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ABSTRACT

A class of axially symmetric problems concerning a highly elastic
circular rubber sheet with: (1) a centered circular hole or (2) a rigid
circular inclusion under outward radial loading at outer boundary, and
(3) a rigid outer boundary and a concentric hole under inward radial
loading around the hole are solved. The differential equation governing
the deformation is formulated under the assumptions of plane stress
and incompressible, initially isotropic material and is integrated in

the plane of principal stretch ratios,

This work was supported in part by NASA Research Grant NsG-172-60,
through the California Institute of Technology




INTRODUCTION

Among various theories of non-linear elasticity, a well known
one is prgsented comprehensively by Green and Zerna [1]. The
framework of this theory is based on the Cauchy-Green type of tensorial
strain measure and the constitutive relation expressed by a strain energy
density function which is a function of the strain invariants. A special
case of the theory is for the incompressible materials.

On the basis of this special case, the axially symmetrical deforma-
tions in the plane of a thin rubber sheet are reformulated in this paper
in terms of a second order non-linear differential equation governing
the deformation. The solutions are obtained for three types of boundary
conditions which correspond to the problems of a circular imperfection
(a hole or a rigid inclusion) in the rubber sheet under outward radial
stretching and the problem of a circular sheet fixed along outer boundary
under inward radial stretching by forces applied along the boundary of a
center hole as shown in Fig. 1 (a, b, c). The results reveal some inter-
esting feather of stress concentration under large elastic deformations.

Rivlin and Thomas [ 2] have analyzed the strain distribution
around a hole in a sheet under axially symmetrical deformation, however,
given no results on stress concentration. Their numerical solution is
obtained by a forw_ard integration method. The results in their paper
have been computed for the sheet with radius three times grcater than
the radius of the hole in the undeformed state. In order to obtain the

solution for an infinitely large sheet (or a very small hole in a large



sheet), the integration has range from the radius of the hole to infinity.
In this case, their method proves inefficient and error-accumulating
after integrating over a large distance. Since their iqtegration started
from the boundary of the hole, they have specified the boundary conditions
at the hole to consist both stress free condition and a given hole expan-
sion ratio. The stress applied at the outer boundary necessary to pro-
duce the deformation is then a computed quantity. For their problem,
the stress at the outer boundary is usually prescribed which determines
the hole expansion ratio. In this circumstance, their integration
procedure is an inverse one which requires a correct guess on the hole
expansion ratio in order to satisfy the prescribed condition on the outer
boundary.

To resolve the problem arised from an infinite sheet, the
variables in the differential equation are tr‘ansformed into a new set of
variables namely the principal stretch ratios in the radial and circum-
ferential directions. The differential equation reduces to a first order
one. Since the stretch ratios are bounded, the integration of the differen-
tial equation is always over a {finite region even for an infinitely large
sheet. In the plane of the principal strectch ratios, the direction of
integration can be conveniently chosen for either increasing or decreas -
ing independent variable, depending on the described boﬁndary conditions.

The numerical solutions are presented for all three types of
problems with the strain energy density function suggested by Mooney [ 3]

which has the form
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where Il' I. are strain invariants and Cl’ C. are material constants

2 2

with dimension of force per unit area and a = CZ/CI. Yarious quantities
of interest are presented graphically.

The neo-Hookean material is a special case when a is equal to
zero. For this material, the differential equation is in a simpler form.
Several close form approximate solutions are obtained for various
regions in the sheet by solving the non-linear integral equation in the
later section of approximate soluticns,

ANALYSIS

For a thin sheet with dimensions of the hole or inclusion much
greater than its thickness, the plane stress assumption should lead to
a good approximation. By symmetry of the problem, the cylindrical
coordinate with origin at the center of the hole or inclusion is employed.

The deformations under consideration are described by the mapping
p = plr)

e =0 (2)



where (p,®, n) and (r, 6, z) are deformed and undeformed coordinates

respectively, The principal stretch ratios in the radial and circum-

ferential directions are respectively

(3)

and the stretch ratio in the z direction is

z (4)

as a result of incompressible material for which )\1 XZ )\3 = 1,

The strain invariants are

-2 -2 =2 )

The non-zero stress components measured per unit deformed

area are given by [ 2]
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in the radial and circumferent ial directions respectively.
The resultants of these stresses measured per unit length along

the circumference in the respective directions are
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where h is the thickness of the sheet in the undeformed state. These
stress resultants must satisfy the equations of equilibrium. Two of the
equations are automatically satisfied. The equation in the radial direction,
without the presence of body forces, takes the form

\ i -

in' the deformed coordinate. Expressing it in terms of undeformed

coordinate, equation (8) becomes

i
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e (p Tl) = p Tz (9)
Substituting equation (7), (4), (3) and (1) into equation (9), the

differential equation governing p(r) is obtained as follows
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By the use of equation (3), the differential equation is reduced to

a first order one
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with the companion equation
de dr
N, - N, 1 (12)
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After solving equation (11) for a given boundary condition, the

solution of the form



)\1 = XI(XZ) (13)
can be used for the integration of equation (12), giving the relation of

)\z and r. Thus, the relation of p and r. is determined which is the
solution to equation (10).

Equation {11) has no singularity. It can be integrated easily by
any numerical procedure for initial value problems in ordinary differ-
ential equation. A commonly used one is the Runge-Kutta method [ 4].
The error of this procedure is of 0f 65) where & is the increment
of integration,

Since )\1 and ?\2 are non-negative, the solution of equation (11)
lies in the first quadrant of )\l - )\2 plane. There are four special
curves in this quadrant representing the solutions: (1) on the boundary
of the hole. (2) at infinity. (3) on the boundary of the rigid inclusion and
a fixed boundary. (4) on a circle in the rubber sheet where t _ vanishes,

2

These curves are shown in Fig. 2 and labelled accordingly.

The condition on the hole is tl = 0 which gives the curve (1),
-1/2 NPT - .
Xl = X7 . At infinity )\1 = }\2 which is the curve (2}. For a fixed
boundary p equals r which gives the curve (3), >\2 = 1, tZ = 0 yields
hl = X; which is the curve (4). The solutions in the region be tween

curves (1) and (2) describe the problem of a hole in the sheet under
outward stretching. The solutions in the region between curves (2) and
(3) describe the problem of a rigid inclusion in the sheet under outward

stretching. Between curves (3) and (4), there exist solutions of a



circular sheet with fixed outer boundary under inward stretching forces
applied around a center hole. This can be done also by considering a
circular sheet with fixed outer boundary being pulled downward at the
center through a frictionless small ring as shown in Fig. 3. The solu-

-2
tions on the left side of curve (4), where )\1 < )\2 , give negative t

2
Since a thin rubber sheet has practically no resistance to in-plane
compression, the plane stress formulation ceases to describe this
phenomenon. Physically, the sheet is wrinkled in such a region. There,
fore, the curve (4) also gives the boundaries of wrinkled zone.

The integration of equation (11) can start from any point in the

first quadrant of )\l - N, plane, however, the starting point is usually

2
on one of the four curves where boundary conditions are given. The
integration can be made in either direction (increasing or decreasing
direction of )»2). If a check on the accuracy is desired, a round trip
integration can be made. The results shown in Fig. 2 have been obtained
in this manner. The error introduced after a round trip integration
with increment § = 0.01 is beyond the description of an eight-place
decimal number,

The solutions of equation (11) already provide the information
of stress and strain concentrations for all the problems considered.
For information on the deformations, further integrations of equation
(12) is required.

The results for various quantities of interest are shown in the

later section of numerical results,



APPROXIMATE SOLUTIONS

For neo-Hookean material (¢ = 0), equation (11) reduces to the

simpler form

= FOv, M) (14)

2

This differential equation can be changed to a non-linear integral

equation of the form
N () = A ) +§ F(M( ), © ]ag (15)

where )\o is a constant value of )\2 in the domain of solutions discussed

in the previous section.
The solutions of equation (15) can be obtained by the method of

successive approximations,

A

2 ()

1)
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M

1
o]

The convergence conditions for this process are given by Tricomi [5].
The function F in equation (15) satisfies those conditions. In principle,

uniformly valid solutions can be obtained by successive approximations.

9
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For higher order approximations however, the integrations involve
algebraic complications.

If we can choose a zeroth order approximation close to the exact
solution in some region then the first order appro#imation will be accurate
at least in that region. The approximate solutions are obtained in this
mariner for regions near the boundaries of the three types of problems.

For the region near the hole, the zeroth order approximation is

chosen as

A

oy = — (17)

1
VY,

The first order approximation

7

1 1 3 i
Mo = 2 e R LA (18)
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is obtained from equation (16}, where Xh is a value of A, on the boundary

2
of the hole.

In the region corresponding to the large value of r, a zeroth

order approximation can be chosen as

) = A (19)

The first order approximation is
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1)

1()\

2) = Z)\m - )\2 (20)

where \ is a value of A\, at r = 00,
o0 2

For the regions near a fixed boundary and near the boundary of

the wrinkle zone, the values of d)\l /d'}\2 become large. A\, is very

1

sensitive to the variation of )\2. It is desirable to interchange the

dependent and independent variables in equation (14). This leads to the

integral equation

N
1

-1
M) = A0 ) +§K P a0 & (21)

o

where ')\o here is a constant value of \_.

For the region near a fixed boundary, a zeroth order approxima-

tion is taken as

>‘2 (Kl) = 1 | (22)

which gives the first order approximation

M) = Lk h -+ 1o |t )
2 ¥t~ £ 1 x 3
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where )s.f is a value of )\1 on the fixed boundary.
For the region near the boundary of wrinkle zone, a zeroth order

approximation is chosen as

(o) _ 1
LSy “‘1) = — (24)

The first order approximation
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is obtained where N\ is a value of )\1 oﬁ the boundary of wrinkle zone.
These approximate solutions are plotted in Fig. 4 with the accur-
ate numerical solutions. The results sho@ that regions of validity for
the approximate solutions are quite large.
The classical elasticity solutions are contained in a small
région where A, &~ 1 A_ = 1. The solution in the \ - \_ plane is

R 1 "2

)‘1 “‘z) = zxm - "z (26)_

Substituting equation (26) into equation (12) and integrating, the

deformation function



plr) = koor'-i»%- {27)
for classical elasticity is recovered whére C is a constant of integration.
NUMERICAL RESULTS

The numerical solutions are presented in this section for a hole
or a rigid inclusion of radius a in the rubber sheet under outward stretch-
ing at infinity. Three values of stretch ratios at infinity are taken as
)\00 = 1.25, 1.7 and 2.1.

The deforrﬁations are shown in Fig. 5 (a, b). 'fhe solutions are
also extended to the problem of a circular sheet of radius a with fixed
outer boundary under inward stretching. The solutions for this problem

are terminated at an envelop where t_ changed sign from positive to negative,

2
The strain invariants Il(r) and Izv(r) are shown in Fig. 6 and
Fig. 7 respectively. The strain energy density function W(r) .are shown
in Fig. 8.
For the case of the hole, the results shown are in good agreement

(for 1 < < 3) with the numerical solutions obtained by Rivlin and

SR e

Thomas [ 2]. The results for larger values of r are varified by the

experiments of Chu [ 6]. For very large value of r, the results approach the

exact solution of a sheet without imperfection. |
The stress concentration factors at the boundaries of the hole and

the rigid inclusion are defined as
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(1) _ ;
Kt = tz(a)/htil(oo)
(28)
(2) _
Kt = tl(a)/tl(oo)
respectively. The corresponding strain concentration factors are
defined as
(1)
KE = [xz(a) - l}/[)\cJo - 1]
(29)
(2)
Ke = [kl(a) - 1]/[)\00 - 1]

These factors are plotted in Fig. 9 {(a, b) as functions of applied stress
or stretch ratio at infinity.
CONCLUSION

Under the nonlinear elasticity théory, the stress concentration
character depends not only on the shape of the imperfection and the type
of loading but the magnitude of the loading as well. The nonlinear
behavior of stress concentration are contributed from both nonlinear
'constitut'ive relation and effects of large deformation. Physically, a
softening type strgss-strain reration should decrease stress concentra-
tion while a stiffen'mg type should increase it. Geometrically, there
are two types of effects from large deformation. One is from the

change of shape, for example, a circular hole may be deformed to an

ellipse like hole under certain deformation. The other effect is due to
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the chanée of thickness for some cross-section. Only the latter, which
causes the redistribution of stresses over the Aeformed area, enters the
problems under present consideration. There is no change of shape
because of the symmetry of the problems,
The stress and strain concentration factors, under these non-
linear influences, are increasing with the increasing load for the Mooney
.material. These factors should depend also on the value of @. This can
be seen by the comparison of solutions in Fig. 2 and Fig. 4. The differ-
ence of solutions between the cases a = 0 and « = 0.1 is more sub-
stancial when higher stretch ratio are prescribed at infinity.
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