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ABSTRACT 

The problems of natural  electrical  phenomena as a fire  hazard 
to  aircraft  are  evaluated.  Assessment of the  hazard is made  over  the 
range of low  level  electrical  discharges , such   as   s ta t ic   sparks  , t o  
high  level  discharges , such  as  lightning  strikes  to  aircraft.  In  addition , 
some  fundamental work is presented on the  problem of flame  propagation 
in  aircraft  fuel  vent  systems. 

This  study  consists of a laboratory  investigation  in  five  parts: 
(1) a study of the  ignition  energies  and  flame  propagation  rates of 
kerosene-air  and  JP-6-air  foams, (2) a study of the  rate of flame  propa- 
gation of n-heptane , n-octane , n-nonane , and  n-decane  in  aircraft  vent 
ducts , (3) a study of ,the  damage  to  aluminum,  titanium,  and  stainless 
steel  aircraft  skin  materials by lightning  strikes , (4) a study of fuel 
ignition by lightning  strikes  to  aircraft  skins , and (5) a study of lightning 
induced  flame  propagation i n  an  aircraft  vent  system. 

V 
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INTRODUCTION 

The  problem of fire  hazards  in  aircraft  has  been  the  subject of a 
number of studies  conducted at various times during  the  history of aircraft 
development. A s  a resul t  of these   s tud ies  , certain  design  principles  and 
operating  practices  have  evolved  with  the  objective of minimizing these  
fire hazards.  Even though  considerable  work  has  been  accomplished , voids 
still exist in  the  knowledge of the  causes  and  elimination of certain  types 
of fire  hazards.  The  particular  problem  area  toward  which  this work was 
directed , involves  fire  hazards  associated  with  natural  electrical  phenomena 
such  as  l ightning  and  static  electricity.  

The  objective of the  work described  here  was to obtain a better 
understanding of the  mechanism  by  which  these  types of f i res   are   caused 
and  propagated  in  aircraft.  Several problem areas  were  defined.  Specifi- 
cal ly ,   these  were  the  abi l i ty  of lightning  to  ignite  fuel  vapors  beneath  both 
s ta in less  steel and  titanium  metal  skin  and  the  need for a better  means of 
slowing or stopping  the  increased  flame  speeds  associated  with  lightning 
induced  ignition  at  the  vent exit. Additional  research is recommended  in 
both of t hese   a r eas .  

The  experimental  portions of the  program  involving  flame  propagation 
in  fuel  foams , low  energy  multiple  discharges upon  metal  surfaces,  and 
flame  propagation  in  fuel  ducts  were  carried  out  at  the  laboratories of 
Dynamic  Science , Monrovia , California.  The  tests  involving  high  energy 
lightning  discharges  upon  aircraft  skin  materials  and  simulated  aircraft 
fuel  vent  systems  were  conducted  at  the  General  Electric  High  Voltage  Lab- 
oratory,   Pit tsfield,   Massachusetts.  



FLAMMABILITY  OF  FUEL FOAMS 

Introduction 

The  production  and  persistence of flammable  mixture  zones  during  the 
fueling of an  air-filled  tank  depends  upon  fuel  vapor  pressure,  temperature, 
flow  rate,  fuel  inlet size and  location,  and  tank  dimension (1) . Flammable  fuel 
vapor-air  mixtures  occur  when  the  fuel  temperature  exceeds  the  flash  point 
which is a measure of the  lean  flammability  limit.  Flammable  conditions  can 
a l so   occur  at fuel  temperatures,  below  the  flash  point, if the  liquid is dispersed 
in  a foam or m i s t .  Extreme agitation of the  fuel  in  aircraft  tanks  during  rapid 
fueling  operations  or  rough  flight  conditions,  such as those  encountered  in storms 
or  in  turbulence,  can  produce  foams  and mists within  the  tanks.  It is possible ,  
therefore,  that  ignition  and  flame  propagation  could  occur  under  conditions  where 
equilibrium  fuel  vapor/air  mixture  ratios  would  be  considered  below  the  lean 
flammability  limit. 

In order  to  investigate  the  characterist ics of ignition  and  flame  propagation 
through foams of  aircraft  fuels  and  air, a ser ies  of experiments  were  conducted  in 
the  laboratories of Dynamic  Science. 

The rate of flame  propagation  through  typical  fuel  foams  was  determined. 
A high  and a low  volatility  fuel  were  selected to be  s tudied.  A few tests 
were  conducted  to  determine  the  effect of foam cell  size  on  propagation. A 
foam with  smaller  cells  was  obtained  by  the  addition of a foaming  agent  to  the 
fuel. 640 turbine  fuel  and F - 6  were  selected as  the  low  and  high  volatility 
fuels,  respectively.  In  addition,  tests  were  conducted to determine  the  critical 
ignition  energy  and  the  spark  breakdown  potential of a typical  fuel  foam.  For 
this  effort 640 turbine  fuel  was  selected,  since it displayed  better  foaming 
characters  than JT-6 and  other  fuels  and  because of its wide  spread  use  in 
commercial  aircraft. 640 turbine  fuel is a typical  kerosene. 

Prior to  beginning  the tests on foam ignition  and  propagation a literature 
survey  was  conducted to determine  the  progress  made  by  other  investigators  in 
this  field.  While  considerable  work  was  found  in  the  vapor-air,  and  vapor-mist 
regime,  little work was  found  specifically  oriented  toward  the  ignition  and 
propagation of flame  in a hydrocarbon  fuel foam. 

Literature  Discussion 

The  major  zones  which  can exist within a fuel  tank  are  illustrated 
below: 

Vapor-Air and/or 
Mist-Air 

Foam ’ 

2 



Regions  which  can  contain  combustible  mixtures  are 1) vapor-air, 2) 
mist-air,  and 3) foam. Of these,  the  vapor-air  mixtures  have  received  the 
most extensive treatment  in  previous  research  efforts.  Consequently, most 
a s ses smen t s  of potential fire hazards  have  been  made  in  terms of conclusions 
based  on  vapor-air   studies.  

However,  fuel mist-air sys tems  can  also represent a potential  fire 
hazard.  For  example,  Liebman ( 1 ) has  shown  that  ignition  and flame propagation 
is possible   in  a fuel  mist-air  system.  This  work  was  conducted  under  conditions 
of simulated  fuel  loading. Hi s  determination of the  critical  ignition  energy  for 
a kerosene-air m i s t ,  w a s  15 millijoules at room temperature.  However,  the 
likelihood of generating  such mists under  either  normal  and  abnormal  conditions 
(severely  turbulent  conditions or violent  vibration  due  to  damage  or  malfunction 
of the  aircraft)  has  not  received  much  study. 

The study of the  flammability of fuel foam has  received  less  at tention. 
Foam generated  by  the  agitation of a liquid  fuel  consists of air,  fuel  vapor,  and 
fuel m i s t  a s  well as the  thin  liquid  fuel  walls  which  comprise  the  boundaries of 
the  cel ls   which  const i tute   the foam.  A s  foam is a dispersion of a gas   in  a liquid, 
most of the  volume is a gas  with  the  l iquid  in  thin  cell  forming sheets   cal led 
lamellea (2) .  In general ,   the  gas  bubbles  are from 0 .1  to 1 0  mm in  diameter  and 
have a wal l   th ickness  of from 0 .3  to 3.0 p. The gas   phase  of these  bubbles  
cons is t s  of air,  vapor of the  liquid,  and a fine m i s t  of the  liquid.  This m i s t ,  
within  the  individual  cells,  can  contain  droplets of liquid  up to 10 p in  diameter. 

Flammability  studies of fuel  foams  have  been  carried  out  by A. Bartkowiah, 
S. Lambiris,  and M. G. Zabetahis ( 3 ) .  Their  experiments  were  directed  at 
determining  the  total  pressure  and  rate of pressure  rise  in  burning  kerosene  fuel 
foams. No  measurements  were  conducted  on  the  burning  rate. They found the  
maximum pressures  produced  by  the  ignition of kerosene  foams  were much l e s s  
than  those  produced  by  the  ignition of fuel  vapor-air  mixtures. 

Thomas (4) has  studied  the problem of foam  flammability  in  kerosene. 
H i s  results  can  be  summarized as  the  following: 

1. An increase of oxygen  concentration  in  the  gaseous  component of 
the  foam  greatly  promotes  flame  propagation; 

2 .  An increase of fuel  temperature  promotes  flame  propagation; 

3 .  A decrease of ambient  pressure  has little effect on flame  propagation 
at low  fuel  temperatures  but  promotes it at  high  fuel  temperatures: 

4 .  There is a n  optimum rate of foam formation at which  flame  propagating 
tendency is greatest;  

The  problem of electrostatic  charge  buildup  in  liquid  hydrocarbon  fuels 
is well  known ( 5-9 ), but  little is known  about  the  mechanism of charge  decay. 
If this  charge  buildup is released as  an actual  spark  in a flammable  region, 
ignition  could  occur  provided  the  discharge is sufficiently  energetic. 
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The energy  range of spark  discharges  in fuels can  be  es t imated.  Work 
ci ted  in   the  l i terature  (5  - 9 )  indicates   that  static spark  discharges at potentials 
from 7000 to 2 5 , 0 0 0  volts have  been  measured  in  fuel  systems. Also, a typical 
fuel  in  an  aircraft  tank  has a capaci tance of about 300 upf   in   the  bulk.  From 
this  information  the  discharge  energy  can  be  calculated.  The  governing  equation 
for  the  energy of the  discharge is 

2 
E = SCV E = Energy--Joules 

C = Capacitance--Farads 
V = Potential--Volts 

The  numbers  noted  above,  when  evaluated  in  this  equation,  indicate a 
discharge  energy  range of from 7 to 80 millijoules is possible  in  liquid  fuel. 
As reported  by  Liebman (1 ) 15 millijoules  can  ignite a kerosene-air m i s t .  Other 
workers ( 3) ( l o )  have  shown 0.3 millijoules  can  ignite fue l  vapor-air  mixtures. 
N o  work had  been  done,  previous  to  this  study,  on  the  ignition  energy of fuel 
foams . 

The production of static  electricity  has  been  reported  to  be  associated 
with  the  presence of colloidal  particles  which  ionize  in  the  fuel (1). The 
contaminants  are  largely  organic  and  represent  fuel  degradation  and  oxidation 
products  or  residue from treating  operations.  These  products  are  only  partially 
removed  by  ultrafiltration  and  absorption  on  silica  gel  or  activated  clay. Hydro- 
carbon  fuels  are most suscept ible   to   s ta t ic   e lectr ic i ty   bui ldup  when  exposed to 
elevated  temperatures, gamma and  ultraviolet  radiation,  and  when  they  have 
t races  of moisture  in  them (1). There appears   to   be a definite  relationship  between 
static charge  production  and  electrical  conductivity.  Hydrocarbons  which  have 
an  electrical  conductivity  in  the  approximate  range of 1 x 10-11 to 1 x 10-15 
ohm-' c m - I  have  been  shown to permit  the  greatest  buildup of static electricity (1). 
For  example,  raw  kerosene  has a conductivity  in  the  range of 1 to  3 x 10-12 
ohm-' cm" and JP-6 fuel 3 to  8 x lo-'' ohm'' c m - l .  

Rogers (6) reports  that   hydrocarbon  fuels  can  be  charged  to  such a degree 
that  visible  sparks  occur.  He  found  that  the static discharges  would  occur most 
readily at the  surfaces  and  under  conditions of high  surface  curvature. 

Other  reports (7) on the  triboelectric  properties of fluid  suggest  that 
electrostatic  charges  can  be bldlt-up  whenever  there is a motion of a hydrocarbon 
with  respect  to a second  substance.  This  second  substance  could  be  the  surface 
with  which  the  fuels  are  in  contact.   When Rogers (6) pumped  fuel  through  silica 
ge l ,  a much  greater  charge  buildup  occurred.  In  rapid  aircraft  fueling  operations, 
passage  of the  fuel  over a high  surface  area  region  such as an  in- l ine  f i l ter   can 
promote  this  type of charge  buildup. 

In summary  one  can  conclude  the  following: 

1. Most  aircraft   fuels  can  be  charged  with  static  electricity  by  rapid 
agitation  or  filtration. 
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2 .  A charge of sufficient  magnitude  can  be  stored  in  bulk  fuel  to 
produce a visible  spark  with  sufficient  ehergy to ignite a com- 
bustible  vapor-air  mixture  and  probably, a fuel  air  m i s t .  

3. Although  work has  been  done  on foam flammability,  no work has  
been  done  on  the minimum ignition  energy  required  to  ignite a 
fuel foam. 

Apparatus 

Under  laboratory  conditions, foams can  be  generated  by (a) rapid  stirring 
and (b) by  vibration.  In  order to simulate  aircraft  conditions to some  degree, 
the  vibrational  frequency  range  associated  with  aircraft  was  selected.  Obviously, 
the  wave  length  and  amplitude  associated  with  full-scale  systems  are  difficult  
to simulate  in  the  laboratory  and  no  attempt  was  made  to  simulate  these  quantities 
in   the  work  reported  here. 

The apparatus  for  investigating  the  properties of foam ignition  and com-  
bustion,  shown  in  Figure 1, is constructed of s ta in less   s tee l   and   has  a total  
volume of 1 cu. f t ,  It is constructed so that a lucite  top  viewing  window  can 
be   ins ta l led   and  is designed  to  be  operated  with  an  air-driven  vibrator  for 
mechanical  agitation.  When  operated at 15 psig,  the  air  vibrator  prod.lced a 
vibrational  force  of 160 pounds  at  a frequency of 100  cps  which is transferred 
to the  test chamber.  This  produces a linear  displacement of about 10-5 inches 
at the  surface of the  liquid. By this  method, a foam 2 to  3 inches  thick  has   been 
produced.  The  one  drawback is that   the   surface of the  liquid is slightly  turbulent 
during  the  period  of foam formation.  Not  shown  in  Figure 1 is an  air-driven 
stirring  motor  and  paddle  which  was  used  for  mechanical  stirring. The stirring 
technique  produces a slightly  coarser  foam  than  the  shaking  method  but is capable 
of producing a foam thickness  up to 3 inches.  This  method  had  the  advantage of 
maintaining a relatively  smooth  liquid  surface  for  easier  flame  studies. Both 
foam  generating  methods  were  employed  in  this  study. 

In the  testing  and  calibration of the  apparatus ,  it was  found  that  more 
reproducible foam conditions  were  obtained  just  after  turning off the  foam generator. 
Most experiments  were  started at this  point. The rate at which  the foam col lapses  
or  decays is shown  in  Figure 2 for 640 turbine  fuel. A decay  half-life  for 640 
turbine  fuel  was  found to be  the  order  of 2 seconds.  In th i s  t i m e  the  depth of 
foam was  reduced  by  one  half.  This  was  sufficient t i m e  to provide  enough  foam 
for  the f l a m e  propagation  and  ignition  studies. The fuel foam produced  by  mechan- 
ical  shaking  with  the  pneumatic  vibrator is shown  in  Figures 3a through  3c. 
The foam layer  shown  in  Figure 3n is the  result of relatively  low  mechanical 
agitation. The foam is produced  in  the  central  portion of the  system  and  flows 
to each  end  where it accumulates prior to its collapse.  The  foam layer   increases  
as increased  energy is put  into  the  system.  Figure  3b  shows  the  system  being 
vigorously  driven  by  the  pneumatic  vibrator. A foam layer,  shown  in  Figure  3c 
approximately  one-inch  in  depth, is produced  by  this  method  and is stable  for 
several   seconds  af ter  removal of the  driving  force. 
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FIGURE 1 . Foam Study Appara tus  
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YIGURE 2 .  Foam Decay C u r v e  for 640  Turbine   Fue l .  

6 



FIGURE (a)  FOAM 
PRODUCED BY LOW 
LEVEL MECHANICAL 
AGITATION 

FIGURE ( b )  FOAM 
LAYER PRODUCED BY 
VIGOROUS MECHANICAL 
AGITATION 

FIGURE ( c )  
SEMI-STABLE 
FOAM 
PRODUCED BY 
VIGOROUS 
MECHANICAL 
AGITATION 

FIGURE 3 .  Foam Production  in 640 Turbine  Fuel . 

7 



A Paillard Bolex 1 6  mm camera  was  employed to monitor  flame  propagation. 
Kodak Ektachrome ER449 color f i lm was  used  in  these  studies.   For some studies ,  
Kodak f i l ters  ZA, 16,  and 29 were  used at  times to more clearly  define  the flame 
corona  boundary.  Marks  were  placed  on  the  wall of the  foam  tank  two  inches 
apart, as  a calibration  for  the  dimensions of the  f l a m e  kernel. The increment 
between  successive  frames (1/64 sec.) was   used  as  the  t i m e  standard. 

In addition, a capacitor  discharge  apparatus  was  designed  and  constructed 
for  this program. A number of high  voltage  capacitors  were  employed,  ranging 
from 0.0023 to 0 , 5  p farads. A charging  power  supply of 1 . 2  m a  provided  vol- 
t ages  from 5 to 11,000 volts. 

This  generated  spark  discharges from 1 t o  10 millijoules. For the  propa- 5 
gation  studies,  the  discharge  energy  was  fixed at about 50 millijoules. A standard 
electrode gap of 1/4"  was  maintained,  using  pointed  copper  electrodes  approximate 
ly 1/8" in  diameter. 

Test Results 

Flame  propasation. - Measurements  were  conducted  on  the  rate of flame 
propagation  through  typical  hydrocarbon  fuel foam. For  this  work, 640 turbine 
fuel  and JP-6 were  selected as  representative of relatively  low  volatility  and 
high  volatility  fuels. As an  additional  interest,  640  turbine  fuel  with 3% of a 
foaming  agent  (surfactant)  was  tested  to  determine  the  effect of bubble  or  cell 
size on  burning  velocity. The  foaming  agent  had  the effect of producing  smaller 
bubbles  in  the  foam. 

As the  foam can  be  produced  in a variety of depths,  it was  considered 
important to  evaluate  the  effect  of foam depth,  on  flame  propagation.  Therefore, 
the  ra te  of flame  propagation  for  all  the  fuels  was  evaluated  as a function of 
foam depth. 

Color  photography  was  obtained  for  all foam flame tests. These  films 
were  analyzed to obtain  the  radius of the  flame  kernel as  a function of t ime .  A 
group of three  photographs of 640 turbine fue l  is shown  in  Figure 4.  These 
photographs  show 640 turbine  fuel foam at a) electrical  ignition, b) burning  below 
the  foam surface,   and c) flame  breaking  through  the  surface  and  spewing  burning 
droplets of fuel to surrounding foam. 

A plot of the  experimental  data of flame  velocity  versus  burning  time is 
shown  in  Figure 5 for 640 turbine  fuel.  These  values  were  obtained from an  
ana lys i s  of the  f i l m  strips, Similar plots for JP-6 and  640  turbine  fuel  with  foaming 
agent  are  shown  in  Figure 6 and 7 .  

The flame  velocity is presented  in  these  plots  as a function of foam depth. 
It is seen  that   the  foam flame  velocity  was  independent of the  foam depth  under 
the  conditions  studied. 

A standard  procedure of placing  the  electrcdes .3t fixed  distances  under 
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FIGURE 4 .  Flame  Propagation  in  Typical  Fuel Foam 
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FIGURE 6 .  Flame  Velocity V s .  Burning T i m e  for JP-6 .  
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t he  foam was  employed.  This  resulted  in  ignition  always  occurring at the  
same dis tance  beneath  the foam surface.  Once  ignited , the  flame  would 
bum  through  the  surface of the  foam in  about  0.15 sec. , in   a l l  cases. This 
characterist ic t i m e  is indicated  on  Figures 5 and 7 .  

The  buming flame beneath  the foam generates  hot,   expanding  gases.  
These  expanding  gases  tend  to  push  the  flame  front  ahead,  and  in  this  buming 
stage  the  apparent  velocit ies  can  be many times the  normal  burning  velocity. 
After the  flame  has  burned  through  the  surface  the  hot  gases  are  relieved 
upward  away from the  foam. After this  point  the  burning  rate  slows. 

This  type of burning  phenomenon is indicated  in  Figures 5 and 7 .  
For  640 turbine  fuel  with  foaming  agent , a large  initial  burning  rate of about 
5 feet/sec. is observed.  The  burning  rate  then  drops  rapidly to a constant 
ra te  of about 0 . 5  feet/sec. after  the  burnthrough time of 0.15 sec. 

The  pure 640 turbine  fuel  (Figure 5) d i sp lays  more of a step  change 
from a propagation  velocity of about 2 feet /sec.   in   the  ini t ia l   s tage  to  a lower 
velocity of about  0.5 feet/sec. Again the  t ransi t ion is observed  at  0 .15  
seconds  burning  time.  Apparently,  the  larger  burning  rate  observed  with  the 
fuel  with  foaming  agent  present is due  to   the  smaller   cel l   s ize  of the  foam. 

The JP-6 did  not foam a s  readily a s  the  640 turbine  fuel.  This  lack 
of foam stabil i ty may be  due to the  additional  refining  operations  necessary 
to  produce JP-6 fuel.  Also ,  the   bubble   s ize   was la;.ger with JP-6. A plot 
of burning  rate  vs.  t i m e  for JP-6 is shown  in  Figure 6 .  This  fuel  did  not 
demonstrate a large  init ial   velocity a s  the  others   did.  The  final  velocity 
was,   again,   approximately  0.5  feet/sec.  

In  summary, the  init ial   high  velocit ies  observed may be  due to the  
burning gas  expanding  against  the  flame  front.  However,  this  effect  was 
much  more  pronounced  with  foams  of  smaller  cell  size. 

Isnit ion.  - A ser ies  of tests were  conducted to determine  the  critical 
ignition  energy for 640  turbine  fuel.  Ignition  energy  was  measured  at  various 
locations  in  the  foam.  Emphasis  was  placed  on  determining  where  in  the foam- 
air  fuel  system a spark  could  most  readily  be  discharged.  The  result of th i s  
portion of the  investigation is shown  in  Table 1. 

A foam depth of three  inches  was  employed  with  an  electrode  gap of 
1/4”.  The  breakdown  potential  was  found  to  be  5,500  volts at the  foam/air 
surface,  5 , 8 0 0  volts  in  the  bulk foam , and 1 1 , 0 0 0  volts  at  the  foam/liquid 
interface.  It  was  not  possible to discharge a 1 1 , 0 0 0  volt  spark  in  the  bulk 
liquid.  Measurements  greater  than 1 1 , 0 0 0  volts  could  not  be  made  with  the 
present  apparatus.  The  discharge  potential  in  air  was  not  measured  but  was 
obtained from Chemical  Engineers’  Handbook, 19 59. 

The  critical  ignition  energy  for 640 turbine  fuel  was  found to be  2 4  
mill i joules  at   the foam/air  surface  and 39 joules  in  the  bulk  foam.  Ignition 
did  not  occur  when a spark  was  triggered  at  the  foam/liquid  interface,  even 
at   the  highest   energy of our  equipment  which  was  approxim  tely 50-60 joules.  
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TABLE I 

SPARKING AND IGNITION LEVELS OF 640 TURBINE  FUEL/AIR  FOAMS 

Spark  Breakdown  Conditions 

Potential  Enerqy 
Location  Volts  Joules 

r0 Mr 300* "- 

B) Foam/Air Surface 5 , 5 0 0  0.006 

C) Bulk Foam 5 , 8 0 0  . 008  

D) Foam/Li quid 
Interface  11,000 39 

E) Bulk Liquid ** --- 

* Reference 11. 

Critical  Ignition  Conditions 

Potential Enerqy 
Volts Joules 

"- "_ 

11,000 0.024 

11,000 39 

** "- 
** "- 

** Greater  than  11,000 Volts required  to  spark  or  ignite. 
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It is noted  that   the  energy  necessary to igni te   the foam was  greater  at 
the  bottom of the  foam than it was at   the   surface.  It is possible  to  interpret 
th i s  fact in  terms of a fuel/aif  ratio--critical  ignition  energy  diagram. It is 
well  known  that  the  energy  required  for  ignition is a function of fuel-air  ratio. 
The resul ts  of the  ignition of the  640 turbine  fuel foam at the  foam-air  surface 
and  in  the  bulk foam have  been  displayed  on a fuel/air  diagram  in  Figure 8 .  
Here  the  experimental  points  are  plotted  on  an  extension of a fuel-air  ratio- 
critical  ignition  diagram  for  C7H16 from Reference 1 0 .  It is felt   that   the  curve 
for  C7H16  should be   s imi la r   to   the  640 turbine  fuel  at  the  lower  energy  region. 
From the  extrapolation of the  curve,  the  critical  ignition  energy, 24 millijoules, 
indicates a fuel/air  ratio  slightly  greater  than 3 times stoichiometric at the  foam/ 
air   surface.  The value of 39 joules  indicates a fuel/air  ratio of about 3.5 times 
stoichiometric  deep  in  the  bulk foam. 

In these  studies,  the  fuel/air  ratio  was  not  monitored.  However,  the 
indirect  evidence  indicates foam does  become  fuel  rich  with  increased foam 
depth. 
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FLAME  PROPAGATION IN FUEL VENT DUCTS 

In  transport  aircraft.,   the  fuel  tanks  are  vented to the  atmosphere to 
prevent  excessive  pressure.differentia1s  between  the  internal  and  external 

I surfaces of the  tank.  A s  the  aircraft   changes  alt i tude  there is a flow of gas  
either  into  or  out of the  fuel  tank,  depending  on  whether  the  aircraft i s  
climbing  or  descending;  more  exactly  on  whether  the  internal  tank  pressure 
is higher  or  lower  than  the  pressure  at  the  vent  outlet. A s  a result  of t h i s  
"breathing"  process,  flammable  fuel-air  mixtures  often exist within  the 
vent  l ine  and  the  tank  i tself .  It has  been  recognized for a number of years  
that   these  vapors,   once  ignited I can  propagate  through  the  vent  lines  and 
into  the  tanks,   causing  destruct ive  f i res   and  explosions.  

In  evaluating  this  type of hazard,   the  industry  has  always  considered 
t h e   a s c e n t   a s  .the  most  hazardous  portion of the  flight.  With a reduction  in 
external  pressure,  fuel  vapors from the  tank flow outward  toward  the  vent 
exit forming a flammable  path from the  vent exit to the  tank.  A s  a result  I 
most  research  work  has  been  directed  toward  the  characterization of th i s  
hazard. 

The  descent of an  aircraft  has  always  been  considered a relatively 
safe  flight  profile from the  standpoint of flame  propagation  because  with  an 
increasing  ambient  pressure,  only  fresh  air is  flowing  into  the  vent  system. 
One  factor  often  overlooked,  however, i s  the  fact that  when  an  aircraft 
encounters  turbulence or drops  one  wing,  fuel from the  tanks  can run  into 
the  vent  l ines.  The fuel  ultimately  flows  back  into  the  tanks  leaving  the 
walls of the  vent  wet  with  fuel.  Thus,  even  during  descent  and  level  flight 
one  often  finds  both  fuel  and  air  present  in  the  vent  lines. 

The objective of our t e s t  program was to  evaluate  the  propagation 
characterist ics of flame  in a system  consisting of fresh  air  flowing  along a 
fuel-wetted  vent  line. Tests were  run  with  both  low  and  high  volatility 
pure  hydrocarbons  in  the  presence of air  velocities  ranging from 0 to  1 0  f t  . 
per  second . 

Experimental  Apparatus 

For th i s   s e r i e s  of t e s t s ,  a simulated  vent  duct  was  constructed  con- 
sist ing of a 4 "  diameter  aluminum  tube! 1 0 '  long,  fitted  with  an  air  blower, 
ionization  probes, a fuel  cup  and a liquid  nitrogen  trap  to  cool  the  temperature 
of the  air  stream.  Figure 1 shows a diagram of the  apparatus  employed. A 
Hasting  Model  G-10  air  meter  was  employed to measure  the  air  stream  velocity. 
The  temperatures of the  air  stream  and  tube  were  held  between 15 and 18OC 
for t hese  tests. Pure  n-heptane,  n-octane,  n-nonane  and  n-decane  were 
selected to represent  typical  liquid  hydrocarbon  fuels.  The  n-heptane em-  

, ployed  was AMSCO (American Mineral  Spirits)  brand  technical  grade  and  other 
hydrocarbons  were  Phillips 66 brand technical  grade.  Chromatographic 
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FIGURE 1. Flame  Propagation Apparatus ,  Simulating an Aircraft Fuel 

Vent  Duct. 



” 

analys is  of the  n-heptane  indicated less than 1% n-octane a s  an  impurity. 
The  other  hydrocarbons  displayed  no  detectable  impurity  peaks  on  the 
chromatograph. 

Before each  experiment,  air,  cooled from the  liquid  nitro  en  trap,  was 
passed  through  the  tube,  When  the  tube  temperature,  reached 15 C ,  20 m l  
of the  liquid  fuel  were  quickly  placed  into  the  apparatus  in a manner to wet 
the  entire  length of tubing.  Next  the  airstream  flow  ’was  adjusted to the  desired 
velocity  in  the  tube,  and  the  fuel  was  ignited  at  the  downstream  end  with a 
wick.  The  rate of flame  propagation  against  the  airstream  was  measured at 
three  different  locations  in  the  tube. 

?l 

Some of the  propagation  rates  were  low  enough  that  these  measurements 
could  be  made  visually.  However,  in  the  faster  runs  ionization  probes  were 
employed. A 3 ”  diameter   glass   apparatus   was  used to obtain  photographic 
evidence of the  propagating  flame. A se r ies  of three photographs  showing 
typical  flame  propagation of n-heptane  against  an  airstream  velocity of 2 
feet/sec. is shown  in  Figure 2 .  

Test  Results 

The  flame  propagation  tests  were  run at  temperatures of 15OC to 18OC. 
At these  temperatures  three of the  hydrocarbon  fuels , n-octane,  n-nonane 
and  n-decane,  were  below  their  lean  flammability  limits.  Only  n-heptane, 
the  highest  volatility  fuel,  was  within  the  flammability  range,  see  Table I .  A 
short  wick  was  used at  the  end of the  tube  to  ignite  the  fuel.  Without  air 
flowing  in  the  duct , the  fuels  which  were  below  their  lean  limit  would  not 
propagate  in  the  tube,  even  in  the  presence of the  heat  from the  burning  wick. 
N-heptane , on  the  other  hand,  supported flame propagation  along  the  length of 
the  tube  following  ignition  without  air  flowing  in  the  duct. 

TABLE T 

LOWER  TEMPERATURE LIMITS OF F’LAMMABILITY 

n-heptane -4 

n-octane 18  
n-nonane 31 

n-decane 4 6  

The  experimental  results  are  listed at the  end of this section. The 
measurements of rate of flame propagation  in  the  aluminum  duct  are  listed  in 
Table 111. The results  obtained from color  photography  on  the  rate of flame 
propation  in  the  glass  apparatus  are  listed  in  Table IV. 
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3 in. DIA. GLASS TUBE -J 

3 in. DIA.  GLASS TUBE 2 

3 in. D I A .  GLASS TUBE 2 

FIGURE 2. Flame  Propagation in Simulated  Fuel Vent Duct. Fuel 
is n-Heptane. 
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After the initial tes t   ser ies  , where  propagation  was  attempted  without 
air   f low,  a  series of tests  were  run  in  which  a  predetermined  air  velocity  was 
established  in  the  duct prior  to  ignition.  In  the  presence of flowing  air, 
even  a t   veloci t ies   as   low  as  0.25 feet/  second, ,flame propagation  occurred 
against  the  direction of flow  for  all  four  fuels. As the  air  flow in  the  duct 
was  increased , the  rate of flame  propagation , against  the  direction of flow, 
increased  until it reached  a maximum as  illustrated  in  Figures 3 and 4. For 
al l   fuels   tes ted,   the  maximum spatial  propagation  velocity  occurred  at  an 
air   stream  velocity of approximately 3 feet/second. A s  the  air  stream 
velocity  was  increased  further,  the  spatial  velocity of the  flame  began  to 
decrease  until  it  became  stationary  with  respect  to  the  duct  at  an  air  stream 
velocity of approximately 6 feet/second.  Due  to  the  difference  in  volatility, 
each of the  fuels  exhibited  slightly  different  propagation  characteristics  as 
described  below. 

N-heptane  (Figure 3) demonstrated  two  types of propagatfng  flames: 
a blue  vapor  flash,  and  a  yellow  diffusion  flame.  The  spatial  velocity of the 
blue  vapor  flash  decreased  linearly  with  increasing  air  stream  velocity. This 
is demonstrated  on  Table TV in  that  the  sum of the  air  stream  velocity  and  the 
rate of flame  propagation is approximately  a  constant. At an  air  stream  velocity 
of 6 feet/second  a  standing  flame  (with  respect  to  the  tube)  is  obtained. The 
spatial  flame  velocity is the  observed  linear  rate of flame  propagation  with 
respect  to  a  fixed  point  in  the  tube. 

The  yellow-diffusion  flame,  observed  for  n-heptane,  displayed  an 
increasing  spatial  flame  velocity  against  an  increasing  air  stream  velocity 
up to  a maximum flame  velocity of 2.5 feet/second. After reaching  this 
maximum spatial   velocity  at   an  air   stream  velocity of about 3 feet/second  the 
spatial   velocity  decreased  to  zero  at   an  air   stream  velocity of 6 feet/second. 

The fuels  n-octane,  n-nonane,  and  n-decane (Figure 4) all  demonstrated 
the  same  type of yellow  flame  and  the  same  type of spatial   velocity  curve  as 
described  for  n-heptane. N o  blue  vapor  flash  was  observed  for  these  fuels. 
The maximum spatial  velocities  were much lower  than  observed  for  n-heptane. 
These  are  shown  in  Table 11. 

The reason  that  the  yellow  diffusion  flame  increases its velocity  with 
increasing air flow  can  probably  be  attributed  to  an  increase  in  the  oxygen 
supplied  to  the  flame  and  to  better mixing of the  burning  constituents. Both 
of these  factors  tend  to  increase  the  size of the  flame,  which  in  turn,  increases 
the  rate of vaporization of the  liquid  fuel  in  the  duct. As the  flame  spreads 
along the  duct,  an  even  greater  heat  release is obtained  and  this  leads  to  an 
increased  rate of vaporization  and  ultimately  to  an  increased  rate of flame 
propagation. 

In  addition  to promoting  flame  propagation,  the  increasing  velocity of 
the  air  stream  eventually  works  to  slow  flame  propagation. Above an  air  stream 
velocity of 3 feet/second,  the  flame  begins  to  be  slowed  in its spatial  velocity 

. until  it  ultimately is reduced  to  zero  net  velocity,  which  occurs  at  an  air  stream 
velocity of 6 feet/second. 
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r B L U E  VAPOR  FLAME 
(GLASS  TUBE) 

FIGURE 3. Spatial  Flame  Velocity vs Air Stream  Velocity 
for n-Heptane. 

FIGURE 4. Spatial  Flame  Velocity vs Air Stream  Velocity 
for n-Octane,  n-Nonane,  and  n-Decane. 
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In  this 4" duct  the  transition from laminar  flow  to  turbulent  flow  occurs 
a t   an air stream  velocity of about 2 t o  3 feet/second,  using a Reynolds  number 
of 2300, The  term  diffusion  flame  applies  directly  to flame propagation  in  the 
laminar  region. Above this  air   stream  velocity a transition  to  a  turbulent  or 
eddy  diffusion  flow  occurs.  Although,  the  type of flame  may  be  somewhat 
different  in  the  higher  velocity  region,  the  term  diffusion  flame is employed 
throughout. 

The  relationship  between  volatility  (or  molecular  weight)  and  spatial 
flame  velocity is shown  in  Figure 5 for the  four  hydrocarbons  studied.  It  is 
noted  that at high  volatility  (low  molecular  weight)  the  propagation is many 
times that of the  lower  volatility  (higher  molecular)  hydrocarbons. A dashed 
region is indicated  between  n-heptane  and  n-octane  because of the  lack of 
experimental  data  between  these  two  points,  in  the  transition  region, 

TABLE I1 

MAXIMUM RATE OF FLAME PROPAGATION I N  FUEL DUCT 

Hydrocarbons Maximum 
Flame  Velocity * 

(feet/sec) 

n-heptane  (vapor  flash) 8 
n-heptane  (diffusion  flame) 2 . 5  
n-octane  (diffusion  flame) 0 . 0 9  
n-nonane  (diffusion  flame) 0 . 0 2  
n-decane  (diffusion  flame) 0 . 0 1  

*Initia 1 condition sr 
Air temperature: 1 5  -18OC 

Total  pressure! 1 atm--sea  level 

22 



!OO I14 I28 142 
HEPTANE OC'PANE NONANE DECANE 

R4CLECULAR 1YEIGliT 

FIGURE 5 .  Maximum S p a t i a l  Flame V e l o c i t i e s  vs Molecular  Weight 
of Liquid  Hydrocarbon. 
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TABLE N 

COLOR  PHOTOGRAPHY OF n-HEPTANE IN GLASS FUEL  DUCTS 
I 

Blue  Vapor  Flame 
VA VF 

Run Number  Vapor  Flame Propagation VA -f VF Constant 
feet/sec 

60 
60 -A 
61 
6 1-A 
62 
62-A 
64 
64-A 
65 
66 
67 

1.17 
1.17 
0.167 
0.167 
0 
0 
2.73 
2.73 
3.1 
4.16 
5.10 

6 .O 

4.0 
4.0 
7.2 
8.0 
7.2 
4.0 
4 .O 

3.5 
2.2 
1.4 

7.2 
5.2 
4.2 
7.3 
8.0 
7.2 
6.7 
6.7 
6.5 
6.4 
6.5 
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MECHANICAL  DAMAGE TO AIRCRAFT SKINS FROM LIGHTNING 

Introduction 

Lightning  can  produce  structural  damage to aircraft  in  three  ways: 
first , mechanically; i. e. , from blast  effect , burning  holes , etc.; secondly,  
through  heating,  and last , by  pitting or erosion. 

In  studying  fire  hazards  associated  with  natural  electrical  discharges, 
the  program dealt  with  those  portions of the  lightning  stroke  which  produced 
the  heat   and  the  holes .  In a natural  discharge  there  are  often  several  high 
amplitude  current  spikes  connected  by a low  amplitude,  long  duration 
current.  The  heat  generated  by  the  long  duration  current,  followed by the 
blast  effect of the  high  current  spike  can  produce a hole  in  metal  aircraft 
skin.  It has  been  suggested  that   the  size of the  hole formed is proportional 
to  the  charge  transfemed (1) (2) , for any  given  thickness of skin.  If t h i s  is 
t rue ,  a ser ies  of curves  correlating  hole  size to charge  transfer  would  be a 
useful  tool  in  determining  the  typical  charge  transfers  encountered by air- 
craft  in  flight. 

Since a comprehensive  series  of  lightning tests were  planned  on 
aircraft  skins,  sufficient  tests  were  included  in  the  schedule to define  the 
problem  of hole  burning  and  its  relation to charge  transfer for such  materials 
a s  aluminum,  stainless  steel,  and  titanium. A ser ies  of tests were  a lso run 
to  determine  metallurgical  changes  in  the  metal  resulting from the   in tense  
local  heating  around  the  hole or, for that  matter , around  the  strike  zone 
when  no  hole  was  produced. 

Test  Apparatus 

The  experimental work  on metal  damage  included  two  test  series. 
The  first  tests  were run a t   the  G.E. High  Voltage  Laboratory  and  consisted 
of lightning  strikes to metal  samples to develop a correlation  between  coulomb 
transfer  and  hole  size.  The  second test series  involved  changes  in  metal- 
lurgical  properties of metal  samples  resulting from the  intense  heat  created 
by  the  charge  transfer.  These tests were  conducted  in  the  Dynamic  Science 
Laboratories. A description of each test setup  follows: 

Hole  burning tests.- A test chamber  was  constructed for t h i s  test 
s e r i e s   a s  shown  in  Figure 1. It was  constructed  with  one  side  panel  and 
bottom  panel  removed,  permitting  panels of transparent  mylar f i l m  to be  taped 
in place  during  the tests. This test chamber  served  for  the  hole  burning tests 
and  also for the  combustible  vapor  ignition tests which  followed.  The  top 
of the  chamber  was  fitted  with a set of toggle  clamps to permit panels  of the  
various test metals to be  easily  installed  and  removed.  Grounding of the  test 
chamber, to allow  return of the lightning  discharge  currents,  was  accomplished 
through a large  lug  fixed to one  side  panel.  A 1/4" tungsten  electrode  was 
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Test  Chamber 

FIGURE: 1. Test  Chamber  for  hole  burning  tests  conducted 

at General  Electric  High  Voltage  Laboratory 

I 1  K V D C  

5 MFD TOTAL CAPACITANCE 

FIGURE: 2. Electrical  Discharge  Circuit  for  Metallurgical 

studies  conducted at  Dynamic  Science 
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held  rigidly  positioned  above the test panel  and  served to direct   the   discharge 
current to the  desired  spot  on  the test panel. 

The  initial  high  current  spike was supplied from the  G.E. high  current 
generator  consisting of a 6pfd.  capacitor  bank  charged to a potential of 
100 I 000 volts.  The  low  amplitude  continuing  current  was  supplied from 
their  500 volt I 1000 kva dc  rotating  generator.  Measurements of the  current 
values  were  made  with  the  use of low  resistance karma metal high  current 
shunts  placed  in  the  return  circuits of both  sources.  Oscillograms of the  
current  waves  were  obtained for each  discharge,   using a GE HC-25 oscil lo- 
scope  (for  the  high  current  spike)  and  Tektronix 545 and 532 osci l loscopes 
(for  the  continuing  currents) . Electronic  timers  were  used to trigger  the  high 
current  generator  and  the  continuing  current  flow  in  the  proper  order. 

Metallurgical  damage.-  The  electrical test apparatus  used  in  the 
metallurgical  tests is shown  in  Figure 2 .  It cons i s t s  of a 5p  fd capacitor 
bank  charged  to a potential of 11,000  vol ts .  When discharged I it delivered 
300 joules of electrical  energy to the  metal  sample. A 1/8"  tungsten  elec- 
trode  directed  the  energy to the  desired  locat ion.  

The  discharge  time for the  circuit  is approximately 10 microseconds.  

Experimental  Technique  and Test Results 

Hole  burning .- A l l  tests employed  an  initial  current  spike of 38,000 
amperes  rising to i t s   c r e s t  in 7 . 5 ~ s  and  decaying  to 50% of crest  current  in 
1 2 . 5 ~  s , Figure  3.  This  value  was  chosen  because it is  within  the  range of 
current  which  has  been  measured  in  actual  lightning  strokes (1) . Continuing 
currents  ranging  in  magnitude  between 40 and 300 amperes  and  in t i m e  duration 
between  0.25  and 1 . 6 0  seconds  were  applied  following  the  high  current  dis- 
charge,  Figure  3a. In most   cases  I a tes t   sequence would b e  run  with  either 
the  current  or  discharge t i m e  held  constant  and  the  remaining  parameter  varied 
through a range  which  would  provide  coulomb  transfers  similar to those  
measured  in  natural  discharges. 

For the  tests made on 20 and 40 mil  aluminum , the  electrical  parameters 
were  set  to  maintain a constant  current of 115 amperes,  and  discharge times 
were  varied  between  0.30  and  1.5  seconds.  There  was some variation  in 
current  during  the  course of the   d i scha rge   a s  a result  of changes  in   the  res is t -  
ance  of the  arc.  These  variations  rarely  caused  the  current  amplitude to 
fluctuate  more  than  plus  or  minus  20%. 

For the  60 mil  aluminum I it was  necessary  to   increase  the  average 
current  level to 288  amperes  in  order to obtain  charge  transfers  great  enough 
to burn a hole  in  this  thicker  metal  within  the t i m e  periods (from 0.5 to L .5) 
sec .) chosen.  Tests on 60 mil th icknesses  of titanium  had  the  discharge t i m e  
held  constant  at  0 . 5  sec., in  order  to  obtain a hole  size  comparison  with a 
similar  discharge t i m e  on 20 m i l  t i tanium.  Using  this time increment (0.5 sec.) , 
tests had to be  made at current  levels  between 288 and 690 amperes  in  order to 
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FIGURE 3 .  

NOTE: 

Crest  is 38kA a t  7 . 5  p sec .  
Tail  reaches 50% va lue   a t  12.5 psec. 

Initial  high  amplitude,  short  duration 
current  wave  shape, common to a l l  
simulated  lightning  current  discharges 
applied  during  hole  burning  tests. 

Trace  has  downward  deflection  due  to 
placement of current  measuring  shunt 
in  ground  return  circuit. 
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Continuing  current. 
hvei-agc cui-rcnt Ls 143 amperes for  0.90 
scc . resul.-Ling in  discharge of 128 coulombs. 

Llajor divisions are 46 amperes and 200 msec. 

Arc voltage. 
Llajor divisions are 150 vol t s  and 200 msec. 

FIGURE 3a Oscillograms of continuing  current and corresponding 
arc  voltage fo r  hole burning t e s t  on .O40 inch a h -  
minum. Note  gradual  decrease in  current  amplitude 
and increase i n  arc  voltage,  indicating draw-out of 
a rc  as aluminum was eroded away. ( t e s t  no. '72) 
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obtain  the  same  range of hole   s izes   in   the 60 mil th ickness .  

Tests were  run  on .02,0" , .040" , and .060" thicknesses  of titanium 
and  aluminum. Tests were aGso run  on .030" stainless  steel.  Additional 
tests were  planned  for  stainless  steel  during  the  final test series:  however, 
these  were  temporarily  delayed  to  permit a ser ies  of simulated  fuel  vent 
s y s t e m  tests a s  part of a redirection  in  scope of this  contract .  

Results 

Hole  burninq. - The resul ts  of the  hole  burning  tests  for  titanium, 
aluminum  and  stainless  steel  are  shown  graphically at the  end of this   sect ion.  
Perhaps  the  most  significant  first  impression is the  wide  scatter  in  the  data 
points   which,   in   essence,   say  that  for any  given  coulomb  transfer a wide 
range of hole   s izes  might resul t .  Before beginning  an  analysis of the  data ,  
perhaps a few  words  are  in  order  concerning  possible  causes  for  this  wide 
sczt ter  of data  points.  

As described  previously,  the  electrode  was  rigidly  positioned  about 
1/4" above  the  test  sample.  This  gap  was  ionized  by  an  initial  high  current 
discharge of approximately 38 k amperes.  Following  this,  there  was a longer 
continuing  current  which  flowed from the  electrode  to  the  sample,  ranging  in 
magnitude  between 40  and 300 amperes  depending  on  the  charge  transfer 
desired.  The  metal  was  damaged  by  the  intense  heat  created  by  the  long , 
continuing  current  discharge.  This  damage  was  characterized by molten  metal 
around  the  discharge  zone  which  generally  resulted  in  the  formation of a hole 
i f  the  charge  transfer  was of sufficient  duration. An examination of the  data 
reveals   that   the   s ize  of the  hole  often  varied  considerably  for  the  same  charge 
transfer  even  when  all  other  factors  remained  constant. A careful  examination 
of a number of test   samples  reveals a possible  cause.  When  the  current  was 
flowing  between  the  electrode  and  the  test  sample  it  had a tendency  to move 
around  on the  metal  before it finally  stabilized  and  started  burning a hole. 
When  the  current  arc moved over  the  metal it distributed  the  associated 
heating  effects  over a relatively  lar7e  area of the  metal.  Thus a metal  sample 
often  exhibited a great  deal more damage  than  could be characterized by the 
area of the  hole.  

In  retrospect,  this  mobility of the  arc  can  probably  be  traced  to  the 
choice of cathode  and  anode. A dc arc, such as that  used  for  the  hole  burning 
experiments, is polarized  and  the  anode  and  cathode  processes  are  distinctly 
different. For example , the  cathode is bombarded  by  ions from the  discharge 
column,  while  electrons  strike  the  anode.  Potential  distribution  in  the  arc is 
usually  such  as  to  produce  the  highest   voltage  gradient  across  the  cathode 
sheath.  The cathode  spot  tends  to  be  highly  mobile,  whereas  the  anode  spot 
is almost  always  stationary,  changing  only  in  size  and  shape as the  discharge 
develops.  Current  densities  are  generally  higher  at  the  cathode. 

The  nature of the  polarity of lightning  strokes to aircraft  in  flight is not 
known. If the  stroke  enters  the  aircraft  at  one  point  and  leaves  at  another, 
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both  polarities  will be involved. All the tests made  during  the  hole  burning 
experiments  were  made  with  the test sample  serving 8s  the  cathode  and  the 
arc  electrode as anode.  Since  the  highest  voltage  appears  across  the  cathode 
shea th ,  it is probable  that tests to  date  represent  the more hazardous  polarity: 
on  the  other  hand,  the fact that  the  anode  spot is more stationary  permits  the 
heat  to  concentrate at one  point  and  this  could  result  in  the  earlier  formation 
of holes  and  ultimately a more  uniform distribution of data .  

Regardless of the  reason,  the  data  obtained  to  date  does  show a 
considerable  variation  among  the  hole  sizes  for a given  amount of charge 
transfer  to  the  test  metal. 

In  fact ,   the  scatter is so great  that a line  derived by least   squares  or 
by  other  techniques may have  little  meaning.  Nevertheless , there is a distinct 
trend  in  the  data  which  indicates  that  the  size of the  hole  is  a function of the 
charge  transferred. The  wide  scatter  in  results is partially  due  to  the fact that 
quantitative  evaluation of the  damage to the  metal  was  limited to the  measure- 
ment of the  actual   s ize  of the  hole  formed.  In a majority of c a s e s ,  it was 
apparent from visual  observation  that  additional  damage  had  occurred. The 
region  adjacent  to  the  hole,  for  example,  frequently  showed  tracking  and 
burning  which  did  not  result  in  burnthrough,  but  which  nevertheless  was 
caused  by  charge  transfers  to  these  regions. Some melting  and  resolidification 
of metal  along  the  edge of the  holes  was  also  evident.  Since  there  was  no 
quantitative  way of determining  how much of the  charge  transfer  actually 
produced  the  hole,  the  data  was  plotted  in  Figures 4 through 14 a s  i f  all of the 
charge  was  effective in burning  the  hole. 

With  the  foregoing  in  mind,  it  seems  appropriate to assign  greater 
significance  to  the  data on the  "upper"  side of the  region  shown  on  the  figures 
rather  than  to  that  appearing on the  lower  side,  since a larger  portion of the 
charge  transfer  must  have  been  effective in burning  the  larger  hole. The upper 
points  thus more closely  represent  the  areas of holes  which  can be burned  by 
the  corresponding  charge  transfer.  This  conclusion is strengthened  upon  close 
observation of the  damaged  metal,  where  the  greatest  "sidel'  effects of tracking 
and  burning  are  frequently  assaciated  with  the  smaller  holes  burned by a 
particular  charge  transfer. 

Thus , to  obtain a better  visual  picture of the  results  and  to permit a 
comparison  between  one  set of data  and  another,  lines  have  been  drawn  along 
the  upper  side of the  data  points  and  along a mean  path  through  the  center  to 
form a "zone" of damage  related  to  charge  transfer. On this  basis  comparisons 
can  be made  among the  results  obtained. 

Aluminum.- Most of the  testing of aluminum was  accomplished  by  use 
of a constant  continuing  current  amplitude  while  varying  time  durations a s  
needed to obtain  appropriate  variations  in  charge  transfer.  Currents of about 
115  amperes  were  used  for  the  tests  of  the 20  and 40  mil thicknesses  , and a 
current of 288 amperes  was  used  for  charge  transfer  to  the 60  m i l  th ickness ,  
s ince   use  of the  lower  current  amplitude  would  require t i m e  durations  in  excess 
of those found to  be  characterist ic of actual   s t rokes.  
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The  size of the  hole  burned  in  aluminum for a constant  charge  transfer 
appears   to  rise almost exponentially as  one goes o m  .060" to .040" to 
.020"  thicknesses.  Referring to Figures 4 throug l r  7 , a charge  transfer of 20 
coulombs,  the lowest amount  applied  during  these!tests , was found to burn a 
45 m m 2  hole  in  the 20 m i l  thickness,  and  slightly more than 60 coulombs  were 
required to burn a similar  size  hole  in  the 40 m i l  th ickness .  No  holes  of t h i s  
size  were  burned  in  the 60 m i l  thickness  however  until over 200 coulombs  had 
passed  through  the metal. A comparison of results  obtained kom tests on 
the   th ree   th icknesses  of aluminum shows  that   an  increase  in metal thickness  
resul ts   in  a reduction  in  the  area of hole  burned,  for  identical  stroke  dis- 
charges .  A 100  coulomb  discharge,  for  example,  burned  holes of between 
300 and 700 mm2 in 20 m i l  aluminum,  and  holes of between 0 and 140 mm2 
in a 40 m i l  thickness.   The same discharge  burned  only a pin hole  or no hole 
a t   a l l ,   i n  a sheet  60 m i l  thick.  For a l l   th icknesses ,   increasing  amounts  of 
charge  resul ted  in   increases   in   the  hole   s izes ,   but   exis t ing  data  is insuffi- 
cient to establish  an  exact  relationship. 

Titanium.- Most of the  titanium tests were  run  by  establishing a con- 
stant time duration of the  discharge  and  varying  the  current  as  needed to 
obtain  the  desired  variations in  charge  transfer. In titanium a s  in  aluminum 
the   s i ze  of hole  burned for a given  charge  transfer  again  appears  to  rise 
exponentially a s   one   p rog res ses  f rom the  thicker  material  such a s  .060"  to 
the  thinner metal such  as   .020".  

A 100  coulomb  discharge to a 20 m i l  sample  burned  holes of between 
50 and 200 mm2 (as compared  with 300 and 700 mm2 for  aluminum),  and 0 and 
20 mm2 in a 40 m i l  sample  (as  compared  with 0 and 140 m m 2  for  aluminum). 
The same discharge  was  insufficient to bum  all  the  way  through a 60 m i l  
th ickness  of titanium (as compared  with a pin hole  in  aluminum). A s  before, 
increasing  amounts of discharge  produce  increases  in  corresponding  hole 
sizes , but the linearity of the  relationship is not  clearly  defined. In one 
instance,  the  erAsting  data  shows  that a twofold  increase  in  the  amount of 
charge  transferred to 40 mi! titanium  resulted  in a hole  size  approximately 
4.5 times greater.  This  relationship  can  be  approximated, of course  only 
within  the 100 through 300 coulomb  charge  transfer  range  which  was  run. 

During  these tests a charge  transfer of 60 coulombs  was found to bum 
holes  of between 0 and 65 mm2 in  the 20  m i l  th ickness .  A discharge of 100 
coulombs or more  burned  holes of between 0 and 30 m m 2  in  the 40 m i l  thick- 
n e s s ,  and  the smallest hole formed  during the  tests on 60 m i l  th icknesses  of 
aluminum  occured after 180 coulombs  had  been  discharged.  These  holes 
ranged  between 20  and 60 mm2.  

Stainless  steel.- Tests were  made  on 30 m i l  th icknesses   only.   Holes  
were  burned  in  this  metal  at  charge  transfers  above 60 coulombs  see  Figures 
1 2  and 13. The  shortened  test program failed to permit  sufficient tests to 
establish  the  relationship  between  charge  transfer  and  hole  size  above  this 
level. 

Conclusions.-  The  results  obtained from th is   phase  of testing  provide 
only a vague  relationship  between  hole size and  charge  transfer.  Where  the 
resu l t s   a re  less scattered a linear  relationship  between  hole  size  and  charge 
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transfer is apparent;  however,  in  no case can a single  line  be  drawn to define 
the  relationship;  rather a "region"  or  "zone" is more  appropriate.  Undoubtedly, 

was  responsible  for at  leas t  some of the  scat ter   obtained,  Also, more  uniform 
results  might  be  obtained  by  reversing  the  polarity of the  discharge  and  taking 
advantage of the  stable  anode spot. 

' the   l ack  of a more  comprehensive  method of evaluating  damage to the  metals  

Tests showed  that  both  titanium  and  stainless  steel  are  more  resistant 
to hole  burning  than  aluminum.  This  might  be  expected  since  the  melting 
point of aluminum (12OOOF) is less than  either  titanium (30OOOF) or  stainless 
s tee l  (255OOF). The  few tests run on  stainless  steel   show  that  i t   has  about 
t he  same res i s tance  to hole  burning a s  titanium.  Here  again  this is not 
unreasonable  since  their  melting  points  are  very  close. 

The  following  table  shows  comparisons of results  obtained for an 
identical  stroke  carrying  100  coulombs of charge  applied  to  the  various  metals 
and  thicknesses   tes ted.  

100  Coulomb  Discharge 

Type of Metal 

Aluminum Titanium  Stainless  Steel 

Thickness 

20 mil 
30 mil 
40 mil 
60 m i l  

300-700 
"" 

0-140 
Pin Hole 

Hole  Sizes (mm2) 

50-200 

0-20 
N o  Hole 

"" 

40-80 
"" 

Init ially,  it would  appear  that  titanium is much less   suscept ible  to a lightning 
stroke  than is aluminum,  since  considerably  less  titanium  metal is eroded 
away  by a given  charge  transfer  than  aluminum.  This  conclusion  cannot  be 
extended to the  evaluation of hazard  when  these  metals  are  utilized  in  fuel- 
tank  walls , since  ignition tests on  titanium  have  proved  that  ignition  will 
occur from discharges  much  lower  in  magnitude  than  those  required to produce 
a hole.  

In the  hole  burning tests two  techniques  were  used to vary  the  coulomb 
content  of  the  discharge.  The  first  technique  was  to' fix the  duration of the 
discharge  and  vary  the  current  amplitude.  The  second  technique  was  to fix- 
the  current  amplitude  and  vary  the  discharge t i m e .  When  both  techniques 
were  tried  on  one  metal  sample  and  the  total  charge  transfer  held  constant, 
larger  holes  were  burned  on  the  test  which  had  the  highest  current  amplitude. 
Since  the  energy  associated  with  the  discharge is directly  proportional to 
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the  t i m e  duration  and  proportional to the  square of the  current  amplitude, 
it  is clear  that   greater  energy  release m u s t  be  associated  with  higher  current 
discharges,  even  though  the  duration is proportionately  decreased so that 
the  charge  transferred  remains  the  same.  This is probably  the  reason  why 
larger  holes  were  burned  during  the  tests  where  the  current  discharge  was 
held  constant.  Comparisons of tests made  under  the  two  conditions for 20 
m i l  th icknesses  of titanium, for example,   can  be  seen h-om observation of 
the   t e s t   r e su l t s  a s  plotted  in  Figures 8 and 9 .  These  resul ts   indicate   that  
the   ra te  of charge  transfer to the  test metal is significant , a s  we l l   a s   t he  
amount of charge  transfenred. 

The  hole  burning tests have  served  to  provide a rough  approximation 
of a zone of the  damage  which  can  be  inflicted  upon  various  metals  by 
lightning  discharges.  These tests have  shown  that  the  rate of charge 
transfer is an  important  factor  in  determining  the  damage  that  can  occur. 
A s  a result  of t h e s e   t e s t s  it is clear  that  more  consideration  must  be  given 
to the   assessment  of damage.  Merely  measuring  the  size of the  hole is 
not  sufficient. Some consideration  must  also  be  given  to  peripheral  damage 
and  evidence of overheating  in  the  vicinity of the  strike  zone.  Additional 
work  should  continue  into  the  investigation of the  effects  of polarity  on 
damage.  Future  tests  run  with a less  mobile  arc  and  with  the  time of d is -  
charge  held  constant  might  provide a better  defined set of data  points,  
particularly i f  the  interpretation of damage  can  be  modified  to  consider  the 
area  surrounding  the  strike  zone. In the  meantime,  some  use  can  be  made 
of the  "zones"  or  range  of  charge  transfers  which  have  been  identified  with 
hole  sizes  in  this  report. 

Results 

Metallurgical  studies .- In this  investigation,  the  material   samples 
were  repeatedly  struck  with  an 1 1 , 0 0 0  volt  discharge  such  as  shown  in  Figure 
2 .  A l l  discharges  were  directed  at  one  spot  on  the  material so that  we  could 
evaluate  the  cumulative  damage. After each  strike,   the  thickness of the  
material  was  measured  with a ball  head  micrometer.  The  material  samples 
measured 1/2" in  width  and 2" in  length. Tests were  run  on  thin  samples 
of aluminum,  titanium,  and  stainless  steel.  Sample  thickness  varied from 
0 . 0 0 5  up to 0 . 0 1 6 " .  

Actual test procedures  involved a large  number of samples of each 
material  and for each  thickness.  The  first  sample of each  type  was  struck 
once,  then  examined.  The  second  sample of each  type  was  struck  twice,  
then  examined.  The  third  sample of each  type  was  struck  three  t imes , then 
examined , etc.  Testing  was  terminated  when a hole  was  produced by these  
successive  strikes.  The  metal  was  allowed  to  cool  between  each  discharge. 

In the  table  below  are  l isted  the number of e lectr ical   d ischarges 
required  to  produce a hole  in  these  materials: 
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TABLE I 

Total Energy  and  Number of Electrical  Strikes 
Required to Produce a Hole in Test Materials 

N o .  of Electrical 
Alloy Thickness  Strikes  to  Produce 

Inches a Hole 
N 

Aluminum 0 . 0 1 2  

Aluminum . 0 1 6  
Titanium 
Titanium 

.005 

. 0 1 6  

5 
6 

3 
1 3  

Stainless  Steel . o  10 24  

Total Energy 
300N 

Joules 

1500 
1800 

900  

3900 

7 2 0 0  

Microstructure.-  Metallographic  analyses  were  conducted on the  0 . 0 0 5 "  
and  0.016"  commercially  pure  titanium  metal.  The  analysis  was  conducted 
af ter  a number of electrical   discharges  had  been  directed  to  the  same  spot 
on a sheet of material.  What is seen  in  the  photomicrographs is an  edge-on 
view of the  specimen  cut  across  the  center  at  the  point of e lectr ical   d ischarge.  

Figures 14 and 15 show  the  structure  near  the  center of the  discharge 
zone on 0.005"  thick  commercially pure titanium.  Figure 1 4  shows  the  effect 
of one  discharge,  Figure 15 the  effect of two  discharges,  and  Figure 16 the  
effect of three  discharges.  The  first  discharge  produced  fusion  and  overheating 
in  the  surface  zone.  Figure 17 shows  this  overheated  structure  at  higher 
magnification.  The  immediate  surface  layer  had  been  melted.  Then  under 
this   zone  was a layer of material  which  had  not  been  melted  but  which  had  been 
heated  above  the  beta  transus  temperature.  The  second  discharge  produced 
substantial  melting  and  thinning of the  material.  Figure  18  shows a crack  in 
the  fusion  zone  after  the  second  discharge.  The  third  discharge  produced a 
hole  in  the 0.005" material.  Figure 18 shows  the  structure  at   the  edge of 
the  hole.  The  white  layers  represent a severely  oxidized  zone.  The  entire 
thickness  benea:h this  layer  had  been  heated to a temperature  above  the  beta 
transus.  Subsequent  rapid  cooling  produced  the  acicular  alpha  structure. 

Figures 19 ,  20 and 2 1  show  the  structure of the  0.016 'I thick 6A1-4V alloy 
after  having  been  exposed  to 1 , 5 , and  13  discharges,   respectively.  Again , 
the  fusion  and  overheated  transition  zones  can  be  readily  seen.  Note  again , 
the  general  thinning  resulting from additional  discharges.  Figures 2 2  and 2 3  
show  the  surface effects a t  9 2 0  and 1200 x magnification. 

In  summary, these  electrical   discharges  produced a region of high  oxida- 
tion  near  the surface. A s  much as  90% of the  material  was  oxidized  in  two 
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discharges of equal  magnitude.  There  was  nolevidence of cafbide  or  nitride 
formation from these  discharges.  

Mechanical  properties. - Tensile  strength  and  elongation tests were 
conducted to provide  information  on  changes  occurring  in  the  mechanical 
properties of these  aircraft  materials. For t hese  tests samples  were  selected 
of 0.015" 6A1-4V titanium  alloy  which  had  been  subjected to 0, 2 ,  and 10 
discharges.  .: . 

These  specimens  were 1/2" wide  and 2" long. A standard  apparatus, 
was  employed  for  these tests. Figure 24 shows  two of these  specimens  af ter  
testing. 

The results  are  shown  in  the  following  table  for 6A1-4V titanium  alloy. 

No. of Electrical 
Discharses Tensile  Strenqth 

P.  s. I. 
Elonsation 

% 

0 155 , 000 1 2  

2 148,000 6 

10 96,000 2 

The minimum governmental  accepted  strength  for  this  alloy is 150,000  psi. 
It can   be   s een   i n  our tests, two  discharges  reduced  the  tensile  strength  below 
the  acceptable  l imits.  

For duct i l i ty   the minimum accepted  standard is 10%. Here it is  found 
two  discharges  produced  an  elongation of 6%,  almost  one-half  the  accepted 
minimum.  This  result is particularly  significant  in  that  one  single  lightning 
strike  would  certainly  reduce  the  ductility  below  the  accepted  minimum. 

The  overall  weakening of the  material  can  be  attributed  to four  factors: 

1. Creation of thermal  stresses  (opposite of annealing)  kom  rapid 
heating  and  cooling. 

2 .  Raising  temperature of specimen  above  its  beta  traasus  temperature, 
quenching  in  brittIe  high  temperature  crystal form. 

3 .  The  general  thinning of the  material from each  discharge.  

4 .  Mutual  heating of a portion of the  specimen  above its melting  point, 
a l so  producing a condition of very  low  ductility. 
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FIGURE 1 2 .  
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F I G U R E  14. P u r e   T i t a n i u m ,  0. 005" Th.ick, 5OOX, One 
E l e c t y i c a l   D i s c h a r g e .  

F I G U R E  15. P u r e  Ti tani .xx,  0. 005" Th ick ,  500X,  TWO 
E l e c t r i c a l   D i s c h a r g e s .  
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FIGURE 16. Pure  Titanium, 0.005" Thick,  500X, Three  Electr ical   Discharges.  
Note Appearance of Herr ingbone  Structure   Character is t ic  of Brittle 
High  Temperature Beta Form. Also, No te   P resence  of Highly 
Oxidized  Region at  Surfaces .  

FIGURE 17. Pure  Titanium, 0.005" Thick,  9OOX, One   Elec t r ica l   Discharge .  
Note Region of Overheat ing  and  Fusion Next to Surface.   The 
Immediate  Surface  Layer  had  been  Melted.  
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FIGURE 18. Pure Titanium, 0.005" Thick, 92OX, Two Electrical  Discharges 
Note  Crack  in  Fusion  Zone. 

FIGURE 19. 6 A1 . -4V Titanium Alloy, 0.016'' Thick, 260X, One Electrical 
Discharge.  Note Oxidized  Surface. 
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FIGURE 20. 6 A1 . -4V Titanium  Alloy, 0 .01  6" Thick, 920X, One  Electrical  
Discharge.  Note  Herringbone  Structure of Oxidated  State.  

FIGURE 21. 6 A1 .-4V Titanium  Alloy,  0.016''  Thick, 12OOX, Five  Electrical 
Discharges.  Note under  High  Magnification  Amorphous  Structure 
of Oxidized  Titanium at Surface,  with  High  Temperature Beta Form 
Underneath. 
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FIGURE 2 2 .  6 A l .  -4V Titanium  Alloy, 0 .016" Thick, 200X. Five Electrical 
Discharges.   Note   Eighly  Oxidized  Surface.  

FIGURE 23. 6 A1 .-4V Titanium  Alloy, 0.015'' Thick, 260X, Thirteen  Electrical 
Discharges .  Again  Note  Oxidation  and  General  Thinning 
Resulting  from  Additional  Discharges. 
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FUEL IGNITION THROUGH AIRCRAFT  SKINS 

Introduction 

The  work  on  lightning  strikes to aircraft  skin  was  primarily  concerned 
with  defining  ignition  mechanisms of fuel  in  contact  .with  the  underside of the 
skin.  The  investigation  was  not  limited to ignition  produced  by  burning a 
hole  through  the  skin  but  was  equally  concerned  with  the  possibility of 
lightning  producing a localized  temperature  "hot  spot"  on  the  undersurface 
of the  skin  which  would  remain at an  ignition  temperature for a sufficient 
period of t i m e  to  ignite a combustible mix tu re .  The  relationship  between 
ignition  delay  and  ignition  temperature for a typical  hydrocarbon is shown 
below. 

2800 2400 2000 I600 1400 
TEMPERATURE, O F  

Titanium  and  stainless  steel  on  the  other  hand,  have  relatively  low 
thermal  conductivities  and  high  melting  points (300OOF and 2500°F respec-  
tively).  Lightning  striking  these  materials  could  produce  temperatures  in 
the  str ike  zone  up to their  melting  points  without  producing a hole.  Referring 
again to the  above  curve,   the  ignit ion  delay  at   these  temperatures is in the 
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millisecond  range.  Considering  the  lower  thermal  conductivity of these  
materials,   there  was good reason  to   bel ieve  that   an  e lectr ical   d ischrge 
could  create a "hot  spot"  which  would  produce  ignition. 

Thus  our  program,  which  was  largely  experimental,  was  designed to 
characterize  the  temperature  gradients  created  by  electrical  discharges , 
varying  in  their  coulomb  content , and  to  relate  these  to  their  ignition  capa- 
bility  in  terms of ignition  delay  time  and  the  fuel-air  ratio of the  combustible 
mixture. Tests were  run  on  copper,  aluminum , stainless  steel   and  t i tanium 
i n  thicknesses  ranging from .020  to .060  inches .  

Towards  the  end of the  program a mathematical  model  was  developed 
to  correlate  the  experimental  data  and to facilitate  parametric  studies of 
ignition  hazard  in  terms of the  physical   properties of the  material,  the  fuel- 
air  ratio  and  the  energy  transferred by the  e lectr ical   d ischarge.  

In summary the  program objectives  were: 1) to  obtain  the  coulomb 
levels  of l ightning  discharges  necessary  to  ignite a typical  fuel-air  mixture 
through  metal  surfaces of aluminum , titanium , and  s ta inless   s teel  , 2) to  
measure  the  time of fuel  ignition  after  initiation of the  lightning  strike  for 
the  above  mater ia ls ,   and 3) to  determine  the  mechanism  by  which  fuel 
igni t ion  occurs   in   these  cases .  

Test Apparatus  and  Techniques 

The  same test chamber  which  was  used for the  hole burning  experiments 
and  which is  described in the  previous  section  was  employed for t h e s e  tests. 
Two high  speed  cameras  were  positioned  to  record  the  ignition  and  the  tem- 
perature  distribution  on  the  undersurface of the  metal  sample.  Through  the 
mylar  walls of the  chamber a Hi-Cam  camera  in  front of the  test   chamber  was 
loaded  with  high  speed Kodak Ektachrome  film  and  photographed  the  discharge, 
burnthrough  and  vapor  ignition. A Fastex  high  speed  camera  below  the 
chamber  was set up to  view  the  undersurface of metal  sample. It was  loaded 
with Kodak infrared  film  and  recorded  the  temperature  distribution  around  the 
strike  zone  and  the  ignition  and  propagation of the  flame. 

Fuel  ignition  times  were  established from the   ana lys i s  of both  the 
color  and  inkared  films. A check on these  measurements  was  obtained  through 
use  of a sensitive  microphone  placed  into  the  test  chamber. 

A sketch of the  electrode  configuration  and its relation to the  metal 
sample is shown  in  Figure 1. The  electrical   discharge  consisted of a two- 
component  wave  which is characterist ic of a natural  stroke.  It  consisted of 
a 38kA high  current  spike  with a rise  t ime of 7 . 5  microseconds  and a decay 
time of 12.5  microseconds.  This  initial  spike was followed  by a low amplitude 
current  flow of between 90 and 150 amperes  lasting for periods  up  to 1 second,  
depending  on  the  charge  transfer  desired  (Figure 2a) . In addition a few tests 
were  conducted  with a three  component  wave  shape  such a s  shown  in  Figure  2b. 
In addition to the  38U  initial  peak  and  the  low  amplitude  continuing  current , 
a middle  component of about 1400 amps  lasting for 80 mill iseconds  was 
employed.  This  was  the  same  test  arrangement  employed  in  the  hole  burning 
experiments, a l l  discharges  were of posit ive  polarity  with  the  test   metal  as 
cathode. 
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FIGURE 1. Test Apparatus for  lightning  fuel  ignition  studies. 
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FIGURE: 2b.  Three  Component  Wave  Shape 

FIGURE 2 .  Typical  Current-Time  Relationship of Simulated  Lightning 
Discharges  Employed. 
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The tests were  conducted  by  selecting  an  amperage  discharge level 
for the  continuing  current  portion of the  strike  and  then  varying  the  coulomb 
content of the  stroke by changing  the t i m e  duration of the  current  flow. T o  
relate charge  transfer to ignition , each time the  metal skin  was  struck  the 
t i m e  duration of the current flow was  increased  until  ignition  occurred.  On 
aluminum  and  copper a hole  was  required  before  ignition  was  achieved. On 
ti tanium  and  stainless  steel ,  it was  possible  to ignite  the  mixture  without 
burning a hole.  In t h e  case of t h e s e  metals , the  duration of current  flow 
was  increased  unti l  a hole  was  burned  in  the  metal   sample.   The  ignit ion 
times and  the  ignition  mechanisms  were  compared  under  these  circumstances 
i .  e. , by  hole  burning , with  the  mechanisms  and  delay  in  the  presence of a 
hot  spot  only. 

For aluminum a current level of approximately 90 amperes  was em- 
ployed. For  titanium  and  stainless  steel, a current of 130 to 140 amperes 
was   used .  For a combustible  mixture  propane  and  air  in a ratio  that  was 
1 . 5  times stoichiometric  was  employed.  This  ratio is generally  considered 
to have  the  lowest  ignition  temperature. To test t h i s ,  a few tests were  also 
run a t  0 -75  and 2 . 2 5  stoichiometric. 

In addition to the  photographic  coverage,  instrumentation  consisted 
of a temperature  sensitive  paint  applied  to  the  undersurface of the  skin.  By 
this   means it was  possible  to record  peak  temperatures for radial   d is tances  
away from the  s t r ike  zone.  

T e  st Results 

Titanium.-  The  results of the  tests on 2 0  mil  titanium  showed  that a 
two-component  discharge  such  as  shown  in  Figure 2a  with a charge  content 
of 5.5  coulombs  transferred  by  an  average  current of 90  amperes  for a period 
of 6 1  mill iseconds is sufficient  to  cause  ignition of the  fuel-air  mixture  1.5 
times  stoichiometric. A t  th is   level   no  hole  is produced:  the  ignition  resulted 
from a hot  spot  only.  The  hot  spot formed is very  small  and  appears a s  only 
a discolored  circular  area  about 1 to 2 mm in  diameter on the  underside  of  the 
strike  zone.  The  results of a l l  tests are  listed  in  Table IV (Appendid. In 
addition, Figure 3 shows a ser ies  of three  photographs of a 100  coulomb 
lightning  strike to 20 mil  titanium. 

Tests performed  in  the  same  manner  upon 40 mil th icknesses  of titanium 
also resulted  in  ignition  occurring  at  charge  transfers a s  low a s  5.75  coulombs. 
The  waveform of such a discharge is shown  in  Figure 4 .  This   charge  was 
transferred  by  an  average  current of 93  amperes for 63  milliseconds.  Other 
tests made  at  this  and  greater  amounts of charge  transfer  resulted  in  ignition. 
It is very  interesting to note   that  20 and 40 m i l  th icknesses  of titanium  both 
require  the  same  amount of charge  transfer to cause  ignit ion.  

The  results of the  tests on 60 m i l  th icknesses  of titanium  did  not 
follow  the  same  pattern of low  coulomb  ignition  threshold  levels  associated 
with  the 2 0  and 40 m i l  th icknesses .   These tests showed  that  for  charges 
transferred  at a ra te  of about 115 amperes  for a period of .95  seconds a total  
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FIG 

FILM 43 MILLISECONDS 
START OF DISCHARGE 

FILM 50 MILLISECONDS 
START OF DISCHARGE 

AFTER 

AFTER 

UR€ 3 .  High  Speed  Photography (3500 frames/second) of a 
100 coulomb  lightning  discharge  to 20 mil  titanium 
sheet.  Camera is viewing  the  underside of sheet  at 
bumthrough.  Ignition of fuel vapor  present  can  not 
be  readi ly   seen  in   these f i l m s .  
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of 107 coulombs of charge  was  necessary to cause  ignit ion.  It is not  under- 
stood why t h e  60 m i l  sample  requires a much greater  coulomb  content  for  fuel 
ignition  than  the 20 and 40 mil  samples. It is recommended  that a 50 m i l  
sample  be  tested to help  clarify  this  question, 

Figure 5 shows  the metal discoloration  on  the  underside of the  test 
metal  resulting from the  transfer of 125  coulombs  for 60 m i l  titanium. A sum- 
mary of the  coulomb  ignition  thresholds for a 1.5  stoichiometric  propane-air 
mixture is given  in  Table I for a l l   mater ia ls   s tudied.  

TABLE I 

COULOMB IGNITION THRESHOLDS FOR 1.5 
STOICHIOMETRIC PROPANE-AIR  MIXTURE 

Material  Titanium Aluminum Stainless  Steel  
Thickness (Ti-8Al- 1MO-TV) (2024'13-3) (Series 304) 

0.020" 
0.040" 
0 . 0 6 0 "  

Coulombs Coulombs Coulombs 
5.5 not  determined 4 . 4  
5.75 20 1 2  

100/125 46 4 1  

All th icknesses  of titanium  sheet  tested  ignited fuel vapor  by a hot 
spot; a hole  was  not  required.  Titanium , with its high  electrical  resistivity 
(Table II) generates  a larger  amount  of  heat  than  materials  such a s  aluminum. 
Also,  the  heat  generated is  contained  in  the  strike  region for. a relatively 
long  time  due to its low  thermal  conductivity. A s  a result  a high  temperature 
region  exists  in  the  vicinity of the  lightning  strike for a much  longer  period 
of time  than for aluminum. 

Knowledge of the t i m e  of fuel  ignition  after  the  initiation of the  light- 
ning  stroke  (Table III) is important to establish  the  ingition  mechanism.  Thick- 
n e s s e s  of 20 and 40 mil  titanium  displayed  ignition  times of about 44  and 7 2  
mill iseconds  respectively  at   electrical   discharges of the  order of the  coulomb 
ignition  threshold.  The  mechanism of fuel ignition by  hot  spots is most l ikely 
the  transfer of heat from the  hot  undersurface to the   gas  by conduction.  When 
a sufficient  amount of the  gas  has  the  required  amount of thermal  energy, 
ignition  occurs. 

Some tests were  conducted  on 20 m i l  titanium  with a three-component 
discharge  wave  a t   levels  much  greater  than  the  threshold, as  shown  in  Figure 
2b.  I t   was found that  ignition  occurred  in  the 2nd component at a current of 
1350  amps  and a t i m e  of 5 mill iseconds.  A t  ignition,  about  6.5  coulombs  had 
been  transferred  to  the  metal  which is in  agreement  with  the  threshold  figure. 
Ignition  occurred before burnthrough  about 40 mill iseconds  later.   This demon- 
strates  that  even  with  high  current  strikes , such a s those  found  in  nature , 
fuel  ignition occurs following a fixed  coulomb  transfer  which is very  near  the 
threshold  region.  This  demonstrates  the  hazard  that exists from fuel  vapor 
ignition  by a surface  hot  spot. 
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TABLE TI 

TABLE OF PHYSICAL  PROPERTIES 

Thermal 
Conduct iv i ty   Spec i f ic   Heat  of 

MeltindJ BTU/ft Res is t ivity  Heat  Fusion  Density 
Point F S e c  OF/in Microhm-cm  BTU/lbPF BTU/lb lbs/in3 

Aluminum - 11 00-0 1200  1540 3 0 . 2 4  169  0 .100  
- 2024-T-3 950  840 167 0 . 0 9 8  

S t a i n l e s s   S t e e l  
cn 
Q) -304  2550 1 0 5  7 0  0 . 1 2   1 0 8   0 . 2 8 6  

Titanium -100-A 3200 112 60 0.135 137 0.164 

- Ti-6A1-4V 3000  52 170  0 . 1 3  

- Ti-8Al-lM-IV 3000  50 2 00 0 . 1 3  



" 

i 

Continuing  current 
Major divis ions a re  46 amp:; and 20 rn::c?c. 

In tegra l  of continuing cur*ri:nt 
PJla,jor divis ions arc 11.5 coulombs and 20 rnsec. 

FIGURE 4. Oscillograms of 5.75 coul-omb con-l;inu.ing c u r r e n t  
discharge  appl ied  to  .ot+o lnnh t i t an i lm  (TI-8AL- 
U L I O - I . ~ )  r esu l t ing  i n  formation of a small. hot 
spot and ign i t ion  o f  fuel-air  mixture. 
( t e s t  no. 235)  
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FIGURE 5.  Metal  discoloration  resulting from hot  spot 
formation  on  under  side of 60 mil  thickness of 
titanium  resulting from a 125 coulomb  charge 
t ransfer  to the  top  side.  Hot  spot was 
sufficient to cause  ignit ion of fuel  vapor. 
Hot spot is shown  full  scale. 
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TABLE 111 

DISCHARGE  AND IGNITION TIMES AT COULOMB IGNITION THRESHOLD 
REGION 

Titanium Aluminum Stainless   Steel  
Thick-  Cou-  Discharge  Iqn. Cou- U i s .  Ign. Cou- Dis .   Ign .  

~ 

n e s s  lomb Time  (Gs) Time  lomb Time T h e  lomb T i m e  T ime  
(m s) (ms) (ms) ( m 4  (ms)  

0.020"  6 56 44 4 .4  48 125 
"8 . O  55 105 

0 .040"  8 62 7 2  2 2  130 130 
* 37 300 100 

0.060" 107 950 9 00 

* Above threshold  level. 

Photographic  evidence  was  obtained of the  burnthrough  for  some of 
these  tes ts   conducted at  very  high  coulomb  levels.  It  was found that  molten 
titanium  particles from the  bumthrough  are  blown  into  the  tank  at  high 
velocities.  The  high  speed  photography  indicates  these  particles  travel  at 
a speed of about 200 feet/second  measured  at a dis tance  of one  inch  below 
the  surface.  It was also observed  that   these  particles  ignite  the  fuel  vapor 
as they  travel  through  the  contaiLler.  The  particles  are  travelling much faster 
than  the  flame  front  which is probably  burning at   about  10 feet/second. In 
th i s   case   the   par t ic les   ac t  a s  a match,  lighting  the  gas  through  which  they 
are   pas   s ing.  

Aluminum .- Tests were  made upon 40 and 60 mil  aluminum  in the  same 
manner a s   t h o s e  made  upon  titanium.  The  tests upon 40 m i l  th icknesses  of 
aluminum  were al l   made  a t   ident ical   ra tes  of charge  transfer of about  125 
amperes.  Here  the t i m e  duration  was  gradually  increased  until  ignition 
occurred. It was found that  20 coulombs  were  necessary to cause  ignition 
of the  fuel-air  mixture for the 40 m i l  sample. For the  60 m i l  th ickness  of 
aluminum a minimum of 46 coulombs of charge  must be transferred  to  cause 
ignition.  This  transfer  required  current  flow for an  average of 0 .35  seconds.  
A hole  was  always formed  simultaneously  with  ignition for the  aluminum tests. 

One of two  mechanisms  can  cause  ignition  with  hole  formation: 

1. Molten  aluminum  metal  blown  into  the  interior  of  the  fuel  tank 
is responsible  for  fuel  ignition. 

2 .  The  plasma  directly is responsible for  fuel  ignition. 
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Both of these mechanisms  require  the  occurrence of a hole  for  ignition 
Molten  aluminum from the hole blown into  the  combustible  mixture  would 
be capable  of igniting  the  propane/air  since  the  spontaneous  ignition t em-  
perature of propane is 92OoF and  the  temperature of molten  aluminum  alloy 
is a t  least 950°F. Ignition  at  this  temperature  however  would  have a delay 
t i m e  on  the  order of minutes. A s  can   be   seen  from Table 11, there  is essen-  
tially  no  ignition  delay  (discharge  time-ignition  time = 0) .  Therefore  the 
mechanism  described  in Item 1 above  does  not seem reasonable.  

Ignition  by  the  second  mechanism , the  plasma  directly,  has  much  more 
merit.  It  would  be  expected  that  this  ignition  mechanism  would  have  very 
l i t t le  or  no  delay t i m e  a s  in  the  case  observed  here.  

Stainless  steel.- Tests upon 20 m i l  stainless  steel   were  made  at  a 
continuing  current of between 80 and 100 amperes at durations of 50 mi l l i -  
seconds.  Ignition  resulted  after 4.4 coulombs of charge  had  been  transferred. 
No holes  were  formed at the  point of lightning  strike  and  only a small   dis-  
colored  area  on  the  underside of the  sheet   was  observed.  

The 40 m i l  thickness  was  tested  with  an  average  continuing  current 
amplitude of 140  amperes  with  varying  amounts of time duration.  Twelve 
coulombs  were  sufficient  to  cause  ignition to occur.  The 1 2  coulomb  test 
resulted  in no hole  being  formed,  and  only a discolored  area  on  the  under- 
s ide  was found,  similar to the 2 0  mil t e s t s .  

Similar tests on 60 mil   thicknesses of s ta in less   s tee l   a t   the  same 
current  amplitudes  showed  that  the  ignition  threshold is 41 coulombs. For 
these  threshold tests, no  holes  were  found to be  present  when  ignition  occurred. 

Ignition  time  measurements  were  conducted  on  the 2 0  mi l  s ta in less  
steel sample  only. An ignition time of 1 2 5  milliseconds  was  measured at the 
coulomb  ignition  threshold.  Since  no  holes  were  formed  upon  fuel  ignition 
it is concluded  that  the  ignition  mechanism is the  same as for  titanium. 

Copper. - A few  control  tests  were  performed  on  some 30 mil commer- 
c ia l ly  pure  copper  sheets. As  copper melts at 190O0F, it was of interest   to 
check its ignition  mechanism for this  type of experiment.  It  was  found  that 
copper  always  formed a hole  prior to fuel  ignition.  It is concluded  that  light- 
ning strikes to copper will always  bum a hole  and  ignition  occurs by the plasma, 
a s  is the case for  aluminum.  It  was  found  that 60 coulombs  were  required  to 
burn a hole  and  ignite  the  fuel. 

Fuel  iqnition  times. - A plot of fuel  ignition time vs . the  amplitude 
of the  continuing  current is shown  in  Figure 6 for a number of tests. The 
experimental  points  are  for 2 0  and 40 m i l  titanium. A s  thicknesses  of 2 0  
and 4 0  m i l  titanium  show  equivalent  coulomb  ignition  thresholds,  they  are 
treated  equally  in  this  plot.  In  all cases the  duration of the  lightning  strike 
was  greater  than  the  ignition  delay  time, except one test with 40 mil titanium. 
Therefore , the  curve  drawn  does  not  include  any  weight from this  point. As  
can  be  seen  this   point  is a little above  the  curve. 
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The  plot  shows  the  general  trend  that would be  expected for th i s  
si tuation. A t  high  current  levels a short  ignition  time is noted. A t  low 
current  levels very long times are  indicated.   This  type of curve is of the 
form: 

t(1-i) = C 

where t = fuel  ignition t i m e  
I = continuing  current 
i = a threshold  current,  below  which  ignition  cannot  occur 
c = a constant in uni ts  of coulombs 

The  threshold  current is the  value , below  which  no  ignition  would  occur  no 
matter  how  long the  current is  applied.  Stated  another  way , it is the  ignition 
threshold  at  an  infinitely  long time. The constant (c) in the  above  equation is 
roughly  equal to the  zoulomb  ignition  threshold for 20 and 40 mil  titanium. 

For tests  made  at  the  coulomb  ignition  threshold,  the  ignition times 
were  similar to the  arc  duration  time.  Therefore,  the  region  above  the  cume 
in  Figure 6 represents  conditions  in  which  fuel  vapor  can  be  ignited  prior to 
the  end of the  discharge.  T5e  region  below is the  safe  region,  in  which  no 
ignition  occurs.  The  curve is the  coulomb  ignition  boundary for 20 and 40 
mil titanium. To check  this  curve  with  the  data  collected,  all  experimental 
points  were  plotted  on  the  graph. An N indicates  no  ignition; a Y indicates  
ignition. 

Figure 7 shows a portion of th i s  smooth  curve a t  1 . 5  stoichiometric 
fuel/air. From the  few tests done  at  0.78  stoichiometric a second  curve is 
shown  above  the  other  curve  in  this  Figure. A s  can  be  seen , the  coulomb 
ignition  threshold is greater for 0.78  stoichiometric  than for 1.5.  A s  pointed 
out  before, a fuel-air  ratio of 1 . 5  stoichiometric is the  most easily  ignited; 
any  other  ratio  will  require  greater  energy. 

Temperature of metal   skin  at  t i m e  of fuel  ignit ion.-  A s  part of th i s  
work, a temperature  profile  was  determined for the  titanium  samples  at  the 
time of fuel  ignition. T o  determine  the  temperature, a tes t   se r ies   was   con-  
ducted  in  which  the  temperature of the  metal  was  determined a s  a function 
of the  radial   distance from the  center of the  s t r ike.  To do   t h i s ,  a ser ies  
of  "Temp-i-laq"  coatings  were  applied to the  undersurface of the  mater ia l .  
These  coatings  show a characterist ic  phase or  color  change  at a specified 
temperature.  The  temperature  radial  distribution  was  determined  at  the 
coulomb  ignition  threshold for 20 m i l  and 40 mil titanium.  This  was,  in 
both cases , 5-6 coulombs.  Figure 8 shows  this  experimental  relationship. 
In addition , a minimum ignition  temperature for ignition by a hot spot was 
established  by  this  technique. For t h e s e  tests , copper  sheets  were  also 
tes ted.   These tests employed  propane/air  at 1 .5  times stoichiometric. 
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A s  it was  found that  aluminum (M.P. 1200°F) and  copper (M.P. f900°F) 
both  require a hole for igni t ion,   the  minimum ignition  temperature  by a hot 
spot  must  be  above 19OOOF. It was  found that   s ta inless  steel, which melts 
at 2500°F, igni tes  fuel by  a hot s p t .  Therefore,  this is  the  upper  temperature 
boundary. From the  "Temp-i-laq" measurements,  it is observed  that  the t e m -  
perature of the  underside of the  material is between 2300OF and 2500°F. There- 
fore,  the  hot  spot  ignition  temperature  for a propane/air  mixture  when  struck 
by a lightning  discharge is 

240OoF -f- 100°F. 

It is also noted  that  this  ignition  temperature is probably  dependent 
upon the   s i ze  of the  hot  zone  exposed  to  the  gas.  

Mechanism of Energy  Transfer  Through  the  Metal  Skin 

The  knowledge of how  energy  (heat) is transferred  through  the  metal 
skin is important to the  proper  selection of ways  to  reduce  and  eliminate  hot 
spot  fuel  ignition. To clarify  this  question, a mathematical  analysis  was 
conducted on this  problem.  The  objective was to predict  the maximum t e m -  
perature  reached by the  skin  during a typical , hut  well-defined  lightning 
strike,  and  secondly,  predict  the  temperature  distribution  radially In the  skin.  

Problem.-  Temperature  distribution for an  infinitely  large  plane  metal 
sheet  during a typical  lightning  strike  was  investigated.  It  was  assumed 
that  the  ratio  k/pcp  and R are  constants  where  k,  cp, o , and R are  respec- 
tively  the  thermal  conductivity,  specific  heat,  density,  and  resistivity of 
the  metal. A bolt  radius T is introduced  in  order  to  remove  the  mathematical 
singularity  at  the  point  where  lightning  strikes  the  metal  sheet.  The  governing 
equation for the  temperature  distribution  reads a s  follows: 

PCP dt dT - k V"T = Q ( x ,  y ,  t) 

where  Q(x,  y,  t) is the  power  generated  by  electrical  resistance.  Here x and 
y are  the  Cartesian  coordinates  in  the  plane  of  specimen , and t is time. 
Using  Ohms  Law,  the  power  generated  can  be  written as 

Denoting Io(t) a s  the  current  intensity  generated  by  the  lightning  strike, 

I(x,  Y ,  t) = I ( r ,  t) = Io(t) for r <? 

where r = (x" + y") and 
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T o  evaluate   the maximum temperature  reached , equations (1) and (2) 
are  rearranged  and  evaluated  in a Greens  function.  \The  Greens  function , 
expressing  temperature  in  terms of a tr iple  integral ,  $s then  integrated 
over  t ime,  radial   distance  and a geometry factor. The de ta i l s  of the  inte- 
gration  over t i m e  , radial   distance  and a geometry factor a re  not included 
here , as  they  are  quite  lengthy,  but a final  solution  for  the  special case 
r = 0 is shown  below. 

Maximum temperature of metal skin  at r = 0 .- The  Greens  function 
can  now be evaluated for r = 0 ,  t he  maximum temperature  at   the  center of 
the  lightning  strike , for a thin  titanium  metal  skin. For this  particular case , 
the  equation  becomes  much  more  simple  and  many  terms  in  the  integrated 
expansion  are  found  to be very small or zero.   Thus,  

- XI2€- 
T(r = O ,  t = t )  = To + I 

r r  P C  P 

is the  equation  to  be  evaluated,  where 

1z = resist ivity of  metal = 3.20 x 52- rn 

I = current  through  arc = 9 0  amps 

f = duration of lightning  strike = 0.061  sec 

r = bolt  radius = 1.1 x 1 0 ~ ~ ~  

cp = heat  capacity of metal = 6.63 x l o 2  Jcules/K - O C  

p = densi ty  of metal = 4.50 x 1 0 ~ ~ ~ 1 ~  3 

- 

9 

To = metzl  temperature  before  strike = 2 5 O C  

These  are  the  experimental  conditions for an  ignition  threshold  lightning 
strike  in 20 m i l  titanium.  When  evaluated for these  conditions a maximum 
temperature  reached  during  the  lightning  strike is obtained. 

Tmax = 170OoC 

o r  = 310OoF 

From Table 11, it can  be  seen  that  fuel  ignition for 20 m i l  titanium  occurred 
a t  44 milliseconds  with a strike  duration of 56 milliseconds.  The  ignition 
temperature  can  be  computed as  follows: 

44 
Tignition = 3100(-& 

= 245OOF. 
This result  is in  line  with  our  experimental  value of 2400 10b°F. 
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It is important to s ta te   tha t  7, the  bolt   radius,   was  the  measured  value 
on a number of materials.  What  was  measured  was  the  radius of a region 
showing  strong color change  and  material  deformity.  Whether or not  this 
is  the  best   value to u s e  for the  bolt  radius is subject to question.  This 
point is  raised  because  the  bol t   radius  comes in as  T- 4, so any  uncertainty 
in P will   be  much more uncertain a s  T4. Therefore,  the  result  should  be 
expressed as 

Tmax = 2450 2 3OO0F 

due io the  uncertainty  in T. 

Temperature  distribution  in skin.- It was  desired  to  calculate  the 
temperature  distribution  radially from the  point of strike as  an  additional 
means of suggesting  ways of reducing  the  hazard of hot spot fuel  ignition. 
Ideal ly ,   th is  would correlate  closely  with  the  experimentally  determined 
curve for 20 and 40 mil  titanium  (Figure 8) . This  solution  would  require 
integration of the  Green's  function  over  the  appropriate  variables.  The  most 
straight-forward  way to do  this  is by  computer.  Unfortunately,  this  was 
not  done  in  this  contract. A correlation of this   type would  lend  much  more 
confidence to this  model  and its ability  to  predict  other  temperatures,  such 
as  that   obtained  with a composite or a material  with  an  ablative on it.  Use 
of th i s   type  of model to predict  the  ignition  hazard  can  greatly  reduce  the 
number of lightning  experiments  required  to  establish  the  temperature  dis- 
tribution.  The  computer  problem  was  not  completed  due to a contractual 
redirection  in  the  technical  scope of the  program. 

Conclusions 

In summary,  the  following  conclusions  are  drawn: 

with a1 
1) Fuel  ignition  by  "hot  spots" fi-om lightning  strike is possible 

1 t i tanium  and  stainless  steel   al loys  studied. 

2) Aluminum always  burned a hole  in  conjunction  with  fuel  ignition. 

3) Very low  charge  transfers (5-6 coulombs)  can  ignite  fuel  vapor 
through 20 and 40 m i l  titanium:  the 60 m i l  sample  was  twenty times more 
resis tant  (100 coulombs) . 

4) The  ignition times were  on  the  order of a few  milliseconds for a 
a typical  lightning  discharge  to 20 and 40 mil titanium. 

The  reasons for the  apparent  inconsistency  in  the  results from the  
test upon 2 0 ,  40 ,  and 60 mil th icknesses  of  titanium  are  not  clear. Addi- 
t ional   tes t ing upon 50 m i l  titanium  in  conjunction  with  additional work  on the 
mathematical  model  shculd  help  in  answering  this  question. 

Complete  results of all  ignition  tests  are  presented  in  Table IV in   the  
AppeEdix. 
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IGNITION AND  FLAME  PROPAGATION IN AIRCRAFT  FUEL VENT SYSTEMS 

Introduction 

Approximately  three  months  before  the  end of the  contract  work, 
Dynamic  Science  and  General  Electric  were  requested , by  the  aircraft 
industry,  to conduct a ser ies  of tests on a simulated  Stube  and  surge 
tank  assembly  similar  to  that  found  on the  707 jet transport. 

It has  been  recognized for a number of years  that  lightning  can  ignite 
fuel  vapors  at   the  vent  exit   and  that   the  f lame  can  then  propagate  through 
the  vent   l ines  to the   t anks  , causing  destructive  fires  and  explosions (1) . 
There  has  been  continuing  work  on  this  problem to develop  protective  tech- 
niques  that  will  prevent a flame from reaching  the  fuel  tanks.  This  has 
involved  inerting  systems,  techniques for flame suppression,   and  the  use 
of flame arrestors.   The  success of these   sys tems  depends ,  to a large  extent , 
on the  character is t ics  0.f the  flame  and  the  environment  in  the  vent  system 
a t   t he  time ignition  occurs.  The  experimental  investigation  was  designed 
to  determine maximum flame  speeds  that  might be  encountered  following a 
lightning-induced  ignition  and to test the  effectiveness of a prototype 
flame  arrestor  developed  by NASA engineers  at  the  Lewis  Research  Labora- 
torie s . 

Lightning  strikes  are  characterized  by  one or more  high  amplitude, 
short  duration  spikes , separated  by  periods of long  duration , low  amplitude 
continuing  current  flow.  The  initial  high  current  discharges,  often a s  
high as 50 kA or  100 kA, produce  an  intense  blast  pressure  which  tends  to 
accelerate   the  ra te  of flame  propagation  following  ignition. Some experi- 
menters  have  reported  flame  speeds  approaching 1000 feet per  second 
following  lightning-induced  ignition (2) . Obviously,   f lame  speeds of this 
magnitude  would  require  different  means of control  than  would  the  relatively 
slow  laminar  or  turbulent flames which  normally  propagate a t   s p e e d s  of 10 
to 20 feet per  second. 

The  purpose of these  tests was  to determine  whether  flame  speeds 
approaching  shock  wave  velocities  occurred  in  the  vent  system  following 
lightning  ignition  and, i f  so, could  their  passage  be  stopped  or  materially 
slowed  by  the  presence of a flame  arrestor.  In  the  pursuit of these  object ives  , 
the  following  investigations  were  conducted: 

1. 

2 .  

3 .  

Determine  the effect of simulated  lightning  wave  shapes,  current 
amplitudes , and  location of di scharge  on  the  propagation  velocity 
in  the  vent  system. 

Determine  the  feasibility of  employing a flame  arrestor or flame 
retarder  in  the  vent  system  as a means of slowing  the  passage of 
the  flame. 

Determine  modifications to the  vent  outlet  and  3-tube  geometry 
that  would reduce  flame  propagation  velocity. 
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Test Equipment 

The  simulated  fuel  vent  system  used  in  this program is shown  in a 
photograph  in  Figure 1. It consis ted of a simulated  vent  outlet  and  short 
section of 5.5" diameter  S-tube  leading to a surge  tank. 

The  vent  outlet  was  rectangular  in  shape,  measuring 2"  x 8"  and  was 
connected  to a 5.5" diameter  S-tube  at a right  angle.  The  S-tube  was  42" 
in  length a s  measured  along  the  center  line. It was  bent 45O, 24" from 
the  vent  end  and  then 90° a s  it came  out of the  surge  tank.  The  surge  tank , 
cylindrical  in  shape,  had  an  inside  diameter of 15-1/2"  and  an  inside  depth 
of 8 - 5 / 8 " .  The  top of the  surge  tank  was  bolted to the  chamber  and  sealed 
with a neoprene  gasket. 

A 2"  diameter  tube  was  welded  on  the  periphery of the  tank  wall  near 
the  bottom of the  tank to serve a s  a mixing  chamber  for  the  introduction of 
combustible  mixtures of propane  and  air. 

A propane-air  supply  system  was  attached  to  this  mixing  chamber.  Con- 
trol of the  fuel-air  ratio  and  the  flow of the  combustible  mixture  through  the 
system  was  accomplished  by  means of pressure  regulation,  flow  meters  and 
solenoid  valves.  Commercial  grade  propane  (93.49%  propane , 0 . 2  12% 
methane , 4.00%  ethane , 1.90%  isobutane , and  0.26%  n-butane)  and  dry  air 
were  employed  in  these  tests.  The  fuel-air  ratio  was  fixed  at 1.1 stoichio- 
metric (4 .2% by  volume) for m o s t  of the  tests. The  flow rate  of the  com- 
bustible  mixture  was  maintained  at  approximately 4 . 0  cubic  feet/minute, 
which  produced a laminar  flow  in  the  S-tube  at a Reynolds  number of about 
1200. 

The  flame  arrestor,  when  employed, was mounted  in  the  surge  tank. 
The  arrestor  diameter  was  the same a s   t h e   i n s i d e  of the  surge  tank  and it 
was 2"  thick.   When  installed,  its upper  surface  was  approximately 1" below 
the  top of the  surge  tank.  Over  the  center of the  flame  arrestor,  beneath 
the  opening  where  the  S-tube  entered  the surge tank ,  a 1 2 "  diameter  plate 
shielded  the  arrestor from the  direct  impingement of a fast-moving  flame. 
The  plate  served  to  deflect  the  flame  radially  outward  toward  the  periphery 
of the  surge  tank. A photograph of the  arrestor,  with  the  plate  removed , is 
shown  in  Figure 2 .  

The  arrestor  itself  was  constructed from corrugated  stainless  steel  
pressed  against  a flat  backing  plate  and  wrapped  in a tight  coil  around a 
kamework  resembling a reel  for a movie f i l m .  The  corrugation  approximated 
a sine  wave  and,  when  placed  against a flat  plate,  created  openings  with a 
diameter of .050".  A detai l  of th i s  is shown  in  Figure 3 .  

For later tests , an  area of 17 .7  sq. inches  was  cut  away from the 
lower  wall of the  surge  tank,  below  the  arrestor  tank, to provide  venting 
in  front of the  flame.  This  blow-out  area,  present for configurations D 
and E , was  covered  with  saran  wrap  prior to each  test. 
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, FIGURE 1. Photograph of Vent Test System. 

FIGURE 2 .  Arrestor in  Surge Tank. 
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Instrumentation  was  required to measure  the  velocity of the  flame 
as  it travelled  down  the  S-tube  into  the  surge  tank.  It  was also important 
to know i f  the  arrestor  stopped  the  flame  or i f  the  flame  penetrated  the 
arrestor  and  entered  the  surge  tank  below.  Additional  data of interest   was 
the  pressure  pulse  transmitted  by  the  lightning  blast to the  surge  tank  and 
the  exis tence of a shock  wave  in  the  S-tube  following  the  discharge. 

Interest  in  the  shock  wave  stemmed from previous  reports of flame 
speeds  approaching  the  speed of sound. If such a speed  were  measured, it 
would be  interesting to re la te   th i s  to a shock  wave, i f  one  were  present. 

The  General  Electric  High  Voltage  Laboratory  was  responsible  for  the 
selection  and  calibration of this  instrumentation.  Photodiodes  were  chosen 
over  ionization  probes  because of their  low-impedance,  fast  response  and 
adequate  sensitivity.  The  diodes  were  mounted  in  an  insulating  material 
which  isolated  them from the  surrounding  metal.  The  diodes  were  connected 
to oscil loscopes  and a multi-channel  recorder  (Honeywell  Visicorder)  by 
individual  shielded  cables  which  were  passed  through a shielded  conduit. 
Both cable  shields  and  conduit  were  grounded  outside  the test area  at   the 
recording  equipment. No grounds  were  made  at  the  transducer  end to prevent 
induced  voltages from occurring  in  the  instrumentation  circuits as  a result  
of transient  ground  currents  arising from the  simulated  lightning  discharges. 
The u s e  of a multi-channel  recorder  permitted  all  traces to be  monitored  on 
one  piece of paper. A sample of data is shown  in  Figure 9 .  

In addition to the  photodiodes,  the  pressure  was  monitored  at  four 
points  in  the  system a s  shown  in  Figure 4 .  These  were  the  vent exit (A) , in 
the  S-tube  just   outside  the  surge  tank (B) , in the  surge  tank  above  the  arrestor 
(C) , and  in  the  surge  tank  below  the  arrestor (D) . Pressure  sensit ive  piezo- 
electric  transducers  were  assembled from lead  titanate-lead  zirconate  ceramic 
crystals  and  mounted  in  insulated  housings.  The  output from these  pressure 
transducers  was  also  placed  on  the  multi-channel  recorder. 

The  location of the  instrumentation is shoWn in  Figure 4.  For  flame 
speed  measurements , six photodiodes  were  employed , mounted  in  pipe fit- 
tings  along  the  S-tube  and  above  and  below  the  flame  arrestor. 

Table I below  lists  the  instrument  stations  referred to in  Figure 4, 
giving  the  distances  between  them  and  the  vent  outlet. 

TABLE I 

Segment  Station  Distances  in  Feet 

Increment  Total 

0 - 1 , A  
1 - 2  
2 - 3  
3 - 4,B 
4 , B - 5 , C  
5 ,C-6 ,D 

0.333 
0.907 
0 . 8 8 6  
0.917 
1.188 
0 .375  

0.333 
1.240 
2.126 
3 .043  
4 .231  
4.606 

74 





Section 0 was  a t   the   center  of the  vent  exit opposi te   the end of the  
S-tube. A l l  segments  except  segment 4,B-5 ,C were  straight  l ine  distances 
measured from center   l ine to center   l ine of the  appropriate  photodiodes.  The 
length of segment 4-5 was  determined  by  pulling a string  tight  between  the 
station 4 and 5 pipe  fittings  and  measuring  the  length  thereof. 

Test Configurations 

A total  of five  distinct  vent  system  configurations  were  tested. In 
tabulat ing  the  resul ts  of th i s  test program I reference is made  to  the  vent 
configuration. To permit a proper  evaluation of these   resu l t s  I the  different 
configurations  are  described  below: 

Configuration A - 

Configuration B - 

Configuration C - 

Configuration D - 

Configuration E - 

Flame  arrestor  installed:  no  blowout  hole  cut  in  surge 
tank.  

Flame  arrestor  removed;  no  blowout  hole  cut  in  surge 
tank. 

Flame  arrestor  installed;  top of surge  tank  elevated  1.5" 
and  sealed to surge  tank  with  masking  tape. 

Flame  arrestor  installed I 17.7 sq . inch  blowout  hole  cut 
in  surge  tank  below  arrestor  and  covered  with  saran  wrap 
prior to each test. 

Flame  arrestor  removed; 17.7 sq. inch  blowout  hole  cut 
in  surge  tank  below  arrestor  and  covered  with  saran wrap 
prior to each test. 

Lightning  Simulation 

The  simulated  lightning  discharges  were  limited  to  the  high  amplitude 
short-duration  current  spikes  which  are  characteristic of lightning  strokes 
and  which  have  been found to create  the  blast  pressures  believed  to  produce 
the  high  f lame  speeds  in  the  vent  l ine.  N o  low-amplitude  continuing  currents 
were  applied for th i s  series of t e s t s .  

The  General  Electric  high  current  generator  was  used for t hese   t e s t s .  
Both  damped  and  oscillatory  wave  shapes  were  employed  with  amplitudes 
ranging from 38 to 195 kA ( 3 ) .  The  rate  of  current  rise  (di/dt)  was  varied 
between 8 and 2 5  kA/microsecond , depending  on  the  wave  shape  employed. 
The  high  current  generator  was  charged  to a voltage  ranging  between 80 kV 
and  100 kV. Wave  shapes  typical  of those  employed  in  these  tests  are  shmn 
in  Figures 5 and 6. Additional  waveshape  variations  are  shown  in  the Appen- 
dix,  Figures 1 I 2 ,  and 3 .  All discharges  were of positive  polarity,  with  the 
vent  system a s   c a t h o d e .  

A photograph of the test apparatus  in  place  at  the  General  Electric  High 
Voltage  Laboratory  with a tungston  electrode  positioned  near  the  lip of the  
vent  outlet is shown  in  Figure 7 .  The  output of the  high  current  generator 
was  discharged  through  this  electrode to the  vent   system. 
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1 3 5 k A  

Underdamped  oscil latory  wave.  Crest  
is 135kA in 8 psec .   Undershoot  is 
-78kA. Init ial   di/dt  = 16.9kA/psec.  

-1 44kA 
\ 

Underdamped,  highly  oscil latory  wave. 
Cres t  is 180kA in 8 ysec.   Firs t   undershoot  
is -144kA. Initial  di/& = 22 . 5 k A / p e c .  

FIGURE 5.  Typical  Wave  Shapes  Employed 
for  Lightning-Flame  Velocity Tests. 
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Overdamped  (unidirectional)   wave. 
Cres t  is 66kA in  7 . 5  p sec. Ini t ia l  
di/dt = 8.8kA/v s e c .  

-46kA 

/ 
11 5kA 

Underdamped , slight-ly  oscil latory  wave. 
Crest is 1 1 5 U  in 7 p s e c .  Undershoot is 
-46kA. Init ial   di/dt  = 1 6 .  -‘Ik.A/~_lsec. 

FIGURE 6 ,  Typical Wave Shapes  Employed for Lightning-Flame 
Velocity Tests. 
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Electrode Vent Out let 

FIGURE 7 .  Electrode  Positioned at Vent Outlet. 
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For some of the  tests , the  electrode  was  positioned at the  vent  outlet  , 
Figure  8a. It w a s  felt that  this  most-nearly  approximated  actual  operating 
conditions.  However , a large  number of other tests were  made wl th   the   t ip  
of the  electrode  positioned  well  within  the  vent so that  the  arc  occurred 
directly  across  the  end of the  S-tube,  Figure  8b.  The  object  in  changing 

. these  electrode  positions  was  an  attempt to achieve a maximum flame  velo- 
' city.  The  discharge  current  flowing from the  e lectrode to the  vent  system 

was  conducted  away from the  vent  line  through a copper  braid  wrapped  around 
the  neck of the  vent  line.  This  prevented  current  flow  through  the  vent 
system  which  might  interfere  with  the  instrume?  tation. 

Flame  Velocity  Calculations 

The  average  velocity of the  flame  between  diode  stations was calcu- 
lated  by  dividing  the t i m e  it took for the  flame to travel from one  station to 
the  other by the  known distance  between  stations.  Each  photodiode  had a 
restricted  angle of view  since it was  mounted a considerable  distance  up a 
supporting  tube,  away from the  center  of the  S-tube. 

Figure 9 i l lustrates  a typical  recorder  trace  and  the  various  photodiode 
outputs  are  shown.  These  have  been  marked to show  the  technique  used for 
measuring  the t i m e  lag  between  stations. In t h i s   c a s e ,  it took 2 2  milli- 
seconds for the  flame  to  travel from station 1 to 6 , a d is tance  of 4 . 6 0 ' .  
From this   data  , an  average  f lare  velocity of 210  ft . per  second  can  be  cal- 
culat  ed . 

Test Results 

The test objectives  were  twofold;  first , to determine  the maximum flame 
velocity  that  could  be  induced  in  the  vent  system  by  simulated  lightning 
ignition.  Once  established,  the  second  objective  was to determine  the 
abil i ty of an  arrestor  to  stop  or  retard  this  f lame.  The  vent  system  as  ini-  
tially  tested  (Configuration A) had  no  hole  cut  in  the  surge  tank.  The  search 
for a condition  which  would  allow  high  flame  speeds , along  with  the  reali- 
zation  that  an  actual  surge  tank h a s  some  effective  venting  area,  led to the  
tes t ing of the  additional  system  configurations.  The  configurations  were 
tes ted in the  order  listed,  beginning  with  Configuration A .  

Configuration A. -  The  flame  arrestor  was  installed for Configuration A .  
It  was fourld that  damped  or  underdamped,  slightly  oscillatory  current  dis- 
charges of 1 2 5  kA or  more  (Figure 6) caused  flames to travel down the  tube 
and  penetrate  the  arrestor;  while  discharges of less than 1 2 5  kA amplitude 
ccused  flames  which  were  stopped  by  the  arrestor. For e a c h   c a s e   t h e  
maximum overall  average  velocity  was 1 2  ft . per  second.  On tests run 
with  this  configuration , numbers  523  through  557, a maximum velocity of 
approximately 20 ft. per  second  was  achieved  in  the  S-tube.  Observation 
of the  flame  profiles  of  some of these  tes ts   shows  the  presence of a secon- 
dary  flame  appearing,  apparently  after  the  original  flame  has  completely 
died  out ,   a t   s ta t ions 1 through 5 and  possibly  at  6 .  Further  analysis  indi- 
cates  that   these  are  actually  two  separate  f lames , travelling  simultaneously 
away kom a common point  of  origin  near  station 4, The  speeds of these  
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FIGURE 8 .  Electrode Arrangement s t  Vent Out le t .  
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FIGURE 9 - Visicorder trk3ces showing  output  voltages of photodiodes  and 
pressure  t ransducers   a t   s ta t ions 1 through 6 .  Configuration 
D ,  vent   out le t  90% cloth  tspcd.  1 0 0  k A ,  s l i g h t l y   o s c i l l a t s y  
dischal-gc from electrode  posit ioned 0 .7  5 in .  above  lower l i p  
of S-tube,  inside of vent .   Overal l   average flame veloci ty  
2 1 0  i t .  per second (TPct $590). Timing  l ines  are  at  10  msec. 
inter-Jals . 
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flames were  mostly  between  100  and 400 f t .  per  second.  During  these 
tests , a second  flame  was  observed  "popping  out" of the  vent outlet a 
spli t   second after the  initiation of the first. An example of such a flame 
is shown  in  Figure  10.  There  were  indications that a pressure  buildup 
occurred  in  the  surge  tank  which  drove  residual flames back  up  the  vent 
line. 

For the tests of this  configuration,  the best electrode  position  was 
a deep  penetration of the  vent  outlet  with the electrode  directly  in  front of 
the  5-1/2"  S-tube. This  would  be  expected  because  by  discharging  the  cur- 
rent  in a more-or-less  enclosed  space, a higher  pressure  r ise  was  obtained 
which  tended to accelerate  the  f lame. 

Configuration B . - This  configuration  was  achieved  when  the  flame 
arrestor  was  removed from Configuration A .  The results  were  identical  with 
those  tests  using  Configuration A in  which  the  flames  penetrated  the  arrestor. 

Confiquration C . - In an effort to determine  conditions  which  would 
result   in  increased  f lame  speeds , it was  decided to elevate  the  top of the  
surge  tank  1.5"  above  the  tank,  in  order to provide a blowout  area  which 
would relieve  pressure  build-up  in  front of the  flames.  This  blowout  area 
was  covered  with  masking  tape  prior  to  each test to prevent  the  fuel  mixture 
being  fed  through  the  surge  tank f rom escaping.  The  flame  arrestor  was 
installed.   Using  discharges  similar to those  employed  in  Configurations 
A and B ,  no changes  were  observed  in  average velocities (around 11 ft ./sec.) . 
The  flames  not  only  penetrated  the  arrestor,  but  blew  the  masking  tape off. 
Similar tests were  made  with  the  vent  outlet  partially  sealed  with  cloth  tape 
shielding  the  discharge  below  the  tape.  These tests resulted  in  overall 
average velocities a s  high a s  140 f t .  per  second.  In  this  configuration,  the 
ignition of the  gas   a t   the   par t ia l ly   c losed  vent  exit permitted  the  products 
of combustion to build  up  behind the  advancing  flame  front  producing a much 
higher  propagation  rate. 

Configuration D_.- This   ser ies  of tests were  run  with a 1 7 . 7  sq. i n .  
hole  cut  in  the  surge  tank  below  the  flame  arrestor  in  order to simulate  the 
opening 5 provided  by  the  secondary  vent  lines  in  an  actual  system.  The 
electrode  position  was  maintained  inside  the  vent exit for m o s t  of t h e s e  
tests, (Figure 8b). Since  previous  studies of flame  propagation  have  shown 
that   the   veloci ty  of f l ame  propagation  in a duct is highly  dependent on the  
magnitude of pressure  buildup  behind it which  results from expanding com- 
bust ion  gases ,  a se r ies  of tests were run with  90% of the  vent  outlet   taped 
shut. Velocities of up to 790 ft. per  second  were  achieved  between  stations 
4 and 5 using a slightly  oscillatory  wave  with a peak  current  amplitude of 
150 kA (tests 589-599).  Average  overall  flame  velocities  (between  stations 
1 and 6) of up to 307 ft. per  second,  were  obtained  and  the  flames  pene- 
trated  the arrestor. It   was  realized  that   sealing  the  vent  outlet   could  not 
be  considered a valid  simulation of actual  operating  conditions  and  these 
tests were  considered to be  of academic  interest   only.  

A more realistic  simulation  was  obtained  when  the  vent  outlet  was 
uncovered  and  the  electrode  tip  was  positioned at  the  center  of the  vent 
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1. Photo-diode  output a t   s t a t i o n  1 (vent end  of "3'- tube) 
A.  Piezoelectric  transducer  output a t  s t a t i o n  A (same as  1) 

Major divis ions  are  100 msec and 0.2 vo l t  

4.  Photo-diode  output a t   s t a t i o n  4 (before 90° bend) 
5.  Photo-diode  output a t   s t a t i o n  5 (above  flame a r r e s t e r )  

Major divis ions  are  100 msec and 0.2 vol t  

6. Photo-diode  output a t  s t a t i o n  6 (below  flame a r r e s t e r )  
Major divis ions  are  200 msec and 0.2 vol t  

FIGURE 1 0 .  Oscillograms  sharing flame intensity  versus  t ime a t  s t a t ions  
1 through 6 in  simulated  vent  system. 125 kA underdamped, 
s l igh t ly   osc i l la tbry   d i scharge  from electrode  positioned 0.5 
inch above bottom i i p  of  "S"-tube inside  of  vent  caused  igni- 
t i o n  of 4.4% (volume)  propane-air  mixture. Note secondary 
flame pulses,   apparently  originating between s t a t ions  4 and 5 
and proceeding  simultaneously in   bo th   d i rec t ions  from point 
of or ig in  a t  about 150 f t . / sec .   ( tes t  no. 535)  
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outlet ,  a s  in  Figure  8a. A maximum flame  speed of 60 ft. pet- second  was 
achieved  between  stations 4 and 5 when the  discharge  employed a sl ightly 
oscil latory wave having a peak  current  amplitude of 150 kA. The  overall 
average  flame  speed  for  this test was 24 ft. per  second  between  stations 
0 and 6 .  

Some additional tests were run under  the  above  conditions  but  with 
the  flame  arrestor  wetted  with  kerosene  prior to the  tests. In certain tests 
where  the  flame  velocity  was  relatively low ( less   than 15 ft ./sec .) the  
wetted  arrestor  was  effective  in  stopping  the flame. 

In summary,  with  the  vent  outlet  unsealed  and  the  arrestor  in  position, 
a maximum flame  speed of 60 ft. per  second  was  recorded  in  one  section of 
the  vent  line  when  the  high  current  discharge (150 kA amplitude)  struck  the 
edge of the  vent  outlet.  With  the  arc  discharging  across  the end of t he  
S-tube  beneath  the  covered  vent  outlet I flame  speeds  over 12  t imes   as   g rea t  
were  obtained.  The  presence of a blowout  hole  below  the  flame  arrestor 
permitted  generally  faster  flame  speeds  than  was  the  case  without it .  Where- 
a s  the  flame  arrestor  had  stopped  flames  initiated by discharge  currents of less 
than  125 kA in  Configuration A ,  flames  initiated  by  currents of equal  or  less 
a r  glitude  penetrated  the  arrestor  when  the  blowout  hole  was  present. 

Configuration E.- In th i s   se r ies  of t e s t s  , the  flame  arrestor  was  removed 
to see what maximum flame  speeds  might  be  possible  in its absence .  A s  with 
the  other  configurations I the  wave  shape  and  amplitude  and  the  electrode 
position  were  varied to achieve a maximum flame  velocity. 

For the  most  realist ic  case,   with  the  outlet   open  and  the  electrode  t ip 
a t   the   ou t le t  I maximum flame  velocities of up  to  156 ft. per  second  were 
achieved  between  stations 5 and 6 ,   us ing  a highly  oscillatory  wave  (Figure 7) 
with a peak  current  amplitude of 195 kA. The  average  velocities  between 
s ta t ions 1 and 6 for these   t es t s   were  up to  66 ft. per second. 

A t es t  (No. 646) was  made  with  the  vent  outlet  covered  with  cloth  tape 
and al l  other  conditions  remaining  the  same. In th i s   case ,   an   average   ve lo-  
city  of 1 2  1 ft.   per  second  was  obtained.  The  initial  rate of propagation, 
between  stations 0 and 2 , was  413 ft . per  second,  i l lustrating  the effect of 
ignition  within a c losed  vent .  

General  remarks on flame  speed tests .- Several  general  remarks 
should  be  made  about  the  chanqe  in  flame  velocity a s  it travelled  down  the 
vent  tube  toward  the  surge  tank  in  this  and  the  preceeding  configurations. 
Following  an  initially  high  speed  in  the  first  part of the  S-tube  (stations 
0-2),  the  flames  would  decelerate a s  they  passed  toward  the 45O bend 
(s ta t ions 2-3) . Relatively  l i t t le  change  was  recorded  as  they  passed arourld 
the  bend  (stations 3 - 4 ) .  However, as  the  f lames  passed  around  the 90° bend, 
a marked  increase  in  velocity  was  nearly  always  noted,  and I in  almost  every 
test the  flame  recorded a maximum velocity  between  stations 4 and  5. This 
appeared  unusual  because  there  was  no  evidence of a progressive  increase 
in  velocity  as  the  f lame  propagated down the  S-tube.  Since  the  distance 
used  in  calculating  this  velocity  was  measured  as  the  shortest   distance 
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between  stations 4 and 5, the  velocity  calculated  should  have  been  the 
minimum actual  flame veloci ty ,   s ince  the flames could  have  taken a longer 
route.  

One of t h e s e  tests performed  with  Configuration E (No. 649) using a 
highly  oscillatory  current  discharge of 190 kA amplitude,  resulted  in evi- 
dence  of flames  moving at  well  above 1000 f t .  per  second  within  the 
system. In addition,  this  ignit ion  resulted  in a 0.5  inch  outward  deforma- 
tion of the  outer  side of the  vent  outlet  and  blowout of a segment of the  
gasket  underneath  the  top of the  surge tank.  These  effects  indicated a much 
greater  than  usual  pressure  build-up  within  the  system. A thorough  check 
was  made of the  system  following  this  unusual  result ,   which  resulted  in 
strong  evidence  that  the  high  current  discharge  had  caused  simultaneous 
sparking  and  ignition  at  several  points  along  the  vent  system.  The  explana- 
tion is that  the  vent  system  was  momentarily  lifted  above  ground  by  an 
amount  equal to an  inductive voltage rise  in  the  high  current ground circuit .  
This  voltage  rise,  proportional to the  discharge  current  amplitude,  was 
enough  in  this  case to cause  sparkover kom the  surrounding  metal to the  
piezoelectric  transducer ground wires.  This  sparking  was  evidenced  by 
discoloration of the  PVC surface  between  the  element  and  the  edge of the  
pipe plug  in  which it was  mounted.  This  evidence  appeared at stations A ,  
B ,  and C , but  not  at D ,  which  also  had  pressure  transducer  installed. 
Transducers  were  frequently  inspected  and  this  was  the  only  discharge to 
occur  in  this  manner  during  the test ser ies .  If a lesson  could  be  learned 
from this   experience,  it would be  that  extreme  precautions  must  be  taken 
in  vent  design to insure  that  induced or other  voltages,   arising  in  the  vent 
system  components  themselves  or  in  structures  or  circuits  in  any  way  con- 
nected  to  the  vent  system,  must  be  prevented from causing  such  sparking  in 
actual  operation.  The  magnitude of the  voltage  which  caused  the  sparking 
in  the  present  case  was  estimated  to  be 11 kV. Such  voltages  are  not 
uncommon  in c i rcui ts  or structures  through  which  lightning  currents  may  pass 

A brief  summary of test resul ts  is presented  in  Table I1 on  the  following 
page.  Detailed  test  results  are  presented  in  the  Appendix. 

Flame Arre stor 

The  performance of the flame  arrestor  was erratic; however, some 
general  trends  were  noted  that  encouraged u s  in  the  belief  that  an  effective 
flame  arrestor  can  be  developed for this  type  application. 

The arrestor  was  partially  effective  at   velocit ies  below 1 5  f t .  
per  second, i .e.  , in  those  tests  where  it   did  prevent a flame from reaching 
the  surge  tank , the flame speeds  were  in  the  range of 5 to 1 5  f t .  per  second. 
A number of tests were  run,  however,  where  the  arrestor  failed  to  stop a 
flame  travell ing  at   these  slower  speeds.  For the tests run  in  which  the 
arrestor  did  not stop the  f lames,  as in  Configuration D ,  the  effect of the 
arrestor  was  to  slow  the  flames  passing  through it. Some success  with 
the  arrestor  occurred  when it was  wetted  with  kerosene  prior to ignition. 
In  Configuration D the  arrestor,   when  wetted,   successfully  stopped  the 
flame  in  four  successive tests. The maximum flame velocity,  however, 
did  not  exceed  16 f t .  per  second  in  any of these  tests. In  other tests where 
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TABLE I1 

FLAME VELOCITY TESTS 

Brief Summary of Results 
I 

1 

Arc Inside 
Vent.  Out- 
let open. 

A, 
No additional 
venting.  Flame 
arrestor  in- 
stalled 

B. 
No a d x t i o n a l  
venting. Ar- 
restor  removed. 

- C. 
Top  of surge 
tank  elevated 
1 .5” .  Arres- 
tor  in  stalled. 

- D. 
Hole  cut  in 
surge  tank. 
Arrestor in- 
s ta l led.  

n 
b. 

Hole cut in 
surge tank. 
Arrestor  re- 
moved. 

f t /sec 
4.4 - 1 2 . 1  

8.5 

11 - 12.8 

13.2 - 26 

5.4 - 7 4  

TEST VARIATIONS 
Arc Inside 
Vent.  Out- 
let partially 
covered wit1 
cloth  tape.  

ft/s ec 

13.4 - 140 

4.3 - 307 

92 

Arc at Vent 
Outlet ,   Out- 
let open. 

ft/sec 

24 

4 .2  - 64 

Arc a t  Vent 
Outlet.  Out- 
1 et partially 
covered  with 
cloth  tape . 

ft/s ec 

9.8 

12 1 

Noter The  numbers listed above are   average  veloci t ies ,   calculated  by 
dividing  the  length of time it took  the  flames to travel from the  
electrode  (vent) to the  bottom of the  surge  tank, by the  total  length 
of the  system  (4.606 feet). Where a range is shown, a number of 
tests were  made  and  the  numbers  given are the minimum and 
maximum average velocities. 
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the  flames approached  the arrestor at greater speeds,   the  flames succeeded 
in  penetrating  the  arrestor  even  though it was  wetted  with  kerosene. 

Perhaps  the most significant  general  trend  noted  was  the  ability of 
the  arrestor to reduce  the  velocity of the  flame a s  it passed  from station 5 
to  station 6.  There is some  indication  that  the  amount of retardation or 
reduction  in  velocity is a function of the  flame velocity  approaching  the 
arrestor,  i .  e .  , the  higher  the  flame  velocity,  the  greater  the  percent  of 
reduction of flame  speed. To i l lus t ra te   th i s ,  a plot of the  abil i ty of t he  
arrestor to slow  the  approaching flame is shown  in  Figure 11. There is a 
wide  scatter  in  the  data,  but a trend is  evident  that  the  velocity  reduction 
is greater as  the  approaching flame speed (V4-5) is increased.  

The  reason for the erratic behavior of the  arrestor  is not  known. .Addi- 
tional  work  must  be  undertaken to understand  the  problem  before  reliable 
flame  arrestors  can  be  designed. 

0 t her Re sul t  s 

In addition to the  principal  objectives , considerable  information  was 
developed  pertaining to the  e lectr ical   character is t ic  of the  lightning  discharge 
and its affect  on  flame  speed  end  pressure  in  the  vent  system  which  will be 
of interest  in  future  testing of th i s   type .   These   a re   d i scussed  a s  follows: 

Pressure.-  A s  discussed  in  the  Experimental  Results,  pressure  measure- 
ments  were  not  made a s  frequently or a t   a s  many  locations  during  these tests 
a s  were  light  measurements.  Limitations of t i m e ,  for th i s   phase  of the  test 
program , precluded  the  possibility of making  complete  light  and  pressure pro- 
file  measurements,  and  light  measurements  were  chosen a s   t h e  most accurate  
means of  measuring  flame  speeds.  Pressure  measurements  were,  however, 
made  occasionally  to  ascertain  the  order-of-magnitude of pressure  buildup 
within  the  system. No pressures  greater  than 0 . 5  ps i  were  measured  and 
pressure rises , in most c a s e s  , were  coincident  with  rises  in  light  intensity 
a t   t he  same locations.   The  pressure  pulse  in  the  surge  tank,  below  the 
arrestor,  was  approximately  the  same  whether  or  not  the  flame  passed  through 
the  arrestor. 

No pressure  measurements  were  possible  during  the test which  resulted 
in a detonation  since  damaging  sparkovers  occurred  on  all three pressure 
transducers.   Nevertheless , ample  evidence  was  present of a much  higher 
than  normal  pressure  buildup,  since  the  gasket  blew  out  and  the 1/8" stain- 
l e s s  steel vent  wall   was deformed.  Such forces would be  very  damaging to 
an  actual  aircraft  system,  constructed of lighter  materials. 

Simulated  lightning  current  amplitude  and  waveshape. - The  amplitude 
and  the  wave  shape of the  current  discharge  were  significant  factors  in 
determining  the  velocity of flame  propagation. In general  , the  higher  ampli- 
tude  currents  produced  higher  velocities;  however,  the effect of wave  shape 
was  more  significant  than  amplitude. A highly  oscillatory  discharge  con- 
s is t ing of a number of repeated  cycles of current  flow, as  shown  in  Figure 
5 , was  capable  of producing  flame  velocities  an  order-of-magnitude  greater 
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than  an  overdamped  discharge  having  the same initial  peak  current  amplitude 
but consisting of only  one  unidirectional  surge. An examination of a highly 
oscil latory  wave  shape  shows  that   over  twelve  separate  pulses  occur less 
than 7 microseconds  apart  (.007  millisecond) . If the   in i t ia l   ra te  of flame 
propagation  were 1000 ft. per  second, for example,  after  ignition  by  the 
first  pulse,  the  flame  front  would  have  moved  only 0 ,084"  down the  tube 
before  being  hit  by  the  next  pulse.  These  repeated  pressure  pulses  probably 
account  for  the  higher  flame  speeds. 

The quest ion  ar ises   as   to   whether  or not  such  an  oscillatory  current 
discharge  can exist in  nature I particularly  in  the  aircraft  environment. 
Measurements of the  character is t ics  of strokes to grounded  objects  gener- 
ally  exhibit  unidirectional  characteristics,  similar  to  the  overdamped  wave 
shown  in  Figure 6 .  Very l i t t le  is known regarding  the  characterist ics of 
strokes  kom  cloud to cloud  which  may  intercept  an  aircraft;  however I it is 
known that  strokes to grounded  objects  often  occur more than  once  in  rapid 
succession,  separated  by very short  periods of t i m e .  In  such cases the  
entire  succession is usually  considered  as  making  up  the  stroke  and  refer-  
ence is made to t h i s   a s  a multi-spike  stroke.  The  effect of the  osci l la tory 
wave  could  be  similar  in effect to  a multi-spike  stroke.  Thus I there  is 
reason  to   bel ieve  that   the   use of an  oscil latory  wave is not  entirely  unreal- 
istic for t h e s e  tests. 

Electrode  gap  and  position. - Both electrode  position  and  arc  length 
affected  the  flame  speed.  During  the tests I the  current  spike  was  discharged 
across  a gap of 0 .5"   and  0 .75".  In every case the  smaller  gap  resulted  in 
slower  flame  velocities. N o  veloci t ies   above 30 f t ,  per  second  were  obtained 
with  the  0.5"  gap. A l l  the  higher  flame  speeds  occurred  with  the  0.75"  gap. 

Electrode  position was also  important to the  flame  speed. When the 
electrode  was  positioned  well  inside  the  vent  outlet,  in  fact  directly  in  kont 
of the  5 .5  'I S-tube , much  higher  flame  velocities  were  achieved  than  when 
the  electrode  was  in  the  center of the  vent  outlet,  discharging  to  the  lip. 
It is  our  opinion  that  this effect merely  reflected'  the  increased  pressure 
buildup  that  could  occur  when  the  blast kom the  discharge  was  semi-enclosed 
Even greater  velocities  could  be  achieved  by  placing  tape  over a large  portion 
of the  vent  outlet  and  placing  the  electrode  inside. 
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APPENDIX 

INTRODUCTION TO TABLE I FLAME  SPEED  TEST  RESULTS 

The following  table lists the  resul ts  of a l l  of t he   t e s t s  run a t   t he  
General  Electric  High  Voltage  Laboratory  with  the  exception of those in 
which  ignition  did  not  occur. The tests  are  listed  in  the  order  performed. 
In reading  the  table,  the  following  notes  are  helpful: 

1. Both the  amplitude  and  waveshape of the  discharge  current 
were  varied. The table  makes  reference  to  the  appropriate  wave- 
shape  figures  shown  in  Figures 1. , 2 . ,  and 3 ,  following  this 
introduction. 

2 .  with  few  exceptions , al l   e lapsed times and  veloci t ies   are   l is ted 
a s  positive  numbers,  indicating  that  the  direction of travel  was 
from station 0 to  station 6 ,  from the left to the  r ight  side of the 
page. In a few  cases,   however,   during  the tests on  Configuration 
A, negative  numbers  appear,  indicating a return flame  traveling 
in  the  opposite  direction. 

3 .  When  no  numbers  are  listed for a particular  segment of the  system, 
no  measurements  were  made  at  the  downstream  station of that 
segment. In t h e s e   c a s e s  , the  elapsed t i m e  and  velocity  shown 
for  the  next  segment  downstream  (to  the  right  on  the  table)  refer 
to   the  e lapsed time and  velocity  across  both  segments.  In  the 
c a s e  of Segment 5 ,  C-6 , D the  lack of data  indicates  that   the 
flame  did  not  penetrate  the  arrestor  when  the  words  "no  indication" 
are   used.  

4 .  Numerous  variations  were  made  in  the test procedure,   such  as 
variation  in  electrode  position  or  covering of vent  outlet ,  etc. 
These  chancres  are  listed  in  sentence form and  appear  between 
tests, a s  they  were  made.  Each  such  sentence  remains  in effect 
until  that  condition is changed by a later  sentence  concerning  the 
same  item. In the   ca se  of coverings  over  the  vent outlet, the  
absence  of any  sentence  to  the  contrary  indicates  that   no  covering 
was  present  over  the  vent  outlet .  

5. During tes t ing of Configuration C and E where  blowout  areas  were 
provided,  these  areas  were  always  sealed  with a fragile  covering 
prior  to  each  test , so that  the  fuel-air  mixture  would  not  escape  or 
be  contaminated by air  prior to the  test. For Configuration C,  the 
blowout  area  below  the  elevated  tank  top  was  covered  with  masking 
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tape,  50% of which  normally  blew off during  each test. The 
blowout  hole  in  the  side of the  surge  tank  in  Configuration E was 
covered  prior to each  test with  saran  wrap,  the  extremities of 
which  were  taped  lightly  in  place  with  masking  tape. The saran 
wrap  burned  or  blew  away  during  each test, in  which  ignition of 
the  fuel-air mixture occurred. 
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lTIGIJI<L 1 ( a )  . FIGURE 1 (b) 
3vci*dmlped (uilidi-rec.t-iona1) wave IJnderdamped, s l i g h t l y   o s c i l l a t o r y  wave 
( t e s t  no. 5 2 ' / ) .  Crest is 66 kA i n  ( t e s t  no. 528) .  Crest is  83 k~ i n  8 
' 7 .5  psx .  In i t ia l .   d i /d t  = 8.8 lCri/ps psec.  Undershoot is -34 kA. I n i t i a l  

di /dt  = 10.3 kA/psec . 

I ~ I ( ; ~ ~ i ~ ~  1 ( c ) .  Undcrdnmped, s l i g h t l y   o s c i l l a t o r y  wave 
(-test  no. 532). Crest is 126 I d  in 
' 7 . 5  psec. Undershoot is -68 1 4 .  
I n i t i a l  d i / d t  = 16.8 kn/psec. 

FIUJRlC 1 Examples of  oscil lograms  of  different  current 
wave :shape:; spplicd  during flame v e l o c i t y   t e s t s .  

llotc: All d-i.schargcc. 'were of posi t ive  polar i ty .   Osci l lograms 
are shown with dobmbrard def lec t ions  due t o  placement of 
cllrrent measuring shunt   in  ground r e t u r n   c i r c u i t .  
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FIG'iJFtE 2 (a). I'IGURII: 2 (b) . 
Undcrdamped, s l igh t ly   .osc i l . l a tory  wave Undcrdarnped, s l i g h t l y  o.;cil.l.ntor*y wave 
(tcs-t no. 540). Crest is 115 kA i n  '7 ( t e s t  no. 576). Crest is  85 kA i n  '7  
ysec.  Undershoot is -60 kA. I n i t i a l  ysec.  Undershoot i s  -38 W\.. I n i t i a l  
di/dt  = 16.4 kA/Gsec. d i / d t  = 1 2 . 1  ld\./ysec. 

FIGURE 2 ( c ) .  Underdamped osc i l l a to ry  wave ( t e s t  no. 
61.2). Crest is 150 kR i n  '1.5 ysec.  
Undershoot is 8'7.5 kA. Ini t ia l .   d i /dt  = 
20 U/ysec.  

FIGURL 2 Kxamples of osci l logra~ns of d i f f e m n t   c u x a n t  
wavc shapes  applied  during flame ve loc i ty   t c s t s .  

Note: A l l  discharges were of positive  polarity.  Oscillocrsm:; 
a r e  shown with downward def lect ions duc to   p l .acc~ml~t  of 
current  measuring  shunt  in ground re turn  c i r c u i t .  
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FIGURE 3 ( a ) .  
iJndcL-drunpcd, h igh ly   o sc i l l a to ry  wave 
(-Lcs-t no. 6 5 3 ) .  Crest is 180 I d l  i n  8 
I.LSCC. First  undershoot i s  -14.4 kA. 
I n i t i a l   d i i d t  = 22.5 kA/psec. 

FIGURE 3 (b) 
Underdamped, s l i g h t l y  o s c i l l a t o r y  wave 
( t e s t  no. 6 7 ~ ' ~ ) .  Crest is 130 M i n  '7 
~ s t ? c .  Undershoot is -17 kA. I n i t i a l  
di/dt  = 18.5 ld/psec. 

FIGrnJI 3 iSxanplcs of oscillograms of d i f fe ren t   cur ren t  
wave shapes applied  during  flame  velocity  .Lests. 

i b t e :  All dischai-.p;cs w e x  of pos i t ive  polarity. Oscillograms 
are  snoiiin with dowmrard def lec t ions  due t o  placement of 
cuyrent rneazlwing shunl; i n  ground r e t u r n   c i r c u i t .  
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Test   Current  
No. kA Wave 

(Fig) 

523  66 la 

524 57 la  

525 57 la  

526  43 l b  

527 43 lb  

528  82 l b  

530  120 IC 

531  125 IC 

535  125 IC 

537  125 IC 

538  125 IC 

539  125 IC 

540  125  2a 

TABLE I 

Flame Velocity Test Results 

Confiquration A: No Blowout Area. Arrestor 'Installed 

Locations 
1 - 2  2 - 3  3 - 4  4 - 5  5 - 6  

t V t V t V t V t V 
msec '/set msec '/sec msec '/sec msec '/set msec '/sec 

100  12.4 

130  7 .0  

75   16 .6  

70  17.7 

60  20.7 

105   11 .8  
-3  -302 

245  5.1 

320 

630 

530 

2 95 

340 

170 

1 6 5  

225 
-8 

37  5 
-1 2 

51 5 
-1 0 

430 
-1 0 

835 

5 .6  

4 .8  

3.4 

6.1 

8.9 

10 .6  

10 .9  

8 .0  
-22  6 

4.8 
-1 50 

5.9 
-271 

7.1 
-27 1 

3.7 

110 10 .8  

180 6.6 

270 4.4 

90 13.2 

85  14.0 

100 11.9 

1 2 5  9.5 

85   14 .0   85  
7 170 

60 19 .8  70  
30 395 30 

175  6.8 50 
40  30 

75   15 .9   55  
1 0   1 1 8  

95   12 .5  

770  4.0  70  17.0 

4.4 

5.4 
52 

7.5 

6.8 

Avg . Velocity 

t V 
msec '/sec Remarks 

530  8.0 

810  5.4 

960 4.4 

460  9.2 

425 10.0 

340  12.5 

350  12.1 

500 9.2 
Secondary 
flame 

Secondary 
flame 

Secondary 
flame 

Secondary 
flame 

750  6.2 

740  6.2 

560  8.2 

930 4.6 

840 5.0 



Configuration A. 

Locations Avg . Velocity 

Test Current Flame 1 - 2  2 - 3  3 - 4  4 - 5  5 - 6  
No. kA Wave Arrestor t V t V t V t V t V t V 

(Fig) msec '/sec msec '/set msec '/sec msec '/sec msec '/sec msec '/sec Remarks 

541 125 2a dry 

543  125 2a dry 

544  112 2a wet 

480  6.3 98  12.1 62 6.1  640 7.2 
-10 -119 Secondary 

flame 
515  5.9  65  19.8  60 6.2 640  7.2 

-1.0 -119 Secondary 

Flame arrestor  wetted  with  kerosene. flame 

465 6.6 1 6 5  7.2 630 6.7 

546  112 2a wet 355  8.6  135  8.8  490  8.6 

551 1 1 2  2a wet 
(0 
Q, 

556  108 2a dry 

557  108 2a dry 

415  7.4 120  9.9 

Flame arrestor  dried off. 

330 9.2 100  11.9 

590 5.2 150   7 .9  

535  7.9 

430 9.9 Arrestor 
possibly. 
st i l l  damp 

740  "5;7 II 

Confiquration B: No Blowout Area. Arrestor  Removed. 

Electrode  positioned 0.5" above bottom lip of S-tube,  inside of vent. 

552  108 2a out 415  7.3  85  14.0  500 8.5 



TABLE I 

Flame Velocity  Test  Results 

Confiquration C: TOP of Surqe Tank Elevated 1.5" to Provide Blowout  Area  Above Flame 
Arrestor.  This area  was  covered  with maskinq tape prior to  each  test. 
Flame arrestor  installed. 

Locations Avg. Velocity 

Test Current Flame 1 - 2 2 - 3  3 - 4  4 - 5  5 - 6  
No, kA W a v e h e s t o r  t V t V t V t V t V 

(Fig) 

559 104 2a 

560 104 2a 

570  95 2b 

571  95 2b 

575  95 2b 

576  95 2b 

562 110 2a 

msec '/set msec '/set msec '/set msec '/sec msec '/sec 

Electrode  positioned 0.5" above bottom lip of S-tube, inside of vent. 

dry 290  10.5  110  10.8  20  18.8 

Vent outlet 90% sealed with  masking tape. Electrode  positioned as  above. 

dry 215  14.2  45  26  20  18.8 

Electrode  positioned 2 .O" above bottom lip of S-tube, inside of vent. 

dry 50  25   155 11.7 100 11.9  55 6.8 

Vent outlet 90% sealed with  cloth  tape.  Electrode  positioned a s  above. 

dry 50  25  160  11.3  105  11.3 

Electrode  positioned 0.5" above  lower lip of S-tube,  inside of vent. 

dry 12  254 2 593  19  19.8 

dry 1 1240 6 300 3 395  25  15.0 

Fuel-air mixture fed into system  at  location A. 

dry 7 177 4 221 2 258 

t V 
msec '/set Remarks 

420 11 

280  16.5 

360  12.8 

315 13.4 

33 140  

3 5  132 

1 3  234 



TABLE I 

Flame Velocity Test Results 

Configuration D: 17.7 SCT. inch Blowout Area Cut in  Surge  Tank.  This  Hole Was  Covered 
with  Saran  Wrap Prior to  Each  Test. Flame  Arrestor Installed. 

Locations Avg . Velocity 
Test  Current Flame 1 - 2 2 - 3  3 - 4  4 - 5  5 - 6  
No. kA WaveArrestor t V t V t V t V t V t 

( F id msec '/sec  msec '/set msec '/set msec '/set msec '/set msec '/set Remarks 
V 

Electrode  positioned 0.5" above bottom lip of S-tube,  inside of vent. Vent 
outlet 90% sealed  with  cloth  tape. 

0 
0 

CL 

577  85 2b dry 1 0  423  48  7.8  58  80 

578  102 2b dry 50  24.8  180 10 .0  140  8.5  370  11.4 

579  118  2b dry 5 248   35  52 30  40  70  61 

580 118 2b dry 5 248 2 5  72 40  30 70  61 

581  118  2b dry 285 3.2 310  5.8  130 9.1  300 1 . 3  1070  4.3 

582  118  2b dry 80  15 .5  120  15 .0  45   26   35  10.7 280 16.5 

583  118  2b dry 80  15 .5  1 1 0  16.4 50  24  30 1 2 . 5  270 17.1 

584 1 0 0  2b dry 220 5.7 1 9 0  9.5 65   18 .3   35  10.7 510 9.1 

585 97 2b dry 1 0 0  12 .4  130  13.9 45  26  45 8 .3  320 14.4 

586 97 2b dry 90 13.8 130 13.9 45  26  30 12 .5  305 15.1 

Electrode  gap  increased  to 0.75".  

587 97 2b dry 80   15 .5  110  16.4  40  30  40  9 .4   270 1 7 . 1  



Configuration u. 

Locations Avg . Velocity 

5 - 6  
t V t V 

msec '/set msec '/set Remarks 

1 

Test Current  Flame 1 - 2 2 - 3  3 - 4  4 - 5  
No. kA W a v e m e s t o r  t V t V t V t 

(Fig) msec '/set msec '/set msec '/sec msec '/set 
V 

Vent outlet   covered  with  saran  wrap. 

588 97 2b  dry  80  15.5  160  11.3 60 19.8 

Vent  outlet  90%  cloth  taped. 

589 100  2b  dry  4  310 7 258 2 594 

590 100  2b  dry 5  248 

P 591 1 0 0  2b  dry 8 155  

593  100  2b  dry 4  310 

595  150 2c dry 2  620 

P 
0 

8  225 2 594 

15   120  4 297 

6 300 1 . 5  790 

30 60 6.5 183  

596  150 2c dry  3  413  9.5  190  2.5  475 

597 150  2c  dry 2 620  3  295 6 153  3  396 

598  150 2c dry  8 155 1 5  59 20  46 10 119 

599 150 2c  dry 2 620  4  222 6 153  2  594 

Electrode  gap  decreased  to 0.5" . 
602 150 2c dry 21 101 1 5  61 5 237 

50  7.5  350  13.2 

3 125  

7 54 

1 3  29 

3.5  107 

7 . 5  50 

5 75  

6 63 

9 42 

6 63 

22  210 

40 115 

1 5  307 

46 100  Arc occurred 
from electrode 
to edge of 
out le t .  

20  230 

20  231 

62 75  

20  231 

5 75  46 100  



Configuration D. 

Locations Avg. Velocity 

T e s t  Current  Flame 1 - 2 2 - 3  3 - 4  4 - 5  5 - 6  
No0 kA Wave Arres- t V t V t V t V t V t V 

(Fig) tor msec  '/set msec '/sec msec '/set msec '/sec msec  '/SeC msec '/set Remarks 

Electrode  gap  increased to 0.75". 

604  150 2c dry 5  248  5  177  6  153  3  396  8 47  27 171 

Vent  outlet   covered  with  saran  wrap. 

605  132 2c dry  120  25  25  48  25  15.0  170  27.1 

606  137 2c dry 160  7 .8  

607  137 2c dry 30  41 

360 5.0  260 4.6  190 2.0 970 4.8 

90 20 30 40  25 15.0 1 7 5  26.3 

Flame arrestor wetted  with  kerosene. 

609 137 2c wet  90  12.7 2 1  0 8 .6   165  7.2  75 5.0 540 8.5 

612 150  2c wet  30 41 50  17.7  30 31  20 59 1 3  29 1 4 3  32 

Vent  outlet  uncovered.  Electrode  positioned  in  center of vent   out le t .  

614  150 2~ wet  58 2 1  52  17.0  35  26  20  60  25  15.0  190  24 

Vent  outlet 90% covered  with  c loth  tape.  

615  150 2c wet  80  15.5 1 0 0  8.9  120  7.6  130  9.1 430  9.8 

Electrode  positioned  0.75"  above  lower  lip of S-tube,  inside  vent  scoop. 

616  150 2c wet  80  15.5 120  7.4  120 7.6  180 6.6  500  8.5 

621  161 2c wet  90  13.8 90 9.9  140 6.6  190 6.3  51 0 8.3 



Configuration D. 

CI 
0 w 

Locations Avg. Velocity 

Test Current Flame 1 - 2 2 - 3  3 - 4  4 - 5  5 - 6  
No., kA Wave  Arrestor t V t V t V t V t V r f 

(Fig) msec '/set msec '/sec msec '/sec msec '/set msec '/sec msec '/set Remarks 

Reduced  propane-air  mixture to  3.2%  propane (by volume). 
Electrode  positioned  in  center of vent  outlet. 

622  161  2c wet  140 8.9 200 4.4 270 3.4 610 5.0 

Propane-air  mixture  now  back to 4.4% propane  (by  volume). 

704 1 6 7  2c wet 80 27 2 5  37 1 0  156  115 40 

"""~""""~""""""""""-""""""""""""- 

Configuration E: 17.5 sq. inch Blowout Area Cut  in  Surge Tank. This  Hole Was  Covered 
with  Saran  Wrap Prior to  Each  Test. Flame  Arrestor Removed. 

Electrode  positioned .33" from outside  edge of vent  opening. 

624 * 161  2C out  140 8.9 120  7.4  1 8 0  5.1 2 1 0  7.4 650 7.1 

Electrode  gap  increased  to 1 .O" from outside  edge of vent  opening. 

625 1 6 1  2c out 25 50 35  25 2 0  4 6  15 104 95 49 

626 161  2c out 40 31 80  23 40 30 160 27 



Configuration E 

Locations 

1 - 2   2 - 3   3 - 4   4 - 5   5 - 6  
Test  Current Flame t v t V t V t V t V 

NO. kA Wave Arrestor msec '/sec msec '/set msec '/sec msec '/set msec '/set 
(Fig) 

Electrode  positioned 0.5 I f  above  lower l i p  of S-tube,  inside of vent. 

632  161 2~ out 10  124  50 17.8 25 37  25  63 

Electrode  positioned 1.5 I' above  lower  lip of S-Tube, inside of vent. 

633  161 2c out 20  62  60 14.8 3 0   3 1  

0 
c-r 
A 634   161  2 C  out 15 a3 35 25  25 37 

15  104 

20  7a 

Electrode  positioned 0.75 'I above  lower l ip  of S-tube , inside of vent. 

635 161 2c out 18   69  34  26 26  35 

636  161  3a out 10  124 25 36 20  46 

637  161  3a out 10 124 18  49 22  42 

638  161  3a out 15  83 35  24 28 33 

639  195  3a out 10 124 25  36 20  46 

640  195 3a out 5 248 3 0   3 0  25 37 

15  104 

15 104 

1 2  130 

1 2  130 

15  104 

10  156 

Avg .Velocity 

t V 

msec '/set Remarks 

110 42 

125  37 

95  49 Arc occurred 
from electrode 
to  edge of scoop. 

93 50  

70  66 

62  74 

80 58 

70 6 6  

70 6 6  



Configuration E 

Locations Avg .Velocity 

1 - 2   2 - 3   3 - 4   4 - 5   5 - 6  
Test Current Flame t V t V t V t V t V t V 

No. kA Wave Arrestor msec '/set msec '/sec msec '/sec msec '/sec msec '/set msec '/set Remarks 
(Fig) 

Vent outlet  covered  with  saran  wrap. 

641   195   3a  out 10 124  25  36  20  46  15  104  70  66 

Vent outlet  covered 50% with  cloth  tape. 

642  195 3a out 1 1 2 4 0   2 4   3 7   1 2   7 7  9 174  46  1 0 0  

Vent outlet  covered 90% with  cloth tape. 

643  195  3a out 20  107  15  612 15 104   50   92  

Vent outlet  open.  Electrode  positioned 1" from outside  edge of vent  opening. 

644   195  3a out 3 413   33   27   22   42   14   112   72   64  

645 1 6 1  3a  out 10 124  45  20  25  37 10 1 5 6   9 0   5 1  

Vent outlet  covered 90% with  cloth  tape. 

6 4 6   1 6 1  3a  out 3 413   12   74   12   76  11 1 4 2   3 8   1 2 1  

Vent outlet  open. 

649  190 3a out 

651   190   3a  out 11 113 2 9   3 1  

2 2115 1 375 3 1540 Evidence of 
multiple  ignition 

245 8.6 285 14.8 at pts.  @,B,C) 

657 170 3a out 10 1 2 4  40 22  22 42  20 78  92  50 

6 6 1  170 3a out 1 0  1 2 4   3 2  2 8   2 1  4 4  10 156 73 63 



Configuration E 

Locations Avg .Velocity 

1 - 2  2 -3 3 - 4   4 - 5   5 - 6  
Test Current Flame t v t  V t V t V t V t V 
No. kA Wave  Arrestor msec '/sec msec '/set msec '/sec msec '/sec msec '/sec msec '/sec Remarks 

664  38 l a  out 300  4.1  160  5.5  270  3,4  730 4.2 
(Fig) 

665  38 l a   ou t  170 7.3 150  5.9  150 6.1 150  10.4  620 7.5 

666  37 l a  out 200 6.2 230  3.8  170  5,4  200  7.8 8W 5.7 

667  58 la  out 190 6.5 210  4.2  200  4.6  330 4.7 930  5.0 

668  130  3b out 130 9.5 140  6 ,3   190 4.8 180 8.7 640 7.2 

670  130  3b out 100 12.4  65  13,6  135  6.8  300  10.2 

671  130  3b out 90  13.8  60  14.8  50  18.3  50  31  250  18.4 

672  130  3b out 70  17.7  55  16.1  65  14.1  190 16.0 

673  130  3b out 1 0 0  12.4 100 8.9  200  4.6 140 11.2  540 8.6 

674  130  3b out 120  10.3 100 8.9 180  5.1 190  8.2 590 7.8 

Electrode  positioned 2 I' from end of vent  outlet. 

675  130  3b out 130 9.6 100 8.9  170  5.4 170  9.2  570 8 , l  

676  130  3b out 110 11.3 80 11.0 180  5.1  230 6.8 600 7.7 



Configuration E 

Locations 

1 - 2  2 - 3   3 - 4   4 - 5   5 - 6  
Test  Current  Flame t v t  V t V t V t V 

NO. Wave Arrestor msec '/set msec '/sec msec '/set msec '/set msec '/sec 
(Fig) 

Electrode  posit ioned 0.75" above  lower l ip  of S-tube,  inside of vent. 

677  130  3b  out 

678  126 3b ou t  

679  128  3b  out 

680  128 3b out  

681  128  3b  out 

683  132 3 c   o u t  

685  138  3c  out 

687  150  3c  out 

688 150 3C out  

689  '150  3c  out 

690  167 3c   ou t  

691 170 3c  out  

692  170 3c   ou t  

90  13.8  130  6.8 

100  12.4 100 8.9 

100  12.4  120 7.4 

110  11.3  125 7.1 

80  15.5  120 7.4 

60 2 1  80 11.1 

60 2 1  65 13.6 

35  35  75  11.8 

35  35  60  15 

30  41 70 12 .7  

20 6 2  70 12.7 

16  78 34  10.5 

20 62  55 1 6 , l  

150  6.1 

220 4.2 

220 4.6 

245 3.6 

230 4.0 

60 15.3 

35 26 

45  20 

20 46 

30  31 

30  31 

30  31 

30  31 

170 9.2 

260 14.4 

310  5.1 

300 5.2 

430 3.6 

50 31  

35 45 

45 35 

20  78 

40  39 

30 52 

30  52 

20 78 

Avg .Velocity _ _  

t V 
msec '/sec Remarks 

640 7.2 

700 6.6 

750 6.2 

780 5.9 

860 5.4 

250 18.4 

195  24 

200  23 

135  34 

170  27 

150   31  

160  29 

125  37 



Configuration E 

Locations Avg .Velocity 

1 - 2  2 - 3   3 - 4   4 - 5   5 - 6  
Test Current  Flame t V t V t V t V t V t V 

No. kA Wave Arrestor msec '/set msec '/sec msec '/set msec '/sec msec '/set msec '/sec Remarks 

693  176  3c  out  13  95 42 2 1  45  20  30  52 130 36 
(Fig) 

694  179  3c out 20  62  65  13.6  35 26 2 0  78  140  33 

695  172  3c  out  20  62  50 17.7 20 46 15  104  105  44 

Electrode is 8"   p i ece  of aluminum  foil  0.5"  wide  extending  inside  vent  to 
lower l ip of S-tube. 

700  155  3c  out  50  43 2 0  46 20  78  90  51 

703  142 3 c   o u t  85  24  15  61  15 104 115  40 



- WTRODU.CTION " " . . - - - " - TO TABLE I1 - ". IGNITION .~_  THRESHOLD  TESTS 

The  following  table lists the   resu l t s  of the  Ignition  Threshold Tests. 
The  materials  employed  in  these tests a r e   a s  follows: 

Titanium - 20, 40 , and 60 m i l  th icknesses  
Aluminum - 40 and 60 m i l  th icknesses  
Stainless  Steel  - 20 , 4 0 ,  and 60 m i l  th icknesses  

This  Table is  self explanatory:  however,  the  following  notes  may  be 
helpful: 

1) All tes ts   were performed  using a 38kA init ial  high  current  spike 
which  lasted a few  microseconds. 

2) On most  tests,  following  the  initial  high  current  spike a low 
amplitude  continuing  current  was  applied  with  both  the  amplitude  and t i m e  
varied to obtain  the  desired  coulomb  transfer.  This is often  referred to as 
a two-component  discharge. 

3) For a few tests (No. 179 to 181) , a three-component  waveshape 
was  employed.  This  consisted of a 38kA sp ike ,  a 1380  amp cres t  2nd c o m -  
ponent , lasting 80 microseconds , and  the  normal  low  amplitude  continuing 
current  lasting  up  to 1 . 2  seconds.  

4) High  speed  photography,  which  was  used to determine  ignition 
time,  was  not  employed on all t e s t s .  The  cameras  were  only  operated  on 
tests  considered  to  be  the  most  representative of actual  lightning  strikes. 
Thus for  many t e s t s  no  ignition  time is given. 
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CL 
CL 
0 

TABLE I1 
D TESTS 

Test  Continuing  Current  Charge  Ignition  Ignition  Hole Fuel-Air Ratio 
No. Avg . Amplitude Duration  Transfer Time Formed Fraction of 

(amps) (msec) (coulombs) (msec) Stoichiometric 

20 mil Titanium 

160  69 960 66.0 no 

1 6 1  65 1400 90.0 no 

163   92  800 73.5 no 

164   92  1260  116.0 no 

165  116 1400 148.0 Yes 5 sec. Yes 

166  119 500  59.5 no Yes 

168 110 1480 163.0 Yes 5 sec. Yes I 1  

179  1380  80 110.0 Yes  Yes 

180  1350  80 108.0 Yes 5.0 Yes 

181   1380  80 110.0 Yes 4.5 Yes 

182 initial  spike  only 0 no 

183  110  240 26.0 Yes 

no 

no 

1.5 

I1 

187  105 134 14.0 Yes no 

188   124  60 7.4 Yes no 

11 

,I 

- 
Continued--- 



TABLE I1 
IGNITION  THRESHOLD  TESTS 

Test  Continuins  Current  Charge  Ignition  Ignition Hole Fuel-Air Ratio 
No. Avg. Amplitude Duration  Transfer Time  Formed Fraction of 

(amps)  (msec)  (coulombs)  (msec)  Stoichiometric 

20 mil Titanium 

189 initial  spike only 0 no no 1.5 

190  92  20 2.0 no  no 

19 1 initial spike only 0 no no 

19 2 92  20 2.0 no no 

19 3 92   48  4.0 no no 

19 4 6.0 Yes  no 

195  92  56 5 .0  no no 

19 6 92   66  6.0 Yes no 

197  97  60 5.8 Yes no 

I1  

I1 

II 

I1 

I1  ””” ”””_ 

I1  

I 1  

I 1  

199  92 60 5.5 Yes no 

200  92 47  4.3 no no 

20 1 9 2  20 2.0 no no 

203  74 108 7.0 no no 

20 5 9 2  140 12.0 yes no 

I1 

I 1  

11 

I1 

I I  

Continued--- 

I 



TABLE I1 
IGNITION THRESHOLD  TESTS 

Test  Continuinq  Current  Charge  Ignition  Ignition  Hole Fuel-Air Ratio 
No. Avg. Amplitude Duration  Transfer Time Formed Fraction of 

(amps) (msec) (coulombs)  (msec)  Stoichiometric 

20 mil Titanium 

206  92  100  9 .2 Yes no . (  1.5 

210  74  60  5.0 Yes no 

2 1  1 74  56  4.0 no no 

212  110  36 4.0 no no 

213  119  200  24.0 Yes no 

214  115  200 23.0 Yes no 

215  92  140  13.0 yes no 

245 92   60  5.5 Yes no 

25 3 92  46  4.25 no no 

25 4   92   57  5.3 no no 

49  3 39 kA initial s p i k e  only  no  no 

494 no no 

49  5 5 8  kA ” no no 

49  6  86 kA I’ no no 

II 

I1 

I ,  

I1 

,I 

,I 

I 1  

II 

II 

I 1  
””” 

I I  II II , I  I1 I1  ””” 

I1  I ,  II 
””” 

II I 1  II ””” 

Continued--- 



TABLE 11 
IGNITION THRESHOLD  TESTS 

Test Continuins  Current  Charge  Ignition  Ignition  Hole Fuel-Air  Ratio 
No. Avg . Amplitude Duration  Transfer Tim e Formed Fraction of 

(amps) (msec) (coulombs) (msec) Stoichiometric 

40 m i l  Titanium 

136 69 360 24.9 no 

138 101  260  26.3 no 

139  119 

140  128 

141   128  

216  128 

. 220  125 

221 ? 

224 ? 

226  138 

CI 

w 
CI 

1000 119.5 no 

1440 185.0 no 

1440 185.0 no 

no 1.8 

no II 

1440 185.0 Yes 22 Yes 0.75 

126 15.7 no no 1.5 

? 15.8 no  no 

? 46.0 Yes Est. 500 no 

200  27.6 Yes no 

229 165 140 23.0 Yes 

230  144 100 14.4 Yes 

no 

no 

II 

,I 

231  165 70  11.5 Yes  no 

232  189 6 1  11.5 Yes no 

I1 

I I  

Continued--- 



TABLE 11 

IGNITION THFESHOLD  TESTS 

Test Continuins  Current  Charge  Ignition  Ignition  Hole Fuel-Atr Ratio 
No. Avg. Amplitude Duration  Transfer T i m e  Formed Fraction of 

(amps) (msec)  (coulombs) (msec) Stoichiometric 

20 mil Titanium 

497 88 kA initial  spike  only no 

518 103 58 6.0 Yes 

519 

5 20 

88 56 

92 50 

4.9 no 

4.6 no 

44* 

no 

no 

no 

no 

521 19 1 51 10.0 no no 

522 319 69 22.0 Ye S 13.5 no 

I1 

I1 

* Obtained from high  level  microphone. 



TABLE I1 
IGNITION  THRESHOLD  TESTS 

Test  Continuing  Current  Charge  Ignition  Ignition  Hole Fuel-Air Ratio 
No. Avg. Amplitude Duration  Transfer Time Formed Fraction of 

(amps) (msec) (coulombs) (msec) Stoichiometric 

233 

234 

235 

236 

237 

23 8 

239 

240 

24  2 

243 

34 6 

327 

328 

329 

125 

9 3  

93  

60 

60 

60 

69 

55 

115 

13  8 

60 

42 

? 

? 

60 

63 

63 

52 

5 2  

52 

60 

60 

52 

68 

50 

48 

? 

? 

40 mil Titanium 

7.5 Yes 

5.75 Yes 

5.75 Yes 

3.0 no 

3.0 no 

3.0 no 

4.1 no 

3.5 no 

6.0 no 

9.0 no 

3.0 no 

2.0 no 

3.5 no 

5.5 no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

1.5 

11 

11 

I I  

i1 

2.25 

11 

11 

0.75 

11 

1.5 

11 

11 

11 

Continued--- 



I 

TABLE I1 

IGNITION THRESHOLD  TESTS 

Test Continuinq  Current  Charge  Ignition  Ignition  Hole Fuel-.Mr Ratio 
No. Avg . Amplitude  Duration  Transfer Time Formed Fraction of 

(amps) (msec) (coulombs) (m s ec) Stoichiometric 

40 mil  Titanium 

330   121  

33 1 100 

332  129 

57 

58 

62 

6.9 Yes no 

5.8  no no 

8.0 Yes 7 2* no 

1.5 

I I  

I1 

* Obtained from high level microphone. 



TABLE I1 
IGNITION  THRESHOLD  TESTS 

Test  Continuins  Current  Charge  Ignition  Ignition  Hole Fuel-.Air Ratio 
No. Avg. Amplitude Duration  Transfer Time Formed Fraction of 

(amps)  (msec)  (coulombs) (msec) Stoichiometric 

60 m i l  Titanium 

25 5  125 55 6.9 no no 1.5 

25 8  125 82  10.4 no no 

25 9 125 224 28.0 no no 

261  125 29 6  37.0 no no 

263  125 1100 138.0 no no 

264  125 1100 138.0 Yes no 

265  125 1100  138.0 Yes no 

266  125 960  120.0 no no 

268  125 1010 126.0 Yes no 

269  125 920  115.0 no no 

270  125 1150  144.0 Yes  no 

445  733 150 100.0 Yes Yes 

446  733 157  115 Yes  Yes 

447  733 314  230 Yes  Yes 

I1  

II 

I 1  

I1  

I1 

I1  

I1 

I1  

I1  

I I  

I 1  

I I  

I I  

Continued--- 



TABLE I1 
IGNITION THRESHOLD  TESTS 

goo* 

Test Continuinq  Current  Charge  Ignition  Ignition  Hole Fuel-Air Ratio 
No. Avg. Amplitude Duration  Transfer Time Formed Fraction of 

(amps) (msec)  (coulombs) (msec) Stoichiometric 

60 mil Titanium 

44 8 733  75 60 no 

449  733 145 106 no 

45 0 733  145 106 Yes 

45 1 125 1260 157 Yes 

483 ? ? 99 Yes 

484 ? ? 106 no 

485  147 940  138 Yes 

486  129 950  122 no 

487  134 950 127 Yes 

488  136 950  129 no 

489  113 950 107 Yes 

49 0 120 440 53  no 

49 1 126 950 119 Yes 

49 2 140 9 5 0  133 Yes 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

Yes 

no 

Yes 

Yes 

1.5 

11 

,I 

11 

0.75 

11 

I t  

11 

11 

1.5 

I t  

11 

11 

2.25 

* Obtained from high level microphone. 



TABLE I1 
IGNITION THRESHOLD TESTS 

Test Continuinq  Current  Charge Ignitim Ignition  Hole  Fuel- Air Ratio 
No. Avg. Amplitude Duration  Transfer Time Formed Fraction of 

(amps)  (msec)  (coulombs) (m s ec) Stoichiometric - 
40 mil Aluminum 

208 92 112 10.0 no no 1.5 

209 119 

317 125 

319  125 

390 46.5 Yes 

84 10.5 no 

25 5 32.0 no 

Yes 

no 

no 

11 

11 

11 

320 125 300 37.0 yes loo* Yes 

321 ? ? 19.0 Yes Yes 

i1 

11 

322 149 

323 
.. 

? 

324 15 1 

138 20.5 no 

? 23.0 Yes 

136 20.5 no 

no 

Yes 

no 

11 

11 

11 

325  169  130 22.0 Yes 130* Yes 11 

* Obtained from high  level microphone. 



TABLE I1 

IGNITION  THRESHOLD TESTS 

Test Continuins  Current  Charge  Ignition  Ignition  Hole Fuel-Air Ratio 
No. Avg. Amplitude Duration  Transfer Time Formed Fraction of 

(amps)  (msec)  (coulombs) (msec) Stoichiometric 

60 mil Aluminum 

273  125  275  34.5 no  no 1.5 

274 111 

275  138 

27 7 115 

278  264 

288 ? 

289  150 

29 0 14  1 

29 1 129 

370  41.0 no 

210  29.0 no 

700  80.5 no 

440  116.0 Yes 

? 93.0 Yes 

575  86.0 Yes 

370  52.0 Yes 

3 10  40.0 no 

29 2 15 8 29 2 46.0 Yes 

293  140  350  49.0 Yes 

29 4 140 

295  148 

29 6 154 

215  30.0 no 

280  41.5 no 

270 41.5 no 

no 

no 

Yes 

Yes 

no 

no 

no 

Continued--- 



TABLE I1 
IGNITION THRESHOLD  TESTS 

Test Continuing  Current  Charge  Ignition  Ignition  Hole Fuel-Air  Ratio 
No. Avg. Amplitude Duration  Transfer Time Formed Fraction of 

(amps) (msec) (coulombs) (msec) Stoichiometric 

60 m i l  Aluminum 

297 ? ? 53.0 Yes 

29 8 146 333  48 .5  no 

Yes 1.5 

no II 

29  9 162 340  55 .0  Yes yes  I1  



TABLE I1 

IGNITION THRESHOLD  TESTS 

N 
w 
N 

Test  Continuinq  Current  Charge  Ignition  Ignition  Hole Fuel-Air Ratio 
No. Avg . Amplitude Duration  Transfer Time Formed Fraction of 

(amps)  (msec)  (coulombs)  (msec)  Stoichiometric 

20 m i l  Stainless  Steel 

302  65 5 4  3.5 no no 1.5 

303  79 58 4.6 Yes no 

304  56  57  3.2 no no 

305  60 47  2.8 no no 

306 ? ? 4.5 no no 

307  84 56  4.7 no no 

308  82  57 4.7 no no 

309 ? ? 6.0 no no 

310  96 55  5.3 no no 

311  109 55 6.0 no no 

312 125 55 6.9 no no 

313  128 5 8  8.0 no no 

3 14  115 5 8  6.7 no no 

315   121  58  7.0 no no 

II 

, I  

II 

,I 

II 

I 1  

,I 

, I  

II 

I 

II 

I1 

I1 

Continued--- 
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TABLE I1 
IGNITION  THRESHOLD  TESTS 

Test  Continuins  Current  Charge  Ignition  Ignition  Hole Fuel-Air Ratio 
No. Avg. Amplitude Duration  Transfer Time  Formed Fraction of 

(amps) (m s ec) (coulombs)  (msec)  Stoichiometric 

20 mil Stainless  Steel 

316 

334 

335 

336 

337 

330 

339 

340 

34 1 

34 2 

145 

9 1  

70  

70  

66 

79 

96 

75 

96  

115 

55  

48 

53 

53 

53 

5 1  

54  

53 

54 

57 

8.0 

4.4 

3.7 

3.7 

3.5 

4.0 

5 .2  

4.0 

5 . 2  

6.6 

Yes 

Yes 

no 

no 

no 

no 

no 

no 

no 

Yes 

io5* no 

125* no 

no 

no 

no 

no 

no 

no 

no 

Yes 

1.5 

II 

I1  

I1 

II 

I1  

I1 

* Obtained from high level microphone. 



TABLE II 
IGNITION THRESHOLD  TESTS 

Test Continuinq  Current  Charge  Ignition  Ignition  Hole Fuel-Air Ratio 
No. Avg. Amplitude Duration  Transfer Time Formed Fraction af 

(amps) (msec) (coulombs) (msec) Stoichiometric 

40 m i l  Stainless  Steel 

279 

280 

282 

284 

285 

286 

287 

300 

3 0 1  

138 

15 3 

127 

187 

15  2 

7 2  

? 

205 

197 

29 0 

209 

29 1 

222 

69 

160 

? 

6 1  

6 1  

40.0 

32.0 

37.0 

41.5 

10.5 

11.5 

25.2 

12.5 

12.0 

no 

no 

no 

no 

no 

no 

Yes 

no 

no 

1.5 

I1  

I I  

I t  

I I  

I 1  

I 1  



I z z 
? 
F 

Y IGNITION THRESHOLD  TESTS 
TABLE I1 5 

~ 

+ 
(D 
0) m 

I 

Y 

bJ 

Test  Continuinq  Current  Charge  Ignition  Ignition  Hole Fuel-Air  Ratio 
No. Avg. Amplitude Duration  Transfer Time Formed Fraction of 

(amps) (m s ec) (coulombs) (msec) Stoichiometric 
C2 

c! 
k- 

-4 
a\ 

60 mil Stainless Steel 

343 156 59  9.2 no 

344 ? ? 11.0  no 

345 ? ? 33.0 no 

346 ? ? 41.0 Yes 

Yes 
CI 

u1 
h3 347 ? ? 45.0 

34 8 ? 

349 ? 

35 0 

35 1 

35 2 

? 30.0 no 

? 32.5 no 

? 36.5 no 

? 36.0 no 

? 46.0 Yes 

no 1.5 

no II 

no 

no 

no 

II 

II 

II 

no 

no 

no 

no 

no 

II 

11 

II 


