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Preface

This is the third annual progress report, covering the research
work on anticlaétic bending. A method to introduce a diversified
biaxial strain ratio is discussed and the results are compared on the
basis of three failure theoriés for low-cycle fatigue studes. The
reported results are part of a'research program on "Biaxial Strain
Cycling Effect on Fatigue Life of Stfuctural Materials," supported
by the National Aeronautics and Space Administration under Research

Grant NGR-39-009-034.
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Abstract

The uniaxial and biaxial low cycle fatigue life of TOT5=T651
aluminum alloy in anticlastic bending is investigated. Uniaxial data
is obtained from a cantilever specimen and rhombic plate specimens
are used for nominal strain biaxiality of 1l:-1, 1:-0.9, 1:-0.8 and
1:-0.5. Ezxperimental data is discussed on the basis of maximum
strain range, maximum shear strain range and octahedral shear strain

range.
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Nomenclature

strain

principal strains
strain range-
elastic strain range-
plastic strain range

maximum strain range-

“duetility

stress

principal stresses
stress range

shear strain
plastic shear strain range

maximum shear strain-

maximum shear strain range.
octahedral shear strain

octahedral shear strain range
plastic octahedral shear strain range
modulus‘of elasticity .

second modulus.

Poisson's ratio

number of cycles to failure
diégonal-lengths of rhombic specimen
strain ratio = e2/e

1

thickness of rhombic specimen-



M, M
x* Ty
w
n
c

Nomenclature (continued)

bending moments per unit length directed along the
reference axes

deflection
constant

constant



1. Introduction

The main objective of the researéh program is to conduct an experi-
mental investigation on multiaxial strain cyeling and to evolve a theory
for predicting multiaxial strain behavior from e uniaxial strain cycling
relastion.

It appears from the studies conducted so far, that the octahedral
shear strain is the controlling function describing strain cycling be-
havior for in-phase strain state conditions.

To achieve a diversified biaxial strain ratio, two low-cycle
fatigue machines were designed and constructed. The first machine
introduces combined axial and torsional strain cycling under in-phase
or out-of-phase loading conditions, utilizing thin hollow cylindrical
specimens. The second machine subjects anticlastic plate specimens to
biaxial strain ratios under pure bending load.

This report covers the design of low-cycle anticlastic bending
fatigue machines, anticlastic test specimens and the experimental
results.

Test results, based on maximum strain range, meximum shear strain
range and octshedral shear strain range theories are presented in a series
of strein versus number of cycles to failure curves.

2. Application of Anticlastic Bending to Multiaxial Strain Cyecling-
Low-Cycle Fatigue

The use of reversed bending technique is not new in low-cycle
fatigue studies under biaxial loading. Gross, Tsang and Stout (1,2,3,4)

used a cantilever bending of wide specimens with a width-to-thickness



ratio of five to simulate the biaxial stress state of 2:1 stress ratio
which was encountered in pressure vessels. This stress condition is
caused by a lateral constraint against free deformation along the
center line of the specimens for an ideal plastic material of Poisson's
ratio u of 1/2.

Later Sachs, Weiss et al (5,6,7) at Syracuse University modified
this technique to cover a wider stress ratio ranging from 1:0 to 2:1
(for ideal plastic material) by changing the width-to-thickness ratio
of specimens, which resulted in a variation of degree of constraint of
lateral deformation. The stress ratios, 1:0 td 2:1, produce the
principal strain ratios of 2:-1 to 1:0 (for ideal plastic material).

Other methods producing biaxial stress condition on the surface of
plate specimens, were developed by Blaser et al (8) and by Bowman and
Dolan (9). This was achieved by pulsating pressure on one side of a
rectangular specimen, simply supported along its edges. Ives et al (10)
modified this method to attain completely reversed bending by subject-
ing a circular specimen, simply supported along its edge, to pressure
alternately on.one of two sides of specimen surface.

The foregoing method has been modified by Shewchuk and Zamrik (11)
to cover a wider range of strain ratios from 1:1 to 2:1 by employing
oval specimens with different diametral ratios.

With the use of anticlastic bending of rhombic plate specimens, a
completely different range of strain ratios are covered, simply by
changing the diagonal ratio of the rhombic plate specimens. Anticlastic

bending of -a rhombic plate is a case of pure bending of a plate having



two principal curvatures of opposite signs (Figure 1). Therefore, the
stress state on the specimen surface is biaxial tension-compression.

Figure 2 shows the covered area of stress and strain ratios by the
above-mentioned three different methods: wide cantilever bending
(5,6,7), pressurization of oval and circular plates and anticlastic
bending. However, each of these methods has its own feature and may
supplement each other.

One of the advantages of the anticlastic bending method is in the
uniform distributions of stress and strain over the specimen surface.
This is simply achieved if one considers the rhombiec plate to constitute
beams of uniform strength along its two diagonals where the simple beam
theory (12) can be used as a first approximation. In the wide-cantilever
bending method, the segment subjected to the maximum stress or strain
state is limited to a small area on the specimen surface. The oval
plate under pressurization, has, alsc a limited area which is around
the center of the plate, when subjected to the maximum stress or strain
state.

In the reversed bending experiments, a low-value of thickness-to-
representaﬁive—length ratio of bending specimens is usually employed.
In this case, a large deflection of bending specimens is needed to
attain a large strain amplitude. This is usually hindered by limita-
tions due to geometrical configurations of both the bending specimens
and the testing fixtures used. With the use of large value of
thickness-to-representative-length ratio of the bending specimens, the
large deflection limitation can be eliminated. However, this often

causes a large shearing force for bending, which may introduce a large



Figure . 1.  Rhombic Plate Under Anticlastic Bending



- 2‘
Figure 24, Stress Ratios Covered by
(A) Wide-Cantilever Bending (5,6,7) _
(B) Pressurization of Oval Plate (11)
(C) Anticlastic Bending
e,
0:1 %2

Figure 2B. Strain Ratios Covered by
(A) Wide-Cantilever Bending (5,6,7)
(B) ©Pressurization of Oval Plate (11)
(C) Anticlastic Bending



shear stress and strain on the neutral plane of the bending specimens,
resulting in premature failure along this plane. This difficulty can
be avoided with the use of anticlastic plate specimens where several
percents of strain amplitude can be imposed without premature shear
fracture along the neutral plane.

In summary, the antieclastic bending method for investigating bi-
axial strain-cycling low—cyéle fatigue properties of materials has the
following characteristics:

(1) Uniform distribution of stress and strain over the

entire specimen surface,

(2) possibility of.preventing generation of mean stress

and strain in specimen,

(3) +the special covered regions of stress and strain

state, which are the same as in the case of the
combined push-pull axial and torsion load, and

(4) occurrence of little error in computing e, due to

3
use of inaccurate value of u.

Cases (3) and (4) are discussed in Section 12 with special reference

to the strain state.

3. Design and Construction of the Anticlastic Bending Low-Cycle
Fatigue Testing Machine .

The testing machine was designed and constructed to investigate
the multiaxial loﬁ-cycle‘fatigue under constant deflection cycling.
The extreme value of the stress ratio 1:0 is difficult to produce.
experimentally by anticlastic bending of rhombic specimens. This

extreme state can be theoretically produced by lengthening one of the



diagonals satisfactorily. Therefore, simple bending of a cantilever
specimen, with the critical section of the same width as the thickness,
was employed. This gives a stress ratio of 1:0 and produces a strain
ratio of 1:-0.5 on the surface at the critical section. |

The testing machine (Figure C-1 - Appendix C) is composed of four
major parts, a loading system, a hydraulic power supply, a deflection
monitor, and a frame. A schematic flow chart relating these parts is

shown in Figure C-2.

4., Loading Mechanism for Anticlastic Bending of the Rhombic Specimen

The loading mechanism is illustrated in Figure C-3. It was design-
ed to simply-support the rhombic specimen and to apply cyclic loading.
The rhombic specimens are shown in Figure C-4 and the cantilever bend-
ing specimen in Figure C-5. Ideal antieclastic bending of a rhombic
plate is conducted by applying concentrated forces at the four corners
of the plate in the direction of the thickness (Figure 1). However,
rollers through which the applied forces act on the specimen were used
to avold mean strain effect and unnecessary stress concentrations.
Specimen with rollers was mounted in two pair of holders. Each holder
was attached to the respective die set by a palr of connectors.

The loading mechanism has the capacity to hold a specimen whose
shorter diagonal length is between two and three inches and whose
longer diagonal lgngth is from two to four inches, and of subjecting

the specimen to a deflection amplitude of about * 1.0 inch.



5. Loading Mechanism for Cantilever Bending

The assembly of this mechanism is illustrated in Figure C-6. The
cantilever specimens shown in Figure C-5 were subjected to cyclic load-
ing in .the same way as the rhombic specimens. Load was applied to the
specimen through the same roller that was used for the rhombic specimens.

The loading mechanism subjected the specimen to cyciic deflection

of about *1 inch.

6. Hydraulic System

A hydraulic system was used as a power supply. This system
(schematically illustrated in Figure C-T) has a linear actuator connect-
ed with the upper part of the die set, snd a four-way flow-control
valve. The travelling speed of the hydraulie ram of the linear actuator
was controlled by adjusting the throttle valve six and the bypass valve
five. The travelling direction and the stop of the ram were céntrolled
by switches A and B in the solencid circuit including the four-way
valve.

The electrical circuit shown schematically in Figure C-8 consists
of a counter to record the number of loading cycles and a microswitch C.
The switech C was fixed in the deflection monitor and operated by it.

The travel of the ram was automatically controlled in the way of cyeclic

deflection by switch C and the deflection monitor.

7. Deflection Monitor

The fatigue tests were conducted at various deflection amplitudes.
To control and keep the deflection amplitude constant, a deflection

monitor was devised. The deflection monitor consisted of a follower,



a scaled disc and g microswitch C as shown in Figure C-9. The follower
moves in coincidence-with the hydraulic ram of the linear actuator.

This movement is converted to a rotation of the disc by a rack and
pinion. On the disc two adjustable stops A and B are attached and they
contact the plate spring of the microswitch C at any displacement of
the hydraulic ram. Also on the disc,the deflection scale was marked in
0.05 inch divisions with a total range of %0.75 inch. The indicating
scale was directly marked by observing the follower travel in increments
of 0.05 inch by a dial indicator. To assure constancy of. the deflection

amplitude during tests, a dial indicator was fixed to the die set.

8. Frame
To hold the loading mechanism and the linear actuator in the

verfical line, a frame, shown in Figure C-10 was constructed.

9. Experimental Procedure.

A. Calibration Tests

Calibration tests were carried out for the following purposes:
(1) to check the uniformity of strain state over the entire surface of
the rhombic specimens under deflection, énd (2) to obtain a relation
between deflection and corresponding strain state on the surface of
each type of specimen.

Before the calibration tests were conduected, two speéimens were
arbitrarily chosen from each series of specimens. Their widths and
thicknesses were measured to determine the variation in these dimensiens.

These were less than the order of 0.01 inch.



10

From this selection, BLH SR-U4 PA-T strain gages were cemented on
the surface of the rhombic and the cantilever specimens at locations
indicated in Figure A-1 (Appendix A). Before the specimen was placed
between the die set, the hydraulic ram was brought to the null-position.
The null-position occurs when the faces of the upper and base die set. |
are 4.5 inches apart. The deflection scale position was brought to the
zero position with the help of the adjustable screw. First, the upper
pair of holders were adjusted symmetrically about the die center, so
that the distance between their faces was 1/4 inch less than the shorter
diagonal of the specimen. The specimen was then placed in the holders
and the shelter plates were fixed. The lower pair of holders were
aligned with the longer diagonal of the specimen. Finally, the speci-
men was adjusted in position, and shelter plates of the lower heolders
were fixed.

The calibration results are shown as strains versus deflection
curves in Figures B-1, B-2, B-3 and B-4 (Appendix B). Figures B-5,

B-6, B-T and B-8 show the relations between maximum strain range, strain
ratio and deflection amplitude for each series of the specimens.

Deflection test results show:

(1) Uniformity of strain state over the surfaces can be

maintained under any deflection.

(2) The relation between strain range and deflection is linear

under deflection amplitude of more than 0.1 inch.

(3) The variation in the slopes of the calibration curves for

the early part of the deflecticn amplitude is due to the

clearance between the roller and the holder.
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10. Materials and Specimens

The material used in this study was TO75-T651 aluminum alloy
rolled plate with a nominal thickness of 0.250 inch. The chemical
composition and the mechanical properties of the_méterial are given.
in Tables 1-A and 1-B, respectively. The cantilever specimens were cut
from the as-received plates of configuration shown in Figure A-1-D
(Appendix A). The rolling direction for the rhombic specimens was 45
degrees to the diagonals, and 45 degrees to the longitudinal direction
for the cantilever specimens. Specimen surface was not polished.

After machining, the rhombic specimens were rounded along the
edges with sandpaper of Emery number 00 to avoid crack initiations due
to stress concentrations. Extreme precautions were taken in rounding
the edges into approximately 1/16 inch radius without producing marks
on the specimen surfaces, since stress concentrations at the corners
were found to be significant. Materials with remarkable surface

irregularities due to fabrication or handling were rejected,

11. Experimental Results

To supplement the existing biaxial strain data, strain ratios of
1:-1, 1:-0.9 and 1:-0.8 were chosen for the rhombic plate tests. Three
series of rhombic plate specimens having the following diagonal lengths:
three by three inches, two by two and a half inches and two by three
inches, provided the selected strain ratios respectively. A strain.
state 1:~0.5 was obtained by the simple cantilever bending. By con-

trolling constant deflection amplitude, fatigue tests were conducted
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Table 1-A. Chemical Composition of 7075-T651 Aluminum Alloy

Chemical Composition %
Cu 1.2
Mg v _ 2.1
Mn 0.3
Fe 0.7
Si , 0.5
Zn 5.1
Cr 0.2
Ti 0.2
Al Remainder

Table 1-B. Mechanical Properties of 7075-T651 Aluminum Alloy

Yield Stress (0.2 percent strain) 69  ksi
Ultimate Stress 79  ksi
Ductility (2 inches gage length) , 8 %
Modulus of Elasticity 10.3 x 103 ksi

Poisson's Ratio . .321 .
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in a cyclic life range between 60 and 1400 cycles. Failure was defined
as the initiation of tﬁe first visible crack on the surface of the speci-
men.

The data of the anticlastic bending low-cycle fatigue tests are
presented in tabular, and graphical forms with the data obtained from the
cantilever bending tests. Test results of 57 from total 60 tests are
reported.

Tables 2 through 6 (Appendix A) show the test results for each
series of the 3x3, 2x2.5, and 2x3 inches rhombic specimens and the
cantilever specimens. The values of the maximum strain range Ae:L and
the strain ratio ¢ were read directly from the calibration curves at
each deflection amplitude.

Figures 3 through 6 show the log-log plots of the experimental

results in terms of the maximum strain range Ae the maximum shear

l’

strain range Ay and the octahedral shear strain range Ay versus
max oct

the number of cycles to failure N for each series of specimens. The

maximum shear strain range Aymax was calculated by the following

equation:

My = (1 = 9)be /2 (1)

where Ae, is the maximum principal strain range and e is the

1 o = 99
minimum principal strain in the case of anticlastic bending. The

octahedral shear strain range is expressed as:

1/2
2 2 2 > |
Moo, = 3|(818p)" + (epmeg)” + (egmgy) (2)
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With the assumption of volume constancy, equation (2) changes to

_ 2
MY o = 1.63(¢° + ¢ + l)Ae1 (3)

for the case of biaxial stress state.

For the cantilever bending case, the maximum shear strain range

Ay and the octahedral shear strain range Ay values were calculat-
max oct
ed from:
Aymax = 0.75 Ae (%)
and
AY o = 1-41 2e (5)

where Ae is the longitudinal strain range.

12, Octahedral Shear Strain Theory and Effect of Poisson's Ratio

Theoretical and experimental studies in high cyecle fatigue have
shown that failure under multiaxial stress condition can be represent-
ed by the octahedral shear stress theory. However, in low-cycle
fatigue where the use of strain is more meaningful than stress, the
octahedral shear stress theory can be rewritten in terms of strains.
Accordingly, fatigue failure occurs when the maximum octahedral shear
strain under fluctuating multiaxial loading is equal to the maximum
octahedral shear strain under fluctuating uniaxial loading. This basic

definition is expressed as:

1/2

Yoct = %'(el’ez)z + (’3‘2"33)2 * (eg-ey : (6)
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The octahedral shear strain again consists of two strains, namely
elastiéVand plastic. However, if the plastic strain is predominant,
theﬁ the elastic strain can be neglected. In such case, a general
relation of the octahedral shear plastic strain range can be expressed

in terms of number of cycles to failure as:

DMyl = C (7)

where n and C are constants.

Equation (7) is equivalent to Manson's (13) proposed equation:

Aepﬂno:c1 (7a)

for the case of uniaxial strain cycling with zero mean strain.

Based upon equation (7), the multiaxial strain experimental results
show a fatigue curve with characteristics similar to the uniaxial
fatigue curve (Figure 7) suggested by Manson (14). However, when the
total octahedral shear strain is plotted against the numbef of cycles
to failure the familiar non-linearity of the fatigue eurve versus the
number of cycles is observed.

The reported results in this report are based on the total -octa~
hedral shear strain, rather than on the plastic component.

In anticlastic bending tests, two principal strains were measured
on the surface of the specimen (biaxial strain cycling tests) and the
third principal strain was calculated since it was not possible to
obtain it quantitatively.

FPor an extreme plastic strain condition, constant volume condition

yields:



Total Strain

- Plastic Component

—~

Elastic Component

Log of Strain Range Ae¢

Log of Number of Cycles N to Failure

Figure 7. = Fatigue Curve Suggested by Manson (1k4).

.20
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e te,tey=0 (8)
The third principal strain-e34is related to el, e, and W by:
eq T (eg *+ ) (9)

for constant volume condition, u = 0.5.

However, it was found that Poisson's ratio u has an effect on the
octahedral shear strain. This effect is further explained in the
following discussion.

By substituting the value of e, from equation (9) into eguation

3

(6) and using the strain ratio ¢ = e2/el where e, is the maximum strain,

1
a new expression for the octahedral shear strain for a biaxial strain

condition is obtained as:

_22 1 1/2

T(Tu)- (1‘U+U2)(l+¢2) - (l—uu+u2)¢ e (10)

Yoct

where ¢ lies between -1 and +1, and u between 0.3 and 0.5 depending on
the strain state.

It Yoct/el is plotted against the strain ratio ¢, with u as a
parameter, a family of curves is obtained as shown in Figure 8. Inter-
changing the parameter u with ¢, the family of curves are replotted in
Figure 9. This family of curves reveals two interesting but related
observations for the same value of e._:

1
(1) The ratio of Yoot 26 ¢ =1 (equibiaxial strain state)

to that at ¢ = - u (uniaxial strain state) increases as
¢ increases and the ratio of Yoot at ¢ = - 1 (pure

torsion strain state) to that at ¢ = -y, decreases as

¥ increases, e.g.,
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Uniaxial

Figure 8. Octahedral Shear Strain vs. Strain Ratio at
Constant Maximum Strain



7oct/el_

.o

0.

Figure

3

<9,

0.35 - 0.4 0.45 0.5

Octahedral Shear Strain vs, Poisson's Ratio
at Constant Maximum Strain
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at u=0.3 at u=0.4 at u=0.5
(y_.) _
( °°t)at =1 _ 1.4k 1.67 2.00
Yoct at ¢=-u
(y_ ) _
r~°°t)at o=-1 _ 1.32 1.23 1.16
Yoct’at $=-u

(2) As the value of ¢ changes from -1 to +1, the ratio of
Yoct at u=0.5 to Yoot at a smaller value of u‘lncreases
and the tendency of. the increment is significant for
larger than -0.5, e.g.

¢==1  ¢=-0.5  ¢=0  ¢=1

(Yoot at u=0.5

(oet) at u=0.3

1.01 1.06 1.38 1.62

(Yoot at u=0.5

(Yoct)a% u20. 45 .

= 1,01 1.03 1.11 1.1k

The two observations can be stated as: .(1) the biaxial strain state
has a pronounced effect on the value of Yoot when ¢ = 1 and less effect
on the torsional side as the strain state is raised to extremely
plastic, and, (2) the effect of Poisson's ratio on the value of Yoot
becomes significant when the biaxial strain state is between plane
strain (¢=0) and equibiaxial étrain (¢=1). It is interesting to note
that the anticlastic bending and the combined push-pull and torsion
tests are dealing with a strain state of strain ratioc-varying from

1:-1 to 1l:-u where the octashedral shear strain range changes from a

maximum value (at ¢=-1) to a minimum value (at ¢=-n).
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The error in Yoct due to the use of inaccurate value of u may be
minimum for values around ¢=-1 and maximum for those nesr ¢=+1.
Whether these errors should be taken into account depends on the
accuracy of the measured variables in the test and on the significant
digits to be presented for the results. The low-cycle fatigue data is
usually presented in log-log plot of the strain range Versus the
number of cycles to failure, and significant number of digits of the
strain range is usually two and the permissible range of strain is less
than five percent. This means that an error of the order of one percent
can be neglected; however if the strain state of ¢ is larger than zero,
then the assumption of volume-constancy, if the true value of u is less
than 0.45, will lead to error that can not be neglected. Therefore a
modified analysis of the octahedral shear strain theory is needed to

account for the changes of u.

13. Discussion

The test results show that the octahedral shear strain theory can
be ‘used as a good failure theory for multiaxial strain low-cycle
fatigue. This can be seen if Figures 3 through 6 were replotted as
Figures 10, 11 and 12.

To check the validity of this theory several available biaxial
data which had not been interpreted from the point of view of the
octahedral shear‘strain theory, were plotted for comparison purposes.
For example, the biaxial strain-cycling data given by Sachs and Weiss,
et al were replotted in terms of the octahedral shear strain range by

using both the transverse to longitudinal strain ratio (7) and the
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condition of volume-constancy. As shown in Figures 13, 14 and 15, a
good simple curve of the results was obtained for the various strain
ratios. The materials used in Sachs and Weiss' investigation were
5454-0 aluminum salloy, A-302 steel and.2024-Th aluminum alloy. However
a good agreement was not possible in the case of torsional loading.
The torsional data presented by Halford and Morrow (15) on annealed
1100-0 aluminum was compared with the axial strain-cycling data re-
ported on the same material by Manson and Hirshberg (14) and
Tavernelli and Coffin (16). The result of the three reported data is
shown in Figure 16. The agreement is not good and the torsion-test
values were considerably greater than the axial test values. Again,
data presented by Halford and Morrow on TOT5-T5 aluminum alloy and
SAE-4340 steel were compared with the axial strain-cycling data re-
ported by Manson and Hirshberg. These results are shown in Figures
17 and 18. The possible difference in material properties and the
difference in the definition of failure between the torsional and
axial strain-cyclings could be the attributed factor for this scatter
and lack of agreement.

Examples of surface failure are shown in Figures 19, 20 and 21
where a number of short cracks appeared on the 2x2.5 specimen surface
when specimen was subjected to 0.199 percent maximum strain range
cycling at U450 cycles; however, a long crack appeared on the surface
of 3x3 specimens when subjected to 0.35 percent maximum strain range
cycling at 82 cycles. Figure 22 shows the failure of cantilever

specimen. Cracks can be seen not only in the direction of the rolling



but also in the direction normal to the rolling direction. Such
directions are coincident with the directions of the maximum shear

and the octahedral shear on the specimen surfaces.

30
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Figure 19. Failed Surface of 2x2.5 Specimen under 1.99 Percent
Maximum Strain Range at 450 Cycles

Figure 20. Failed Surface of 3x3 Specimen under 3.50 Percent
Maximum Strain Range at 82 Cycles
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Figure 21. Cracks of 2x2.5 Specimen under 1.99 Percent
Maximum Strain Range at 450 Cycles

Figure 22. Failed Surface of Cantilever Specimen under 3.50
Percent Maximum Strain Range at 113 Cycles
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APPENDIX A

Specimens and Test Results
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Figure A-1-A. Locations of the Cemented Strain Gages on 3x3
Specimen

Figure A-1-B. Locations of the Cemented Strain Gages on 2x2.5
Specimen ’
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Figure -A-1-C.

Locations of the Cemented Strain Gages on 2x3
Specimen :
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Figure A-1-D,Locations of Cemented Strain Gages on Cantilever
Specimens
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Maximum Strain Range, Le,, (x 10-2 in/in)
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Maximum Strain Range, Ael (x 10.2 in/in)

'Figure B-T.
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Testing Machine.

Figure C-1.
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Figure C-2. Schematic Flow Chart of Testing Machine
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