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HYPERSONIC TURBULENT BOUNDARY LAYER 

STUDIES AT COLD WALL CONDITIONS 

.b 
by 

J. E. Wallace". 

Ae rod ynamic Re s e a r c h  De partme nt 
Cornel1 Aeronautical Laboratory, Inc. 

Buffalo, New York 14221 

ABSTRACT 

In this paper the resul ts  of a series of shock tunnel experiments on 

hypersonic turbulent-boundary-layer flow over flat plates with sha rp  and 

blunt leading edges and on the wall of a contoured expansion nozzle a r e  

presented. 

f rom 0. 14 to 0.3 on the flat plate and f rom 0.09 to  0 . 3  on the nozzle wall. 

Simultaneous measurements  of skin friction and heat t ransfer  were obtained. 

Comparison of the experimental  skin friction resul ts  with those obtained 

using semi-empir ical  compressible turbulent boundary layer methods 

indicates best  agreement with the method of Spalding and Chi. 

mental  heat t ransfer  measurements  indicate that under these cold wall 

conditions the ratio of heat t ransfer  ra te  to skin friction is smaller than is 

predicted by cur ren t  theory. 

mine corrections to the Crocco relation between the velocity and total  

enthalpy profiles. 

measurements  of total temperature  profiles by other investigators. 

tentative equivalence is found between the measurements on the sha rp  flat 

plate and those on the wall of the contoured nozzle. 

The ratio of wall temperature  to stagnation temperature  ranged 

The experi-  

The experimental  data are also used to deter-  

These corrections are found to  be consistent with direct  

A 

..* 

*''Associate Aeronautical Engineer. 

1 



IN T RODUC TION 

Knowledge of highly cooled turbulent boundary layers a t  hypersonic 

Mach numbers is important in the aerodynamic and thermodynamic design 

of a whole family of hypersonic vehicles of cur ren t  interest .  

mental complexity of turbulent flows and the accompanying difficulty of 

theoretical  description - - even for incompressible turbulent flows - - has led, 

in the case of compressible turbulent flows, to numerous attempts to relate 

the compressible case to the incompressible one, for  which a considerable 

body of experimental data exists.  

are: 

pressible one, fo r  example, Cohen (Ref. 1 )  and the work of Coles (Ref. 2) 
extended by Crocco (Ref. 3 )  and applied by Baronti and Libby (Ref. 4), 

2) reference temperature (or enthalpy) methods, for example, Monaghan 

(Ref. 5) and Eckert  (Ref. 6) ,  and 3 )  other semi-empir ical  methods, such a s  

that of Spalding and Chi (Ref. 7). 
suggested by Bartz  (Ref. 8) for rocket nozzles and Wood (Ref. 9) f o r  hyper- 

sonic wind tunnel nozzles re ly  upon reference temperature applications of 

adiabatic wall, zero-pressure-gradient-constant-density results.  Hence, i t  

i s  evident that knowledge of the shear  law, the relationship between skin 

friction and heat t ransfer ,  and of the boundary layer profiles in compressible 

turbulent flow is required to guide the development and a s ses s  the validity of 

the o r  y. 

The funda- 

Approaches which have been proposed 

1) transformations of the compressible flow to a corresponding incom- 

The nozzle design calculation methods 

Recent compilations by Spalding and Chi (Ref. 7) and Ber t r am and 

Neal (Ref. 10) indicate cur ren t  flat-plate turbulent-flow data are limited to 

reservoi r  temperatures  below 1800"R and to  ratios of wall temperature to 

stagnation temperature grea te r  than 0.5, Thus, there is a lack of experi-  

mental data at  conditions approximating those of hypersonic flight; i. e. , 
simultaneously high Reynolds numbers, high total enthalpy and high heat 

t ransfer  ra tes  to the surface (cold walls) at high local Mach numbers. 

Furthermore,  the analysis of existing experimental data on compressible 

turbulent flow is hampered by the absence of simultaneous, direct  measure-  

ment of skin friction and heat t ransfer ,  except in the measurements reported 
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by Neal (Ref. 11). There,a single skin-friction panel on a flat plate was 

employed in flows with reservoi r  temperatures  of llOOOR and a ratio of 

wall temperature  to stagnation temperature  of 0. 5. 

been made to compute skin friction f rom boundary layer  profile measure-  

ments ,  Rotta (Ref. 12) and Walz (Ref. 13) have shown that widely varying 

resul ts  can be calculated depending upon the approach and assumptions used. 

Although attempts have 

In the experiments reported herein,  skin friction was measured 

directly on flat plate models with sharp  and blunt (cylindrical, two-inch 

diameter) leading edges and on a shock tunnel nozzle wall. The flat plate 

data provide a basis for comparison with theory using a simple,  well-defined 

geometry and flow history. 

measurements were  obtained a c r o s s  the boundary layer  thickness (two to 

four inches) and were  used to compute a local momentum thicknkss for 

comparisons between the wall measurements  and theory. 

work provides information for the evaluation and further development of 

methods for the analysis of hypersonic, highly cooled, turbulent boundary 

la ye r s . 

In the nozzle experiments pitot p r e s s u r e  

Thus, the present 

EXPERIMENTAL PROGRAM 

Fla t  Plate 

The investigations of turbulent boundary-layer flow over flat plates 

were conducted with air in  the Cornel1 Aeronautical Laboratory 8-Foot Hyper- 

sonic Shock Tunnel using contoured expansion nozzles. 

measurements  of skin friction, heat t ransfer  rates, and static pressure  on 

the flat plate surface were obtained at numerous points on the flat plate surface 

as shown in Figure 1. The direct  skin friction measurements  were made using 

a piezoelectric c rys t a l  t ransducer ,  whose development is described in Ref. 14. 

Temperature his tor ies  0btained"with thin film (platinum) resistance,  

thermometers  were  converted directly to heat t ransfer  rates using analog 

circuits described in Ref. 15. 

Simultaneous 
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The nominal tes t  conditions were  as follows: 

Reservoir Reservoir Free-Stream Reynolds Angle of 
Temperature Pres sure  Temperature Mach Number Attack 

Condition To (OR) Po (psia) Ta("R) Tw/To Number (per ft) (degrees) --- - 
1 3 800 19,000 355.2 0. 14 7.4 20 x lo6  0 ,  5, 10 

3 2800 18,500 125 0.19 10.7 12 x lo6  0 ,  5, 10, 20 

4 2400 4, 500 210 0.22 7 . 4  9 x lo6  0 

2 1800 20,000 125 0 .3  8. 1 81 x lo6 0 ,  5, 10 

Substantial lengths of fully developed turbulent flow were  obtained at all 

conditions. 

flow length was 12  inches at the Mach number 10.7 condition, while for the 

Mach number 8. 1 condition the boundary layer  transition was completed a t  

the first instrumented station, yielding nearly two feet of fully developed 

turbulent flow. 

at  Mach numbers of 7 .4  and 8.1 for the blunt leading edge configuration, 

while downstream transition for the Mach number 10.7 tes ts  produced a t  

l eas t  18 inches of turbulent flow. 

t ransfer  data have been used here  only in comparison with the skin friction 

measurements.  

t es t  data, including the heat t ransfer  resul ts ,  is provided in Ref. 16. 

On the sharp flat plate at zero-incidence the minimum turbulent 

Boundary layer transition was completed on the leading edge 

F o r  the sake of brevity the flat-plate-heat 

A m o r e  detailed description of the tes t  apparatus and of the 

Nozzle W a l l  

The two-foot exit diameter,  contoured, axisymmetric nozzle (nominal 

Mach number of 8) of the CAL Hypersonic Shock Tunnel was instrumented 

with pressure ,  heat t ransfer  and skin friction gages a t  four stations along 

the last four feet (Figure 2). 

the boundary layer thickness was positioned one inch downstream from the 

l a s t  station of surface instrumentation. 

numbers were well above those required for turbulent flow at the throat; thus 

In addition, a pitot p re s su re  rake which spanned 

In all cases  the nozzle throat Reynolds 

turbulent flow was attained in the nozzle boundary layer .  The measured wall 

p re s su res  indicate that the relative axial p re s su re  gradient at the nozzle exit, c/i / dg  , is l e s s  than 0.2 per  foot. 
4 



Nominal t e s t  conditions were  as follows: 

Reservoir Reservoir  Free -Stream Exit Reynolds 
JI Temperature P r e s s u r e  Temperature Mach Number 

Condition- To (OR) Po (psia) Te (OR) Tw/To Number (per foot) 

6 

6 

6 

6 

6 

1 ** 1850 4200 140 * 29 8.0 l l x  10 

2 1800 1000 150 .30 7.8 2 . 6 ~  10 

3 5750 1000 7 40 .093 6.6 0.37 x 10 

4 5000 93 0 5 90 . l l  6.8 0 . 4 4 ~  10 
5*** 

2300 2300 190 .23 7.8 4.1 x 10 

6 

6 
6 2400 5700 180 0 22 8.0 9.7 x 10 

7 2200 520 190 a 24 7.6 1.0 x 10 

::: 

** 
*:::::: 

Repeat runs were made at each condition. Tes t  gas was air in all cases .  

Runs 1-4: wall and profile measurements.  

Runs 5-7: wall measurements only. 

DISCUSSION O F  RESULTS 

Flat Plate Results 

Since heavy reliance has been placed in the pas t  upon the reference 

enthalpy method for  extending the incompressible, zero-pressure gradient 

shear  laws, this approach has been examined here .  The Eckert  reference 

enthalpy (Ref. 6 )  

has been used to evaluate the density and viscosity in the Blasius shear  

law (Ref. 17) 

r 
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where for laminar flow A = 0 .332 ,  n = 0. 5 and for turbulent flow 

4 
zero-pres  su re  gradient momentum equation 

= 0.0296, n = 0.2. If this shear  law is substituted in the flat plate, 

the integration for momentum thickness yields -n 

I 
An effective turbulent flow length, % , has been computed for each of the 

tes t  cases  by solving for the turbulent flow length required to produce a 

turbulent momentum thickness at transition equal to the computed laminar 

momentum thickness at the experimentally observed transition distance 

f rom the leading edge. The positions of the peak values observed in the 

heat t ransfer  and skin friction data were  used to locate the transition point. 

The zero angle of attack data at the Mach number 7 . 4  conditions 

exhibit both laminar and turbulent flow and have thus been selected for a 

sample comparison with the reference-enthalpy method predictions in 

Figure 3 .  

in the turbulent region the reference-enthalpy predictions a r e  considerably 

higher than the experimental results.  

enthalpy method for correlation purposes has been explored by examining 

(24 f2U:) (f&%”jj4)Rr as  a function of local Reynolds number 
in Figure 4 for all of the sharp plate data. 

the turbulent data, but the average level of the reference-enthalpy data 

correlation falls quite far below the incompressible value of 0. 0592. 

friction measurements on the blunt plate (2-inch diameter leading edge) 

have been s imilar ly  correlated and a r e  presented in Figure 5. 

p ressure  distributions were  used to compute local conditions based on a n  

isentropic, equilibrium expansion from the leading edge stagnation point. 

The data once again correlate  in t e rms  of the reference-enthalpy parameters ,  

but the average level of the correlation is further below the incompressible 

value than for the sharp plate case.  

The agreement in the laminar region is reasonably good, but 

The usefulness of the reference 

This approach is seen to correlate  

The skin 

The measured 
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A more  recent and promising approach to prediction of compressible 

turbulent flow is the calculation procedure developed by Spalding and Chi 

(Ref. 7),  which postulates that a unique relation exists between 

and 5 &ex o r  fas peps 
)I 

functions of Mach number and temperature  ratio alone, viz. , 6 
and G8 
incompressible one. 

c c+ 
such that for a compressible turbulent flow, 

, GI, , 
may be found which relate  the compressible flow identically to the 

Lacking sufficient experimental data, Spalding and 

Chi noted the comparative reliability of the theories based on mixing length 

and concluded that the function 6 could be evaluated f rom 

(4) 

Using a modified Crocco relation, 

the static enthalpy i s  obtained a s  7 

Spalding and Chi obtained for 
f rom which follows the static temperature and the density needed in Eq. (4). 

based on fits of available heat t ransfer  data, and a l so  show that _I 

% 
Because of the high adiabatic wall temperatures  in the present  application, 

i t  has been assumed that the adiabatic wall enthalpy is a more appropriate 

parameter ,  so that Eq. (7)  i s  generalized a s  
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The Spalding and Chi prediction is shown for  the zero angle of attack, 

Mach number 7 . 4  case  in Figure 3.  

diction is considerably superior to that of the reference enthalpy method. 
The functions 5 and 5, 
conditions for all the sharp and blunt plate experiments and have been used 

to obtain e [b  vs.  G,! . The resul ts  a r e  presented in Figures 6 
and 7 compared to the correlation of incompressible data developed by 

Spalding and Chi. 

functions and to fall slightly above the semi-empirical  theory curve. 

zero  angle of attack data, representing the highest local Mach number con- 

ditions, have the greatest  departure f rom the Spalding and Chi prediction. 

The blunt plate data shown in Figure 7 not only correlate  using the Spalding 

and Chi parameters ,  but a r e  in even better agreement  with the Spalding and 

Chi prediction than the sharp plate data. 

Mach number conditions on the sharp flat plate and the associated thicker 

laminar sublayers (Ref. 18) have a m o r e  important influence on turbulent 

boundary layer character is t ics  than the strong axial p re s su re  gradients on 

the blunt plate, where the local Mach numbers remain relatively low 

(below 4). 

Although slightly below the data, the pre-  

have therefore  been computed using local 

The sharp plate data a r e  seen to cor re la te  using these 

The 

It appears  that the higher local 

Nozzle W a l l  Results 

In examining the nozzle wall data, the measured’pitot profiles have 

been used to obtain a n  integrated momentum thickness for the character is t ic  

Reynolds number, This approach is possible with the present data for those 

cases  in which the boundary layer profiles were  obtained at essentially the 

same station as the wall measurements.  Lacking a direct  measurement of 

the local total enthalpy in the boundary layer,  the unit Prandtl  number, zero  

p re s su re  gradient, Crocco relation, “/qC =: (f.1 - ‘ w ) / ( H ,  .- /&,) , has  been 

assumed, where the subscript  “e” denotes boundary layer edge conditions 

and denotes total enthalpy. Modifications to the Crocco relation a r e  

inferred from the wall measurements in the following section; however, for 

purposes of computing experimental values of momentum thickness the 

influence of the modifications is small -- on the order  of 15 percent o r  less .  
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Velocity and density profiles were computed f rom the pitot profiles and the 

assumed Crocco relation a s  follows: 1) a Mach number profile i s  obtained 

f rom the pitot p r e s s u r e  profile assuming static p re s su re  constant through 

the boundary layer ,  2)  the velocity profile follows f rom the energy equation 

and the Crocco relation, 3)  static enthalpy and density can then be calculated 

using the energy equation and equation of state,  respectively. 

velocity and density profiles a r e  thus available to compute the momentum 

thickness. 

The necessary 

i 

Using the computed velocity and density profiles,  integrations have 

been performed to obtain the displacement thickness, 6,, and the momentum 

defect thickness, 0 , which a r e  expressed for the axially symmetr ic  nozzle 

where rw i s  the radius of the nozzle. 

familiar two-dimensional forms when s<( rw . 
difference between the axially symmetr ic  and the two-dimensional values was at 

most,  ten percent. 

These expressions collapse to  the 

In the present cases  the 

The resul ts  for displacement thickness and momentum thickness a r e  

shown in Figure 8 compared with other experimental results a s  a function of 

Mach number. Measured pitot profiles and an  assumed Crocco relation were 

used in the present  case  a s  well a s  in  the resul ts  reported by Burke (Ref. 19) 
and in those obtained in a conical expansion nozzle a t  high stagnation tempera- 

tu res .  Measurements of both pitot p re s su re  and total temperatures  were 
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used by Lobb e t  al. (Ref. 20) and Hill (Ref. 21). 

resul ts  f r o m  the several  sources  indicates that the integrated displacement 
and momentum thicknesses a r e  relatively insensitive to the assumption 

of the Crocco relation to p re s su re  gradients and to high total temperatures.  

The present  momentum thickness resul ts  a r e  thus established for use in 

predictions for skin friction. 

The correlation of these 

The experimental skin friction resul ts  a r e  compared in Figure 9 with 

several  predictions based on momentum thickness: 

1. Blasius, reference enthalpy (Ref. 17) - The substitution of 

Eq. (3)  in Eq. (2)  yields the momentum thickness form fo r  the 

Blasius, reference enthalpy shear  law - 0, zg 

An alternative to the Eckert  reference enthalpy is obtained by using 

Eq. (6)  in 
1 

Although more  general than the empirical  Eckert  reference enthalpy, 

the close similari ty of the two approaches i s  evident upon comparison 

of Eqs. (1) and (11). 

2.  

by Spence on the basis of comparison with experimental resul ts  i s  

Spence, reference enthalpy (Ref. 22)  - The shear  law proposed 

3.  

theoretical  expressions for profile integral parameters  and the experi-  

mentally determined ones. 

required in 0 4. Spalding and Chi (Ref. 7)  - The factors and 
the Spalding and Chi prediction a r e  computed using Eqs. (4) and ( 7 ) ,  

respectively. 

Walz (Ref.  1 3 )  - The theory of Walz is  computed using both his 

10 



5. 

temperature  ratio effects in compressible boundary layers  with heat 

t ransfer  resulted in the correlation formula 

Winkler and Cha (Ref. 23) - A purely empirical  evaluation of 

A comparison of each of the above with the normalized skin friction 

The Walz (experimental data at the las t  wall station is shown in Figure 9 .  
profiles) approach considerably overpredicts the skin friction, whereas the 

Winkler-Cha correlation formula and the theoretical Walz expression fall 

far below the present data. The reference enthalpy method yields predic- 

tions slightly above the data. The most  consistent agreement is provided 

by the semiempirical  theory of Spalding and Chi, despite the fact  that the 

experimental data on skin friction on which Spalding and Chi based their  

correlation factors were  for low Mach number flows and, primarily,  at 

near  adiabatic wall conditions. 

nozzle data were  also used to compare the experimental results with the 

Spalding and Chi prediction in Figure 10, where excellent agreement is noted. 

The flow length Reynolds numbers for the 

Experimental Evaluation of Reynolds Analogy 

Since both skin friction and heat t ransfer  were  measured in the 

experiments described, the relationship between skin friction coefficient 

and the Stanton number under cold wall, high Mach number conditions can 

be  determined. Local flow conditions have been used both for the nozzle 

and the sharp flat plate experiments to compute the nondimensional coef- 

c ficients, siQ and 

which is presented for  various values of the ratio of wall enthalpy to total 

enthalpy in Figure 11. 

on direct  measurements of skin friction and heat t ransfer  on a flat plate 

a r e  also included. 

analogy parameter  z s t e  / Cge 
cept for the case with the lowest H w  / H c  . Whether this represents  an  

, in the Reynolds analogy parameter ,  zSze /c "6 -ck , 

The experimental results of Neal (Ref. 11) based 

The resul ts  shown in Figure 11 indicate that the Reynolds 

remains near o r  slightly above 1 .0 ,  ex- 
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actual effect of extreme wall cooling remains for  fur ther  investigation. 

These resul ts  indicate that the Stanton number is smaller with respect  t o  

skin friction coefficient than predicted by the modified Reynolds analogy of 

Colburn (Ref .  24), 2 s< /cqe -s p;y" , unless the Prandt l  number is 

taken to be near ly  unity (character is t ic  of turbulent Prandt l  numbers) ra ther  

than evaluated at the laminar ,  wall value, which in  the present  case  is 

approximately 0.72. 

(Ref .  25) and Monaghan (Ref. 5) are  likewise too high. B e r t r a m  and Neal 

(Ref. 10) suggested that the Karman theory for  incompressible Reynolds 

analogy (Ref .  26) be applied to the compressible case  by substituting a n  

appropriate value of 

The Reynolds analogy modifications of Rubesin 

/ /  

in the Karman expression - I  

The experimental values of c.f in the present  data have been related to an  

incompressible Cfl using the Spalding and Chi theory. The resu l t  for 

2 s?& /c$ 
higher than the observed results.  

is in  better agreement with the experimental data, but is still 
e 

Crocco Relation 

The relationship between local velocity and total enthalpy in turbulent 

boundary layers  has  been investigated theoretically and experimentally by 

Cohen (Ref. I ) ,  Spence (Ref. 22)# Crocco (Ref. 3), Kutateladze and 

Leont'ev (Ref. 27), Walz (Ref. 13), and Rotta (Ref. 12),to name a few. The 

intent he re  is not to review these previous investigations, but is ra ther  to identify 

the approximations implicit in the use  of the Crocco relation and investigate the 

possibility of using the coupling between momentum and energy t ransfer  to 

relate the experimental observations on the Reynolds analogy to modifications 

of the llCrocco relation" between velocity and total enthalpy. 

quantities to identify time averages and immediately assuming negligible 

p re s su re  gradients normal  to the wall, the turbulent boundary layer 

momentum and energy equations may be writ ten (Ref. 27) 

Using bar red  
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It i s  clear that for the case d/p/Ag S O  and & = ? 
equations vanishes.and the differential equation for total enthalpy, )-I , is 

identical with that for  the velocity, LC 

1 ~ .  = 0 at 

equations which may be combined to yield the classical  "Crocco relation" 

, the las t  t e r m  in both - 
. The boundary conditions H= k / ~  , 

and &/= He , c( = de at f z thus yield integrals of these 

Crocco (Ref. 3) and Cohen (Ref. 1) suggest a f o r m  

where the function 

effects of Prandtl  number and p res su re  gradients and yields the zero pressure  

gradient, unit Prandt l  number form when C(x) = 0 . The function ctf) 
can be evaluated on the basis of wall measurements i f  it i s  assumed that 

COr) does not vary substantially ac ross  the boundary layer.  The 

C ( f )  i s  intended to account approximately for the 

Reynolds anal 

yields 

ress ion derived from 

I_._ - 

The Stanton number he re  is  identified a s  

total enthalpy rather  than recovery enthalpy, cu = The 

average values of the measured ratio of skin friction to heat t ransfer  have 

been used to compute approximate values of , assuming /?fH = 0.72, 
with the following results: 

cH to indicate that it i s  based on 

, 13 



Nozzle T e st Condition 1 2 3 4 5 6 7 

0.27 0.28 0.31 0.28 0.28 0.30 0.28 

Flat Plate Tes t  Condition 1 2 3 

. 2 6  . 2 4  .18 

These resul ts  indicate that the contoured nozzle and flat plate flows 

require comparable corrections to the Crocco relation, although the nozzle 

corrections a r e  slightly larger .  

had little effect on the nozzle wall boundary layer profiles. 

obtained f rom wall skin-friction and heat-transfer measurements  have been 

used to compute total enthalpy profiles for comparison in Figure 12 with 

experimental measurements f rom severa l  sources .  (Figure 12 is a repeat 

of the data collection presented in Ref. 10 by Ber t r am and Neal. ) The flat 

plate average value of 

agreement with the flat plate profile measurements.  

f rom the present  nozzle data ( c 
profile measurements f rom nozzle wall experiments with the exception of 

the data reported by Hill (Ref. 21), which were obtained in a conical nozzle, 

having l a rge r  axial  p re s su re  gradients than in the other nozzle cases ,  

should be noted he re  that numerous investigators have observed good agree-  

ment  between the Crocco relation ( c = 0) and adiabatic ,wall experimental 

data. 

stations of Coles (Ref. 2 )  to a rigorous point-by-point mapping of the 

boundary layer profile, found that for  boundary layer integrals and evaluation 

of the static temperature in the boundary layer ,  the unit Prandtl  number fo rm 

of the Crocco relation is satisfactory for all but Hill 's  conical nozzle data, 

where it was necessary to use  the experimentally determined temperatures .  

The above results indicate that either p re s su re  gradient effects o r  erroneous 

measurements caused this discrepancy rather than effects attributable to  wall 

heat t ransfer  o r  high Mach numbers. 

The small p re s  s u r e  gradient apparently 

The values of C 

= 0.228 is seen to produce a profile in substantial 

The value obtained 

= 0.3)  agrees  reasonably well with the 

It 

Baronti and Libby (Ref. 4), in applying the law of corresponding 
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Because the right hand side of the modified energy equation, 

Eq. (14), may be writ ten 

i ~ [ k  -#- q]} 
another effort to  re lax the restr ic t ions in the Crocco relation has been to 

substitute for  the total enthalpy a n  effective total enthalpy a s  in Eq. (5). 
This relationship i s  implicit in the Spalding and Chi evaluation of the skin 

friction coefficient correction factor,  6 
many other investigators including Walz (Ref. 13) and Rotta (Ref. 12)  in 

their  boundary layer profile studies. 

, and has ,  in fact, been used by 

Equation (5) can a l so  be writ ten 

A comparison of Eqs. (17) and (18) reveals that this effective total enthalpy 

assumption implies a value of 
( 1 4 ) -  u," 

ZHe C C X )  '==: 

which, fo r  the present experiments, l ies  in the range 0 .095  to 0. 1, i f  the 

recovery factor is  taken a s  

0.72. This resul t  for the relationship between total enthalpy and velocity i s  

shown in Figure 12, where agreement with the outer portion of the measured 

flat plate profile i s  noted. The assumption of Eq. (18) implicit in the 

Spalding and Chi formulation appears  to be justifiable and lends further 

support to the agreement noted between the Spalding and Chi theory and the 

experimental results on both the flat plates and the nozzle wall. 

6"3 
and the Prandt l  number i s  taken a s  

1 5  



SUMMARY AND CONCLUSIONS 

Using direct  measurements of skin friction on sharp and blunt- 

leading-edge flat plates and on a contoured nozzle wall, the shear  law fo r  

hypersonic, highly cooled turbulent boundary layers  has  been investigated. 

For the sharp plate the reference enthalpy extension of the classical ,  in- 

compressible Blasius shear  law is found to overpredict  the skin friction, 

while the Spalding and Chi semiempirical  theory is  found to slightly under- 

predict  the skin friction under these conditions. 

friction is smaller  than predicted by the reference enthalpy extension, but 

is in  excellent agreement with the theory of Spalding and Chi, despite the 

fact that the theory is derived for zero-pressure-gradient  flows. 

friction measured on a contoured nozzle wall is a lso found to aqree  with 

the Spalding and Chi theory as a function of Reynolds number based on both 

momentum thickness and flow length. 

The blunt plate skin 

Skin 

The experimental values of the Reynolds analogy parameter ,  

f rom both the flat plate and nozzle measurements ,are  found to agree  and 

to be slightly smaller  than predicted by available theories.  Corrections 

to the Crocco relation between total enthalpy and velocity in a turbulent 

boundary layer a r e  inferred f rom the wall skin friction and heat t ransfer  

measurements f rom both the flat plate and the shock tunnel nozzle experi- 

ments. 

consistent with direct  measurements of boundary layer temperature  profiles 

obtained by other investigators in flat plate and contoured nozzle experiments. 

The resulting enthalpy-to-velocity relationship is shown to be 

The close correspondence of the flat plate and contoured nozzle 

results for  skin friction and for the Reynolds analogy parameter  suggests 

that the boundary layers  a r e  basically similar. Further  experimentation 

with detailed boundary layer profile measurements is required to develop 

a c learer  picture, but a tentative conclusion is that turbulent boundary layers  

typical of flat plate flows can be developed on a contoured nozzle wall. 
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NOMENCLATURE 

C 

cq Local skin friction coefficient, 

Correction factor in  Crocco relation 

cH Stanton number, + /p u 0-k- t/.) 
Leading edge diameter  

&@ Spalding and Chi Factor ,  Fee 
6 Spalding and Chi factor,  6 cc = cc; 

=-&% 1; 

Spalding and Chi factor ,  Fg-+ Re, = k?eF )' i5?& c 

h Static enthalpy 

Total enthalpy 

.k Thermal  conductivity 

Mach number, 

Static p re s su re  

Po Reservoir  p re s su re  

Stagnation p res su re  behind a normal  shock 

6 Prandt l  number 

Dynamic pressure ,  

Heat t ransfer  rate 
T 

iT Radial coordinate in  nozzle, recovery factor 

r, Leading edge radius 

f? !*  
P- Reynolds number based on distance Y I 

Surface distance f rom geometric stagnation line 5 
S t  Stanton number 

Temperature  

Velocity 

Axial distance f rom leading edge X 
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P 
c 

SubscriDts 

NOMENCLATURE (c ont ) 

Coordinate normal to flat plate surface 

Angle of attack 

Boundary layer  thickness 

Boundary laye r di s plac e me nt thic kne s s 

Boundary layer momentum thickness 

Viscosity coefficient 

Kinematic vis cos ity , 

Density 

Skin friction (shear  s t r e s s  at the wa l l )  

0 

e 
i 
f 

S 

W 

w 
OQ 

Tunnel o r  f ree  - s t r eam stagnation conditions 

Adiabatic wall condition 

Edge of the boundary layer,  local flow conditions 

Incompressible , constant density 

Recovery 

Stagnation point 

W a l l  

Evaluated at reference temperature o r  enthalpy 

F r e e - s t r earn condition 
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