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Preface 

This i s  t he  t h i r d  annual progress repor t ,  covering the  research 

work on a n t i c l a s t i c  bending. A method t o  introduce a d ivers i f ied  

biaxial s t r a i n  r a t i o  is  discussed and the  results are compared on the 

basis of three f a i l u r e  theories  f o r  low-cycle fatigue studes. The 

reported results are par t  of a research program on " B i a x i a l  S t r a in  

Cycling Effect on Fatigue L i f e  of S t ruc tura l  Materials," supported 

by the  National Aeronautics and Space Administration under Research 
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Ab e; t r act 

The uniaxial  and b i a x i a l  low cycle fa t igue l i f e  of 7075-T651 

aluminum a l loy  i n  a n t i o l a s t i c  bending is  investigated.  U q i a x i a l  data 

i s  obtained from q cant i lever  specimen and rhombic pl,ate specimens 

are used foy nominal s t r a in  b i ax ia l i t y  of l:-ls 1:-0.9, 1:-0.8 and 

1:-0.5. Experimental data is discussed on the  bas i s  of maximum 

s t r a i n  range, maximum shear s t r a i n  range and octahedral shear s t r a i n  

range. 
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1. Introduction 

The main objective of the research program i s  t o  conduct an experi- 

mental invest igat ian on multiaxial  s t r a i n  cycling and t o  evolve a theory 

f o r  predicting mult iaxial  s t r a i n  behavior from a uniaxial  s t r a i n  cycling 

r e l a t ion ,  

It appears from the  studies conducted so far, t h a t  the  octahedral 

shear s t r a i n  i s  the control l ing function describing s t r a i n  cycling be- 

havior f o r  in-phase s t r a i n  state conditions. 

To achieve a d ivers i f ied  b i ax ia l  s t r a i n  r a t i o ,  two low-cycle 

fa t igue machines were designed and constructed. 

introduces combined a x i a l  and tors iona l  s t r a i n  cycling under in-phase 

or out-of-phase loading conditions, u t i l i z i n g  th in  hollow cyl indrical  

specimens. The second machine subjects a n t i c l a s t i c  p l a t e  specimens t o  

biaxial  s t r a i n  r a t i o s  under pure bending load. 

The first machine 

This report  covers the design of low-cycle a n t i c l a s t i c  bending 

fat igue machines, a n t i c l a s t i c  test  specimens and the experimental 

resu l t s .  

Test r e su l t s ,  based on maximum s t r a i n  range, maximum shear s t r a i n  

range and octahedral shear s t r a i n  range theories a re  presented i n  a se r i e s  

of s t r a i n  versus number of cycles t o  f a i l u r e  curves. 

2. Application of Anticlast ic  Bending t o  Multiaxial S t ra in  Cycling- 
Low-Cycle Fatigue 

The use of reversed bending technique is not new i n  low-cycle 

Gross, Tsang and Stout (1,2,3,4) fa t igue s tudies  under b i ax ia l  loading. 

used a cant i lever  bending of wide specimens wi th  a width-to-thickness 



2 

r a t i o  of f ive  t o  simulate the biaxial. stress state of 2 : l  stress r a t i o  

which w a s  encountered i n  pressure vessels.  This stress condition is 

caused by a l a t e r a l  constraint  against  free deformation along the 

center l i n e  of the specimens f o r  an idea l  p l a s t i c  mater ia l  of Poisson's 

r a t i o  1.1 of 1/2. 

Later Sachs, Weiss et  al (5,6,7) at Syracuse University modified 

t h i s  technique t o  cover a wider stress r a t i o  ranging from 1:0 t o  2 : l  

( f o r  ideal p l a s t i c  material) by changing the  width-to-thickness r a t i o  

of specimens, which resu l ted  i n  a var ia t ion of degree of constraint  of 

l a t e r a l  deformation. 

pr inc ipa l  s t r a i n  r a t i o s  of 2:-1 t o  1:0 ( f o r  i d e a l  p l a s t i c  mater ia l ) .  

"he stress r a t i o s ,  1:0 t o  2:1, produce the 

Other methods producing b i ax ia l  s t r e s s  condition on the surface of 

plate specimens, were developed by Blaser e t  a1 (8)  and by Bowman and 

Dolan (9 ) .  

rectangular specimen, simply supported along i t s  edges. 

modified t h i s  method t o  a t t a i n  completely reversed bending by subject- 

ing a c i rcu lar  specimen, simply supported along i t s  edge, t o  pressure 

a l te rna te ly  on one of two sides of specimen surfkce. 

This w a s  achieved by pulsating pressure on one s ide  of a 

Ives e t  al (10) 

The foregoing method has been modified by Shewchuk and Zamrik (11) 

t a  cover a wider range of s t r a i n  ratios from 1:l t o  2 : l b y  employing 

oval specimens w i t h  d i f fe ren t  diametral r a t io s .  

With the  use of a n t i c l a s t i c  bending of rhombic p l a t e  specimens, a 

completely d i f fe ren t  cange of s t r a i n  r a t io s  are covered, simply by 

changing the  diagonal r a t i o  of the rhombic p l a t e  specimens. 

bending of a rhombic plate is  a case of pure bending of a p l a t e  having 

Anticlast ic  
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two pr inc ipa l  curvatures of opposite signs (Figure 1). 

stress state on the specimen surface i s  b iax ia l  tension-compression. 

Figure 2 shows the  covered area of s t r e s s  and s t r a i n  r a t i o s  by the 

Therefore, t he  

above-mentioned three d i f fe ren t  methods: 

(5,6,7), pressurization of oval and c i rcu lar  p la tes  and a n t i c l a s t i c  

wide cant i lever  bending 

bending. However, each of these methods has i t s  own feature  and may 

supplement each other. 

One of the advantages of the a n t i c l a s t i c  bending method i s  i n  the 

uniform dis t r ibut ions of s t r e s s  and s t r a i n  over the specimen surface. 

This i s  simply achieved i f  one considers the  rhombic p l a t e  t o  const i tute  

beams of uniform strength along i t s  two diagonals where the  simple beam 

theory (12)  can be used as a first approximation. 

bending method, the segment subjected t o  the maximum s t r e s s  or s t r a i n  

s t a t e  i s  l imited t o  a s m a l l  a rea  on the specimen surface. 

p l a t e  under pressurization, has, a l so  a l imited area which i s  around 

the center of the p la te ,  when subjected t o  the  maximum s t r e s s  o r  s t r a i n  

s t a t e .  

I n  the  wide-cantilever 

The oval 

I n  the  reversed bending experiments, a low-value of thickness-to- 

representative-length r a t i o  of bending specimens i s  usually employed, 

I n  th i s  case, a large deflection of bending specimens i s  needed t o  

a t t a i n  a large s t r a i n  amplitude. T h i s  is  usually hindered by l i m i t a -  

t ions  due t o  geometrical configurations of both the  bending specimens 

and the t e s t ing  f ix tu re s  used. 

thickness-to-representative-length r a t i o  of the  bending specimens, the  

large deflection l imi ta t ion  can be el iminated.  However, t h i s  often 

causes a large shearing force fo r  bending, which may introduce a large 

With the use of large value of 
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P 

Figure 1. Rhombic Plate Under Anticlastic Bending 
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Figure 2A. Stress Ratios Covered by 
(A) Wide-Cantilever Bending ( 5,6 7) 
(B) Pressurization of oval Plate (1.1) 

(C) Anticlastic Bending 

1 e 

, Figure 2B. Strain Ratios Covered by 

Pressurization of Oval Plate (11) 

\ 
I (A) Wide-Cantilever Bending ( 5  ,6,7) 

(B) 
(C) Anticlastic Bending 
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shear s t r e s s  and s t r a i n  on the  neut ra l  plane of the  bending specimens, 

resu l t ing  i n  premature failure along t h i s  plane. 

be avoided with the  use of a n t i c l a s t i c  p l a t e  specimens where several 

percents of s t r a i n  amplitude can be imposed without premature shear 

f rac ture  along the  neutral  plane. 

This d i f f i cu l ty  can 

I n  summary, the a n t i c l a s t i c  bending method f o r  investigating bi- 

axial strain-cycling low-cycle fa t igue properties of materials has the 

following character is t ics :  

Uniform dis t r ibu t ion  of s t r e s s  and s t r a i n  over the 

e n t i r e  specimen surface,  

poss ib i l i t y  of preventing generation of mean stress 

and s t r a i n  i n  specimen, 

the spec ia l  covered regions of stress and s t r a i n  

state, which are  the same as i n  the  case of the 

combined push-pull a x i a l  and tors ion load, and 

occurrence of l i t t l e  error i n  computing e 

use of inaccurate value of FC. 

due t o  3 

Cases (3) and ( 4 )  are discussed i n  Section 12 w i t h  special  reference 

t o  the s t r a i n  s t a t e .  

3. Desipp and Construction of the Anticlast ic  Bending Low-Cycle 
Fatigue Testing Machine 

The t e s t ing  machine w a s  designed and constructed t o  investigate 

the multiaxial  low-cycle fa t igue under constant deflection cycling, 

The extreme value of the s t r e s s  r a t i o  1:0 is d i f f i c u l t  t o  produce 

experimentally by a n t i c l a s t i c  bending of rhombic specimens. This 

extreme state can be theore t ica l ly  produced by lengthening one of the 
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diagonals sa t i s fac tor i ly .  Therefore, simple bending of a cantilever 

specimen, with t h e  c r i t i c a l  sect ion of the  same width as the  thickness, 

w a s  employed, This gives a stress r a t i o  of 1:0 and produces a s t r a i n  

r a t i o  of 1:-0.5 on the  surface at the  c r i t i c a l  section. 

The t e s t i n g  machine (Figure C-1  - Appendix C )  i s  composed of four 

major pa r t s ,  a loading system, a hydraulic power supply, a deflection 

monitor, and a frame. A schematic flow chart  re la t ing  these par t s  i s  

shown i n  Figure C-2. 

4. Loading Mechanism for Anticlast ic  Bending of the  Rhombic Specimen 

The loading mechanism i s  i l l u s t r a t e d  i n  Figure C-3. It was design- 

ed t o  simply-support the rhombic specimen and t o  apply cycl ic  loading. 

The rhombic specimens are shown i n  Figure C-4  and the  cantilever bend- 

ing specimen i n  Figure C-5. 

p l a t e  i s  conducted by applying concentrated forces at t he  four corners 

of the  p la te  i n  the direction of the thickness (Figure 1). 

r o l l e r s  through which the  applied forces act on the  specimen were used 

t o  avoid mean s t r a i n  e f fec t  and unnecessary stress concentrations. 

Specimen with r o l l e r s  w a s  mounted i n  two pa i r  of holders. 

w a s  attached t o  the  respective d i e  s e t  by a pa i r  of connectors. 

Idea l  a n t i c l a s t i c  bending of a rhombic 

However, 

Each holder 

The loading mechanism has the capacity t o  hold a specimen whose 

shorter  diagonal length i s  between two and three inches and whose 

longer diagonal length i s  from two t o  four inches, and of subjecting 

the  specimen t o  a deflection amplitude of about f 1.0 inch. 



5 .  Loading Mechanism for Cantilever Bending 
0 

The assembly of t h i s  mechanism is  i l l u s t r a t e d  i n  Figure C-6. The 

cant i lever  specimens shown i n  Figure C-5 were subjected t o  cycl ic  load- 

ing i n  the  same way as the rhombic specimens. 

specimen through the same r o l l e r  that w a s  used f o r  the  rhombic specimens. 

Load w a s  applied t o  the  

The loading mechanism subjected the specimen t o  cycl ic  deflection 

of about +1 inch. 

6. Hydraulic System 

A hydraulic system w a s  used as a power supply. This system 

(schematically i l l u s t r a t e d  i n  Figure C-7) has a l inear  actuator connect- 

ed w i t h  the  upper par t  of the die  s e t ,  and a four-way flow-control 

valve. 

was controlled by adjusting the  t h r o t t l e  valve s i x  and the  bypass valve 

f ive.  The t rave l l ing  direct ion and the  s top of the  ram were controlled 

by switches A and B i n  the  solenoid c i r cu i t  including the  four-way 

valve 

The t rave l l ing  speed of t h e  hydraulic ram of the  l i nea r  actuator 

The e l e c t r i c a l  c i r c u i t  shown schematically i n  Figure C-8 consists 

of a counter t o  record the  number of loading cycles and a microswitch C .  

The switch C w a s  f ixed i n  the deflection monitor and operated by it. 

The t r a v e l  of the  ram w a s  automatically controlled i n  the way of cycl ic  

deflection by switch C and the deflection monitor. 

7. Deflection Monitor 

The fat igue t e s t s  were conducted at various deflection amplitudes. 

To control and keep the deflection amplitude constant, a deflection 

monitor was devised. The deflection monitor consisted of a follower, 
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a scaled d isc  and a microswitch C as shown i n  Figure C-9. 

moves i n  coincidence with the hydraulic ram of the  l i nea r  actuator.  

This movement i s  converted t o  a ro ta t ion  of the disc by a rack and 

pinion. 

contact the p l a t e  spring of the  microswitch C at any displacement of 

the  hydraulic ram. 

0.05 inch divisions w i t h  a t o t a l  range of f0.75 inch. 

sca le  w a s  d i r ec t ly  marked by observing the follower t r a v e l  i n  increments 

of 0.05 inch by a dial indicator .  To assure constancy of the deflection 

amplitude during tests, a d i a l  indicator  w a s  f ixed t o  the die  se t .  

The follower 

On the d isc  two adjustable stops A and B are attached and they 

A l s o  on the  disc , the def lect ion scale  w a s  marked i n  

The indicating 

8. Frame 

To hold the  loading mechanism and the l i nea r  actuator i n  the 

v e r t i c a l  l i n e ,  a frame, shown i n  Figure C-10 w a s  constructed. 

9 E x p e r i ~ e n t a l  Procedure 

A. Calibr.%tion Te,sts 

Calibration tes t s  were carr ied out f o r  the  following purposes: 

(1) t o  deck  the  uniformity of s t r a i n  state over the  e n t i r e  surface of 

the rhombic specimens under def lect ion,  and ( 2 )  t o  obtain a r e l a t ion  

between def lect ion and corresponding s t r a i n  state on the surface of 

each type of specimen. 

BeIore the cal ibrat ion t e s t s  were conducted, two specimens were 

a r b i t r a r i l y  chosen from each se r i e s  of specimens. Their widths and 

thicknesses were measured t o  determine the var ia t ion i n  these dimensions. 

These were l e s s  than the  order of 0.01 inch. 
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From t h i s  select ion,  BLH SR-4 PA-7 s t r a i n  gages were cemented on 

the  surface of t h e  rhombic and the  cant i lever  specimens at locations 

indicated i n  Figure A-1 (Appendix A ) .  

between the d ie  set ,  the hydraulic ram w a s  brought t o  the  null-position. 

The null-position occurs when the faces of t he  upper and base die set 

are 4.5 inches apart .  

zero posi t ion with the  help of the  adjustable screw, 

pa i r  of holders were adjusted symmetrically about the  d ie  center, so 

t h a t  the  distance between t h e i r  faces w a s  1 / 4  inch less than the  shorter  

diagonal of the specimen. 

and the  she l t e r  p la tes  w e r e  fixed, 

aligned with the  longer diagonal of t he  specimen. 

men w a s  adjusted i n  posi t ion,  and shelter p la tes  of the  lower holders 

Before t h e  specimen w a s  placed 

The deflection scale posit ion w a s  brought t o  the  

F i r s t ,  t h e  upper 

The specimen w a s  then placed i n  the  holders 

The lower p a i r  of holders were 

Finally,  t he  speci- 

were fixed. 

Tbe cal ibrat ion results are shown as s t r a ins  versus deflection 

Figures B-5, curves i n  Figures B-1, B-2, B-3 and B-4 (Appendix B )  e 

B-6, B-7 and B-8 show the relat ions between maximum s t r a i n  range, s t r a i n  

r a t i o  and deflection amplitude f o r  each series of t he  specimens. 

Deflection t e s t  results show: 

(1) Uniformity of s t r a i n  state over the  surfaces can be 

maintained under any deflection. 

The r e l a t ion  between s t r a i n  range and deflection is  l i nea r  

under deflection amplitude of more than 0 .1  inch. 

The var ia t ion i n  the slopes of t he  cal ibrat ion curves f o r  

t he  ear ly  pa r t  of t he  deflection amplitude i s  due t o  the 

clearance between the  r o l l e r  and the  holder. 

( 2 )  

( 3 )  
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10. Materials and Specimens 

The material used i n  t h i s  study w a s  7075-T651 aluminum al loy 

ro l l ed  p l a t e  with a nominal thickness of 0.250 inch. The chemical 

composition and the  mechanical properties of the mater ia l  are given 

i n  Tables 1-A and 1-B, respectively. The cant i lever  specimens were cut 

from the  as-received p la tes  of configuration shown i n  Figure A-1-D 

(Appendix A) .  The ro l l i ng  direct ion f o r  t he  rhombic specimens w a s  45 

degrees t o  the diagonals, and 45 degrees t o  the longitudinal direct ion 

fo r  the cant i lever  specimens. Specimen surface w a s  not polished. 

A f t e r  machining, the rhombic specimens were rounded along the  

edges with sandpaper of Emery number 00 t o  avoid crack i n i t i a t i o n s  due 

t o  s t r e s s  concentrations. Extreme precautions were taken i n  rounding 

the  edges i n t o  approximately 1/16 inch radius without producing marks 

on the specimen surfaces,  since s t r e s s  concentrations at the corners 

were found t o  be s ignif icant .  Materials with remarkable surface 

i r r egu la r i t i e s  due t o  fabr icat ion or handling were rejected.  

11. Experimental Results 

To supplement the exis t ing b i ax ia l  s t r a i n  data ,  s t r a i n  r a t i o s  of 

1:-1, 1:-0.9 and 1:-0.8 were chosen fo r  t he  rhombic p l a t e  t e s t s .  

s e r i e s  of rhombic p l a t e  specimens having the  following diagonal lengths: 

three by three inches, two by two and a ha l f  inches and two by three 

inches, provided the  selected s t r a i n  r a t io s  respectively. A s t r a i n  

state l:-O.5 w a s  obtained by the  simple cant i lever  bending. By con- 

t r o l l i n g  constant deflection amplitude , fa t igue tests were conducted 

ThiAee 
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Table 1-A. Chemical Composition of 7075vT651 Aluminum Alloy 

Chemical Compos ition % 

cu 

Mg 

t4-l 

Fe 

si 

Zn 

Cr 

Ti 

1 . 2  

2 .1  

0 . 3  

0.7 

0.5 

5.1 

0.2 

0 . 2  

Al Remainder 

Table 1-B. Mechanical Properties of 7075-T651 Aluminum Alloy 

Yield Stress (0.2 percent strain) 69 ksi 

Ultimate Stress 79 ksi 

Ductility (2  inches gage Length) 8 % 

Modulus of Elasticity 10.3 x lo3 ksi 

Poisson’s Ratio -321 . 
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i n  a cycl ic  l i f e  range between 60 and 1400 cycles. Fai lure  w a s  defined 

as the i n i t i a t i o n  of the first v i s ib l e  crack on the  surface of the speci- 

men. 

The data of t he  a n t i c l a s t i c  bending lw-cycle  fa t igue t e s t s  are 

presented i n  tabular, and graphical forms w i t h  t h e  data  obtained from the  

cant i lever  bending t e s t s .  T e s t  results of 57 from t o t a l  60 tests a re  

reported. 

Tables 2 through 6 (Appendix A )  show the tes t  r e su l t s  for each 

se r i e s  of the 3x3, 2 ~ 2 . 5 ,  and 2x3 inches rhombic specimens and the  

cant i lever  specimens. The values of the maximum s t r a i n  range Ae and 

the  s t r a i n  r a t i o  Cp were read d i r ec t ly  f romthe  cal ibrat ion curves at 

1 

each deflection amplitude 

Figures 3 through 6 show the log-log p lo t s  of the experimental 

results i n  terms of the maximum s t r a i n  range Ae the maximum shear 

s t r a i n  range Ay,,, and the octahedral shear s t r a i n  range by 

the  number of cycles t o  f a i lu re  N f o r  each s e r i e s  of specimens. 

1’ 

versus 

The 

oct 

maximum shear s t r a i n  range Ay was calculated by the  following 

equation : 

m a x  

where Ae i s  the  maximum principal  s t r a i n  range and e 1 2 = $e, i s  the 

minimum principal  s t r a i n  i n  the  case of a n t i c l a s t i c  bending. The 

octahedral shear s t r a i n  range is  expressed as: 
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With the assumption of volume constancy, equation (2) changes t o  

for  t he  case of b i ax ia l  stress state. 

For the  cantilever bending case, 

and the  octahedral shear s t r a i n  ''ma, 

ed from: 

the maximum shear s t r a i n  range 

range 

and 

AY,, = 0.75 Ae 

Ayoct = 1 .41  Ae 

values were calculat- AYoct 

( 4 )  

( 5 )  

where Ae i s  the  longitudinal s t r a i n  range. 

12. Octahedral Shear S t ra in  Theory and Effect of Poisson's Ratio 

Theoretical and experimental studies i n  high cycle fa t igue have 

shown t h a t  failure under multiaxial  stress condition can be represent- 

ed by the  octahedral shear stress theory. However, i n  low-cycle 

fa t igue where the  use of s t r a i n  is  more meaningful than s t r e s s ,  the 

octahedral shear stress theory can be rewrit ten i n  terms of s t ra ins .  

Accordingly, fa t igue failure occurs when the  maximum octahedral shear 

s t r a i n  under f luctuat ing multiaxial  loading i s  equal t o  the  maximum 

octahedral shear s t r a i n  under f luctuat ing uniaxial  loading. This basic  

def ini t ion is  expressed as: 



The octahedral shear s t r a i n  again consists of two s t r a ins ,  namely 

e l a s t i c  and p l a s t i c .  However, i f  the p l a s t i c  s t r a i n  i s  predominant, 

then the  elastic s t r a i n  can be neglected. I n  such case, a general 

re la t ion  of the octahedral shear p l a s t i c  s t r a i n  range can be expressed 

i n  terms of number of cycles t o  failure as: 

A Y ~ ~ N ~  = c 

where n and C 

Equation 

are constants. 

(7)  i s  equivalent t o  Manson's (13) proposed equation: 

Ac Hno= C1 
P 

for  the  case of uniaxial  s t r a i n  cycling with zero mean s t r a in .  

Based upon equation ( 7 ) ,  the  multiaxial  s t r a i n  experimental resu l t s  

show a fat igue curve w i t h  character is t ics  similar t o  the  uniaxial  

fatigue curve (Figure 7)  suggested by Manson ( 1 4 ) .  However, when the  

t o t a l  octahedral shear s t r a i n  i s  p lo t ted  against  t he  number of cycles 

t o  failure the  familiar non-linearity of the  fatigue curve versus the  

number of cycles i s  observed. 

The reported r e su l t s  i n  t h i s  report  are based on the t o t a l  octa- 

hedral  shear s t r a in ,  ra ther  than on the  p l a s t i c  component. 

In  an t i c l a s t i c  bending tests,  two pr incipal  s t r a ins  were measured 

on the surface of t he  specimen (b iax ia l  s t r a i n  cycling tes ts)  and the  

th i rd  pr incipal  s t r a i n  w a s  calculated since it w a s  not possible t o  

obtain it quant i ta t ively e 

For an extreme p l a s t i c  s t r a i n  condition, constant volume condition 

yields  : 
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Total Strain 

E las t i c  Component 

Figure 7. Fatigue Curve Suggested by Manson (14). 



e + e  + e  = O  1 2 3  

The t h i r d  pr incipal  s t r a i n  e is r e l a t ed  t o  e 1, e2 and 1.1 by: 3 

e 3 = - A  1 - 1.I (el + e,) (9 )  

f o r  constant volume condition, 1.1 = 0.5. 

However it w a s  found t h a t  Poisson's r a t i o  1.1 has an e f fec t  on the 

octahedral shear s t r a in .  This e f fec t  is  fur ther  explained i n  the 

following discussion. 

By subs t i tu t ing  the value of e from equation (9)  i n t o  equation 3 
( 6 )  and using the  s t r a i n  r a t i o  Cp = e /e where e i s  the  m a x i m u m  s t r a in ,  2 1  1 

a new expression for the  octahedral shear s t r a i n  fo r  a b i ax ia l  s t r a i n  

condition is  obtained as: 

where Cp l i es  between -1 and +1, and 1.1 between 0.3 and 0.5 depending on 

the  s t r a i n  state. 

i s  p lo t ted  against t he  s t r a i n  rakio C p 3  with p as a If Y0cdel  

parameter, a family of curves i s  obtained as shown i n  Figure 8. Inter-  

changing the parameter 1.1 w i t h  Cp, the  family of curves are replot ted i n  

Figure 9. This family of curves reveals two in te res t ing  but re la ted  

1: observations fo r  the same value of e 

(1) The r a t i o  of y a t  Cp = 1 (equibiaxial  s t r a i n  state) oct 

t o  that  at Cp = - 1.1 (uniaxial  s t r a i n  state) increases as 

1.1 increases and the  r a t i o  of y 

tors ion s t r a i n  state) t o  tha t  a t  Cp = -1.1, decreases as 

at Cp = - 1 (pure oct 

1.1 increases, e.g., 
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Figure 8. Octahedral Shear Strain vs. Strain Ratio a t  
Constant Maximum Strain 
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0 . 3  0.35 0.4 0.45 0.5 
c1 

Figure 9 .  Octahedral Shear Strain vs. Poisson's Ratio 
a t  Constant Maximum Strain 
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at p=O . 3  at V=O. 4 at  p=O .5 

1 . 4 4 .  

1.32 

1.67 

1.23 

2.OQ 

1.16 

(2)  As t h e  value of 4 changes from -1 t o  +1, the  r a t i o  of 

at p=O.5 t o  yoct at a smaller value of p increases Yoct 

and the  tendency of the  increment i s  s igni f icant  f o r  

la rger  than -0.5, e.g. 

$=-1 $=-0.5 C p o &  

1.38 1.62 
1 

1.06 ( ~ o c t  at p=0,.5 = lmol 
(Yoct 1 at u=O 3 

The two observations can be s ta ted  as: 

has a pronounced effect on the  value of yoct when 

on the tors iona l  side as the  s t r a i n  state i s  raised t o  extremely 

p l a s t i c ,  and, (2)  the  effect of Poisson's r a t i o  on the value of y 

becomes s igni f icant  when the b i ax ia l  s t r a i n  s t a t e  i s  between plane 

s t r a i n  ($=O) and equibdaxial s t r a i n  (+=l). 

t ha t  the a n t i c l a s t i c  bending and the  combined push-pull and tors ion 

tests are dealing with a s t r a i n  state of s t r a i n  r a t i e v a r y i n g  from 

1 : - 1 t o  1:-y where the  octahedral shear s t r a i n  range changes from a 

maximum value (at +=-I> t o  a minimum value (at  +=-VI.  

(1) the  b i ax ia l  s t r a i n  state 

= 1 and less effect 

oct 

It i s  in te res t ing  t o  note 
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The er ror  i n  y due t o  the  use of inaccurate value of 1.1 may be oct 

minimum f o r  values around $=-1 and maximum f o r  those near $=+1. 

Whether these e r rors  should be taken in to  account depends on the  

accuracy of t he  measured variables i n  the  tes t  and on the  s ign i f icant  

d i g i t s  t o  be presented f o r  t h e  results. 

usually presented i n  log-log p lo t  of the  s t r a i n  range versus the 

number of cycles t o  failure, and s ignif icant  number of d ig i t s  of the 

s t r a i n  range i s  usually two and the permissible range of s t r a i n  i s  less 

than f ive  percent. T h i s  means tha t  an e r ro r  of the order of one percent 

can be neglected; however i f  t he  s t r a i n  state of  Cp is  la rger  than zero, 

then the  assumption of volume-constancy, i f  the t rue  value of 1.1 i s  less 

The low-cycle fatigue data  i s  

than 0.45, w i l l  lead t o  e r ro r  that; can not be neglected. Therefore a 

modified analysis of t he  octahedral shear s t r a i n  theory i s  needed t o  

account f o r  the  changes of 1.1. 

13. Discussion 

The tes t  results show t h a t  the octahedral shear s t r a i n  theory can 

be used as a good f a i l u r e  theory f o r  multiaxial  s t r a i n  low-cycle 

fatigue.  

Figures 10 ,  11 and 12. 

This can be seen i f  Figures 3 through 6 were replot ted as 

To check the  va l id i ty  of t h i s  theory several  available biaxial  

data  which had not been interpreted from the  point of view of the 

octahedral shear s t r a i n  theory, were p lo t ted  f o r  comparison purposes. 

For example, the  b i ax ia l  strain-cycling data given by Sachs and Weiss, 

e t  a1 were replot ted i n  terms of the  octahedral shear s t r a i n  range by 

using both the  transverse t o  longitudinal s t r a i n  r a t i o  (7 )  and the  
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condition of volume-constancy. As shown i n  Figures 13, 14 and 15, a 

good simple curve of t h e  r e su l t s  w a s  obtained f o r  the  various s t r a i n  

r a t io s .  The materials used i n  Saehs and Weiss' investigation were 

5454-0 aluminum al loy,  A-302 s t e e l  and 2024-Th aluminum al loy.  

a good agreement was  not possible i n  the  case of to rs iona l  loading. 

The to r s iona l  data  presented by Halford and Morrow (15) on annealed 

1100-0 aluminum w a s  compared with the  ax ia l  strain-cycling data re- 

ported on the same material  by Manson and Hirshberg (14) and 

Tavernelli and Coffin (16). 

shown i n  Figure 16. 

values w e r e  considerably greater  than the axial t e s t  values. 

data  presented by Halford and Morrow on 7075-T5 aluminum al loy and 

SAE-4340 s t e e l  were compared with the  a x i a l  strain-cycling data re- 

ported by Manson and Hirshberg. These r e su l t s  a re  shown i n  Figures 

17 and 18. 

difference i n  the  def in i t ion  of f a i l u r e  between the tors iona l  and 

axial strain-cyclings could be the  a t t r i bu ted  fac tor  f o r  t h i s  s c a t t e r  

and lack of agreement. 

However 

The r e s u l t  of t he  three reported data i s  

The agreement i s  not good and the  tors ion-test  

Again, 

The possible difference i n  material properties and the  

Examples of surface f a i l u r e  are shown i n  Figures 19, 20 and 21 

where a number of short  cracks appeared on the  2x2.5 specimen surface 

when specimen was subjected t o  0.199 percent maximum s t r a i n  range 

cycling a t  450 cycles; however, a long crack appeared on the  surface 

of 3x3 specimens when subjected t o  0.35 percent maximum s t r a i n  range 

cycling a t  82 cycles. 

specimen. 

Figure 22 shows the failure of cant i lever  

Cracks can be seen not only i n  the direct ion of the ro l l i ng  
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but also i n  the direct ion normal t o  the r o l l i n g  direction. 

direct ions are coincident w i t h  the direct ions of the maximum shear 

and the  octahedral shear on the specimen surfaces. 

Such 
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Figure 19. Failed Surface of 2x2.5 Specimen under 1.99 Percent 
Maximum St ra in  Range at 450 Cycles 

Figure 20. Fai led Surface of 3x3 Specimen under 3.50 Percent 
M a x i m u m  S t ra in  Range at 82 Cycles 
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Eigure 21. Cracks of 2x2.5 Specimen under 1.99 Percent 
M a x i m u m  S t ra in  Range at 450 Cycles 

Figure 22. Fai led Surface of Cantilever Specimen under 3.50 
Percent Maximum S t ra in  Range at 113 Cycles 
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APPENDIX A 

Specimens and Test Results 
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Figure A-1-A.Locations of the Cemented Strain Gages on 3x3 
Specimen 

Figure ‘A-1-B. Locations of the Cemented Strain Gages on 2x2.5 
Specimen 



Figure A-1-C.Locations of the Cemented Strain Gages on 2x3 
Specimen 
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Figure A-l?D.Locations of Cemented Strain Gages on Cantilever 
Spec ime ns 
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APPENDIX B 

Calibration Tests 
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Figure B-8. Maximum Strain Range and Strain Ratio vs. Def lect ion 
Amplitude for Cantilever Specimen 
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APPENDIX C 

Testing Equipment 
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Hydraulic 
Sys tem 

Mechanism I 3 
Figure C-2. Schematic Flow Chart of Testing Machine 
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Figure C-4-B- 2x2.S Rhombic Specimen 
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Figure C-4-C. 2 x 3 Rhombic Specimen 
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4 Through Hole 

Figure C-5. Cantilever Specimen 
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Figure C-7.  Schematic Diagram of Hydraulic System 

(1) Pressure Gage 

(2) Check Valve 

(3) Isolation Valve 

(4) Relief Valve 
(5) Bypass Valve 
( 6 )  Throttle Valve 
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Figure C-8. Schematic Diagram of the Electric 
Solenoid-Circuit 

Four-Way Valve 
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Figure c-9. Deflection Monitor 
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