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HIGH-ENERGY NUCLEON TRANSPORT" 

R .  G.  Alsmiller, Jr. 
Oak Ridge National Laboratory 

Oak Ridge, Tennessee 

I n  t h i s  paper the  recent work on t h e  t ranspor t  of high-energy nucleons 

through dense matter i s  reviewed. The appl icat ion of t h i s  t ranspor t  t o  

space-shielding s tudies  i s  emphasized so t h e  discussion i s  r e s t r i c t e d  t o  

low and intermediate energies (4 1 GeV) and t o  r e l a t i v e l y  t h i n  sh ie lds .  

A review a r t i c l e  on t h i s  subject  has recent ly  been published and therefore  
1 

the  discussion here is ,  i n  t h e  main, concerned with work which has become 

ava i lab le  s ince t h i s  review. ** 
The accuracy of t ranspor t  ca lcu la t ions  must be determined by comparison 

w i t h  experimental measurements made on th i ck  t a rge t s ,  and I s h a l l  therefore  

begin by discussing two such comparisons t h a t  have recent ly  been made. 

2 J. S. Fraser  e t  a l .  have measured the  thermal neutron flux produced 

when l a rge  t a r g e t s  of Be, Sn, Pb, and depleted uranium a r e  bombarded by high- 

energy (0.5 t o  2 GeV) protons. A schematic diagram of  the experimental 

arrangement f o r  the  case of a lead t a r g e t  i s  shown i n  Fig.  1. I n  the  ex- 

periment a narrow proton beam was incident  on one face of a th i ck  t a r g e t  

which was surrounded by a l a rge  water bath, and the  thermal neutron flux 

w a s  measured as a funct ion of pos i t ion  i n  the water. W. A. Coleman, using 

the  w c l e o n  t ranspor t  code wr i t ten  by W. E. Kinney, has calculated t h i s  

thermal f l u  f o r  t h e  case of 'j40-MeV protons on a lead t a r g e t  (see Fig.  1) 

3 

4 

*Research sponsored by the  National Aeronautics and Space Administration under 
Union Carbide Corporation's cont rac t  with the U. S. Atomic Energy Commission. 

the inves t iga tors  involved for making t h e i r  work ava i lab le  t o  me p r i o r  
t o  i t s  publ icat ion.  

*+Much of the  work t h a t  w i l l  be described i s  unpublished. I thank a l l  of 
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and made comparisons with the  experimental measurements. 

uses Monte Carlo methods and t r e a t s  p a r t i c l e  production from high-energy 

(> 50 MeV) nuclear reac t ion  by means of an  intranuclear-cascade code wr i t ten  

by H. W. Ber t in i .  Below 50 MeV nonelast ic  c o l l i s i o n s  a r e  t r ea t ed  by using 

an evaporation code wr i t ten  by L. Dresner, 

This t ransport  code 

5 

6 and e l a s t i c  c o l l i s i o n s  a r e  t r ea t ed  

using experimental da ta .  

same as t h a t  shown i n  Fig. 1, and the thermal f l u x  was  calculated assuming a 

I n  the  calculat ions of Coleman, t he  geometry w a s  the  

s ing le  ve loc i ty  fo r  neutrons with an energy of l e s s  than 0.5 eV. 

The comparisons between the  calculated and measured values a r e  shown i n  

Figs. 2 and 3. I n  the  f igures  the  thermal f lux  i s  p lo t ted  as a function of 

radius a t  depths of  -11.5 cm and 34 cm, respect ively.  These depths (see 

Fig. 1) are  measured from the  f ron t  f ace  of t h e  lead t a r g e t .  

show the  calculated values while t h e  p lo t ted  points  correspond t o  the ex- 

perimental measurements. The dashed curve i s  drawn through the experimental 

points  f o r  comparison purposes. The numerical values i n  t h e  histogram give 

the percent standard deviat ion obtained i n  the  Monte Carlo calculations. .  

The experimental and calculated r e s u l t s  a r e  i n  very good agreement a t  a l l  

r a d i i  a t  both of t h e  depths considered. !These comparisons a r e  important 

from the  point of view of shielding because they represent t he  f i r s t  de f in i -  

t i v e  t e s t  of the a b i l i t y  of t he  Kinney code using the Ber t in i  data t o  ca l cu la t e  

The histograms 

accurately the low-energy neutrons. O f  course t h e  intranuclear-cascade c a l -  

cu la t ions  a r e  expected t o  be more accurate  f o r  heavy nuclei  such as lead 

than f o r  l i g h t  nuclei ,  so t h e  good agreement i n  Figs .  2 and 3 cannot be 

taken t o  ind ica t e  t h a t  s imi l a r  agreement w i l l  be obtained with l i g h t e r  nuclei .  

Comparisons of  ca lcu la t ions  with the experimental measurements made using a 

Be t a r g e t  a r e  i n  progress but  they a r e  not ye t  ava i lab le .  
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Comparisons of t he  calculated and measured p a r t i c l e  f luxes emerging 

from th ick  t a r g e t s  provide a d e f i n i t i v e  t e s t  of t he  t ransport  calculat ions,  

but such comparisons do not give a very good indica t ion  of the  e r ro r  t o  be 

associated with ca lcu la t ion  of i n t e g r a l  quant i t ies  such as dose. 

of experimental measurements of the dose as a function of depth i n  a spher ica l  

phantom placed a t  a va r i e ty  of posi t ions with respect t o  a t a rge t  i r r ad ia t ed  

by 160-MeV protons h a s  been car r ied  out by T. V. Blosser e t  al.7 The geo- 

met r ica l  arrangement used i n  t h i s  s e t  of experiments i s  shown i n  Fig.  4. 

For a var ie ty  of t a rge t  mater ia ls  and thicknesses and f o r  various values of 

A s e r i e s  

the  parameters a, @, 8, and d, t h e  energy deposition, i . e . ,  the  dose, w a s  

measured as a function of depth i n  the water phantom. It should be noted 

t h a t  except i n  the  very spec ia l  case when a, B, and 8 a r e  a l l  equal t o  zero the  

8 

experimental arrangement i s  such that the measured dose i s  due e n t i r e l y  t o  

secondary pa r t i c l e s ,  Or, more precisely,  t o  secondary p a r t i c l e s  and primary 

p a r t i c l e s  which have undergone large-angle and mult iple  small-angle Coulomb 

sca t te r ing .  

8 B. Li ley and A. G .  Duneer, Jr. have car r ied  out dose calculat ions and 

made comparisons with these experimental data. I n  these  calculat ions which 

a r e  carr ied out using Monte Carlo methods, f i r s t -genera t ion  secondary p a r t i c l e s  

a re  calculated e x p l i c i t l y  and then t r ea t ed  using at tenuat ion f a c t o r s .  The 

d e t a i l s  of  the  ca lcu la t ions  will be published shor t ly  and w i l l  not be d i s -  

cussed here.  There i s ,  however, one f ea tu re  of t he  method employed which I 

think should be noted. The angular d i s t r ibu t ion  of t he  f i r s t -genera t ion  

secondary cascade p a r t i c l e s  i s  included i n  the  calculat ions by using an 

i n t e r e s t i n g  approximation. If F. . (E',E,6'*8) i s  the  number of cascade p a r t i c l e s  
1J  
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4 

of type i per un i t  energy about E per un i t  so l id  angle a b o u t n  which a r i s e s  

from the nonelast ic  nuclear c o l l i s i o n  of a p a r t i c l e  of type j with energy E '  

going i n  the d i r ec t ion  R ' ,  t h e  assumption i s  made t h a t  
-$ 

where 

f .  . ( E ' , E )  = F. . (E ' ,E,  z'* z > d  n 
1 J  E, lJ 

S E I  F. . (E ' ,E ,  5 ' 0  n')dE 

S E I  S F. . (E ' ,E ,  8 ' .  n')d Q d E  

1J 0 
g. .(E',;'* 5) = > 
1J 

1 J  
0 4, 

t h a t  i s ,  it i s  assumed t h a t  there  i s  no cor re la t ion  bktween t h e  energy of 

emission and the  angle of emission but  a l l  of  the angular dependence i s  not 

omitted. This approximation i s  in t e re s t ing  because it i s  i n  a sense i n t e r -  

mediate between using the  complete angular dependence and using the of ten-  

employed straightahead approximation i n  which gi j  i s  approximated by 

1/2% 6 (1- 5' s) . 
ana ly t i c  expressions for g obtained by H. Al te r .  The expressions were 

obtained by f i t t i n g  the  Monte Carlo data of Bertini' by the  method of l e a s t  

squares. The angular d i s t r ibu t ion ,  gpp, of protons emitted from 150-MeV 

protons on aluminum obtained by Al t e r  i s  shown i n  Fig.  5. I n  t he  f igure  

2, gpp i s  ca l led  SIGMA and MU i s  used for z'. 5. The p lo t ted  points  show 

the  data obtained from Ber t in i  and the  so l id  curve i s  the  least-square f i t .  

The d i s t r ibu t ion  i s  peaked forward, but  there  is ,  of course, p a r t i c l e  emission 

a t  angles o ther  than zero.  

I n  t h e i r  ca lcu la t ions  Li ley  and Duneer have used the  

9 

. i j  
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The comparison between t h e  ca lcu la t ions  and the measurements for  t h e  

2 case of 160-MeV protons incident  on an aluminum t a r g e t  of 26.9 g/cm 

and a = B = 45 , 8 = 0 , d = 53.7 cm (see Fig.  4) is  shown i n  Fig. 6. 

calculat ions a re  systematical ly  high compared with the  experimental values. 

thickness 

0 0 The 

I n  considering t h i s  comparison, it must be remembered t h a t  the e n t i r e  con- 

t r i b u t i o n  t o  the dose i n  t h i s  case i s  coming from t h e  secondary pa r t i c l e s ,  

and thus the  ca lcu la t iona l  e r r o r  i s  not ind ica t ive  of t ha t  which would be 

obtained i n  a typ ica l  space shielding ca lcu la t ion  where the  primary p a r t i c l e s  

contr ibute  a la rge  f r ac t ion  of t h e  dose. 

Using Monte Carlo methods, it i s  f eas ib l e  t o  solve the  t ransport  equa- 

t i ons  without approximation. I n  general, however, t o  obtain such solut ions 

a la rge  amount of computing time i s  required, and it i s  very des i rab le  f o r  

design purposes t o  have methods for  obtaining adequate, r ead i ly  calculable  

approximate so lu t ions .  One such method t h a t  i s  of ten used employs the  

straightahead approximation. I n  t h i s  approximation it i s  assumed t h a t  when 

a nucleon-nucleus c o l l i s i o n  occurs t h e  secondary p a r t i c l e s  a re  emitted in '  

the  d i rec t ion  of t h e  incident  p a r t i c l e .  I n  a previous paper, t he  va l id i ty  

of t h i s  approximation w a s  t e s t ed  by comparing exact* ca lcu la t ions  with c a l -  

culat ions car r ied  out using the approximation f o r  t he  case of monoenergetic 

protons i so t rop ica l ly  incident on s lab  shields  followed by t i s s u e .  

furthe$ t e s t  of the approximation has now been obtained by making similar 

A 10 

comparisons f o r  t he  case of  a t y p i c a l  f l a r e  proton spectrum normally incident  

on a s lab  sh ie ld  followed by t i s s u e .  For i so t ropic  incidence the angular 11 

d i s t r ibu t ion  of the primary p a r t i c l e s  tends t o  de-emphasize the angular 

*"Exact" i s  used here t o  mean (!alculations i n  which the angular d i s t r ibu t ion  
of the secondary p a r t i c l e s  i s  taken i n t o  account without approximation. 
use of t h i s  term i s  not meant t o  imply anything about t h e  physical v a l i d i t y  
of the  ca lcu la t ions .  

The 
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dis t r ibu t ion  of the secondary pa r t i c l e s  so the  case of normal incidence pro- 

vides a more s t r ingent  t e s t  of the  approximation than does t h e  case of i so-  

t rop ic  incidence. 

I n  order t o  insure t h a t  any differences i n  t h e  r e s u l t s  a re  due t o  the  

approximation being tes ted  and not t o  such things as differences i n  nuclear 

d a t a ,  both the exact and the  straightahead calculat ions were carr ied out using 

the  t ransport  code wri t ten by W. E .  Kinney. The straightahead approximation 

as used here applies t o  a l l  p a r t i c l e s  emitted from nuclear co l l i s ions .  

4 

I n  

both the exact and approximate calculations,  the primary protons are assumed 

t o  t r a v e l  i n  a straigkit l i n e  and continuously lose energy. When a nuclear 

co l l i s ion  occurs, a l l  of the  emi t t ed  pa r t i c l e s ,  both evaporation and cascade, 

are assumed t o  go i n  the  d i rec t ion  of the incident pa r t i c l e ,  i . e . ,  no attempt 

i s  made t o  discriminate against  pa r t i c l e s  emitted a t  la rge  angles as i s  some- 

times dpne i n  using the  approximation. 
s 

The flare spectrum used w a s  taken t o  

be exponential i n  r i g i d i t y  with a cha rac t e r i s t i c  r i g i d i t y  of 100 MV and was 

a r b i t r a r i l y  normalized t o  lo” protons/cm2 with energy grea te r  than 30 MeV. 

I n  the  calculat ions only p a r t i c l e s  with energy l e s s  than 400 MeV were con- 

s ide red .  The form of the flare spectrum and the  geometry are shown schematically 

i n  Fig.  7. The dose calculat ions i n  the  t i s s u e  were car r ied  out as described 

previously and, i n  par t icu lar ,  t h e  qua l i ty  fac tors  used i n  obtaining the dose 

i n  reh are the  same as those used previously. 12 

Comparisons between the exact and approximate calculat ions f o r  the  f l a r e  

spectrum normally incident on 20 g/cm2 of aluminum (see Fig. 7) are shown i n  

Figs.  8, 9, and 10. I n  Fig. 8 the  exact and approximate secondary proton and 

neutron currents  a t  t h e  aluminum-tissue interface are compared. The s t r a igh t -  

ahead approximation overestimates the  low-energy secondary neutron current and 
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the low-energy secondary proton current .  A t  high energies (> 100 MeV or so) the  

s t a t i s t i c a l  f luc tua t ions  a re  large,  and the  differences between the  exact and 

approximate currents  a r e  probably t o  be ascribed t o  poor s t a t i s t i c s  r a the r  than 

t o  any f a i l u r e  of the straightahead approximation. 

I n  Figs.  9 and 10 t h e  exact and approximate doses as a funct ion of depth i n  

the  t i s s u e  i n  rad and rem, respect ively,  are shown. For comparison purposes, t he  

t o t a l  dose has been divided i n t o  four  pa r t s :  

secondary proton dose, secondary neutron dose, and backscattered dose, The 

primary proton-ionization dose, 

primary proton-ionization dose i s  the  dose from those incident  protons which have 

undergone ne i ther  e l a s t i c  nor nonelast ic  nuclear c o l l i s i o n s .  The primary proton- 

ion iza t ion  dose i s  by de f in i t i on  the  same i n  the exact and approximate ca lcu la-  

t i o n s .  Since t h i s  i s  t h e  case, t he  exact  primary proton-ionization dose has not 

been shown i n  Fig. 10. The secondary proton dose i s  the  dose from a l l  charged 

p a r t i c l e s  that a re  produced by primary or secondary protons. 

dose i s  the  dose from a l l  charged p a r t i c l e s  produced by secondary neutrons. 

should be noted tha t  the  secondary proton dose and secondary neutron dose include 

The secondary neutron 

It 

contr ibut ions from p a r t i c l e s  produced both i n  t h e  sh i e ld  and i n  the t i s s u e .  I n  

addi t ion t o  the  cont r ibu t ian  from protons, t he  secondary doses a l s o  include a 

contr ibut ion from charged evaporation p a r t i c l e s  with mass grea te r  than t h a t  of 

a proton and from r e c o i l  nuclei .  The backscattered dose i s  the  dose from a l l  

p a r t i c l e s  and t h e i r  progeny which cross  from the t i s s u e  i n t o  the aluminum. This 

backscattered dose i s  by de f in i t i on  zero i n  t h e  straightahead approximation. 

agreement between the  exact and approximate secondary doses i n  both Figs .  9 and 

10 i s  qui te  good a t  a l l  t i s s u e  depths. 

estimates the  secondary doses, p a r t i c u l a r l y  i n  rem, but  i n  t he  present instance a t  

l e a s t  the  e r r o r  does not seem excessive from the point  of view of shielding.  

The 

The straightahead approximation over- 

F ina l ly ,  
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it should be noted t h a t  while t he  secondary dose i n  Fig. 9 i s  s m a l l  compared 

t o  the  primary dose t h i s  i s  not the  wse i n  Fig. 10. The qual i ty  fac tors  used 

i n  the calculat ions and consequently the dose calculat ions i n  rem must be 

considered t o  be very approximate. The calculat ions do serve t o  indicate,  

however, t h a t  the importance of secondary particles i n  space vehicle shielding 

i s  dependent on the qua l i t y  f ac to r s  which are found t o  be applicable.  

A t  the  present t i m e  t h e  code co l lec t ion  of t he  Radiation Shielding Information 

Center of the Oak Ridge National Laboratory contains f ive  proton penetration 

codes, wri t ten i n  various approximations, which were designed fo r  doing space 

shielding calculat ions.  To test  the  consistency of these codes, W. W. Scot t  

and R.  G .  A l s m i l l e r ,  Jr. have compared the r e s u l t s  given by each code t o  a 

typ ica l  sample problem. 

13 

The codes which have been considered are those wri t ten by W. E .  Kirine? 

a t  the Oak Ridge National Laboratory, by R.  P.  Moshofsky'* a t  The Boeing Company, 

by C .  W. H i l l  e t  a l .  a t  t he  Lockheed-Georgia Company, by J .  R.  L i l l ey  and 15 

W. R. Yuckerl6* a t  the Douglas Aircraft Company, and by R.  I. Hildebrand, and 

H. E. Renkelf7 a t  t h e  Lewis Research Center. An extensive discussion of the 

data and method of calculat ion used i n  each of these codes i s  given i n  the 

l i s t e d  reference, and. therefore  only a very b r i e f  discussion w i ' l l  be given here.  

The code wri t ten by Kinney i s  t h e  only one of the  codes which solves the  complete 

t ransport  equations. The codes wri t ten by H i l l  e t  al .  and by Hildebrand and 

Renkel employ the  straightahead approximation and include a calculat ion of the  

/ 

higher generation secondary pa r t i c l e s .  The codes by Moshofsky and by L i l l e y  

and Yucker employ t h e  straightahead approximation, calculate  e x p l i c i t l y  only 

*The code by L i l l e y  and Yucker w a s  not avai lable  a t  the time reference 13 w a s  
wri t ten and therefore  the r e s u l t s  from this code presented here are not 
included i n  reference 13.  
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f i r s t -genera t ion  secondary pa r t i c l e s ,  a d  u t i l i z e  a t tenuat ion  f ac to r s  t o  t r e a t  

the higher generations. The codes by Kinney and by Hildebrand and Renkel use 

the particle-production data generated by Bert ini ,  *bile t h e  other  codes r e l y  

on the  older,  more approximate data .  

The sample problem used i n  the  compwison i s  t h a t  shown i n  Fig.  7: i .e.,  

a proton f l a r e  spectrum, taken t o  be exponential i n  r i g i d i t y  with Po = 100 MV, 

normally incident  on a s l ab  of Fluminum of thickness 20 ,/em2 followed by a 

30-cm s lab  of t i s s u e .  The doses as a function of depth i n  the  t i s s u e  from 

primary protons, secondary protons, and secondary neutrons are compared i n  

Figs .  11, 12, and 13, respect ively.  

The primary proton doses from the  various codes shown i n  Fig.  11 a r e  i n  

reasonable agreement. 

i n  t he  data, and t h i s  dose i s  r e l a t i v e l y  easy t o  ca lcu la te .  I n  Fig. 12 where 

the  secondary proton doses a r e  compared, a l l  of t he  r e s u l t s  a r e  i n  reasonable 

This i s  t o  be expected s ince  there  i s  l i t t l e  uncer ta in ty  

agreement except those given by the  Boeing code.* 

neutron doses a r e  compared. 

I n  Fig.  13 the secondary 

The Boeing r e s u l t s  are somewhat higher than those 

given by t h e  other  codes. The Lockheed-Georgia r e s u l t s  appear t o  be high i n  

t he  f i rs t  few centimeters of t he  t i s s u e  but  t h e r e a f t e r  agree with the  r e s u l t s  

given by the  Lewis and Douglas codes. 

r e s u l t s  a r e  rather large,  but i n  general  these results are lower than those 

The s t a t i s t i c a l  uncer ta in ty  i n  the  ORNL 

given b$ the  Lewis and Douglas codes. This d i f fe rence  may be a t t r i b u t e d  a t  

l e a s t  t o  some extent  t o  the  s t ra ightahead approximation used i n  the  Lewis and 

Douglas codes. 

*M. Wilkinson of Boeing has informed me t h a t  he has revised the  Boeing code and 
now obtains  r e s u l t s  which are i n  subs t an t i a l  agreement with t h e  o the r  codes. 
This revised code i s  not, however, a t  t h i s  t i m e  ava i lab le  from the Radiation 
Shielding Information Center. 
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None of' t h e  comparisons mentioned above include a contribution from the  

gamma rays.  

ahead approximation by Madey e t  al., Dye, and A l s m i l l e r  e t  al.20 Gamma-ray 

calculat ions have a l s o  een performed by H i l l  e t  al . ,  15121 who used a model which 

accounts f o r  t h e  angular d i s t r ibu t ion  of the produced gamma ray and i s  appl icable  

t o  a slab shield.  I n  the first three calculations,  only gamma-ray production by 

Calculations have been carr ied out f o r  gamma rays w i t h  the  s t r a igh t -  

18 19 

incident protons w a s  considered; i n  the  last calculat ion,  gamma-ray production 

by a l l  of the  secondary nucleons, as w e l l  as the  incident  protons, i s  included. 

Madey e t  a l .  and Dye obtained gamma-ray production d a t a  by extrapolat ing from a 

very l i m i t e d  amount of experimental data.  A l s m i l l e r  e t  a l .  obtained t h e i r  da ta  

by applying crude Coulomb correct ions t o  t h e  theo re t i ca l  data  of TroubetskoF2 

for gamma-ray production by neutrons. It These data extended t o  only 22 MeV. 

w a s  assumed t h a t  t he  22-MeV data applied t o  protons of energy up t o  50 MeV. 

H i l l  e t  a l .  used t h e  model of Troubetskoy with Coulomb corrections and calculated 

gamma-emission data  a t  the  higher energies.  

A comparison of the Madey, A l s m i l l e r ,  and H i l l  ca lculat ions,  due to.Hi.11 and 

Simpson,21 i s  shown i n  Fig. 14.  

gamma-ray doses a t  the center  of a spherical-shel l  aluminum shield as a function 

of shield thickness.  The form of the incident spectrum considered may be found 

i n  Madey e t  a1.l' and A l s m i l l e r  e t  al." 

using d i f f e ren t  gamma-ray production data .  

assumed t h a t  protons wi%h energy grea te r  than 22 MeV could not produce gamma rays;  

The r e s u l t s  shown are t h e  primary proton and 

The t w o  Alsmiller curves were obtained 

I n  obtaining the  lower curve, it w a s  

i n  obtaining t h e  upper curve, gamma-ray production from a l l  protons of energy less 

than 50 MeV was inclyded. Because of t h e  crude extrapolat ion used i n  obtaining 

the  gamma-ray production data, the  upper curve i s  probably an overestimate. 
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The Alsmiller e t  a l .  and the H i l l  e t  a l .  ca lcu la t ions  are i n  reasonably good 

agreement except f o r  t h i n  sh ie lds .  The reason f o r  the  thin-shield difference i s  

not known, but  probably can be a t t r i bu ted  t o  a difference i n  the assumed gamma-ray 

production data  f o r  very low energy incident  protons. 

e t  a l .  i s  much l a rge r  than t h e  other  two because of t h e  very d i f f e ren t  production 

The ca lcu la t ion  by Madey 

data used. Experimental information on gamma-ray production from proton-nucleus 

and it i s  now possible  t o  draw a 23.24 co l l i s ions  has recent ly  become avai lable ,  

few t en ta t ive  conclusions about t h e  v a l i d i t y  of t he  ca lcu la t ions .  

I n  Fig. 15 t h e  i n t e rac t ion  cross  sec t ion  mult ipl ied by t h e  number of emitted 

photons, when a proton co l l i des  with an aluminum nucleus, and the  in t e rac t ion  cross  

sect ion multiplied by t h e  t o t a l  energy of all emitted photons, when a proton co l -  

l i d e s  with an aluminum nucleus, a r e  p lo t ted  as a f’unction of incident  proton 

energy. The so l id  and the dashed curves a r e  obtained from the  data  used i n  the  

ca lcu la t ions  of Alsmiller e t  al., shown i n  Fig.  14.* 

i n  Fig. l’j a r e  used, then t h e  lower curve labeled Alsmiller i n  Fig. 1 4  i s  obtained. 

If both the s o l i d  and the  dashed curves-are  used, then t h e  upper curve labeled 

If  only the  so l id  curves 

Alsmiller i n  Fig.  14 i s  obtained. The p lo t ted  points  a r e  the  experimental points  

The experimental points  have been obtained by in tegra t ing  of W. Zobel e t  a l .  

t he  measured d i f f e r e n t i a l  c ross  sec t ion  f o r  photon production and t h e  d i f f e r e n t i a l  

23,24 

cross  sec t ion  f o r  photon production mult ipl ied by photon energy over a l l  emitted 

photon energies g rea t e r  than 600 keV. Hopefully but  not c e r t a i n l y  t h e  contr ibut ion 

t o  the  in t eg ra l s  from photons of energy l e s s  than 600 keV i s  small. 

The upper dashed Line i n  Fig.  15 overestimates considerably the  energy emitted 

i n  the form of photons mult ipl ied by the cross  sec t ion  between 22 MeV and 50 MeV 

while t he  lower dashed l i n e  i s  i n  very rough agreement with the  cross  sec t ion  

*me analogous da t a  used i n  the  ca lcu la t ions  of H i l l  e t  a l .  are not given i n  
reference 21, and therefore  comparisons with these  data cannot be made. 
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multiplied by the  photon mul t ip l i c i ty  i n  t h i s  energy region. This means of 

course t h a t  the upper curve i n  Fig. 14 labeled Alsmiller i s  too high. I n  t h e  

energy region from 14.6 MeV t o  22 MeV the  so l id  curves underestimate the experi-  

mental data on cross sect ion times mul t ip l i c i ty  and overestimate s l i g h t l y  the  

experimental d a t a  on emitted photon energy times cross sect ion.  On the  bas i s  

of the comparison shown i n  Fig.  15, there  seems t o  be no reason t o  expect t h a t  

t he  lower Alsmiller curve i n  Fig.  14 i s  g rea t ly  i n  e r r o r ,  

photon emission spectrum has not been compared and there  may be some changes' due 

t o  t h i s .  O f  even more importance, however, i s  the fact t h a t  there  a r e  no experi- 

Of course the  a c t u a l  

mental data f o r  proton energies of less than 14.6 MeV. This energy region is i m -  

por tant  from the standpoint of gamma-ray production because of the  large number 

of low-energy protons i n  a typ ica l  so la r - f la re  spectrum. If the  rapid decrease 

with decreasing energy of the  so l id  curves i n  Fig.  15 should be i n  e r ror ,  it i s  

s t i l l  possible t h a t  the estimates of t he  secondary photon contribution t o  the 

dose could change appreciably. 

while secondary nucleon production i s  a high-energy phenomenon i n  the  sense t h a t  

the higher energy incident protons (b 100 MeV i n  a typ ica l  flare spectrum) tend 

t o  be important i n  t h e i r  production, t h i s  i s  not t he  case with secondary gamma 

rays.  All of t h e  calculat ions,  pa r t i cu la r ly  the  work of H i l l  e t  a l . ,  ind ica te  

I n  t h i s  regard, it should a l s o  be noted t h a t  

21 

t h a t  the gamma rays produced by very low energy flare protons produce most of 

the  g m a - r a y  dose even fo r  moderately th ick  shields .  Thus, i f  the  low-energy 

portion of the flare spectrum, which i s  not w e l l  known, should be much la rger  

than t h a t  assumed i n  t h e  calculat ions,  t he  gamma dose could increase considerably 

while t he  primary proton and secondary nucleon doses remain e s sen t i a l ly  unchanged. 
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