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1. Introduction. It has often been suggested that the high-energy
protons emitted from the sun during solar flares will interact with the solar
photosphere and produce high-energy neutrons. In a series of papers, herein-
after referred to as 1, Lingenfelter et al. [1965] have estimated the intens-
ity and energy spectra of solar neutrons which might exist in the vieinity
of the earth following a solar flare. In 1, it is estimated that following
a major flare high-energy neutrons should be observable in the vicinity of
the earth for times of the order of one hour after the flare. It is further-
more estimated that these neutrons produce no observable effect on the sur-
face of the earth, and it is suggested that the search for solar neutrons be
"conducted with a satellite in equatorial orbit or a balloon at high altitude
and low latitude carrying a neutron counter sensitive above 10 Mev."

In this paper, the alternate possibility of observing solar neutrons by
neutron spectral measurements at aircraft altitudes is considered. When high-
energy neutrons enter the atmosphere, they interact with the atmospheric nuc-
lei to pfoduce a nuclear cascade in much the same manner as do the incident
cosmic-ray protons and alpha particles. The question considered here is the
magnitude of the neutron flux per unit energy at various depths in the atmo-
sphere due to incident solar-flare neutrons compared to that due to incident
cosmic rays. Throughout the paper, consideration is restricted to latitudes
where the earth's magnetic field shields the atmosphere from solar-flare
protons, and thus neutrons induced in the atmosphere by such protons need not
be considered.

Using the estimate of the solar-neutron flux given in 1, high-energy neu-
tron transport calculations have been carried out, and the neutron flux per

unit energy at various depths in the atmosphere has been obtained. Since



in 1 it is estimated that the solar neutrons reaching the earth's atmo-
sphere are essentially monoenergetic with the energy varying as a function
of time, the calculations have been carried out for incident energies of
50, 100, 200, 300, 400, and 500 Mev. Calculated results are given at bal-
loon altitudes as well as at greater atmospheric depths. The calculated
neutron flux is compared with estimates of the cosmic-ray neutron-flux
background and is found to be sufficiently above this background, at least
under some circumstances, to make measurements of the solar neutrons at
balloon and airplane altitudes quite feasible.

In section 2 the details of the calculations are given. In section 3

the results are presented and discussed.

2. Calculational Details. The geometry considered throughout this
paper is that of a normally incident neutron flux on a half-space of air.
The air is assumed to be composed of 79% nitrogen and 21% oxygen. An ex-
plicit assumption about the density variation in the upper atmosphere is
not required since it can be shown from the transport equations that if
the depth is measured in g/cm2 the calculated results are independent of
the density variation.

The transport calculations were carried out using the nucleon trans-
port code NTC [Kinmney, 1964]. Since the operation of this code has been
described in detail by Kinney, only a brief description of the physical
processes will be given here. The interactions of the incident neutrons
with the nuclei of the atmosphere initiate a complex avalanche of secondary
neutrons and protons which proceed through the atmosphere increasing in
number and decreasing in energy. In general, the first nuclear inter- -

actions of the incident high-energy neutrons produce several nucleons having
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energies ranging from a few Mev to the source energy and quite complex
angular distributions. The higher energy secondary neutrons and protons
collide with other atmospheric nuclei thus producing additional particles
and expanding the cascade. The protons continually lose energy between
their nuclear collisions. The low-energy neutrons undergo elastic nuclear
collisions which degrade their energy and change their direction of travel.
In the calculations presented here, Monte Carlo methods are employed, and
all of these various processes are taken into account. The nonelastic
cross section for nucleon-nucleus collisions and the energy and angular
distributions of the secondary nucleons from such collisions when the in-
cident particle energy is greater than 25 Mev are taken from the calcula-
tions of Bertini [1966, 1967]. Elastic nucleon-nucleus collisions at
energies of greater than 25 Mev are neglected. Protons of energy less than
25 Mev are assumed to slow down and stop without undergoing nuclear colli-
sion. Elastic neutron collisions below 25 Mev are treated using primarily
experimental data? and nonelastic neutron collisions below 25 Mev are

treated using the evaporation calculations of Dresner [1961].

2The master cross-section tape compiled by D. C. Irving for use in the
neutron transport code, together with references to all the data used,
is available on request from the Radiation Shielding Information Center

of the Oak Ridge National Laboratory.



3. Results and Conclusions. Calculations have been carried out for
monoenergetic incident neutrons of 50, 100, 200, 300, 400, and 500 Mev.

At each of these energies, the normally incident flux (neutrons/cm?/sec)
was taken to correspond to the estimate of the incident solar-neutron flux
given in 1 for a proton flare spectrum with a characteristic rigidity of
125 Mv and a time-integrated proton flux in the vicinity of the earth of
1.4 x 102 protons/cm? with energy greater than 30 Mev. The incident flux
and the approximate time after the flare when neutrons of this energy will
be incident on the atmosphere are shown in Table 1. A time-integrated
proton flux of 1.4 x 10° protons/cm? with energy greater than 30 Mev cor-
responds to a very large flare which can not be expected to occur very
often. The values in Table 1 and consequently all of the calculated re-
sults are, however, directly proportional to the assumed proton flux, so
the results may easily be scaled to correspond to a smaller flare. The
values in Table 1 are also dependent on the characteristic rigidity of the
flare used. The scaling factors that must be applied to the results to
make them correspond to flare spectra of other characteristic rigidities
may be obtained from 1 (page 4090).

The omnidirectional neutron flux per unit energy, that is, the angular
neutron flux integrated over all angles, for each of the incident energies
considered is shown at atmospheric depths of 5, 10, 25, 50, 100, 200, and
300 g/cm2 in Figures 1-T7, respectively. The neutron flux at energies of
less than 0.1 Mev is not shown, but values are given in Table 2. The proton
flux, integrated over rather large energy intervals because of the rela-
tively large statistical error associated with this small flux, is given

in Table 3. There is no calculated flux of protons with energy less than




TABLE 1. Incident Neutron Flux at Each Energy

Used in the Calculations

Energy Time Incident Neutron Flux
(Mev) (sec) (Neutrons/cm?/sec)
50 1590 23
100 1160 4o
200 880 3k
300 763 25.4
koo 698 15.9

500 657 7.5




TABLE 2. Neutron Flux Per Unit Energy as a
Function of Depth in Atmosphere

(Averaged over the energy interval 0 to 0.1 Mev)

Incident

Neutron Neutrons/Mev/cm?/sec
Energy

(Mev) 5 g/cm? 10 g/cm? 25 g/cm? 50 g/cm? 100 g/cm? 200 g/cm? 300 g/cm?

50 5.43 8.95 19.53 oh.51 19.55 5.68 1.%0
100 5.92 11.29 20.27 28.92 28.00 14.01 5.25
200 7.07 10.90 22.31 31.88 35.22 21.%0 10.19

300 8.43 11.69 25.75 40.51 4o.23 29.80 16.07
400 T.12 13.07 26.50 40.52 49,89 39.52 22.01

500 9.02 17.10 27.20 Lh7.42 56.66 45.10 37.7




TABLE 3. Proton Flux as a Function of Atmospheric Depth

Incident

Neutron 102 Protons/cm?/sec
Energy

(Mev) 5 g/cm? 10 g/em? 25 g/em? 50 g/em? 100 g/ecm? 200 g/em? 300 g/cm?

(Integrated Over Energy Interval 25 to 100 Mev)

50 0.19 0.27 0.08 0.13 0.10 0.0 0.0
100 1.7h 1.0k 1.13 0.76 1.12 0.26 0.05
200 3.3 2.28 3.63 k.91 3.0L 2.02 0.29
300 2.h7 3.29 2.95 6.76 2.3k 3.17 2.0k
400 1.8% 1.45 L. k2 L.89 10.2 2.92 3.06
500 3.65 7.99 8.25 8.69 T.69 5.81 3.72

(Integrated Over Energy Interval 100 Mev to Initial Energy)

50 0.0 0.0 0.0 0.0 0.0 0.0 0.0
100 0.0 0.0 0.0 0.0 0.0 0.0 0.0
200 1.4k 1.77 2.09 1.79 1.08 0.52 0.1k
300 1.96 2.98 5.85 7.15 2.79 1.35 1.44

400 1.83 4.95 6.97

Co

CTT 9.05 k.15 1.39
500 4,50 5,47 11.k 13.7 1h.1 5.58 3.27
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25 Mev because these particles are assumed in the calculation to stop
where they originate. The large 'spikes' at the right of each curve in
the figures represent the uncollided flux. For purposes of plotting, the
monoenergetic uncollided particles have arbitrarily been spread over a
10-Mev interval. While detailed results are not given, it is to be under-
stood that the calculated flux at the lower energies has essentially an
isotropic angular distribution while the calculated uncollided and high-
energy fluxes are highly directional.

The spectral shape of the cosmic-ray neutron spectrum at the top of
the atmosphere is not well established. Boella et al.3® [1965] have recently
measured the flux of cosmic-ray neutrons with energy less than 20 MeV as a
function of atmospheric depth at 42° latitude, and it is possible to compare
the calculated results with these measurements. This comparison is shown
in Figure 8. For the flare considered and all incident energies considered,
the low-energy neutron flux induced in the atmosphere by the solar neutrons
is well above the low-energy cosmic-ray neutron spectrum at all depths.

The flare proton flux would have to be reduced by one to two orders of
magnitude, that is, would have to be of the order of 107 to 108 protons/cm2
with energy greater than 30 Mev, before the solar-neutron-induced low-
energy neutron flux would become comparable with the low-energy cosmic-ray
neutron flux. The comparison in Figure 8 is for 42° latitude where the
measurements were made. At equatorial latitudes where the geomagnetic cut-

off is higher, the cosmic-ray neutron flux will be smaller. The magnitude

35 comprehensive list of references to the earlier measurements of the
cosmic-ray neutron flux in the atmosphere and a discussion of the degree

of agreement of these measurements are given by Boella [1965] and Haymes [1965].
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of this effect is depth dependent and is not well determined, but the ex-
isting measurements [Soberman, 1956] indicate that the cosmic-ray flux in
Figure 8 is a factor of three to five larger than the corresponding flux
at the equator.

In Figures 4, 5, 6, and 7, that is, at depths of 50, 100, 200, and
300 g/cm?, the cosmic-ray neutron flux per unit energy given by Hess et al.
[1959, 1961] is shown for comparison purposes. At 200 g/cm?, this flux is
the result of measurements while at the other depths it is due to calcula-
tions. At the lower energies, there are other measurements and calculations
[Boella et al., 1965; Haymes, 1965]: The results of Hess et al. [1959,
1961] are used here not because they are thought to be more accurate but
because in general they are higher than those obtained by other workers,
and thus give a more pessimistic comparison for our purposes.

In Figures 4, 5, 6, and 7, the solar-neutron flux per unit energy is
in general well above the cosmic-ray neutron flux per unit energy at all
secondary energies and at all depths. The major exception to this is in
Figure 7 where the flux from 50-Mev incident neutrons is comparable to the
cosmic-ray flux. The uncollided solar-neutron flux is well above the
cosmic-ray flux at all depths. At the lower energies the reduction in flare
magnitude that makes the solar-neutron flux comparable to the cosmic-ray
flux is smaller than that determined from Figure 8 because the flux of Hess
et al. is larger than that of Boella [1965]. The comparisons in Figures U
to T are for LL° latitude where the results of Hess et al. apply. At equa-
torial latitudes a reduction in the low-energy cosmic-ray flux due to the
higher geomagnetic cutoff, such as that discussed previously, is still to
be expected. At higher energies some reduction may also be expected, but

the magnitude of this reduction is not known.
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In conclusion, it seems that the neutron flux induced in the atmo-
sphere by solar neutrons for a variety of solar flares will be sufficiently
above the cosmic-ray flux to produce measurable effects at both balloon and
aircraft altitudes. The search for solar neutrons in the atmosphere can,
in principle, be carried out by making time-dependent neutron-flux measure-
ments using a counter that is sensitive to either the low-energy secondary

neutrons or to the high-energy uncollided incident solar neutrons.
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