line
containing the samplé}
€, = Dielectric constant of non-permeable sample.
Z_ = Characteristic impedance of the air-filled
slotted line having the same inner and outer
conductor sizes as the coaxial line containing
the sample.
Ay = Free space wavelength of excitation = 2ﬂ/6v.

L = Length of sample.

Assuming a lossless line (a = 0), (1) gives,

Zin = J Zp tan BL
2712 L
= 4 - o tan BL (2)
v 8L

The normalized input impedance with respect to the air-

filled slotted line, Zint is then given by,

Z
; , 27L
2, = J.n.__JX_Tr_..Ea_E_}_(. (3)
Zo v X
where
ZHLVZ:
X = BL = ———= (4)
Av
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2;, was measured by a conventional method for impedance
measurement by finding the precise minimum (null) positions
on the slotted line and the VSWR, for the load conditions
of the slotted line terminated with (1) a short circuit and
(2) with the short circuited sample. The null positions
for each load were read to three significant figures by
using a micrometer, and VSWR's for the sample only were
read in db.

Obtaining the normalized input impedance on a Smith
Chart from the measured values of the minimum locations
and VSWR, the next step is to solve the transcendental
equation (3) for X. Then, from (4),

2
€, = ) (5)
21h

It is noted that the solution to (4) has multiple

roots of X; the correct root is selected here by using

(5) and taking into account that e.X 2. The roots, X, of

r
(4) obtained from tabulated values [26] of tan X/X. 1In
this case, the first root was thé correct root.

The measured values of ¢, are tabulated in Table
VII-1 and are plotted in Fig. VII-2. As shown in this
figure, the dielectric constant of Teflon is essentially
2.028 over the bandwidth from 1,800 MHz to 2,000 MHz, where
the Teflon will be used. This wvalue (2,028) is within,

approximately, three and a half percent of the nominal

published value of 2.10,
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TABLE VII-1

MEASURED VALUES OF DIELECTRIC CONSTANT FOR TEFLON

f MHz Ay Cm Minimum Pos.
Slotted Line Load
Short cm cm
1500.5 19.993 20.0507 22.3527
‘1596.98 18.7854 | 18.8627 20.6177
1642.93]| 18,260 18.330 19.865
1690.52| 17.746 17.8165 19.1245
1744.281 17.199 17.253 18.347
1803.75| 16.632 16.701 17.570
1852.3 16.617 16.269 16.978
1897.29 | 15.812 15.866 16.4245
1956.05| 15,337 15.410 15.795
1988.99 | 15.083 15.1525 15,446
2004.27 | 14.968 15.046 15.3105
2058.82 | 14.5714 [14.679 14.8057
2113.42 | 14.195 14.2635 14.2605

VSWR
db

50
50
50
45
45
50
50
50
50
50
48
48
48

X €y
2.24314 1 2.0379
2.38307 | 2.03006
2,45107 | 2.0297
2.52262 | 2.0306
2.60151 ¢ 2.0285
2.68956 | 2.0275
2.68887 | 2.0276
2.83001 | 2.0289
2.,91753 | 2.0286
2.96939 | 2.033
2.98634 | 2.0246
3.06252 1 2.0178
3.14159 | 2.0149
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APPENDIX VIIIL

SCATTERING MATRIX MEASUREMENT METHOD

The scattering coefficients, Sij' were determined
using a graphical éechnique conceived by Deschamps and
applied by Storer, et al [14]. A concise outline of this
procedure is discussed below.

The output port (here the open end of the slot) of
the two port junction was connected to an additional section
of waveguide terminated by a shorted plunger. The complex

reflection coefficient at the input port (here the coaxial

line) was then measured for each of a set of eight plunger

A

positions spaced 9B apart, where Agp is the guide wave-
16 A, 2

length in the shorted plunger, AgP= Ay/ l-(E%) . The first

plunger position was chosen such that it corresponded to a
short at the surface of the cylinder and, hence, the fifth
position (a gquarter wavelength away) corresponds to an open
circuit at the surface of the cylinder.

The measured points fall on a circle of radius r,
Fig. VIII-1. Although it is not necessary, a Smith Chart
was used in the constructions that follow.

After fitting a circle to the measured points and
determining the center, ¢, the pairs of points corresponding
to élunger positions iEE apart are connected with straight
lines. The chords thu: determined intersect at some point,

a. It should be noted that in constructing the circle, the

measured data points (Fl)l, ...(I‘l)8 are smoothed to reduce
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measurement error and, similarly, the two redundant chords
used to fix point (a) give an additional check against
error. (This procedure averages out experimental error,
and is the chief advantage of the method over that of, for
example, using only the short circuit and open circuit
points.)

Having determined points a and c, S11 is determined
by connecting these points with line ac and drawing |'s
to this line at a and ¢, which intersect the circle at b
and d, respectively (Fig. VIII-2). The intersection of

line bd with line ac at point q then determines sll= q as
measured on the chart.

A line is now drawn through the open circuit point
(point #5) and q (Fig. VIII-3) intersecting the circle at
point e. This point is then used to construct the diameter
ec. The constructions are then completed by drawing a l

to ac at g, intersecting the circle at f (Fig. VIII-3}.

The scattering coefficients are then determined as

follows:
s;; = log| ,(dg, 60")
l'i-f-l L(EEI W)
Sl2 = r 2
lgel __ __

(For clarity, the angles of S12 and 822 are also shown in

Fig. VIII-3 and that of 511 in Fig. VIII-2.)
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FIG. VIMI-2 GRAPHICAL CONSTRUCTION TO OBTAIN S,
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FIG. VIII-3 GRAPHICAL CONSTRUCTION TO OBTAIN Si2 8 S22
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A typical set of data and associated circle construc-
tions at one frequency in the measured range is given in

Table VIII-1 and Fig. VIII-4, respectively.

TABLE VIII-1

COMPLEX SCATTERING COEFFICIENTS DETERMINED

FROM CONSTRUCTIONS IN FIG. VIII-4

Sij MAGNITUDE ARGUMENT

==——'——=—T========i

511 .59 81.5°
5;2 .67 -31.5°

[ ]
822 .18 46.5
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APPENDIX IX

DIFFICULTIES ASSOCIATED WITH DETERMINING WAVEGUIDE

ADMITTANCE FROM COAXIAL LINE ADMITTANCE

It is, of course, possible to determine a "measured"
value of normalized waveguide input admittance, Yin=Yoy: by
using the measured normalized admittance, Yy in the coaxial
line and the measured scattering matrix elements of the

network by means of the relations

l_rz
Yin = ¥2 % 14T (1)
2
r, = 1 (2)
S22
S - S—————
22
§117T1
l-y
= — (3)
l+y1

One can then compare the "measured" value of y,
obtained from (1) with that computed from theory, using
(22) of the text and the computed values of external
admittance. This was done for the non-coated case, Fig.
IX-1, and only for the measured values of y, for the coated
case, Fig. IX-2 and IX-3. ’

Unfortunately for the subject antenna, such a com-
parison is meaningless for two reasons: ;

(a) The magnitude of T, is nearly unity, Ilezl, so

that for a given fixed percentage measurement error in
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AT

T | lAle can be large. This is seen by noting from a

Smith Chart, that an error circle centered about a given
value of |I,| has a larger radius for increasing |F2|. This
leads to larger differences in the admittance y, for a given
measurement accuracy in |Al,/T,| with increasing IFZI.

(b) The percentage error in Fz can actually be ampli-
fied, as compared to that in Fl. This is seen from the
relation (2) which gives the ratio of percentage error in

Ty, IAFZ/PZI, to that of the percentage error in T,

|AP1/F1|, as
22 r aesgyry
A 1 - P_ 2
T2 T2l Iyl

A plot of this ratio is given in Fig. IX-4 using

and S

‘the measured values of [T,|, S and the

12 22’
theoretical value of |F2|. It is seen that this ratio
can exceed unity. Thus, for example, for an assumed 10%
measurement accuracy in the coaxial line (i.e., lAPl/Pll
= 0.10) the accuracy in |AT,/T,| can approach 50%.

Thus, from point (b) above, it might be thought that
the only meaningful frequency range to compare theory with
experiment would be that for which the above ratio was well
below unity. It is true that in this range the comparison
would be better (and is, in fact, better as seen from Fig.
IX~1); however, point (a) above still causes trouble, i.e.,

too much scattering of the measured points for Y, as seen

from Figs. IX-1,2 and 3.
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Because of these two factors, it is concluded that
only the measurements made in the c¢oaxial line should be

used to compare with theory.
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APPENDIX X

FORTRAN PROGRAM FOR COMPUTATION OF EXTERNAL ADMITTANCE -
NO COATING

a. Formulation of the Problem and Computational Procedure

The program described here approximates the values of two
real valued functions, g, = G(C) and b, = B(C), for specified

values of the independent variable C. These two functions are

defined by
G(C) K OZ A I
g = = . .
c G m=0 T G,m
and
- .
bc = B(C) = KB . mio Am . (Il,m - I2,m)'
Furthermore,
° L
K, = where B = % |
4 2 ’
¢ .chp a
4
K, = where B = Cf‘;
B C3' B2 ’ a
% for m = 0,
A= <
m sin (m.¢0) 2
Toog form =1, 2,... §
(—)
-~ 2
jl
Ig,m = Jo Fp (¥» ©) dy;
Jm
Il,m =Jy El,m (t, C) at;
and ) Jl
Iy,m = Jo Fo,;m (¥s ©) dy.
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. 1 . .
Using the transformation y = —, the integral in (7) can be

'

rewritten in the form?
1
Il,m = IO Fl,m(YQ Cc) dy. (7")

The program uses the form (7') to approximate the values of

I1 m" More detailed information concerning the definition and
b

evaluation of integrand functions is given in Section e of this appendix.

A, The program approximates the values of G(C) by finite sums

m'
Se,m' = Kg - mio An  9%,m ? (9)

where:

(1) Kg and A are given by (3) and (5), respectively
(ii) QG,m represents an approximation to IG,m’
and
(1ii) m' is automatically determined during the execution of
the program by the following rule: given the input
quantities e and m' ax’ either m' is the smallest
positive integer m(< m' ) such that

|5¢,m = Se,m-1l & €56 *|5g,nl (10)

or else m' = m' .
max
For each m, a recursive version of the Simpson integration
scheme 1s used to approximate the value of Ib m by the finite
?
(1) (2) (n") (n)
sequence QG,m’ QG,m""’ QG,m . The nth approximation QG,m
is based on the subdivision of the basic interval of integra-

tion, [0,1], into n subintervals of equal length, h = 2~n
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As h + 0, the truncation error of such an approximation is of
the order h4.

For each m, the number Q = Qén;) represents the accepted
’

G,m

approximation to I Here, n' is determined automatically

G,m*
using the following rule: either n' is the smallest positive

integer n(g n'max) such’that

(n) (n-1)
19%,m = %,m | € ®1c (11)
or else n' = n'_ _. The numbers €1g and nﬁax are input quantities.

B. The values of B(C) are approximated by finite sums

m"
Sg,me = Kp © I Ap - (Ql,m - QZ,m);

m=0
where:
(1) Ky and A, are given by (4) and (5), respectively;
(1i) Ql,m and Qz,m are approximations of Il,m and Iz,m’
respectively; and
(111) m" is automatically determined during the execution of
the program by the following rule: given the input

numbers eg, and mt__, either m" is the smallest

SB
positive integer m(g mﬁax) such that

ISB,m - SB,m_llé 8SBISB,ml (12)
or else m" = mﬁax'
(nl)The values of(Il)’m and IZ,m are approximated by Ql,m =
n
Ql,m and Q2,m = Qz,% y, respectively, in the same way as the
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(n)
Gm

now use two pairs of controls. The input numbers ET1 and

values of IG were approximated by QG m except that we
H

(n,)
1
nl,m control the choice of n, in Ql . Similarly, €12 and

are used to determine n, in Q(nz). To remind the reader,

2, max
-n
nl’ and n2,max are used to determine the lower bounds, hl 2771, max
-n
and h2 = 2 2,max, on the discretization step in numerical approx-

imation of Il and I s respectively.

,m 2,m

c. The values of Fy (y,C) and F, (y,c) depend not only on
y and C but also on two additional constant parameters, B = (34
and ¢. They are called constant parameters because thelr
values are normally,ﬁ = 2,388 and ¢0 = 0,.,1687. Since B and

¢y are input quantities, their values may be modified subject

to certain constraints.
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b. Organization and Characteristics of the Program

A, The programming language used is FORTRAN IV for the IBM
7094 computer. The program does all computational arithmetic
in SP (single precision) floating point mode. All input/output
quantities are either integers or SP floating point numbers
(i.e., the I- or E-format specifications are used for their

conversion, respectively).

B. The.program consists of a main program and eleven subroutine
type subprograms. The FORTRAN names of the latter are SQIG,
SQIBl, SQIB2, SINTGR, FINTGR, BESSK, BEJYM, BESSJZ, BESSJ1,
BESSYZ, and BESSYl. The block diagram in Fig. 1 below shows

the structural and logical interdependence of these twelve com-
ponents constituting the program; it also briefly indicates their
main functions.

Remark: The latest version of the program contains three
subroutine type subprograms not listed above and not shown in the
block diagram on the next page. Their FORTRAN names are SABJYM,
SABKM, and HMBJYM. All three of them are called by (entered
from) the integrand function subprogram FINTGR. The function
of these additional subprograms is to evaluate high order and/or
small argument expressions. formed from the Bessel functions
used in computation of the integrand (see Section e). They
were added to the program because our regular procedure to do

the above mentioned task often led to the floating point overflow.
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Main Program: to read the input and then to
control the computation of the approximating
sums

S and/or Sg ,m"

G,m'
for specified values of C, bgr B = (£/a)

1 Lt dr

SQIG: to control SQIBl: to control SQIB2: to control
the computation the computation the computation
of QG,m’ an of Ql,m-’ an of Q, ,m
approximation to approximation to approximation to
IG,m Il,m Iz,m

) l T A

| ! |

L — 4 SINTGR: given m and C, to compute [€— I

QG,m (or Q1,m or Q2,m) k- =-=4

|

FINTGR: given m and C,' to compute |

BESSJ1l: given
X, to compute

Fa,m (OF F1 m ©F Fy o) | T (X)
L] I [T
| | |
BESSK: given m and X, BEJYM: given m and X, to
to compute K (X) and’ compute Tn(X), ¥ (X),
d Km(x) a Jm(x) and da Ym(X)
ax ax ) dx
™ T K )
_______ - —
\[ I : v_1
BESSYZ: given BESSYl: given BESSJZ: given
X, to compute X, to compute |~ - X, to compute
¥, (X) ¥; (X) J45(X)

Fig. X-1. Block Diagram of the Program - No Coating
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¢. Input
A machine job may consist of one or several runs. The

input data deck for such a job will then consist of the same
number of input data subdecks, one for each run. Each subdeck
must always contain the cards no.>l, 2, and 3 (the enumeration
of input cards 1s shown below in format deséription). The card
no. 4 must be present if and only if KG, the flag to compute
d.y 1s nonzero in the second card. Similarly, the card no. 5
must be present if and only if KB,‘the flag to compute bc, is

nonzero in the second card.

A, The Format of Input Cards

80
FORTRAN name of
- - RUNID -—3 | + input quantity
CARD #1
13A6,A2 +~ Field format
5 10 80
FORTRAN name of
KG|KB o ' + 1input quantity
CARD #2 - blank ———————a
I5]I5 , + Fleld format
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15 30 45 60 75 80

FORTRAN name of

DELTA | PHIZ BETA c DELC |NC| + input quantity
CARD #3 ' |
E15.8 | E15.8 | E15.8 | E15.8 | E15.8 |15| + Field format
MSG JIG
15 | 35 |
¢ l FORTRAN name of
ESG EIG ~+ 1input quantity
CARD #4 «——— blank ——=»
El5.8 |I5|E15.8)I5 + Field format
MSB JIBl JIB2
15 | 30| 45|
l l l FORTRAN name of
ESB EIBl EIB2 + 1input quantity
CARD #5 -%— blank —>
E15.8 |I5|E15.8L5|E15.815 "+ TField format

B. Input Quantities and Their Restrictions
CARD #1:
RUNID + An alphameric message identifying the run; remark: this

card may be blank (however, it must be present).

CARD #2
KG + The gc-computation control: 9 will be approximated

only if KG > 0.

(a) KG = 1 will cause the writing of the basic output
only.

(b) KG = 2, in addition to (a), will cause the writing
of the term by term computation of the approximating

sum.
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(c) KG » 3, in addition to (a) and (b), will display
the details of numerical quadrature process for

each term of the approximating sum.

KB + The bc—computation control: bc will be approximated
only if KB > 0; further information concerning the usage
of positive values of KB can be found above in the
explanation of KG (for that purpose merely replace KG
by KB and g, by bc).

CARD #3:

DELTA + b determines the length of the subinterval over which

PHIZ

BETA

DELC

NC -

the factor function Q of Fgq (or F, ) will be eval-
s y

uated by a special procedure (Q contains a removable

singularity at an interior point, y = Ygs of this sub-

interval). Warning: use 10™° <5< 1072,

+ ¢gy @ physical parameter of the system under analysis

(normally, ¢, = 0.1687).

+B = (%), a physical parameter of the system under

analysis (normally, B = 2.388).

+ Initial value of C. Warning: C must be > 0.5.

+ AC, the increment of C to be used. Warning: AC must

be > 0.

+ n_, the number of distinct values of C at which g  and/or
bc should be approximated. Warning n, must be a positive

Ainteger.
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CARD #4

ESG +
. MSG +
EIG +
JIG +
CARD #5
ESB +
MSB +
E;Bl +
JIBlL <+

(control parameters for approximation of gc):
esg? the convergence criterion used to determine m' for

approximating sums S Warning: must be > 0.

G,m'" €sc

m , Where m' + 1 is the maximum number of terms

1
max max

allowed in S

- 1
Warning: m max must be a positivg

G,m'"

integer.

€1g? the convergence criterion used to determine the

proper number of subintervals in computation of QG m
b

Warning: ¢ must be > 0.

1G

n'max’ where 2 ™% Jetermines the maximum number of

subintervals allowed in computation of QG m Warning:
)

n'max must be a positive integer.

(control parameters for approximation of bc):
€gp? the convergence criterion used to determine m"

for approximating sums S Warning: ¢ must be

B,m"* SB

> 0.

m"max’ where m"max + 1 is the maximum number of terms

allowed in Sg m" Warning: m" must be a positive
9

max
integer.

€119 the convergence criterion used to determine the
proper number of subintervals in computation of Q1 m*
. b

Warning: €11 must be > 0.

n
1,max

s Where 2 determines the maximum number of

n1,max

subintervals allowed in computation of Ql m* Warning:
?

nl,max must be a positive integer.
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EIB2 + €1g9 the convergence criterion used to determine the
proper number of subintervals in computation of Q -
b b

Warning: €12 must be > O

n2,max

JIB2 + n, ..y Where 2 determines the maximum number
b/

of subintervals allowed in computation of Q, .
9

Warnings must be a positivé integer.

D2, max

cC. The following values are recommended for control parameters.

(1) For approximation of g and/or b,, set b = 10'4.

(11) For approximation of 9. only, set:

K¢ = 2,
Egg = 10-5,
m' ax = 10,
€16 = 10'6,
P'ax = 2.

(11i1) For approximation of bc only, set:

KB = 2,

egg = 1077,

m' ax = 37,

€11 = 10_6,

nl,max = 9 or 10,
-6

|
(04]
(o)
K
O

N2, max =
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Such a choice of control parameters should correctly approx-
imate g, to 5-6 most significant digits and bc to 4-6 most
significant digits (assuming that the physical parameters 5(=%9
and ¢0 have been given with at least the same amount of accuracy) .
Typically, thg approximation of one value of 9o will then take
about 0.5 minute and of b, about 1.5 minutes of the IBM 7094
time. The sum approximating bc conﬁerges much more slowly than
that for g,. In our experimental runs, a choice of €gg = 10_5
always caused the approximating sum SG,m' to converge with m' = 5,
On the other hand, the recommended choice of control parameters
for approximation of bc required the computation of about 35
terms.

The reader should be warned that an improper combination 6f

control parameters may easily lead to a very poor accuracy or

an excessive amount of computing time required.
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d. Output
Next we shail explain the labels appearing in the output

listing of the program. The intérmediate output of the numerical
quadrature subroutine SINTGR which is written only when the value
of the KG- or KB-control signal is > 3 has not been included
here: a display of this output was needed to debug the program
and f£ind proper values for control parameters. Thus it is of

little interest to a typical user of the program.

A, Input quantities used by both parts of the program:

KG : the gc—computation control flag;

KB

the bc—computation control flag;

DELTA 3 3, a control parameter;

PHIZ : bg?
BETA : B = %;
C s C:

DELC : AC;

NC :n .

B. The output written by the gc—part of the program can be
classified as follows: (1) the gc-input (written if KG > 1);

(2) preliminary output (written for each value of C if KG > 1);
(3) final output (writtén, if KG > 1, for each value of C after
computing the corresponding approximation of gc); and (4) inter-
mediate output (written, if KG 2 2, fordevery new term of the

sum approximating gc/KG).
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B.1l. The gc-input:

ESG : esg’
MSG mlfnax7
EIG : erg’
JIG : n' ..
B.2. Preliminary output:
s C. =4,
CL : C-B, where p =
c2 : C-B/Z;
¥S : yg = 7/ (C*B), the point of removable singularity in the
factor Q of the integrand function;
Cc3 H yg;
CG : Ky = 8/(7T.c4-[32);
YA T Y, (L) ya < ¥4 < ¥, and (ii) Q is evaluated
by a specigl procedure over the interval
YB sy ) [ va<Y< Yy
DELY : Ay, a quantity used in determination of Ya and Yp-
B.3. Final output:
Cc : the value of C for which 9. has beeh approximated by
SG,m"
G(C) : SG,m"
ERR 3 SG,m‘ - SG,m'—l"
RERR ¢ (SG,m' - SG,m'—l)/SG,m'7
M : m', where m'+l is the total number of terms used to

evaluate SG,m"
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B.4. Intermediate Output:
M : the value of the term subscript m, where m + 1 is the num-

ber of terms in the partial sum sG,m = SG,m/K 3

sG

* Sg,m’
ERR : Eé,m - Eé’m_;f
RERR : ('s'G,m - §G,m-1)/§c;,m’
AM H Am;
QIG QG,m‘

C. The written output of the bc-part of the program can be
'ciassified into: (1) the b, input (written if KB > 1); (2) pre-
liminary output (written for each new value of C if KB » 1);

(3) final output (written,if KB » 1, for each value of C after
computing the corresponding approximation of bc); and (4) inter-
mediate output (written, if KB » 2, for every new term of the

sum approximating bc/KB).

C.l. The bc—input:

ESB @ egp’
MSB : m"maxf
EIBl : er1’?
JIBl : nl,max’
EIB2 : €12’
JIB2 3 n2,max7

C.2. Preliminary output:

Cl : C.g, Where =‘%7
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c2 : C-B/Z;
¥s : ¥g = n/(C-p), the point of removable singularity in the
factor Q of the integrand in 12 '
bJ

Cc3 : yz;
CB : Ky = 4/(c3-32):
YA oy, (1) vy, < v < yp @and (11) Q is evaluated

by a special procedure over the interval
YB 3 ¥y Yo £ ¥ £ Yyt '

DELY : Ay, @ quantity used in determination of Yy and Ype

C.3. Final output:

C : the value of C for which bc has been approximated by
Sp,mn’

B(C) : SB,m"7

ERR SB,m" - SB,m"-l’

RERR : (Sp nu - Sg,me-1)/Sp, o

B.4. Intermediate output:

M : the value of the term subscript m, where m + 1 is the
number of terms in the partial sum gB,m = SB,m/KB’

SB Eé’m;

ERR 3 gﬁ,m - gﬁ,m—l’

RERR : (Eﬁ,m _é,mpl)/gf,m7

AM H Am’

QIBl : Ql,m;

QIB2 s QZ,m’

B : Ql,m QZ,m'
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e. Computation of Integrand Functions

1. The function Fm(y, C) used in

Jl
'IG,m = o Fm(y, C) dy . (13)

is defined by

where:

and

Remarks:

(a)

(b)

2
Q
F (y C) = T 1 7 (14)
me [, ) 24y (00) 2]
C
[ cos(§-p-¥]
—2 7 ify<y ory>y
Y2-(W/C'B)2 a b
Q=4 (15)
_ (-g-.p)2
T 1 y_ < ¥ < Yy
X =c - \/1-y* , (16)
g (X) = 2 and Y, (X) = . (17)
ax ax
p = % ’

Ys and Yy, are the computed end points of a special

interval such that y_ < Y5 < ¥y Where y_ = EFE .
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In the program, Fm(y, C) is then evaluated by the following

formulas

0 ifX=0
Fm(y, C) = ' , . (18)
Q?/r @h 2+ x)?] 1£ x> 0.

2, The function F, (y, C) appearing in

I i |
Tzm =Y, F2,ml¥s © | (19)

is defined by

(9, ) = 1-y%) 0%+ [, (K) -3, (K) 4%, (X) ¥, () ] (20)
2y C = [ ] 4
n¥s [0 2+ (x, (%)) 2]

where Q, X, J;(x), and Yg(x) are given by the equations (15)
through (17).

The following formula is used to evaluate Fz(y, C) in the

programs
0 if X =0
Fz’m(Y) C) = (21)
g? <[ 1-y? Y (x))/Y (%) ]-[ (14N, (X)) /(14D (X) ]
if X > O.
Here,
(x) (x)
) = PRy T (22)
and

J
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3. The function Fl m(y, C) appearing in
2

_ 1
I = .r» El,m(t,c)dt = Jo Fl’m(y, C)dy (24)

l,m 1

is defined (after the transfbrmation t = %) by

- 2, =2 Km(i)
Fl,m(y, c) = (yV 1-y")-Q 'fr.;(m-’ (25)
where:
% = % Viy? , (26)
, . a Km(}_() _
K (X)= T ) (27)
Yg = EF'E | o (28)
and
C 1
_ cos[3:8.Z] :
=222y (29)

The following procedure is then used to evaluate F, m(y, C)
) b

in the program:

0 ify=1
F, (y, C) = - 4 (30
l,m =’ A , s k(@ )
Q- [(y V1-y7) - (/) 1] if y > 1.
L K (%)

The procedure to evaluate [ (y 1—y2)-(Km(i)/K;(i)] depends on

the values of m and X.
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APPENDIX XI

FORTRAN PROGRAM FOR COMPUTATION OF EXTERNAL CONDUCTANCE -
TEFLON COATING

a. Formulation of the Problem and.Comgutational Procedure

A. The values of the external conductance function

G(C,W) = K(C,B) - Z . I
’ 'P =0 A

are approximated by finite sums

M
Sy = K(C, p) - mﬁo An * Qo

Where:
(1) K(c, p) = 333, 7
CPp
(11) A = { i for m =0
m 2
si 0)
form=1, 2,... ,
(——)
and

(111) Qn is a numerical approximation to

I, = IO Fo (ys C, W) dy.

The reader is referred to APPENDIX A for details concerning the
integrand function F.o We shall mention here, however, that
the value of Fm(y; C, W) depends not only on y, C, W but also
on three additional constant parameters, (= %), @0, and €.

Thus, to be more precise, G(C, W) and S, are functions of
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g e

(1) the variable parameters C, W
and

(11) the constant parameters B, ¢,, and gr. Normally, the

0
values of the parameters belonging to class (ii) will be:

p = 2.388, ¢O = 0.1687, and g . = 2.10.

Since they have to be specified as input quantities. anyway,
their values may be modified by the user as explained in Sec-

tion III.

B. M, the number of terms in the approximating sum Sy is
automatically determined during the execution of the program as
follows: given the input quantities eg (> 0) and Mo xd the

number M is either the smallest positive integer m ({ m ) such

max
that
I8 = Spal eg - T
where
r={ 1 if |s_ | S 1
IS, if |S.| > 1,

or else, 1f the above convergence criterion fails for m { m

max’

C. A recursive version of the Simpson rule based on an
incomplete Romberg integration scheme [27] is used to

approximate the integral I, for each value of m by a

(1) ,(2) (N)
Qm

sequence of numbers Q geoy Qm . The nth approximation,

m b
Qénzis based on the subdivision of the basic interval of
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integration, [0, 1], into 2" subintervals of equal length,

h=2"" ash- 0, the truncation error of such an approxima-

tion is of the order of h4.

For each m, the element Qé?

) is accepted as the final
approximation to Im’ where N is determined automatically as

follows: either N is the smallest positive integer n, Noint 1<n

S Dpax? such that

or else, in case of a convergence failure, N is set equal to

Noax® The numbers Din’ Pmax? and gy are input gquantities.

D. Each evaluation of the integrand Fm(y; C, W) requires
several evaluations of the Bessel functions Jm(X) and Ym(x),
androf their derivatives w.r. to X, J; (X) and Y;(x). Here

X is a function of y and several input parameters. For that
purpose, double precision subroutines BESS, BESJ, and BESY
have been developed. To evaluate Jm(x) and Yh(x), they use
numerical methods similar to those discussed in reference [28].
The derivatives of the Bessel functions Jm(x) and Yﬁ(x) are

then computed by the recursive formulas

J; x) = -7 X + % : Jéx) form = 0, 1,...
and
]
Y, (X)) = -y (X)) +F - ¥ (X) form=0, 1,... .
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The subroutines BESS, BESJ, and BESY were checked out
independently from the main program for all ranges of the values
of m and x used in the computation of G(C, W). The results
agreed with tabulated values, [22], through 7-8 most significant

digits.

b. Organization and Characteristics of the Program

A. The program was written using FORTRAN IV for the IBM 7094
computer. All computational arithmetic is internally handled
in DP (= double precision) floating point mode. All input/
output quantities are either integers or DP floating point num-
bers (i.e., the I- or D- format specifications are used for

their conversion, respectively).

B. The program consists of a main program and six subroutine
type subprograms whose FORTRAN names are: ERRX, SINTGR, FINTGR,
BESS, BESJ, and BESY.

The block diagram below shows the structure and logical
interdependence of the program and explains briefly the func-

tion of each subprogram,
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°F

tion of Sy =

respectively

MAIN PROGRAM:

to read the input
and then to control the computa-
sm(C, W) for the
values of C and W determined by
CI (DELC)CMAX and WI (DELW)WMAX,

n

|

(N)
Qm

SINTGR: given m, C,
and W, to compute

ERRX:

number

to write
the error 1ID

e -

PR

FINTGR:

given y, my, C, and
W, to W, to compute F (y, C, W)

)
!
|

BESS:

Y (x), and Y

given m and x to control the
computation of J (X),

+1(X) and then to com-
pute J (X) and Y

(X)

m+1(X)’

A
!

s

BESY: given m and X,
to compute Yo (X) and

m+l(x)

Fig. XI-1.

-—-—)

BESJ: given m and X,
to compute I (X) and

m+1(X)-

Block Diagram of the Program - Coating
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Input and Usage

A machine job may consist of one or several runs. Thus

the input data deck must contain the corresponding number of

input data subdecks, one for each run.

five cards.

A.

CARD #1

CARD #2

CARD #3

CARD #4

The Format of Input Cards

10 20 30 40 80
KWRT{ NMAX | NMIN{ MMAX
A blank -+
Tlo| r10§{1104{ T10
20 40 80
ES EIL
* blank -+
D20.8 D20.8
20 40 60 80
WI DELW WMAX
+ Dblank
D20.8 D20.8 D20.8
20 40 60 80
CI DELC CMAX
+ blank -*
D20.8 D20.8 D20.8
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EBach subdeck consists of

FORTRAN name of
input quantity

Field format

FORTRAN name of
input quantity

Field format

FORTRAN name of
input quantity

Field format

FORTRAN name
of input quantity

Field format



20 40 60 80

/ ' FORTRAN name of
PHI BETA ER _ + input quantity
CARD #5 + blank -+

~ D20.8 D20.8 D20.8 + Field format

B. Input Quantities and Their Restrictions

The input cards # 1 and 2 contain the program execution con-
trols; the cards # 3, 4, and 5 contain parémeters used in the
computation of G(C, W). |
CARD #1:

KWRT + the write-control flag:

(a) KWRT = O will cause the writing of the basic output

only;

(b) KWRT = 1, in addition to (a), will cause the writing
of the numerical quadrature convergence process.

(c) KWRT = 2, in addition to (a) and (b), will diasplay
the details of the computation of the integrand

function, F_, for each (y, C, W).

“Pmax
NMAX + n . 1s used to define h , = 2 , the smallest per-

missible subinterval for numerical quadrature. Warning:

if nox is ¢ 5, it will be automatically corrected to 5.

—(nmin+l)
NMIN + Noin is used to define hmax = 2

, the largest
permissible subinterval for numerical quadrature.
Warning: 1if Nin is ¢ 2, it will be automatically

corrected to 2.
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MMAX + max? where M ax + 1 is the largest permissible number

of terms in SM‘ Warning: M oax must be > 1.

CARD #2:

ES + ¢ the convergence criterion for the approximations

S,

S1s Syy... of G(C, W). Warning: must be > O.

€s

EI  + €q, the convergence criterion for the approximations Q(l)

m b
4(2)

must be > 0.
m

yeoe.. OFf I.- Warning: €1

CARD #3:
WL  + W;, the initial (smallest) value of W. Warning: W,
must be > 0.5.

DELW + AW, the increment of W to be used. Warning: AW must
be > 0.

WMAX + Whax’ the last (largest) value of W. Warning: Wﬁax

must be > W
CARD #4:

CI + C;, the initial (smallest) value of C. Warning: C;
must be > 0.5.

DELC + AC, the increment of C to be used. Warning: AC must

be > 0.

CMAX + C , the last (largest) value of C. Warning: Chax

must be 2 CI'
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CARD #5:

PHI +« bg? warning: bg must be > 0.
BETA + B = (%); warning: f must be > 0.5.

ER + er'must be > 1.05.

Furthermore, the values of C, W, and Ep must always satisfy
the following constraints:

(a) o< cwg 4,

otherwise, the subroutine BESY (in its present form) will fail.

c. The following values are recommended for the control:

the write-control flag KWRT = O or 1,

Nax = 9 or 10,

Din = 3

Mpax = 109

Eq = lO_6 or 10_5, and
eg = 107°.

Such a choice of control parameters should approximate G(C, W)
correctly to 5-6 most significant digits (assuming that the
physical parameters B = ({/a), Ry and Ep have been given with
at least the same degree of accuracy). Typically, the com-
putation of a value of G(C, W) will then require one to three

minutes of computer time.
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The user is warned to be careful about modifying the values
of n and ¢.. Since the number of integration subintervals in
max I n
the approximation of I, may be equal up to 2 ax’ a slight
increase in noax May result in an excessive increase of computing

time. On the other hand, making er too small may cuase a fre-

nmax

quent usage of 2 subintervals in numerical integration.

-5

In our experimental runs, eg = 10 caused the sums Sm to

converge at m = 6 for all combinations of other parameters.

D. Compliance with the input constraints listed above should
always terminate the execution of the program in a normal exit.
In the event that the execution terminated in one of the error
exits identified by its ID number, the user is advised to
localize (in the listing of the source program) the statement
causing the transfer of control to the error exit subprogram
ERRX. This can be done by noting that ERRX is called by

CALL ERRX(K),
where K is the ID number of the error: the value of K is

always written in an error message.
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d. Output

Next we shall explain the labels appearing in the output
listing of the program. Such a label often but not always is
the FORTRAN name of the variable whose value appears under it.
Output quantities additionally written when the write-control
flag KWRT is > 2 are not discussed below: a user normally should
not apply KWRT > 2 since this results in an excessive amount of

written output.

A, Preliminary output quantities (always written following the
listing of the input):

ClL: C.p, where B = % :

c2

C
2 " Bs

¥S Yg = =T_ . the value of y at which the factor Q of the

integrand function Fm(y; C, W) has a removable singularity;
YSL: max(0, ys-b), where b is a programmed parameter;

YSR: min(1l, yS+b), where b is the same programmed parameter

as in YSL;
2

C3 : Ygi
cG : K(c, p) = 32/(;° c* p?);
C4 : €, -~ 1;
c5: (C - W)2

. 2
Cé : (€r~" 1)%;

177



Qs

-(Cc - ﬁ/z)z/w, the value of Q at y = yg7s

cw

c - W.

B. Intermediate output after the computation of the mth term

(written under any value of KWRT for m = 0, 1, 2,...,M):

M : m, wherem + 1 is the number of terms in the current
approximation, S, to G(C, W)/K(C, B);
_ S

SG : S, = KTE?ET , the current approximation to G(C, W)/
K(C, B);

AM : Ay, the coefficient of the last term of gﬁ;

QI : Q= Qég), the approximation to I used in the last
term of 8 ;

ERR  : S -5 ;7

RERR : (S -8 ;)/5.

C. Final output after computatlon of an approximation to
G(C, W) for given C and W (written under any value of KWRT):

G(C,W) : Sy» the acCepted approximation to G(C, W);

c : the value of C used in the computation of SM;
W : the value of W used in the computation of-SM;
M : M, where M + 1 is the total number of terms in Sy?
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ERR H SM - SM,—].;

RERR 2 (Sy - Sy_1)/Sy-
C. Intermediate output of the numerical quadrature subroutine

SINTGR after the computation of the nth approximation to Im

(written only under KWRT > 1 for each m and all n= l, 2,...,N):

N : the current value of n;

1./2 . %*N s (%)n, the length of the subinterval corresponding
to the current value of n;

TRAPZ 3 Tén), the trapezoldal approximation to Im for
the current value of n;

ERR (TRAPZ) : Té‘n) - Téln—l);

SIMPS : Qéé), the Simpson approximation to I for the
current value of n;

ERR(sIMpS) : @'P) - (A1),

m m
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e. Computation of the Integrand Function Fp(y, C, W)

A proper procedure (computational algorithm) to evaluate Im
is a necessary condition‘for a successfﬁl approximation of G(C, W).
We shall outline briefly the procedure used by us for that pur-
pose: 1its main objective 1s to depress the accumulation of
round-off errors and to navigate around possible floating point

overflows.

In order to simplify the notation, we shall omit subscripts,
superscripts, and arguments wherever clarity will allow us to
do that. In this respect we are somewhat aided by the fact that
each evaluation of Fm(y; C, W) is carried out for a given and

fixed set of numbers m, y, C, W, ¢g; B(=%Q, and ¢,..

In the program we use the following computational procedure
to evaluate Fm(y; C, W):

F

F=((a - %) - (-ﬁf—;)) - -Sl—z (1)
First,
TCVOS(_%.B'Y))-( L) if |yyg| >
Y + ¥g Y - ¥g sl 78
Q= ¢ (2)
e EE- 1f |y-yg| < b
where: k
Ys=c1.TB’ 5"%’ (3)

and 3 is a programmed parameter (its FORTRAN name is DELTA)

which has been set equal to l0_3.
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Next,
[y - +1 Af [J'] < |Y']

s = | (4)
|t 37T+ 1 i€ |J'] > |Y')

where:
2
J=J,(X), Y= Y (X), X = cw\/1-y (5)
and
J! = d Jm(x), Y' = d Yh(X) . (6)
ax ax

The eight A-expressions, including A, used above in F, must
be evaluated at the beginning of the procedure for computing F.

They are defined as follows:

2
A1=€"y7

2
A2 1l - y";

0

2 2
A, = (er -y )e(l - ¥°)s
2
A4=5rl-—y
2
A5= Er—y i
— 2 -
A6 = l -y s
A, =(m-y - (g - 1%
7 €r ’
2
AB—(C-W) -A3.
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s

Finally,

2

F. = A -(El

2
N 8 + E2 ) + E7 (7)

and
2 2
Fp, = [Ag" (B *By-Ey-Ey) -Eg]"+[Ag (B, B +E)-Eq) -Eg]™s  (8)

wheres:

o
<
|

= . e
E; =3, « HZ -

_— Y'

J, 2

Eg = Ap - V.L-[(5° - (%)2], and

= - J Y
E6=A7-V'L'[2°(§')-(§)].

In the E-expressions above, the quantities s, J, ¥, J', Y' have

already been defined earlier by (4), (5), and (6). Thus,

it remains to define U, V, L, and T. They are:

T=0 (3 - v (2) -3 (2) - ¥ (&),
V=0 (&) v (2) -3 (2) « Y (%),
L=J(2) - Yr;(%) - JI;(%) - Y _(z) , and
T=g(2) - v, B -3 @ - v(2);
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where:

Z=CW\/gr—y .

In the expressions above, a prime denotes differentiation with

regspect to the entire argument within the parentheses.
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PRECEDING PAGE BLANK NOT FILMED.

APPENDIX XIL

FORTRAN PROGRAM FOR SCATTERING MATRIX EQUATION

a. Computation of I‘l from 1‘2, sn, sn, and Sa2¢ via

D6, +READY

101,
102,
103,
104,
105.
106,
107,
108.
109,
110,
111,
112,
113,
114,
115.
116.
117.
118.
119.
120,
121,
122.
123.
124,
125.
126,
127.
128.
129,
130.
131.

132..

133.
134,
135.
136,
136.

CF

CF
CF

r

100

Syl
+ —-—————12 2 .

1~ 5

LIST

PROGRAM GAIMIAl

CONTIMUE

READ O,SM11,SA11,SM12,5A12,S122,5A22

READ ©,GI2,GA2

P1=5,141593

ARB=180.0/P1

SA11=SA11/ARB

SA12=SA12/ARB

SA22=SA22/ARB

GA2=GA2/ARB
AR=SM22+COS(SA22)+GM2+COS(GA2)-SH22*S1H(SA22)*GM2*SIH(GA2)
Al=SM22+COS(SA22)*GN2*SIN(GA2)+SH22*SIN(SA22)*GH2+COS(GA2)
AN=SCRT(Al*Al+AR*AR)

AA=ATAN2 (Al ,AR)

BR=1,-AM*COS(AA)

Bl=-(AN=SIN(AA))

BM=SQRT(BR*BR+B*B1{)

BA=ATAN2(B!,BR)

CM=SM12+SM12

CA=2,.2S5A12

DR=CH*COS (CA)*GHM2+COS(GA2)-CM*SIN(CA) »GM2+SIN(GA2)
DI=CM=COS(CA)>GH2+SIN(GA2)+CM*SIN(CA)*GM2*COS(GA2)
DN=SQRT(DR*DR+D1*D})

DA=ATAN2(D!,DR)

EN=DM/BM

EA=DA-BA :

GR=SM11+*COS(SA11)+EM*COS(EA)
GI=SM11+SIH(SAL11)+EM*SIH(EA)

GM=SCRT(GR*GR+G | *G1)

GA=ATAN2(Gl,GR)*ARB

PRINT 100,GM,GA

FORMAT(7H NAG, =,1F12.6,8H PHASE =,1F12.6) .

GO TO 1

CONTINUE

END
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b. Computation of I‘2 from I'l, sll' 812' and 822, via

1
r, = -
12
Sy2 -
Sq4=T
1175
LIST
101, = CF PROGRAM GAMMA
102. = 1 COMTINUE
103, = CF READ 0,S11,T11,512,T12,522,T22
104, = CF READ 0,6G1,T61
105, = PI=3.141593
106. = ARB=120./P1
107. = T11=T11/ARB
108, = T12=T12/ARB
109, = T22=T22/ARB
110. = TG1=TG1/ARB ,
111, = AC=S11*C0S(T11)-G1*C0S(TG1)
112, = AS=S11*SIN(T11)-G1*SIH(TG1)
113, = AM=SGRT(AC*AC+AS *AS)
114, = AA=ATAN2 (AS, AC)
115. = CH=512%S12/ AN
116. = CA=2.*T12-AA
117. = FC=522+C0S(T22)~CH*COS(CA)
118, = FS=522#*SIN(T22)-CM*S ITI(CA)
119, = GM=1./SORT(FC*FC+FS*FS)
120, = GA=- (ATAN2 (FS,FC)*ARB)
121, = ' PRINT 100, GM,GA
122, = . 100 FORMAT(7H MAG., =,1F10.6,71PHASE =,1F10.6)
123, = GO TO 1. ‘
124, = 2 CONTINUE
125, = "EMD
126, -
126.
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LIST OF MAJOR SYMBOLS

a Outer radiﬁs of metal cylinder.

b Outér radius of dieléctric cylinder.

c Speed of light in vacuum (3.10° meters/sec.).

C Circumference of metal cylinder in free space
wavelengths (C=2ma/Ay).

E " Vector electric field intensity, volts/meter.

E¢ Component of [E in ¢ direction, etc.

E¢m(h)=ﬁﬁ v Transform of Ey.

EO=E°(1+P2)= ;9 = Electric field across center of slot.

€y Permittivity of vacuum (1/36m+10° coulombs/meter).

€y Relative dielectric constant of coating.

£ Frequency, cycles/sec.

h Wave number in axial, z, direction.

H Vector magnetic field intensity, amperes/meter.

H, Component of H in z direction.

Hzm(h)=ﬁz Transform of H,

Hm(z)(X)=Jm(x)-ij(X) Hankel function of second kind, order m,
argument X.

I,(X) Modified Bessel function of first kind, order m,
argument X.

Jm(x) Bessel function of first kind, order m,
argument X.

Km(x) - Modified Bessel function of second kind, order m,
argument X.

L Length of slot = internal width of waveguide.

m Mode number (integer values, m=0,1,2...).

Index of refraction of coating (N=ye.).

P Wave number in air region in radial, p, direction,
p2=h2_6v2 R

L.H.S. . Left hand side.

R.H.S. Right hand side.

187



LIST OF SYMBOLS (Continued)

S11+512+522

u

w=27nf

Scattering matrix elements.

Wave number in cgating region in radial, p,
direction, u2=Bv e.~h®.

Wave number in air region in radial, p,
direction, u *=8_2-h?, u, *=-p?,

Voltage across center of slot.

Slot width = internal height of waveguide.
b/a

Normalized wave number in axial direction.
Normalized external admittance (yc=chv).

External admittance, mhos.

Characteristic wave admittance of TE 0 mode.

1
Normalized input waveguide admittance =
1-P2
YO n = L[]
IV 4r

Normalized input coaxial line admittance =
1-T
1

14Ty
Propagation factor in free space.

Propagation factor of TE,. mode.

10
Angular slot width (¢o = g).

Complex reflection coefficient in coaxial line.

Complex reflection coefficient in waveguide.

Characteristic impedance of vacuum (1207 ohms).

Free space wavelength = c/f, meters.

Angular frequency.

All other symbols are defined as they are introduced.
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