Item L

TR-EE67-15 **Research Contract** NASA/JPL No. 950670 PRF No. 3807

# PURDUE UNIVERSITY **SCHOOL OF ELECTRICAL ENGINEERING**

# **OPTIMIZATION OF STOCHASTIC CONTROL PROCESSES WITH RESPECT TO PROBABILITY OF ENTERING A TARGET MANIFOLD**

by J. Y. S. Luh G. E. O'Connor, Jr.





Lafayette, Indiana 47907 October 1967







RQT-51182

TR-EE67-15

#### RESEARCH CONTRACT

NASA/JPL No. 950670, PRF No. 3807

# OPTIMIZATION OF STOCHASTIC CONTROL PROCESSES

#### WITH RESPECT TO PROBABILITY OF

#### ENTERING A TARGET MANIFOLD

For

Jet Propulsion Laboratory

4800 Oak Grove Drive

Pasadena, California

Bу

J.Y.S. LUH and G.E. O'CONNOR, Jr.

School of Electrical Engineering

Purdue University

Lafayette, Indiana 47907

October, 1967

"This document presents the results of one phase of research performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NAS7-100."

# OPTIMIZATION OF STOCHASTIC CONTROL PROCESSES WITH RESPECT TO PROBABILITY OF ENTERING A TARGET MANIFOLD

#### ABSTRACT

In this report the problem of generating an open-loop control to drive a stochastically disturbed system from a given initial state to a target manifold is considered. The control is to be optimum with respect to a performance index which contains a probability term and an energy term. The probability term is the probability of entering the target manifold during some instant of a specified time interval.

Two approaches to this problem are investigated. The first approach is to obtain a closed form approximation to the probability term by generating an approximate solution to a diffusion equation, and then applying Pontryagin's Maximum Principle. The second approach is to formulate an appealing one-parameter class of controls, and search this class over its parameter. In this approach, the probability term is found by observing a digital simulation of the system.

A sample problem is formulated and both approaches are applied to it. Numerical results are obtained and compared.

#### TABLE OF CONTENTS

|                                                                                                                              | Page                 |
|------------------------------------------------------------------------------------------------------------------------------|----------------------|
| ABSTRACT                                                                                                                     | ii                   |
| LIST OF TABLES                                                                                                               | vi                   |
| LIST OF FIGURES                                                                                                              | vii                  |
| CHAPTER 1 - INTRODUCTION                                                                                                     | 1                    |
| 1.1Outline of the Chapter1.2Review of Stochastic Control1.3The Problem to be Investigated1.4Outline of the Thesis1.5Notation | 1<br>3<br>36         |
| CHAPTER 2 - MATHEMATICAL FOUNDATIONS                                                                                         | 8                    |
| <ul> <li>2.1 Introduction</li></ul>                                                                                          | 8<br>9<br>10<br>17   |
| CHAPTER 3 - DEFINITION OF THE BASIC PROBLEM AND ITS RELATION TO<br>MISHCHENKO'S PROBLEM                                      | 20                   |
| <ul> <li>3.1 Introduction</li></ul>                                                                                          | 20<br>20<br>22       |
| 3.4 Equivalence Between the Basic Problem and<br>Mishchenko's Problem                                                        | 23                   |
| 3.5 Some Limitations and Difficulties in Misnchenko's<br>Work                                                                | 24                   |
| CHAPTER 4 - APPLICATION AND MODIFICATION OF MISHCHENKO'S<br>ESTIMATE                                                         | 26                   |
| <ul> <li>4.1 Introduction</li></ul>                                                                                          | 26<br>26<br>36<br>43 |

 $\sim$ 

Page

|                             | THE TWO DOTNIN POINTARY VALUE BROOT FM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| CHAPTER 5                   | - THE INO-POINT BOUNDARY VALUE PROBLEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ''  |
| 5.1                         | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +7  |
| 5.2                         | Two-Point Boundary Value Problem Formulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 47  |
| 5.3                         | Algorithm for the Two-Point Boundary Value Problem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50  |
| 2.2                         | 5.3.1 The Conjugate Gradient Technique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50  |
|                             | 5.3.2 Multidimensional Integral Computation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56  |
|                             | 5.3.3 Summary and Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 58  |
| 5.4                         | Convergence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 59  |
| 21                          | 5.4.1 Scope and Purpose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59  |
|                             | 5.4.2 Convergence with Exact Computation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|                             | Integrals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60  |
|                             | 5.4.3 Convergence with Monte Carlo Computation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|                             | Integrals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| CHAPTER 6                   | - TWO SUBOPTIMAL PROBLEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 55  |
| 6 7                         | Tutraduation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 65  |
| 6.2                         | Subonting [ Problem P]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 65  |
| 6.2                         | A Sample Problem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 69  |
| 0.5                         | 6.2.] Statement of the Problem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 69  |
|                             | 6.3.2 Numerical Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75  |
| 6 4                         | Cubentimal Problem P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87  |
| 0.4                         | 6 / ] Motimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 87  |
|                             | 6 / 2 Definition of Subontimel Problem P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 87  |
|                             | 6 4 2 Numerical Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 92  |
| 6 5                         | Comparison of Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98  |
| 0.)                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -   |
| CHAPTER 7                   | - NUMERICAL RESULTS BASED ON THE FESTIMATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 103 |
| 71                          | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 103 |
| 7 - L                       | Accument of the # Estimate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 104 |
| 1.                          | 2.2.1 Control-Independent Term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 104 |
|                             | $7.2.2$ w for Controls in $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 104 |
|                             | $7.2.2$ Tor controls in $\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 106 |
| <b>n</b> 0                  | $\begin{array}{c} (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\ (.) \\$ | 109 |
| (•)                         | 7.2.] Starting Point in F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109 |
|                             | 7.3.2 Starting Point in $\sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 114 |
| 7 4                         | (.).2 Subruing round in 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 114 |
| (•4                         | comments on convergence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| CHAPTER 8                   | 3 - SUMMARY AND CONCLUSIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118 |
| Q 7                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 118 |
| 0•⊤<br>8 2                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 118 |
| $\cup_{\bullet}\mathcal{L}$ | 8 2 ] Subortimal Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 118 |
|                             | 8.2.2 Conjugate Gradient Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 119 |
|                             | 823 General Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 119 |
| ĝo                          | Automation for Eutome Investigation $a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120 |
| 0.)                         | 8 3 ] Tingen Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120 |
|                             | 8 3 2 Non-linear Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121 |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |

iv

Page

| 8<br>8                                              | 3.3.3 Closed Loop Solution                                                        | 121<br>122                                                         |
|-----------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------|
| LIST OF REF                                         | FERENCES                                                                          | 123                                                                |
| APPENDIX A                                          | - SOME ESTIMATES USEFUL FOR THE APPROXIMATE SOLUTION<br>OF THE DIFFUSION EQUATION | 125                                                                |
| APPENDIX B                                          | - SOME BOUNDS ON MATRIX TRANSFORMATIONS                                           | 151                                                                |
| APPENDIX C                                          | - COMPARISON THEOREMS FOR SOLUTION TO THE DIFFUSION<br>EQUATION                   | 156                                                                |
| APPENDIX D                                          | - AN EXPRESSION AND A BOUND FOR $\nabla \overline{\bullet}_{0}$                   | 159                                                                |
| APPENDIX E<br>E.1 :<br>E.2 :<br>E.3 :<br>APPENDIX F | - A MONTE CARLO TECHNIQUE FOR THE COMPUTATION OF<br>INTEGRALS                     | 163<br>163<br>163<br>166<br>176                                    |
| F.1                                                 | Introduction                                                                      | 176<br>176                                                         |
| F.3                                                 | Random Disturbance Magnitude                                                      | 180                                                                |
| APPENDIX G<br>G.1<br>G.2<br>G.3<br>G.4              | - COMPUTATIONAL DETAILS ASSOCIATED WITH THE SUBOPTIMAL<br>PROBLEMS                | 181<br>181<br>181<br>189<br>193<br>193<br>193<br>202<br>203<br>213 |
| APPENDIX F                                          | I - COMPUTATIONAL DETAILS ASSOCIATED WITH CHAFTER (                               | 21)                                                                |
| H.1<br>H.2<br>H.3<br>H.4<br>H.5                     | Introduction                                                                      | 213<br>213<br>225<br>225<br>225<br>225<br>225                      |

v

## LIST OF TABLES

| TABLE         |                                                                           | Page         |
|---------------|---------------------------------------------------------------------------|--------------|
| <b>E-1.</b>   | Listing of Program for the Computation of $\tilde{J}_N$ and $\tilde{K}_N$ | 169          |
| G-1.          | SCALI Listing                                                             | 182          |
| G-2.          | •(0) versus T <sub>C</sub> for Pl                                         | 188          |
| G-3.          | PROB Listing for Pl                                                       | 1 <b>9</b> 0 |
| G-4.          | PLOPRO Listing                                                            | 194          |
| G-5.          | DET2 Listing                                                              | 1 <b>95</b>  |
| <b>G-6.</b>   | $\Phi(0)$ versus $K_U$ for P2                                             | 1 <b>9</b> 8 |
| G-7.          | PROB Listing for P2                                                       | 199          |
| <b>G-8.</b>   | Listing of Program for the Computation of Q                               | 204          |
| <b>G-9.</b>   | Listing of Program for the Computation of $\tilde{R}(\tau)$               | 206          |
| <b>G-</b> 10. | Listing of Program for the Computation of $\hat{R}(\tau)$                 | 210          |
| H-1.          | Conjugate Gradient Program                                                | 214          |
| H-2.          | Program for Computation of $\psi_0$                                       | 226          |
| H-3.          | Listing for UGEN2                                                         | 227          |
| H-4.          | Digital Simulation Program                                                | 228          |
| H-5.          | Program for Plot of $\ \tilde{x}(t)\ _{x=1}$ and $u(t)$                   | 231          |

vi

# LIST OF FIGURES

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • ~ > - |            |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|
| <del>5-</del> 7. | the Conjugate Gradient Algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52      |            |
|                  | Sep Size Determination for the Conjugate Gradient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54      |            |
|                  | Castration of Step Size Determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55      |            |
|                  | constant for Pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70      |            |
|                  | tal Flock Diagona for Sample System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21      |            |
| :                | lock Diagram for Sample System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |
|                  | coles for the Sample Problem .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | ÷          |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | The second |
|                  | 1. 7. 1. 1 <b>. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ۰.      |            |
|                  | un tar a la calla de la cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79      |            |
|                  | and a star of the |         |            |
|                  | an an tha an an an the stand and the stand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |            |
|                  | in the state of   |         | ••         |
|                  | terne en el <b>1.7201</b> de la fit <b>t</b> erne se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |            |
|                  | ೆ ಎಲ್ಲಿ ನಾಡಿ ಎಲ್ಲಿ <b>ಸ್ಥಾನಗಳು ಎಲ್ಲ</b> ಿ ಸ್ಥಾನಗಳು ಬಿಲ್ಲಿ ಸಿಂಗ್ ಸ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ŧ.      |            |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |            |
| с.<br>           | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ÷       |            |
| Š. 1. * 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S.      |            |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |            |

•• \*\* ?\*

er de la compañía de

| FIGURE | Page                                                                                                                                                                                                                                                                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6-17.  | $\ \tilde{\mathbf{x}}(t)\ _{-1}$ Versus t for Pl                                                                                                                                                                                                                    |
| 6-18.  | $\ \tilde{\mathbf{x}}(t)\ $ Versus t for P2                                                                                                                                                                                                                         |
| 6-19.  | P2 Distributions                                                                                                                                                                                                                                                    |
| 6-20.  | P2 Distributions                                                                                                                                                                                                                                                    |
| 6-21.  | P2 Distributions                                                                                                                                                                                                                                                    |
| 6-22.  | Energy Versus $K_u $                                                                                                                                                                                                                                                |
| 6-23.  | $\operatorname{Prob}\{\operatorname{Min}_{x \in \mathbb{T}} \  \tilde{x}(t) \ _{x^{-1}} \leq 0.2\} \operatorname{Versus} K_{u^{-1}} \ldots $ |
| 6-24.  | $I_{S}$ Versus $K_{u}$                                                                                                                                                                                                                                              |
| 6-25.  | Probability Versus Energy for $\mathcal{F}_1$ and $\mathcal{F}_2$                                                                                                                                                                                                   |
| 7-1.   | Estimation of $\psi_0$                                                                                                                                                                                                                                              |
| 7-2.   | $\mathbf{V}$ for Controls in $\mathcal{F}_1$                                                                                                                                                                                                                        |
| 7-3.   | $\overline{*}$ for Controls in $\mathcal{F}_2$                                                                                                                                                                                                                      |
| 7-4.   | Optimization Starting from $u_{T_0} = 1.0$                                                                                                                                                                                                                          |
| 7-5.   | Observed Probability Term for Final Point of Figure 7-4 111                                                                                                                                                                                                         |
| 7-6.   | Control Corresponding to Final Point of Figure 7-4 112                                                                                                                                                                                                              |
| 7-7.   | $\ \tilde{\mathbf{x}}(\mathbf{t})\ _{\mathbf{x}=1}$ Corresponding to the Control in Figure 7-6                                                                                                                                                                      |
|        | and No Disturbance                                                                                                                                                                                                                                                  |
| 7-8.   | Optimization Starting from $u_{K_{u}}=10^{-4}$                                                                                                                                                                                                                      |
| 7-9.   | Observed Probability Term for Final Point of Figure 7-8 116                                                                                                                                                                                                         |
| E-1.   | Algorithm for Computing $\tilde{J}_N$                                                                                                                                                                                                                               |
| E-2.   | $\tilde{J}_{N}^{1}$ Versus N                                                                                                                                                                                                                                        |
| E-3.   | $\tilde{J}_{N}^{2}$ Versus N                                                                                                                                                                                                                                        |
| E-4.   | $\tilde{J}_{N}^{3}$ Versus N                                                                                                                                                                                                                                        |
| E-5.   | $\tilde{K}_{N}^{11}$ Versus N                                                                                                                                                                                                                                       |
| Е-6.   | $\tilde{K}_{N}^{22}$ Versus N                                                                                                                                                                                                                                       |

| FIGURE        |                                                               | Page         |
|---------------|---------------------------------------------------------------|--------------|
| E-7.          | $\tilde{\kappa}_N^{33}$ Versus N                              | 173          |
| E-8.          | $\tilde{K}_{N}^{21}$ Versus N                                 | 174          |
| E-9.          | $\tilde{K}_{N}^{31}$ Versus N                                 | 174          |
| E-10.         | $\tilde{K}_{N}^{32}$ Versus N                                 | 175          |
| F-1.          | Inner Loop Root Locus                                         | 178          |
| F-2.          | Outter Loop Root Locus for $\frac{K_R K_C}{L} = .0.6$ .       | 179          |
| F-3.          | Outter Loop Root Locus for $\frac{K_R K_C}{I_L} = 1.0$        | 179          |
| G-1.          | Block Diagram of PHIO                                         | 187          |
| G-2.          | $\tilde{R}_{11}(\tau)$ and $\hat{R}_{11}(\tau)$ versus $\tau$ | 207          |
| G <b>-</b> 3. | $\tilde{R}_{22}(\tau)$ and $\hat{R}_{22}(\tau)$ versus $\tau$ | 207          |
| G-4.          | $\tilde{R}_{33}(\tau)$ and $\hat{R}_{33}(\tau)$ versus $\tau$ | 2 <b>0</b> 8 |
| G <b>-5.</b>  | Algorithm for the Computation of $\hat{R}(\tau)$              | 212          |

ix

#### CHAPTER 1

#### INTRODUCTION

#### 1.1 Outline of the Chapter

This chapter begins with a brief review of some of the recent work in the field of stochastic control. The purpose of this review is to indicate the position of this thesis in the context of the field.

Following the review of recent work in the field is a brief description of the problem to be investigated and an outline of the remainder of the thesis.

The chapter ends with some comments on notation.

#### 1.2 <u>Review of Stochastic Control</u>

Kushner [14] considers a system defined by

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, \mathbf{u}) d\mathbf{t} + d\mathbf{z} \tag{1-1}$$

where x is an m dimensional vector

u is an  $\ell \leq m$  dimensional control

z is some suitable random process, e.g., a step function with random step sizes, or a Brownian motion process.

with a cost criterion

$$E \int_0^T g(\mathbf{x}, \mathbf{u}) d\mathbf{t}$$
 (1-2)

where g is quadratic in x and u, and

T is fixed.

He gives a method of correction to the optimal deterministic control when the effects of the random process are small. He extends this work [15], [16], [17], [18], to develop a stochastic maximum principle, complete with adjoint equations and a stochastic version of the Hamiltonian, for the minimization of

$$E[C' x(T)]$$
 (1-3)

subject to

 $dx = f(x, u)dt + \sigma(x, u)dZ$  (1-4) where c and x are m dimensional vectors

u is an  $\ell \leq m$  dimensional control

 $\sigma(x, u)$  is a weighting matrix

Z is a sample vector of a suitable random process.

Later, Kushner [19] solves essentially the same problem by a technique involving a stochastic version of Lyapunov functions. In this paper, the Z process appearing in equation (1-4) is assumed to be a sample function of a Weiner process. In this case, equation (1-4) is interpreted as an Ito equation [1].

The theory of stochastic stability referred to in [19] is developed by Wonham [20] and Kushner [21]. In these papers various types of stability are defined and discussed.

A feature common to the above papers on optimization is that the performance indices are expectations of a random variable corresponding to performance indices commonly occurring in deterministic optimal control. A second category of stochastic optimal control problems is typified by one investigated by Mishchenko [4], [11]. Mishchenko considers a controlled point in state space in pursuit of a second point.

The state variables of the pursued point are sample functions of a Markov process. One term of the performance index is the probability of "capture" of the pursued point during a specified time interval. The pursued point is considered "captured" if the controlled point is brought within some specified spherical neighborhood of it. Mischenko shows that the probability of "capture" is the solution to the Kolmogorov backward diffusion equation, and develops an estimate of the solution to this equation as a functional on the control.

#### 1.3 The Problem to be Investigated

The problem to be investigated may be described as follows. It is desired to generate an open loop control which drives a linear system which is disturbed by Gaussian white noise from a known initial state to some manifold containing the origin. The control is to be chosen to extremize a performance index containing two terms: an energy term and a probability term. The probability term is the probability of entering a specified neighborhood of the target manifold within a specified time interval. This problem is related to the work reviewed in section 1.2 as follows. In its formulation this problem resembles those treated by Wonham and Kushner in that it begins with a stochastically disturbed system and seeks to solve a problem which has counterparts in deterministic optimal control theory. It is related to Mischenko's problem in that similar methods may be utilized to determine the probability term

#### 1.4 Outline of the Thesis

The distinctive feature of the problem investigated in this thesis

is the probability term in the performance index. Broadly speaking, the work reported is intended to describe the mathematical theory on which the problem is based, and to investigate two approachs to its solution.

The first approach begins by formulating the probability term of the performance index as the solution to a Kolmogorov backward diffusion equation. An estimate of the solution is constructed and used as the probability term in the performance index. The performance index is then maximized by an application of Pontryagin's maximum principle, and solution of the resulting two-point boundary value problem.

The second approach is to select an appealing one-parameter subclass of controls, and find the optimum control in the subclass. The probability term in the performance index is determined by observing the performance of a digital simulation of the system, thus avoiding the solution of the Kolmogorov equation. The one-parameter subclass is then searched for the optimum control. Thus the solution of the two-point boundary value problem is avoided.

Chapter 2 assumes the concept of the Ito equation, and proceeds to develop the properties of its solution which are required for the remainder of the work. It gives a review of some pertinent theorems and their proofs. Its purpose is to collect known results necessary to the remainder of the work in a sufficiently precise form for correct application to the present problem. The proofs are presented to indicate the degree to which the results rely on the linearity and time invariance of the Ito equation.

Chapter 3 contains a precise statement of the problem to be investigated. It shows how the methods of Mishchenko [4], [11] may be applied

here. The limitations and difficulties of this approach are described.

In Chapter 4 Mishchenko's techniques are applied to the present problem. An estimate of the accuracy of the resulting estimate of the probability term of the performance index is obtained.

Chapter 5 begins by applying the results of Chapter 4 and Pontryagin's maximum principle to obtain a formulation of the present problem as a two-point boundary value problem. An algorithm for the solution of this two-point boundary value problem is presented, and a brief discussion of its convergence properties is presented.

The material in Chapters 4 and 5 reveals the difficulties and complexities involved in the approach to the problem described in them. In Chapter 6 an alternative approach is investigated. This approach is as follows:

1. An appealing one-parameter subclass of controls is selected.

- 2. The probability term in the performance index is estimated by digital simulation, and the performance index is plotted as a function of the control subclass parameter.
- 3. The optimum control in the class is determined by an examination of this plot.

This approach yields only a suboptimal solution. A sample problem is formulated and numerical results are obtained for a certain subclass of controls. An examination of the results suggests a second subclass. Numerical results are obtained for this subclass also, and the two sets of results are compared.

The algorithm given in Chapter 5 is applied to the sample problem stated in Chapter 6. The numerical results are presented in Chapter 7.

The accuracy of the estimate of the probability term developed in Chapter 4 is checked.

Chapter 8 summarizes the results of the previous chapters and draws some conclusions. Some avenues for future investigation are suggested.

#### 1.5 Notation

The following comments on notation apply throughout the remainder of the thesis, except as noted.

- 1. Vectors are taken to be column vectors unless noted otherwise.
- The transpose of a vector or matrix is denoted by a "prime." That is, A' is the transpose of the matrix A.
- 3. The norm of a vector with respect to a matrix is denoted and defined as follows:

$$\|\mathbf{x}\|_{\mathbf{A}} = \sqrt{\mathbf{x}^* \mathbf{A} \mathbf{x}} \tag{1-5}$$

where x is an m-dimensional vector

A is an m x m positive semidefinite real symmetric matrix.
4. It is frequently necessary to partition vectors into two parts. For this purpose the following notation is usually employed:

$$\mathbf{x} = \begin{bmatrix} \mathbf{\tilde{x}} \\ \mathbf{\hat{x}} \end{bmatrix}$$
(1-6)

where x is an m-dimensional vector

 $\tilde{\mathbf{x}}$  is a k-dimensional vector

 $\hat{x}$  is an m-k-dimensional vector

5. The gradient operator is defined as follows

$$\nabla_{\mathbf{x}} \mathbf{f}(\mathbf{x}) = \begin{bmatrix} \frac{\partial \mathbf{f}}{\partial \mathbf{x}_1} \\ \frac{\partial \mathbf{f}}{\partial \mathbf{x}_2} \\ \vdots \\ \frac{\partial \mathbf{f}}{\partial \mathbf{x}_m} \end{bmatrix}$$

where x is an m-dimensional vector

f(x) is a scalar function.

6. The operator  $\nabla_{\mathbf{y}} \nabla_{\mathbf{x}}$  is defined as follows:

$$\nabla_{\mathbf{y}} \nabla_{\mathbf{x}} \mathbf{f}(\mathbf{x}, \mathbf{y}) = \begin{bmatrix} \frac{\partial^{2} \mathbf{f}}{\partial \mathbf{y}_{1} \partial \mathbf{x}_{1}} & \frac{\partial^{2} \mathbf{f}}{\partial \mathbf{y}_{1} \partial \mathbf{x}_{2}} \cdots & \frac{\partial^{2} \mathbf{f}}{\partial \mathbf{y}_{1} \partial \mathbf{x}_{m}} \\ \vdots & & \vdots \\ \frac{\partial^{2} \mathbf{f}}{\partial \mathbf{y}_{m} \partial \mathbf{x}_{1}} & \cdots & \frac{\partial^{2} \mathbf{f}}{\partial \mathbf{y}_{m} \partial \mathbf{x}_{m}} \end{bmatrix}$$
(1-8)

7

(1-7)

#### CHAPTER 2

## MATHEMATICAL FOUNDATIONS

#### 2.1 Introduction

From a mathematical point of view, the problem to be dealt with is the control of a stochastic process which is defined as the solution of a linear, time invariant Ito equation (Wonham[2]). The primary purpose of this chapter is to establish for use in later chapters some of the properties of such a process. A secondary purpose of the chapter is to discuss the possibility of establishing similar results for solutions of time varying and nonlinear Ito equations.

The properties of the Ito equation solution are stated in theorems. The proofs of these theorems are sketched briefly, or merely referenced. Most of the theorems are known. The only reason for spending any time here on proofs is to indicate the degree to which they rely on the linearity or time invariance of the Ito equation.

Theorems 2-1 through 2-6 establish the statistical properties of the Ito equation solution. These properties include its conditional mean and covariance, its Markov property, its transition density, and a diffusion equation satisfied by its transition density. Theorem 2-7 establishes that a certain sequence of discrete approximations to the Ito equation converges in a certain sense to the solution of the Ito equation. This theorem will serve as a basis for digital simulation.

#### 2.2 Definition of the Ito Equation

The concept and some of the properties of Ito equations are given by Doob [1], Wonham [2] and Ito [3]. The theorems in this chapter refer to the solution x(t) of the linear, time invariant Ito equation

$$dx_{+} = (Ax + Bu) dt + cdn_{+}$$
 (2-1)

9

where

x is an m-dimensional vector A is an m x m matrix B is an m x ℓ<sub>u</sub> matrix u is an ℓ<sub>u</sub>-dimensional control vector, ℓ<sub>u</sub> ≤ m t is time c is an m x k matrix n is a k-dimensional (k ≤ m) Brownian motion process, i.e., one whose increments are Gaussianly distributed and satisfy

$$E[n(t_2) - n(t_1)] = 0$$

$$E\{[n(t_1) - n(t_2)][n(t_2) - n(t_1)]'\} = 0$$
(2-2)
(2-3)

for

 $t_4 > t_3 > t_2 > t_1$ 

and

$$E\left\{[n(t_2) - n(t_1)][n(t_2) - n(t_1)]^{*}\right\} = W(t_2 - t_1)$$
(2-4)

where

E denotes expectation

()' is the transpose of ()

W is an k x k matrix with rank k.

#### 2.3 Properties of the Solution

The first property of x(t) to be stated is the form of its solution. This is as follows.

Theorem 2-1. Let y(t) be defined as

$$y(t) = \Phi_{A}(t,t_{o}) \times (t_{o}) + \int_{t_{o}}^{t} d\alpha \Phi_{A}(t,\alpha) Bu(\alpha) + \int_{t_{o}}^{t} \Phi_{A}(t,\alpha) Cdn_{\alpha}$$
(2-5)

where  $\xi_A(t,t_o)$  is defined as the solution to

$$\frac{\partial \Phi_{A}}{\partial t} = A \Phi_{A}, \Phi_{A}(t,t_{o}) = I_{m}$$
(2-6)

I is the identity matrix of rank m. m

The last integral in (2-5) is a stochastic

Then y(t) is the solution of (2-1). The proof of theorem 2-1 follows that of the corresponding theorem for ordinary differential equations, except that the following lemma must first be established.

#### Lenna

Let 
$$\dot{\Phi}_{A}(\beta,\alpha) = \left[\frac{\partial}{\partial t} \Phi_{A}(t,\alpha)\right]_{t=\beta}$$
. Then  

$$\int_{\alpha=t_{0}}^{t} \Phi_{A}(t,\alpha) \operatorname{Cdn}_{\alpha} = \int_{t_{0}}^{t} d\beta \int_{\alpha=t_{0}}^{\beta} \dot{\Phi}_{A}(\beta,\alpha) \operatorname{Cdn}_{\alpha} + \int_{\alpha=t_{0}}^{t} \operatorname{Cdn}_{\alpha} (2-7)$$

Proof of the Lemma: On pages 430 and 431 of Doob [1] it is shown that the order of integration of iterated integrals of the type on the right hand side of (2-7) is interchangeble. Thus

$$\int_{t_0}^{t} d\beta \int_{\alpha=t_0}^{t} \dot{\Phi}_{A}(\beta,\alpha) \ Cdn_{\alpha} = \int_{\alpha=t_0}^{t} \left\{ \int_{\alpha}^{t} d\beta \ \dot{\Phi}_{A}(\beta,\alpha) \right\} Cdn_{\alpha}$$
(2-8)

But by definition,

$$\int_{\alpha}^{t} d\beta \, \dot{\Psi}_{A}(\beta,\alpha) = \Phi_{A}(t,\alpha) - \Phi_{A}(\alpha,\alpha) \qquad (2-9)$$

Then, since  $\Phi_A(\alpha,\alpha)$  is the identity matrix, (2-8) and (2-9) combine to prove the lemma.

# Proof of Theorem 2-1

The proof of Theorem 2-1 may now be carried out. It follows directly from (2-5) that

$$y(t_0) = x(t_0)$$
 (2-10)

the next step is to compute  $dy_t$  from (2-5). From (2-7) and (2-6),

$$d \int_{\alpha=t_{o}}^{t} \Phi_{A}(t,\alpha) \operatorname{Cdn}_{\alpha} = \left\{ A \int_{\alpha=t_{o}}^{t} \Phi_{A}(t,\alpha) \operatorname{Cdn}_{\alpha} \right\} dt + \operatorname{Cdn}_{t} (2-11)$$

Then from (2-5), (2-6) and (2-11),

$$dy_{t} = \left\{ A \quad \Phi_{A}(t,t_{o}) \quad x(t_{o}) + A \int_{t_{o}}^{t} d\alpha \quad \Phi_{A}(t,\alpha) \quad Bu(\alpha) \right\}$$
  
+ 
$$Bu(t) + A \int_{\alpha=t_{o}}^{t} \Phi_{A}(t,\alpha) \quad Cdn_{\alpha} dt + Cdn_{t} \qquad (2-1.8)$$

Substitution of (2-5) into (2-12) yields

$$dy_{+} = (Ay + Bu) dt + Cdn_{t}$$
 (2-13)

A comparison of (2-13) with (2-1), and (2-10) completes the proof.

Theorem 2-2. Let x(t) and  $\Phi_A(t,t_o)$  be as defined in Theorem 2-1. Then

$$E\{x(t_{2})|x(t_{1})\} = \Phi_{A}(t_{2},t_{1}) x(t_{1}) + \int_{t_{1}}^{2} d\alpha \Phi_{A}(t_{2},\alpha) Bu(\alpha)$$
(2-14)

where  $\mathbb{E}\left\{x(t_2) | x(t_1)\right\}$  is the expectation of  $x(t_2)$  given  $x(t_1)$ . <u>Proof</u> The proof follows directly from the definition of a stochastic integral (see pages 425-428 of Doob [1]) and (2-5). (See also Wonham [2] page 104 ).

Theorem 2-3. Let x(t) and  $\Phi_A(t,t_o)$  be as defined in theorem 2-1. Then

$$\operatorname{cov}\left\{x(t_{2})|x(t_{1})\right\} = \int_{t_{1}}^{t_{2}} d\alpha \, \Phi_{A}(t_{2},\alpha) \, \operatorname{CWC'} \, \Phi_{A}'(t_{2},\alpha) \quad (2-15)$$

where

$$\mathbb{E}\left\{\left[x(t_{2}) - \mathbb{E} x(t_{2})\right]\left[x(t_{2}) - \mathbb{E} x(t_{2})\right]\right\}$$
(2-16)

Proof From (2-5) and (2-14),

 $cov \left\{ x(t) | x(t) \right\} =$ 

$$\operatorname{cov}\left\{x(t_{2}) | x(t_{1})\right\} = E\left\{\int_{C=t_{1}}^{t_{2}} \mathfrak{e}_{\Lambda}(t_{2}, \alpha) \operatorname{Cdn}_{\alpha} \int_{\beta=t_{1}}^{t_{2}} \operatorname{dn}_{\beta}^{*}C' \, \tilde{e}_{\Lambda}^{*}(t_{2}, \beta)\right\}$$

$$(2-17)$$

Nonham [2] rigorously justifies the formal manipulations

$$E dn_{\alpha} dn'_{\beta} = W d\alpha, \alpha = 3$$
 (2-18)

$$E dn_{\alpha} dn_{\beta} = 0 , \alpha \neq \beta$$
 (2-19)

(A heuristic explanation of this manipulation is apparent from (2-3) and (2-4).) Then (2-15) follows from (2-17), (2-18), and (2-19).

Corollary Let x(t) and  $\tilde{e}_A(t,t_o)$  be as defined in theorem 2-1. Let

$$Q(t,t_{o}) = cov \{x(t) | x(t_{o})\}$$
 (2-20)

then

$$\frac{\partial Q}{\partial t} = \Lambda Q + Q \Lambda' + CWC', Q(t_0, t_0) = 0 \qquad (2-21)$$

<u>Proof</u> The proof follows immediately from differentiation of (2-15) and substitution from (2-6).

Theorem 2-4. Let

$$\mathbf{P} = \left[ \sqrt{\lambda_1} \mathbf{v}_1 \middle| \sqrt{\lambda_2} \mathbf{v}_2 \middle| \dots \middle| \sqrt{\lambda_k} \mathbf{v}_k \middle| \right]$$
(2-22)

where the  $\lambda_i$  are the eigenvalues of W and the  $v_i$  are the corresponding orthonormal eigenvectors. Then  $cov[x(t_2)|x(t_1)]$  has rank m if and only if the matrix

$$[CP| ACP | A2CP| --- | Am-1CP]$$
(2-23)

has rank m.

The proof given here makes use of the concept of controllability. This concept is defined as follows.

<u>Definition</u> the pair [ $\tilde{A}(t)$ ,  $\tilde{B}(t)$ ] are said to be controllable at time t if and only if for every  $\tilde{x}$  there exists a finite  $t_1$  and a control  $\tilde{u}$  such that  $x(t_1) = 0$  subject to

$$\dot{\mathbf{x}} = \tilde{\mathbf{A}}(t) \mathbf{x} + \tilde{\mathbf{B}}(t) \mathbf{u}, \mathbf{x}(t_0) = \bar{\mathbf{x}}$$
 (2-24)

#### Proof of Theorem 2-4

Before applying the concept of controllability, a certain relationship between P and W must be established. Note first that

$$(\mathbf{P}')^{-1} = \begin{bmatrix} \mathbf{v}_1 \\ \overline{\lambda_1} \\ \overline{\lambda_2} \\ \overline{\lambda_2} \end{bmatrix} - \begin{bmatrix} \mathbf{v}_k \\ \overline{\lambda_k} \end{bmatrix}$$
(2-25)

Then

$$P = W(P')^{-1}$$
 (2-26)

from which

$$W = PP' \tag{2-27}$$

From (2-15) and (2-27)

$$\operatorname{cov}\left[\mathbf{x}(t_{2})|\mathbf{x}(t_{1})\right] = \int_{t_{1}}^{t_{2}} d\alpha \, \Phi_{\Lambda}(t_{2},\alpha) \, \operatorname{CPP'C'}_{\Lambda}(t_{2},\alpha) \quad (2-28)$$

From (2-28) and the theorem of section 11.7 of Zadeh and Desoer [5 p. 513],

# the pair [A,CP] is controllable if and only

if the rank of  $cov[x(t_2)|x(t_1)]$  is m. (2-29) Zadeh and Desoer also show (see section 11.3 of [5]) that for linear time invariant systems,

the pair [A,CP] is completely controllable if

and only if the matrix of (2-23) has rank m. (2-30)Then (2-29) and (2-30) combine to complete the proof. <u>Theorem 2-5</u>. Let x(t) be the solution to (2-1). If Q has rank m, then x(t) is a Markov process and

$${}^{p}_{x(t_{2})|x(t_{1})}(\xi_{2}|\xi_{1}) = \frac{1}{(2\pi)^{m/2}(\det Q)^{1/2}} \exp\left\{-\frac{1}{2}||\xi_{2}-\mu||_{Q^{-1}}^{2}\right\}$$
(2-31)

where  $p_x(t_2)|x(t_1)(\xi_2|\xi_1) = probability density associated$ 

with the event  $x(t_2) = \xi_2$  given that  $x(t_1) = \xi_1$ . (2-32)

$$Q = \operatorname{cov}[x(t_2)|x(t_1)]$$
(2-33)

$$\mu = E[x(t_2)|x(t_1)]$$
 (2-34)

<u>Proof</u> It is clear from (2-5) and the definition of n that x(t) is Gaussianly distributed. Then (2-31) follows directly.

Since x(t) is Gaussianly distributed, x(t) is a Markov process if

$$E[x(t_2)|x(t)] = E[x(t_2)|x(t_1)]$$
 (2-35)

$$cov[x(t_2)|x(t)] = cov[x(t_2)|x(t_1)]$$
 (2-36)

and

for

$$t \leq t_1 < t_2$$

But (2-35) and (2-36) follow directly from (2-5). <u>Theorem 2-6</u>. Let x(t) be a solution to (2-1) and  $p_{x(t_2)|x(t_1)}(\xi_2|\xi_1)$  be as defined in (2-32). Then

$$\begin{bmatrix} \frac{\partial}{\partial t} + \sum_{i=1}^{m} [A \xi + Bu(t)]_{i} \frac{\partial}{\partial \xi_{i}} + \frac{1}{2} \sum_{i,j=1}^{m} (CWC')_{ij} \frac{\partial^{2}}{\partial \xi_{i} \partial \xi_{j}} \Big] x(t_{2}) |x(t)| (\xi_{2} | \xi) = 0$$
(2-37)

<u>Proof</u> The proof follows directly from (2-31) and Doob [1] (for the scalar case) and Mishckenko [4] for the vector case.

Theorem 2-7. Let x(t) be the solution to (2-1). Let  $x^{\ell}(t)$  be defined for all t as the solution to

$$\dot{\mathbf{x}}^{\boldsymbol{\ell}} = \mathbf{A} \mathbf{x}^{\boldsymbol{\ell}} + \mathbf{B}\mathbf{u} + \frac{1}{2} \sqrt{\frac{\boldsymbol{\ell}}{\mathrm{T}}} \sum_{\mathbf{i}=0}^{\boldsymbol{\ell}-1} \left\{ \mathrm{sgn}(\mathbf{t} - \frac{\mathbf{i}\mathrm{T}}{\boldsymbol{\ell}}) - \mathrm{sgn}\left[\mathbf{t} - \frac{(\mathbf{i}+1)\mathrm{T}}{\boldsymbol{\ell}}\right] \right\} \quad \mathrm{CN}^{\mathbf{i}} \quad (2-38)$$

where

S

$$gn(t) = \begin{cases} -1, t < 0 \\ 0, t = 0 \\ +1, t > 0 \end{cases}$$
(2-39)

the  $N^{i}$ , i=1,2,..., $\ell$ , are k dimensional

Gaussian random vectors with

$$E[N^{i}] = 0 \qquad (2-40)$$

$$E[(N^{i})(N^{j})'] = 0, i \neq j$$
 (2-41)

$$E[(N_{i})(N_{i}), ] = M$$
 (S-75)

Then x<sup>l</sup> is a Gaussianly distributed process with

$$E[x^{\ell}(T)|x^{\ell}(0)] = E[x^{\ell}(T)|x^{\ell}(t), t < 0] \qquad (2-h3)$$

$$\operatorname{cov}[x^{\ell}(T)|x^{\ell}(0)]\Big|_{x^{\ell}(0)=X(0)} = \operatorname{cov}[x^{\ell}(T)|x^{\ell}(t), t < 0]$$

$$(2-4t)$$

$$E[x^{\mathcal{L}}(T)|x^{\mathcal{L}}(0)] = E[x(T)|x(0)]$$
(2-45)  
x^{\mathcal{L}}(0)=x(0)

$$\lim_{\ell \to \infty} = \operatorname{cov}[x^{\ell}(T)|x^{\ell}(0)] = \operatorname{cov}[x(T)|x(0)] \quad (2-46)$$

 $\frac{Proof}{x^{\ell}(T)} = \frac{1}{2} \int_{0}^{T} d\alpha \sum_{i=0}^{\ell} \left\{ sgn(\alpha - \frac{iT}{\ell}) - sgn[\alpha - \frac{(i+1)T}{\ell}] \right\} \frac{\frac{1}{2} \int_{0}^{T} d\alpha \sum_{i=0}^{\ell} \left\{ sgn(\alpha - \frac{iT}{\ell}) - sgn[\alpha - \frac{(i+1)T}{\ell}] \right\} \frac{\frac{1}{2} \int_{0}^{1} \frac{1}{\sqrt{T}}}{\sqrt{T}} (2-47)$ 

From (2-47) it follows that since the  $N^{i}$  are Gaussian,  $x^{\ell}$  is Gaussianly distributed. Equations (2-43) and (2-44) follow directly from (2-47), (2-40), (2-41) and (2-42), (i.e. the independence of the  $N^{i}$ ). From (2-40) and (2-47),

$$\mathbb{E}\left[x^{\ell}(T)\right] x^{\ell}(0) = x(0) = \Phi_{A}(T,0) x(0) + \int_{0}^{T} d\alpha \Phi(T,\alpha) Bu(\alpha) \qquad (2-48)$$

then (2-45) is established by comparison of (2-48) and (2-14). Let

$$\mathbf{F}^{\mathbf{i}} = \frac{1}{2} \int_{0}^{T} d\alpha \left\{ \operatorname{sgn}(\alpha - \frac{\mathbf{i}T}{\lambda}) - \operatorname{sgn}\left[\alpha - \frac{(\mathbf{i}+1)T}{\lambda}\right] \right\} \tilde{\mathbf{s}}_{A}(T,\alpha) \qquad (2-49)$$

Then from (2-47) and (2-48),

$$x^{\ell}(T) - E[x^{\ell}(T)|x^{\ell}(0) = x(0)] = \frac{\sqrt{2}}{\sqrt{2}} \sum_{i=0}^{\ell-1} F^{i} CN^{i}$$
 (2-50)

and hence from (2-41) and (2-42)

$$\operatorname{cov}[x^{\ell}(T)|x^{\ell}(0)=x(0)] = \frac{\ell}{T} \sum_{i=0}^{\ell-1} F^{i} \operatorname{CWC'}(F^{i})'$$
 (2-51)

Applying the law of the mean to (2-49),

$$\mathbf{F}^{\mathbf{i}} = \widetilde{\mathcal{G}} \frac{\mathbf{i}}{\mathbf{A}} \frac{\mathbf{T}}{\mathbf{z}}$$
(2-52)

where 
$$\begin{bmatrix} \tilde{\varrho} & i \\ L \end{bmatrix}_{jq} = \begin{bmatrix} \varphi_A(T, \alpha_{jq}) \end{bmatrix}_{jq}$$
 for some  $\alpha_{jq} \in \begin{bmatrix} iT \\ \ell \end{bmatrix}$ ,  $\frac{(i+1)T}{\ell} \end{bmatrix}$  (2-53)

Then (2-51) becomes

$$\operatorname{cov}\left[x^{\ell}(T)|x^{\ell}(0)=x(0)\right] = \sum_{i=0}^{\ell-1} \widetilde{\Phi}_{A}^{i} \operatorname{CWC}'\left(\widetilde{\Phi}_{A}^{i}\right)'\frac{T}{\ell} \qquad (2-54)$$

From (2-53), and letting  $i = \frac{k_T}{T}$ , (2-55)

$$\lim_{\ell \to \infty} \widetilde{\mathbf{v}} \frac{L\tau}{T} = \mathbf{v}_{A}(T,\tau) \qquad (2-56)$$

Then by (2-15), (2-54) yields (2-46).

#### 2.4 Extensions to More General Ito Equations.

Equation (2-1) is a linear Ito equation with constant coefficients. As stated by theorem 2-1, the solution of (2-1) is of the same form as an ordinary linear differential equation with constant coefficients. Theorems 2-2 through 2-5 and 2-7 follow directly from the solution form established in theorem 2-1. It is natural to ask whether analogous results can be established for the solutions of more general Ito equations. The answer to this question is discussed in the following paragraphs.

First relax the constant coefficient requirement. That is, suppose that A, E, and C are suitably well behaved functions of time. Then the form of (2-5) would remain essentially unaltered, and theorem 2-2 and 2-3 would follow as before. (Note that W may also be time varying.) Theorem 2-4 does not follow. The rank of  $cov[x(t_2)|x(t_1)]$  may be determined only by an examination of equation (2-15). Theorem 2-5, since it follows from Theorems 2-1, 2-2, and 2-3, follows as before. Theorems 2-6 and 2-7 remain unaltered.

Consider next the case

$$dx_{+} = f(x,t)dt + c(x,t)dn_{t}$$
 (2-57)

where f and c are nonlinear function of x and t. Theorem 2-1 is no longer available, and hence neither are theorems 2-2, 2-3, 2-4, or equation (2-31). The solution to (2-57) does retain the Markov property under suitable (and usefully broad) restrictions on f and c (See Doob [1]). Equation (2-37) also remains valid, with [A $\xi$  + Bu] replaced by f( $\xi$ ,t) (See Doob [1] and Mishchenko [4]).

Wong and Zakai [6] have discussed the question of a theorem analogous to theorem 2-7 for equations of the form (2-57). They concluded that in the scalar case the following theorem holds:

Theorem 2-8. Let x(t) be a solution to equation (2-57), with all scalar variables. Let

$$n^{\ell}(t) = \frac{1}{2\sqrt{T}} \sum_{i=1}^{\ell} \left\{ s_{i}n(t - \frac{iT}{\lambda}) - s_{i}n[t - \frac{(i+1)T}{\lambda}] \right\} \left\{ n^{i} + \frac{(n^{i+1} - n^{i})\lambda}{T} (t - \frac{iT}{\lambda}) \right\}$$
(2-58)

where  $N^{i}$  is as defined in theorem 2.7. Let  $x^{\ell}(t)$  be defined by

$$dx_{t}^{\ell} = f(x^{\ell}, t) dt + c(x^{\ell}, t) dn_{t}^{\ell}$$
(2-59)

Tf

i)  $\frac{\partial c}{\partial x}$  is continuous in x and t

- ii) f(x,t) is continuous in t
- iii)  $|f(x,t) f(x_0,t)| \le K |x-x_0|$ for some K independent of x, x<sub>0</sub>, and t,

iv) 
$$\mathbb{E}[x^{\ell}(0)^{l_{+}}] < \infty$$

Then

$$l_{\iota \to \infty} \mathcal{L}(\iota) = \chi^{\infty}(\iota)$$

$$(2-60)$$

where  $\pi''(t)$  satisfies the Ito equation

$$dx_{t}^{\tilde{\omega}} = [r(x^{\tilde{\omega}},t) + \frac{1}{2}c(x^{\tilde{\omega}},t) \frac{\lambda c}{\partial x^{\tilde{\omega}}}] dt + c(x^{\tilde{\omega}},t) dn_{t}. \quad (2-61)$$

Stated in words, theorem 2-8 says that if the Brownian motion process, n, in (2-57) is approximated by a piecewise linear function which converges to n as the grid gets smaller, then the resulting solution converges in the mean, but not to the solution of (2-57). It converges instead to the solution of (2-61). Note that (2-61) differs from (2-57) only by the term  $C(x^{\infty}, t) \frac{\partial c}{\partial x^{\infty}}$ . Thus if c is not a function of x, the sequence of approximate solutions to (2-57) converges to the solution of (2-57) as the grid becomes finer.

Theorem 2-8 raises a question of particular interest to engineers. Suppose a physical system is modeled according to (2-57). How should it be simulated? The answer depends on whether the disturbance is more accureately described as a Brownian motion process, or as some approximation to it.

The methods of Wong and Zakai do not easily extend to the vector case of (2-57). They have some discussion of this case, but do not reach any definite conclusions.

#### CHAPTER 3

# DEFINITION OF THE BASIC PROBLEM AND ITS RELATION TO

#### MISHCHENKO'S PROBLEM

#### 3.1 Introduction

This chapter deals with four related subjects:

- 1. A precise definition of the basic problem is stated and discussed.
- 2. Mishchenko's work (Chapter VII of [4]) on a related problem is summarized.
- 3. The equivalence of the two problems is discussed.
- 4. Some of the limitations and difficulties in the application of Mishchenko's results to the basic problem are discussed.

#### 3.2 Easic Problem Definition

The basic problem to be considered here is the choice of a control u(t) for the system defined by the stochastic differential equation.

$$dx_{t} = [Ax + Bu] dt + Cdn_{t}, x(0) = \bar{x}$$
 (3-1)

The control is to maximize

$$I = Prob \{x(t) \in S \text{ for some } t \in [0,T]\}$$

$$-\int_{0}^{T} dt || u(t) ||_{U}^{2}$$
 (3-2)

$$S = \{x \mid || \tilde{x} \mid |_{\hat{x}} < r(x)\}$$
(3-3)

where

The following restrictions and definitions apply:



 $\widetilde{a}$  is k x k and has rank k (3-14)

Prob denotes probability.

 $\hat{\mathbf{r}} \ge \mathbf{r}(\hat{\boldsymbol{\varepsilon}}) \ge \mathbf{r} > 0 \tag{3-15}$ 

$$|| v_{\hat{\xi}} r(\hat{\xi}) || \le K_r r^{\beta}(\hat{\xi}), \beta > 1$$
 (3-16)

where  $K_r$ ,  $\tilde{r}$  and  $\underline{r}$  are constants.

The rank of [B, AB, 
$$A^2B$$
, ---,  $A^{m-1}B$ ] is m (3-17)

The rank of [C, AC, 
$$A^2C$$
, ---,  $A^{m-1}C$ ] is m (3-18)

U is real, symmetric, and positive definite (3-19) Several comments on the above restrictions will be made:

- The restriction that a have rank k imposes no loss of generality. Neither does the restriction on the form of CWC' imposed by (3-13). Any system may be transformed so as to meet these requirements.
- The restrictions (3-15) and (3-16) are required for estimating the error of the approximation to the probability term of I (see equation (5-1)) developed in Chapter 4.
- Restriction (3-17) is made to insure controllability for the approach described in Chapter 6.
- 4. Restriction (3-18) guarantees the nonsingularity of  $Cov [x(t_2) | x(t_1)]$ . This restriction can always be met by reformulation of the problem.

Stated in words, the problem is to bring a stochastically disturbed system from an initial state to a terminal manifold within a stated time. The performance criterion expresses a compromise between energy used and probability of hitting the target manifold.

#### 3.3 Mishchenko's Problem

Consider now the problem solved by Mishchenko [4]. In this problem

Mishchenko considers two points in Euclidean m-space. One, whose coordinates are given by the vector w, is controlled by the function u:

$$\dot{\mathbf{w}} = g(\mathbf{w}, \mathbf{t}, \mathbf{u}) \tag{3-20}$$

The other, whose coordinates are given by the vector  $\mathbf{v}$ , moves randomly. Specifically,  $\mathbf{v}(t)$  is a Markov process whose transition density satisfies

$$\left\{\frac{\lambda}{\lambda_{1}} + \sum_{i} b^{i} \frac{\lambda}{\lambda_{1}} + \sum_{i,j} a^{i} \frac{\lambda^{2}}{\lambda_{1}}\right\} p_{v(t_{2})|v(t_{1})}(\xi_{2}|\xi_{1})=0 \quad (3-21)$$

 $\xi_j = i \frac{th}{component}$  of the vector  $\xi_j$  (3-22)

where

$$v(t_2)|v(t_1)^{(\xi_2|\xi_1)} = \text{probability density associated}$$
  
with the event  $v(t_2) = \xi_2$  given that  $v(t_1) = \xi_1$ 

(3-23)

Mishchenko [4] then derives an estimate for the function

and E is a positive constant.

3.4 Equivalence Botween the Rasic Problem and Mishchenko's Problem

The problem posed by equations (3-1) through (3-19) will now be put in the form of Mishchenko's problem. Let

 $dz_t = Azdt + Cdn_t$ ,  $z(0) = \overline{x}$  (3-26)

$$dy_t = Ay dt - Bu dt, \quad y(0) = 0$$
 (3-27)

Then

$$x = \mathbf{z} - \mathbf{y} \tag{3-28}$$

According to theorems 2-5 and 2-6, 2(t) is a Markov process with

According to theorems 2-5 and 2-6, z(t) is a Markov process with

$$\frac{\left[A_{1}^{n}+\sum_{i=1}^{m}\left[A_{i}^{n}+B_{i}\right]_{i}}{\left[A_{i}^{n}+B_{i}\right]_{i}} - \frac{\partial}{\partial\xi^{i}} + \sum_{i,j=1}^{m}\left(CWC^{i}\right)_{ij} - \frac{\partial^{2}}{\partial\xi^{i}\partial\xi^{j}}\right]$$

$$P_{x}(t_{2}) \mid x(t) \left(\frac{\xi}{2} \mid \xi\right) = 0 \qquad (3-29)$$

then

Prob 
$$\{x(t) \in S_{\epsilon} \text{ for some } t \in [0,T]\} = \psi(0,\overline{x},T)$$
 (3-30)

The left hand side of (3-30) is identical to the probability term of (3-2), except for the definition of the target manifold. It turns out that Mishchenko's estimation technique works better for the manifold S<sup>4</sup> then for S<sub>6</sub>. As a matter of fact the form of S was motivated by computational difficulties imposed by the form of S<sub>c</sub>.

## 3.5 Some Limitations and Difficulties in Mishchenko's Work

The discussion up to this point has shown that Mishchenko's estination technique may be used to furnish an estimate of the probability term of (3-2). Having obtained this estimate it is possible to apply the maximum principle and arrive at the desired control. Several points decorve comment here:

- 1. Nishchenko shows that his estimate is accurate to within  $o(e^{n-2})$ . This means that the estimate is useful for systems of order three and higher only. For the k-dimensional target S, the error is  $o(e^{k-2})$ . Although Mishchenko does not give actual bounds for the error for the S<sub>e</sub> case, bounds for the error in the S case are worked out in Chapter 4.
- 2. The application of the maximum principle leads to a two point

boundary value problem. Moreover, the estimate of the probability term, and hence the Hamiltonian, contains m and k dimensional integrals.

3. Mishchenko assumes that the a matrix has rank m. This is not the usual case in problems of the type considered here. The necessary modification to the estimation technique is carried out in Chapter  $\mu_{\rm c}$ 

# CHAPTER 4

#### APPLICATION AND MODIFICATION OF

#### MISHCHENKO'S ESTIMATE

#### .4.1 Introduction

The purpose of this Chapter is to estimate

$$\psi(t_1,\xi,t_2) = \operatorname{Prob}\{x(t)\in S \text{ for some } t\in[t_1,t_2]|z(t_1) = \xi\}$$
(4-1)

where x, S, and z are as defined in Chapter 3, and § is an m dimensional vector. This estimate is made by extending and modifying Mishchenko's technique. The modifications and extensions are as follows:
1. The definition of the target manifold is changed.
2. The requirement that the matrix a have rank m is relaxed.
3. / bound for the error of the estimate is developed.
Whe technique will be applied specifically to the problem whose form is defined by (3-29) and (3-30). The work will be carried out in three steps:

An estimate of \u03c6 will be constructed in transformed coordinates.
 A bound on the error of this estimate will be derived.

- 3. The expression for the estimate in the original coordinate system will be stated.
- 4.2 Construction of the Estimate

Mishchenko shows that if
$$\left[\frac{\partial}{\partial t_{1}} + \sum_{i} A \xi_{1}^{i} \frac{\partial}{\partial \xi_{1}^{i}} + \sum_{i,j} a_{ij} \frac{\partial^{2}}{\partial \xi_{1}^{i} \partial \xi_{1}^{j}}\right] \left[p_{z(t_{2})|z(t_{1})}(\xi_{2}|\xi_{1})\right] = 0 \quad (4-2)$$

then

$$\begin{bmatrix} \frac{\partial}{\partial t_1} + \sum_{i} A \xi^{i} \frac{\partial}{\partial \xi^{i}} + \sum_{i,j} a_{ij} \frac{\partial^2}{\partial \xi^{i} \partial \xi^{j}} \end{bmatrix} \psi(t_1, \xi, t_2) = 0$$
(4-3)

The initial and boundary conditions are

$$\lim_{t_1 \to t_2} \psi(t_1, \xi, t_2) = 0, ||\widetilde{\xi} \cdot \widetilde{y}(t_1)||_{\widetilde{a}=1} > r[\widehat{\xi} - \widehat{y}(t_1)] \qquad (4-4)$$

where y is as defined in Chapter 3, and

 $\widetilde{\boldsymbol{\varsigma}}$  and  $\widetilde{\boldsymbol{y}}$  are k dimensional vectors

 $\hat{\xi}$  and  $\hat{y}$  are m-k dimensional vectors

$$\xi = \begin{bmatrix} \widetilde{\xi} \\ \widetilde{\xi} \end{bmatrix}$$
  $y = \begin{bmatrix} \widetilde{y} \\ \widetilde{y} \end{bmatrix}$  (4-6)

The first step toward the solution of (4-3) through (4-5) is the change of coordinates:

$$\xi = \overline{\xi} + y(t_1)$$
 (4-7)

$$\bar{\mathbf{x}}(\mathbf{t}_1, \overline{\xi}, \mathbf{t}_2) = \psi(\mathbf{t}_1, \xi, \mathbf{t}_2) \tag{4-8}$$

Thus

$$\frac{\partial \psi}{\partial \xi_{i}} = \sum_{j=1}^{m} \frac{\partial \xi}{\partial \xi_{j}} \frac{\partial \overline{\xi}}{\partial \xi_{i}} = \frac{\partial \overline{\xi}}{\partial \overline{\xi}_{i}}$$
(4-9)

$$\frac{\partial \psi}{\partial t_{1}} = \frac{\partial \phi}{\partial t_{1}} + \sum_{j=1}^{m} \frac{\partial \phi}{\partial \overline{\xi}_{j}} + \frac{\partial \overline{\xi}_{j}}{\partial \overline{\xi}_{j}} + \frac{\partial \overline{\xi}_{j}}{\partial t_{1}} + \frac{\partial \overline{\xi}_{j}}{\partial t_{1}} + \sum_{j=1}^{m} \frac{\partial \phi}{\partial \overline{\xi}_{j}} + \frac{\partial \phi}{\partial t_{1}} + \frac{\partial \phi}{\partial \overline{\xi}_{j}} + \frac{\partial \phi}{\partial \overline{\xi}_{j$$

$$\frac{\partial \psi}{\partial t_{1}} = \frac{\partial \phi}{\partial t_{1}} - \sum_{j=1}^{m} \frac{\partial \phi}{\partial \overline{\xi}_{j}} \left[ A \ y(t_{1}) - B \ u(t_{1}) \right]_{j}$$
(4-11)

$$\frac{\partial^2 \psi}{\partial \bar{s}_i \partial \bar{s}_j} = \frac{\partial^2 \bar{\varphi}}{\partial \bar{s}_i \partial \bar{s}_j}$$
(4-12)

Substitution of (4-7) through (4-12) into (4-3) through (4-5) yields

$$\frac{\partial \Phi}{\partial t_{1}} + \sum_{i=1}^{m} \left[ A \ \overline{s} + B \ u \right]_{i} \frac{\partial \Phi}{\partial \overline{s}_{i}} + \sum_{i=1}^{m} \sum_{j=1}^{m} a_{ij} \frac{\partial^{2} \Phi}{\partial \overline{s}_{i} \partial \overline{s}_{j}} = 0 \qquad (4-13)$$

$$\lim_{t_1 \to t_2} \Phi(t_1, \overline{\xi}, t_2) = 0, \text{ for } ||\overline{\xi}|| > r(\overline{\xi}) \qquad (4-14)$$

The next step in Mishchenko's procedure is to find a particular solution,  $\dot{s}_0 = \delta_0(t_1, \overline{\xi}, t_2)$ , to

$$\frac{\partial \phi}{\partial t_{1}} + \sum_{i=1}^{m} \sum_{j=1}^{m} a_{ij} \frac{\partial \phi_{0}}{\partial \xi_{i} \partial \xi_{j}} = 0 \qquad (4-16)$$

$$\lim_{t_1 \to t_2} \Phi_0(t_1, \overline{\xi}, t_2) = 0, \text{ for } ||\overline{\xi}|| > r(\overline{\xi}) \qquad (4-17)$$
$$\widetilde{\xi} \text{ is a k dimensional vector}$$

 $\hat{\xi}$  is an m-k dimensional vector

where

Mishchicko upplicitly assumes that  $[a_{ij}]$  has rank m. Instead suppose that  $[a_{ij}]$  is of rank  $k \le m$ , and that  $[a_{ij}]$  is in the form

 $\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \\ \vdots \\ 0 & \vdots & 0 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} (4-18)$ 

(pression of and a coverrable through a non-singular dimestration-



(4-17a)

$$P = \begin{bmatrix} c_{1}^{1} & c_{1}^{2} & \dots & c_{n}^{k} & \dots & 0 \\ \hline \lambda_{1}^{1} & \sqrt{\lambda_{1}}^{1} & \dots & \sqrt{\lambda_{1}}^{k} & 0 & \dots & 0 \\ \hline c_{2}^{1} & c_{2}^{2} & \dots & c_{2}^{k} & 0 & \dots & 0 \\ \hline \ddots & \ddots & \ddots & \dots & \ddots & \ddots & \ddots & \ddots \\ \hline \sqrt{\lambda_{2}} & \sqrt{\lambda_{2}}^{k} & \dots & \sqrt{\lambda_{k}}^{k} & 0 & \dots & 0 \\ \hline \vdots & \vdots & \vdots & \vdots & \vdots \\ \hline \sqrt{\lambda_{k}} & \sqrt{\lambda_{k}}^{k} & \dots & \sqrt{\lambda_{k}}^{k} & 0 & \dots & 0 \\ \hline 0 & 0 & \dots & 0 & 1 & 0 & \dots & 0 \\ \hline 0 & 0 & \dots & 0 & 0 & 1 & \dots & 0 \\ \hline \vdots & \vdots & \vdots & \vdots & \vdots \\ \hline 0 & \dots & \dots & \dots & \dots & \dots & \dots & 1 \end{bmatrix}$$
(4-20)

For convenience P may be written as

$$P = \begin{bmatrix} \widetilde{\alpha}' & 0 \\ 0 & I_{m-k} \end{bmatrix}$$
(4-21.)

where  $I_{m-k}$  is the identity matrix of rank m-k. Let

$$\overline{\overline{\xi}} = P \overline{\xi}$$
(4-22)

end

$$\overline{\xi}_{0}(t_{1},\overline{\xi},t_{2}) = \xi_{0}(t_{1},\overline{\xi},t_{2}) \qquad (4-23)$$

Then

$$\frac{\partial \tilde{s}_{0}}{\partial \bar{s}_{1}} = \sum_{\ell=1}^{m} \frac{\partial \tilde{s}_{0}}{\partial \bar{s}_{\ell}} \frac{\partial \bar{s}_{\ell}}{\partial \bar{s}_{1}} = \sum_{\ell=1}^{m} \frac{\partial \bar{s}_{0}}{\partial \bar{s}_{\ell}} P_{\ell i} \qquad (4-24)$$

$$\frac{\partial^{2} \bar{\varsigma}_{0}}{\partial \bar{\varsigma}_{1} \partial \bar{\varsigma}_{j}} = \sum_{q=1}^{m} \sum_{\ell=1}^{m} P_{\ell i} \frac{\partial^{2} \bar{\varsigma}_{0}}{\partial \bar{\varsigma}_{\ell} \partial \bar{\varsigma}_{q}} \frac{\partial \bar{\varsigma}_{q}}{\partial \bar{\varsigma}_{j}} \qquad (4-25)$$

$$\frac{\partial^{2} \tilde{\varsigma}_{0}}{\partial \bar{\varsigma}_{1} \partial \bar{\varsigma}_{j}} = \sum_{q=1}^{m} \sum_{\ell=1}^{m} P_{\ell i} \frac{\partial^{2} \bar{\varsigma}_{0}}{\partial \bar{\varsigma}_{\ell} \partial \bar{\varsigma}_{q}} P_{qj} \qquad (4-26)$$

$$\frac{\partial \hat{v}_{0}}{\partial t_{1}} = \frac{\partial \overline{\hat{v}}_{0}}{\partial t_{1}}$$
(4-27)

Then

$$\sum_{i,j=1}^{m} a_{ij} \frac{\partial^{2} \phi}{\partial \overline{s}_{i} \partial \overline{s}_{j}} = \sum_{i,j,q,\ell=1}^{m} P_{\ell i} a_{ij} P_{q j} \frac{\partial^{2} \overline{\phi}}{\partial \overline{\overline{s}}_{\ell} \partial \overline{\overline{s}}_{q}}$$
(4-28)

Since

$$\sum_{i,j=1}^{m} P_{ii} a_{ij} P_{qj} = \left\{ P[a_{ij}]P' \right\}_{lq}$$
(4-29)

where P' = transpose of P, equation (4-28) may be written as

$$\sum_{i,j=1}^{m} a_{ij} \frac{\partial^{2} \dot{c}}{\partial \bar{s}_{i} \partial \bar{s}_{j}} = \sum_{q,\ell=1}^{m} \left\{ P[a_{ij}]P' \right\}_{\ell q} \frac{\partial^{2} \dot{c}}{\partial \bar{s}_{\ell} \partial \bar{s}_{q}}$$
(4-30)

Using the notation of (4-19) and (4-21), since

$$\widetilde{a} \alpha_j = \lambda_j \alpha_j, j=1,...,k$$
 (4-31)

it follows that

$$\begin{bmatrix} a_{ij} \end{bmatrix} \mathbf{P}' = \begin{bmatrix} \widetilde{a} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \widetilde{a} & 0 \\ 0 & \mathbf{I}_{m-k} \end{bmatrix}$$
(4-32)

$$[a_{ij}]P' = \begin{bmatrix} \sqrt{\lambda_1} \alpha_1 & \sqrt{\lambda_2} \alpha_2 & \dots & \sqrt{\lambda_k} \alpha_k & 0 \dots 0 \end{bmatrix}$$
(4-33)

$$P[a_{ij}]P' = \begin{bmatrix} \widetilde{\alpha} & 0 \\ 0 & I_{m-k} \end{bmatrix} \begin{bmatrix} \sqrt{1} \alpha_1 & \cdots & \sqrt{1} \alpha_k & 0 \cdots & 0 \end{bmatrix} (4-3^{l_k})$$

$$P[a_{ij}]P' = \begin{bmatrix} I_k & 0\\ 0 & 0 \end{bmatrix}$$
(4-35)

where  $I_k = identity$  matrix of rank k. Then (4-30) becomes

$$\sum_{i,j=1}^{m} a_{ij} \frac{\partial^2 \phi_0}{\partial \overline{\xi}_i \partial \overline{\xi}_j} = \sum_{l=1}^{k} \frac{\partial^2 \overline{\phi}_0}{\partial \overline{\xi}_l^2}$$
(4-36)

From (4-27) and (4-36), (4-16) and (4-17) become

$$\frac{\partial \overline{\delta}}{\partial L} + \sum_{k=1}^{k} \frac{\partial \overline{\delta}}{\partial \overline{\xi}_{k}} = 0 \qquad (1-37)$$

$$\lim_{t_1 \to t_2} \overline{\Phi}_0(t_1, \overline{\xi}, t_2) = 0, \text{ for } ||\overline{\xi}|| > r(\overline{\xi})$$
 (4-38)

The solution of (4-37) and (4-38) begins by finding a solution  $\frac{1}{\overline{2}_0} = \frac{1}{\overline{2}_0}(\overline{\overline{\xi}})$  to

$$\sum_{\ell=1}^{k} \frac{\partial^2 \overline{\xi}_{0}(\overline{\xi})}{\partial \overline{\xi}_{\ell}} = 0$$
 (4-39)

$$\lim_{|\overline{\xi}| \to r(\overline{\xi})} \overline{\Phi}_{0}(\overline{\xi}) = 1$$
(4-40)

At this point the motivation for the choice of manifolds becomes apparent. Mishchenko's original choice of a manifold which is spherical in  $\overline{\xi}$  coordinates results in one which is ellipsoidal in  $\overline{\overline{\xi}}$  coordinates. As a result, this solution to (4-39), (4-40) is expressed in terms of a Fredholm integral equation of the second kind. The domain of the integral is the surface of the ellipsoid

$$\left|\left|\overline{\overline{\xi}}\right|\right|_{\widetilde{a}}^{2} = \epsilon^{2} \qquad (4-4)$$

The solution of this equation presents monumental numerical difficulties. With the choice of the manifolds specified by (4-4) and (4-5), the solution to (4-39) and (4-40) is

$$\overline{\overline{\xi}}_{0}\left(\overline{\overline{\xi}},\overline{\overline{\xi}}\right) = \frac{r^{k-2}\left(\frac{\Delta}{\overline{\xi}}\right)}{\left|\left|\overline{\overline{\xi}}\right|\right|^{k-2}}$$
(4-42)

This agrees with Michchenko's results [4] for the case where  $[a_{ij}]$  is the identity matrix.

The fundamental solution to (4-37) is

$$\overline{\overline{h}}(t_1, \overline{\overline{\xi}}, t_2, \overline{\overline{\eta}}) = \frac{\exp\left\{-\frac{||\overline{\overline{\eta}} - \overline{\overline{\xi}}||^2}{4(t_2 - t_1)}\right\}}{(2\pi)^{k/2} [2(t_2 - t_1)]^{k/2}}$$
(4-43)

where

 $\frac{2}{7}$  is a k dimensional vector

A particular solution to (4-37) and (4-38), then, is

$$\overline{\Phi}_{0}(t_{1},\overline{\overline{\xi}},t_{2}) = \frac{r^{k-2}(\overline{\overline{\xi}})}{||\overline{\overline{\xi}}||^{k-2}} - \int d\overline{\overline{n}}_{1}...d\overline{\overline{n}}_{k} \overline{\overline{n}}(t_{1},\overline{\overline{\xi}},t_{2},\overline{\overline{n}})\overline{\overline{\xi}}_{0}(\overline{\overline{n}},\overline{\overline{\xi}}) ||\overline{\overline{n}}|| \ge 0$$
for  $t_{2} > t_{1}$ 

$$(4-44)$$

The next step is to transform coordinates back to  $\overline{\xi}$ , and thus get an expression for  $\xi_0$ . From (4-17a), (4-20), and (4-21),

$$\hat{\overline{\xi}} = \hat{\overline{\xi}}$$
(4-45)

$$\widetilde{\vec{\xi}} = \widetilde{\alpha}' \ \widetilde{\vec{\xi}}$$
 (4-46)

From (4-46),

$$\left|\left|\vec{\xi}\right|\right|^{2} = \vec{\xi}^{2} \vec{\alpha} \vec{\alpha}^{*} \vec{\xi} \qquad (4-47)$$

It follows from the definition of  $\widetilde{\alpha}$  that

$$\widetilde{\alpha}' \quad \widetilde{\widetilde{\alpha}} = \mathbf{I}_{\mathbf{k}}$$
 (4-48)

Then

$$\widetilde{\alpha} \ \widetilde{\alpha}' = \widetilde{a}^{-1} \tag{4-49}$$

and (4-47) becomes

$$\left\| \overline{\overline{\overline{5}}} \right\|^{2} = \left\| \overline{\overline{5}} \right\|_{\widetilde{a}^{-1}}^{2}$$
(4-50)

Then (4-44) becomes

$$\Phi_{0}(t_{1},\overline{\xi},t_{2}) = \frac{r^{k-2}(\overline{\xi})}{||\overline{\xi}||_{\widetilde{k}^{-2}}^{k-2}}$$

$$-\int d\widetilde{\overline{\eta}}_{1}...d\widetilde{\eta}_{k} \ \overline{h}(t_{1},\overline{\xi},t_{2},\widetilde{\eta}) \ \widetilde{\delta}_{0}(\widetilde{\eta},\overline{\xi})$$

$$||\widetilde{\eta}||_{\widetilde{k}^{-1}} \ge 0$$

$$(4-51)$$

where  $\widetilde{\mathfrak{N}}$  is a k dimensional vector

$$\overline{h}(t_{1}, \widetilde{\xi}, t_{2}, \widetilde{\tilde{h}}) = \frac{\exp\{-\frac{|[\widetilde{\tilde{h}} - \widetilde{\xi}]|^{2}}{4(t_{2}-t_{1})}\}}{(2\pi)^{k/2} [\det \widetilde{a}]^{1/2} [2(t_{2}-t_{1})^{k/2}]}$$
(4-52)

end

$$\widetilde{\widetilde{\mathfrak{d}}}_{0}(\widetilde{\widetilde{\mathfrak{n}}},\widehat{\overline{\mathfrak{s}}}) = \frac{r^{k-2}(\widehat{\overline{\mathfrak{s}}})}{||\widetilde{\mathfrak{n}}||_{\widetilde{\mathfrak{a}}=1}^{k-2}}$$
(4-53)

Next, let  $\phi^*(t_1, \overline{\xi}, t_2)$  be a solution to (4-13), and let

$$\boldsymbol{\xi}^{*}(\boldsymbol{t}_{1},\boldsymbol{\xi},\boldsymbol{t}_{2}) = \boldsymbol{\delta}_{1}(\boldsymbol{t}_{1},\boldsymbol{\xi},\boldsymbol{t}_{2}) + \boldsymbol{\delta}_{0}(\boldsymbol{t}_{1},\boldsymbol{\xi},\boldsymbol{t}_{2}) \qquad (4-54)$$

Substitution into (4-13) shows that  $\phi_1$  must satisfy

$$\frac{\partial \Phi_{\mathbf{j}}}{\partial t_{\mathbf{l}}} + \sum_{\mathbf{i}=\mathbf{l}}^{m} \left[ \Lambda \ \overline{\xi} + B \ u \right]_{\mathbf{i}} \frac{\partial \Phi_{\mathbf{j}}}{\partial \overline{\xi}_{\mathbf{i}}} + \sum_{\mathbf{i},\mathbf{j}=\mathbf{l}}^{m} \mathbf{a}_{\mathbf{i},\mathbf{j}} \frac{\partial^{2} \Phi_{\mathbf{j}}}{\partial \overline{\xi}_{\mathbf{i}} \partial \overline{\xi}_{\mathbf{j}}}$$

$$= -\sum_{i=1}^{m} \left[ A \, \overline{\xi} + B \, u \right]_{i} \, \frac{\partial \phi_{o}}{\partial \overline{\xi}_{i}}$$
(4-55)

The fundamental solution of (4-13) is  $\overline{q}(t_1, \overline{\xi}, t_2, \overline{\gamma}) = \text{probability}$ density associated with the event

$$\{x(t_2) = \overline{\eta} | x(t_1) = \overline{\xi} \text{ and } x(t) \notin S$$
for any  $t \in [t_1, t_2]$  (4-56)

where  $\overline{N}$  is an m dimensional vector. Then a solution to (4-55) is

$$\Psi_{1}(t_{1},\overline{\xi},t_{2}) = \int_{t_{1}}^{t_{2}} d\sigma \int d\overline{\eta}_{1} \dots d\overline{\eta}_{m} \overline{q}(t_{1},\overline{\xi},\sigma,\overline{\eta}) \sum_{i=1}^{m} [A\overline{\eta} + Bu]_{i} \frac{\partial \Phi_{0}}{\partial \overline{\eta}_{i}}$$

$$(4-57)$$

where the arguments of  $\boldsymbol{\Phi}_{_{\boldsymbol{O}}}$  are as follows

$$\bar{\Phi}_{o} = \Phi_{o}(t_{1}, \overline{p}, \sigma) \tag{4-58}$$

 $\epsilon \mathrm{nd}$ 

$$\widetilde{\widetilde{n}} = \begin{bmatrix} \widetilde{\widetilde{n}}_1 \\ \vdots \\ \widetilde{\widetilde{n}}_k \end{bmatrix}, \quad \widehat{\widetilde{\eta}} = \begin{bmatrix} \widetilde{\widetilde{n}}_{K+1} \\ \vdots \\ \widetilde{\widetilde{n}}_m \end{bmatrix}$$
(4-59)

Consider now the initial and boundary conditions of (4-54). Equations (4-17), (4-51) through (4-53) and (4-57) clearly show that

$$t_1^{\lim_{t \to t_2}} t_2^{\tilde{\xi}}(t_1, \bar{\xi}, t_2) = 0, ||\tilde{\xi}||_{\tilde{\xi}} > r(\hat{\xi})$$
(4-60)

Mishchenko argues that since  $\overline{q}(t_1, \overline{\xi}, t_2, \overline{\eta})$  is the probability density defined in (4-56),

$$\lim_{\substack{|\widetilde{\xi}| \\ \widetilde{a} = 1}} \frac{\overline{q}(t_1, \overline{\xi}, t_2, \overline{\eta}) = 0, \text{ for } t_1 < t_2 \quad (4-61)$$

Then

$$\lim_{\substack{\xi \in I}} \Phi_1(t_1, \overline{\xi}, t_2) = 0, \text{ for } t_1 < t_2$$
(4-62)  
$$||\widetilde{\overline{\xi}}||_{\widetilde{\xi}^{-1}} \rightarrow r(\widehat{\overline{\xi}})$$

and hence

$$\lim_{\substack{\xi \in \mathbb{Z}} | | = 1 \text{ im } f(\xi) =$$

where  $\tilde{s}_{0}$  is given in (4-51).

# 4.3 A Round on the Error of the Estimate

The error between  $\xi(t_1, \overline{\xi}, t_2)$ , the solution to (4-13) through (4-15), and  $\xi^*(t_1, \overline{\xi}, t_2)$  will now be estimated. Let the error term be

It is clear that  $\bar{\Phi}_{\epsilon}(t_1, \bar{\xi}, t_2)$  is also a solution to (4-13). First, from (4-14), (4-60), and (4-64),

$$\lim_{t_1 \to t_2} \Phi_{\epsilon}(t_1, \overline{\xi}, t_2) = 0, \text{ for } ||\widetilde{\xi}||_{\widetilde{a}^{-1}} > r(\overline{\xi})$$
(4-65)

From (4-63), (4-64), (4-51), and (4-15),

$$\lim_{\substack{\xi \in [t_1, \overline{\xi}, t_2] \\ |\overline{\xi}||_{\widetilde{k}^{-1}} - r(\overline{\xi})} \int_{\overline{k}^{-1}} d\overline{\eta} \dots d\overline{\eta}_k \overline{h}(t_1, \overline{\xi}, t_2, \overline{n}) \overline{\xi}(\overline{n}, \overline{\xi})$$

for 
$$t_1 < t_2$$
 (4-66)

A bound will now be placed on (4-66). From (4-45), (4-46), (4-50), (4-53), (4-52) and (4-43), equation (4-66) becomes

$$\begin{split} \lim_{\substack{\xi \in \mathbb{T}^{2}, \overline{\xi}, t_{2} \\ ||\widetilde{\overline{\xi}}||_{\mathbf{a}^{-1}} - \mathbf{r}(\widetilde{\overline{\xi}})} & \varphi_{\epsilon}(t_{1}, \overline{\xi}, t_{2}) \\ &= \sum_{\substack{\xi \in \mathbb{T}^{2}, \overline{\xi}, t_{2} \\ ||\widetilde{\overline{\xi}}|| - \mathbf{r}(\widetilde{\overline{\xi}})} \int_{||\widetilde{\overline{\eta}}|| > 0} d\widetilde{\overline{\eta}} \, \overline{\overline{h}}(t_{1}, \widetilde{\overline{\xi}}, t_{2}, \widetilde{\overline{\eta}}) \, \frac{\mathbf{r}^{k-2}(\widetilde{\overline{\xi}})}{||\widetilde{\overline{\eta}}||^{k-2}} \quad (4-67) \end{split}$$

Then from (A-1), (A-24), (A-25) and (4-43),

$$0 < ||\widetilde{\xi}||_{\widetilde{k}-1}^{\lim_{t \to \infty} r(\widehat{\xi})} \stackrel{\tilde{\varphi}_{\xi}(t_{1}, \overline{\xi}, t_{2})}{|\widetilde{\xi}|} < \begin{cases} \frac{K_{k-2}}{2^{k-2}K_{t}\frac{k-2}{2}} r_{k-2}^{\frac{k-2}{2}} (\widehat{\xi}) \\ r_{k-2} r_{k-2} r_{k-2} (\widehat{\xi}) \\ r_{k-2} r_{k-2} (\widehat{\xi}) \\ r_{k-2} r_{k-2} r_{k-2} (\widehat{\xi}) \\ r_{k-2} r_{k-2} r_{k-2} (\widehat{\xi}) \\ r_{k$$

Then  $\Phi_{\epsilon}(t_1, \overline{\xi}, t_2)$  satisfies the hypotheses of the Theorem of Appendix A. Then  $\Phi_{\epsilon}(t_1, \overline{\xi}, t_2)$  is bounded according to (A-54):

$$0 < \Phi_{\epsilon}(t_1, \overline{\xi}, t_2) < \Delta(\overline{\xi}, \underline{r}) + \frac{K_{k-2}}{2^{k-2}K_t} r^{\frac{k-2}{2}} (\overline{\overline{\xi}}) \Phi(t_1, \overline{\xi}, t_2)$$

for 
$$\overline{\xi} \in s_{Bu}(t_1, \underline{R}, t_2)$$
 (4-69)

where  $\Delta$  is defined by (A-162)

 $S_{Bu}$  is defined by (A-56)

The final approximation involves the substitution of  $\overline{p}$  for  $\overline{q}$  in (4-57). The error may be estimated as follows. Let

$$\begin{split} \hat{e}_{1}(t_{1},\overline{\xi},t_{2}) &= \hat{e}_{1}(t_{1},\overline{\xi},t_{2}) \\ &= \int_{t_{2}}^{t_{2}} d\sigma \int d\overline{\eta}[\overline{p}(t_{1},\overline{\xi},\sigma,\overline{\eta})-\overline{q}(t_{1},\overline{\xi},\sigma,\overline{\eta})] \sum_{i=1}^{m} [A\overline{\eta}+Bu(\sigma)]_{i} \frac{2\sigma}{2\overline{n}_{i}} \\ &= \int_{t_{1}}^{t_{2}} d\sigma \int d\overline{\eta}[\overline{p}(t_{1},\overline{\xi},\sigma,\overline{\eta})-\overline{q}(t_{1},\overline{\xi},\sigma,\overline{\eta})] \sum_{i=1}^{m} [A\overline{\eta}+Bu(\sigma)]_{i} \frac{2\sigma}{2\overline{n}_{i}} \\ &= \int_{t_{1}}^{t_{2}} d\sigma \int d\overline{\eta}[\overline{\eta}(t_{1},\overline{\xi},\sigma,\overline{\eta})-\overline{q}(t_{1},\overline{\xi},\sigma,\overline{\eta})] \sum_{i=1}^{m} [A\overline{\eta}+Bu(\sigma)]_{i} \frac{2\sigma}{2\overline{n}_{i}} \\ &= \int_{t_{1}}^{t_{2}} d\sigma \int d\overline{\eta}[\overline{\eta}(t_{1},\overline{\xi},\sigma,\overline{\eta})-\overline{q}(t_{1},\overline{\xi},\sigma,\overline{\eta})] \sum_{i=1}^{m} [A\overline{\eta}+Bu(\sigma)]_{i} \frac{2\sigma}{2\overline{n}_{i}} \\ &= \int_{t_{1}}^{t_{2}} d\sigma \int d\overline{\eta}[\overline{\eta}(t_{1},\overline{\xi},\sigma,\overline{\eta})-\overline{q}(t_{1},\overline{\xi},\sigma,\overline{\eta})] \sum_{i=1}^{m} [A\overline{\eta}+Bu(\sigma)]_{i} \frac{2\sigma}{2\overline{n}_{i}}$$
(4-70)

where

$$\widetilde{\delta}_{1}(t_{1},\overline{\xi},t_{2}) = \int_{t_{1}}^{t_{2}} d\sigma \int d\overline{n} \, \overline{p}(t_{1},\overline{\xi},\sigma,\overline{\eta}) \sum_{i=1}^{m} [A\overline{\eta}+Bu]_{i} \, \frac{\partial \overline{\delta}_{0}}{\partial \overline{\eta}_{i}} \qquad (4-71)$$

and arguments of  $\phi_0$  are as in (4-58).

 $\overline{p}(t_1, \overline{\xi}, \sigma, \overline{n}) = \text{probability density associated with the event}$ 

$$\{x(\sigma) = \overline{n} | x(t_1) = \overline{\xi}\}, \text{ for } t_1 < \sigma \qquad (4-72)$$

Let

$$\widetilde{\Phi}_{\epsilon}(t_{1}, \overline{\xi}, t_{2}) = \Phi_{1}(t_{1}, \overline{\xi}, t_{2}) - \widetilde{\Phi}_{1}(t_{1}, \overline{\xi}, t_{2})$$
(4-73)

Then the error term  $\widetilde{\Phi}_{\in}$  may be estimated as follows:

$$\begin{split} |\widetilde{v}_{\epsilon}(t_{1},\overline{s},t_{2})| \leq \\ \int_{t_{1}}^{t_{2}} d\sigma \int d\overline{n}[\overline{p}(t_{1},\overline{s},\sigma,\overline{n})-\overline{1}(t_{1},\overline{s},\sigma,\overline{n})][||A\overline{1}+Bu||||v_{\overline{n}}\phi_{0}(t_{1},\overline{n},\sigma)||] \\ t_{1} \int ||\widetilde{n}||_{\widetilde{a}-1}^{\geq 0} (4-74) \end{split}$$

Comparison of (4-72) with (4-56) yields

$$\overline{p}(t_1,\overline{\xi},\sigma,\overline{\eta}) \ge \overline{q}(t_1,\overline{\xi},\sigma,\overline{\eta}) \ge 0$$
(4-75)

Application of the law of the mean, and (4-75) to (4-74) yields

$$\begin{split} |\tilde{\mathfrak{Q}}_{\epsilon}(t_{1},\overline{s},t_{2})| &\leq (t_{2}-t_{1}) \int d\overline{n} \ \overline{p}(t_{1},\overline{s},\overline{\sigma},\overline{n}) \cdot [||A\overline{n} \cdot Bu|| ||\nabla_{\overline{n}} \tilde{\mathfrak{Q}}_{0}(t_{1},\overline{n},\overline{\sigma})|| \\ ||\overline{n}||_{\widetilde{a}-1} &\geq 0 \\ for some \ \overline{\sigma}_{\epsilon}[t_{1},t_{2}] \end{split}$$

$$(4-76)$$

From (4-76)

$$|\widetilde{\mathfrak{g}}_{\varepsilon}(t_{1},\overline{\mathfrak{s}},t_{2})| \leq (t_{2}-t_{1})||\widetilde{\mathfrak{A}\eta} | \mathbb{D}u|| ||\nabla_{\overline{\eta}} \mathfrak{s}_{0}(t_{1},\overline{\eta},t_{2})||$$
  
for  $\overline{\mathfrak{g}} = t_{1}$  (4-77)

The estimation of  $|\Phi_{\epsilon}(t_1, \bar{\xi}, t_2)|$  for  $\overline{\sigma}\epsilon(t_1, t_2)$  proceeds as follows. Equations (4-72), (3-26) through (3-28), and Theorems 2-2, 2-3,

and 2-5 show that

$$\overline{p}(t_{1},\overline{s},\overline{\sigma},\overline{n}) = \frac{\exp\left\{-\frac{1}{2}\left|\left|\overline{n}-\overline{\mu}(t_{1})\right|\right|_{\overline{Q}}-1(\overline{\sigma},t_{1})\right\}}{(2\pi)^{m/2}\left[\det\overline{Q}(\overline{\sigma},t_{1})\right]^{1/2}}$$
(4-78)

where

$$\overline{\mu}(\overline{o}) = \left\{ \exp[A(\overline{o} - t_1)] \right\} \overline{\varsigma} + \int_{t_1}^{\overline{o}} d\alpha \left\{ \exp[A(\overline{o} - \alpha)] \right\} Bu(\alpha) \quad (4-79)$$

$$Q(\overline{\sigma}, t_{1}) = 2 \int_{t_{1}}^{\sigma} d\alpha \left\{ \exp[A(\overline{\sigma} - \alpha)] \right\} \left[ a_{ij} \right] \left\{ \exp[A(\overline{\sigma} - \alpha)] \right\}$$
(4-80)

Estimating as in (A-114),

$$\overline{p}(t_{1},\overline{\zeta},\sigma,\overline{\eta}) \leq \left[\frac{\overline{\lambda}_{\overline{\sigma}t_{1}}}{\underline{\lambda}_{\overline{\sigma}t_{1}}}\right] g(\overline{\lambda} \ \overline{\sigma} \ t_{1} \ t_{1},\overline{\mu},\overline{\lambda}_{\overline{\sigma}} \ t_{1} \ \overline{\sigma},\overline{\eta}) \qquad (4-81)$$

where  $\overline{\lambda} \, \overline{\sigma} t_1$  and  $\underline{\lambda} \, \overline{\sigma} t_1$  are respectively the maximum and minimum eigenvalues of  $\overline{Q}(c, t_1)$ :

$$\overline{Q}(\overline{v}, t_1) = \frac{Q(\overline{v}, t_1)}{2(\overline{v} - t_1)}$$
(4-82)

From (4-76) and (4-61)

$$|\widetilde{\mathfrak{e}}_{\epsilon}(\mathfrak{t}_{1},\overline{\mathfrak{s}},\mathfrak{t}_{2})| \leq (\mathfrak{t}_{2}-\mathfrak{t}_{1}) \int \left\{ d\overline{\eta} \left[ \frac{\overline{\lambda} \overline{\mathfrak{c}}\mathfrak{t}_{1}}{\underline{\lambda} \overline{\mathfrak{o}}\mathfrak{t}_{1}} \right] \mathfrak{e}(\underline{\lambda} \overline{\mathfrak{o}}\mathfrak{t}_{1}^{-\mathfrak{t}_{1},\overline{\mathfrak{u}},\underline{\lambda}} \overline{\mathfrak{o}}\mathfrak{t}_{1}^{-\mathfrak{t}_{1},\overline{\eta}}) \cdot \right. \\ \left| |\widetilde{\eta}| |_{\widetilde{\mathfrak{a}}+1} \geq 0 \right| = 0$$

$$\cdot \left| \left| A\overline{\eta} + Bu(\overline{\sigma}) \right| \right| \left| \left| v_{\overline{\eta}} \phi_{0} \right| \right| \right\}$$

$$(4-83)$$

Next let

$$\overline{\eta} = P \overline{\eta} \tag{4-84}$$

$$= P \mu$$
 (4-85)

Then (4-83) becomes

$$\begin{split} |\widetilde{\mathfrak{o}}_{\xi}(\mathsf{t}_{1},\overline{\mathfrak{s}},\mathsf{t}_{2})| &\leq \frac{\mathsf{t}_{2}-\mathsf{t}_{1}}{\det P} \int d\overline{\widetilde{\mathfrak{n}}} \left[ \frac{\lambda_{\overline{\mathfrak{o}}}\mathsf{t}_{1}}{\frac{\lambda_{\overline{\mathfrak{o}}}\mathsf{t}_{1}}{\frac{\lambda_{\overline{\mathfrak{o}}}\mathsf{t}_{1}}{\frac{\lambda_{\overline{\mathfrak{o}}}\mathsf{t}_{1}}{\frac{\lambda_{\overline{\mathfrak{o}}}\mathsf{t}_{1}}{\frac{\lambda_{\overline{\mathfrak{o}}}\mathsf{t}_{1}}{\frac{\lambda_{\overline{\mathfrak{o}}}\mathsf{t}_{1}}{\frac{\lambda_{\overline{\mathfrak{o}}}\mathsf{t}_{1}}{\frac{\lambda_{\overline{\mathfrak{o}}}\mathsf{t}_{1}}{\frac{\lambda_{\overline{\mathfrak{o}}}\mathsf{t}_{1}}{\frac{\lambda_{\overline{\mathfrak{o}}}\mathsf{t}_{1}}{\frac{\lambda_{\overline{\mathfrak{o}}}\mathsf{t}_{1}}{\frac{\lambda_{\overline{\mathfrak{o}}}\mathsf{t}_{1}}{\frac{\lambda_{\overline{\mathfrak{o}}}\mathsf{t}_{1}}{\frac{\lambda_{\overline{\mathfrak{o}}}\mathsf{t}_{1}}{\frac{\lambda_{\overline{\mathfrak{o}}}\mathsf{t}_{1}}{\frac{\lambda_{\overline{\mathfrak{o}}}\mathsf{t}_{1}}{\frac{\lambda_{\overline{\mathfrak{o}}}\mathsf{t}_{1}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}\mathsf{t}_{1}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}}{\frac{\lambda_{\overline{\mathfrak{o}}}}}}}}}}}}}}}}}}} \\ \\ \cdot ||AP^{-1}_{\overline{P}}|_{AP}^{-1}_{\overline{D}}}|_{AP}^{-1}_{AP}^{-1}}|_{AP}^{-1}_{AP}^{-1}}|_{AP}^{-1}_{AP}^{-1}}|_{AP}^{-1}_{AP}^{-1}}|_{AP}^{-1}}|_{AP}^{-1}}}}}}}}}}}} \\ \cdot ||AP^$$

From (B-35)

$$||P^{-1} = \frac{1}{p} + P^{-1} = \frac{1}{\mu}|| \ge \frac{1}{K_{p}} ||\overline{n} - \overline{\mu}|| \qquad (4-87)$$

where

$$K_{p} = m \quad \text{Max} \quad ||p e_{i}|| \qquad (4-88)$$

$$1 \le i \le m$$

where

$$e_i$$
 is the m dimensional vector whose i<sup>th</sup> element  
is one and whose other elements are zero

Then from (4-27) and (A-2),

$$\varepsilon(\underline{\lambda}_{\overline{\sigma}t_{1}}^{t_{1}}t_{1}, p^{-1}_{\overline{\mu}}, \underline{\lambda}_{\overline{\sigma}t_{1}}^{\overline{\sigma}}, p^{-1}_{\overline{\eta}}) \leq K_{p}^{m/2} \varepsilon(K_{p}, \underline{\lambda}_{\overline{\sigma}t_{1}}^{t_{1}}t_{1}, \overline{\mu}, K_{p}, \underline{\lambda}_{\overline{\sigma}t_{1}}^{\overline{\sigma}}, \overline{\eta})$$
(4-89)

From (B-30),  $||P'V_{\overline{\eta}} \overline{\delta}_{0}(t_{1},\overline{\eta},\overline{c})|| \leq K_{P}, ||V_{\overline{\eta}} \overline{\delta}_{0}(t_{1},\overline{\eta},\overline{c})|| \qquad (4-90)$ 

where

$$\mathbf{K}_{\mathbf{P}^{*}} = \mathbf{m} \quad \mathbf{Max} \quad \|\mathbf{P}^{*} \mathbf{e}_{\mathbf{i}}\| \qquad (4-91)$$
$$\mathbf{1} \leq \mathbf{i} \leq \mathbf{m}$$

and

$$\|\mathbf{AP}^{-1} \, \overline{\eta}\| \leq \mathbf{K}_{\mathbf{AP}^{-1}} \|\overline{\eta}\| \tag{4-92}$$

where

$$\begin{array}{c} \mathbf{K} &= \mathbf{m} & \mathbf{Max} & \|\mathbf{AP}^{-1} \mathbf{e_i}\| \\ \mathbf{AP}^{-1} & 1 \leq \mathbf{i} \leq \mathbf{m} \end{array}$$
(4-93)

and

$$\|\operatorname{Bu}(\sigma)\| \leq K_{\operatorname{B}} \|u(\sigma)\| \tag{4-94}$$

where

Substitution into (4-86) from (4-89), (4-90), (4-91), (4-93), and (D-16) yields

$$\begin{split} |\tilde{\bullet}_{\epsilon}(t_{1},\xi,t_{2})| &\leq \frac{K_{p} \cdot \left[K_{p} \frac{\lambda_{\sigma t_{1}}}{L_{\sigma t_{1}}}\right]^{m/2}}{\det P} (t_{2}-t_{1}) \int_{\|\tilde{\eta}\| \geq 0} d\tilde{\eta}g(K_{p\lambda_{\sigma t_{1}}}t_{1},\bar{\mu},K_{p\lambda_{\sigma t_{1}}}\bar{\sigma},\bar{\eta}) \\ & \|\tilde{\eta}\| \geq 0 \\ \left[K_{AP}-1(\|\tilde{\bar{\eta}}\| + \|\tilde{\bar{\eta}}\|) + K_{B}\|u(\sigma)\| \right] \frac{(k+2)(\bar{\nu}+1)F}{\|\tilde{\bar{\eta}}\|^{k-2}} + \frac{(k-2)(\bar{\nu}+1)F}{\|\tilde{\bar{\eta}}\|^{k-2}} \right] \\ & \text{for } \bar{\sigma} \in (t_{1}, t_{2}) \end{split}$$
(4-96)

From (4-96), (A-1), (A-22), (A-26), and (A-38)  $|\tilde{\mathbf{e}}_{\epsilon}(t_{1}, \mathbf{\xi}, t_{2})| \leq K_{p} \cdot \frac{(t_{2}-t_{1})}{\det P} \left[ K_{p} \cdot \frac{\overline{\lambda}_{\sigma} t_{1}}{\underline{\lambda}_{\sigma} t_{1}} \right]^{m/2} \left\{ \frac{[F_{1}\sqrt{\sigma}-t_{1}}{\|\mathbf{\mu}\|^{k-1}} + F_{2} \|\tilde{\mathbf{\mu}}\| + F_{3} \|u(\bar{\sigma})\|] \overline{\mathbf{F}}^{k-2} + \|\tilde{\mathbf{\mu}}\|^{k-1} \right\}$ 

+ 
$$\frac{\mathbf{F}_{4}\mathbf{r}^{-k-2} + \left[\mathbf{F}_{5}\sqrt{\mathbf{\sigma} - \mathbf{t}_{1}} + \mathbf{F}_{6}\right]\left[\frac{\mathbf{\sigma}}{\mathbf{\mu}}\right] + \mathbf{F}_{7}\left[\left|\mathbf{u}(\mathbf{\sigma})\right|\right] \mathbf{r}^{k-3+3}}{\left|\left|\mathbf{\overline{\mu}}\right|\right|^{k-2}}$$

$$+ \frac{F_8 \overline{r^{k-3+3}}}{||\overline{\mu}||^{k-3}} \right\}, \text{ for } \overline{\sigma} \in (t_1, t_2]$$

$$(4-97)$$

where

$$F_{1} = K_{AP-1}(k-2)\overline{V}(\overline{V}+1) k_{p,m-k} \sqrt{\lambda_{\overline{o}} t_{1}} K_{P}$$

$$(4-98)$$

$$F_{2} = K_{AP} (k-2) \overline{V}(\overline{V}+1) \overline{k}_{\rho,m-k}$$

$$(4-99)$$

$$F_{3} = K_{B}(k-2)\overline{V}(\overline{V}+1)$$
(4-100)

$$F_{4} = K_{AP^{-1}}(k-2)\overline{V}(\overline{V}+1)$$
 (4-101)

$$\mathbf{F}_{5} = K_{AP} (k-2) (\overline{V}+1) \overline{V}_{k} \sqrt{\lambda} \overline{\sigma} t_{1}^{K_{P}}$$

$$(4-102)$$

$$F_{6} = K_{AP} (k-2)(\overline{V}+1)\overline{Vk} \rho, m-k$$
(4-103)

$$\mathbf{F}_{\mathbf{7}} = K_{\mathbf{8}}(\mathbf{k}-2)(\overline{\mathbf{V}}+1)\overline{\mathbf{V}}$$

$$(4-10^{1}+)$$

$$F_8 = K_{AP} (k-2) (\vec{v}+1) \vec{v}$$
(4-105)

From (4-77), (4-90), (D-9), and (D-1.0),

$$\widetilde{\widetilde{s}}_{\epsilon}(t_1, \overline{s}, t_2) = 0 \text{ for } \overline{\sigma} = t_1$$
 (4-106)

The solution whose error has been estimated from (4-54) is  $\Phi_0 + \tilde{\Phi}_1$ . An examination of the error estimates shows that the error has been shown to be  $O(\bar{r}^{k-2})$ , while Mishchenko [11] claims that it is  $O(\bar{r}^{k-2})$ . As a matter of fact, the error is  $o(r^{k-2})$ . This may be shown as follows. First, the error terms of (4-69) are  $o(r^{k-2})$ . It has been concluded also (see (4-74) through (4-96)) that

$$\int_{1}^{t_{2}} d\sigma \int d\overline{\eta} \, \overline{p}(t_{1}, \overline{s}, \sigma, \overline{\eta}) [||\Lambda \overline{\eta} + Bu|| ||\nabla_{\eta} \phi_{0}(t_{1}, \overline{\eta}, \sigma)]$$

$$t_{1} \quad ||\overline{\eta}||_{\widetilde{\eta}-1} \ge 0$$

$$= O(\underline{r}^{k-2})$$

$$(4-107)$$

From (4-75) and (4-107), there exist positive constants  $K_p$  and  $K_q$  such that

$$\int_{t_{1}}^{2} d\sigma \int \left\| \widetilde{\eta} \left[ \widetilde{p}(t_{1}, \widetilde{\varepsilon}, \sigma, \widetilde{\eta}) - \widetilde{q}(t_{1}, \widetilde{s}, \sigma, \widetilde{\eta}) \right] \left[ \left\| A \widetilde{\eta} + Bu \right\| \cdot \left\| \nabla \widetilde{\varepsilon}_{0} \right\| \right] \right]$$

$$\leq (K - K) \frac{r^{k-2}}{p - q} \qquad (4-103)$$

From the definition of  $\overline{p}$  and  $\overline{q}$ ,

$$\lim_{\underline{r} \to 0} \overline{p}(t_1, \overline{\xi}, \sigma, \overline{\eta}) = \overline{q}(t_1, \overline{\xi}, \sigma, \overline{\eta})$$
(4-109)

Then

$$\lim_{\underline{r}\to 0} (\underline{K}_{\underline{p}} - \underline{K}_{\underline{q}}) = 0$$
 (4-110)

then from (4-7%), (4-108), and (4-110),

$$\left|\widetilde{\mathcal{Q}}_{\epsilon}(t_{1},\overline{s},t_{2})\right| = o(\underline{r}^{k-2}) \tag{4-111}$$

# 4.4 The Estimate in 5 Coordinates

The final step is to transform from  $\overline{\xi}$  coordinates back to  $\bar{\zeta}$  coordinates. Let

$$\psi_{o}(t_{1}, \tilde{s}, t_{2}) = \phi_{o}(t_{1}, \tilde{s}, t_{2}) \qquad (\tilde{a}-112)$$

$$\psi_1(t_1, \xi, t_2) = \tilde{\xi}_1(t_1, \bar{\xi}, t_2)$$
 (4-113)

$$\overline{\psi}(t_1, \xi, t_2) = \psi_0(t_1, \xi, t_2) + \psi_1(t_1, \xi, t_2)$$
(4-114)

The from (4-7), (4-51) through (4-53),

where

$$h(t_{1},\xi,t_{2},\tilde{\eta}) = \frac{\exp\{-\frac{\|\tilde{\eta}-\tilde{\xi}+\tilde{y}(t_{1})\|_{\tilde{a}}^{2}}{4(t_{2}-t_{1})}}{(2\pi)^{k/2} [\det \tilde{a}]^{1/2} [2(t_{2}-t_{1})]^{k/2}}$$
(4-116)

$$\bar{\psi}_{0}(\tilde{\eta}, \hat{g}) = \frac{\mathbf{r}^{k-2}[\hat{g}, \hat{y}(t_{1})]}{\|\tilde{\eta}\|_{\tilde{u}=1}^{k-2}}$$
(4-117)

where  $\tilde{\eta}$  is a k dimensional vector. From (4-71),

$$\psi_{1}(t_{1},\xi,t_{2}) = \int_{t_{1}}^{t_{2}} d\sigma \int d\eta \qquad p_{z}(\sigma) |z(t_{1})^{(\eta|\xi)} \sum_{i=1}^{m} \{A[\eta-y(\sigma)] + Bu(\sigma)\} \frac{\partial \psi_{0}}{\partial \eta_{i}}$$

$$(4-118)$$

where  $\eta$  is the m dimensional vector with

$$\eta = \begin{bmatrix} \tilde{\eta} \\ \hat{\eta} \end{bmatrix}$$
(4-119)

and the arguments of  $\phi_0$  are as follows:  $\psi_0 = \psi_0(\sigma, \eta, t_2)$  (4-120)

The expression for  $\frac{\partial \psi_0}{\partial \eta_i}$  is

$$\frac{\partial \Psi_{o}}{\partial n_{i}} = \int_{j=1}^{m} \frac{\partial \overline{\Phi}_{o}}{\partial \overline{n}_{j}} \frac{\partial \overline{\overline{n}}_{j}}{\partial n_{i}}$$
(4-121)

where

$$\bar{\eta} = P[\eta - y(\sigma)]$$
(4-122)

From (4-122),

$$\frac{\partial \tilde{n}_{j}}{\partial \tilde{n}_{i}} = P_{ji} = P'_{ij}$$
(4-123)

From (4-21), (4-121), and (4-123),

$$\frac{\partial \psi_{0}}{\partial \tilde{h}_{i}} = \sum_{j=1}^{k} \widetilde{\alpha}_{ij} [\psi_{\widetilde{\eta}} \, \overline{\psi}_{0}(\sigma, \tilde{\tilde{h}}, t_{2})]_{j, i} \leq k \qquad (4-124)$$

From (D-9), (4-21), (4-45), (4-46), (4-50), and (4-116), and (4-122)  $\begin{bmatrix} \nabla_{\widetilde{\mu}} \, \widetilde{\Phi}_{0}(\sigma, \widetilde{n}, t_{2}) \end{bmatrix}_{j} = -(k-2)r^{k-2} \, (\widehat{\gamma} - \widehat{y}(\sigma))$   $\{ \underbrace{\sum_{l=1}^{k} \widetilde{\alpha}_{jl}' [\widetilde{\eta} - \widetilde{y}(\sigma)]_{lk}}_{\{l=1\}} \\ \{ \underbrace{||\widetilde{\eta} - \widetilde{y}(\sigma)||_{\widetilde{a}^{-1}}^{k}}_{1||\widetilde{\eta}| - \widetilde{y}(\sigma)||_{\widetilde{a}^{-1}}^{k}}$   $= \int_{||\widetilde{\zeta}||_{\widetilde{a}^{-1}}^{2} = 0} \frac{d\widetilde{\zeta}}{d\widetilde{\zeta}} \, \underbrace{\frac{l=1}{||\widetilde{\zeta}||_{\widetilde{a}^{-1}}^{k}}}_{1||\widetilde{\zeta}||_{\widetilde{a}^{-1}}^{k}} h(\sigma, \widetilde{\eta}, t_{2}, \widetilde{\zeta}) \Big\}$  (4-125)

where

 $\widetilde{\ell}$  is a k dimensional vector.

Note that

$$\sum_{j=1}^{k} \widetilde{\alpha}_{ij} \sum_{\ell=1}^{k} \widetilde{\alpha}_{j\ell} = \sum_{\ell=1}^{k} \sum_{j=1}^{k} \widetilde{\alpha}_{ij} \widetilde{\alpha}_{j\ell} \qquad (4-126)$$

$$\sum_{j=1}^{k} \widetilde{\alpha}_{jj} \sum_{\ell=1}^{k} \widetilde{\alpha}_{j\ell} = \sum_{\ell=1}^{k} (\widetilde{\alpha} \ \widetilde{\alpha})_{j\ell}$$
(4-127)

then from (4-21), (4-49), (4-123), (4-124), (4-125), and (4-127),

$$\nabla_{\tilde{n}} \psi_{o} = -(k-2) r^{k-2} [\hat{\eta} - \hat{y}(\sigma)] \hat{a}^{-1} \left\{ \frac{\tilde{n} - \tilde{y}(\sigma)}{||\tilde{n} - \hat{y}(\sigma)||_{\tilde{a}^{-1}}^{k}} \right\}$$

$$-\int d\tilde{\zeta} \frac{\tilde{\zeta}}{||\tilde{\zeta}||_{\tilde{k}=1}^{k}} h(\sigma,\tilde{\eta},t_{2},\tilde{\zeta}) \right\}$$
(4-128)  
$$||\tilde{\zeta}||_{\tilde{k}=1} \geq 0$$

$$\nabla_{\widehat{\eta}}\psi_{o} = (k-2)r^{k-3}(\widehat{\eta}-\widehat{y}(\sigma)) \left\{ \frac{1}{||\widetilde{\eta}-\widetilde{y}(\sigma)||_{\widehat{a}^{-1}}^{k-2}} - \int_{\substack{d \in \\ ||\widetilde{c}||_{\widehat{a}^{-1}}^{k-2} \geq 0}} \frac{d\widetilde{c}}{||\widetilde{c}||_{\widehat{a}^{-1}}^{k-2}} \right\} \nabla_{\widehat{\eta}} r(\widehat{\eta}-\widehat{y}(\sigma)) \right\} \quad (h-129)$$

#### CHAPTER 5

## THE TWO-POINT BOUNDARY VALUE PROBLEM

#### 5.1 Introduction

The purpose of this chapter is to use the results obtained so far to reduce the problem stated by equations (3-1) through (3-19) to a twopoint boundary value problem, and to present an algorithm for the solution of this problem.

# 5.2 Pro-Point Boundary Value Problem Formulation

It was shown in Chapter 3 that the problem stated by (3-1) through (3-19) is equivalent to the following problem: Find the control u which minimizes

$$I = \int_{0}^{T} dt ||u(t)||_{U}^{Z} - \psi(0, \overline{X}, T)$$
(5-1)

subject to

$$y = Ay - Bu, y(0) = 0$$
 (5-2)

where

$$\psi(t_{1},\xi,t_{2}) = \operatorname{Prob}\{x(t) \in S \text{ for some } t \in [t_{1},t_{2}]|z(t_{1})=\xi\}$$
(5-3)
$$dz = \Lambda z \ dt + Cdn \qquad (5-4)$$

The restrictions and definitions are as stated in Chapter 3.

In Chapter 4, an estimate for 4 was developed. This estimate,  $\overline{\psi}$ , is given by (4-112) through (4-120), (4-126), and (4-129). The procedure

in this chapter is to accept this estimate as the probability portion of the performance index. Moreover, according to (4-115),  $\psi_0(0, \overline{X}, t_2)$  does not depend on u or y(t), t > 0. Then this term may be dropped without affecting the choice of u. Thus the performance index to be minimized is

$$\hat{I} = \int_{0}^{T} ||u(t)||_{U}^{2} dt - *_{1}(0, \overline{X}, T)$$
(5-5)

where

and

$$\nabla_{\hat{\eta}} \bullet_{o}^{=-(k-2)r^{k-2}[\hat{\eta}-\hat{y}(t)]\tilde{a}^{-1}\left\{\frac{\tilde{\eta}-\tilde{y}(t)}{\|\tilde{\eta}-\tilde{y}(t)\|_{a}^{k}-1} - \int_{\|\tilde{\zeta}\|_{a}^{-1}=0}^{d\tilde{\gamma}} \frac{\tilde{\zeta}}{\|\tilde{\zeta}\|_{a}^{k}-1} h(t,\tilde{\eta},T,\tilde{\zeta}) \right\}$$
(5-7)  
$$\nabla_{\hat{\eta}} \bullet_{o}^{=} (k-2)r^{k-3}[\hat{\eta}-\hat{y}(t)] \left\{\frac{1}{\|\tilde{\eta}-\tilde{y}(t)\|_{a}^{k-2}} - \int_{\|\tilde{\zeta}\|_{a}^{-1}=0}^{d\tilde{\gamma}} d\tilde{\zeta} \frac{h(t,\tilde{\eta},T,\tilde{\zeta})}{\|\tilde{\zeta}\|_{a}^{k-2}} \right\} \nabla_{\hat{\eta}}r[\hat{\eta}-\hat{y}(t)] \right\}$$
(5-8)

The problem is now ready for application of the Pontryagin Maximum Principle. The Hamiltonian, H, is

$$H = \Phi'(Ay-Bu) - \|u\|_{U}^{2} + \int_{\|\widetilde{n}\| \ge 0} d\eta p_{z}(t) |z(0)(\eta|\overline{X}) \sum_{i=1}^{m} \{A[\eta-y]+Bu\}_{i} \frac{\partial \phi_{0}}{\partial \eta_{i}}$$
(5-9)

where  $\zeta = \begin{bmatrix} \delta_1 \\ \vdots \\ m \end{bmatrix}$  is the adjoint variable. Let

$$H^* = Max H = H(u^*)$$
 (5-10)

where u\* is the optimal control. Then

$$\tilde{\mathbf{r}} = -\nabla \mathbf{y} \mathbf{H}$$
 (5-11)

From the transversality condition,

$$\tilde{\mathbf{z}}(\mathbf{T}) = \mathbf{0} \tag{5-12}$$

Finally, from (5-2)

$$\dot{y} = Ay - Bu^*, y(0) = 0$$
 (5-13)

Equations (5-9) through (5-13) define the two point boundary value problem.

The algorithm for the solution of the two point boundary value problem will require the computation of  $\nabla_u H$  and  $\nabla_y H$ . The expression for  $\nabla_u H$  is

$$\nabla_{\mathbf{u}} \mathbf{H} = -2\mathbf{U}\mathbf{u} + \int \frac{d\mathbf{n} \ \mathbf{p}_{\mathbf{z}}(\mathbf{t}) | \mathbf{z}(\mathbf{0})^{(\mathbf{n} | \overline{\mathbf{X}})} \mathbf{B}' \ \nabla_{\mathbf{n}} \ \psi_{\mathbf{0}} - \mathbf{B}' \mathbf{\delta} \qquad (5-14)$$

$$||\mathbf{n}||_{\widehat{\mathbf{a}}-1} \ge 0$$

The expression for  $\nabla_{\mathbf{V}}^{\mathbf{H}} \mathbf{is}$ 

$$\nabla_{\mathbf{y}}^{\mathrm{H}=\mathrm{A}'\,\Phi+} \int \frac{d\eta \ p_{\mathbf{z}}(t) |z(0)(\eta|\overline{X}) \left\{-\mathrm{A}' \nabla_{\eta} \psi_{0}^{+} \nabla_{\mathbf{y}} \nabla_{\eta} \psi_{0} [\mathrm{A}(\eta-y)+\mathrm{Du}]\right\}}{\left|\left|\widetilde{\eta}\right|\right|_{\widetilde{\mathbf{a}}-1} \geq 0}$$
(5-15)

where, by (5-7) and (5-8),

$$\nabla_{y} \nabla_{\eta} \dot{v}_{0} = \begin{bmatrix} \nabla_{1} & \nabla_{2} \\ \nabla_{3} & \nabla_{l_{4}} \end{bmatrix}$$
(5-16)

$$\begin{split} \nabla_{\mathbf{l}} &= -(k-2) x^{k-2} [\widehat{\eta} - \widehat{y}(z_{1})] \left\{ \frac{[1 - \widehat{y} - 1] [\widehat{\eta} - \widehat{y}] [\widehat{\eta} - \widehat{\eta} - \widehat{\eta} - \widehat{y}] [\widehat{\eta} - \widehat{\eta} -$$

# 5.3 Algorithm for the Wo-Point Doundary Volue Problem

5.3.1 The Conjugate Gradient Technique

The basic algorithm to be used for the solution of the two point boundary value problem is the conjugate gradient procedure described by

Lasdon, et al. [13]. This algorithm starts with an initial guessed control,  $u^{0}(t)$ , and generates successive improved controls,  $u^{1}(t)$ ,  $u^{2}(t)$ , ..., $u^{1}(t)$ ,.... The conjugate gradient technique differs from the usual "steepest descent" technique in two respects:

- (1) The improvement on u<sup>i</sup> is not in the "direction" ∨ H. Inu<sup>i</sup> stead, it is in a direction determined by ∨ H and ∨ H, j < i.</p>
- (2) The step size is chosen to be optimum in a certain sense at each improvement.

The conjugate gradient algorithm will now be discussed in more detail.

Figure 5-1 chous a block disgram of the algorithm. The discussion begins with block A of this diagram. This block utilizes the equation

$$\dot{y} = Ay - Bu^{i}$$
,  $y(0) = 0$  (5-21)

to compute the right end point value of y. This is carried out by Runge-Kutta integration. Since the right end point value of  $\Phi$  is specified by (5-12) to be zero, it is possible to compute  $\nabla$  . H(T), using (5-14).  $u^{1}$ This is done in block D. The next step (Block C) is to compute y,  $\Phi$ , and G<sup>1</sup> at the next earlier instant of time by applying the Runge-Kutta technique to (5-21) and

$$\dot{\Phi} = - \nabla_{y} H \Big|_{u} i$$
(5-22)

$$\dot{G}^{i} = [v_{H}] [v_{H}], G^{i}(0) = 0$$
 (5-23)

This procedure continues until values for  $\nabla$  H and G<sup>i</sup> have been calculated  $u^i$  for the range  $0 \le t \le T$ .

The next step in the procedure (Block D) is the computation of the "direction" in which ui is to be ebanged. This "direction" is defined by the function



FIGURE 5-1. THE CONJUGATE GRADIENT ALGORITHM

$$s^{i}(t) = \nabla_{u^{i}} H + \frac{G^{i}}{G^{i-1}} s^{i-1}(t)$$
 (5-24)

53

The increment in  $u^{i}$  is determined by two quantities: step size,  $c^{i}$ , and "direction,"  $s^{i}(t)$ . Specifically,

$$u^{i+1}(t) = u^{i}(t) + \alpha^{i} s^{i}(t)$$
 (5-25)

The step size is chosen to minimize the performance index. That is,  $\alpha^{1}$  is chosen so that

$$\hat{\mathbf{1}}(\mathbf{u}^{\mathbf{i}}+\alpha^{\mathbf{i}}\mathbf{s}^{\mathbf{i}}) = \operatorname{Min}_{0 \le \alpha} \hat{\mathbf{1}}(\mathbf{u}^{\mathbf{i}}+\alpha\mathbf{s}^{\mathbf{i}})$$
(5-26)

A block diagram of the algorithm for carrying out this minimization is shown in Figure 5-2. The basic idea of this scheme is as follows. The value of  $\hat{I}(u^{i} + ccs^{i})$  is computed for c=0, c=0,  $c=2D, \ldots, c=\overline{\alpha}$ ,  $c=\overline{c}+D$ , where D is a fixed step size and  $\overline{\alpha}$  is the first minimum over the sequence c=jD,  $j=1,2,\ldots$ . Thus  $\overline{\alpha}$  may be defined by

$$\overline{\alpha} = \overline{\beta} D \tag{5-27}$$

$$\hat{\mathbf{I}}(\mathbf{u}^{\mathbf{i}} + \mathbf{cs}^{\mathbf{i}}) < \hat{\mathbf{I}}(\mathbf{u}^{\mathbf{i}} + \mathbf{j}\mathbf{Ds}^{\mathbf{i}}), \quad 0 \le \mathbf{j} < \mathbf{j}$$

$$(5-20)$$

$$\hat{\mathbf{I}}(\mathbf{u}^{i} + \widehat{\mathbf{cs}}^{i}) \leq \hat{\mathbf{I}}[\mathbf{u}^{i} + (\widehat{\mathbf{c}} + \mathbf{D})\varepsilon^{i}]$$
(5-29)

(This is illustrated in Figure 5-3.) A parabola is then passed through the point pair 3

$$[\alpha = jD, \hat{1}(u^{i}+\alpha s^{i})], j=j-1,\bar{j},\bar{j}+1.$$
 (5-30)

The minimum point of this parabola is taken to be  $\alpha^{i}$ . The result of this procedure is

$$\alpha^{i} = -\frac{A_{1}}{2A_{2}}$$
(5-31)

whore

$$A_{2} = \frac{\hat{1}[u^{i} + (\overline{C} + D)s^{i}] - 2 \hat{1}[u^{i} + \overline{C}s^{i}] + \hat{1}[u^{i} - (\overline{C} - D)s^{i}]}{80^{2}}$$
(5-32)



FIGURE 5-2. STEP SIZE DETERMINATION FOR THE CONJUGATE GRADIENT ALGORITHM



FIGURE 5-3. ILLUSTRATION OF STEP SIZE DETERMINATION

$$A_{1} = \frac{1}{D} \left\{ \hat{I} \left[ u^{i_{+}} (\overline{c} - D) s^{i_{-}} \right] - \hat{I} \left[ u^{i_{+}} \overline{c} s^{i_{-}} \right] - A_{2} \left[ D^{2} + 2\overline{c} D \right] \right\}$$
(5-33)

The above discussion covers the main features of the algorithm shown in Figure 5-2. The following two remarks on this algorithm complete the discussion of it:

(1) The initial value given to  $\alpha_1$  (in block A of Figure 5-2) is based on the equation (See [13]):

$$\frac{\mathrm{d}}{\mathrm{d}\alpha} \left. \hat{\mathbf{I}} \left( \mathbf{u}^{\mathbf{i}} + \alpha \mathbf{s}^{\mathbf{i}} \right) \right|_{\alpha = 0} = \mathbf{G}^{\mathbf{i}}$$
(5-34)

(The symbols  $\alpha_0$ ,  $\alpha_1$ , and  $\alpha_2$  have the following significance. During each iteration of the loop entered at block B of Figure 5-2 and exited at block C of Figure 5-2, three values of  $\alpha$  are retained:  $\alpha_0$ ,  $\alpha_1 = \alpha_0 + D$ ,  $\alpha_2 = \alpha_1 + D$ )

(2) The portion of the algorithm entered at block B of Figure 5-2 serves the following purpose. If the initial value assigned to  $c_1$  is too large, the initial increment in  $\alpha$  will not produce a decrease in  $\hat{1}$ . If this happens, the increments in  $\alpha$  are reduced by a factor of four. If the step size  $\alpha/b$  is still too large to produce a decrease in  $\hat{1}$ , the algorithm assumes that the minimization is complete, and assigns the value 0 to  $\alpha^{i}$ .

The discussion returns now to the algorithm of Figure 5-1. Block F represents a stopping condition. It may be one of several types of conditions, e.g., a fixed number of iterations or a threshold on the decrease in  $\hat{1}$ .

5.3.2 Multidimensional Internal Commutation

An examination of equations  $(5-1^{\circ})$ , (5-15), and (5-20) reveals that the computations involved in the algorithms shown in Figures 5-1 and 5-2

involve the evaluation of several multidimensional integrals whose integrands contain the factor  $p_{z(t)|z(0)}(\eta|\overline{X})$  or the factor  $h(t, \tilde{\eta}, T, \tilde{\zeta})$ . The evaluation of these integrals is based on the fact that these factors are Gaussian probability densities. This leads naturally to the Monte Carlo technique described in detail in Appendix E. The main results of this appendix are the following. Let  $I_F$  be an integral of the form

$$I_{\mathbf{F}} = \int d\eta \ \mathbf{p}(\eta) \ \mathbf{F}(\eta) \tag{5-35}$$

where  $\eta$  is a d dimensional vector,

F is a Baire function whose domain is  $E^d$  and whose range is  $E^c$ , p(n) is a Gaussian probability density with mean  $\mu$ and covariance  $\Lambda$ .

Then

$$1.1.m. \frac{1}{N} \sum_{i=1}^{N} F[P_{\Lambda} \zeta^{i} + \mu] = I_{F}$$

$$(5-36)$$

where

$$P_{\Lambda} = \left[ \sqrt{\lambda_{\Lambda}^{1}} v_{\Lambda}^{1}, \dots, \sqrt{\lambda_{\Lambda}^{d}} v_{\Lambda}^{d} \right], \qquad (5-37)$$
  
$$\lambda_{\Lambda}^{1}, \dots, \lambda_{\Lambda}^{d} \text{ are the eigenvalues of } \Lambda, \qquad v_{\Lambda}^{1}, \dots, v_{\Lambda}^{d} \text{ are the corresponding eigenvectors,} \qquad \zeta^{i}, i=1, \dots, N, \text{ are independent Gaussian random vectors with mean zero and covariance matrix}$$

the identity matrix.

This result is applied to the computation of the integrals in equations (5-14), (5-15), and (5-20) as follows. A random number generator is used to generate the  $\zeta^{i}$ . A finite sum of the form appearing in (5-36) is used to approximate the desired integral.

The application of this technique to integrals containing  $P_{Z}(z) | r(0)^{(1|X)}$ requires the evolvation of E[r(z) | r(0) - T] and the vatrix P (corresponding to  $P_{L}$  in equation (5-57)) as a function of t. This is accomplished as rollows.

A comparison of equations (5-4) and (2-1) shows that the results stated by Theorems 2-1 and 2-3, apply to z(t). Then  $E[z(t) \mid z(0), \overline{X}]$  and  $cov[z(t) \mid z(0)]$  may be computed according to

$$\dot{\mu}_{\mu} = \Lambda \mu_{\mu}, \quad \mu_{\mu}(0) = \bar{X}$$
(5-38)

$$\phi_{z} = A \phi_{z} + \phi_{x} \Lambda^{\dagger} + C M \phi^{\dagger}, \ \phi(\phi) = 0$$
 (5-39)

where

$$\mu_{\overline{x}}(t) = \mathbb{E}[z(t) \mid z(0) = \overline{X}]$$
(5-40)

$$Q_{z}(t) = cov[z(t) | z(0) = \overline{X}]$$
 (5-41)

### 5.3.3 Summary and Discussion

The overall procedure for the solution of the two-point boundary value problem is summarized. as follows:

- (1) Compute and store the matrix  $P_Q(t)$  and the vector  $\mu(t)$ . ( $P_Q$  is defined by (5-37) with Q substituted for A.) This is accomplished by using equations (5-38) through (3-41) and some standard method for the computation of eigenvectors and eigenvalues.
- (>) Apply the algorithm shown in Figure 5.1, using the Monte Carlo technique described above for the computation of the multidimensional integrals which appear during the execution of the algorithm.

The reason for computing and storing  $P_Q$  and  $\mu$  before rather than durin; the execution of the conjugate gradient algorithm is economy of computer time. The computation of  $P_Q$  is carried out by the solution of a matrix differential equation with eigenvalue and eigenvector computation at each step.

The selection of  $u^{\circ}$  remains to be discussed. One obvious possibility is  $u^{\circ}=0$ . The complexity of the algorithm, however, suggests that it might pay to devote some time to the selection of  $u^{\circ}$ . This is part of the motivation for the work done in Chapter 6, where two supoptimal problems are solved, thus providing better guesses for  $u^{\circ}$ .

5.4 Semiconce

5.4.1 Scope and Purpose This section deals with the convergence of the conjugate gradient lgorithm as applied to the present problem. What follows is a discusion rather than a proof. This discussion is intended to serve two purposes:

It provides a basis for understanding the numerical work described in Chapter 7.

It indicates the lines along which a convergence proof might be constructed.

The discussion is in two parts. The first part deals with the convergence of the algorithm if the multidimensional integrals appear in the expressions for  $\hat{1}$ ,  $\nabla_{u}$ H, and  $\nabla_{y}$ H could be computed precisely. I second part deals with the effects of the random errors arising from the Monte Carlo computation of these integrals.

5.4.2 Convergence with Exact Computation of Integrals

Let  $I^1$ ,  $I^2$ , ...,  $I^i$ , ... be the sequence of performance indices corresponding to the sequence of controls  $u^1$ ,  $u^2$ , ...,  $u^i$ , ... generated by successive iterations of the algorithm. Since the energy term of  $I^i$  is positive semidefinite, and the probability term is less than unity, the sequence of performance indices is bounded below. Since at each step the algorithm selects step size ( $\alpha$ ) to minimize each successive  $I^i$ , the sequence of performance indices is monotonic decreasing. Then the sequence of performance indices is monotonic decreasing and bounded below. Therefore there exists a number <u>I</u> such that

$$\lim_{i \to \infty} I^{i} = \underline{I}$$
 (5-41a)

There is no guarantee that  $\underline{I}$  is a global minimum. This provides further motivation to generate more than one initial control.

The convergence of the sequence of controls, u<sup>1</sup>, is discussed by Lasden [13].

5.4.3 Convergence with Monte Carlo Computation of Integrals

A second aspect of convergence is connected with the Monte Carlo method of computing the multidimensional integrals which appear in the expressions for  $\hat{I}$ ,  $\nabla_{u}H$ , and  $\nabla_{y}H$ . This technique (see section 5.3.2 and Appendix E) contributes a random error to the computation at each iteration of the algorithm. The effect of this random error on convergence will now be discussed.

The discussion begins with the rewritting of equations (5-22), (5-23), and (5-24) to include the error term arising from the Monte Carlo computation:

60

and the second second

$$\hat{\Phi} = -\nabla_{\mathbf{y}} H \Big|_{\hat{\mathbf{u}}} + \hat{\boldsymbol{\xi}}$$
(5-42)

$$\mathbf{\tilde{G}}^{i} = \left[\nabla_{\mathbf{u}}\mathbf{\tilde{H}}^{H}\right]^{i}\left[\nabla_{\mathbf{u}}\mathbf{\tilde{H}}^{H}\right] + \boldsymbol{\tilde{G}}^{i}_{\mathbf{G}}$$
(5-43)

$$\vec{S}^{i}(t) = \nabla_{\vec{u}} H + \frac{\vec{G}^{i}}{\vec{G}^{i-1}} \vec{S}^{i-1}(t) + \epsilon_{S}^{i}$$
(5-44)

where

 $\in_{\Phi}^{1}$  is the random error arising from the Monte Carlo computation of  $\nabla_{\Psi} H$ 

 $\in_{\hat{G}}^{i}$  is the random error arising from the Monte Carlo computation of  $[\nabla_{u}H]^{i}[\nabla_{u}H]$ 

 $\in_{S}^{i}$  is the random error arising from the Monte Carlo computation of  $\nabla_{A}H$  and  $G^{i}$ .

and the super bar denotes computed values, e.g. 5<sup>i</sup> is the computed value of S<sup>i</sup>.

It was established in Appendix E that the expectations of the  $\in^{i}$  are zero, and that their variances are proportional to  $1/N^{i}$ , where  $N^{i}$  is the number of terms in the Monte Carlo sum used to approximate the integral on the i<sup>th</sup> iteration.

Each iteration of the conjugate gradient algorithm may be viewed as a functional transformation from u<sup>i</sup> to u<sup>i+1</sup>,

$$u^{i+1} = T^{i}[u^{i}]$$
 (5-45)

where  $T^{i}$  is defined by the block diagram shown in Figure 5-1. Similarly, let  $\overline{T}^{i}$  be the same transformation with equation (5-42), (5-43), and (5-44) substituted for (5-22), (5-23), and (5-24), respectively. Thus the sequence of  $\overline{u}^{i}$  defined by

$$\bar{u}^{i+1} = \bar{T}^{i} [\bar{u}^{i}]$$
(5-46)

is the sequence of controls generated by the conjugate gradient algorithm with Monte Carlo computation of certain of the integrals, while the sequence  $u^i$  defined by equation (5-45) is the sequence of controls generated by the conjugate gradient algorithm with precise computation of these integrals. Consider now the difference between  $\overline{u}^{i}$  and  $u^{i}$ .

Suppose that the transformation  $\tilde{T}^{i}$  has two properties:

$$\vec{\mathbf{T}}^{\mathbf{i}}[\mathbf{u}^{\mathbf{i}}] = \mathbf{u}^{\mathbf{i}+\mathbf{l}} + \boldsymbol{\epsilon}^{\mathbf{i}}(\mathbb{N}^{\mathbf{i}}) \tag{5-47}$$

where

$$l_{\bullet}i_{\bullet}m_{\bullet} \in {}^{L}(N^{L}) = 0$$
 (5-48)  
$$N^{i \to \infty}$$

$$\overline{T}^{i}[u^{i} + \delta] = u^{i+1} + \epsilon^{i}(N^{i}) + \overline{\epsilon}^{i}(\delta)$$
 (5-49)

where

$$1.i.m. \vec{\epsilon}^{1}(\delta) = 0$$
 (5-50)  
$$\delta \rightarrow 0$$

Equations (5-47) and (5-48) assert that the Monte Carlo error term on u<sup>i+1</sup> may be made arbitrarily small by making the  $\in_{\mathfrak{s}}^{\mathfrak{i}}$ ,  $\in_{\mathfrak{s}}^{\mathfrak{i}}$ , and  $\in_{\mathfrak{S}}^{\mathfrak{i}}$  terms of equations (5-42), (5-43), and (5-44) sufficiently small. Equations (5-49) and (5-50) assert a continuity property for  $\overline{T}^{i}$ .

Consider now the difference between the sequence of ui and the sequence of u.

$$\overline{u}^{1} = \overline{T}^{\circ} [u^{\circ}]$$
 (5-51)

From (5-47), (5-48), and (5-51).

$$\overline{\mathbf{u}}^{1} = \mathbf{u}^{\mathbf{o}} + \boldsymbol{\epsilon}^{\mathbf{o}}(\mathbf{N}^{\mathbf{o}}) = 0 \tag{5-52}$$

$$1.i.m. \in {}^{\circ}(\mathbb{N}^{\circ}) = 0 \tag{5-53}$$
From (5-47) through (5-50) and (5-52) through (5-54),

$$\bar{u}^{2} = u^{2} + \epsilon^{1}(N^{1}) + \bar{\epsilon}^{1} [\epsilon^{\circ}(N^{\circ})]$$
 (5-55)

$$1.i.m. \in \stackrel{1}{=} 0 \tag{5-56}$$

$$1.1.m. \vec{\epsilon}^{1} = 0$$
 (5-57)  
$$N^{0} \rightarrow 0$$

Let

$$\overline{\overline{\epsilon}}^{1} = \epsilon^{1}(\mathbb{N}^{1}) + \overline{\epsilon}^{1} [\epsilon^{\circ}(\mathbb{N}^{\circ})] \qquad (5-58)$$

From (5-56), (5-57), and (5-58),

$$1.1.m.\overline{e}^{1} = 0$$
 (5-59)  

$$N^{1} + \infty$$
  

$$N^{0} + \infty$$

The pattern, them, is

$$\overline{u}^{i+1} = u^{i+1} + \overline{\overline{e}}^{i}$$
 (5-60)

$$\overline{\overline{\epsilon}}^{i} = \epsilon^{i}(N^{i}) + \overline{\epsilon}^{i} \{\epsilon^{i-1}[\epsilon^{i-2}(\dots\epsilon^{o}(N^{o}))]\}$$
(5-61)

$$1_{\bullet}i_{\bullet}m_{\bullet} \quad \overline{\epsilon}^{i} = 0 \tag{5-62}$$

$$N \rightarrow \infty$$

$$N^{1-1} \rightarrow \infty$$

$$N^{1-2} \rightarrow \infty$$

$$N^{\circ} \rightarrow \infty$$

Thus it is possible to keep  $\overline{u}^{i}$  arbitrarily close to  $u^{i}$  by choosing N<sup>i</sup>, N<sup>i-1</sup>,..., N<sup>o</sup> sufficiently large.

One other aspect of convergence connected with the Monte Carlo computation of the integrals is the termination of the algorithm. Figure 5-2 indicates that if no improvement of the performance index is obtained for step size  $\hat{I}(u^i)/G^i$  or for  $\hat{I}$  of this step size, the algorithm terminates. Thus if the Monte Carlo error involved in the computation of  $\hat{I}$  is large enough, the algorithm may terminate even though a better control has been found. The probability of such an event can be made arbitrarily low by choosing N<sup>i</sup> suitably large.

## CHAPTER 6

## TWO SUBOPTIMAL PROBLEMS

## 6.1 Introduction

Chapters 4 and 5 developed a technique for the solution of the basic problem posed in Chapter 3. This technique exhibits several unattractive features. First of all it is at best an approximation. Secondly, the computation is extremely involved. The purpose of this chapter is to present en alternative method of attack on the basic problem. This attack involves choosing an appealing single parameter class of controls, and then optimizing over this parameter. The probability portion of the performance index is determined through the use of a digital simulation of the system described by equation (6-5).

The procedure in this chapter will be to define a class of controls and carry out the above technique for a sample problem. The results of this work lead to the definition of a second class of controls. Results for this class are also given.

## 6.2 Suboptimal Problem Pl

The first class of controls to be considered is defined as follows. Let  $u_{T_{C}}$  be the control vector which minimizes

$$I_{D_{1}} = \int_{0}^{T_{C}} ||u(t)||_{U}^{2} dt, \qquad (6-1)$$

where U is positive definite, subject to

$$\dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u}, \ \mathbf{x}(0) = \overline{\mathbf{x}}$$

$$\mathbf{x}_{i}(T_{C}) = 0, \ i = 1, \dots, k, k \le n$$

$$(6-2)$$

where x is an m dimensional vector.

The class  $\mathcal{F}_{l}$  is defined as

$$S_{1} = \left\{ \begin{array}{c} u \left| u(t) = u_{T_{C}}(t), \ T_{C} \geq t \geq 0 \\ u(t) = 0, \ t > T_{C} \end{array} \right\}$$
(6-3)

The first suboptimal problem to be considered, then, is Pl: Find  $u^{*} \in S_{1}$  such that

$$I_{s}[u^{*}] \ge I_{s}[u] \text{ for every } u \in \mathcal{F}_{1}$$
(6-4)

where

$$I_{s} = \operatorname{Prob}\left\{ \underset{\substack{0 \leq t \leq T}{}}{\operatorname{Hin}} ||_{t}(t)||_{\widetilde{a}^{-1}} \leq r[\hat{x}(t)] \right\}$$
$$- \int_{0}^{T} ||u(t)||_{U}^{2} dt \qquad (6-5)$$

subject to

$$dx = [Ax + Bu] dt + C dn, x(0) = \overline{x}$$
(6-6)

where (5-6) is a stochastic differential equation as described following (2-1), with

$$E\{[n(t_2)-n(t_1)][n(t_2)-n(t_1)]'\} = w[t_2-t_1]$$
(6-7)

The matrix  $\widetilde{a}$  is defined as follows:

$$CWC' = \begin{bmatrix} \widetilde{a} & 0 \\ 0 & 0 \end{bmatrix}$$
(6-8)

rank 
$$(\tilde{a}) = k = \text{dimension of } \tilde{a}$$
. (6-9)

The following discussion is intended to expose the intuitive appeal of the class  $\mathbb{V}_1$ . The index  $\mathbf{I}_s$  involves an energy term and a term dependent

upon making the first k components of x small. The class  $\mathbb{F}_1$  is defined as the class of controls which bring the first k components of x to 0 at time  $\mathbb{T}_C$  with minimal energy. The parameter of  $\mathbb{F}_1$  is  $\mathbb{T}_C$ . For small  $\mathbb{T}_C$ , the first k components of x are brought to 0 relatively quickly at a relatively large expenditure of energy. For larger  $\mathbb{T}_C$ , the first k components of x are brought to 0 relatively slowly, but at a relatively small expenditure of energy. Thus the parameter  $\mathbb{T}_C$  expresses the tradeoff between small  $||\widetilde{x}||_{\mathbb{T}^{-1}}$  and small energy, to be optimized in terms of  $\mathbb{T}_s$ .

Consider now the computation of  $u_{C}$  given  $T_{C}$ . This is carried out by a straightforward application of Pontryagin's Maximum Principle. The Hamiltonian H is

$$H = \Phi'(Ax + Bu) - ||u(v)||_{U}^{2}$$
(6-10)

where 4 is the adjoint variable corresponding to (6-6). Then

$$u_{T_{C}}(t) = \frac{1}{2} U^{-1} B' \Phi$$
 (6-11)

$$\hat{\varphi} = -A^{\dagger}\hat{\varphi}$$
(6-12)

From the transversality condition,

$$\Phi_{2}(T_{C}) = 0, \ i=k+1,...,m$$
 (0-13)

Then

$$\dot{y} = iy, y(0) = \begin{bmatrix} x \\ \bar{g}(0) \end{bmatrix}$$
  
 $y(T_{C}) = \begin{bmatrix} 0 \\ \bar{g}(T_{C}) \end{bmatrix}$ 
(6-14)

where

$$\mathbf{y} = \begin{bmatrix} \mathbf{x} \\ -\mathbf{z} \end{bmatrix} \qquad (6-15)$$

$$M = \begin{bmatrix} A & \frac{1}{2} B U^{-1} D^{1} \\ 0 & -A^{1} \end{bmatrix}$$
(6-16)

Let

$$\dot{\delta}_{\mathrm{E}}(\mathbf{t}_{\mathrm{S}},\mathbf{t}_{\mathrm{L}}) = \mathrm{M} \, \delta_{\mathrm{E}}(\mathbf{t}_{\mathrm{S}},\mathbf{t}_{\mathrm{L}}), \, \delta_{\mathrm{E}}(\mathbf{t}_{\mathrm{L}},\mathbf{t}_{\mathrm{L}}) = \mathbf{I}_{2m}$$
(6-17)

where  $I_{2:1}$  = identity metrix of rank 2n and let

$$\Phi_{M}(\mathbf{T}_{C},0) = \begin{bmatrix} \widetilde{\Phi}_{1} & \widetilde{\Phi}_{2} \\ \overline{\Phi}_{1} & \overline{\Phi}_{2} \\ \widehat{\Phi}_{1} & \widehat{\Phi}_{2} \\ \widehat{\Phi}_{1} & \widehat{\Phi}_{2} \end{bmatrix}$$
(6-18)

where

 $\tilde{\mathfrak{G}}_{1}$  and  $\tilde{\mathfrak{G}}_{2}$  are kxn matrices  $\overline{\mathfrak{G}}_{1}$  and  $\overline{\mathfrak{G}}_{2}$  are mum matrices  $\hat{\mathfrak{G}}_{1}$  and  $\hat{\mathfrak{G}}_{2}$  are (m-k)xm matrices

Then

$$\bar{\mathbf{x}}_{\mathrm{H}}(\mathbf{T}_{\mathrm{C}}, \mathbf{0}) \begin{bmatrix} \bar{\mathbf{X}} \\ \bar{\mathbf{x}}_{\mathrm{C}}(\mathbf{0}) \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \vdots \\ \mathbf{x}_{\mathrm{K}+1}(\mathbf{T}) \\ \vdots \\ \mathbf{x}_{\mathrm{m}}(\mathbf{T}) \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix}$$
(6-19)

-1

From (6-18) and (6-19),

$$\delta(0) = - \begin{bmatrix} \tilde{v}_2 \\ \tilde{v}_2 \end{bmatrix}^{-1} \begin{bmatrix} \tilde{v}_1 \\ \tilde{v}_2 \end{bmatrix} \overline{X}$$
 (6-20)

Using (6-20), (6-12), and (6-11), then, it is possible to compute  $u_{T_{C}}$ . Consider next the algorithm for the computation of  $\operatorname{Prob}\left\{ \begin{array}{c} \operatorname{Lin} & ||x(t)||_{\widetilde{a}=1} \leq r[\widehat{x}(t)] \right\} \text{ for a given } u_{T_{C}} \in \mathcal{F}_{1}. \text{ The algorithm} \end{array} \right\}$  makes use of the following approximation to (6-6):

$$\dot{x} = Ax + Bu(t) + C\dot{n}^{\ell}(t), x(0) = \bar{x}$$
 (6-21)

where

$$\dot{n}^{\ell}(t) = \frac{1}{2} \sqrt{\frac{\mu}{T}} \sum_{i=0}^{\ell-1} \left[ \operatorname{sgn}(t - \frac{iT}{\ell}) - \operatorname{sgn}[t - \frac{(i+1)T}{\ell}] \right] N^{1}$$
(6-22)

and the  $N^{i}$  are as defined by (2-31) and (2-32). A block diagram of the algorithm is shown in Figure 6-1. A brief description of it is as follows. The time interval [0,T] is divided into  $\ell$  equal subintervals. x(t) is then computed for each of the subinterval endpoints. At each endpoint,

 $\frac{1}{r(\hat{x})} \|\tilde{x}\|_{a^{-1}} \text{ is checked against the minimum previous value of } \frac{1}{r(\hat{x})} \|\tilde{x}\|_{a^{-1}}.$ If  $\frac{1}{r(\hat{x})} \|\tilde{x}\|_{a^{-1}}$  is less than the previous minimum it becomes the new minimum. Thus at t=T, the smallest value of  $\frac{1}{r(\hat{x})} \|\tilde{x}\|_{a^{-1}}$  attained during the time interval has been determined (and stored in the XNWRA array). The procedure is then repeated for a new sample function of  $\dot{n}^{\ell}$ . After repeating the procedure NC times the XNWRL array is sorted so that the largest value appears first, the second largest value appears next, and so forth. Thus a plot of  $\frac{N_{C}-i+1}{N_{C}}$  versus XNWRL(i) gives an estimate of the plot of Prob{ Min  $\|\tilde{x}(t)\|_{a^{-1}} \leq k_{r}r(\hat{x})$  versus  $k_{r}$ . The reasons for choosing  $0 \leq t \leq T$   $a^{-1} \leq k_{r}r(\hat{x})$  versus  $k_{r}$ . The reasons for choosing a parabolic fit to the points thus obtained will be given in the discussion of the sample problem.

#### 6.3 A Sample Problem

6.3.1 Statement of the Problem

An engineering system typical of the type to which the above techniques apply is shown in functional block diagram form in Figure 6-2, in operational block diagram form in Figure 6-3, and in state variable form in Figure 6-4. That the system chosen is of a representative type is



FIGURE 6 - 1. ALGORITHM FOR P1

÷







FIGURE 6-3. OPERATIONAL BLOCK DUAGRAM FOR SAMPLE SYSTEM



VIGURE 6-4. STATE VARIABLES FOR THE SAMPLE PROBLEM

apparent from Figure 6-2. The notation in Figure 6-3 relates to Figure 6-2 as follows:

 $K_{C}$  represents the product of a controller gain and a prime mover constant.

 $I_{I_{\rm c}}$  is the inertia of the load.

 $au_{\mathrm{m}}$  is a time constant associated with the prime mover.

 $\dot{n}_{3}$  is the random disturbance.

 $K_r$  is the product of a controller gain and a rate sensor constant.

 $\dot{n}_1$  is the component noise.

 $\tau_r$  is the rate sensor filter time constant.

 $\dot{n}_{o}$  is the component noise.

 $\tau_{\rm p}$  is the position sensor filter time constant.

u is the position command.

The state variables defined in Figure 6-4 relate to Figure 6-3 as follows:

x, is position.

x, is measured rate.

x3 is measured position.

 $x_4$  and  $x_5$  are employed in the representation of the prime mover and load.

The state equations for this system are of the form of (6-6) with

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 & -\tau_{m} \\ 0 & -1/\tau_{r} & 0 & K_{r}/\tau_{r} & -K_{r}\tau_{m}/\tau_{r} \\ 1/\tau_{p} & 0 & -1/\tau_{p} & 0 & 0 \\ 0 & -K_{C}/I_{L} & -K_{C}/I_{L} & 0 & 0 \\ 0 & -K_{C}/(I_{L}\tau_{m}) & -K_{C}/(I_{L}\tau_{m}) & 0 & -1/\tau_{m} \end{bmatrix}$$
(6-23)

$$B = \begin{bmatrix} 0 \\ 0 \\ K_{C}/I_{L} \\ K_{C}/I_{L}\tau_{m} \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 0 & 1 \\ 1/\tau_{r} & 0 & K_{r}/\tau_{r} \\ 0 & 1/\tau_{p} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(6-25)$$

The system parameter values were chosen to be

0 0

B =

$$\begin{aligned} v_{\rm r} &= 1/h & (6-26) \\ \tau_{\rm p} &= 1/3 & (6-27) \\ K_{\rm r} &= 1.2 & (6-29) \\ K_{\rm C}/I_{\rm L} &= 1/2 & (6-29) \\ \tau_{\rm m} &= 1/5 & (6-30) \end{aligned}$$

$$W = \frac{\cos\{n(t_2) - n(t_1)\}}{|t_2 - t_1|} = \begin{cases} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{cases}$$
(6-31)

A discussion of the relevance of the form of the system and the choice of parameter values is given in Appdendix F.

The problem to be solved is as follows. The initial state of the system is

$$\mathbf{x}(\mathbf{0}) = \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$
(6-32)

That is, the load is initially at rest in some position, which is known to the controller. It is desired to bring the load to rest at position  $x_1=0$ . Since the system is subject to random disturbances, provision has been node to lock into place when it gets within a certain distance of  $x_1=0$ , provided that it is not going too fast. It is also desired to achieve this with the minimum expenditure of energy consistent with an acceptable probability of success in a reasonable time interval. The performance index,  $I_{sl}$ , as defined by (6-33), reflects these goals, and is amenable to the optimization techniques developed above:

$$I_{s1} = \operatorname{Prob} \left\{ \begin{array}{cc} \operatorname{Min} & ||\widetilde{z}(t)||_{\widetilde{a}+1} \leq r \end{array} \right\} -k_u \int_{0}^{1} u^2(\alpha) \, d\alpha \qquad (6-33)$$

where

$$CWC' = \begin{bmatrix} \widetilde{a} & 0 \\ 0 & 0 \end{bmatrix}$$
(6-34)  
$$\widetilde{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
(6-35)

r and  $k_u$  are positive scalar constants defining the relative influence of the energy and probability terms of the performance index.

6.3.2 Numerical Results

Numerical results were obtained for the sample problem defined in the proceeding section by applying the algorithms described in the section on suboptimal problem PL. Listings of the FORTRAM programs used, together with a discussion of some of the computational details, are contained in Appendix G.

Data on the probability term was obtained by using the algorithm shown in Figure 6-1. The results are shown in Figures 6-5 through 6-10. As was mentioned earlier, the curves shown in Figures 6-5 through 6-9 are least-squares best fit parabolas. The reasons for choosing parabolas rather than higher degree polynomials is that the curves represent probability distributions, and hunce are monotomic. The loss of this property by higher degree polynomials is illustrated in Figures 6-11 and 6-12. The curves in these figures are fifth order and eighth order polynomial best fits to the  $T_{\rm C}$ =2.0 data (See Figure 6-7.)

The next step is to utilize the data contained in Figures 6-5 through 6-10 to determine the value of  $T_{\rm C}$  which maximizes I<sub>sl</sub> (see equation (6-33)). This will now be carried out for

$$r = 0.2$$
 (6-36)  
 $k_u = 10^{-l_1}$  (6-37)

Figure 6-13 shows a plot of the probability term of  $I_{sl}$  versus  $T_{C}$ . The points for this plot were read directly from Figures 6-5 through 6-9.  $I_{sl}$  was then computed according to equation (6-33): the values for the probability terms were obtained from Figure 6-13 while the values for the energy term were obtained from Figure 6-10. The resulting curve is shown in Figure 6-14. The immediate result is that the optimum control is that corresponding to  $T_{C}$ =1.5. The optimal performance turns out to be

$$\operatorname{Prob}\left\{ \begin{array}{cc} \operatorname{Min} & ||\widetilde{x}(t)|| \\ 0 \le t \le 1 \end{array} \right\} = 0.32 \quad (6-38)$$

$$\int_{0}^{1} \left[ u^{*}(t) \right]^{2} dt = 470$$
 (6-39)

A second result is that  $I_{sl}$  is not very sensitive to  $T_C$  for  $T_C > 1.5$ . On the other hand,  $I_{sl}$  drops off sharply for  $T_C < 1.5$ . The conclusion to be



胚

FIGURE 6-5. PL DISTRIBUTIONS







FIGURE 6-7. PI DISTRIBUTIONS



FIGURE 6-8. PL DISTRIBUTIONS



FIGURE 6-9. PL DISTRIBUTIONS



FIGURE 6-10. ENDING VENAUS T FOR P1







FIGURE 6-12. EIGHTH DEGREE POLYNONIAL FIT TO P1 DISTRIBUTION FOR T = 2.0





18<sub>1</sub>

Ì

drawn is that  $\mathbb{T}_{C}$  should be chosen somewhat larger than its optimum value to reduce the sensitivity of performance to system parameters.

## 6.4 Suboptical Problem P2

## 6.4.1 Notivation

Figure 6-13 shows that the probability term of  $I_{sl}$  has a maximum value at  $T_c=1$ . The reason for this is apparent from Figures 6-15 through 6-17. For  $T_c < 1$ ,  $||\widetilde{x}(t)||_{\widetilde{a}^{-1}}$  increases during the period  $T_c < t < 1$ . This happens because  $x_4$  and  $x_5$  were not brought to zero, as were  $x_1$ ,  $x_2$ , and  $x_3$ . As a result, for  $T_c < 1$ , decreasing  $T_c$  also decreases the probability term of  $I_{sl}$ , but still increases the energy term. Thus for  $T_c < 1$ ,  $I_{sl}$  fails to express the trade off between energy and probability, and thus compromises its value as a useful performance index. A possible remedy would be to redefine the terminal condition on (6-2) to read

$$x_i(T_c) = 0, i=1,...,m$$
 (6-40)

This approach, however, spends energy on zeroing components of x which do not affect the probability term. This objection points to another criticism of  $\mathcal{I}_1$ : no account is taken of the shape of the target manifold. That is, the same control is applied regardless of the actual values of the elements of  $\widetilde{a}$ .

Suboptimal problem P2 as defined below was conceived to improve the objectionable features of problem P1 mentioned above.

## 6.4.2 Definition of Suboptimal Problem P2

The second class of controls to be considered is defined as follows. Let  $u_{kii}$  be the control which minimizes

$$I_{D2} = \int_{0}^{T} \left\{ \left| |\widetilde{x}(t)| \right|_{\widetilde{a}=1}^{2} + K_{u} | |u(t)| |_{U}^{2} \right\} dt \qquad (6-41)$$







subject to

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{a}, \ \mathbf{x}(\mathbf{0}) = \overline{\mathbf{x}} \tag{6-42}$$

Then the class  $\mathcal{T}_{\underline{\mathcal{C}}}$  is defined as

$$\mathcal{F}_{2} = \left\{ u | u(t) = u_{K_{u}}(t) \text{ for some } K_{u} \ge 0 \right\}$$
 (6-43)

The second suboptimal problem to be considered, then, is P2: Find  $u^* \in S_Z^+$  such that

$$I_{s}[u^{*}] \ge I_{s}[u] \text{ for every } u \in \mathbb{F}_{2}$$
(6-44)

subject to (6-6).  $(l_s \text{ is defined by (6-5)}).$ 

Consider now the computation of  $v_{\rm Ku}$  given  ${\rm K}_{\rm u}$  . This is carried out by a straightforward application of Pontryagin's Maximum Principle. The Metaltonian H is

$$H = \xi' (Ix + Bu) - ||\hat{x}||_{\tilde{u}}^2 - K_u ||u||_U^2$$
 (6-45)

where 4 is the adjoint variable. Then

$$\mathbf{v}_{\mathbf{K}_{\mathbf{U}}} = \frac{1}{2N_{\mathbf{U}}} \mathbf{U}^{-1} \supset \mathbf{\zeta}$$
(5-45)

$$\dot{\zeta} = -\Lambda^* \zeta + 2 \hat{a}^{-1} \hat{\chi} \tag{5-b7}$$

Provide the transverseliby condition

$$\mathbf{x}(\mathbf{x}) = \mathbf{0} \tag{6-1.2}$$

 $\mathbb{P}^{n} \in \mathbb{N}$ 

$$\dot{y} = M_2 | y , \quad y(0) = \begin{bmatrix} -\overline{x} \\ -\overline{c}(0) \end{bmatrix}$$
$$y(\Omega) = \begin{bmatrix} \alpha(\Omega) \\ 0 \end{bmatrix}$$
(5-40)

$$y = \begin{bmatrix} x \\ z \end{bmatrix}$$
 (6-50)

$$M_{2} = \begin{bmatrix} A & \frac{BU^{-1}F'}{ZK_{u}} \\ Z \tilde{a}^{-1} & -A' \end{bmatrix}$$
(6-51)

œ

Let

$$\dot{\phi}_{M_2}(t_2, t_1) = M_2 \phi(t_2, t_1), \phi_{M_2}(t_1, t_1) = I_{2m}$$
 (6-52)

 $I_{2m}$  = identity matrix of rank 2m and let

where

$$\phi_{M_2}(T,0) = \begin{bmatrix} \tilde{\Psi}_1 & \tilde{\Psi}_2 \\ \\ \\ \tilde{\Psi}_3 & \tilde{\Psi}_4 \end{bmatrix}$$
(6-53)

Then

$$\Phi_{M}(T,0) \begin{bmatrix} \overline{X} \\ \phi(0) \end{bmatrix} = \begin{bmatrix} X(T) \\ 0 \end{bmatrix}$$
(6-54)

From (6-53), and (6-54)

$$\Phi(0) = -\widetilde{\Phi}_{4}^{-1} \widetilde{\Phi}_{3} \widetilde{X}$$
 (6-55)

Using (6-42), (6-46), (6-47), and (6-55), then, it is possible to compute  $u_{K_{ij}}$ .

6.4.3 Inverical Results

Numerical results were obtained for suboptimal problem P2 using the same sample problem and the same computational techniques which were applied for suboptimal problem P1. Comparison of Figure 6-18 with Figures 6-15 through 6-17 shows that P2 should indeed express the tradeoff between energy and probability better than did F1. The resulting plots of

Proof 
$$\min_{\substack{0 \leq t \leq 1}} ||\widehat{x}(t)||_{\widehat{u}=1} \leq r$$
 versus rare shown in Figures 6-19 through  
6-21, and  $\int_{0}^{1} u^2 dt$  versus  $K_u$  is shown in Figure 6-22. Following the same  
procedures described under suboptimal problem PL, the data contained in



FIGURE 6-18 || X(t) ||\_\_\_ VERSUS t FOR P2

<del>9</del>3

-----



FIGURE 6-19. P2 DISTRIBUTIONS





FIGURE 6-21. P2 DISTRIBUTIONS



Figures 6-19 through 6-22 was used to maximize  $I_s$  for r=0.2 and  $k_u=10^{-4}$ . Figure 6-23 shows the plot of Prob  $\begin{cases} \text{Min } ||\widehat{x}(t)||_{\widehat{a}=1} \leq 0.2 \end{cases}$  versus  $K_u$ . The plot of  $I_s$  versus  $K_u$  is shown in Figure 6-24. From this plot it is seen that the optimal control is that corresponding to  $K_u = 10^{-4}$ . The optimal performance turns out to be

Prob 
$$\left\{ \begin{array}{c} \min_{0 \le t \le 1} || \hat{x}(t) ||_{\widehat{a}=1} \le 0.2 \right\} = 0.62$$
 (6-56)  
 $\int_{0}^{1} [u^{*}(t)]^{2} dt = 1400$  (6-57)

# 6.5 Commarison of Results

Some comparisons will now be mide between suboptimal problems F1 and P2. Comparison of (6-56) and (6-57) to (6-38) and (6-39) shows that the optimal control in  $\mathcal{F}_2$  achieves higher probability of a hit at a higher energy cost than the optimal control in  $\mathcal{F}_1$ . Comparison of Figure 6-24 to Figure 6-14 shows that the optimal control in  $\mathcal{F}_2$  achieves a considerably higher  $\mathbb{I}_s$  than does that in  $\mathcal{F}_1$ . Thus for this sample problem, at least,  $\mathcal{F}_2$  is a better class of controls.

Note that the superiority of  $S_2$  over  $S_1$  has been demonstrated only for r=0.2 and  $k_u=10^{-4}$ . It turns out, however, that  $S_2$  is superior to  $S_1$ in a broader sense. Figure 6-25 shows that for the range of energies investigated, the controls in  $S_2$  always produce higher probability of hit than those of  $S_1$ , for the same energy.

A comparison of Figure 6-13 with 6-23 mices enother point. The rander error arising from the Nonte Carlo nature of the computational technique, i.e., the distance of the experimental points from the fitted curve, seems much higher for the controls in  $S_1$  than for those in  $S_2$ . This is






FIGURE 6-25. PROBABILITY VERSUS ERERGY FOR F. AND F.

10]

attributable to the relatively higher nucleor of experimental points for

 $r \leq 0.2$ .

#### CHAPTER 7

# NUMERICAL RESULTS BASED ON THE V ESTIMATE

#### 7.1 Introduction

In Chapter 4, an estimate,  $\bar{\psi}$ , to the probability term of the performance index was developed, while in Chapter 5, an algorithm utilizing the  $\bar{\psi}$  estimate for the solution of the basic optimization problem was presented. In the present chapter, numerical results from the application of the analysis in Chapters 4 and 5 to the sample problem stated in Chapter 6 are given.

The accuracy of the  $\bar{\mathbf{v}}$  estimate is investigated by comparison of the  $\bar{\mathbf{v}}$  estimate of the performance index probability term for controls in  $\mathcal{F}_1$ and  $\mathcal{F}_2$  (the subclasses of controls corresponding to problems Pl and P2 respectively, as discussed in Chapter 6) with the results obtained in Chapter 6 (via observation of a digital simulation of the system).

The conjugate gradient algorithm presented in Chapter 5 is applied to the sample problem stated in Chapter 6, using two different controls as starting points.

The first starting control is the control in  $\frac{\pi}{1}$  corresponding to T = 1.0 (see Chapter 6). The reason for choosing this starting point is that Figure 6-14 suggests that reasonably steep gradients appear here.

The second starting control is the control in  $\$_2$  corresponding to  $K_u = 10^{-4}$ . The reason for choosing this starting point is that this

represents the best control found in Chapter 6. Thus any further improvement demonstrates the usefulness of the optimization algorithm of Chapter 5.

Some comments are made on the convergence of the conjugate gradient algorithm in light of the numerical results.

Discussion of the computational aspects of the work described in this chapter is contained in Appendix H.

# 7.2 Accuracy of the # Estimate

7.2.1 Control-independent Term

The  $\bar{\psi}$  estimate, whose accuracy is to be checked, is given by equation (4-114). An examination of equations (4-115), (4-116), and (4-117) shows that  $\psi_0$  does not depend on the control. Thus it is necessary to compute this term only once. (This was noted in Chapter 5, and  $\psi_0$  was dropped from the performance index.) The computation of  $\psi_0(0, \bar{x}, T)$ , where  $\bar{x}$  and T are the initial state and final time for the sample problem stated in Chapter 6, was carried out by the FORTRAN program shown in Table H-2. The results of this computation are shown in Figure 7-1. In this Figure N<sub>M</sub> is the number of terms in the Monte Carlo estimation of the integral appearing in equation (4-115). The value of  $\psi_0$  is taken to be 0.02 in the remainder of this chapter. All subsequent  $\bar{\psi}$ estimates of the probability term include this number.

7.2.2 ¥ For Controls in F<sub>1</sub>

As stated in section 6.2, the class,  $\mathcal{F}_1$ , of controls considered in suboptimal problem Pl is parameterized by  $T_c$ . Controls were computed for a range of  $T_c$ , and the  $\bar{v}$  estimates corresponding to them were computed. Corresponding probability estimates were made in Chapter 6 by



observation of a digital simulation of the system. The results of these observations are plotted in Figure 6-13. A comparison of these results with the  $\tilde{*}$  estimates is shown in Figure 7-2. The solid line is the same curve which appears in Figure 6-13. Six terms were used in the Monte Carlo estimate of the integrals appearing in  $*_1$ .

An examination of Figure 7-2 indicates that the error in the  $\bar{\mathbf{v}}$ estimate of probability increases with probability. This is in accordance with the error bound given by equation (4-69). The term  $\nabla(\bar{\mathbf{v}}, \underline{\mathbf{r}})$  (see equations (A-162) and (A-150) through (A-153)) contains terms with factors of  $\bar{\mathbf{R}}$  to various negative powers.  $\underline{\mathbf{R}}$  (see equation (A-56)) is a lower bound on  $\mathbb{E}[\|\tilde{\mathbf{x}}\|_{a-1}]$  over the time interval [0,T]. Thus the error in the probability estimate corresponding to controls which bring  $\|\tilde{\mathbf{x}}\|_{a-1}$  close to zero tends to be large. These controls also tend to yield high probability of hitting the target manifold. Thus an increase in probability estimate error as probability increases might be expected.

7.2.3 ¥ for Controls in F2

Following the same procedure as for  $\mathcal{F}_1$  controls, results were obtained for  $\mathcal{F}_2$  controls, which are parameterized by  $K_u$  (see section 6.4). The results are shown in Figure 7-3. The increase in the error of the estimate of probability as probability increases appears even more clearly here than it did in Figure 7-2. An additional feature which shows up in Figure 7-3 is that the slope of the vestimate of probability versus  $K_u$  is incorrect for small  $K_u$ . This suggests the possibility that the error in the estimate of the probability term could cause the conjugate gradient algorithm to search in the wrong direction.





 $\{s_{0}, s_{0} \in \mathbb{Z}^{2} \mid \|\tilde{x}(t)\|_{s} = 1 \leq 0.2\}$ 

## 7.3 Optimization Results

7.3.1 Starting Point in 37

Several iterations of the algorithm shown in Figure 5-1 were carried out for the sample problem stated in Chapter 6, using the control in  $\mathcal{F}_1$ corresponding to  $T_c = 1.0$  as a starting point. The results are shown in Figure 7-4. The solid lines in this figure connect the indices corresponding to the controls existing at successive passes through block F of Figure 5-1. The dotted lines connect the indices corresponding to the controls existing at successive passes through block B of Figure 5-2. (The dotted lines correspond to the curve shown in Figure 5-3).

The probability term for the control corresponding to the final point of Figure 7-4 was computed from observations on a digital simulation of the system as described in Chapter 6. The results are shown in Figure 7-5. Using these results the final performance index is

I = 0.24 (7-1)

The apparent error in the computation of the minimum performance index over each iteration is attributable to error in the Monte Carlo estimate of integrals. This also accounts for the "jump" at the third iteration. Each iteration begins by recalculating the performance index corresponding to the control generated by the preceeding index. Except at the third iteration, the two computations were in agreement to two significant figures.

The control corresponding to the final point in Figure 7-4 is shown in Figure 7-6. The  $||\mathbf{x}(t)||_{a^{-1}}$  trajectory corresponding to this control and no random disturbance (that is with n = 0) is shown in Figure 7-7.



Performance Index











7.3.2 Starting Point in F2

Two iterations of the algorithm shown in Figure 5-1 were carried out for the sample problem stated in Chapter 6, using the control in  $\$_2$ corresponding to  $K_u = 10^{-4}$  (the optimum control for P2). The results are shown in Figure 7-8. (The lines in Figure 7-8 have the same significance as those in Figure 7-4).

The probability term for the control corresponding to the final iteration was computed from observations on a digital simulation of the system as described in Chapter 6. The results are shown in Figure 7-9. Using these results the final performance index is

$$I = -0.08$$
 (7-2)

#### 7.4 Comments on Convergence

The convergence of the conjugate gradient algorithm appears to have been affected by the following factors:

1. local minima;

2. Monte Carlo error;

3. error in the  $\overline{V}$  estimate.

The first two factors were anticipated in section 5.4. The shapes of the curves in Figures 7-4 and 7-8 suggest that local minima were being approached. In both Figures the effect of Monte Carlo error on the minimization over one iteration was apparent. In Figure 7-8 this appears to have been rather critical.

The third factor, error in the  $\bar{v}$  estimate, was probably important in the optimization shown in Figure 7-8. Not only was the error in  $\bar{v}$ large in this case (see Figure 7-3), but it also caused the shape of the  $\bar{v}$  versus K<sub>u</sub> curve to be significantly distorted. This suggests the





FIGURE 7-9. OBSERVED PROBABILITY TERM FOR FINAL POINT OF FIGURE 7-8

possibility that the error in  $\sqrt[4]$  caused the algorithm to search in a significantly incorrect direction.

#### CHAPTER 8

## SUMMARY AND CONCLUSIONS

#### 8.1 Summary

A stochastic optimal control problem whose novel feature is the probability term in the performance index was formulated. The mathematical foundation on which the problem rests was reviewed. Two methods of attack on the problem were investigated:

- 1. A closed form estimate of the probability term was obtained by constructing an approximate solution to the diffusion equation. Pontryagin's maximum principle was applied to yield a two-point boundary value problem, and the conjugate gradient algorithm was applied for computation.
- 2. A suboptimal solution was obtained by formulating an appealing single parameter subclass of controls. The probability term was then found by digital simulation, and the class of controls was searched over its parameter for the optimal solution.

A sample problem was formulated and numerical results were obtained by both methods.

8.2 Conclusions

8.2.1 Suboptimal Solution

One of the most appealing features of the suboptimal approach is that it allows the user to exercise ingenuity in the selection of the subclass of controls. In Chapter 6 it was seen that the application of judgement to the results from one class of controls lead to the formulation of a better class. An obvious disadvantage of the method is that it offers no information as to the optimum solution.

It was observed in section 6.5 that the accuracy of the estimate of the probability term increases with probability. Thus the method is most effective if the optimal performance index has a relatively high probability term.

8.2.2 Conjugate Gradient Method

In contrast to the suboptimal method, this method is rather mechanical and does not allow much room for ingenuity. It does offer some information about the optimum solution, subject to the following comments: 1. The accuracy of the estimate of the probability term depends on a number of things, including the problem parameters, the control, and the Monte Carlo estimate of the integrals.

2. The conjugate gradient algorithm may converge to local minima.

It was observed in section 7.2.2 that the accuracy of the estimate of the probability term decreases with increasing probability. Thus, in contrast to the suboptimal method, this method is most effective if the optimal performance index has a relatively low probability term.

8.2.3 General Comments

The efficient use of computation time in both the above methods depends on the tradeoff of the number of Monte Carlo samples against the size of the time increment. The work done in Chapter 6 employed a time increment of .001. For this time increment, thirty six trials (points in Figures 6-5 through 6-9) required approximately twenty minutes of IBM 7094 time. In the work done in Chapter 7, a time increment of .01 was used. This was apparently justified, since the  $Q_z$  matrix (see equation (5-39)) computed with a time increment of .01 agreed with the  $Q_z$  matrix computed with a time increment of .001 to at least four significant figures in each element. If this had been recognized during the work of Chapter 6, computing time could have been used much more efficiently.

A general observation on the relationship between the two methods is that they tend to complement each other. While one works best for low probabilities, the other works best for high probabilities. The suboptimal method provides a variety of appealing starting points for the conjugate gradient algorithm. This alleviates the problem of local minima. The conjugate gradient algorithm provides a possibility for improving on the best control in a subclass which has been searched by the suboptimal method. Thus the two methods should be viewed as complementary rather than competitive.

#### 8.3 Avenues for Future Investigation

#### 8.3.1 Linear Systems

The suboptimal method could be continued by seeking new subclasses. For example, a time varying factor might be included in the integrand of equation (6-41). An examination of the distribution of target manifold intercept times should suggest the general form of such a factor.

The effectiveness of the conjugate gradient method as a function of the number of terms in the Monte Carlo estimate of integrals should be investigated further, both theoretically and computationally.

The effect of system characteristics (e.g. pole and zero locations)

on the problem should be investigated.

8.3.2 Non-linear Systems

Within the limitations discussed in section 2.4, the suboptimal method applies as easily to non-linear systems as to linear systems, provided that suitable subclasses of controls can be generated. The closed form probability estimate used in the conjugate gradient method, on the other hand, would have to be completely reworked. The formulation in section 3.4 makes immediate use of the linearity of the system. This could probably be avoided, since the system state is still a diffusion process for a broad class of non-linear systems (as mentioned in section 2.4). The construction of an approximate solution for such an equation is carried out in form by Mishchenko [4], [11]. This solution makes use of the transition density of the system state, as did the case considered here. A method for computing the transition density in the non-linear case would have to be found.

8.3.3 Closed Loop Solution

The only subject treated here has been the open loop solution of the problem. The closed loop solution should also be investigated. The application of the dynamic programming approach to the closed loop problem gives rise to some interesting questions. This comes about as follows. Let

$$J(\bar{x}, \tau) = \min_{u} \left[ \int_{\tau}^{T} \|u(t)\|_{U}^{2} dt - \psi(\tau, \bar{x}, T) \right]$$
(8-1)

with

where

$$dx_{t} = (Ax + Bu)dt + Cdn_{t}, x(\tau) = \overline{x}$$

$$u, U, \forall, x, A, B, C, and n are defined as in equations$$

$$(3-1), (3-2), and (4-1).$$

$$(8-2)$$

Thus, the basic problem has been imbedded in a larger problem by making variable the initial time and state. Formal application of the principal of optimality leads to

$$0 = \underset{u}{\operatorname{Min}} \left\{ \begin{bmatrix} \nabla_{\underline{J}} \\ \mathbf{x} \end{bmatrix}^{T} \begin{bmatrix} (\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}) d\mathbf{\tau} + \mathbf{C} d\mathbf{n}_{T} \end{bmatrix} \right\}$$
$$+ \frac{\partial J}{\partial \tau} d\tau + \left\| \mathbf{u}(\tau) \right\|_{U}^{2} d\tau + \frac{\partial \Psi}{\partial \tau} d\tau$$
$$+ \begin{bmatrix} \nabla_{\underline{\tau}} \\ \mathbf{x} \end{bmatrix}^{T} \begin{bmatrix} (\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}) d\mathbf{\tau} + \mathbf{C} d\mathbf{n}_{T} \end{bmatrix}$$
(8-3)

Two difficulties are apparent:

1. The presence of  $dn_{\tau}$  in (8-3) raises the question of what is really meant by the "optimal closed-loop solution." The meaning must be the best solution conditioned on  $x(\tau) = \bar{x}$ , since " $dn_{\tau}$ " cannot be measured. The question of how to carry out the minimization in (8-3) still remains. A possibility is to use the best estimate of " $dn_{\tau}$ " which is zero, and proceed from there. Obviously some careful definitions and theoretical work are required.

2. Supposing that the first difficulty can be surmounted, the minimization in (8-3) is far from trivial. The terms  $\nabla_{\overline{X}} \neq$  and  $\frac{\partial \psi}{\partial \tau}$  are functionals on u(t), t $\in [\tau,T]$ . How, then is the minimization to be interpreted? Is u( $\tau$ ) alone involved, or is u(t), t $\in [\tau,T]$  to be considered?

8.3.4 Performance Index and Constraints

An interesting variation on the problem would be to maximize the probability term subject to bounded control. A second variety of constraint would be bounded state. A third variety would be bounded energy. All present interesting avenues for future investigation.

## LIST OF REFERENCES

- 1. Doob, J. L., Stochastic Processes, John Wiley and Sons, Inc., New York, 1953.
- Wonham, W. M., "Lecture Notes on Stochastic Control," Center for Dynamical Systems, Division of Applied Mathematics, Brown University, February, 1967.
- 3. Ito, K., "On Stochastic Differential Equations," Nem. Am. Math. Soc. 4 (1951).
- 4. Pontryagin, L. S., et al., The Mathematical Theory of Ostimal Procosnes, Interscience Publishers, New York, 1962.
- 5. Zadeh, L. A. and Desoer, C. A., Linear System Theory, McGrau-Hill Noch Co., Inc., New York, 1963.
- Mong, E., and Zakai, M., "On the Relation Detween Ordinary and Stochastic Differential Equations," Report No. 64-26, Electronics Research Laboratory, University of California, Berkeley, California, 1954.
- 7. Dwight, H. B., Tables of Integrals and Other Mathematical Date, Fourth Edition, The Macmillan Co., New York, 1961.
- 8. Melmos, F. R.: Finite Dimensional Vector Spaces, Second Edition, D. Van Mostrand Co., Inc., New York, 1998.
- 9. Friedman, A., Partial Differential Musicions of the Tarabolic Type, Prentice-Hall, Inc., Englewood Chiffs, N. J., 1964.
- 10. Nadley, G., Linear Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1961.
- 11. Michchenko, E. F., "On a Certain Problem for Parabolic Differential Equations Connected with Optimal Pursuit," J. SIAM Control, Vol. 3, Number 1, 1965.
- 12. Loeve, M., Frobability Incory, Second Edition, D. Van Nostrand Co., Inc., New York, 1960.
- 13. Lasdon, L. S., Mitter, S. K., and Moren, A. D., "The Conjugate Gradient Mathod for Optimal Control Problems," 1.E.E.E. Transactions on Automatic Control, Vol. AC-12, Humber 2, April 1967.

- 14. Kushner, H.J., "Near Optimal Control in the Presence of Small Stochastic Perturbations," RIAS Technical Report 63-22, October, 1963.
- 15. Kushner, H.J., "On the Stochastic Maximum Principle: Fixed Time Control," RIAS Technical Report 63-24, December, 1963.
- Kushner, H.J., and Schweppe, F.C., "A Maximum Principle for Stochastic Control Systems," J. Math. Analysis and Applications, Volume 8, No. 2, April, 1964.
- 17. Kushner, H.J., "On Stochastic Extremum Problems; Part 1, Calculus," J. Math. Analysis and Applications, Volume 10, No. 2, April, 1965.
- 18. Kushner, H.J., "On Stochastic Extremum Problems; Part 2, Calculus of Variations," J. Math. Analysis and Applications.
- 19. Kushner, H.J., "Stochastic Stability and the Design of Feedback Controls," Brown University Center for Dynamical Systems, Technical Report 65-5, May, 1965.
- 20. Wonham, W.M., "On Weak Stochastic Stability of Systems Perturbed by Noise," Brown University Center for Dynamical Systems, Technical Report 65-4, March, 1965.
- 21. Kushner, H.J., "On the Theory of Stochastic Stability," Brown University Center for Dynamical Systems, Technical Report 65-1, January, 1965.

### APPENDIX A

# SOME ESTIMATES USEFUL FOR THE APPROXIMATE

### SOLUTION OF THE DIFFUSION EQUATION

The purpose of the appendix is to develop estimates of certain integrals and of certain solutions to the diffusion equation.

Let

$$\omega_{j}(\sigma,\xi,\tau) = \int d\eta_{1} - --d\eta_{m} \frac{g(\sigma,\xi,\tau,\eta)}{\|\tilde{\eta}\|^{j}}, \ j < k, \ \tau > \sigma \qquad (A-1)$$

where 
$$g(\sigma, \xi, \tau, \eta) = \frac{\exp\left\{-\frac{\|\eta - \xi\|^2}{4(\tau - \sigma)}\right\}}{(2\pi)^{m/2} [2(\tau - \sigma)]^{m/2}}$$
 (A-2)

$$\tilde{\eta} = \begin{bmatrix} \eta_{1} \\ \vdots \\ \vdots \\ \eta_{k} \end{bmatrix}, \quad \hat{\eta} = \begin{bmatrix} \eta_{k+1} \\ \vdots \\ \vdots \\ \eta_{m} \end{bmatrix}$$
(A-3)

Two estimates for

$$w_{j}(\sigma,\xi,\tau) \mid \xi \in \partial S$$
 (A-4)

where 
$$\partial S = \{ \boldsymbol{\xi} \mid \| \boldsymbol{\tilde{\xi}} \| = r(\boldsymbol{\xi}) \}$$
 (A-5)

will now be developed.

A rotation of coordinates yields

$$ω_j(\sigma, \xi_1, \dots, \xi_m, \tau) = ω_j(\sigma, ||\hat{\xi}||, 0, \dots, 0, \hat{\xi}, \tau)$$
 (A-6)

so that

$$\omega_{j}(\sigma,\tau,\tau) = \frac{1}{(2\pi)^{n/2} r^{2}(\tau-\sigma)^{n/2}} \int \frac{d\hat{\eta}}{||\hat{\eta}|| \ge 0} \exp\left\{-\frac{||\hat{\eta}-\hat{\tau}||^{2}}{||\hat{\eta}-\hat{\tau}||^{2}}\right\}$$
$$\int \frac{d\hat{\eta}}{d\hat{\eta}} \frac{\exp\left\{-\frac{(\eta_{1}-||\tilde{\epsilon}||)^{2}+\cdots+\eta_{k}^{2}}{4(\tau-\sigma)}\right\}}{||\tilde{\eta}||^{2}} \quad (A-7)$$

Let the second integral of (A-7) be

$$(z_{II})^{k/2} [z(\tau - \sigma)]^{k/2} I_{j}$$
 (A-8)

and let

} P

ł

$$n_i = ||\tilde{z}|| x_i, i = 1, ..., k$$
 (A-9)

$$\tau - \sigma = \left| \left| \frac{\sigma}{5} \right| \right|^2 t \qquad (A-10)$$

Then

$$I_{j} = \frac{V(t)}{||\xi||^{j}}$$
(A-11)  
(A-11)

where

$$V(t) = \frac{1}{(l_{\pi}t)^{k/2}} \int \frac{dx_1 - dx_k}{||x|| \ge 0} \frac{\exp\left\{-\frac{1}{(l_{\pi}t)^{k/2}} + \frac{1}{(l_{\pi}t)^{k/2}}\right\}}{||x|| \ge 0}$$
(A-12)

then

$$2\sqrt{t} y_{i} = x_{i}$$
,  $i = 1, ---, k$  (A-13)

$$V(t) = \frac{1}{(2\sqrt{t})^{\frac{1}{3}} \pi^{\frac{k}{2}}} \int dy_1 - dy_k - \frac{\exp\left\{-r(y_1 - \frac{1}{2\sqrt{t}})^2 + \cdots + y_k^2\right\}}{||y||^{\frac{1}{3}}}$$

$$||y|| \ge 0 \qquad (A-1)^{\frac{1}{3}}$$

From (A-12),

$$\lim_{t \to 0} V(t) = 1$$
 (A-15)

Let  

$$I_{v}(t) = \frac{1}{\pi} \frac{1}{2} \int dy_{1} - dy_{k} \frac{\exp\left\{-\left[\left(y_{1} - \frac{1}{2}\right)^{2} + \dots + y_{k}^{2}\right]\right\}}{\left|\left|y\right|\right|^{2}}$$
(A-16)

then from (A-14) and (A-15),

$$\lim_{t \to 0} I_{v}(t) = 0 \qquad (\Lambda-17)$$

From (A-16),

$$\lim_{t \to \infty} I_{v}(t) = \frac{1}{\frac{1}{K/2}} \int dy_{1} - -dy_{k} \frac{\exp\left\{-||y||^{2}\right\}}{||y||^{2}} < \infty \qquad (A-18)$$

Since  $I_v(t)$  is continuous in t on  $t \in (0, \infty)$ , then

$$K_{j} = \sup_{v} I_{v}(t)$$

$$t_{e}(0, \infty)$$
(A-19)

exists. Then from (A-14) and (A-16)  

$$V(t) \leq \frac{K_j}{(2\sqrt{t})^j}$$
(A-20)

Then from (A-14), (A-15), and (A-16)  

$$\overline{V} = Max V(t)$$
 (A-21)  
 $t > 0$ 

exists.

ł

$$w_{j}(\sigma,\xi,\tau) \leq \frac{\overline{V}}{||\xi||^{j}} \qquad (\Lambda-22)$$

From (A-7), (A-8), (A-11), (A-20), and (A-10),

$$\omega_{j}(\sigma,\xi,\tau) \leq \frac{\kappa_{j}}{2^{j}(\tau-\sigma)^{j/2}}$$
(A-23)

From (A-22) and (A-5),

$$| \psi_{\hat{\beta}}(\sigma, \xi, \tau) | \leq \frac{\overline{\nabla}}{r^{\hat{\beta}}(\hat{\xi})}$$

$$| \xi \in \mathfrak{d} S$$

$$(A-2i_{\ell})$$

From (A-23)

$$\omega_{j}(\sigma,\xi,\tau) \leq \frac{K_{j}}{z^{j} K_{\xi}^{j/2} r^{j/2}(\xi)} \text{ for } \tau - \sigma \geq K_{\xi} r(\xi) \qquad (A-25)$$

where K<sub>t</sub> is any positive constant.

Next, let 
$$\overline{\omega}_{j}$$
 be defined as  
 $\overline{\omega}_{j}(\sigma, \overline{z}, \tau) = \begin{bmatrix} c & \eta & \frac{||\hat{\eta}|| \underline{v}(\sigma, \overline{z}, \tau, \eta)}{||\tilde{\eta}|| \ge 0} & ||\tilde{\eta}||^{j}$ 
(A-26)

Following the same procedure used in deriving (A-7) yields

$$\overline{w}_{j}(\sigma, \varepsilon, \tau) = \frac{I_{j}}{(2\pi)^{\frac{m-k}{2}} \Gamma^{2}(\tau - \sigma)^{\frac{m-k}{2}} \int d\hat{\eta} ||\hat{\eta}|| \exp\left\{-\frac{\left|\left|\hat{\eta}-\hat{s}\right|\right|^{2}}{4(\tau - \sigma)}\right\}$$
(A-27)

Let

$$\frac{1}{\sigma_{1}(\sigma,\underline{\xi},\tau)} = \frac{1}{(2\pi)^{1/2} \left[2(\tau-\sigma)\right]^{\frac{1}{2}}} \int d\eta ||\underline{\eta}|| \exp\left\{-\frac{||\underline{\eta}-\underline{\xi}||^{2}}{\underline{\xi}(\tau-\sigma)}\right\}$$

$$(A-28)$$

where  $\underline{5}$  and  $\underline{7}$  are i-dimensional vectors. Then: from (A-27) and (A-28),

$$\mathfrak{M}_{j}(\sigma,\xi,\tau) = \mathbf{I}_{j} \overline{\mathbb{T}}_{n-k}(\sigma,\xi,\tau) \qquad (A-29)$$

The estimate of  $\overline{w}_i$  proceeds as follows. Let

 $\underline{n} = \underline{r} + \underline{\xi} \tag{A-30}$ 

and

$$\rho = \left| \left| \frac{\zeta}{\zeta} \right| \right| \tag{A-31}$$

Shon  $\overline{\overline{w}}_1$  may be written

$$\widetilde{w}_{1}(\sigma, \xi, \tau) = \frac{K_{01}}{(2\pi)^{1/2} [2(\tau - \sigma)]^{1/2}} \int_{0}^{\infty} d\rho^{1-1} ||\xi + \xi|| \exp\left\{-\frac{2}{\psi(\tau - \sigma)}\right\}$$
(A-32)
(A-32)
where  $K_{01} = \begin{cases} \frac{i+1}{2} \frac{i-1}{\pi^{2}} i \frac{1}{1} \frac{1}{1} \frac{1}{2k-1} i \frac{1}{2k-1} , i \text{ odd} \\ \frac{i\pi^{1/2}}{(1/2)!} i \frac{1}{k-1} & i \text{ even} \end{cases}$ 
(A-33)

From (A-32)

$$\frac{-1}{\sigma_{1}}(\sigma, 1, \tau) \leq \frac{K_{\rho_{1}}}{(2\pi)^{1/2} [2(\tau-\sigma)]^{1/2}} \int_{0}^{\infty} \dot{\alpha} \rho [\rho^{1} + \rho^{1-1}] [\xi] [] \exp\left\{-\frac{\rho}{V(\tau-\sigma)}\right\}$$
(A-34)

Application of formulas (860.15) and (860.16) of [7] to (A-34) yields  $= \underbrace{\sigma_i(\sigma, \xi, \tau) \leq k_{\rho i} \sqrt{\tau - \sigma} + \overline{k}_{\rho_i} || \xi || }_{\rho_i}$ (A-35)

where

$$k_{pi} = \left\{ \begin{array}{c} \frac{(\frac{i-1}{2}) \mid K_{oi}}{2\pi^{i/2}} &, i \text{ odd} \\ \frac{1.3.5 \dots (i-1) K_{oi}}{2^{i/2} \pi^{2}} &, i \text{ even} \end{array} \right.$$
(A-36)

$$\overline{k}_{01} = \begin{cases} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (i-2) K}{\frac{i+1}{2}}, i \text{ cad} \\ (2\pi) & \vdots \\ \frac{(i-2)}{2\pi} & \frac{k}{2} \\ \frac{(i-2)}{2\pi} & \frac{k}{2\pi} \\ \frac{(i-2)}{2\pi} & i \text{ even} \end{cases}$$
(A-37)

then from (A-29), (A-11), (A-21), and (A-35),

$$\overline{w}_{j}(\sigma,\xi,\tau) \leq \frac{\overline{v}}{||\xi||^{j}} \left[ k_{o,m-k} \sqrt{t \cdot \sigma + k_{p,m-k}} ||\xi|| \right]$$
(A-38)

end from (A-29), (A-11), (A-20), (A-10), and (A-35),

$$\overline{m}_{j}(\sigma, \varepsilon, \tau) \leq \frac{K}{2^{j}(\tau - \sigma)^{j/2}} \left[ k_{0, m-k} \sqrt{\tau - \sigma} + \overline{k}_{p, m-k} || \hat{\varepsilon} || \right]$$
 (A-39)

At this point a theorem bounding the solution of the diffusion equation will be proved.

Theorem Let  $u(\sigma, \tau, \tau)$  be the solution of the equation.

$$\frac{2u}{2\sigma} = -\sum_{i,j=1}^{m} a_{ij} \frac{2u}{2\varepsilon_i \varepsilon_j} - \sum_{i=1}^{m} [A \varepsilon + U(\sigma)]_i \frac{2u}{2\varepsilon_i} = L[u] \quad (A-40)$$

with

$$u(\tau,\xi,\tau)=0 \qquad (A-41)$$

$$u(\sigma,\xi,\tau) = v(\sigma,\tau) \qquad (A-h2)$$

$$F \in S$$

[a<sub>ij</sub>] is a positive semidefinite real symmetric matrix with rank k and

vacue

$$e_{ij} = 0 \text{ for } i > k \text{ or } j > k$$
 (A-43)

$$|| \cup (\sigma) || \leq \overline{\cup} \text{for all } \sigma \tag{A-44}$$

U is a positive constant

$$\lambda s = \left\{ \xi \mid || \tilde{z} \mid |_{\tilde{a}-1} = r(\hat{s}) \right\}$$
 (A-45)

$$\begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} \widetilde{a} & 0 \\ 0 & 0 \end{bmatrix}$$
(A-46)

 $\xi$  is an m dimensional vector  $\xi$  is a k dimensional vector  $\hat{\xi}$  is an m-k dimensional vector

$$\mathbf{E} = \begin{bmatrix} \mathbf{e} \\ \mathbf{c} \\ \mathbf{s} \end{bmatrix}$$
 (A-48)

$$\overline{r} \ge r(\overline{\xi}) \ge \underline{r} > 0 \text{ for all } \overline{\xi}$$
(A-46)

r and r are constants

$$\begin{split} 1| \nabla_{\hat{\xi}} r(\hat{k}) & || \leq K_r r^{\beta} \\ \beta \text{ is some constant such that} \\ \beta > + 1 \end{split} \tag{A-h9}$$

 $K_r$  is a constant

$$0 < v(\sigma, \tau) < \begin{cases} c \text{ for } \tau - \sigma \leq K_t r(\hat{\epsilon}) \\ \delta(r) \text{ for } \tau - \sigma > K_t r(\hat{\epsilon}) \end{cases}$$
(A-50)

C is a constant

Kt is a constant satislying

$$K_{t} \geq \frac{\overline{\lambda}_{0}(\tau, c)}{r}$$
 (A-51)

 $\overline{\lambda}_{\zeta_{1}(\tau,\sigma)}$  is the maximum eigenvalue of  $Q(\tau,\sigma)$ .

$$\mathcal{Q}(\tau,\sigma) = 2 \int_{\sigma}^{\tau} d\alpha \left\{ \exp \left[ \Lambda(\tau-\alpha) \right] \right\} \left[ a_{ij} \right] \left\{ \exp \left[ \Lambda(\tau-\alpha) \right] \right\}$$
 (A-52)

$$\lim_{x \to -\infty} \delta(x) = 0 \tag{A-53}$$

Then

$$0 < u(\sigma, \xi, \tau) < \Lambda(\xi, \underline{r}) + \delta [r(\hat{\xi})] \chi(\sigma, \xi, \tau) \text{ for } \xi \in S_{J}(\sigma, \underline{R}, \tau) \quad (\Lambda - 5^{4})$$
  
where  $\Lambda$  is defined by (A-159)

$$\chi(\sigma,\xi,\tau) \text{ satisfies (A-40), (A-41), and}$$

$$\chi(\sigma,\xi,\tau) = 1$$

$$\xi \in \mathbb{A} S$$
(A-55)

$$S_{U}(\sigma,\underline{R},\tau) = \left\{ \xi \mid \text{Min} \quad || \widetilde{\mu}(s) \mid | \ge \underline{R} \right\}$$

$$S \in [\sigma,\tau]$$
(A-56)

$$u(s) = \left\{ \exp \left[A(s-\sigma)\right] \right\} + \int_{\sigma}^{s} d\alpha \left\{ \exp \left[A(s-\alpha)\right] \right\} U(\alpha) \qquad (A-56a)$$

 $\hat{\mu}$  is an m-k dimensional vector

$$\mu = \begin{bmatrix} \tilde{\mu} \\ \hat{u} \end{bmatrix}$$
 (A-57)

Proof Let

$$\overline{w}(\sigma,\tau) = \overline{w}_{1}(\sigma,\tau) + \overline{w}_{2}(\sigma,\tau) \qquad (A-58)$$

where

$$\tilde{w}_{1}(\sigma,\tau) = 0 < \tilde{C}, \text{ for } \tau - \sigma \leq K_{t} r(\hat{\xi})$$
(A-59)

where C is some positive constant greater than C.

$$\overline{v}_{1}(\sigma,\tau) = 0, \text{ for } \tau - \sigma > K_{t} r(\hat{\xi})$$
(A-60)

$$\overline{W}_{2}(\sigma,\tau) = 0, \text{ for } \tau - \sigma \leq K_{t} r(\hat{r})$$
(A-61)

$$\overline{w}_{2}(\sigma,\tau) = \delta [r(\hat{\xi})], \text{ for } \tau - \sigma > K_{t} r(\hat{\xi})$$
(A-62)

Let  $\overline{u}(\sigma,\xi,\tau)$ ,  $\overline{u}_1(\sigma,\tau,\tau)$ , and  $\overline{u}_2(\sigma,\tau,\tau)$  be the solutions of (A-40) which have the value zero for  $\sigma = \tau$ , and the value  $\overline{w}$ ,  $\overline{w}_1$ ,  $\overline{w}_2$ , respectively for  $\xi \in \Sigma$  S. By Theorem C - 2,

$$0 \leq u(\sigma, \xi, \tau) < \overline{u}(\sigma, \xi, \tau)$$
 (A-63)

Clearly,

$$\overline{u}(\sigma, \tau, \tau) = \overline{u}_{1}(\sigma, \tau, \tau) + \overline{u}_{2}(\sigma, \tau, \tau)$$
 (A-64)

Again by Theorem C-2

$$0 \leq \overline{u}_{2}(\sigma, \xi, \tau) \leq \delta \left[r(\hat{\xi})\right] \chi(\sigma, \tau, \tau)$$
(A-65)

Let

$$\mathbf{v}(\varepsilon) = \frac{\overline{c} \ \mathbf{r}^{k-1}(\widehat{\varepsilon})}{||\varepsilon||_{\widetilde{u}}^{k-1}}$$
(A-66)

Let v be defined as

$$\mathbf{v}(\sigma, \varepsilon, \tau) = \mathbf{v}(\varepsilon) + \int_{\sigma}^{\tau} \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} \mathbf{v}} \, \mathbf{u}(\sigma, \varepsilon, \varepsilon, \eta) \, \mathbf{L}[\mathbf{v}(\eta)] \qquad (\Lambda - 6\gamma)$$

$$||\tilde{\eta}||_{\varepsilon} \sum_{\varepsilon \in \Gamma} \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} \mathbf{v}} \, \mathbf{v}(\hat{\eta})$$

q is the fundamental solution to (A-40) outside > S

then  $v(\sigma,\xi,\tau)$  is a solution to (A-40) with

$$\mathbf{v}(\tau, \xi, \tau) = \frac{\overline{c} \mathbf{r}^{\mathbf{k}-1} \binom{\mathbf{A}}{\xi}}{||\xi| \frac{|\xi-1|}{\alpha}}$$
(A-68)  
$$\mathbf{v}(\sigma, \xi, \tau) = \overline{c}$$
(A-69)

phen by Theorem C-1.

1

İ

$$\mathbf{v}(\sigma,\varepsilon,\tau) > \overline{u_1}(\sigma,\varepsilon,\tau) \tag{A-70}$$

The next step is to estimate  $L[\gamma(z)]$ . Differentiating (A-66) yields

$$\frac{2v}{2\xi_{1}} = -\frac{(k-1)\overline{c} r^{k-1}(\overline{c})}{||\xi||_{\varepsilon}^{k+1}} \sum_{\nu=1}^{k} \overline{z}_{\nu} + \frac{1}{i\nu} \xi_{\nu}, i=1,...,k \quad (A-71)$$

$$\frac{2v}{2\xi_{1}} = \frac{(k-1)\overline{c} r^{k-2}(\overline{c})}{||\xi||_{\varepsilon}^{k-1}} \sum_{\nu=1}^{2r} \frac{2r}{2\xi_{1}}, i=k+1,...,m \quad (A-72)$$

$$\frac{2v}{2\xi_{1}} = \frac{(k-1)\overline{c} r^{k-2}(\overline{c})}{||\xi||_{\varepsilon}^{k-1}} \sum_{\nu=1}^{2r} \frac{2r}{2\xi_{1}} \sum_{\nu=1}^{k-1} \overline{z}_{\nu} + \frac{2r}{2\xi_{1}} \sum_{\nu=1}^{$$

$$\frac{(k-1) \overline{c} r^{k-1} (\hat{s})}{||\tilde{s}||_{i}^{k+1}} \tilde{a}_{ij}^{-1}, i, j, = 1, 2, \dots, k$$
(A-73)

Now, because of symmetry,

$$\begin{array}{cccc} k & k & k & k & k & k \\ \sum & \sum & a_{ij} & a_{ij}^{-1} & = & \sum & \sum & \tilde{a}_{ij} & \tilde{a}_{ji}^{-1} & = & \sum & I_{ii}^{k} & (\Lambda - 74) \\ i = 1 & j = 1 & i = 1 & j = 1 & i = 1 \end{array}$$

where I is the identity matrix of rank k. Then

$$\sum_{i=1}^{k} \sum_{j=1}^{k} \tilde{a}_{ij} \tilde{a}_{ij}^{4} = k$$
 (A-75)
Mezt,

$$\sum_{i=1}^{k} \sum_{j=1}^{k} \widetilde{z}_{ij} \sum_{\nu=1}^{k} \widetilde{z}_{i\nu} \xi_{\nu} \sum_{\beta=1}^{k} \widetilde{z}_{j\beta} \xi_{\beta} = \sum_{j=1}^{k} \sum_{\nu=1}^{k} I_{j\nu}^{k} \xi_{\nu}$$

$$\cdot \sum_{\beta=1}^{k} \tilde{a}_{j\beta}^{-1} \tilde{s}_{\beta} = \sum_{j=1}^{k} s_{j} (\tilde{a}^{-1} \tilde{s})_{j} = ||\tilde{s}||_{\tilde{a}-1}^{2}$$
(A-76)

Combining (A-73), (A-75), and (A-76)

$$\sum_{i=1}^{k} \sum_{j=1}^{k} \tilde{a}_{ij} \frac{\lambda^{2} \sqrt{2}}{\partial S_{i} \partial S_{j}} = \frac{(k-1) \overline{C} r^{k-1}(\hat{\varsigma})}{||\tilde{\varsigma}||_{\tilde{a}=1}^{k+1}}$$
(A-77)  
i-1 j=1  
Next, consider  $\sum_{i=1}^{m} [A\hat{\varsigma}+BU]_{i} \frac{\partial \gamma}{\partial S_{i}}$ .

First,

$$\sum_{i=1}^{k} (A_{\vec{s}})_{i} \sum_{\nu=1}^{k} \tilde{\epsilon}_{i\nu}^{-1} \tilde{\epsilon}_{\nu} \leq || \tilde{A} \tilde{\vec{s}} + \hat{A} \hat{\epsilon} || || \tilde{a}^{-1} \tilde{\epsilon} || \qquad (A-78)$$

where



(A-79)

(A-80)

136

Then first (2-29) and (1-18)

$$\sum_{i=1}^{k} (A\xi)_{i} \sum_{i=1}^{k} \varepsilon_{i\nu}^{-1} \xi_{\nu} \leq \frac{||\xi||}{\lambda_{a}^{2}} [k_{K} ||\xi|| + (n-k)\varepsilon_{A}^{2} ||\xi||]$$

$$(A-81)$$

where  $\lambda_{\widetilde{a}}$  is the smalled eigenvalue of  $\widetilde{a}$ 

$$K_{\widetilde{\Lambda}} = Max \qquad || \widetilde{\Lambda} \widetilde{e}_{i} || \qquad (A-82)$$

$$k_{\widetilde{\Lambda}} = Max \qquad || \widetilde{\Lambda} \widetilde{e}_{i} || \qquad (A-83)$$

$$k_{\widetilde{\Lambda}} = Max \qquad || \widetilde{\Lambda} \widetilde{e}_{i} || \qquad (A-83)$$

 $\tilde{e}_i$  is the k dimensional vector with the *i*<sup>th</sup> element equal to one, and all other elements equal to zero.  $\hat{e}_i$  is the m-k dimensional vector with *i*<sup>th</sup> element equal to one, and all other elements equal to zero.

From (B-24),

$$\sum_{i=1}^{k} (A\bar{z})_{i} \sum_{\nu=1}^{k} \tilde{a}_{i\nu}^{-1} \bar{z}_{\nu} \leq \frac{k \bar{x}_{\tilde{A}} \bar{\chi}_{\tilde{a}}}{\lambda_{\tilde{a}}} ||\tilde{z}||_{\hat{a}^{-1}}^{2} + \frac{(m-k)E_{\hat{A}} ||\tilde{z}||_{\tilde{\lambda}}}{\lambda_{\tilde{a}}} ||\tilde{z}||_{\hat{a}^{-1}}} ||\tilde{z}||_{\hat{a}^{-1}} (A-8^{4})$$

Similarly, using the bound on  $|| U(\sigma) ||$  given in  $(A-4^{j_1})$ ,

$$\sum_{i=1}^{k} U_{i}(\sigma) \sum_{\nu=1}^{k} \tilde{a}_{i\nu}^{-1} \xi_{\nu} < \overline{U} \frac{\sqrt{\lambda_{\widetilde{a}}}}{\lambda_{\widetilde{a}}} || \tilde{\xi} ||_{\widetilde{a}^{-1}}$$
(A-85)

Next,

$$\sum_{i=k+1}^{m} (\Lambda s)_{i} \frac{\partial r}{\partial s_{i}} \leq || \overline{\Lambda} \tilde{s} + \underline{\Lambda} \hat{s} || || \nabla \hat{s} r ||$$
(A-86)

where 
$$\overline{A} = \begin{bmatrix} A_{k+1,1} & \dots & A_{k+1,k+1} \\ A_{m,1} & \dots & A_{m,k+1} \\ A_{m,k+1} & \dots & A_{m,k+1,m} \end{bmatrix}$$
 (A-83)  
$$\underline{A} = \begin{bmatrix} A_{k+1,k+1} & \dots & A_{m,k+1,m} \\ A_{m,k+1} & \dots & A_{mm} \end{bmatrix}$$

From (B-30), (B-24), and (B-26),

$$\sum_{i=k+1}^{m} (A_{5})_{i} \frac{\partial r}{\partial s_{i}} \leq \left[ k_{K_{\overline{A}}} \sqrt{\lambda_{\widetilde{a}}} || \tilde{s} ||_{\widetilde{a}}^{2} \right] + (m-k) K_{\underline{A}} || \tilde{s} || \tilde{s} || [K_{r} r^{\beta}(\tilde{s})]$$
(A-89)

where  $\beta$  is given by (A-49)

$$K_{\overline{A}} = Max \qquad || \overline{A} \ \widetilde{e}_{i} || \qquad (A-90)$$
$$1 \le i \le k$$

$$K_{\underline{A}} = \max \qquad || \underline{A} \hat{e}_{i} || \qquad (A-91)$$

$$1 \le i \le m-k$$

Also

$$\sum_{i=k+1}^{m} \left[ U(\sigma) \right]_{i} \quad \frac{\lambda_{r}}{\lambda_{s_{i}}} \leq \overline{U} K_{r} r^{\beta}(\hat{\xi})$$
(A-92)

Combining (A-71), (A-72), (A-84), (A-85), (A-89), and (A-92) yields

$$\sum_{i=1}^{m} \left[ \Lambda \varsigma + \upsilon(\sigma) \right]_{i} \frac{2\gamma}{\partial \varsigma_{i}} \leq \frac{\left[ \overline{\upsilon} + (n-k)K_{A} \right] \left[ \hat{\varsigma} \right] \left[ \frac{1}{2} \frac{\lambda_{\alpha}}{\lambda_{\alpha}} (k-1) \overline{c} r^{K-1}(\hat{\varsigma}) \right]}{\left[ || \overline{\varsigma} \right] \left[ \frac{\kappa}{\alpha} - 1 \right]}$$

$$+ \frac{(k-1) \overline{c} \left\{ \left[ (n-k)K_{A} \right] \left[ \hat{\varsigma} \right] \right] + \overline{\upsilon} \right] K_{r} r^{k-2+\beta}(\hat{\varsigma}) \frac{kK_{A} \overline{\lambda_{\alpha}}}{\lambda_{\alpha}} r^{k-1}(\tilde{\varsigma}) \right\}}{\left[ || \overline{\varsigma} \right] \left[ \frac{\kappa}{\alpha} - 1 \right]}$$

$$+ \frac{\left[ || \overline{\varsigma} \right] \left[ \frac{\kappa}{\alpha} - 1 \right]}{\left[ || \overline{\varsigma} \right] \left[ \frac{\kappa}{\alpha} - 1 \right]}$$

$$+ \frac{k(k-1) K_{T} \overline{\zeta} \sqrt{\lambda_{2}} x^{k-2+\beta}(\zeta) K_{T}}{k-2}$$
 (A-93)

Combining (A-77), (A-93), and (B-24),

$$| L [\gamma(\xi)] | \leq \frac{M_{k+1}}{||\xi||^{k+1}} \frac{r^{k-1}(\xi)}{||\xi||^{k+1}} + \frac{[M_{k} + \overline{M}_{k} ||\xi||] r^{k-1}(\xi)}{||\xi||^{k}} + \frac{M_{k-1}}{r^{k-1}(\xi)} + \frac{[\overline{P}_{k-1} + \overline{P}_{k-1} ||\xi||] r^{k-2+\beta}(\xi)}{||\xi||^{k-2}} + \frac{M_{k-2}r^{k-2+\beta}(\xi)}{||\xi||^{k-2}}$$

$$(A-9^{\frac{1}{2}})$$

where

I.

$$M_{k+1} = (k-1) \overline{0} \overline{\lambda_{a}}^{k+1}$$
 (A-95)

$$M_{k} = \overline{U} \frac{\sqrt{\lambda_{a}}}{\lambda_{a}} (k-1) \overline{C} \frac{k/2}{\lambda_{a}}$$
(A-95)

$$\overline{M}_{k} = (m-k) K_{\hat{A}} (k-1) \overline{C} \frac{\frac{k+1}{\lambda_{\tilde{a}}}}{\lambda_{\tilde{a}}}$$
(A-97)

$$M_{k-1} = (k-1) \overline{C} k K_{\overline{A}} \frac{\overline{\lambda_{\widetilde{E}}}^{k+1}}{\underline{\lambda_{\widetilde{C}}}}$$
(A-98)

$$\overline{E}_{k-1} = (k-1) \overline{C} (m-k) K_{\underline{A}} K_{\underline{r}} \overline{\lambda}_{\underline{a}}^{\underline{k-1}}$$
(A-99)

$$\overline{\overline{M}}_{k-1} = (k-1) \overline{C} \overline{U} K_r \overline{\lambda_{\widetilde{C}}}$$
(A-100)

$$M_{k-2} = k (k-1) K \overline{C} \overline{\lambda}_{\widetilde{a}} K_{r}$$
(A-101)

Let

$$p(\sigma,\xi,s,\eta) = \frac{\exp\{-\frac{1}{2} \|\eta-\mu(s)\|^2}{(2\pi)^{m/2} [\det Q(s,\sigma)]^{1/2}}$$
(A-102)

where  $\mu(s)$  and Q are defined by (A-56a) and (A-52) respectively. Then from Theorem 2-5,

 $p(\sigma,\xi,s,\eta)$  = probability density associated with the event  $x(s) = \eta$ 

given that

$$x(\sigma) = 5$$
, where x is the solution of (2-1) (A-103)

Mishchenko [4] shows that

 $q(\sigma,\xi,s,\eta) =$  Probability density associated with the event  $x(s) = \eta$  given that  $x(\sigma) = \xi$  and  $\xi(t) \notin \partial S$  for all  $t \in [\sigma,s]$ , where x is the solution to (2-1). (A-104)

From (A-103) and (A-104),

$$p(\sigma,\xi,s,\eta) > q(\sigma,\xi,s,\eta)$$
 (A-105)

then from (A-67),

$$\mathbf{v}(\sigma,\xi,\tau) \leq \gamma(\xi) + \int_{\sigma}^{\tau} ds \int d\eta_{p}(\sigma,\xi,s,\eta) \mathbf{L}[\gamma(\eta)] \qquad (A-106)$$
$$\|\tilde{\eta}\|_{\tilde{\mathbf{u}}^{-1}} \geq \mathbf{r}(\hat{\eta})$$

By the law of the mean,

$$\mathbf{v}(\sigma,\xi,\tau) \leq \gamma(\xi) + (\tau - \sigma) \int d\eta \ \mathbf{p}(\sigma,\xi,\bar{s},\eta)\mathbf{L}[\gamma(\eta)] \\ \|\tilde{\eta}\|_{\tilde{a}^{-1}} \geq \mathbf{r}(\hat{\eta}) \\ \text{for some } \bar{s} \in [\sigma,\tau]$$
(A-107)

From (A-107)

$$\mathbf{v}(\sigma,\varepsilon,\tau) \leq \mathbf{v}(\varepsilon) + (\tau - \sigma) \mathbf{L} \left[ \mathbf{v}(\varepsilon) \right] \text{ if } \overline{\mathbf{s}} = \sigma \qquad (\Lambda-103)$$

The estimate for  $5 \in (5,7]$  is carred out as follows.

By the law of the mean,

$$Q(\overline{s},\sigma) = 2 (\overline{s} - \sigma) Q(\overline{s},\sigma) \qquad (\Lambda-109)$$

$$\overline{\zeta}_{ij} (\overline{s},\sigma) = \left\{ \exp \left[ \Lambda(\overline{s} - \overline{\sigma}_{ij}) \right] \left[ a_{ij} \right] \exp \left[ \Lambda'(\overline{s} - \overline{\sigma}_{ij}) \right] \right\} \qquad (\Lambda-110)$$

where

and each 
$$\overline{\sigma}_{i,j} \in [\sigma, \overline{s}]$$
 (A-111)  
From (B-2<sup>1</sup>+),

$$||\eta - u|' \frac{||\eta - u||}{Q(\overline{s}, \sigma)} \ge \sqrt{2(s-\sigma)} \overline{X_{\overline{s}\sigma}}$$
(A-112)

where  $\overline{\lambda_{\Xi\sigma}}$  is the maximum eigenvalue of  $\overline{Q(\Xi,\sigma)}$ 

and 
$$\det Q(\overline{s}, \sigma) \ge \left[2 \lambda_{\overline{s}\sigma} (\overline{s} - \sigma)\right]^m$$
 (A-113)

where  $\lambda_{\overline{s}\sigma}$  is the minimum eigenvalue of  $\overline{Q}(\overline{s},\sigma)$ . Then from (A-102) and (A-2)

$$p(\sigma, \xi, \overline{s}, \overline{\eta}) \leq \left[\frac{\overline{\lambda}_{\overline{s}\sigma}}{\overline{\lambda}_{\overline{s}\sigma}}\right]^{\frac{m}{2}} g(\overline{\lambda}_{\overline{s}\sigma}, \sigma, u, \overline{\lambda}_{\overline{s}\sigma}, \overline{s}, \eta) \qquad (\Lambda-1.14)$$

From (B-24),

$$\left[ \begin{array}{c} \hat{\alpha} \eta \ \nu(\sigma, \tau, \bar{s}, \eta) \\ | \ L[\gamma(\eta)] \\ | \\ 1 \\ \tilde{\eta} \\ | \\ \tilde{\eta} \\ \tilde{\eta} \\ \tilde{\eta} \\ \tilde{\eta} \\ \tilde{\eta} \\ \eta \\ \tilde{\eta} \\ \tilde{\eta$$

$$\int d\eta \, p(\sigma, \boldsymbol{\xi}, \bar{\boldsymbol{s}}, \eta) \left| L[\gamma(\eta)] \right| \leq \begin{bmatrix} \bar{\lambda}_{\overline{s\sigma}} \\ \underline{\lambda}_{\overline{s\sigma}} \end{bmatrix} \int d\eta \, g(\bar{\lambda}_{\overline{s\sigma}} \sigma, \mu, \bar{\lambda}_{\overline{s\sigma}} \bar{\boldsymbol{s}}, \eta) \left| L[\gamma(\eta)] \right| \\ \| \tilde{\eta} \|_{\underline{s}^{-1}} \geq r(\hat{\eta}) \qquad (A-116)$$

The next step is to estimate the various terms of the right hand side of (A-116) which will result from substitution from  $(A-9^{4})$ . From (A-48),

$$\left[\sqrt{\underline{\lambda}_{\widetilde{a}}} \underline{r}\right]^{-(1+\nu)} \geq \|\widetilde{\eta}\|^{-(1+\nu)} \text{ for } \|\widetilde{\eta}\| > \sqrt{\underline{\lambda}_{\widetilde{a}}} r(\widehat{\eta}) \text{ and } 0 < \nu < 1 \quad (A-117)$$

Then

$$\int d\eta \qquad \frac{g(\delta,\mu,t,\eta)}{\|\tilde{\eta}\|^{k-1}} \leq \left[\sqrt{\Delta_{\tilde{a}}} \ \underline{r}\right]^{-(1+\nu)} \int d\eta \qquad \frac{g(s,\mu,t,\eta)}{\|\tilde{\eta}\|^{k-\nu}} \\ \|\tilde{\eta}\| > \sqrt{\Delta_{\tilde{a}}} r(\hat{\eta}) \qquad (A-118)$$

Then from (A-22) and (A-1),

$$\int d\eta \qquad g(\delta,\mu,t,\eta) \frac{1}{\|\tilde{\eta}\|^{k+1}} \leq \frac{\left[\sqrt{\underline{\lambda}_{\tilde{a}}} \ \underline{r}\right]^{-(1+\nu)} \overline{\nu}}{\|\tilde{\mu}\|^{k-\nu}} \qquad (A-119)$$

where  $\tilde{\mu}$  is defined by (A-57). Similarly,

$$\int c\eta = \mathcal{B}(s,\mu,\tau,\eta) \frac{1}{||\eta||^{\frac{1}{2}}} \leq \frac{\left[\sqrt{\lambda_{\mathcal{E}}} \, \underline{x}\right]^{-\nu} \, \overline{v}}{||\mu||^{\frac{1}{2}-\nu}}$$

$$(\Lambda-120)$$

$$||\eta|| > \sqrt{\lambda_{\mathcal{E}}} \, x(\hat{\eta})$$

$$\int d\eta \quad g(s,\mu,t,\eta) \frac{1}{||\tilde{\eta}||^{k-1}} \leq \frac{\tilde{V}}{||\tilde{\mu}||^{k-1}}$$

$$||\tilde{\eta}|| = \sqrt{\lambda_{\tilde{\alpha}}} r(\hat{\eta})$$
(A-121)

$$\int d\eta \ \ell(\delta, u, t, \eta) \frac{1}{||\tilde{\eta}||^{k-2}} \leq \frac{\tilde{V}}{||\tilde{u}||^{k-2}}$$

$$(\Lambda-122)$$

$$||\tilde{\eta}|| > \sqrt{\lambda_{\tilde{u}}} r(\hat{\eta})$$
From (A-26) and (A-117),

$$\int a\eta g(\delta, \mu, t, \eta) \frac{||\hat{\eta}||}{||\tilde{\eta}||^{k}} \leq \left[\sqrt{\lambda_{\tilde{\alpha}}} \underline{x}\right]^{\nu} \bar{\omega}_{k-\nu} (\delta, \mu, t)$$

$$(A-323)$$

$$||\tilde{\eta}|| > \sqrt{\lambda_{\tilde{\alpha}}} x(\hat{\eta})$$

then from (A-38),

$$\int d\eta \ g(\delta, u, t, \eta) \frac{|\hat{m}||_{\bar{K}}}{|\hat{m}||_{\bar{K}}} \leq \left[\sqrt{\frac{\pi}{2}}\right]^{-\nu} \left\{\frac{\overline{\nabla} \overline{k}_{p, m-k} |\hat{u}||}{|\hat{m}||^{\bar{K}-\nu}} + \frac{k_{o, m-k} \sqrt{K_{t, 2}} \overline{\nabla}}{|\hat{m}||^{\bar{K}-\nu}}\right\}$$

$$|\tilde{m}|| > \lambda_{\tilde{m}} r(\hat{\eta}) \qquad (A-124)$$
for  $t - \delta \leq K_{t, 2}$  where  $\hat{u}$  is defined by  $(A-57)$ .
Similarly,
$$|\tilde{u}|| = \sqrt{\overline{K}_{t, 2} r_{t, 2}} |\hat{u}|| = k_{0, m-k} \sqrt{K_{t, 2}} \overline{\nabla}$$

$$\int d\eta \ g(s,u,t,\eta) \frac{|\eta||}{||\eta||^{k-1}} = \frac{|\eta_{0},\eta_{-k}|^{(m+1)}}{||\eta||^{k-1}} + \frac{\rho_{0},\eta_{-k}|^{(m+1)}}{||\eta||^{k-1}}, \ t-\delta \le K_{t} = \frac{1}{||\eta||^{k-1}} + \frac{\rho_{0},\eta_{-k}|^{(m+1)}}{||\eta||^{k-1}} + \frac{\rho_{0},\eta_{-k}|^{(m+1)}}{||\eta||^{k-1}}, \ t-\delta \le K_{t} = \frac{1}{||\eta||^{k-1}} + \frac{\rho_{0},\eta_{-k}|^{(m+1)}}{||\eta||^{k-1}} + \frac{$$

142

.

$$\begin{split} \int \widetilde{\alpha} \mathbb{I} \left[ \mathbb{I} \left[ \left[ \tilde{\lambda}_{n}, \mu, \tau, \eta \right] \right] \mathbb{I} \left[ \gamma(\eta) \right] \right] &\leq \frac{M_{1\times 1} \overline{r}^{k-1} \left[ \sqrt{\lambda_{\tilde{\alpha}}} \underline{x} \right]^{-(1+\nu)} \overline{v} + N_{k} \overline{r}^{k-1} \left[ \sqrt{\lambda_{\tilde{\alpha}}} \underline{x} \right]^{-\nu} \overline{v} \overline{v}}{\left[ \left[ \overline{\mu} \right] \right]^{k-\nu}} \\ &= \frac{1}{\left[ \left[ \overline{\mu} \right] \right]^{k-\nu}} \\ &+ \frac{M_{k}}{2} \overline{r}^{k-1} \overline{v} \left[ \sqrt{\lambda_{\tilde{\alpha}}} \underline{x} \right]^{-\nu} \left[ \overline{k}_{0,m-k} \left[ \left[ \overline{\mu} \right] \right] + k_{0,m-k} \sqrt{K_{t}} \underline{x} \right]}{\left[ \left[ \overline{\mu} \right] \right]^{k-\nu}} \\ &+ \frac{M_{k-1} \overline{r}^{k-1} \overline{v} + \overline{M}_{k-1} \overline{v}^{2k-2+\beta} + \overline{M}_{k-1} \overline{r}^{k-2+\beta} \overline{v} \overline{v} \overline{k}_{0,m-k} \left[ \left[ \overline{\mu} \right] \right] + k_{0,m-k} \sqrt{K_{t}} \underline{x} \right]}{\left[ \left[ \overline{\mu} \right] \right]^{k-1}} \\ &+ \frac{M_{k-2} \overline{r}^{k-2+\beta} \overline{v}}{\left[ \left[ \overline{\mu} \right] \right]^{k-1}} \overline{v} + \delta \leq K_{t} \underline{x}$$
 (A-126)

From (A-116) and (A-126)  

$$\int d\eta \ p(\sigma, \varepsilon, s, \eta) \left| \ L[\gamma(\eta)] \right| \leq \left[ \frac{\overline{\lambda}_{\overline{s}, \sigma}}{\overline{\lambda}_{\overline{s}, \sigma}} \right] \frac{\frac{\mu_{n+1} \overline{r}^{k-1} \left[ \sqrt{\lambda_{\overline{s}, \overline{r}}} \right]^{-(1+\nu)} \overline{v}_{M_{2}} \overline{v}^{k-1} \left[ \lambda_{\overline{s}, \overline{s}} \right]^{\frac{1}{2}}}{\left| |\overline{u}| \right|^{\frac{1}{2} - \nu}} + \frac{\overline{k}_{\underline{k}} \overline{r}^{k-1} \overline{v} \left[ \sqrt{\lambda_{\overline{s}}} \underline{r} \right]^{-\nu} \left[ \overline{k}_{\underline{s}, \underline{m}-\underline{k}} \left| |\hat{u}| \right| + \underline{k}_{\underline{s}, \underline{m}-\underline{k}} \sqrt{\underline{x}_{\underline{s}}} \underline{r} \right]} + \frac{\overline{k}_{\underline{k}} \overline{r}^{k-1} \overline{v} \left[ \sqrt{\lambda_{\overline{s}}} \underline{r} \right]^{-\nu} \left[ \overline{k}_{\underline{s}, \underline{m}-\underline{k}} \left| |\hat{u}| \right| + \underline{k}_{\underline{s}, \underline{m}-\underline{k}} \sqrt{\underline{x}_{\underline{s}}} \underline{r} \right]}{\left| |\overline{u}| \right|^{\frac{1}{k} - \nu}} + \frac{\overline{k}_{\underline{k}-1} \overline{v} \overline{r}^{k-2+\beta} + \overline{\mu}_{\underline{k}-1} \overline{r}^{k-2+\beta} \overline{v} \left[ \overline{\lambda}_{\underline{s}, \underline{m}-\underline{k}} \left| |\hat{u}| \right| + \underline{k}_{\underline{s}, \underline{m}-\underline{k}} \sqrt{\underline{x}_{\underline{s}}} \underline{r} \right]} + \frac{\underline{k}_{\underline{k}-1} \overline{v} \overline{r}^{k-2+\beta} + \overline{\mu}_{\underline{k}-1} \overline{r}^{k-2+\beta} \overline{v} \left[ \overline{\lambda}_{\underline{s}, \underline{m}-\underline{k}} \left| |\hat{u}| \right| + \underline{k}_{\underline{s}, \underline{m}-\underline{k}} \sqrt{\underline{x}_{\underline{s}}} \underline{r} \right]}{\left| |\overline{u}| |^{\frac{1}{k} - 1}}$$

$$+ \frac{M_{k-2}}{\left|\left|\tilde{\mu}\right|\right|^{k-2}}, \quad \bar{s} - \sigma \leq \frac{K_{t}}{\lambda_{\bar{s}\sigma}} r \quad (\Lambda - 127)$$

where  $K_{ij}$  is defined in (A-51)

The requirement placed on  $\overline{s} - \sigma$  in (A-127) requires some discussion. It will now to shown that (A-51) guarantees that condition. Wonhem [2] defines the concept of a monotonic matrix and shows that  $Q(s,\sigma)$  is monotonic increasing in s. Then, for  $\overline{s} \in \lceil \sigma, \tau \rceil$ ,

$$\overline{\lambda}_{Q}(\tau,\sigma) \geq \overline{\lambda}_{Q}(\overline{s},\sigma) \tag{A-120}$$

From from (A-51),

$$K_{t} \ge \frac{\lambda_{O}(\overline{s}, \sigma)}{\underline{r}}$$
 (A-129)

Fron (A-1.09)

$$\overline{\lambda}_{\Theta(\overline{s},\sigma)} = 2(\overline{\sigma} - \sigma) \overline{\lambda}_{\overline{s}\sigma}$$
(A-130)

Then from (A-129) and (A-130),

$$\overline{s} - \sigma \le \frac{K_t}{Z_{rs\sigma}} \frac{r}{s} < \frac{K_t}{\lambda_{\overline{s}\sigma}} \frac{r}{s}$$
 (A-131)

which is the requirement placed on  $\overline{s} - \sigma$  by (A-127). Thus (A-127) holds for all  $\overline{s} \in \lceil \sigma, \tau \rceil$ .

The estimate of the left hand side of (A-127) will now be put in finel form. Let

$$\mathbf{k}_{\mathbf{r}} = \mathbf{\bar{r}} / \mathbf{\underline{r}} \tag{A-1.32}$$

Thien (A-127) may be written

$$\int d\eta \, I(\sigma, \tau, \sigma, \eta) \, \left| \, L[\gamma(\eta)] \right| \leq \frac{\Pi_{1+\nu} \, 2^{\lambda-2-\nu} + \Pi_{\nu-1/2} \, 2^{\lambda-1/2-\nu} + \Pi_{\nu} \, 2^{\lambda-1-\nu}}{\|I(I)\|^{1-\nu}}$$

•

$$+ \frac{\overline{N}_{1} || \hat{u} || || \underline{x}^{k-1-\nu}}{|| \hat{u} || || \underline{x}^{k-2+\beta}} + \frac{N_{1/2-\beta} \underline{x}^{k-3/2+\beta} + N_{0} \underline{x}^{k-1} + N_{1-\beta} \underline{x}^{k-2+\beta}}{|| \tilde{u} ||^{k-1}} + \frac{\overline{N}_{1-\beta} || \hat{u} || || \underline{x}^{k-2+\beta}}{|| \tilde{u} ||^{k-2}}, \overline{s} \in (\sigma, \tau]$$

$$(\Lambda - 133)$$

125

where

 $||\tilde{\gamma}||_{\tilde{n}-1} \ge r(\hat{\gamma})$ 

$$N_{l+v} = M_{k+1}k_{r} \frac{1+v}{\sqrt{2\sigma}} \left[ \frac{\overline{\lambda}_{\overline{s}\sigma}}{\overline{\lambda}_{\overline{s}\sigma}} \right] m/2 \qquad (A-13^{i})$$

$$N_{v-1/2} = \overline{M}_{k} k_{r}^{k-1} \overline{v} \frac{-v/2}{\lambda_{a}} k_{\rho,m-k} \sqrt{K_{t}} \left[ \frac{\overline{\lambda}_{5\sigma}}{\underline{\lambda}_{5\sigma}} \right]^{m/2}$$
(A-135)

$$N_{v} = M_{k} k_{r}^{k-1} \quad \overline{v} \quad \underline{\lambda}_{\overline{a}}^{-v/2} \left[ \frac{\overline{\lambda}_{\overline{s}\sigma}}{\underline{\lambda}_{\overline{s}\sigma}} \right]^{n/2}$$
(A-136)

$$\widetilde{N}_{v} = \overline{M}_{k} \kappa_{r}^{k-1} \overline{v} \frac{\lambda_{o}^{-\nu/2}}{\lambda_{o}^{2}} \overline{\kappa}_{\rho,n-k} \left[ \frac{\overline{\lambda}_{o}}{\lambda_{o}^{2}} \right]^{m/2}$$
(A-137)

$$N_{1/2-\beta} = M_{k-1} \frac{k^{k-2+\beta}}{r} \sqrt{k} k_{p,m-k} \sqrt{k_{t}} \left[ \frac{\overline{\lambda}_{s\sigma}}{\lambda_{s\sigma}} \right]^{m/2}$$
(A-138)

$$N_{o} = M_{k-1} \overline{V} k_{r}^{k-1} \left[ \frac{\overline{\lambda_{so}}}{\underline{\lambda_{so}}} \right] m/2$$
 (A-139)

$$W_{1-\beta} = \overline{W}_{1-1} \overline{V} \frac{k-2+\beta}{k_{r}} \left[ \frac{\overline{\lambda}_{5\sigma}}{2\overline{\delta}\sigma} \right] m/2$$
 (A-140)

$$\overline{\mathbf{H}}_{1-\beta} = \overline{\mathbf{H}}_{k-1} \overline{\mathbf{V}} \mathbf{k}_{\mathbf{r}}^{k-2+\beta} \mathbf{k}_{\rho,m-k} \left[ \frac{\overline{\lambda}_{\overline{\mathbf{s}}\sigma}}{\underline{\lambda}_{\overline{\mathbf{s}}\sigma}} \right]^{m/2}$$
(A-141)

$$M_{1} = M_{k-2} \overline{V} k_{r}^{k-2+\beta} \left[ \frac{\overline{\lambda}_{\overline{s}\sigma}}{\overline{\lambda}_{\overline{s}\sigma}} \right] m/2$$
(A-142)

From (A-70), (A-107), (B-24), (A-66), and (A-133),

$$\overline{u}_{1}(\sigma,\xi,\tau) \leq \frac{\overline{N}_{1} \underline{r}^{k-1}}{||\xi||^{k-1}} + \frac{K_{t} (N_{1+\nu} \underline{r}^{k-1-\nu} + N_{\nu-1/\nu} \underline{r}^{k+1/2-\nu} + N_{\nu} \underline{r}^{k-\nu})}{||\widetilde{u}||^{k-\nu}}$$

$$+ \frac{K_{t} \tilde{N}_{t} || \hat{u} || \frac{r^{k-\nu}}{k-\nu}}{|| \tilde{u} ||^{k-\nu}} + \frac{K_{t} (N_{1/2-\beta} \frac{r^{k-1/2+\beta}}{k-1} + N_{0} \frac{r^{k}}{k} + N_{1-\beta} \frac{r^{k-1+\beta}}{k-1})}{|| \tilde{u} ||^{k-1}}$$

$$+ \frac{K_{t} \overline{H}_{1-3} ||\hat{\mu}|| \underline{r}^{k-1+\beta}}{||\tilde{\mu}||^{k-1}} + \frac{K_{t} \overline{H}_{1} \underline{r}^{k-1+\beta}}{||\tilde{\mu}||^{k-2}} \quad \text{for } \overline{s} \in (\sigma, \tau], \ \tau - \sigma \leq K_{t} \underline{r}$$
(A-143)

where

$$\widetilde{N}_{1} = \overline{C} \begin{array}{c} k-1 \\ k-1 \\ r \end{array} \begin{array}{c} (k-1)/2 \\ \lambda \\ r \end{array}$$
(A-144)

From (A-70), (A-109), (A-94), (A-66), and (B-24),

$$\begin{split} \widetilde{u}_{1}(\alpha, \varepsilon, \tau) &\leq \frac{\widetilde{u}_{1} \ \underline{x}^{k-1}}{||\overline{\varepsilon}||^{k-1}} + \frac{k_{r} \ \underline{k}_{t} \ \underline{x}^{k}}{||\overline{\varepsilon}||^{k-1}} \\ &+ \frac{k_{r} \ \underline{k}_{t} \ [\underline{u}_{k} + \overline{u}_{k} \ ||\overline{\varepsilon}||] \ \underline{x}^{k-2}}{||\overline{\varepsilon}||^{k}} \\ &+ \frac{k_{t} \ \underline{k}_{t} \ [\underline{u}_{k-1} \ \underline{x}^{k} + [\overline{u}_{k-2} + \overline{u}_{k-1} \ ||\overline{\varepsilon}||] \ \underline{x}^{k-1+\beta}}{||\overline{\varepsilon}||^{k-1}} \end{split}$$

 $+ \frac{K_{t} k_{r} r^{k-l+3}}{||\tilde{\tau}||^{k-2}} \text{ for } \tilde{s} = \sigma, \tau - \sigma \leq K_{t} r \qquad (A-l+5)$ 

From (A-56a) and (P-30)

 $\|\|u\|\| \leq \kappa_{\exp} \left[\|\|g\|\| + (\tau - \sigma)\overline{U}\right]$  (A-146)

where

$$K_{exp} = m \operatorname{Max} \qquad \operatorname{Max} \qquad \left| \left\{ \exp \left[ \Lambda(s - \sigma) \right] \right\} \circ \left[ \left[ (\Lambda - 1h7) \right] \right] \\ s \in [\tau, \sigma] \quad 1 \le i \le m$$

 $c_i$  is the a dimensional vector whose  $i^{\frac{th}{t}}$  clement is one and whose other elements are zero.

From (A-56a),

$$u = \xi \text{ for } \overline{s} = \sigma \qquad (A-1.48)$$

Then from (A-56), (A-143), (A-146), and (A-145)

$$\overline{u}_{1}(\sigma, \overline{\gamma}, \tau) \leq D_{1}^{s}(\underline{x}) + D_{2}^{s}(\underline{x}) || \in [], \tau \in S_{U}(\sigma, \underline{B}, \tau), \tau - \sigma \leq K_{t} \underline{x} (A-1)9)$$

where

$$b_{1}^{\overline{5}}(\underline{r}) = \frac{\overline{h}_{1}}{\underline{k}^{k-1}} + \frac{K_{1}\overline{h}_{1}}{\underline{r}^{k-2}} \frac{r^{k-2} \cdot \frac{k}{r} (\overline{h}_{1+2}, \underline{r}^{k-1-\nu} + \overline{h}_{\nu-1/2} r^{k+1/2-\nu} + \overline{h}_{\nu}, \underline{r}^{k-\nu})}{\underline{h}^{k-\nu}} + \frac{K_{1}(\underline{h}_{1/2-2}, \underline{r}^{k-1/2+\beta} + \overline{h}_{\nu} r^{k} + \overline{h}_{1-\beta}, \underline{r}^{k-1+\beta})}{\underline{h}^{k-\nu}} + \frac{K_{1}^{2}}{\underline{k}^{k-\nu}} \frac{\overline{u}}{\underline{r}^{k-\nu}} + \frac{K_{1}^{2}}{\underline{k}^{k-\nu}} + \frac{K_{1}^{2}}{\underline{h}^{k-\nu}} + \frac{K_{1}^{2}}{\underline{h}^{k-\nu}} + \frac{K_{1}^{2}}{\underline{h}^{k-\nu}} (\sigma, \tau), \tau - \sigma \leq K_{1} \underline{r}}{\underline{k}^{k-\nu}}$$

$$(A-150)$$

$$b_{2}^{\overline{5}}(\underline{r}) = \frac{K_{1}}{\underline{h}^{k-\nu}} \frac{\underline{r}^{k-\nu}}{\underline{r}^{k-\nu}} + \frac{K_{1}}{\underline{h}^{k-1}} \frac{\underline{r}^{k-1+\beta}}{\underline{r}^{k-1}} \underline{r}^{k-1+\beta}, \overline{s} \in (\sigma, \tau), \tau - \sigma \leq K_{1} \underline{r}}{(A-151)}$$

and for  $\tilde{s} = \sigma$ ,  $\tau - \sigma \leq K_t | \underline{r} :$ 

$$D_{1}^{5}(\underline{r}) = \frac{\overline{h}_{1}}{\underline{R}^{k+1}} \underline{r}^{k-1} + \frac{k_{r}}{\underline{R}^{l+1}} \underline{r}^{k} + \frac{k_{r}}{\underline{R}^{k}} \underline{r}^{k} + \frac{k_{r}}{\underline{R}^{k}} \underline{r}^{k-1+\beta} + \frac{k_{r-1}k_{r}}{\underline{R}^{k-1+\beta}} + \frac{\overline{h}_{r-1}k_{r}}{\underline{R}^{k-1}} \underline{r}^{k+\beta} + \frac{k_{r}}{\underline{R}^{k-1}} + \frac{\overline{h}_{r-1}k_{r}}{\underline{R}^{k-1}} + \frac{\overline{h}_{r-1}k_{r}}{\underline{R}^{k-1}} + \frac{k_{r}}{\underline{R}^{k-1}} + \frac{k$$

$$\mathbf{P}_{2}^{\overline{s}}(\underline{r}) = \frac{\mathbf{k}_{r} \mathbf{K}_{t} \overline{\mathbf{M}}_{r} \underline{r}^{k-2}}{\underline{\mathbf{R}}^{k}} + \frac{\mathbf{K}_{t} \mathbf{k}_{r} \overline{\mathbf{M}}_{k-1} \underline{r}^{k-1+\beta}}{\underline{\mathbf{R}}^{k-1}}$$
(A-153)

Finally, consider  $\overline{u}_1$  for  $\tau - \sigma > K_t \underline{r}$ . Let

$$\overline{\widetilde{u}}(\sigma,\tau,\tau) = \int dy \ e(\sigma + K_{t}\underline{r}, \tau,\tau,v) \left[ \overline{D_{1}^{s}}(\underline{r}) + D_{2}^{s}(\underline{r}) + 1|v|| \right] \qquad (\Lambda-15!;)$$

$$||\widetilde{y}||_{\widetilde{a}} \ge r(y)$$

where  $\tilde{y}$  is a k dimensional vector

$$\hat{\mathbf{y}}$$
 is an m-k dimensional vector  
 $\mathbf{y} = \begin{bmatrix} \tilde{\mathbf{y}} \\ \hat{\mathbf{y}} \end{bmatrix}$  (A-155)

then  $\overline{\overline{u}}$  is a solution to (A-40) with

$$\lim_{\tau \to 0} \frac{\overline{u}}{\overline{u}} (\sigma, \overline{s}, \tau) = D_1^{\overline{s}} (\underline{r}) + D_2^{\overline{s}} (\underline{r}) ||\underline{s}|| \qquad (A-156)$$

$$\sigma \rightarrow \tau - K_{\underline{t}} \underline{r}$$

$$\overline{u} (\sigma, \overline{s}, \tau) \bigg|_{\underline{s} \in \partial s} = 0 \qquad (A-157)$$

From (A-149), (A-156), (A-157), and theorem C-2,

$$\bar{\bar{u}}(\sigma,\xi,\tau) \geq \bar{\bar{u}}_{1}(\sigma,\xi,\tau)$$
 (A-158)

Application to (A-154) of the same reasoning used in arriving at (A-116) yields

$$\bar{\bar{u}}(\sigma,\xi,\tau) \leq \begin{bmatrix} \bar{\lambda}_{\sigma+K_{t}\underline{r},\tau} \\ \frac{\bar{\lambda}_{\sigma+K_{t}\underline{r},\tau}}{\bar{\lambda}_{\sigma+K_{t}\underline{r},\tau}} \end{bmatrix}^{m/2} \int_{dy \ g[\bar{\lambda}_{\sigma+K_{t}\underline{r},\tau}(\sigma+K_{t}\underline{r}),\mu,\bar{\lambda}_{\sigma+K_{t}\underline{r},\tau}\tau,y]} \\ \|y\| \geq 0 \\ \cdot \left[ D_{1}^{\tilde{s}} (\underline{r}) + D_{2}^{\tilde{s}} (\underline{r}) \|y\| \right]$$
(A-159)

then from (A-28), (A-35), (A-130), and (A-159),

$$\bar{\bar{u}}(\sigma,\xi,\tau) \leq \left[\frac{\bar{\lambda}_{\sigma} + K_{t}\underline{r},\tau}{\underline{\lambda}_{\sigma} + K_{t}\underline{r},\tau}\right] \left\{ D_{1}^{\bar{s}}(\underline{r}) + D_{2}^{\bar{s}}(\underline{r}) \left[k_{\rho,m}/\underline{\bar{\lambda}}_{Q}(\tau,\sigma + K_{t}\underline{r}) + k_{\rho,m}||\mu||\right] \right\}$$

$$(A-160)$$

From (A-346), (1-350), (A-150), and (A-360)  

$$\widetilde{u}_{1}(c, \varepsilon, \tau) \leq \widetilde{v}_{1}^{\overline{c}}(\underline{r}) + \widetilde{v}_{\overline{c}}^{\overline{c}}(\underline{r}) \left[ \frac{k_{p,n}}{\kappa_{p,n}} \frac{\sqrt{\lambda}}{\kappa_{(\tau,\sigma^{+}K_{q,n})}} \right]^{2} + (\tau - \sigma) \widetilde{U} k_{p,n} \frac{\kappa_{exp}}{\kappa_{exp}} + \widetilde{K}_{p,n} \frac{k_{exp}}{\kappa_{exp}} \left[ |\varepsilon| \right]$$
(A-161)

150

Let

$$\begin{split} \Delta(\underline{\varepsilon},\underline{\mathbf{r}}) &= D_1^{\overline{5}}(\underline{\varepsilon}) + D_2^{\overline{5}}(\underline{\mathbf{r}}) \begin{bmatrix} k_{\rho,E} \sqrt{\lambda} Q(\tau,\sigma + K_{\underline{\tau}},\underline{\mathbf{r}}) + (\tau - \sigma) \overline{U} k_{\rho,E} K_{\underline{c}} \mathbf{r} \end{bmatrix} \\ &+ \operatorname{Hox} \begin{bmatrix} D_2^{\overline{5}}(\underline{\varepsilon}), D_2^{\overline{5}}(\underline{\varepsilon}), \overline{K}_{\rho,M} e_{\mathrm{N}p} \end{bmatrix} ||\underline{\varepsilon}|| \quad (A-162) \end{split}$$

$$A \text{ corbination of } (A-63), (A-64), (A-65), (A-149), (A-161), \text{ and } (A-162) \end{split}$$

completes the proof.

#### Appendix B

# SOLE BOUNDS ON MATRIX TRANSFOR ATTOMS

The purpose of this appendix is to develop bounds on matrix transformations. The method employed is that of Malmos [8], except that best estimates are made for real symmetric matrices.

Let A be a positive definite real symmetric matrix of dimension and rank p. Let

$$\mathbf{v}_{1} = \begin{bmatrix} \mathbf{v}_{1}^{1} \\ \mathbf{v}_{1}^{2} \\ \mathbf{v}_{1}^{2} \\ \mathbf{v}_{1}^{2} \\ \mathbf{v}_{1}^{2} \end{bmatrix}, \dots, \mathbf{v}_{p} = \begin{bmatrix} \mathbf{v}_{p}^{1} \\ \mathbf{v}_{p}^{2} \\ \mathbf{v}_{p}^{2} \\ \mathbf{v}_{p}^{2} \end{bmatrix}$$
(B-1)

be the set of orthonormal eigenvectors of A with corresponding eigenvalues  $\lambda_1, \ldots, \lambda_p$ . Let X be an arbitrary p-vector. Then X may be expressed as

$$\mathbf{X} = \sum_{i=1}^{p} (\mathbf{X}^{i} \mathbf{v}_{i}) \mathbf{v}_{i}$$
(B-2)

where X' is the transpose of X. Then

$$\mathbf{A} \mathbf{X} = \sum_{i=1}^{p} (\mathbf{X}^{i} \mathbf{v}_{i}) \lambda_{i} \mathbf{v}_{i}$$
(B-3)

 $\delta CGB$ 

$$\|\lambda \mathbf{x}\|^{2} = \sum_{i=1}^{p} \lambda_{i}^{2} (\mathbf{x} \cdot \mathbf{v}_{i})^{2}$$
(B-b)

12.6

$$\overline{\lambda}^{2} = \lim_{\substack{1 \le i \le \rho}} (\lambda_{i}^{2}) = \lambda_{j}^{2}$$
(3-5)

152

Then

$$\frac{||\Lambda \chi||^2}{\overline{\lambda}^2} = \sum_{i=1}^{p} \frac{\lambda_i^2}{\overline{\lambda}^2} (\chi' v_i)^2$$
(B-6)

Let

$$\tilde{X} = k v_j$$
 for some scalar k (B-7)

Then

$$\frac{||\overline{X}||^2}{||\overline{X}||^2} = \overline{\lambda}^2$$
(B-8)

Now let

$$X \neq k v_j$$
 for all k (B-9)

From (B-6),

$$\frac{\prod_{AX} \prod_{i=1}^{2}}{\overline{\lambda}^{2}} - (X' v_{j})^{2} = \sum_{i \neq j} \frac{\lambda_{i}^{2}}{\overline{\lambda}^{2}} (X' v_{i})^{2}$$
(B-10)

From (9-5)

1

$$\frac{\lambda_{i}^{2}}{\lambda^{2}} \leq 1, \quad i \neq j$$
 (B-11)

Then from (B-10) and (B-4)

$$\frac{||AX||^2}{\lambda^2} \le ||X||^2 \tag{B-12}$$

or

$$\frac{\left|\left|\Lambda \chi\right|\right|^{2}}{\left|\left|\chi\right|\right|^{2}} \leq \lambda^{2}$$
(B-13)

Then from (B-8) and (B-13),

$$\frac{||A_{R}||}{||a_{1}||} \leq \sum_{i=1}^{\infty} \text{ for all } a \qquad (g-1);$$

and  $\overline{X}$  is the l.u.b. of  $\frac{|A_{12}|}{|X||}$ 

Not 
$$\overline{y} = \max_{1 \le i \le \delta} (v_i)$$
 (3-19)

where  $\nu_1, \ldots, \nu_n$  are the eigenvalues of  $\Lambda^{-1}$ . Then

$$\overline{\nu} = \frac{1}{\underline{\lambda}} \tag{B-16}$$

where

$$\frac{\lambda}{1} = \min_{\substack{\lambda \in I}} (\lambda_{1})$$

$$(B-17)$$

Then

$$\frac{||\lambda^{-1}y||^2}{||y||^2} \leq \frac{1}{\lambda^2} \text{ for all } y \qquad (D-10)$$

Let

$$y = Ax$$
 (D-19)

Then

$$\frac{||Ax||}{||x||} \ge \frac{\lambda}{2} \text{ for all } x \qquad (5-20)$$
  
and  $\underline{\lambda}$  is the g.l.b. of  $\frac{||Ax||}{||x||}$ .

Nont let a be the symmetric matrix of rank  $\rho$  whose eigenvectors are  $v_i$ , and whose corresponding eigenvalues are  $\sqrt{\lambda_i}$ . Then (B-21)

$$A = a a$$

and

$$||x||_{A}^{2} = ||ax||^{2}$$
 (3-23)

Then Srom (B-14) and (B-20),

$$\overline{\Sigma} \leq \frac{||x||}{||x||} \leq \sqrt{\overline{\chi}}$$
 (2-23)  
are respectively the g.l.b. and l.u.b. of  $\frac{||x||_{L}}{||x||_{L}}$ .

and  $\sqrt{\chi}$  and  $\sqrt{\chi}$  are respectively the g.l.b. and l.u.b. of  $\frac{1}{||x||}$ . Similarly,

$$\frac{1}{\sqrt{\lambda}} \leq \frac{\left|\left|x\right|\right|_{\lambda} - 1}{\left|\left|x\right|\right|\right|} \leq \frac{1}{\sqrt{\lambda}}$$
(B-2h)

Finally, consider | Bx | where B is restricted only to be real. Let

$$\mathbf{e}_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \ \mathbf{e}_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, \ \mathbf{e}_{p} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$
(B-25)

Let

$$K_{B} = \max_{1 \le i \le \delta} \left\{ ||Be_{i}|| \right\}$$
(B-86)

An arbitrary 9 vector, x, can be expressed as

$$\mathbf{x} = \frac{\rho}{2} (\mathbf{x'e_i}) \mathbf{e_i}$$
(B-27)

Then

$$Bx = \sum_{i=1}^{n} (x'e_i) Be_i$$
(B-23)

end

$$||Bx|| \leq \sum_{i=1}^{o} |(x'e_i)|| |Be_i||$$
(B-29)

Then from (B-26),

$$\frac{||\mathbf{D}\mathbf{x}||}{||\mathbf{x}||} \le \mathbf{o} \ \mathbf{K}_{\mathrm{B}}$$
(B-30)

Suppose that P hes an inverse, B<sup>-1</sup>, and let

$$\mathbb{E}_{\mathbf{D}^{-1}} = \operatorname{Mex}\left\{ \left| \left| \mathbb{E}^{-1} \mathbf{e}_{\mathbf{i}} \right| \right| \right\}.$$
 (D-31)

Let

$$y = B^{-1} \times (B-32)$$

From (B-30), (E-31), and (B-32),

$$\frac{||\underline{B}^{-1}\underline{x}||}{||\underline{x}||} \leq \rho K_{\underline{B}^{-1}}$$
(B.33)

and

$$\frac{||y||}{||by||} \leq {}^{\circ} K_{B-1}$$

$$(B-34)$$

or

t

$$\frac{||\mathbf{B}_{Y}||}{||\mathbf{y}||} \ge \frac{1}{\mathbf{p}_{K}^{K}}$$
(B-35)

## APPENDIX C

# COMPARISON THEOREMS FOR SOLUTION TO THE DIFFUSION EQUATION

The purpose of this appendix is to develop a theorem similar to Theorem 16 of Chapter 2 of Friedman [9] the argument follows that of Friedman.

Before starting the theorem some notation must be defined. Let R be the m + 1 dimensional domain (x,t). Let  $B\tau \subset R$  be the hyperplane (x,  $\tau$ ). Let

$$\varepsilon = \left\{ x \left| \left| \left| \tilde{x} \right| \right|_{\hat{a}^{-1}} < r(\hat{x}) \right\} \right\}$$
 (C-1)

where  $\tilde{x}$ ,  $\hat{x}$ ,  $\tilde{a}$  are used as in Chapters 3 and 4. Let

$$D_{\tau} = U \qquad B_{t} - S \qquad (C-2)$$

$$0 \le t < \tau$$

Closure and boundary will be denoted as follows:

$$\overline{D}_{\tau} = \text{closure of } D_{\tau}$$
  
 $\partial S = \text{boundary of } S.$ 

Let

$$L = -\sum_{i,j} a_{ij} \frac{\lambda^2}{\lambda x_i \partial x_j} - \sum_{i} b_i \frac{\lambda}{\lambda x_i}$$

where a is positive semidefinite. <u>Theorem C-1</u> Let v(x,t) be a solution to

$$\frac{\partial \mathbf{v}}{\partial t} = \mathbf{L}\mathbf{v} \qquad (\mathbf{C}-\mathbf{h})$$

in D , with  $\frac{1}{T}$ 

156

(0-3)

$$v > 0 \text{ on } \mathbb{B}_{T} \cup (2 S \cap \mathbb{D}_{T})$$
 (C-5)

then v > 0 everywhere in  $\boldsymbol{D}_{_{\boldsymbol{\mathrm{T}}}}$ 

Proof Let N be the set of points  $\sigma$  on (0,T) such that v(x,t) > 0 everywhere in  $D_{T} = \overline{D}_{C}$ . Let  $t_{O}$  be the g. 1. b. of c. From (C-5),

$$t_{o} < T$$
 (C-6)

$$t_{o} > 0 \qquad (c-7)$$

Suppose then

> (c-8) v > 0 in  $D_{T} - \overline{D}_{to}$ (C-9)

and 
$$v = 0$$
 at some  $(x_0, t_0) \in B_{t_0}$  (C-9  
From (C-5), and (C-9),  $(x_0, t_0) \notin \partial S$ . Then from (C-8) and (C-9),

 $(x_0, t_0)$  is a minimum point for v over  $B_{to}$ . Then

$$\frac{\partial \mathbf{v}}{\partial \mathbf{x}_{i}} = 0 \qquad (C-10)$$

$$(\mathbf{x}_{o}, \mathbf{t}_{o})$$

Since a is positive cemidefinite,

$$\sum_{i,j=1}^{n} a_{ij} \frac{2^{2}v}{2^{2}x_{i}} \ge 0$$
 (C-11)

Then from (C-3), (C-4), (C-10), and (C-11),

$$\frac{\partial v}{\partial t} \bigg| \stackrel{\leq 0}{\underset{(x_0, t_0)}{\leq}}$$
(C-12)

But from (C-8) and (C-9),

$$\frac{\partial V}{\partial t} \bigg|_{(x_0, t_0)} > 0 \qquad (C-13)$$

fince (0-12) contradicts (0-13), supposition (0-7) rust be false, and the theorem is proved.

<u>"Decret C-2</u> Let v(x,t) be a solution to

$$\frac{\partial v}{\partial t} = L v \qquad (C-14)$$

$$v = V(x,t) \ge 0 \text{ on } \geq S \cap D_{T} \cup B_{T}$$
 (C-15)

then  $v \gtrsim 0$  everywhere in  ${\rm D}_{\rm p}$ 

<u>Proof</u> Let  $q(c, x, \tau, y)$  be the fundemental solution of (C-14). Let

$$v_{c}(t,x,T) = \epsilon + \overline{v}(x,t) + \int dy q(t,x,T,y) \left[\epsilon + V(y,T)\right] \qquad (c-16)$$

then  $v_{i}$  is a solution to (C-14) with

$$\mathbf{v}_{\mathbf{e}} = 2\mathbf{e} + \mathbf{V}(\mathbf{x}, \mathbf{T}) \text{ on } \mathbf{B}_{\mathbf{T}}$$
 (C-17)

$$\mathbf{v}_{\boldsymbol{\varepsilon}} = \mathbf{V}(\mathbf{x}, t) + \boldsymbol{\varepsilon} \text{ on } \boldsymbol{\varepsilon} \boldsymbol{S} \cap \boldsymbol{D}_{\mathbf{T}}$$
 (C-18)

where  $\in$  is independent of x and t,  $\overline{v}(y,t)$  is a solution of

$$L \overline{v} = \frac{\partial v}{\partial t} \quad \text{in } D_{\text{T}}$$
 (C-19)

$$\overline{\mathbf{v}}(\mathbf{y},\mathbf{t}) = \mathbf{V}(\mathbf{y},\mathbf{t}) \text{ on } \mathbf{h} \mathbf{S} \cap \mathbf{D}_{\mathbf{p}}$$
 (C-20)

$$\overline{v}(y,t) = 0 \text{ on } B_{q_1}$$
 (C-21)

 $\mathbf{v}_{\in}$  is clearly continuous in  $\in$  at  $\in = 0$ . By Theorem C-1,

$$v_{\epsilon} > 0$$
 everywhere in  $D_{q_{\ell}}$  for  $\epsilon > 0$  (C-22)

Then by continuity,

$$\mathbf{v}_{0} \ge 0 \tag{(0-23)}$$

Since v is a solution of (C-14) and (C-15), the theorem is proved.

#### APPENDIX D

# AN EXPRESSION AND A BOUND FOR $\nabla \overline{\bullet}_{O}$

The purpose of this appendix is to develop an expression and a bound for  $\nabla_{\overline{g}} \overline{\Phi}_{0}(t_{1},\overline{\xi},t_{2})$ , where  $\overline{\Phi}_{0}$  is defined by (4-40). The expression will be developed in two parts,  $\nabla_{\overline{g}} \overline{\Phi}_{0}$  and  $\nabla_{\overline{g}} \overline{\Phi}_{0}$ . Working directly from (4-42), (4-43), and (4-44),  $\frac{\partial \overline{\Phi}_{0}}{\partial \overline{\xi}_{1}} = \frac{-(k-2)r^{k-2}(\overline{\xi})}{\|\overline{\xi}\|^{k}} \overline{\xi}_{1}$  $-\int_{\|\overline{\eta}\|} \frac{d\overline{\eta}}{\Phi}_{0}(\overline{\eta},\overline{\xi}) \left[\frac{\partial}{\partial \overline{\xi}_{1}} \overline{h}(t_{1},\overline{\xi},t_{2},\overline{\eta})\right]$  $\|\overline{\eta}\| \ge 0$  $t_{2} > t_{1}$ ,  $i=1,2,\ldots,k$  (D-1)

The integral in (D-1) will now be put into a more convenient form.

$$\int d\bar{\bar{n}} \, \bar{\bar{\bullet}}_{0} \left( \tilde{\bar{\bar{n}}}, \tilde{\bar{\bar{\bullet}}} \right) \left[ \frac{\partial}{\partial \bar{\bar{s}}_{1}} \, \bar{\bar{h}}(t_{1}, \tilde{\bar{\bar{s}}}, t_{2}, \tilde{\bar{\bar{n}}}) \right] = \\ \|\tilde{\bar{n}}\| \ge 0$$

$$\int d\bar{\bar{n}}^{i} \, \tilde{\bar{h}}(t_{1}, \tilde{\bar{s}}^{i}, t_{2}, \tilde{\bar{n}}^{i}) \int d\bar{\bar{n}}_{1} \, \bar{\bar{\bullet}}_{0} \left( \tilde{\bar{n}}, \tilde{\bar{\bar{s}}} \right) \left[ \frac{\partial}{\partial \bar{\bar{s}}_{1}} \, \tilde{\bar{h}}(t_{1}, \tilde{\bar{\bar{s}}}, t_{2}, \tilde{\bar{n}}_{1}) \right] \quad (D-2)$$

$$\|\tilde{\bar{n}}^{i}\| \ge 0$$

where

$$\overset{\approx_{i}}{\eta}$$
 is the k-l dimensional vector, i=l,...,k,

with

$$\begin{cases} \tilde{i} & , i \in j \le i \\ j & , j \le j \le l-1 \\ 0 & , j \le j \le l-1 \\ 0 & , j \le i \end{cases}$$

$$\widetilde{\widetilde{\xi}}_{j}^{i} = \begin{cases} \widetilde{\widetilde{\xi}}_{j}^{i} , & \text{if } j \leq i \\ \widetilde{\xi}_{j}^{i} & , 1 \leq j \leq k-1 \\ \widetilde{\xi}_{j+1}^{i} , & \text{if } j \geq i \end{cases} (D-4)$$

0

 $\sim$ :

$$\tilde{\tilde{h}}(t_{1},\tilde{\tilde{t}}^{1},t_{2},\tilde{\tilde{t}}^{1}) = \frac{\exp\left\{-\frac{1}{4}(t_{2}-t_{1})^{2}\right\}}{\left[4\pi(t_{2}-t_{1})\right]}$$
(D-5)

$$\widetilde{\mathbf{h}}(\mathbf{t}_{1}, \widetilde{\widetilde{\xi}}_{1}, \mathbf{t}_{2}, \widetilde{\widetilde{\mathbf{h}}}_{1}) = \frac{\exp\left\{-\frac{(\widetilde{\widetilde{\mathbf{h}}}_{1}, \widetilde{\widetilde{\xi}}_{1})^{2}}{\mathbf{h}(\mathbf{t}_{2}^{-\mathbf{t}}, \mathbf{t}_{1})^{2}}\right\}}{\left[4\pi(\mathbf{t}_{2}^{-\mathbf{t}}, \mathbf{t}_{1})\right]^{1/2}}$$
(D-6)

From (D-6),

$$\frac{\partial}{\partial \overline{\xi}_{1}} \widetilde{h}(t_{1}, \overline{\xi}_{1}, t_{2}, \overline{\overline{h}}_{1}) = -\frac{\partial}{\partial \overline{h}_{1}} \widetilde{h}(t_{1}, \overline{\overline{\xi}}_{1}, t_{2}, \overline{\overline{h}}_{1})$$
(D-7)

Then the inner integral of (D-2) way be evaluated through integration by parts to yield

$$\int_{-\infty}^{\infty} d\overline{\overline{\eta}}_{1} \,\overline{\overline{\psi}}_{0}(\overline{\overline{\tau}}, \overline{\overline{s}}) \left[ \frac{2}{2\overline{\xi}_{1}} \,\widetilde{h}(t_{1}, \overline{\overline{\xi}}_{1}, t_{2}, \overline{\overline{\eta}}_{1}) \right]$$

$$= - \,\widetilde{h}(t_{1}, \overline{\overline{\xi}}_{1}, t_{2}, \overline{\overline{\eta}}_{1}) \,\overline{\overline{\psi}}_{0}(\overline{\overline{t}}, \overline{\overline{s}}) \int_{\overline{T}_{1}}^{\infty} \overline{t_{1}} = - \,\overline{\omega}$$

$$+ \int_{-\infty}^{\infty} d\overline{\overline{\eta}}_{1} \,\widetilde{u}(t_{1}, \overline{\overline{\xi}}_{1}, t_{2}, \overline{\overline{\eta}}_{1}) \,\frac{2}{\overline{\xi}_{0}}(\overline{\overline{t}}, \overline{\overline{s}}) \left( \overline{\overline{t}}, \overline{\overline{s}} \right) \right]$$
(D-8)

From (4-42) and (D-6), the first term of (D-8) vanishes. Then from (D-1), (D-2), (D-8), and the differential of (4-42),

$$\nabla_{\overline{\xi}} \quad \overline{\Phi}_{0} = -(k-2)r^{k-2}(\overline{\xi}) \left[ \frac{\overline{\xi}}{||\overline{\xi}||^{k}} - \int_{\|\overline{\eta}\| \ge 0}^{d\overline{\eta}} \frac{\overline{\eta}}{||\overline{\eta}||^{k}} \quad \overline{h}(t_{1},\overline{\xi},t_{2},\overline{\eta}) \right] \quad (D-9)$$
Working directly from (4-42), (4-43) and (4-44),  

$$\frac{\partial \overline{\Phi}_{0}}{\partial \overline{\xi}_{1}} = (k-2)r^{k-3}(\overline{\xi}) \quad \frac{\partial r}{\partial \overline{\xi}_{1}} \left\{ \frac{1}{||\overline{\xi}||^{k-2}} - \int_{\|\overline{\eta}\|}^{d\overline{\eta}} \quad \overline{h}(t_{1},\overline{\xi},t_{2},\overline{\eta}) \quad \frac{1}{||\overline{\eta}||^{k-2}} \right\}$$

$$- \int_{\|\overline{\eta}\|}^{d\overline{\eta}} \quad \overline{h}(t_{1},\overline{\xi},t_{2},\overline{\eta}) \quad \frac{1}{||\overline{\eta}||^{k-2}}$$

$$+ t_{2} \ge t_{1}, \quad i=k+1, \dots, m \qquad (D-10)$$

Equations (D-9) and (D-10) will now be used to estimate  $\|\nabla_{\underline{f}} \nabla_{\underline{f}}\|$ . Note first that

$$\|\nabla_{\underline{z}} \cdot \overline{\mathbf{b}}_{o}\| \leq \|\nabla_{\underline{z}} \cdot \overline{\mathbf{b}}_{o}\| + \|\nabla_{\underline{z}} \cdot \overline{\mathbf{b}}_{o}\|$$
(D-11)

From (D-9),

$$\|\nabla_{\frac{\pi}{\xi}} \| \leq (k-2)r^{k-2}(\frac{\pi}{\xi}) \left\{ \frac{1}{\|\frac{\pi}{\xi}\|^{k-1}} + \int_{\|\frac{\pi}{\eta}\|} \frac{d\tilde{\pi}}{\eta} \frac{\bar{h}(t_1, \frac{\pi}{\xi}, t_2, \frac{\pi}{\eta})}{\|\frac{\pi}{\eta}\|^{k-1}} \right\}$$
  
,  $t_2 > t_1.$  (D-12)

From (D-12), (A-1), and (A-22),

$$||\nabla_{\underline{w}} \, \overline{\tilde{g}}_{0}|| \leq \frac{(k-2)(\overline{v}_{0}, y_{2}) e^{k-2}(\hat{g})}{||\tilde{g}||^{k-1}}$$

From (D-10)

$$\nabla_{\widehat{\widehat{\xi}}} = (k-2)r^{k-3}(\widehat{\overline{\xi}}) (\nabla_{\widehat{\xi}}r) \left[\frac{1}{||\widehat{\xi}||^{k-2}} - \int d\widehat{\overline{n}} \frac{1}{d\widehat{\overline{n}}} \frac{1}{|\widehat{\overline{n}}||^{k-2}} \frac{1}{|\widehat{\overline{n}}||^{k-2}} \right]$$

$$+ \int d\widehat{\overline{n}} \frac{1}{d\widehat{\overline{n}}} \frac{1}{|\widehat{\overline{n}}||^{k-2}} \frac{1}{||\widehat{\overline{n}}||^{k-2}} \frac{1}{|\widehat{\overline{n}}||^{k-2}} \frac{1}{||^{k-2}||^{k-2}} \frac{$$

From (D-14), (3-16), (A-1), and (A-22),

$$||v_{\widehat{\xi}} \overline{\overline{\delta}}_{O}|| \leq \frac{(k-2)(\overline{v}+1)r^{k-3+\beta}(\overline{\overline{\xi}})}{||\overline{\overline{\delta}}||^{k-2}}$$
(D-15)

From (D-11), (D-13) and (D-3),  

$$||\nabla_{\underline{v}} = \overline{\overline{\phi}}_{0}|| \leq \frac{(k-2)(\overline{v}+1)r^{k-2}(\overline{\overline{s}})}{||\overline{s}||^{k-1}} + \frac{(k-2)(\overline{v}+1)r^{k-3+3}(\overline{\overline{s}})}{||\overline{s}||^{k-2}}$$

where  $\beta > 1$  is defined in (A-49).

(D-13)

(D-14)

(D-16)

#### APPENDIX E

#### A MONTE CARLO TECHNIQUE FOR THE COMPUTATION OF INTEGRALS

#### E.1 Introduction

The purpose of this appendix is to state some of the details of the technique for computing the integrals involved in equations (L-LL5) through (L-L29). This subject is dealt with in two parts. First, some theoretical consideration are discussed. Second, some simpler types of integrals are computed in order to demonstrate the quality of the random number compariso, and to give some feeling for the rapidity of \_convergence of the algorithm. E.2 Theoretical Considerations

The class of integrals considered here is defined as follows:

$$J = \int_{V} d\zeta p(\zeta) F(\zeta)$$
(E-1)

where

$$= \begin{bmatrix} \zeta_1 \\ \zeta_2 \end{bmatrix}$$
 (E-2)

$$p(\zeta) = \frac{1}{(2\pi)^{1/2} (\det \Lambda)^{1/2}} \exp\left\{-\frac{\left|\left|\zeta - u\right|\right|^2}{2}\right\}$$
(E-3)

V is a recourable set in E<sup>2</sup>.

ζ

F is a Baire function whose domain is in  $\textbf{E}^{k}$  and whose range is in  $\textbf{E}^{m}.$  A is a covariance matrix and  $\mu$  a mean

Let  $\xi_1$ ,  $\xi_2$ ,  $\xi_3$ ,  $\cdots$ ,  $\xi_j$ ,  $\cdots$  be a sequence of random scalars with properties

$$p_{g_{i}}(v) = \frac{1}{(2\pi)^{1/2}} e^{-\frac{1}{2}v^{2}}$$
(E-4)

where  $p_{i}(v)$  is the probability density associated with the event  $\xi_{i} = v$ ,  $\xi_{i} \perp \xi_{j}, i \neq j$  (E-5)

 $(x \parallel y \text{ denotes that } x \text{ and } y \text{ are statistically independent of each other.})$ Let

$$\eta^{\mathbf{i}} = \mathbf{P}\begin{bmatrix} \boldsymbol{\xi}_{\ell}(\mathbf{i}-1)+1\\ \vdots\\ \boldsymbol{\xi}_{\ell}(\mathbf{i}-1)+\ell \end{bmatrix} + \boldsymbol{\mu}$$
(E-6)

where

$$P = \left[\sqrt{\lambda_1} v_1, \dots, \sqrt{\lambda_k} v_k\right]$$
 (E-7)

 $v_1, \ldots, v_k$  are the 1 orthonormal eigenvectors of  $\Lambda$ , and  $\lambda_1, \ldots, \lambda_k$  are the corresponding eigenvalues.

Then

$$\mathbf{E}(\boldsymbol{\eta}^{\mathbf{1}}) = \boldsymbol{\mu} \tag{E-8}$$

$$E\{(\eta^{i} - \mu)(\eta^{i} - \mu)'\} = EP\{\begin{bmatrix}\xi_{\ell}(i-1)+1\\\vdots\\\xi_{\ell}(i-1)+\ell\end{bmatrix} [\xi_{\ell}(i-1)+1, \cdots, \xi_{\ell}(i-1)+\ell]\}P'$$
(E-9)

From (E-4) and (E-5),  $E\{(\eta^{i} - \mu)(\eta^{i} - \mu)'\} = PP'$  (E-10)

Reasoning as in (4-49),

$$E\{(\eta^{i} - \mu)(\eta^{i} - \mu)'\} = \Lambda$$
(E-11)

Then  $\eta^{i}$  is a Gaussian random vector with mean  $\mu$  and covariance A. Also,

$$E\{(\eta^{i} - \mu)(\eta^{j} - \mu)'\} = PE\{\begin{bmatrix} \xi(i-1)\ell+1 \\ \vdots \\ \xi(i-1)\ell+\ell \end{bmatrix} [\xi_{(j-1)\ell+1}, \dots, \xi_{(j-1)\ell+\ell}]\}P'$$
(E-12)

then Sec. (E-1),

$$\eta^{i} \prod \eta^{j}$$
 (1-15)

From (2-1) through (E-5),

$$\mathbf{J} = \mathcal{V}\left[\mathbf{G}\left(\boldsymbol{\gamma}\right)\right]$$
 (B-14)

whore

$$G(\eta) = \begin{cases} \mathfrak{P}(\eta) &, \eta \in \mathbb{V} \\ 0 &, \eta \notin \mathbb{V} \end{cases}$$

$$(\mathfrak{P}-\mathfrak{D})$$

 $\eta$  is an 1-dimensional Gaussian random vector with bean  $\mu$  and

covariance A.

Let 
$$\tilde{J}_{_{H}}$$
 be defined by N  
 $\tilde{J}_{_{H}} = \frac{1}{N} \sum_{i=1}^{N} C(n^{i})$  (E-16)

From (N-15), (N-8), (E-1), and (N-3),

 $E G(\eta^{i}) = J$  (E-17)

Then from (E-16) and (H-17),

$$E(J - \tilde{J}_{R}) = 0 \qquad (N-LC)$$

The covariance of the error between J and  $\tilde{J}_N$  is computed as follows.

$$\mathbb{E}\left(\left(\mathbf{J} - \widetilde{\mathbf{J}}^{\mathrm{H}}\right) \left(\mathbf{J} - \widetilde{\mathbf{J}}^{\mathrm{H}}\right)\right) = \mathbb{E}\left[\left(\mathbf{J}\mathbf{J}^{\mathrm{H}}\right) - \mathbb{E}\mathbb{E}\left[\left(\mathbf{J}^{\mathrm{H}}\right)\right] + \mathbb{E}\left[\left(\widetilde{\mathbf{J}}^{\mathrm{H}}\right)\right] + \mathbb{E}\left[\left(\widetilde{\mathbf{J}}^{\mathrm{H}}\right)\right] \right)$$
(E-19)

From (E-1), (E-18), and (E-19),

$$\mathbb{E}\left\{\left(J-\widetilde{J}_{H}\right)\left(J-\widetilde{J}_{H}\right)'\right\} = \mathbb{E}\left[\widetilde{J}_{H}\widetilde{J}_{H}'\right] - JJ' \qquad (\mathbb{E}-20)$$

Feen (N-3.6),

$$E_{i}(\tilde{a}_{1i}\tilde{a}_{1i}) = \frac{1}{n^{2}} \left\{ \sum_{j=1}^{N} \sum_{j=1}^{N} E[G(a_{j}) G_{i}(a_{j})] \right\}$$
(P-51)

Since (not pages 13.0 and 224 of TA2]) Daire fractions of independent

rende veriebles and independently

$$\mathbb{E}\left[\Omega(\eta^{j}) \, \Omega'(\eta^{j})\right] = JJ', \quad \text{for } i \neq j \qquad (3-22)$$

then from (1-22.) and (n-22.),

$$E(\underline{\hat{u}}^{H}\underline{\hat{y}}^{H}) = \frac{H}{L} E[G(\underline{\mu}) G_{\star}(\underline{\mu})] + \frac{H_{5}}{H_{5}} P_{1} \frac{1}{2} P_{1} \frac$$

From (N-20) and (N-23),

$$\mathbb{E}\left\{\left(\Im-\widetilde{J}_{N}^{N}\right)\left(\Im-\widetilde{J}_{N}^{N}\right)^{*}\right\} = \frac{1}{2}\left[\mathbb{E}\left[\Im\left(\Im\right)\Im\left(\Im\right)^{*}-\Im\left(\Im\right)^{*}\right]^{*}\right]$$
(E-24)

Stated in words, (N-24) says that the covariance of the error of the discretized integral is 1/N times the covariance of G.

## D. 3 Stud Lamples

The following examples were constructed to demonstrate the effectiveness of the random number generator used to produce the sequence  $\xi_1, \xi_2, \dots,$  and to given some feeling for the rate of covergence of  $\tilde{J}_N$  to J.

The first example is defined as follows. Let

$$\mathbf{J} = \begin{bmatrix} \mathbf{a} \ \mathbf{r} \ \mathbf{p}(\mathbf{r}) \ \mathbf{r} \end{bmatrix}$$
(E-25)

$$||c|| \ge 0$$

$$\zeta = \begin{bmatrix} c^{1} \\ c^{2} \\ z^{3} \end{bmatrix}, \quad J = \begin{bmatrix} J^{1} \\ J^{2} \\ J^{3} \end{bmatrix}$$

$$A = \begin{bmatrix} 2/3 & 1/3 & 0 \\ 1/3 & 2/3 & 0 \\ 0 & 0 & 1/2 \end{bmatrix}$$
(E-27)

$$\mathbf{r} = \begin{bmatrix} 7\\ 20\\ 20 \end{bmatrix}$$
 (E-25)

then

$$\frac{1}{N} \sum_{i=1}^{N} \eta^{i}$$
(E-29)

It is clear from (D-3) and (H-25) that

Ĵ<sub>I</sub> =

 $\mathbf{J} = \mathbf{\mu} \tag{E-30}$ 

167

The second example is defined as follows. Let

$$\mathbf{K}^{\hat{\mathbf{I}}\hat{\mathbf{J}}} = \int \partial \left[ \mathbf{r} \mathbf{p}(\mathbf{r}) \mathbf{r}_{\hat{\mathbf{I}}} \mathbf{r}_{\hat{\mathbf{J}}} \right]$$

$$||\mathbf{f}|| \ge 0$$

$$(\mathbf{E} - \mathbf{J}\mathbf{L})$$

with (N-25) through (N-28) remaining valid, and

$$\tilde{K}_{11}^{1,j} = \frac{1}{1!} \sum_{k=1}^{N} \eta_{1}^{k} \eta_{j}^{k}$$
(38-32)

It is clear from (N-5) and (N-31) that

$$\mathbf{k}^{\pm \mathbf{j}} = \mathbf{A}_{\mathbf{j},\mathbf{j}} \tag{E-53}$$

These examples were computed using the algorithm shown in block diagram form in Figure E-1. A listing of the FORHAU program is shown in Fable E-1. Results are shown in Figures E-2 through E-10. The random musber generator used have and thus valued this work is RAMDER (MARE Library Dubber 745). An examination of Figures E-2 through E-10 shows that the statistical properties of the random number generator output are good arough to give apparent covergence for the examples defined above.





TABLE E-1. LISTING OF PROGRAM FOR THE COMPUTATION OF  $J_{N}$  and  $\tilde{K}_{N}$ 

```
DIMENSION XMU(3,1), XLAM(3,3), Q(3,3), FMU(3,3), P(3,3), YLAM(3), PINV(3
1,3),004(3,3),TAR(3,3),TES(3,1),TEST(1,3),FMUD(3,3),D1(3,1),FFMU(3,
211, FFMUD(3,1)
 CÉMMON XXMU(3)
 EXTERNAL F.FF
                                         .
 XMU(1+1)=7.
 XFU(2,1)=10.
 XMU(3,1)=20.
 DC 1 1=1,3
1 XXMU(I)=XMU(I,1)
 XLAM(1,1)=2.
 XLAM(1,2) = -1.
  XLAP(1,3)=0.
  XLAM(2,1) = -1.
  XLAM(2,2)=2.
  XLAM(2,3)=0.
  XLAM(3,1)=C.
  XLAM(3,2)=0.
  XLAM(3,3)=2.
  DG 2 1=1,3
  DC2 J=1,3
  Q([,J)=0.
  IF(1.EQ.J) C(1,J)=1.
2 CONTINUE
  R=0.
  MM = 1
  M=3
  N=3
  L=3
  DC 3 I=100,1000,100
  CALL GAUPEC(XMU,XLAM,G,R,F,FMU,M,N,L,IT,P,YLAM,PINV,DUM,TAR,TES,TE
  CALL GAUPEC(XMU, XLAM, C, R, FF, FFMU, MM, N, L, IT, P, YLAM, PINV, DUM, TAR, TES
  IST, EMUD, D1)
  1, TEST, FEMUD, D1)
 3 WRITE(6,4) IT, FMU, FFMU
4 FORMAT(///1X110, 3E2C.8/11X3E2C.8/11X3E2C.8//11X3E2C.8)
   STOP
   END
```

i

#### TABLE E-1 (Cont'd)

```
SUBROUTINE CAUPECIXYU, XLAM, C, R, F, FMU, M, N, L, IT, P, YLAM, PINV, DUM, TAR,
  ITES, TEST, FMUD, UI)
  DIMENSION XMU(N,1), XLAM(N,N), C(N,N), FMU(L,M), P(N,N), YLAM(N), PINV(N
  1, N), DUM(N, N), TAR(N, N), TES(N, 1), TEST(1, N), XMAG(1, 1), D1(N, 1), FMUD(L,
  2M, X(20, 20), Y(20)
                                                   •
   EXTERNAL F
   D01 [=1,L
   DG 1 J=1,M
 1 FMU(I,J)=0.
                                                      the second s
                                                                         and the second second
   DG \ 2 \ I=1,N
   DG 2 J=1,N
 2 \times (1, J) = X LAM(1, J)
                                                        MX = 1
   CALL EIGEN(X,Y,N,MX)
   DG 12 1=1+N
                                                                 . .
   YLAM(I) = Y(I)
   DO 12 J=1.N
12 P(I,J) = X(I,J)
                                                         . . .
   DC 3I=1,N
   DC 3 J=1,N
   11=1
   L=LL
   DUM(II, JJ)=C.
   IF(II.EC.JJ) DUM(II,JJ)=1./YLAM(II)**.5
 3 CONTINUE
   CALL MATPLY(P, DUM, PINV, N, N, N)
   I = 1
                                 ,
 7 DG 4 J=1,N
 4 TES(J,1)=GAURN(Z)
                                                                 . . . . .
   NN=1
                                                          ÷ .
   CALL MATPLY(PINV, TES, C1, N, N, N)
   DO 15 J=1.N
15 TES(J,1)=D1(J,1)+XMU(J,1)
                                                            . _ _
   CALL NORM(C, TES, TEST, XMAG, D1, N, NN)
    IF(XMAG(1,1).LE.R) GO TC 5
    DG13 J=1,N
13 YEAM(J) = TES(J,1)
    CALL F(YLAM, N, FMUD, L, M)
    DC 6 J=1,L
   DC 6 K=1,M
 6 FMU(J,K)=FMU(J,K)+FMUD(J,K)
 5 [=[+1
    IF(1.LE.IT) GU TO 7
    DG 8 J=1,L
    DC 8 K=1,M
 8 FMU(J,K)=HMU(J,K)/FLUAT([T)
    RETURN
    END
```


FIGENE E-2. TI VERSOS #



FIGURA 2-3. J. YERDER



FIGURE 2-4.  $\tilde{J}_{M}^{3}$  VERSUS B



PIGURE E-5.  $\widetilde{k}_{N}^{11}$  versus N



FIGURE E-6. K



FIGURE E-7. K<sup>33</sup> VERSUS N



FIGURE E-8. KN VERSUS H



WIGURE R-9. X VERSUS N



### APPENDIX F

### SAMPLE PROBLEM DESIGN

### F.1. Introduction

The choice of a sample problem for the demonstration of a design technique requires careful consideration. The sample problem should indicate the practiculity of the design technique. It should be complex enough to expose the critical computational features of the technique, and yet not so complex as to hide the basic thread of the algorithm in a tangle of atypical computer programming detail. Finally it should give some indication of the scope of the technique by revealing the features of the problem which are essential to the technique.

The purpose of this appendix is to describe in some detail the characteristics of the sample problem used in Chapters 6 and 7, and to discuss the application of the above considerations to it.

# F.2 Design and Characteristics of the Seuble System

The system shown in Figures 6-2, 6-3, and 6-b embodies a number of commonly encountered features. The prime mover is modelled as n first order leg and on integration. The sensors provide rate and position information. Because the sensors are noisy, first order low pass filters are provided.

The numerical value (see equation (6-30)) for the prime mover time constant was chosen arbitrarily. This in itself costs no generality since changing all time constants proportionately enounts only to time bealing. The materical values (are equations (6-26) and (6-27)) for the sector filter time constants were chosen with the idea of providing as much filtering as possible without imposing too severe c penalty on system speed over and above the limitation imposed by the prime mover.

The design of the sample system proceeded as follows. The root locus of the inner loop (see Figures (6-2) and (6-3)) is shown in Figure F-1. The closed loop transfer function of the inner loop will have either three real poles or one real pole and a complex pair, depending on the loop gain. An example of each of the two types was considered. Figure F-2 shows the cutter loop root locus for an inner loop transfer function with three real poles, specifically

$$\frac{K_R K_C}{L_L} = 0.6 \tag{F-1}$$

Figure F-3 shows the outter loop root locus for an inner loop transfer function with one real pole and a complex pair, specifically,

$$\frac{K_{\rm R}K_{\rm C}}{T_{\rm L}} = 1.0 \tag{F-2}$$

The only qualitative difference between the loci in Figures F-2 and F-3 is that the locus of Figure F-2 has a range of gains for which all closed loop poles are real, whereas the locus of Figure F-3 always exhibits at least one complex pair. Since the comparison of different types of systems is a possible subject for future research, the locus of Figure F-2 was scheeted as preferable to that of F-3. On this basis the value of 0.6 was chosen for  $\frac{K_{\rm K}K_{\rm C}}{1_{\rm T}}$ .

The only system parameter remaining to be chosen is  $\frac{K_C}{L}$ . Mus choice wes node on the basis of its effect on system performance as judged by its closed loop pole position. The number selected was



THAT THANTDAMI







$$\frac{K_{\rm C}}{T_{\rm L}} = 0.5$$
 (F-3)

As may be seen from Figure F-2, this means that the system transient response will be determined principally by the complex pair near the origin, and that this pair is lightly damped. This is satisfactory for cases where the system is to perform its maneuver in a time period which is relatively short compared to one cycle of its natural frequency. Since the sample problem time was chosen to be one (see equation (6-33)), this condition holds.

## F.3 Randon Disturbance Hagnitude

It was desired to choose the random disturbance magnitudes (see equation (6-31)) so that each have the same order of magnitude of effect on system performance. The following is apparent from an examination of Figure 6-5:

- (a)  $\dot{n}_2$  and  $\dot{n}_3$  add directly with position  $(x_1)$  and rate  $(\dot{x}_1)$ . Thus to have the same order of magnitude of effect, they should have the same order of magnitude.
- (b)  $\dot{n}_1$  adds directly with  $K_r \dot{x}_1$ . Since  $K_r = 1.2$ ,  $\dot{n}_1$  should also have the same order of magnitude as  $\dot{n}_3$ .

The conclusion so far is that  $n_1$ ,  $n_2$ , and  $n_3$  should all be of the same order of nogmitude. The magnitude of the three was chosen so that, for the given initial condition and target size, the probability term of the performance index was neither nearly one nor nearly zero. The values given in equation (6-31) satisfy this condition, as is evident from the results of the couple problem calculations.

## APPENDIX G

COMPUTATIONAL DETAILS ASSOCIATED WITH THE SUBOPTIMAL PROBLEMS

# G.1 Introduction

The purpose of this appondix is to present some of the details of the computation associated with problems Pl and P2 of Chapter 6. The FIRMAN listings of the programs used are included. Some additional numerical results which support equation (6-21) as an approximation to (6-6) are presented. G.2 Computational Dotails Associated with PL

181

Figure 6-1 shows the algorithm for the solution of problem Pl.  $\exists n$ practice, this algorithm was divided into three distinct programs:

- (1) The programs SCM1 was used to compute  $\phi$  (0) versus  $\Box_{\rho}$ .
- (2) The program PRCE was used to execute the remainder of the elgorithm,

with the exception of the least squares parabolic fit.

These programs will be discussed separately.

G.2.1 SCALL

A FORFRAM Listing of SCALL and its associated subprograms is shown in Table C-1. The correspondence between the A matrix in the program and that given by (6-23) is as follows:

| SCALL A MATRIX<br>SUBCORIPT | Equation (6-23)<br>A Matrix Subscript |
|-----------------------------|---------------------------------------|
| ٦                           | 1                                     |
| <br>∕>                      | 5                                     |
| 3                           | 1.                                    |
| ).<br>}.                    | 2                                     |
| 5                           | <u> </u>                              |

# TABLE G-1. SCALL LISTING

ł

|      |                                                                   | · ·                           |
|------|-------------------------------------------------------------------|-------------------------------|
| SIBE | TC SCALL                                                          |                               |
|      | DIMENSION A(5,5), B(5,1), PHI(5),                                 | XBAR(5),EU(10),EL(10),TEM(35) |
|      | 1.XT(5).PHIT(5)                                                   |                               |
|      | COMMON /BSC1/V(11).DV(11).AD(5.                                   | 5),8D(5,1),U                  |
|      | EVTERNAL RITES, DSCAL                                             | •                             |
|      | NO-100                                                            |                               |
|      |                                                                   |                               |
|      |                                                                   |                               |
|      | UU 1 J=1,5                                                        |                               |
| 1    | A(I,J)=0.                                                         | ·                             |
|      | A(3,1)=1.                                                         |                               |
|      | A(4,1)=4.8                                                        |                               |
|      | A(2,2)=-5.                                                        |                               |
|      | A(3,2)=2                                                          |                               |
|      | A(4,2)=96                                                         |                               |
|      | A(5,3)=3.                                                         |                               |
|      | A(1,4) =5                                                         |                               |
|      | A(2,4) = -2.5                                                     |                               |
|      | $\Delta(4, 4) = -4$                                               |                               |
|      | A(1,5) = -5                                                       |                               |
|      | A(2,5) = -2.5                                                     |                               |
|      | A(2) = 2 = 3                                                      |                               |
|      | n(2, j) = 2                                                       |                               |
| 2    |                                                                   |                               |
| 6    | D(1+1) = K                                                        |                               |
|      | D(1) 1 - 2 5                                                      |                               |
|      | D(2+1+-2+)<br>TC-/                                                |                               |
|      | 15=4.                                                             |                               |
|      |                                                                   |                               |
|      |                                                                   |                               |
|      |                                                                   |                               |
|      | 3 XEAR(1)=0.                                                      |                               |
|      | XBAR(3)=1.                                                        |                               |
|      | XBAR(5)=1.                                                        |                               |
|      | DT=.001                                                           | T OFTER OUT T 21              |
|      | CALL PHIOLA, B, TF, XBAR, 5, 1, 10, 0                             | I g KL IE DEPRILETEDI         |
|      | 00 4 I = 1,5                                                      |                               |
|      | I I = I                                                           |                               |
|      | I l = I I + l                                                     |                               |
|      | 16=11+6                                                           |                               |
|      | V(I1) = XBAR(II)                                                  |                               |
| 4    | V(I6)=PHI(II)                                                     |                               |
|      | DO 5 I=1,5                                                        |                               |
|      | $BD(I_1) = B(I_1)$                                                |                               |
|      | D0 5 J=1,5                                                        |                               |
| 5    | AD(I,J) = A(I,J)                                                  |                               |
|      | V(1) = 0                                                          |                               |
|      | CALL DSCAL                                                        |                               |
|      | DV(1)=DT                                                          |                               |
|      | CALL AMRKS(V.DV.DSCAL, 10, 1, EU                                  | ,EL,H,H,TEN,O)                |
|      | N=IFIX (T/DT)+5                                                   |                               |
|      | WRITELS, $(1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$ |                               |
| 4    | FORMAT()H1/1X2HT=_E20_8)                                          |                               |
| 0    | DO 7 I=LN                                                         |                               |
|      | 157ND 50 1003                                                     |                               |
|      |                                                                   |                               |

```
1WRITE(6,8) (V(L),L=1,6)
      [F[NR.EQ.100]
     1WRITE(6,10)U,(V(L),L=7,11)
                               NR = 0
      IF(NR.EQ.100)
      FORMAT(1XE19.8,5E20.8)
  8
  10 FORMAT(1XE16.8, 5E20.8)
      NR=NR+1
     CALL ANRK
   7
      STOP
      END
SIBFIC DSCALN
      SUBROUTINE DSCAL
      COMMON /BSC1/ V(11), DV(11), AD(5,5), BD(5,1), U
      U=0.
      DO 1 1=1,5
      I I = I
      11=11+6
   1 U=U+BD(I,1)+V(II)+.5
      D0 2 1=1,5
      I I = I
      II = II + 1
      DV(II)=80(1,1)+U
      DG 2 J=1,5
      L=LL
      JJ=JJ+1
   2 DV(II)=DV(II)+AD(I,J)+V(JJ)
      DO 3 I=1,5
      I I = I
      11=11+6
      DV(II) = 0.
      DO 3 J=1,5
       L=LL
       JJ=JJ+6
      DV(11)=DV(11)-AD(J,1)*V(JJ)
  3
      RETURN
      END
SIBFTC PHION
       SUBROUTINE PHID(A,B,TF,XBAR,NS,NU,NRITE,DT,RITE,PHI,T,NO)
      COMMON /BDPH/PHID(20,20), PHIC(20,20), V(401), DV(401), NS2
                                                              EU(400),EL(400
       DIMENSION A(NS,NS),B(NS,NU),
      1), TEM(1205), XBAR(NS), PHI(NS)
       EXTERNAL OPHIC, RITE
       DO 8 I=1,1205
     8 TEM(1)=0.
       N1 = 1'
       DO 1 [=1,NS
       I I = I
       INS = II + NS
       00 1 J=1,NS
       L=LL
       JNS=JJ+NS
       PHID(II, JJ) = A(II, JJ)
```

#### TABLE G-1 (Cont'd)

```
PHID(INS,JJ)=0.
     PHID(INS, JNS) =- A(JJ, II)
     PHIC(II,JJ)=0.
     IF(II.EQ.JJ) PHIC(II.JJ)=1.
     PHIC(INS,JJ)=0.
     PHIC(II, JNS)=0.
     PHIC(INS, JNS)=0.
     IF(INS.EQ.JNS) PHIC(INS,JNS)=1.
     PHID(II, JNS)=0.
     DO 1 K=1,NU
     PHID(II,JNS)=PHID(II,JNS)+.5+B(II,K)+B(JJ,K)
 1
     K=1
     NS2=2+NS
     DO 2 I=1,NS2
     D0 2 J=1,NS2
     K=K+1
  2 V(K) = PHIC(I,J)
     V(1)=0.
     READ(5,5) IR
   5 FORMAT(110)
   6 FORMAT(E14.8/19(5E14.8/),5E14.8)
     IF(IR.EQ.1) WRITE(6,100) (V(I), I=1,101)
     CALL DPHIC
     DV(1)=DT
     CALL AMRKS(V, DV, DPHIC, 400, 1, EU, EL, H, H, TEM, 0)
     \mathbf{N} \mathbf{R} = \mathbf{\Omega}
     NCAL = [FIX(TF/DT)+1]
     IF(IR.EQ.1) READ(5,7) (V(I),I=1,101),(DV(I),I=1,101),(TEM(I),I=1,3)
    105)
     D0 3 I=1,NCAL
     CALL AMRK
     K = 1
     DO 4 J=1,NS2
      D04 L=1,NS2
      K = K + 1
      PHIC(J,L)=V(K)
 4
      T=V(1)
      NR=NR+1
      IF(NR.EQ.NRITE) CALL PHSUB(PHI, NS, YBAR, NO)
      IF(NR.EQ.NRITE) CALL RITE(PHI,T,NS,NI)
      IF(NR.EQ.NRITE) NR=0
  3
      WRITE(6,100) (V(1),I=1,101)
      PUNCH 7, {V(I), I=1, 101), (DV(I), I=1, 101), (TEM(I), I=1, 305)
    7 FORMAT(E17.8/24(4E17.8/),4E17.8/101(4E17.8/),2E17.8)
  100 FORMAT(///1XE19.8/20(1XE19.8,4E20.9/))
      RETURN
      END
$IBFTC DPHICN
      SUBROUTINE DPHIC
      CCMMON/BDPH/ PHID(20,20),PHIC(20,20),V(401),DV(401),NS2
      K=1
      DU 1 1=1,NS2
      00 1 J=1,NS2
```

# TABLE G-1 (Cont'd)

|              | K=K+1                                                              |
|--------------|--------------------------------------------------------------------|
|              | DV(K)=0.                                                           |
| •            |                                                                    |
| , <b>L</b> , | DV(K) = DV(K) + PHID(I + C) + PHIC(C + J)                          |
|              |                                                                    |
| ••••         |                                                                    |
| afor i       | SUBROUTINE PHSUBIPHI-NS-XBAR-NO3                                   |
|              | $DIMENSION B(20, 20) \cdot XBAB(NS) \cdot PHI(NS)$                 |
|              | COMMON / 80PH/PHID(20.20).PHIC(20.20).V(401).DV(401).NS2           |
|              | NNS=NS+1                                                           |
|              | NE=NO-1                                                            |
|              | 00 1 I=1,NS                                                        |
| •••          | R(I, NNS)=0.                                                       |
|              | NE=NE+1                                                            |
|              | DO 1 J=1,NS                                                        |
|              | . د د د د د د د د د د د د د د د د د د د                            |
|              | ZN+LL=LL                                                           |
|              | R(I,NNS)=R(I,NNS)-PHIC(NE,J)*XBAR()                                |
| 1            | R(I,J)=PHIC(NE,JJ)                                                 |
|              | CALL RLMTX(R,NS,1,M,D,-1)                                          |
|              |                                                                    |
| 2            | PHI(I)=R(I,NNS)                                                    |
|              | RETURN SNO                                                         |
| A100         |                                                                    |
| \$16r        | IC RITEN<br>SUBCONTINEDITES/DHI.T.NS.NI)                           |
|              |                                                                    |
|              | IF(N)-FO.1) WRITF(6.1)                                             |
| 1            | FORMAT(1H1/16X4HTIME+15X5HPHI 1,15X5HPHI 2,15X5HPHI 3,15X5HPHI 4,1 |
| -            | 1 5X5HPHI 5)                                                       |
|              | N1=0                                                               |
|              | WRIFE(6,2)T, (PHI(I), I=1,5)                                       |
| 2            | FORMAT(1XE19.8,5E20.8)                                             |
|              | REFURN                                                             |
|              | END                                                                |

The reason for this correspondence is that at the time PL was being developed, the state vector components were incovertently numbered so that the components corresponding to the target set were 5, 4, and 5, whereas the analysis contained in Chapters 2, 3, 4, and 5 assume that the target set is given in terms of the first k components of the state vector.

SCALL operates as "ollows:

(1) The numerical values of the system parameters are assigned.

(2) Subroutine PHIO is called. A lock diagram of this subroutine is shown in Figure G-1. The output from this subroutine is y(0) versus  $T_c$  for  $0 \leq T_c \leq T_F$ .

(3) Using the  $\tau(0)$  values computed by PHEO for  $T_c = T_p$ , x(t) versus t is computed as a check on the accuracy of the computation.

SCAL 1 and all other programs requiring differential equation solution used in this work carry out the Runge-Kutta incrementation by Leons of subroutine AHX (Purdue University Computer Science Center Library Hunder D2.01.1). The subroutine for the computation of the derivatives of the elements of MHIC is DPHIC. Because AHRK is written for the solution of vector rather than matrix differential equations, it is necessary to stack the columns of PHIC into a one dimensional array, V. The corresponding derivatives are contained in the array DV.

The computation based on equation (5-20) is carried by subroutine PHSUE, which in turn utilizes the subroutine HLATX (Purdue University Computer Science Conter Library Humber M4.01.1 ) DSCAL is the subroutine used for computing the derivative of X(t).

The values of 4(0) versus  $T_c$  which were computed by SC/L1 and used in the computation of Figures 5-5 through 5-10 are listed in Table 6-2.



FIGURE G-1. BLOCK DIAGRAM OF PHIO

TABLE 0-2. #(0) VERSUS Tc FOR P1.

| 4           | (0)                           | (0) <sup>2</sup>           | (0) <sup>£</sup>           | •*(0)                                   | • <sup>5</sup> (0)                      |
|-------------|-------------------------------|----------------------------|----------------------------|-----------------------------------------|-----------------------------------------|
| , 9:0       | 61011621 = 10 <sup>6</sup>    | 23815522 x 10 <sup>6</sup> | 22938656 x 10 <sup>7</sup> | 65388632 x 10 <sup>5</sup>              | .10297084 x 10 <sup>5</sup>             |
|             |                               | Cor - Torador              | 901 x 14584441             | 12 <sup>4</sup> 39529 x 10 <sup>5</sup> | •17663534 × 10 <sup>4</sup>             |
| 0.8         | 20. 2010000102                | 401 × 1200 × 10            | 16197535 x 10 <sup>5</sup> | 3569700 <sup>41</sup> x 10 <sup>4</sup> | .45220708 x 10 <sup>3</sup>             |
| <b>F0</b>   | MT X 000600TT -               |                            | 4                          | nt = Totanser                           | .14778479 x 10 <sup>3</sup>             |
| 1.2         | 42123092 x 10                 |                            | COL * C2000002             | <sup>2</sup> 01 x 5000012               | -57112560 × 10 <sup>2</sup>             |
| 1.4         | 162877730 x Ju                | AT & 630/1602" -           |                            | for                                     | .24035065 x 10 <sup>2</sup>             |
| 7.6'        | 69752924 x 10 <sup>3</sup>    | . 76157502                 | - 01 X #623061             | AT & COCONTAGO -                        | 2                                       |
| <b>L.</b> 8 | 32872724 x 10 <sup>3</sup>    | .37303358 × 10             | 33476790 x 10 <sup>2</sup> | 16087124 × 42178091                     | .11933620 x 10 <sup>-</sup>             |
| 2.0         | 16837026 x 10 <sup>3</sup>    | .35239139 x 10             | 79865829 x 10              | 95584446 x 10 <sup>2</sup>              | .61364505 x 10                          |
| 2.2         | 92414835 x 10 <sup>2</sup>    | .28522589 x 10             | 8811362 <sup>4</sup>       | 60118195 x 10 <sup>2</sup>              | .33369158 x 10                          |
|             | - standeds = 10 <sup>2</sup>  | 01 x 55200422.             | .10317026 x 10             | 39835703 x 10 <sup>2</sup>              | .19152695 x 10                          |
|             | 42267818 x 10 <sup>2</sup>    | 01 x 46407101.             | .13195650 x 10             | 32856771 x 10 <sup>2</sup>              | .14710444 x 10                          |
| 9           | 32599135 x 10 <sup>2</sup>    | .17147862 × 10             | .13972642 x 10             | 26782741 × 10 <sup>2</sup>              | .11135555 × 10                          |
| 2.8         | 21019237 x 10 <sup>2</sup>    | 01 x 21220461.             | .13207220 x 10             | 18997664 x 10 <sup>2</sup>              | . 68902510                              |
| 3.0         | • .14235581 x 10 <sup>2</sup> | .10650501 x 1D             | 01 x 68147411.             | 13996541 x 10 <sup>2</sup>              | .44511757                               |
|             | 201 x 94446211                | OI x 64255101.             | 01 x 1055511.              | 12371893 x 10 <sup>2</sup>              | . 33855105                              |
| 9           | 01 x 10747 x 10               | 6945ETT3.                  | 42E6691E •                 | 31983252 x 10                           | .79648812 × 10 <sup>-1</sup>            |
|             | .8002706                      | 14283326                   | 17784476                   | .13675197 x 10                          | 1559013 <sup>4</sup> x 10 <sup>-1</sup> |
|             |                               | 4                          | 0,0                        | 0.0                                     | 0.0                                     |
| •           | 0.0                           | ~~~                        |                            |                                         |                                         |

#### 0 2.2 D.YOB

A TORTHAN Listing of PROB and its associated subprograms is shown in Tokk- C-5. The concentence between array subscripts in ERCS and subscripts in (5-25) is the same as in SCAL.

We principal task performed by HROB is the execution of the heop shown in Figure 6-1 which is entered at block "A" and exited at block "B". In addition to the computation shown in Figure 6-1, PROB also computes  $\int u^2 dt$  during the execution of the heop. The values of t, t, x,  $\int u^2 dt$ , and  $|| \quad \mathbb{E} || \frac{9}{4}$  are printed out every HRIP iterations of the heop. The subrowther would to generate the derivatives is DECES. The reades nuclear generator is RANDEX (see Appendix E).

In addition to the above, PROB also executes the loop entered at "C" and exited at "D". This loop sorts the contents of XHOBA so that the regimen value of  $|| ~\tilde{\Sigma} ||_{\tilde{C}}^{2} -1$  appears first. This is done by orbitoutine SORP. The entry XHOBA is also sorted by the time at which the minimum value of  $|| ~\tilde{\Sigma} ||_{\tilde{C}}^{2} -1$  occurs.

Because of cortain administrative policies in the Department of Corputer Sciences, the turn around time for FNCE was minimized for NC = 1.9. This did not appear to be an adequate number of points for the plots in Chapter 6, so two runs (19 points per run) were made for each value of  $T_c$ . This required that the rondom number generator be repet at the beginning of the second run. This was acceptiated as follows:

- At the end of the first run the statement "CALL CLEDD (1993)" spheres. This returns an eleven digit integer (1998) which specifies the "position" of the random number generator.
- (2) At the beginning of the sceend run the statement "CML STORT: (HB)" supports. This sets the readon muther generator at the "position"

# TABLE G-3. PROB LISTING FOR P1

| \$ IBFT         | C PROB                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|-----------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| ••••            | DIMENSION E1(11)+E2(     | 11) • TE (38) • XNORA (500 • 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · · · · · · · · · · · · · · · · · |
|                 | COMMON /BL/B(5)+C(5+:    | 3) + A (5 + 5) + V (12) + XN (3) + CCPINV (5 + 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ) • DV(12) • KN                       |
|                 | EXTERNAL DNOIS           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | KMsl                     | <ul> <li>A second sec<br/>second second sec</li></ul> | an in the second second               |
|                 | NCMx37                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | NCON-1000                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                     |
|                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
| •               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | A(I+J)=U.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | A(341)=14                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | A(441)=448               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | A(2+2)==5.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | A(3+2)=-+2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | A(4+2)=-+96              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
| ·•·• ••··· •    | A(5+3)=3.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | A(1+4)=-+5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | A(2+4)=-2.5              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
| ···· · · ·      | A(5+5)=-3+               | · •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
|                 | A(1+5)=-+5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | · <b>&amp;{4+4)</b> =-4+ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | A(2+5)=-2+5              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | B(1)=.5                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | 8(2)=2.5                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | C(3+3)=1+                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | C(4+1)=4+                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | C(4:3)=4.8               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | C(5+2)+3.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | NC=1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
| 11              | DO 2 1=1+12              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
| 2               | V(I)=0.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | DO 15 1=1+38             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
| 19              | 5 TE(11=0.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
| · · · · · · · · | V(4)=1.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                     |
|                 | V(6)=1.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | TF=1.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | NT=1000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | DV(1)=TE/FLOAT(NT)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | XNF=DV(1)++.5            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | DO 3 1m1+3               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
| з               | XN(1)=GAUPN(7)/XNF       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
| •               | V(7)=13675197            | EOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
|                 | V(B)== 15500134F=01      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |
|                 | V(91=.80027064F00        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | V(10) ==== 14283326E00   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | V(1))== 17784476E00      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | CALL DNOTS               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | DO 4 1+1+5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
| <i>,</i>        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
| -+              | CCD/10/00 00 00 00 00    | • .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
|                 | - CCD1NV(3(3)#39+04/10   | Ð •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
|                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | CCPINV(443)A-43          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | CCMINV(4+4)=,0625        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                 | CCPINV(5+5)=1+/9+        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |

TABLE G-3 (Cont'd)

|                 | and a construction of the second s | الم المات يستد كمتيا الرا التورياتين |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                                                                                                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | 11-1                                                                                                            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | 11-1<br>11-11+1                                                                                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | 11-111<br>DA 5 Jata5                                                                                            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 |                                                                                                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 |                                                                                                                 | · · · · ·                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| e in i          | VHOD-YNOD+V(11)*CCPINV(1+J)*V                                                                                   | (11)                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5               | NIODE - WNOD                                                                                                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | ANURLANDRA DV. DV. DNOISA 11414F1                                                                               | F2+H+H+TE+0}                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | NOTT-100                                                                                                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | NR111100                                                                                                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | TELETING A MELTELENION                                                                                          | (V(K) (K=1+11) +X                    | VOF+V(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                 | IF INRITE CONTON MAILTON                                                                                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | IF (NRIISEUSIUU) NRII-U                                                                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | RRIIFNRIITI                                                                                                     | -5520-8/1XF19-81                     | فليتيه مسيد بيناد متحميهمان والمناجد والمراجع والمراجع والمراجع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 100             | FORMASCINETS BUSILEURIS                                                                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | IF(I.LE.NCON) GO TO IS                                                                                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | D0 14 ICU=/+11                                                                                                  |                                      | and a second state of the |
|                 | V(ICO)=U+                                                                                                       |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 13              | CALL AMRK                                                                                                       |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | XNOREU                                                                                                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | DO 7 J=1+5                                                                                                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | JUEJ                                                                                                            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | JJ=JJ+1                                                                                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | DO 7 K=1+5                                                                                                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | KK × K                                                                                                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | KK=KK+1                                                                                                         | 11 mm 1                              | والمحمولية والمعاد والمحادث والمركب والمتواجعات والمركبي والمركب والمركب والمركب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ~ 7             | XNOR=XNOR+V(JJ)*CCPINV(JAK)*                                                                                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | IF (XNOR +LT + XNOPL) IL=V(1)                                                                                   |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | IF (XNOR .LT .XNORL) XNORL = XNOR                                                                               |                                      | a a construction of the second s                                                                                                                                                                                                                                            |
|                 | 00 6 J = 1 + 3                                                                                                  |                                      | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| · 6             | XN(J)=GAURN(Z)/XNF                                                                                              |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | WRITE(6+100) (V(K)+K=1+11)+X                                                                                    | NOR VIIZI                            | a<br>to the total state of total |
|                 | XNORA(NC+2)=TL                                                                                                  |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | XNORA(NC+1)=XNORL                                                                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | KN=2                                                                                                            |                                      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| · · ·           | IF (NC.LT.NCM) GO TO B                                                                                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | DO 12 1=1+NCM                                                                                                   | ~·                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 12              | WRITE(6+10) (XNORA(I+J)+J=1+                                                                                    | 2)                                   | مستحديها والجاجة والجاجة المحجمين المراجع والمراجع المراجع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ••              | CALL SCRT (XNORA INCM)                                                                                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | DO 9 I=1 (NCM                                                                                                   | <b>.</b> .                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9               | WRITE(6,10) (XNORA(1,J),J=1,                                                                                    | 2)                                   | ւն նրա աննաներին, նա նա նա նա նա նա նա նա                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10              | FORMAT (1X2E20+8)                                                                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | CALL GETNM (NMB)                                                                                                |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | WRITE(6(101) NMB                                                                                                |                                      | والمراجع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 101             | FORMAT(1X4HNMB=+113)                                                                                            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _               | STOP                                                                                                            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8               | NC=NC+1                                                                                                         |                                      | معمدها والارتيان والمراجع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                 | GO TO 11                                                                                                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | END                                                                                                             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>\$ 16</b> 71 | C DNOISN                                                                                                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | SUBROUTINE DNOIS                                                                                                |                                      | DINV(5.51.0V(12) .KN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 | COMMON /BL/B(5) +C(5+3) +A(5+5                                                                                  | ) • V(12) • XN(3) • CC               | - 1114 ( DA DI 40 4 4 8 4 4 1014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 | DO 1 I=1+5                                                                                                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | 11=1                                                                                                            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | I1=II+1                                                                                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | 16=11+6                                                                                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | DV(11)=0.                                                                                                       |                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                 | DV(16)=0.                                                                                                       |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | DO 1 J=1+5                                                                                                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | JJ=J                                                                                                            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 |                                                                                                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

TABLE G-3 (Cont'd)

| J6=JJ+6 0+10(14)                                  |  |
|---------------------------------------------------|--|
| DV(11)=DV(11)+A(11+JJ)+V(J1)++5+B(11)+B(JJ)+V(JB) |  |
|                                                   |  |
| IF (KN.EG.1) GO TO 3                              |  |
| DO 2 1=1+5                                        |  |
| and a second trail                                |  |
| 11=11+1                                           |  |
| 5et=1+3                                           |  |
| DV(11)=DV(11)+C(11+J)+XN(J)                       |  |
| Unda                                              |  |
| D0 4 1=1+5                                        |  |
| s s area lini                                     |  |
| 11=11+6                                           |  |
| ▲ UzU+.5*B(1)*V(11)                               |  |
| DV(12)=U*#2                                       |  |
| 3 DETURN                                          |  |
| FND                                               |  |
| ALBETC SORTN                                      |  |
| SUBROUTINE SORT (A+N)                             |  |
| DIMENSION A (500.2)                               |  |
|                                                   |  |
| X±O.                                              |  |
| 112                                               |  |
|                                                   |  |
| IF(A(J+1),GT,X) Y=A(J+2)                          |  |
| IF (A(Jel) GT .X) K=J                             |  |
| $2 IF(A(JelleGT_X) X=A(Jel)$                      |  |
| A(K+1)#A(11+1)                                    |  |
| A(K+2)=A(11+2)                                    |  |
| A(11+1)=X                                         |  |
| 1 A(11.2)#Y                                       |  |
| DETURN                                            |  |
| END                                               |  |

#### corresponding to HB.

6 8.3 INCIAO

The beast squares best perabolic fit referred to in block "H" of Figure 6-1 was rade by subroutine H-CPHO. A FORTHAN listing of this program is shown in Table G-b. The nain computation was done by the ESSO system. PHOPHO merely words in the data supplied by PHOB, and transfer it to a data tage to be processed by the ESSO system. The ESSO system determines the perobole which best fits (in a least squares sense) the data points, and generates a tage to operate the CALCOLP plotter. Using the resulting topes, the CALCOLP plotter generated the curves shown in Figures 6-5 through 6-9.

# G. 3 Correctional Details Associated with P2

The conjutation for P2 was carried out in a menner exactly parallel to that for P1. The competts made about the computation for P1 apply clear to the computation for P2. The computation for P2 was carried out as follows.

- (b) The program HAT2 was used to compute  $\zeta(\sigma)$  versus  $K_{\rm u}$ . The PCRMRAN Listing of DET2 is shown in Table G-5. The results of this part of the computation are given in Table G-5.
- (?) The program PROB was modified slightly to reflect the difference in the equations of PL and D2, and use in the same normal as before. The FORMAR Listing of PROB as it was used for P2 is shown in Table G-7.
- (3) The progress MAOPRO was used exactly as for P2, using the cutput free PROB to generate Figures 5-19 through 5-22.

# G.A. Monattion (5-61) as an Americanica to (5-6).

G.A. Theorem

The purpose of this section is to present note numerical evidence that equation (5-21) is an adequate approximation to equation (5-5). The

TABLE G-4. PLOPRO LISTING

SIBFIC PLOPRO DIMENSION X(36) . PROB(500.2) .NO(6) ~ ~ ~ DO 1 1=1+36 11=1 1 X(1)=(37.-FLOAT(11))/36. READ(5+2) ISETS+ (NO(1)+1=1+6) 2 FORMAT(7110) - DO 3 I=1+ISETS READ(5+4)(PROB(J+1)+J=1+36) FORMAT(8(4E15+8/)+4E15+8) CALL SORT(PROB+36) WRITE(6,5) (PROB(J,1),X(J),J=1.36) DO 7 J=1+36 ·- • 7 PROB(J+1)=PROB(J+1)\*\*+5 KuNO(1)+1 WRITE(3)(PROB(J.1).X(J).J=K.36) ENDFILE 3 WRITE(6+5) (PROB(J+1)+X(J)+J=K+36) 5 FORMAT(1H1///36(1XE19.8.E20.8/)) - 3 - CONTINUE WRITE(3)(PROB(J.1).X(J).J=K.36) ENDFILE 3 WRITE(3)(PROB(J,1).X(J).J=K.36) •• ENDFILE 3 STOP . . . . . . . . - ---- END SIBFTC SORTN SUBROUTINE SORT(AIN) DIMENSION A (500+2) . . . . . •••••• DO 1 I=1+N X=0. . . . 11=1 N+11=L 2 00 IF(A(J+1).GT.X) Y=A(J+2) IF(A(JallaGTaX) KaJ 2 IF(A(J+1)+GT+X) XHA(J+1) A(K+1)=A(II+1) A(K+2)=A(11+2) A(11+1)=X 1 A(11.2)=Y RETURN • • END

# TABLE G-5. DET2 LISTING

| s 18FT    | C DET2                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | DIMENSION E1(100) . E2(100) . TEM | (305) • R(20+20) • E3(13) • E4(13) • TE2(44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | COMMON /SYS/8(5)+A(5+5)+CCPIN     | W(5+5)+XBAR(5)+UK /AM1/PHIC(10+10)+P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| :         | LHID(10+10)+VP(101)+DVP(101)      | /AM2/V(14)+DV(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           | EXTERNAL DPHI DA2                 | والاستريبية ومنتصر ومناهم مراجع والمسترين والمسترين والمسترين والمتراج والمتراجع والمراجع والم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | UK+5.E+05                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | KUni                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1000      | DO 1 101.5                        | والمحمد المراكز المراجع ومراجع والمراجعة والمواصل مراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | XBAR(1)=0.                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | B(1)=0.                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | DO 1 J#1+5                        | میند و را <mark>مستقوم هاست امین از با و وست می منطقه با مع</mark> د و معمد و با می از این منطقه می مدین می مدین می از این ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | A(1+J)=0.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1         | CCPINV(1+J)=0+                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | CCPINV(3+3)=39+04/16+             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | CCPINV(3+4)=+3                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | CCPINV(4+3)=-+3                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | CCPINV(4+4)=,0625                 | ուցել է է է է նախարհաների աներաների են հայտարաների հայտարելու այն ուսերին հայտարերին հայտարերին հայտարաների հա<br>Հ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           | CCP114V(5+5)=1+/9+                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           | A(3+1)=1+                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ••••••••• | A{4+1}=4.8                        | ցուց է որ էնչ արդելու է է անդրվել է հայտարար վեր է է հարցել եարհիւրե անդրվել եր անել առաջ հայտարած ավերաներացի<br>Դարություն                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | A(2+2)==5.                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | A(3,2)=-+2                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ·····     | A(4+2)=-+96                       | անածառան է է հետ երը հատումեն Ber ան նշատերին է սուց հետ է համաձաններին անհանձներներին համաձատանատանը հատուները<br>Համաձ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | A(543)#3.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | A(1+4)==+5                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | A [\$ 44] ===4 a                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           |                                   | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | A(245) ***245                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | A(5+5)#~3+                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           |                                   | a an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | KDAR(J)×10                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           |                                   | والمحمد والمراجعة والمهمة مهرا المراجعة المراجع والمراجع المراجع الراجع المراجع المراجع المراجع المراجع المراجع والمراجع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           |                                   | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           | 16444<br>NCAL - 1617/75/07341     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           |                                   | an an that a state of the second state state of the second state of th                                                                                                                                                                                                                                                    |
|           | 11=1                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | 15 =11+5                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | DO 2 J#1+5                        | a a su a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | JJRJ                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | しきゅうしょう                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| - · ·     | PHIC(IAJ)=0.                      | a an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | PHICIIS+J)=0.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | PHIC(15+J5)=0.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | PHIC(1+J5)=0.                     | (c) a second s<br>second second sec<br>second second s<br>second second s<br>second second se |
|           | 1F(1.EQ.J) PHIC(14J)=1.           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           | IF(15+E0+J5) PHIC(15+J5)=1+       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| •         | PHID(1+J)=A(1+J)                  | a an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | PHID(1+J5)++5* B(1)*B(J)/L        | IX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | PHID(15+J)#2+#CCPINV(1+J)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2         | PHID(15+J5)=~A(J+1)               | a an an an an an Anna an ann an an an an an ann an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | VP(1)=0.                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | K#1                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | DO 3 101410                       | յուն է հայտարանությունները հայտարանությունները է արտանանացներին է հայտարանությունները։<br>Դահունների հայտարանությունները հայտարանությունները հայտարանությունները հայտարանությունները հայտարանությունները հ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | DO 3 J=1+10                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | K*K+1                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3         | VP(K)=PHIC(I+J)                   | <u>a ser a /u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

|      | CALL UPHI AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|      | DVP(1) ×DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                    |
|      | CALL AMRKSTAPTDANTOPHITTOOTITEITEZTHANTTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                    |
|      | DO 4 1=1:305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| 4    | TEM(1)=04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |
|      | DO 5 I=1+NCAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |
|      | CALL AMRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |
|      | Kel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |
|      | D0 5 Juli10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
|      | DO 5 L=1+10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
|      | KaK+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |
| 5    | PHIC(JAL)=VP(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|      | 00.6 tm145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|      | 2 2 m L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
|      | 10+11+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ويعتقدون وراري       |
|      | H(110)=U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
|      | DO 6 7#145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |
|      | U.S. C. S. C |                      |
|      | J5=JJ+5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
|      | R(1+J)=PHIC(15+J5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
| 6    | R(I+6) *R(I+6)-PHIC(I5+J) *XBAR(J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|      | CALL RLMTX(R+5+1+M+D+-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
|      | WRITE(6.7) UK.(R(1.6).1=1.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| 7    | FORMAT(1H1//1XE19+8+5E20+8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
|      | V(1)=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
|      | DO 8 1=145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |
|      | Ital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
|      | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | يهاد والمحاد         |
|      | 11-11-1<br>14-13-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|      | 10-11+0<br>V/111-YBAD(/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | والمتعاملين والمراجع |
|      | V(10)=N(170)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|      | A(12)=0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                    |
|      | V(14)#U+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
|      | DV(1)=DT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
|      | CALL DA2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
| • •• | CALL AMRKS(V+DV+DF2+13+1+L3+L+H+H+H+LL+V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |
|      | NR=100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |
|      | NN=NCAL+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |
| • •  | DO 9 I=1+NN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
|      | IF(NR.EQ.100)WRITE(6.10) (V(J), J=1.14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
| 10   | FORMAT(1XE19.8.5E20.8/20X5E20.8/20X3E20.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |
|      | IF(NR.E0.100)NR=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                    |
|      | CALL AMRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |
| •    | NQ=NR+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
| -    | KU=KU+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>.</b>             |
|      | 1F(KU_EQ.2) UK=5.E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |
|      | 1F (KU+EQ+3) UK=1+E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |
|      | 15 (KU-1, T-4) GO TO 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |
|      | STAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 0.5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ••• •                |
| PIOL |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|      | SUDRUUTINE OPHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nVP(101)             |
|      | COMPONE AND PRICE TO THE PRICE  |                      |
|      | Kel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |
|      | DO 1 1=1+10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
|      | DQ 1 J=1+10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
| · •  | K#K+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |
|      | DVP(K)=0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |
|      | DO 1 L=1+10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
|      | DVP(K)=DVP(K)+PHID(I+L)*PHIC(L+J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |

TABLE G-5 (Cont'd)

|            | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| \$18FTC    | DA2N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | SUBROUTINE DAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | CONHON/SYS/8(5)+A(5+5)+CCPINV(5+5)+XBAR(5)+UK/AH2/4(14)+DV(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 100        | FORMAT (SOXE20.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | U=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | DO 1 1=1+5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | 16 =11+6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1          | U=U++5+ B(1)+V(16)/UK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | D0 2 1=1+5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | 11-11+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | DV(11)=B(1)*U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | DO 2 J#1:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | ل = ل ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| · 2        | DV(11)=DV(11)+A(1+J)=V(J1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 101        | FC2MAT(20X5E20.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | Do 3 1×1:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | []=] []+]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | 16=11+6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ·· · · · · | DA(19)=0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | DO 3 J#1+5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | ل هان ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | JInJJ+1 Andrew |
|            | ∂+U=∂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3          | DV(16) * DV(16) + 2 • * CCPINV(1 • J) * V(J1) - A(J • I) * V(J6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ******     | DV(12)=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | DO 4 I=145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | 11=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| •          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | DO 4 J=1+5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | ل≖زل                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | [+[                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4          | DV(12) = DV(12)+V(11) + CCP(NV(1+J) + V(J1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | DV(13) *UK*U*#2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| • •        | DV(14)=DV(12)+DV(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

TABLE G-6. 8(0) VERSUS KU FOR P2.

|                      |                                 | and the second |                                          |                             |                              |
|----------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------|------------------------------|
| r,                   | \$ <sup>1</sup> (0)             | € <sup>2</sup> (0)                                                                                               | ₹ <sup>3</sup> (0)                       | € <sup>†</sup> (0)          | ₽ <sup>5</sup> (0)           |
| -0 <sup>-0</sup>     | 101299 <sup>4</sup> 5 x 10      | .9 <sup>8</sup> 359052 x 10 <sup>-1</sup>                                                                        | 45501560 x 10 <sup>-1</sup>              | 37716435 x 10 <sup>-1</sup> | .62667440 × 10 <sup>-2</sup> |
| 9                    | رام - 10-1<br>د - 10-1          | 1-01 x 11607501.                                                                                                 | 12416788 × 10 <sup>1</sup>               | .10662140                   | 48570312 x 10 <sup>-1</sup>  |
| 5-01<br>10-5         | - 13612062 × 10 <sup>1</sup>    | .11036362                                                                                                        | 50550 <sup>9</sup> 51 x 10 <sup>-1</sup> | 84376331 x 10 <sup>-1</sup> | 1201 X 1872481.              |
|                      |                                 | 8200 [J. L                                                                                                       | 53055505 x 10 <sup>-1</sup>              | 12426937                    | .17895837 × 10 <sup>-1</sup> |
| 3 × 10               | ••15:00:358 x -0                | 12323603                                                                                                         |                                          | 1910122 <sup>4</sup>        | .25515453 x 10 <sup>-1</sup> |
| - <b>1</b>           |                                 |                                                                                                                  | 56760166 x 10 <sup>-1</sup>              | 26568242                    | .33215750 × 10 <sup>-1</sup> |
| 2.5 x 10             | 01 ¥ 77001412<br>101 + عودممکور | 41230521.                                                                                                        | 56724220 x 10 <sup>-1</sup>              | 335994 36                   | .39692757 × 10 <sup>-1</sup> |
| 7 z ±0<br>10-3       | 25700853 ± 10 <sup>1</sup>      | .13969206                                                                                                        | 54908562 × 10 <sup>-1</sup>              | 42048188                    | .46327014 × 10 <sup>-1</sup> |
| 5 x 10 <sup>-2</sup> | 43589614 × 10 <sup>1</sup>      | . 20932049                                                                                                       | .58894593 x 10 <sup>-2</sup>             | 14655693 x 10 <sup>1</sup>  | 4226261.                     |

# TABLE G-7. PROB LISTING FOR P2

| SIBFTO      | PROB<br>DIMENSION FIL    | 16) • E2 ( 16) • TE (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53) + XNORA (5) | 00+2)+TLAP(5    | :0.2)             |
|-------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-------------------|
|             | COMMON /BL/B(            | 5) +C(5+3) +A(5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5)+V(17)+XN     | (3) + CCPINV (5 | 15) + DV(17) + KN |
| 1           | -<br>UK                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             | EXTERNAL DNOT            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                 |                   |
|             | KN#1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
| • ••        | NCH=19                   | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                 |                   |
|             | NCON=1000                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             | Do 1 I=1+5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             | B(1)=0.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             | C([+1]=0.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             | C(1+2)=0.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
| ·····       | C(1+3)=0+                | the state of the s |                 |                 |                   |
|             | DO 1 J=1+5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
| 1           | A(I)]=0.                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
| ····        | A{J\$1}=1.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             | A(44))=40                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             | A12421=-24               | - 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                 |                   |
|             | A(J) == 12               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             | A(446)=                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             | A/1+A1+++5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             | A(2+4)==2.5              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             | A19451x-3.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             | A(1+5)#=+5               | · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                 |                   |
|             | A(446)=-4+               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             | A(2+5)6-2+5              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             | B(1)==5                  | a a national distance and a constrained of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                 |                   |
|             | 8(2)=2+5                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             | C(3+3)=1+                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
| •           | C(4+1)=4+                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             | C(4+3) #4+8              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             | C(5+2)=3+                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             | NC=1                     | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                 |                   |
| 11          | DO 2 1=1+17              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
| 2           | ¥{1}=0s                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             | DO 15 1=1+53             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
| 15          | TE(1)=0.                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             | V(4)=1.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
| ··• · · · · | V(6)=10                  | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                 |                   |
|             | TF=1.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             | NT=1000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
| •• •• ·     | DV(1)#+001               | a a se mare ta ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                 |                   |
|             | XNF=DV(1)**.             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                 |                   |
| _           | DO 3 1=1+3               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
| 3           | XN(1)=GAURN(             | Z)/XNF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                 |                   |
|             | UK=5.E=02                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             | V(/)==+14655             | 0593691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                 |                   |
|             | - V(0)= 410329           | 1269EVV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                 |                   |
|             | ▼{¥]#~\$43569            | 1014CV1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                 |                   |
|             |                          | 1047500<br>1045035-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                 |                   |
|             |                          | 1940902-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                 |                   |
|             | 1141<br>1141             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             | ****                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                 |                   |
| • -         | 11-11-11<br>7 V/11\_V/1\ | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                 |                   |
|             | DO 4 1-145               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |
|             | 20 4 2-113               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                   |

# TABLE G-7 (Cont'd)

| · · · · · · · · · · · · · · · · · · ·   | CCPINV(1+J)×0.                                        |
|-----------------------------------------|-------------------------------------------------------|
| -•                                      | CCPINV(3+3)+39+04/16+                                 |
|                                         | CCPINV(3+4)=-+3                                       |
|                                         | CCPINV(4,3)=-,3                                       |
|                                         | CCDINV(A+4)m.0528                                     |
|                                         |                                                       |
|                                         |                                                       |
|                                         |                                                       |
|                                         | 2 J 10163                                             |
|                                         | 11=1                                                  |
|                                         |                                                       |
|                                         | DO 5 Jaits                                            |
|                                         | ل = تان                                               |
|                                         | 12+4LL×LL                                             |
| 5                                       | XNOR=XNOR+V(111+CCPINV(1+J)+V(JJ)                     |
|                                         | XNORL=XNOR                                            |
| الوس ويرابع                             | CALL DNGIS                                            |
|                                         | CALL AMPKS (VADVADWOTS+16+1+F1+F2+H+H+TE+0)           |
|                                         |                                                       |
|                                         |                                                       |
|                                         | DU G IFITIOU<br>                                      |
|                                         | INTERESTING ANTIFICATIONALISTANALATIONIALISTANALATION |
| 1                                       |                                                       |
| 1 <b>4</b> 1 1 1 1 1 1 1 1 1            | IF (NAIT-EG, 103) NAIT=0                              |
|                                         | NRIT=NRIT+1                                           |
| 100                                     | FORMAT(1XE19.6.5E20.8/1XE18.8.5E20.8/1XE19.6)         |
| • • • • • • • • • •                     | IF(ICLEONCON) GO TO 13                                |
|                                         | D0 14 IC0n7+11                                        |
| 14                                      | V(1C0)=04                                             |
| 13                                      | CALL AMRK                                             |
|                                         | XNOR=0,                                               |
|                                         | DO 7 J#145                                            |
| ··· • • • • • • • • • • • • • • • • • • |                                                       |
|                                         | 111111111                                             |
|                                         |                                                       |
|                                         |                                                       |
|                                         |                                                       |
| -                                       |                                                       |
|                                         |                                                       |
|                                         | IF (XROR, LI, XRORE) (L=V(1)                          |
|                                         | 1F (XNOR .LT. XNORL ) XNORL = XNOR                    |
|                                         | D0 6 J=1+3                                            |
|                                         | XN(J)=GAURN(Z)/XNF                                    |
|                                         | WRITE(6.100)V(1).(V(K).K=13:17).(V(K).K=7:1).XNOR     |
| 1                                       |                                                       |
|                                         | XNORA(RC+2)=TL                                        |
|                                         | XNORA(N(1)=XNORL                                      |
|                                         | TLAR(NC+1)=TL                                         |
| <b>-</b> · ·                            | TLAR (NC+2) =XNOR                                     |
|                                         | KN=2                                                  |
|                                         | IFINCAL TANCHA GO TO B                                |
| · • · · ·                               |                                                       |
| 12                                      |                                                       |
|                                         |                                                       |
|                                         | CALL SORT(ANDRAINCH)                                  |
| • • • •                                 | CALL SURT(ILAHINCM)                                   |
|                                         | DO 9 I=1+NCM                                          |
| 9                                       | WRITE(6+10) (XNORA(1+J)+J=1+2)                        |
| •                                       | DO 16 ImleNCM                                         |
| 16                                      | WRITE(6+10) (TLAR(1+J)+J=1+2)                         |
| 10                                      | FORMAT (1X2E20.8)                                     |
|                                         | CALL GETNM(NMB)                                       |
|                                         | WRITE(6.101) NMB                                      |
| 101                                     | FORMAT(1X4HNMB=, [13]                                 |
| • • • • •                               | STOP                                                  |
|                                         |                                                       |

TABLE G-7 (Cont'd)

| 8        | NC=NC+1 and a second second second second | <ul> <li>A subscription of the second se</li></ul> |
|----------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | GO TO 11                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | END                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SIBFT    | C DA2NOI                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | SUBROUTINE DNOIS                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | COHMON /BL/B(5) + C(5+3) + A (5+5         | 5) • V (17) • XN (3) • CCPINV (5 • 5) • DV (17) • KN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | 1+UK                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | N=O.                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 14-1<br>16 #1146                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 10 -11 - BI +14V(261/0/                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| •        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 33=14+2<br>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ••       | DV(11)=B(1)=U                             | and the second sec                                                                                                                                                                                                                                                   |
|          | DO 2 J=1+5                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | U≓U.                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ·        | 1+66#1                                    | a de la construcción de la constru<br>La construcción de la construcción d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2        | DV(11)*DV(11)+A(1+J)*V(J1)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | DO 3 1=1+5                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 11=1                                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 11=11+1                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 16=11+6                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 112=11+12                                 | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | DV(16)=0.                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | DV(112)=DV(11)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>-</b> | D0 3 J=1:5                                | a de la construcción de la constru<br>La construcción de la construcción d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 1+Lait                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| • • •    | - 0+LLz8L                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3        | DV(161+DV(161+2-+CCDINV(1+J               | 1) + V(.11) - A(J + 1) + V(JG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -        | 1E(KN-E0-11 CO TO A                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                           | • a 3 • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | \$ \$ 20 \$<br>Y 9 7 7 6                  | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |                                           | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5        | DA(15)#DA(11)+C(11+D)*XN(D)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | DV(12)#0#92                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4        | RETURN                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | END                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| S IBF    | IC SORTN                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | SUBROUTINE SORT (AIN)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | DIMENSION A(500,2)                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| •        | DQ 1 1=14N                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | X = O •                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 1141                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | DO 2 JHII+N                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 3F(A(J+1)+GT+X) Y#A(J+2)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | IF(A(J+1)+GT-X) K=J                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 2 IF(A(J+1).GT.X) X=A(J+1)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | A(K+1) = A(11+1)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | A(K+2)#A([1+7)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | A(II_I)=X                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 1 4/11.21=4                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | ENU                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

uncertained correspondence of the solution of (6-2) to the solution of (6-5)is established by theorem 2-7. The questions remain as to whether the discretization of (6-21) is sufficiently fine, and as to whether the statistical properties of the random number generator outputs are good enough to rate the computed values of the solution of (6-21) a good reprecentation of (6-6). The results presented below give evidence that this is in fact the case. The numerical results were obtained using the numerical values for sympton parameters given in Chapter 6.

G.4.2 Shooretical Development

The basic idea behind the following computation is to choose some statistical parameter of x(t) (as defined by (5.5)) which can be computed from theory, and to compare its value with the same parameter computed from observations on  $x^{2}(t)$  (as defined by (5-21)).

Let

$$R(t,\tau) = E\left[x(\tau)x'(\tau+\tau) \mid x(0)\right]$$
 (G-1)

where x(t) is defined by (6-6), with u = 0. Let

$$Q(t, \xi) = B\left[x(t)x'(t) \mid x(\tau)\right]$$
 (G-2)

Fron

$$R(t,\tau) = C(t,0) \xi'_{A}(\tau,t) \qquad (G-3)$$

where  $\psi_A$  is the transition matrix associated with A. Wonham [2] shows that for stable systems, Q is asymptotic. Then R is asymptotic also. Thus, for time invariant A, and for t much larger than the system time constants.

$$R(t,\tau) \approx \widetilde{R}(\tau)$$
 (G-4)

where  $\widetilde{\mathbb{R}}(\tau) = \lim_{t \to \infty} \mathbb{R}(t, \tau)$ .

That is, efter a settling period on the order of nagnitude of the system

time constants, the statistics of x(t) conditioned on x(0) become almost stationary. Suppose that for large t, x(t) becomes ergodic as well as stationary, then

$$R(t,\tau) \approx \tilde{R}(\tau) \approx \hat{R}(\tau)$$
 (G-5)

where

$$\hat{R}(\tau) = \lim_{T_2 \to \infty} \frac{1}{T_2 - T_1} \int_{T_1}^{T_2} dt [x(t)x'(t+\tau)]$$
(G-6)

The next section will show the procedure and results of the computation of  $\tilde{R}(\tau)$  from (G-3) and (G-4), the procedure and results of the computation of  $\hat{R}(\tau)$  from (6-21), and how the results compare.

G.4.3 Numerical Results

The computation of  $\tilde{R}(\tau)$  was carried out in two steps:

(1) Equation (2-14) was used to compute Q(t,0) versus t. The FORTRAN
 listing of the program used for this is shown in Table G-8. The
 result of this computation is that the asymptotic value of Q(t,0) is

| Q(t,0)= | 2.1420426 | .40025407          | 91239833  | 1.6087804  | -1.6087804 |
|---------|-----------|--------------------|-----------|------------|------------|
|         | .40025407 | 2.0012703          | 2.0619918 | -1.9235772 | -2.0789634 |
|         | 91239833  | -2.0619918         | 3.4232723 | 1.0983740  | 3.0256096  |
|         | 1.6087804 | <b>-1.92</b> 35772 | 1.0983740 | 7.2721950  | 34731703   |
|         | 1.6087804 | -2.0789634         | 3.0256096 | 34731703   | 4.5256096  |

(2) Using the values given by (G-7), and computing  $\Phi_{A}^{\dagger}(\tau, t)$  by using (2-5),  $\tilde{R}(\tau)$  was computed according to (G-3) and (G-4). A FORTRAN listing of the program used for this computation is shown in Table G-9. The results of this computation were used to obtain the plots of  $\tilde{R}(\tau)$  versus  $\tau$  shown in Figures G-2, G-3, and G-4.

SIBFTC THI SUBROUTINE INPUT DIMENSION DUM(20.20) . VDUM(20) COMMON/INPMU/Z0(5)+INDP+XC(11+5) COMMON/SYSPAR/A(5,5)+B(5)+CWC(5,5)+CWCINV(5+5)+U1(1001)+S(1001)+GG 111.UK .R COMMON/RANB/PA(3+3)+P(5+5)+XMU(5)+JLOG+Y(5)+RJ+T+RY(5)+RU(5)+UR LOGICAL JLOG UK=1.E-04 R##1 DO 1 1=1+5 20(1)=0. B(1)=0. DO 1 J=1+5 A(1+J)=0+ CWC(I+J)=0. 1 CWCINV=0. A(3:1)=1+ A(4+1)=4+8 A(2+2)=-5. A(3.2)=-.2 A(4+2)=-+96 A(5+3)=3+ A(1+4)=+5 A(2+4)=-2.5 A(5+5)=-3+ A(1+5) === 5 A(4+4]=-4+ A(2.5) =-2.5 8(1)=+5 B(2)=2.5 CWCINV(3+3)=39+04/16+ CWCINV(3+4)=++3 CWCINV(4,3)=-.3 CWCINV(4+4)=.0625 CWCINV(5+5)=1+/9+ Z0(3)=1. 20(5)=1. CWC(3+3)+1+ CWC(3.4)=4.8 CWC(4+3)=4+8 CWC(5+5)=9. CWC(4+4)=39+04 5 FORMAT(3110) CALL PHUCAL STOP END SIBFTC PMUCAN SUBROUTINE PMUCAL DIMENSION TEM(65)+21(20)+22(20)+0(20+20)+XLAM(20) COMMON/INPMU/Z0(5) . INDP . XC(11.5) COMMON/DPMUB/V(21).DV(21) EXTERNAL DPMU NRIT=100 DO 1 1=1+16 V(1)=0. ì DO 2 1=17+21 11=1 ••• 11=11-16

TABLE G-8. LISTING OF PROGRAM FOR THE COMPUTATION OF Q

TABLE G-8 (Cont'd)

E

```
2 V(1)=20(11)
     DO 3 1=1.65
     TEM(I)=0.
 з
     DV(1)=+01
     CALL DPHU
     CALL AMRKS(V.DV.DPMU:20.1.E1.E2.H.H.TEN.0)
     DO 4 1=1.5000
 200 FORMAT(SOXE16.8)
     CALL AMRK
     Lul
     00 5 J=1+0
     ل⊭رړ
     DO 5 KaleJJ
     L=L+1
     Q(J+K)=V(L)
     0(K+J)=V(L)
 5
 201 FORMAT(3(1XE19.8.4E20.8/1)
     L=I
     00 8 J=1+5
     JJHJ
     DO 8 K=1+JJ
     LnL+1
  .
     Q(JiK)=V(L)
     Q(KAJ)=V(L)
 8
     IF (NALT-NE-100) GC TO 4
     WRITE(6.200) V(1)
     WRITE(6.201)((G(K.J).J=1.5).K=1.5)
     NR1T=0
 100 FORMATI ////SOXE20.8//S(1XE19.8.4E20.8/1)
 202 FORMAT(5E15.8/5E15.8/5E15.8)
    4 NRITENRITEL
     PUNCH 202+1V(L)+L=2+16)
     RETURN
     END
SIBFTC DPHUN
      SUBROUTINE DPMU
      DIMENSION 0(5.5)
      COFMON/SYSPAR/A(5+5)+B(5)+CWC(5+5)+CWCINV(5+5)+U1(1001)+S(1001)+GG
     111+UK+R
      COMMON/DPMUB/V(21)+DV(21)
      L=1
      DO 1 J=145
      JJ=J
      DO 1 K=1+JJ
      L=L+1
      0(J,K)=V(L)
   1
     0(K+J)=V(L)
      L=1
      Co 2 J#1+5
                      . .
      1.1=1
      DO 2 K=1+JJ
      L=L+1
      DV(L)=CWC(J+K)
      DO 2 Ma1.5
    2 DY(L)=DY(L)+A(J+N)#Q(M+K)+Q(J+M)#A(K+M)
      00 3 1=1+5
      11=1
      11=11+16
      DV(11)=04
      DO 3 J=1+5
      ງງ≖ງ
     · JJ=JJ+16
      DV(11)#A(1+J)#V(JJ)+DV(11)
  3
      RETURN
      END
```

205

| SIBFT | C THCOS                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | DIMENSION EU(25) + EL(25) + TEM(80) + V11(1002) + V | 22(1002)+V33(1002)+TAR(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | 21002) • V1(16)                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 1.WORK(1024).R(5.5).DUN(5.5)                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | COMMON /DRTH/A(5+5)+PHI(5+5)+V(26)+DV(26)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | EXTERNAL DTHR                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | K=1                                                 | The second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | DO 1 1=1+5                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | DO 1 J=1+5                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 4(1:J)=0.                                           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | PHI(1+J)=0.                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | (F(1.EQ.J) PHI(1.J)=1.                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | KnK+1                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1     | V(K)=PHI(1+J)                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -     | READ(5+10)(V)(L)+L+2+14)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10    | FORMAT (5515-8/5515-8/5515-8)                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| • -   | Lel                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 00 2 1=1+5                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 11=1 ·                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2     |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •     |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | A17,2)_ E                                           | ې مېښو وې د به وه د وه د وه د د د و و د و و د و و د و د                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | A(3+2)=-12                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | A(4+2)=++95                                         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | A(5+3)=3.                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | A(1+4)===5                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | A(2+4)=-2+5                                         | the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | A(5+5)=-3.                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | A(1+5)=5                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | &{4+4}=-4+                                          | a ser a s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | A(2+5)=-2+5                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | V(1)=0.                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | DV(1)=01                                            | An in the second second second second second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | DO 3 1=1+80                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3     | TEM(1)=0.                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | CALL DTHR                                           | an an in the Parameter of the state of the s |
|       | CALL AMERSIVADVADTHRAZEALAFUAFLAMAHATEMADA          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | DO 4 1=1+1000                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | TAR(1) #V(1)                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 00 6 11=1-5                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6     |                                                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| •     | W33(1)=DUM(E.S)                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 435(1)-DOR(3(3)                                     | A Construction of the second secon    |
|       | CALL AMAR                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 00 4 J#115                                          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | DO 4 L=1+5                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | KaK+1                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4     | PHI(J+L)=V(K)                                       | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | DO 5 1=1+1000+2                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5     | WRITE(3) TAR(1),V33(1)                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | ENDFILE 3                                           | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | STOP                                                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 5ND                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LIBET |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | SUBPOLITINE DTHP                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | COMMON/DOTH/A/5.6) DHI/5.5) VI241-DVI241            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 00 1 J#145                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | K=K+1                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | DV(K)=0.                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | DO 1 L=1.5                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1     | DV(K)=DV(K)+A(I+L)+PHI(L+J)                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | RETURN                                              | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | END                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |


FIGURE G-2.  $\tilde{R}_{11}(\tau)$  AND  $\hat{R}_{11}(\tau)$  VERSUS  $\tau$ 



FIGURE G-3. R22(1) AND R22(1) VERSUS T



Where program whose N(r) were convict out by the program whose Netwill Disting in shown in table G-10. A block dispersion the algorithm is shown in Figure G-5. The values used for  $\Psi_1$  and  $\Psi_2$  in (G-5) were

$$T_{1} = 10 \qquad (G-8)$$
$$T_{2} = 70 \qquad (G-9)$$

The results of the computation were used to obtain the plots of  $\hat{R}(\tau)$  versus  $\tau$  shown in Figures G-2, G-3, and G-3.

In survey,  $\widehat{R}(\tau)$  and  $\widehat{R}(\tau)$  were computed on the basic of (6-6) and (6-21) respectively. It was shown that if (6-21) is a good representation of (6-6),  $\widehat{R}(\tau)$  should approximate  $\widehat{R}(\tau)$ . Figures G-2, G-3, and G-4 give scale feeling for the quality of the approximation.

TABLE G-10. LISTING OF PROGRAM FOR THE COMPUTATION OF  $\hat{R}(\tau)$ 

|     | 110241.04014031.7000140   | 121                  |           |           | 0) + W ( |
|-----|---------------------------|----------------------|-----------|-----------|----------|
|     | COMMON /DR/4(6),DV(6),    | A(5+5)+C(5+3)+XN(3)  | /DRB/X(2) | +DX123+1T | AUIN     |
|     | 2T + X3AR                 |                      |           |           |          |
|     | EXTERNAL DNO.DRS          |                      |           |           |          |
|     | DO 1 I=1+5                |                      |           |           |          |
| -   | DO 2 J=1+3                |                      |           |           |          |
| 2   | C(I+J)=0.                 |                      |           |           |          |
|     | DO 1 J=1+5                | ·····                |           | ** * * *  |          |
| 1   | A[[+J]=0.                 | ,                    |           |           |          |
|     | A(3+1)=1+                 |                      |           |           |          |
|     | A(4+1)=4+8                |                      |           |           |          |
|     | A(2+2)=-5.                |                      |           |           |          |
|     | A(3+2)=-+2                |                      |           |           |          |
| -   | A(4+2)=-,96               | · · · ·              | • •       |           |          |
|     | A(5+3)*3.                 |                      |           |           |          |
|     | A(1+4)=-#5                |                      |           |           |          |
|     | A(2+4)=-2+5               | -                    | · •       |           |          |
|     | A(5+5)=-3.                |                      |           |           |          |
|     | A(1+5)=5                  |                      |           |           |          |
|     | A ( 4 + 4 ) = - 4 +       |                      |           |           |          |
|     | A(2+5)=-2+5               |                      |           |           |          |
|     | C(3+3)=1+                 |                      |           |           |          |
|     | C(4+1)=4.                 |                      |           |           |          |
|     | C(4+3)=4+8                | _                    |           |           |          |
|     | C(5+3)=3.                 | •                    |           |           |          |
|     | DO 3 1×1+6                |                      |           |           |          |
| 3   | V(1)=0.                   |                      |           |           |          |
|     | DT=+025                   |                      |           |           |          |
|     | DTT=DT+++5                |                      |           |           |          |
|     | DV(1)=DT                  |                      |           |           |          |
|     | DO 4 1=1+3                |                      |           |           |          |
| 4   | XN(1)=GAURN(Z)/DTT        |                      |           |           |          |
|     | CALL DNG                  |                      |           |           |          |
|     | D0 5 1=1+20               |                      |           |           |          |
| 5   | TEM(1)=0.                 |                      |           |           |          |
|     | CALL AMRKS (V. DV. DNO. 5 | SAEUAEL AHAHATEMADI  |           |           |          |
|     | NR=100                    |                      |           |           |          |
|     | D0 6 1=1+3300             |                      |           |           |          |
|     | X3AR(1)=V(6)              |                      |           |           |          |
|     | IF (NR.EG. 100) WRITEIG   | 1001N2.Y348(1)       |           |           |          |
| 100 | FORMAT(1X110.F20.8)       |                      |           |           |          |
|     | IF (NR.E0.100) ND=0       |                      |           |           |          |
|     | NR=ND+1                   |                      |           |           |          |
|     | CALL AMOK                 |                      |           |           |          |
|     |                           |                      |           |           |          |
| 6.  | XN( 1)+CALION(7) (DT      |                      |           |           |          |
|     | CALL ANDESIN DY DOS. 1.   |                      |           |           |          |
|     | DO 7 THILADO              | elteonestrevenetemit |           |           |          |
|     | DD 5 1-1-0                |                      |           |           |          |
|     | TEM1/11/0                 |                      |           |           |          |
| -   |                           | • · · · ·            |           |           |          |
|     |                           |                      |           |           |          |
|     | ⊼(2)=0<br>₽∀(1) = 0 = π   |                      |           |           |          |
| ·   | UX(1)=+025                | • • • • •            |           |           |          |
|     | ITAUSI                    |                      |           |           |          |
|     |                           |                      |           |           |          |
|     | TTAUETTAU-1               |                      |           |           |          |

TABLE G-10 (Cont'd)

|              | D0 9 J=400+2800                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | L=INI                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | CALL DRS                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ···· - ··· 9 | X(2)=X(2)+DX(1)+DX(2)                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | RAR(1)=X(2)/60+                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7            | WRITE(6+100)1TAU+RAR(1)                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | CALL PLOTS(W(1)+1024+0)                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | CALL FACTOR( 7)                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | CALL SYMBOL (0 2.12HOCONNOR, 1553.012)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | CALL PLOT(2.5.0.03)                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | CALL SCALE (TAUDA 10. 400+1420+)                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | CALL SCALCERARTICUTION 1011011011010101010100000000000000000 | ) +RAR(402) +20+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | CALL AXIS/0.0.34TAU3.10.0.TAUR(401).TA                       | UR(4021.20.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| • • •        | CALL LINE (TAUR TRARTASUTITOTO)                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | CALL PLOTOTOTOTOTOTOTOT                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | STOP                                                         | ومستجميهم فكالما للالا المالية والمالية                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              | END                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| \$ 18FT      | C DNON                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | SUBROUTINE DNO                                               | محمد في المحمد المحم |
| ,            | COMMON /DR/V(6)+DV(6)+A(5+5)+C(5+5)+A(5)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | DO 1 1=1+5                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | 11#1                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | 11=11+1                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | DV(11)=0e                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | D0 2 J=1+3                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | DV(11)=DV(11)+C(1+J)*XN(J)                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | DQ 1 J=1+5                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | ل≖لل                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •••••        | JJ=JJ+1                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1            | (LL)V*(L+1)+A(I+)VDw(11)VD                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -            | RETURN                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | FND                                                          | وسيو هيه الحي اليور الد                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| S TRE        | TC D25N                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -101         | SUBBOUTINE DOS                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | COMMON /DBB/X(2)+DX(2)+1TAU+1NT+X3AR(4500)                   | مستحصيت والمراجع والجامع المراجع المراجع المراجع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | DY(2) - X 3AD(1) + X 3AB(1NT)                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                              | الم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              | END STATE                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | E NU                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



FIGURE G-5. ALGORITHM FOR THE COMPUTATION OF  $\hat{R}(\tau)$ 

### APPENDIX H

### COMPUTATIONAL DETAILS ASSOCIATED WITH

### CHAPTER 7

### H.1 Introduction

The purpose of this appendix is to record some of the computational details associated with the work reported in Chapter 7. FORTRAN listings are included.

## H.2 Conjugate Gradient Program

A FORTRAN listing of the program corresponding to the block diagrams of Figures 5-1 and 5-2 is shown in Table H-1. The algorithm shown in Figure 5-1 is contained in the main program (whose deck name is CONGRA). The subroutines function as follows.

Subroutines USGEN and DGEN generate the initial control  $(u^{o})$ . They use the initial values of the adjoint variables tabulated in Tables G-2 and G-6 to generate the controls corresponding to Pl or P2 respectively (see Chapter 6 and Appendix G).

Subroutines JCAL and DJCAL solve equations (5-21) and (5-5).

Subroutine DCON computes the derivatives required in the execution of the loop including blocks B and C of Figure 5-1.

Subroutine ALSTAR computes equations (5-31), (5-32), and (5-33).

Subroutine INPUT inputs the system parameters, uses FMUCAL to compute  $\mu_z$  and  $Q_z$  (see equations (5-38) through (5-41)), and initializes the random number generator.

### TABLE H-1. CONJUGATE GRADIENT PROCEAM

YU(5),TEM1(26),GI( 401),UC( 401),YT(5),TE(41),E1(12), SIBFTC CONGRA DIMENSION 1E2(12) COMMON/INPMU/ZU(5) +INUP+XC(11+5) COMMON/SYSPAR/A(5+5)+8(5)+CWC(5+5)+CWCINV(5+5)+UI( 401)+S( 401)+GG COMMON/RANE/PA(3+3)+P(5+5)+XMU(5)+JLUG+Y(5)+RJ+T+RY(5)+RU 111.UK.R .UR 1.PMUAR (401.5.6) COMMON/DOUNB/VF(13) DVF(13) UCON DELH EXTERNAL UCON LOGICAL DEC, ALDEC CALL INPUT CALL INPUT 100 FORMAT(///5(1XE19+8+5E20+8/)///5(1XE19+8+5E20+8/)///E60+8) DO 1 1=1+5 1 YO(1)=0+ 14 DO 2 1=1.101 2 UC(1)=U1(1) GG1=GG11 CALL JCAL(UC,YU,XJ,YT) WRITE(6,101)(YT(I),1=1,5),XJ 101 FORMAT (//1XE19.8.5E20.8) VF(1)=1. VF(7)=XJ DO 3 1=1,5 12=1 12=12+1 VF(12)=YT(1) 18=12+6 3 VF(18)=0. VF(13)=0+ DVF(1)=-.01 DO 4 I=1+41 TE(1)=0. 4 UCON=U1(100) DO 18 1=1.5 XMU(1)=PMUAR( 100.1.6) DO 18 J=1.5 18 P(1+J) #PMUAR(100+1+J) 19 FORMAT(E15.8) CALL DCON WRITE(6.102) 102 FORMAT(///) CALL AMRKS(VF, DVF, DCON. 12.1, E1. E2. H. H. TE. 0) NRIT=10 NSTOR=6 15TOR=10 DO 5 1=1+100 11=1 17=101+11 GI(IT) #DELH UCON=UI(IT) DO 21 J#1+5 XMU(J) = PMUAR(IT+J+6) DO 21 K#1+5 21 P(K,J)=PMUAR(IT,K,J) IF (NSTOR .NE . 10) GO TO 16 DO 17 \*=1+5 кк≖к KK=KK+1 17 VF (KK) \*XC(1STOR+K)

ISTOR=ISTOR-1 NSTOR=0 16 IF(NRIT+EG+10) WRITE(6+103) (VF(K)+K=1+13) IF(NRIT+CO+10) NRIT=0 NSTUR=NSTUR+1 NRIT=NRIT+1 143 FORMAT(2(1XE19.8.3E20.8/)3XE20.8) 5 CALL AMRK WRITE(6.103)(VF(1),1=1.13) G1(101) ±DELH GG11=-VF(13) BETA=GGI1/GGI DO 6 1=1+1-1 5(1)= GI(1)+BETA\*S(1) 6 DECENTALSEN X10=X1 ALDECE .FALSE . AL1=AB5(XJV)/CGI1 AL1=12.\*AL1 AL0=0. 11 D=AL1 DO 7 1=1+101 7 UC(1)=U1(1)+AL1\*5(1) / 0.(1)=0.(1)=AL[#3(1) CALL JCAL(UC,YU+XJ1+Y]) WRITE(6+104) XJU+XJ1+XJ2+AL0+AL1+AL2 1J4 FORMAT(///20X3E20+8/20X3E20+8) IF (XJ1+LE+XJ0) GO TO B IF (ALDEC) STOP AL1=AL1/4. ALDEC= . TRUE . GO TU 11 8 AL2=AL1+D IF (XJ2.GE.XJ1) GO TO 10 XJU=XJI XJ1=XJ2 ALO=AL1 AL1=AL2 AL2=AL2+D GO TO 12 10 CALL ALSTAR(AL+XJU+XJ1+XJ2+AL0+D) WRITE(6+105) AL DO 13 1=1+101 105 FORMAT(1X7HALSTAR=.E20.8) 13 UC(I)=UI(I)+AL\*5(1) CALL JCAL (UC, YU, XJST, YT) WRITE(6+1061XJST 106 FORMAT(1X5HXJST=+E16+B) CALL PUNPRO(UC) CALL PUNPRU(S) CALL GETNM(NBR) 27 FORMAT (E15-8+120) DO 30 1=1.101.10 30 WRITE(6,31) UC(1) 31 FORMAT(1XE2J.8) STOP END

```
SINFTC UGENI
      SUBROUT INE USGEN
      DIMENSION E1(6)+2(6)+TE(23)
      COMMON/GENB/V(7) DV(7)
      COMMON/SYSPAR/A(5,5),8(5),CWC(5,5),CWCINV(5,5),UI( 401),5( 401),GG
     111.UK.R
      EXTERNAL DEEN
      GG[1=1.
      V(1)=U.
      V(4)=-.11609808E05
      V(5)=-.12275599E04
      V(6)=-.16397535E05
      V(2)=-.35697004E04
      v(3)=.45220708E03
      V(7)=0.
DV(1)=.01
      CALL DGEN
      CALL AMRKS(V, DV, DGEN, 6,1, E1, E2, H, H, TE, O)
      NRIT=10
      DO 1 1=1.101
      5(1)=0.
      UI(1)=0.
      00 2 J=1+5
      ل⊭رل
      J1 = JJ+1
    5 01(1)=01(1)+B(1)*A(11)
      U1(1)=U1(1)/2.
       IF (NRIT.NE.10) GO TO 4
     WRITE(6.3) (V(J),J=1.7),U1(1)
J FORMAT(1XE19.8.5E20.8/20X2E20.8)
      NRIT=0
     4 NR1T=NR1T+1
     1 CALL AMRK
      RETURN
      END
 SIBETC DEENN
       SUBROUTINE DGEN
       COMMON/GENB/V(7)+DV(7)
       COMMON/SYSPAR/A(5.5).8(5).CWC(5.5).CWUINV(5.5).U1( 401).5( 401).GG
      111.UK.R
       DV(7)=0.
       00.1 1=1.5
       1 = 1 1
       11=11+1
       DV(1)=0.
       DV(7) = DV(7) + B(1) * V(11)
       00 1 J=1+5
       ປຸງະປ
       J1=JJ+1
     1 DV(1)=DV(1)=A(J+1)*V(J1)
       DV(7)=DV(7)**2
       DV(7)=DV(7)/4.
       RETURN
       E ND
 SIBETC JCALN
       COMMON/INPMU/ZU(5)+INDP+XC(11+5)
       COMMON/RANE/PA(3+3)+P(5+5)+XMU(5)+. LUG+Y(5)+RJ+T+RY(5)+RU
                                                                     • UR
      1. PMUAR (401.5.6)
       COMMON/DJCALB/V(B) .DV(B) .U
```

a the second states

- Y 2, 2

LUGICAL JLUG EXTERNAL DUCAL DV(1)=+01 V(1)=0. V(7)=0. V(8)=0. ISTOR=1 NRITEIC DO 1 1=1,28 TE(1)=0. 101 FORMAT(////) DG 2 1=1.5 1 1 = 1 11=11+1  $V(11) = Y \cap (1)$ 2 U±UC(1) DO 7 1=1+5 XMU(I) =PMUAR(1+I+6) 00 7 J=1+5 7 P(1+J) = PMUAR(1+1+J) 8 FORMAT(E15.8) CALL DJCAL CALL AMRKS(V,DV,DJCAL,7,1,E1,E2,H.H.FE.0) DO 3 1=1.100 IF (NSTUR .NE . 10) GO TO 5 DO 6 K=1.5 KK = K KK=KK+1 6 XC(ISTOR+K)=V(KK) ISTOR=ISTOR+1 NSTOR=D 5 [F(NRIT.EQ.10 ) WRITE(6.100)(V(K).K=1.8) IF(NRIT.EQ.10 ) NRIT=0 NRIT=NRIT+1 NSTOR=NSTOR+1 17=1 UNUCLITI DO 10 J=1,5 XMU(J)=PMUAR(11,J+6) DO 10 K=1.5 10 P(K,J) = PMUAR(IT,K,J) 3 CALL AMRK XJ=V(7) WRITE(6.100) (V(1).1=1.8) 100 FORMAT(1XE19.8.5E20.8/2X2E20.8) 00 4 1=1.5 11=11+1 YT(1)=V(11) 4 RETURN END SIBFTC DUCALN COMMUNYSYSPARZA(5+5)+8(5)+CWC(5+5)+CWCINV(5+5)+U1( 401)+5( 401)+GG COMMUN/RANB/PA(3+3)+P(5+5)+XMU(5)+JLUG+Y(5)+RJ+T+RY(5)+RU 111.UK.R . UFr 1 +PMUAR (401+5+6) COMMON/DUCALE/V(8)+DV(8)+U LOGICAL JLOG JLOG=.TRUE.

217

1

UR=U DO 1 1=1.5 11=1 11=1 [+1 Y(1)=V(11) T=V(1) 1 ----CALL RANCAL FORMAT(1X8HDJCAL RJ/1XE19.8) 1000 DO 2 1=1.5 1 1 = 1 1 1 = 1 I + 1 DV(11)=-B(1)\*U DO 2 J=1.5 2 DV(11)=DV(11)+A(1,J)\*Y(J) DV(7)=UK\*U\*\*2-9J DV(8)=RJ . RETURN END. SUBROUTINE DOON COMMION/SYSHAR/A(5+5)+H(5)+CWC(5+5)+CWC1NV(5+5)+U1( 401)+5( 401)+GG 111.UK.R COMMUN/RANB/PA(3+3)+P(5+5)+XMU(5)+JLUG+Y(5)+RJ+T+RY(5)+RU • UR 1.PMUAR (401.5.6) COMMON/DCONB/VF(13) . DVF(13) . UCON . DELH LOGICAL JLOG JLOG= .FALSE. DO 1 1=1.5 1 I = I |1=|1+1 |7=|1+7 1 Y(1)=VF(11) UREUCON T=VF(1)+DVF(1) CALL RANCAL DO 2 1=1+5 11=1 11=11+1 17=11+7 DVF(11)=-B(1)\*UCON DVF(17)=-RY(1) D0 2 J=1,5 ل ≓ل ل J7=JJ+7 DVF(11)=DVF(11)+A(1+J)+Y(J) 2 DVF(17)=DVF(17)=A(J+1)\*VF(J7) DELH=-2.\*UK\*UCON-RU 00 3 I=1+5 11=11+7 3 DELH=DELH-B(I)\*VF(II) DVF(7)=UK+UCON++2-RJ DVF(13)=DELH\*\*2 RETURN END SIBFTC ALSTAN SUBROUTINE ALSTAR(AL+XJ0+XJ1+XJ2+AL0+D) A2=2.\*(XJ2-2.\*XJ1+XJ0)/D\*\*2 A1=2.\*(XJ2-XJ1)/D-A2\*(2.\*AL0+1.5\*D) AL=-A1/(2+#A2) RETURN

.

END SIBFTC NEWIN SUBROUTINE INPUT DIMENSION DUM(20.20) . VDUM(20) COMMUN/INPMU/20(5) . INDP . XC(11.5) COMMON/5Y5PAR/A(5+5)+B(5)+CWC(5+5)+C#C[NV(5+5)+U]( 401)+5( 401)+GG 111+UK+R 11+00+18 COMMUNZRANBZPA(3+3)+P(5+5)+XMU(5)+UL06+Y(5)+RU+T+RY(5)+RU .UR 1, PMUAR (401.5.6) COMMON/NUMB/NIF.N2F LOGICAL JLOG UK=1.E-04 H**≡**∎2 00 1 1=1.5 ZO(1)=0. ti)=0. DO 1 J=1.5 A(1,J)=0. CWC(I,J)=0. 1 CWCINV(1.J)=0. A(3+1)=1+ A(4.1)=4.8 A(2,2)=-5. A(3,2)=-2 A(4,2)=-96 A(5+3)=3+ A(1+4)=-5 A(2+4)=-2+5 A(5+5)=-3. A(1+5)=-.5 A(4+4)=-4+ A(2.5)=-2.5 B(1)=.5 B(2)=2.5 CWCINV(3+3)=39+04/16+ CWCINV(3+4)=++3 CWCINV(4+3)=++3 CWCINV(4+4)=+0625 CWCINV(5.5)=1./9. 20(3)=1. ZO(5)=1. CWC(3,3)=1. CWC(3+4)=4+8 CWC(4+3)=4+8 CWC(5+5)=9+ CWC(4.4)=39.04 DO 8 1=1.3 11=1 15=11+5 DO 8 J=1.3 ل≑رز UZ=JJ+Z A DUM(1+J)=CWC(12+J2) CALL (IGEN(DUM+VDUM+3+1) WRITE(6+1000) ((DUM(1+J)+J=1+3),VDUM(1)+I=1+3) 1000 FORMAT(1X9HINPUT DUM/3(1X4E20+8/)) 75= 77+5 DO 9 1=1.3 DO 9 J≞1+3 DO 9 J±1+3 ⊃ PA(1+J)\*DUM(1+J)\*VDUM(J)\*\*+5 REAU(5+5)1NU+1NDU+1NDP+N1F+N2F 5 FORMAT(5110)

. CALL PMUCAL WRITE(6,1001) ((PMUAR(101+1+J)+J=1+6)+1=1+5) 1001 FORMAT(1X11HINPUT PMUAR/5(1XE19.8+5E20.8/)) 2 IF (INDU.NE.1) GO TO 3 CALL USGEN RETURN 3 NRIT=10 . .... CALL REAPRO(UI) CALL REAPRO(5) READ(5.6) GG11.NBR 6 FORMAT(E15.8,120) 11=1 T#+01 #FLOAT(11-1) IF (NRIT.NE.10 ) GO TO 4 NPIT=0 .01(1) WRITE(6+7) T 4 NRIT=NRIT+1 7 FORMAT(1XE19.8.E20.8) WRITE(6+10) GGI1 10 FORMAT(1XE20.8) CALL STORNM (N BR) RETURN END SIBFTC PHUCAN SUBROUTINE PHUCAL 1.PMUAR (401.5.6) COMMON/1NPMU/ZU(5) . INDP . XC(11.5) COMMON/DPMUB/V(21) .DV(21) LOGICAL JLOG EXTERNAL DPMU DO 1 1=1+16 V(1)=0. DO 2 1=17.21 1 11=1 11=11-16 V(1)=20(11) 2 DO 3 1=1+65 TEM(1)=0. 3 DV(1)=.01 CALL DPMU CALL AMRKS(V,DV,DPMU,20,1,L1,L2,H,H,TEM,0) DO 10 1=1.5 PMUAR(1+1+6)=Z0(1) DO 10 J#1+5 10 PMUAR(1+1+J)=0. DG 4 1=1+100 11=1 11 = 11 + 1CALL AMRK L=1 D0 5 J=1+5 ل∍رل DO 5 K=1.JJ 1=+1 Q(J.K)=V(L) Q(K+J)+V(L) 5 1#(11+EQ+4-1) WRITE(6+1000) ((Q(J+K)+K=1+5)+J=1+5) FORMAT(1X8HPMUCAL 0/5(1XE19.8.4E20.8/)) ່າບບັບ

```
100 FORMAI(/////BOX220.8//5(1XL19.8.4L20.8/))
CALL EIGEN(0.XLAM.5.1)
  1-1 FORMAT(/5(1XE19.8.5E20.8/))
      DO 6 L#1+5
      Q(K+L)=Q(K+L)+XLAM(L)+++5
    6 PMUAR(11+K+L)=9(K+L)
   7 FORMAT(115.8)
      DO 4 K#1+5
KK=K
       KK=KK+16
    4 PMUAR(11.K.6)=V(KK)
      RETURN
END
SIGFTC OPMON
       SUBROUTINE DPMU
       UIMENSION Q(5+5)
COMMON/UYSPAD/A(5+5)+B(5)+CWC(5+5/+)
                                                       V(5+5)+U1( 401)+5( 401)+GG
      111.UK .R
       COMMON/DPMUB/V(21) DV(21)
       1 = 1
       10 1 J=1.5
        ປມ≖ປ
       00 1 K±1.JJ
        L=L+1
        Q\left( \cup_{\varphi}K\right) = V\left( \cup_{\varphi}\right)
    1 Q(K+J)=V(L)
        L=1
        D0 2 J=1.5
        ງງະງ
        DO 5 K#1.JJ
        L#L+1
        DV(L)=CWC(J+K)
      2 DV(L)=DV(L)+A(J,M)*Q(M,K)+Q(J,M)*A(K,+
        DO 3 1=1.5
         11=1
         11=11+16
        DV(11)=0.
D0 3 J=1.5
JJ=J
         U=JJ+16
DV([1) ≈A([+J)*V(JJ)+UV([])
    3
         RETURN
         END
  STHETC RANCAN
         UIMENSION X1(5)+ZETA(3)+ETA(5)+XB(5)+X3(5)+X4(5)+DELPS1(5)+X5(5+5)
         UIMENSION X01(5+5),X02(5),X03(5+5)
DIMENSION X1(5),X0(5),X6(5+5)
         CUMMUN75Y5-AR74(5+5)+8(5)+CWC(5+5)+CWCINV(5+5)+UI( 401)+5( 401)+66
          11+00+7
COMMUN/HANB/PA(3+3)+P(5+5)+XMU(4)+JLU6+Y(5)+RJ+1+RY(5)+RU
        111.UK.R
                                                                                  .UR
        1.PMUAR(401.5.6)
          COMMON /NUMB/NIF , NEF
          LOGICAL JLUG
          x3(2)=0.
          x3(1)=0.
          RJ≖∨.
X7=1.-T
          ×1(1)=0.
```

```
x1(2)=0.
      RU=0+
X9=(2+X7)**+5
D0 1 I=1+5
       RY(1)=0.
  1
 N1=1
20 D0 2 I=1.5
XI(1)=GAURN(Z)
1000 FORMAT(1X11HPANCAL XIET/1XE19.8)
       ETA(1)=XMU(1)
  2
       DO 3 1±1.5
DO 3 J±1.5
3 ETA(1)=ETA(1)+P(1+J)*XI(J)
3 ETA(1)=ETA(1)+P(1+J)*XI(J)
1001 FORMAT(1X10HRANCAL ETA/1X5E19+B)
       00 12 1=1.5
       X8(1)=ETA(1)-Y(1)
  12
       NS=1
       DO 27 1=1,5
XD(1)=0.
    DO 27 J=1.5
27 XD3(1.J)=0.
   11 DO 6 1=1+3
        1 I = I
        11=11+2
 1002 FORMAT(1X13HRANCAL ETAZET/1XE19.8)
      6 ZETA(1)=X8(11)
        DO 7 I=1+3
DO 7 J=1+3
        ZETA(1)#ZETA(1)+X9*PA (1,J)*XI(J)
    7
        ZETNOR #0.
        DO 8 1=1+3
         11=!
         11=11+2
        DO 8 J=1.3
         ل ⇒رر
         ງງະງງ+2
         ZETNOR#ZETNOR+ZETA(1)*CWCINV(11+JJ)*ZETA(J)
    8
         ZETNOR=ZETNOR**.5
         DO 22 1=1+3
         11=1
         K=11+2
     22 XD(K)=XD(K)+ZETA(1)/ZETNOR**3
IF(JLOG) G0 T0 9
         Do 28 J#1+5
      28 XD1(1+J)=CWCINV(1+J)/ZETNOR##3
         DO 29 1=1,5
          xD2(I)=0∙
         DO 29 J=3,5
          ل⇒لل
          K=JJ-2
      29 XD2(1)=XD2(1)+CWCINV(1+K)*ZETA(K)
      00 30 1=1+5
00 30 J=1+5
30 XD3(1+J)=XD1(1+J)=3+XD2(1)*XD2(J)/ZETNOR**5+XD3(1+J)
          IF (N2.EQ.N2F) GO TO 10
     9
          NS=NS+1
          GO TO 11
      10 DO 23 1=3.5
X1(1)=0.
```

```
DO 23 J=3.5
  23 X1(1)=X1(1)+CWCINV(1+J)*XD(J)
     00 24 1=3.5
  24 X1(1)=X1(1)/FLOAT(N2)
      X2±0.
      00 13 1=3.5
      X3(1)=0.
DO 13 J=3.5
   13 X3(1)=X3(1)+CWCINV(1+J)*X8(J)
      DO 25 1=3+5
   25 X2=X8(1)*X3(1)+X2
      x2=x2**•5
      DO 14 1=1.5
      X4(I)≠B(I)*UR
      DO 14 J=1.5
  14 ×4(1)=×4(1)+A(1.J)*×8(J)
      DO 15 1=1+5
15 DELPSI(1)=R*(X1(1)-X3(1)/X2**3)
1003 FORMAT(1X18HRANCAL X1 X3 X4 X2/5(1X4E20+8/)+1XE19+E)
      DO 16 1=1+5
  16 RJ=RJ+X4(1)*DELPS1(1)
       IF (ULOG) GO TO 5
      DO 31 1=1.5
       DO 31 J=1,5
   31 XD3(I+J)=XD3(I+J)/FLOAT(N2)
D0 17 I=1+5
       RU =RU+B(1)*DELPSI(1)
       DO 17 J=1.5
                         X3(1 )*X3(J )
    17 X5(1.J)=
       Do 26 1=1.5
       DO 26 J=1.5
    26 X6(1,J)=CWCINV(1,J)/X2##3
       DO 18 1=1.5
    18 RY(1)=RY(1)=A(J+[)*DELPST(J)+R*(X6(I+J)=3+*X5(I+J)/X2**5-XU3(I+J))
      1#X4(J)
       IF (N1 . EQ . N1F) GO TO 19
   5
       N1=N1+1
       GO TO 20
   19 RJ=RJ/FLOAT(N1)
        RU=RU/FLOAT(N1)
        DO 21 1=1.5
        RY(1) =RY(1)/FLOAT(N1)
   21
        RETURN
        END
 SIBFIC PUNPRN
        SUBROUTINE PUNPRO(X)
        DIMENSION X(401)
        N±1
      2 N1=N
        N2=N+1
        N3=N+2
        N4=N+3
        N5=N+4
        IF (N5.GT.100) GO TO 3
        PUNCH 1 + X (N1) + X (N2) + X (N3) + X (N4) + X (N5)
      1 FORMAT (SE15+8)
        N=N+5
        GO TO 2
      3 PUNCH 4+X(101)
      4 FORMAT(E15.8)
         RETURN
         END
  SINFTC REAPPN
         SUBROUTINE REAPROIX)
         DIMENSION X(4C1)
         N=1
       2 N1=N
         N?=N+1
         N3=N+2
         N4=N+3
       IF (N5.6T.100) GO TO 3
REAU(5.1) X(N1).X(N2).X(N3).X(N4).X(N5)
1 FORMAT(5E15.8)
         N5=N+4
          N=N+5
          5 OT 00
        3 READ(5+4) X(101)
        4 FORMAT(E15.8)
          RETURN
          END
```

Subroutines PMUCAL and DPMU solve equations (5-38) and (5-39).

Subroutine RANCAL carries out the Monte Carlo evaluation of the multidimensional integrals involved in equations (5-6) through (5-8) and (5-14) through (5-20).

Subroutines PUNPRO and PUNPRN handle the output and input of the punched cards used to transfer data from one computer run to the next.

Subroutines RANDPK (the random number generator) and AMRK (the differential equation solver) are referenced in Appendices E and G, respectively. Subroutine EIGEN (SHARE Library number ANF202) computes eigenvalues and eigenvectors of real symmetric matrices.

The subscript correspondence given in section G.2.1 applies here also.

The computation time depends on the time increment and the number of terms in the Monte Carlo evaluation of the integrals. For the problem solved here, a time increment of .01 and six terms in the evaluation of each integral corresponds to about ten minutes of IBM 7094 time per iteration of the algorithm shown in Figure 5-1.

The iterations were computed by individual computer runs. At the end of each iteration, the results, i.e.  $u^i$ ,  $S^i$ ,  $G^i$ , and the random number generator "position" were punched out on cards. At the beginning of the following iteration, these cards were read. The random number generator was "reset" at the beginning of each iteration to its "position" at the end of the preceding iteration.

# H.3 $\overline{\mathbf{v}}$ Estimates for $\mathcal{F}_1$ and $\mathcal{F}_2$ Controls

H.3.1 Control-Independent Term

A listing of the FORTRAN program used for the computation of  $\mathbf{*}_{0}$  is shown in Table H-2. This computation is based on equation (4-115).

H.3.2 Control-dependent Term

The control dependent term,  $\psi_1$ , was computed as follows:

- 1. The appropriate initial values of the adjoint variable and the corresponding class parameter value were read in.
- 2. The corresponding control was computed by the appropriate USGEN subroutine. In the case of  $\mathcal{F}_2$  controls the deck name of this subroutine is UGEN1 (see Table H-1). In the case of  $\mathcal{F}_2$  controls the deck name of this subroutine is UGEN2 (see Table H-3).

3. Subroutine JCAL (see Table H-1) was used to compute #1.

H.4 Computation for Figures 7-5 and 7-9.

A FORTRAN listing of the program used for the computation of Figures 7-5 and 7-9 is shown in Table H-4. This algorithm operates according to Figure 6-1, except that instead of computing the control through the solution of an adjoint equation, it reads the control from the punched-card output from the conjugate gradient program.

# H.5 Computation for Figures 7-6 and 7-7.

A FORTRAN listing of the program used for the computation of Figures 7-6 and 7-7 is shown in Table H-5. This program reads in the control from the punched-card output of the conjugate gradient algorithm, computes the ||x(t)|| trajectory using equation (2-1) with  $n_t=0$ , and uses the CALCOMP plotter to produce the curves shown in Figures 7-6 and 7-7.

```
SIBFTC MAIN
      DIMENSION 0120.201.V(20)
      COMMON/P28/PA(3+3)+CWCINV(5+5)+P+Z0(5)
      DO 1 1=1+5
      Z0(1)±0.
      DO 1 J=1+5
Q(1+J)=0+
    1 CWCINV(I+J)=0.
      CWCINV(3+3)=39+04/16+
      CWCINV(3+4)=++3
      CWCINV(4+3)=++3
      CWCINV(5,5)=1./9.
      CWCINV(4+4)=.0625
       Q(1+1)=1+
       0(1+2)=4+8
       0(2+1)=4+8
       Q(3:3)=9.
       Q(2+2)=39.04
       CALL EIGEN(Q.V.3.1)
     DO 2 1=1+3
DO 2 J=1+3
2 PA(1+J)=G(1+J)*V(J)**+5
       Z0(3)=1.
       20(5)=1+
       R=•2
       DO 4 1=100.1000.50
       11=1
       CALL PSIG(11.X)
     4 WRITE(6.5) 11.X
     5 FORMAT(1X120.E20.8)
     3 FORMAT(1XE20.8)
       STOP
       END
SIBFTC PSIOCA
       SUBROUTINE PSID(N3F+PSIZER)
       DIMENCION X1(3),ETA(3)
COMMON/PZB/PA(3+3)+CWCINV(5+5)+R+2V(5)
       N3≠∪
       X1=0.
   5 00 1 1=1+3
        X1(I)=GAURN(Z)
   1
       DO 2 1=1.3
        11=1
      · 12=11+2
        ETA(1)=Z0(12)
     DQ 2 J=1+3
2 ETA(1)=ETA(1)+PA (1+J)*XI(J)
        ETANOR=0.
        Do 3 1=1.3
        11=1
        12=11+2
        DO 3 J=1.3
        ل≡زز
        J2=JJ+2
        ETANOR+ETA(1)*CWCINV(12+J2)*ETA(J)
   3
        ETANOR .E TANOR **.5
        X1=X1+1 ./ETANOR
        N3=N3+1
    4
        1F (N3+LT+N3F) 60 TO 5
        X1=X1/FLOAT(N3)
        XNOR=0.
        00 6 1 . 1.3
        11=1
        12=11+2
        DO 6 J=1.3
        ر₌رر
         J2=JJ+2
        XNOR=XNOR+24(12) #CWCINV(12+J2)#20(J2)
    6
        XNGR=XNOR**+5
        PSIZER=R+(X1+1+/XNOR)
        RETURN
        END
```

#### TABLE H-2. PROGRAM FOR COMPUTATION OF V ...

### TABLE H-3. LISTING FOR UGEN2

```
SIBFIC UGEN2
      SUBROUTINE USGEN
      DIMENSION TE (35) +E1(14) +E2(10)
      COMMON/LYLPAR/A(5+5)+0(5)+CWC(5+5)+CWCINV(5+5)+U1( 401)+5( 401)+66
     111.UK.R
      COMMON/GENE2/V(11)+DV(11)+XKU
      EXTERNAL UGEN2
      GG11=1.
      DO 5 1=1+11
    5 V(1)=...
      V(4)::.
      V(6)=1.
       V(7)=-.19101224E00
       V(8)=.28515453E+01
       V(9)=++18715569E01
       V(10)=+12323603E00
       V(11)=-.55493969E-01
       DV(1)=.91
       XKU=1.E-04
       Dn 6 1=1+35
     6 TE(1)=0.
      CALL DGEN2
CALL AMRKS(V,DV,DGEN2+10+1+E1+E2+H+H+TE+0)
       NRIT#10
       DO 1 1#1+101
       5(1)=0.
       UI(1)=0+
D0 2 J=1+5
       ປາ≖ປ
       J)=JJ+6
     2 UI(I)*UI(I)+B(J)*V(JJ)**6/XKU
       IF(NRIT.NE.10) GO TO 4
WRITE(6.3) (V(J).J=1.11).UI(1)
     3 FORMAT(1XE19.8.5E20.8/1XE19.8.5E20.8)
      NRIT=0
     4 NRIT=NRIT+1
     1 CALL AMRK
       RETURN
       END
 SINFTC DEENN2
       SUBROUTINE DEEN2
       COMMON/SYSPAR/A(5.5).8(5).CWC(5.5).CWCINV(5.5).UI( 401).5( 401).GG
       111.UK.R
       COMMON/GENB2/V(11)+DV(11)+XKU
       U=C+
DO 1 1=1+5
        11=1
        11=11+6
     1 U=U+.5*B(1)*V(11)/XKU
D0 2 1=1.5
        I I = I
        11=11+1
        DV(11)=E(1)*U
        DO 2 J=1+5
        ل∎رز
        1+LL=1
      2 DV(11)=DV(11)+A(1,J)*V(JJ)
        DO 3 1=1+5
        11=1
        16=11+6
        11=11+1
        DV(16)=0.
        DO 3 J=1.5
        JJ¤J
        J6=JJ+6
        1+1. ∪. ≃ ∪ ∪
      3 DV(16)=DV(16)+2.*CWCINV(1+J)*V(JJ)-A(J+1)*V(J6)
        RETURN
        FND
```

#### TABLE H-4. DIGITAL SIMULATION PROGRAM

```
SIBFIC CROEX
       DIMENSION TE(23)+E1(5)+E2(5)+XNORA(500+2)+XX(36)+U(401)
COMMONZHEZA(5+5)+B(5)+CWCINV(5+5)+C(5+3)+UD +X(6)+DX(6)+XN(3)
EXTERNAL DPRO
        LOGICAL LI
        NCM=150
        NC=1
        DO 1 1=1+5
        8(1)=0.
        x(1)≠0•
        DO 1 J=1.5
A(1.J)=0.
     1 CWCINV(I+J)=0+
        DG 2 1=1+5
DG 2 J=1+3
      2 C(1.J)=0.
        8(1)=.5
        B(2)=2.5
CWCINV(3.3)≈39.04/16.
        CWCINV(3+4)=-+3
        CWCINV(4+3)=++3
CWCINV(4+4)=+0625
        CWCINV(5+5)=1+/9+
        A(3.1)=1.
         A(4+1)=4+8
         A(2+2)==5+
         A(3.2)=-.2
         A(412)=-.96
         A(5+3)=3+
         A(1+4)=-.5
         A(2+4)=-2+5
A(5+5)=-3+
         A(1+5)=-.5
         A(4,4)=-4.
                                 :
         A(2+5)=-2+5
         C(3+3)=1+
         C(4+1)=4+
         C(4+3)=4+3
     C(5+2)=3.
14 CALL REAPRO(U)
         NCOM=1
      11 DO 15 1=1+6
      15 X(1)=0.
                                                                                ×(4)=1 •
×(6)=1 •
         L1= TRUE.
          XNORL = 0.
          Do 3 1=3.5
          [[=]
[[=]]+1
          DO 3 J#3.5
          ن = ل ز
          JJ=JJ+1
        3 XNORL #XNORL +X(11) *CWC1NV(1+J) *X(JJ)
          XNOR=XNORL
          Dx(1)=.01
DC 4 [=1.23
        4 TE(1)=0.
          UD=U(1)
          CALL DPRO
CALL AMRKS(X+UX+DPRO+5+1+E1+E2+H+H+TE+U)
```

ċ.

```
NRIT=10
     DO 5 1×=1+100
     UD#U(IX)
     IF (NRIT.EQ.10.AND.L1) WRITE (6.100) (X(K).K=1.6).XNOR
     IF (NRIT.E9.10)
    1L1=.NOT.L1
-100 FCRMAT(1XE19.8.5E20.8/20XE20.8)
     IF(NRIT.EQ.10) NRIT=0
     NRIT=NRI1+1
     CALL AMRK
     XNOR=0.
     DO 6 1=3+5
     I I = I
      11=11+1
     DO 6 J=3.5
     ງມູ∎ປ
      ປປ=ປປ+1
   6 XNOR±XNOR+X(11)*CWC1NV(1+J)*X(JJ)
      IF (XNOR .LT. XNORL) TL=X(1)
IF (XNOR .LT. XNORL) XNORL=XNOR
      DO 5 1=1.3
   5 XN(1)=GAURN(Z)/(DX(1))***5
      WRITE(6:100) (X(K):K±1:6):XNOR
XNORA(NC:2)=TL
   XNORA(NC.1)=XNORL
9 IF(NC.LT.NCM) G0 T0 7
      DO 8 1=1,NCM
    8 WRITE(6.91) (XNORA(1.J).J=1.2)
  91 FORMAT(1X 2E20.8)
CALL SURT(XNORA,NCM)
      DO 10 1-1+NCM
   10 WRITE(6+91)(XNURA(1+J)+J=1+2)
      GO TO 12
    7 NC=NC+1
   GO TO 11
12 DO 13 I=1.NCM
       11=1
      xx(I)=(151.FLOAT(II))/150.
xNORA(1.1)=XNORA(1.1)**.5
   13 WRITE(3) XNORA(1+1)+XX(1)
ENDFILE 3
       GO TO 14
      END
SIBFIC DPRON
       SUBROUTINE DPRO
                                                              +X(6)+DX(6)+XN(3)
       COMMON/BL/A(5+5)+B(5)+CWCINV(5+5)+C(5+3)+UD
       DO 1 1=1.5
       1 1 = I
       11=11+1
       Dx(11)=B(1)*UD
       DO 2 J=3.5
     2 DX(11)=DX(11)+C(1,J)*XN(J)
       DO 1 J=1.5
        ງງ∎ງ
        1+لرבנرر
     1 DX([])=DX([])+A(]+J)*X(JJ)
       RETURN
       END
SIBFIC SORIN
        SUBROUTINE SORT (A.N)
       DIMENSION A( GOU. 2)
```

```
DO 1 1=1.N
        X=0•
11=1
        DO 2 J#11.N
     IF (A(J+1)+GT+X) Y±A(J+2)

IF (A(J+1)+GT+X) K±J

2 IF (A(J+1)+GT+X) X±A(J+1)
        A(K+1)=A(11+1)
A(K+2)=A(11+2)
     A(11+1)=X
1 A(11+2)=Y
RETURN
        END
SIBFTC PUNPRN
        SUBROUTINE PUNPRO(X)
DIMENSION X(401)
      N=1
2 N1=N
         N2=N+1
         N3=N+2
         N4=N+3
      N5=N+4

IF(N5-GT-100) GO TO 3

PUNCH 1+X(N1)+X(N2)+X(N3)+X(N4)+X(N5)

1 FORMAT(5E15+8)
       N=N+5
GO TO 2
3 PUNCH 4.X(101)
4 FORMAT(E15.8)
          RETURN
          END
 SIBFTC REAPRN
          SUBROUTINE REAPRO(X)
          DIMENSION X(401)
          N=1
       2 N1=N
          N2=N+1
N3=N+2
           N4=N+3
           N5≍N+4
        IF (N5.GT.100) GO TO 3
READ(5.1) X(N1)+X(N2)+X(N3)+X(N4)+X(N5)
1 FORMAT(5E15.8)
           N=N+5
           GO TO 2
        3 READ(5.4) X(101)
        4 FORMAT (E15.8)
           RETURN
           END
```

.

SINETC NORPLO DIMENSION UD(401), TE(20), E1(5), F2(5) COMMON/BL/A(5+5)+B(5)+CWCINV(5+5)+U+X(6)+DX(6) EXTERNAL OP DO 1 1=1.5 +0=(1)E DO 1 J=1+5 A(I+J)=0+ 1 CWCINV(1.J)=0. A(3+1)=1+ A(4.1)=4.8 A(2.2)=-5. A(3.2)=-.2 A(4,2)=-.96 A(5+3)=3. A(1.4)=-.5 A(2:4)=-2:5 A(5:5)=-3: A(1.5)=-.5 A(4.4)=-4. A(2.5)=-2.5 8(1)=.5 8(2)=2.5 CWCINV(3,3)=39.04/16. CWCINV(3,4)=-3 CWCINV(4,3)=-3 CWCINV(4+4)=.9625 CWCINV(5.5)=1./9. 8 DO 2 1=1.6 2 X(1)=0. x(4)=1. ×(6)=1. CALL REAPRO(UD) DO 3 1±1+20 3 TE(1)=0. U=UD(1) CALL AMRKS(X,DX,DP.5.1.E1.E2.H.H.TL.U) Dx(1)=.01 CALL DP DO 4 M#1+101 XNOR=0. DO 5 1=1.5 11=1 .11=11+1 00 5 J=1.5 **,**jJ=JJ+1 5 XNOR=XNOR+X(11)\*CWCINV(1+J)\*X(JJ) XNOR=XNOR++.5 WRITE(6.6) (X(1),1=1.6),XNOR
6 FORMAT(1XE19.8.5E20.8/20XE20.8)
WRITE(3) X(1),XNOR UEUD(M) 4 CALL AMRK ENDFILE 3 DC 7 I=1+101 1I=1 TEDX(1)\*FLOAT(11-1) 7 WRITE(3) T.UD(1) ENDFILE 3 GO TO B

TABLE H-5. PROGRAM FOR PLOT OF  $\|\widetilde{\mathbf{z}}(t)\|_{t=1}$  and  $\mathbf{u}(t)$ 

TABLE H-5. (Cent'd)

END \_ UPN SUBROUTINE DP COMMON/BL/A(5:5)+B(5)+CWCINV(5:5)+U+X(6)+DX(6) D0 1 I=1.5 SIBFTC DPN I I = I 11=11+1 CX([1)=C(1)\*C CX([1]=C(1)\*C CX([1]=C(1)\*C 1+1.20 1 DX(II)=DX(II)+4(I,J)\*X(JJ) RETURN END SIBFIC REAPRN SUBROUTINE REAPRO(X) DIMENSION X(401) N#1 2 N1=N N2=N+1 N3=N+2 14=N+3 NS=N+3 NS=N+4 IF(NS=GT+100) GO TO 3 READ(5+1) X(N1)+X(N2)+X(N3)+X(N4)+X(N5) 1 FORMAT(SE15+9) N=N+5 GO TO 2 3 READ(5+4) X(101) 4 FORMAT(E15+8) RETURN END

## RECENT RESEARCH PUBLICATIONS SCHOOL OF ELECTRICAL ENGINEERING PURDUE UNIVERSITY

i te se state a 
4

| TR-EE66-1         | TOWARD BRAIN MODELS WHICH EXPLAIN MENTAL CAPABILITIES - (Report No. 1)<br>R. J. Swallow, Support: E. E. Department Research                                                                                                     |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TR-EE66-2         | ON THE ASYMPTOTIC STABILITY OF FEEDBACK CONTROL SYSTEMS CONTAINING A SINGLE<br>TIME-VARYING ELEMENT<br>Z. V. Rekasius and J. R. Rowland, NASA Institutional Grant (SUB-UNDER NRG 14-005-021) PRF<br>#4220-52-285, January, 1966 |
| <b>TR-EE66-3</b>  | ANALOGUE DEMODULATION ON A FINITE TIME INTERVAL<br>J. C. Hancock and P. W. Brunner, NSF Grant #GP-2898, PRF #3955-50-285, April, 1966                                                                                           |
| <b>TR-EE66-4</b>  | STEADY STATE ANALYSIS OF LINEAR NETWORKS CONTAINING A SINGLE SINUSOIDALLY<br>VARYING ELEMENT.<br>B. J. Leon and J. V. Adams, Grant #GK26, PRF #4108-50-285, May, 1966                                                           |
| TR-EE66-5         | CYBERNETIC PREDICTING DEVICES<br>A. G. Ivakhnenko and V. G. Lapa. Translated by Z. J. Nikolic, April, 1966                                                                                                                      |
| <b>TR-EE66-6</b>  | ON THE STOCHASTIC APPROXIMATION AND RELATED LEARNING TECHNIQUES<br>K. S. Fu, Y. T. Chien, Z. J. Nikolic and W. G. Wee, National Science Foundation GK-696,<br>PRF #4502, April, 1966                                            |
| TR-EE66-7         | JOINTLY OPTIMUM WAVEFORMS AND RECEIVERS FOR CHANNELS WITH MEMORY<br>J. C. Hancock and E. A. Quincy, NSF GP-2898, PRF 3955 and NASA NSG-553, PRF 3823,<br>June 1966                                                              |
| <b>TR-EE66-8</b>  | AN ADAPTIVE PATTERN RECOGNIZING MODEL OF THE HUMAN OPERATOR ENGAGED IN<br>A TIME VARYING CONTROL TASK<br>K.S. Fu and E. E. Gould, National Science Foundation Grant GK-696; PRF #4502, May, 1966                                |
| TR-EE66-9         | ANALYSIS OF A WIDEBAND RANDOM SIGNAL RADAR SYSTEM<br>G. R. Cooper and Ronald L. Gassner, National Science Foundation Grant GK-189 PRF #4243,<br>August, 1966.                                                                   |
| TR-EE66-10        | OPTIMAL CONTROL IN BOUND PHASE-COORDINATE PROCESSES<br>J. Y. S. Luh and J. S. Shafran, NASA/JPL No. 950670, PRF #3807, July, 1966                                                                                               |
| TR-EE66-11        | ON THE OPTIMIZATION OF MIXTURE RESOLVING SIGNAL PROCESSING STRUCTURES<br>J. C. Hancock and W. D. Gregg, NSF GP-2898;-PRF #3955; NASA NGR-15-005-021;-PRF #4219,<br>October, 1966.                                               |
| TR-EE66-12        | OPTIMAL CONTROL OF ANTENNA POINTING SYSTEM<br>J. Y. S. Luh and G. E. O'Connor, Jr., NASA/JPL No. 950670; PRF #3807, August, 1966                                                                                                |
| <b>TR-EE66-13</b> | DESIGN OF LARGE SIGNAL SETS WITH GOOD APERIODIC CORRELATION PROPERTIES<br>G. R. Cooper and R. D. Yates, Lockheed Electronics Company, Contract #29951, PRF #4195,<br>September, 1966                                            |
| TR-EE66-14        | A PRELIMINARY STUDY OF THE FAILURE MECHANISMS OF CdSe THIN FILM TRANSISTORS<br>R. J. Schwartz and R. C. Dockerty, U.S. Naval Avionics Facility, N0016366C0096 A02, PRF<br>#4850-53-285, September, 1966                         |
| TR-EE66-15        | REAL-TIME ESTIMATION OF TIME-VARYING CORRELATION FUNCTIONS<br>G. R. Cooper and W. M. Hammond, NSF Contract No. GK-189; PRF #4243-50-285, October, 1966                                                                          |
| TR-EE66-16        | ON THE FINITE STOPPING RULES AND NONPARAMETRIC TECHNIQUES IN A FEATURE-<br>ORDERED SEQUENTIAL RECOGNITION SYSTEM<br>K. S. Fu and Y. T. Chien, National Science Foundation GK-696, PRF #4502, October, 1966                      |
| TR-EE66-17        | FAILURE MECHANISMS IN THIN-FILM RESISTORS<br>H. W. Thompson, Jr. and R. F. Bennett, Naval Avionics Facility, Contract No. N0016366 C0096;<br>Task Order No. A02, October, 1966                                                  |
| TR-EE66-18        | DISTRIBUTION FREE, MINIMUM CONDITIONAL RISK LEARNING SYSTEMS<br>E. A. Patrick, Air Force Avionics Laboratory (AVWC), Contract AF 33 (615) 3768, November 1966                                                                   |
| TR-EE66-19        | THRESHOLD STUDY OF PHASE LOCK LOOP SYSTEMS<br>John C. Lindenlaub and John Uhran, NASA Grant NsG-553, November, 1966                                                                                                             |
| TR-EE66-20        | A STUDY OF LEARNING SYSTEMS OPERATING IN UNKNOWN STATIONARY ENVIRONMENTS                                                                                                                                                        |

K. S. Fu and Z. J. Nikolic, NSF Grant GK-696, PRF 4502, November 1966

## RECENT RESEARCH PUBLICATIONS SCHOOL OF ELECTRICAL ENGINEERING PURDUE UNIVERSITY

(Continued from inside back cover)

| TP EEKA 31       |                                                                                                                                                                                                                                          |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IN-LE00-21       | FIVE RESULTS ON UNSUPERVISED LEARNING SYSTEMS                                                                                                                                                                                            |
|                  | E. A. Patrick, G. Carayannopoulos, J. P. Costello, Air Force Avionics Laboratory (AVWC), Wright<br>Patterson Air Force Base, Contract AF 33(615)3768                                                                                     |
| TR-EE66-22       | THE RADIATION PRODUCED BY AN ARBITRARILY ORIENTED DIPOLE IN AN INFINITE,<br>HOMOGENEOUS, WARM, ANISOTROPIC PLASMA                                                                                                                        |
|                  | Floyd V. Schultz and Robert W. Graff, Joint Services Electronics Program, Contract<br>ONR N00016-66-C0076-A04                                                                                                                            |
| TR-EE66-23       | HARMONIC GENERATION USING THE VARACTOR CAPABILITIES OF THE PLASMA SHEATH<br>R. A. Holmes and R. T. Hilbish, Joint Services Electronics Program, Contract<br>ONR N00016-66-C0076-A04                                                      |
| TR-EE66-24       | AN INVESTIGATION OF THE INTERFACE STATES OF THE GERMANIUM-SILICON ALLOYED<br>HETEROJUNCTION                                                                                                                                              |
|                  | H. W. Thompson and A. L. Reenstra, Joint Services Electronics Program, Contract<br>ONR N00016-66-C0076-A04                                                                                                                               |
| TR-EE67-1        | PARAMETER ESTIMATION WITH UNKNOWN SYMBOL SYNCHRONIZATION<br>J. C. Hancock and T. L. Stewart, NSF Grant GP-2898, PRF 3955-50-285, January 1967                                                                                            |
| TR-EE67-2        | NONLINEAR OSCILLATION OF A GYROSCOPE<br>Chikaro Sato, PRF 4891, National Science Foundation Grant No. GK-01235                                                                                                                           |
| <b>TR-EE67-3</b> | ON THE DESIGN OF SPECIFIC OPTIMAL CONTROLLERS<br>V. B. Haas and S. Murtuza, NASA, NGR 15-005-021                                                                                                                                         |
| TR-EE67-4        | ON THE ANALYSIS AND SYNTHESIS OF CONTROL SYSTEMS USING A WORST CASE DISTURBANCE<br>APPROACH<br>V. B. Haas and A. S. Morse, NASA, NGR 15-005-021                                                                                          |
|                  | 1                                                                                                                                                                                                                                        |
| IK-EE67-5        | ANALYSIS AND SYNTHESIS OF MULTI-THRESHOLD THRESHOLD LOGIC<br>K. S. Fu and W. C. W. Mow, Contract ONR-N00016-66-C0076, A04 Joint Services Electronic Program                                                                              |
| TR-EE67-6        | ESTIMATION OF SONAR TARGET PARAMETERS<br>G. R. Cooper and J. U. Kincaid, National Science Foundation Grant GK-180 PPF 4243                                                                                                               |
| TR-EE67-7        | ON GENERAL IZATIONS OF ADAPTIVE ALCORTING AND APPLICATION OF THE 4243                                                                                                                                                                    |
|                  | CONCEPTS TO PATTERN CLASSIFICATION                                                                                                                                                                                                       |
|                  | K. S. Fu and W. G. Wee, National Science Foundation Grant GK-696, PRF 4502                                                                                                                                                               |
| TR-EE67-8        | COMPUTER AIDED ANALYSIS AND SYNTHESIS OF MULTIVALUED MEMORYLESS NETWORKS<br>L. O. Chua and W. H. Stellhorn, National Science Foundation Grant GK-01235, Joint Services<br>Electronics Program Contract ONR-N00016-66-C0076-A04, PRF 4711 |
| TR-EE67-9        | OPTIMUM FINITE SEQUENTIAL PATTERN RECOGNITION<br>K. S. Fu and G. P. Cardillo, National Science Foundation Grant GK-696, PRF 4502                                                                                                         |
| TR-EE67-10       | MINIMUM SENSITIVITY OPTIMAL CONTROL FOR NONLINEAR SYSTEMS<br>V. Haas and A. Steinberg, NASA NGR 15-005-021, PRF 4558                                                                                                                     |
| TR_EE67_11       | RANDOM SIGNAL RADAR (Final Report)<br>G. R. Cooper and C. D. McGillem, NASA, NsG-543                                                                                                                                                     |
| TR-EE67-12       | INTRODUCTION TO THE PERFORMANCE OF DISTRIBUTION FREE, MINIMUM CONDITIONAL<br>RISK LEARNING SYSTEMS                                                                                                                                       |
| _                | E. A. Patrick and F. P. Fisher II, Naval Ship Systems Command Contract N00024-67-C-1162<br>PRF No. 4925-53-2859                                                                                                                          |
| TR-EE67-13       | P-I-N THERMO-PHOTO-VOLTAIC DIODE<br>R. J. Schwartz and C. W. Kim, Joint Services Electronic Program Contract ONR-N00014-67<br>A00226-004                                                                                                 |
| 「R-EE67-14       | ESTIMATION OF PROBABILITY DENSITY AND DISTRIBUTION FUNCTIONS<br>R. L. Kashyap and C. C. Blaydon, National Science Foundation Grant GK-1970, PRF 2488, and<br>Joint Services Electronics Program Contract N00014-67-A0226-0004, PRF 4711. |

٩.