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I. MAXIMUM LIKELIHOOD PROPERTIES

i.i Introduction and summary

The likelihood ratio test was proposed by Neyman and Pearson

[1928] as a method for testing a composite hypothesis. Subsequently,

Wilks [1938] showed that, when the null hypothesis is true, the

likelihood ratio statistic -21nkn, based on a sample of size n, has

a limiting central chi-square distribution with _ degrees of freedom,

where Z equals the number of functionally independent parameters

specified by the null hypothesis. In a rather extensive paper, Wald

[1943] offered a proof that the non-null distribution of -21nk
n

converges uniformly in distribution to the noncentral chi-square

distribution. However, Wald made several assumptions that are diffi-

cult to verify for specific utilizations of his results, for example,

the assumptions that the maximum likelihood estimates are uniformly

consistent and that the likelihood ratio test is uniformly consistent.

Wald stated that uniform consistency of maximum likelihood estimates

would be proved in a subsequent paper but this paper did not appear.

Many authors have used Wald's result, but they appear to

disregard the uniform consistency assumptions. The purpose of this

study is to give a proof that -21nk converges in distribution (not
n

necessarily uniformly) to a noncentral chi-square distribution under

local alternatives to the null hypothesis, the assumptions made being

more readily verified. Consideration is limited to maximum likelihood

estimates that are solutions to the likelihood equations obtained

2
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for the maximization process. This approach was also used by Chanda

[1954] and subsequently by Bradley and Gart [1962].

1.2 Notation_ assumptions_ and preliminary lemmas

Let f(_,_) denote a density or probability function (continuous

or discrete) where x is a p-dimensional random vector with values over

a region R independent of _ = (_l,...,_k), a parameter vector lying

in a k-dimensional parameter space _. Let [_],_=l,...,n, be n inde-

pendent observation vectors on x. For brevity the development below

is given for random vectors x which are continuous. However, the

entire discussion applies to x discrete if integration is replaced

throughout by summation.

For convenience, the following notation will be introduced.

Let 81nf(x,0)/8_ r and 8f(x,_)/80 be denoted by 81nf/$_ and 8f/_0---- - r r r

respectively, with similar notation being employed for second- and

third-order derivatives. In addition, 81nf/8_r!0, will denote the
m

at the point _'a0 with the same convention used forvalue of _inf/_ r

other functions.

The following assumptions will be made and will be designated

as Assumption A.

AI. For almost all _¢R and for all _¢_,

_inf B21nf $31nf

_r ' _r _s and _0r_gs_t

exist for r,s,t = l,...,k.
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For all f(x,e_) that are densities, for almost all xcR and for

every e¢_,

l_%l<Fr(X) and I_-_ < Frs(X),
r s

where Fr(X ) and F (x) are integrable over R, r,s = l,...,k.
rs m

These assumptions permit certain interchanges of order of

differentiation and integration or summation.

A3. For every _¢_, the matrix _(_) = [Crs(_)_ r,s = l,...,k] with

F_Infl _Inf

Crs(_e) = ES_ me_r 18 8_s ol
m

is positive definite with finite determinant.

A4. For almost all xcR and for all e_¢_,

I 83 Inf
8erSesS@t < Hrst(X),

and

E_[Hrst(X)] < M < _,
m

and there exists a positive real number _i' such that

i+_ I

EO! IHrs t(x) -Ee_[Hrs t(x)]l ] < L < _

for r,s,t = l,...,k, and where M and L are positive constants

These assumptions are essentially those given by Chanda [1954]

which in turn are the multiparameter extension of those given
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by Cram@r [1946, p.500]. The one exception is the last part of

Assumption A4 above. Reasons for adding this assumption will be

made apparent in the discussion in Lemma 1.6. The assumptions

on the first and second derivatives of f(x,e_) and inf(x,e) are

similar to assumptions made by Wald, in the sense that they allow

differentiation and integration or summation to be interchanged as

was assumed by Wald.

In addition to Assumption A, the following assumption will be

made and will be designated as Assumption B.

B. There exists a positive real number v2 such that whenever

II e" e II =-_11o" o'l <,_2,- ' - e' e"eO,
-- -- r _ - -- ' --

r s

2

>_<T<_

(9"

for r,s : l,...,k, and where T is a positive constant.

Assumption B is closely related to Assumption lll(b) of Wald [1943,

p. 429]. Wald assumed the existence of functions 9rs(X,_8'", $) and

q0rs(X,8_'" , _), respectively the greatest lower bound and the least

upper bound of _21nf/_O _0 for any 0" in the region,
r S _

IIo_',- o__'"ll<__8, about o__'",suo_ that EO,[{,rs(_,O_'", _/]_] an_

1 1

E(9,E{fiOrs(X,8_'",6)]2] are bounded whenever IIo_,,,-o_'ll< G_2and6<_2"

The following assumption, designated as Assumption C, is iden-

tical with Assumption V of Wald [1943, p. 429].
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There exists a positive real number % such that

El( _inf I)2+%1 < K< _, r = l,...,k,oT /o_

for all _¢_, where K is a positive constant.

needed to prove that

n 8Inf(_, e_*)

j_ 0_=i $e r
, r = l,...,k,

This assumption is

/

has a multivariate normal distribution.

An example of a class of distributions which satisfy these

assumptions is the exponential family

f(xle_) = Exp [A(e)B(x) + C(x) + D(!)}

such that

(A)

(B)

(c)

The third partial derivatives of A(!) and D(e_) are

bounded functions of 8.

{Is(x)l<

for some _ > O.

The matrix

F_2A(o) _2D(o) k]-_T_T. E6){B(x)} + _ ; i,j = 1,...,
m j - l j

is positive definite, where ! = (81,...,ek).
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Lemma i.i. Given Assumptions A and B, there exists a positive real

number S such that

[ in,1>2]< S < _, r = l,...k,
_!'<o7<-Io'

wheneverII£" - !' II<__2"

Proof: It follows from Assumptions A and B that

r

for all e_ef_. Now consider the Taylor series expansion of 81nf/_er}_.

about e = 8 ' namely

k _2z_f I
amnfl _mnfl + z (e" - e') r_-r_sl e"'e_7-_Io" = _T%--rI_' s=l" s s

where e'" lies between 8' and 8". Thus

Ee_'FL _lnfl >2] = E@,E _lnfl k _21nf, I /_2<ow_-Io' - e s ,

#] k IB"- I 'I _lnfl _glnf I ]I< _Z,[#_fl + 2 z , s e,slso oT_-Ii, TT-m _- _ \°_T_rle s=z - r s e'"

k k (9_ I I _21nf I 821nf I ] I"+ z z le"- e_ll - e{I si' ae a0 _er aetle,,,s=l t=l s r s O"'
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It now follows from Assumption B and the application of the Cauchy-

Schwartz inequality together with the first part of the proof of

this lemma that

i, ...,k,

!

and

l_,e,[_2Znf _21nf [

i _21n f )2 1/2821nf )2] E@'I( _er chd_t e,,, 1} < T<--{E_-'[( ChOr 88s _9'" --

for r,s,t = 1,...,k wheneverII £"- £'11< _2" Thus

_,£,[ K_znfl )2] ¢z/2 2,_2T3/4 2<os_-Io, < + + '_2T= s <

k

whenever II£"- o_,ll = z
r=l

8" - 8' I < v2.r r --

Lemma 1.2. Let

A (O,O')= _,£,t_lnf ],
r--- _ e_--r 8

r = l,...,k,

Brs - _ r s e
r,s = l,...,k.

(1,2.1)

(1.2.2)



(Note that from Assumption A2 Brs(e_,e_)= _Crs(8_).) Then under

Assumptions A and B, for r,s = l,...,k,

(i) for all 8,a.,e"c_ where II£-z'll < V2_2,and _2 is given by

Assumption B, Ar(e,9" ) and B (9,a") are continuous at 9" = e'-- -- rs .... '

(ii) Crs(e) =-Brs(e,e) is continuous in _8"

Proof: (i) Let c be an arbitrary positive real number. It must be

shown that there exist positive real numbers 61 and 62 such that when

II e_"-e_'ll <_ 61, Wr : IAr(e,e"__) - Ar(8_,e _' )1 <c, and when

Ile"-e'll<6 2, v = IB (0,o")-B (e,e')l < c. Now-- -- -- rs rs -- -- rs -- --

W
r = __ , _ [f(x,e_") - f(x,e_')]dx .R £

Expanding f(_,_") in a Taylor series expansion about 8" = e' one
m

obtains

Ik I
Wr : SZ=I(SS-8'S ) _R r 8_ 8_s e--'''_lnf f(x,e"'___ )dx

for some 8_"'suchthat II£"'-Z'II< IIZ"-£'II • Nowif II 0_"-0_'II<_Vl"_2,

II£"'-e_'ll< Z/2_2 and,sinceII0_-e_'ll< Z/2_2 by assumption, then

II£"'-e_II < _2" Thusit followsfromthe Cauchy-Schwartz inequality

and Lemma i.i that

W

< r. le" e'
Wr s=l s- s_ \0_-r i f(m,0_"')dx )dx

R - R S e__"'

< sz/2 Tz/2 II£"-o, II.
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Thus if 61 = min(cS-I/2T-i/2,1/2v2) , then Wr < c whenever II_e"-e'll__< $i"

s imi far ly,

V
r$

I {f(x,e")-f(x,e,)_d__
_21nf

= IBrs(e,e") - B (O,e'> = Jr _e r _@s ----
rs---- R __

i k _21nf _inf f(x,O,,,)dx I= z (0"-o') _ _or dOs _ O'"t=l t t 8 ----
m _

/

for 8_"'suchthat II£'"-Z'II < IIZ"-0_'II• .owif IIO"-0'II<_1/2v2 then

IIe_',-0_ll<_2,sothat it follows from the Cauchy-Schwartz inequality,

Assumption B and Lemma i.i, that

k @_ !E $21n f _2v < z I -o{I { \_0r _0sl - f(x,0"') dxrs -- t=l -- -- --

f_lnfl 2 )dx_2 T3/4LG_tI°"') f(x,f, _ < IIo_"-o,II
R

Thus if 62 = min(_T-3/4,1/2v2), then Vrs < c whenever IIe_"-e'll<_6 2.

(ii) Let c be an arbitrary positive real number. It must be

shown that there exists a positive real number 6 such that when

ll_O'-e_ll_< 6, Urs = ICrs(e_')-Crs(_)l = IBrs(e_',8'_ (O0)l.-Brs. ,., < c.

By the triangular inequality

Urs <.....IBrs(£' '--0' )-Brs (@'e') I + IBrs (e'e') -Br s (_' e--) I o

From Part (i) of Lemma 1.2 there exists a 62 such that the second term

on the right-hand side is less than c/2 whenever II_e'-_ll <_ 62 •
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Nowuse of a Taylor series expansion of _21nf/Ser

leads to

s @' about 8' = 8,

t_l(8_ _31nfIBrs(e--"e--')-Brs (g'_')I = -St) _ 88 68

R r s
(x,8')d_Id0tlS,, f -- __

for some e_" such that IIe_"-e_ll < II _'-e_II • Then by Assumption A4

k I IIIBrs(8',e')-Brs(8,8')l < z le$-etl , 8 F S3z f ]
.... t:l __' _Sr _Ss _St 8"

< MII!'-ill •

Thus if 6 = rain(62,63) , then Urs < e whenever

1.3 Asymptotic properties of null and non-null

maximum likelihood estimators

Consider the test of the composite hypothesis,

Ho: e_ = 8___ = (le__°,2i)

J

le_O owhere 8c°c_ and where : (81_..._8_) is specified while

2e_ = (8_+i_...,8k) remains unspecified. Attention is restricted to the

following class of local alternatives: [sn], a sequence of "true"

values of 8 such that 8n (Ien * 8n 8 °_ _ = _ ,2__ ) where : + 6 / _7_ withl __ in

lim 6. = $i' i = i,...,_, and where 2e_ is the vector of true values

o
of the nuisance parameters 2e_. Setting e_ : (i__ ,2e_ ) one sees that

lim 8n = 8*.

n -_oo
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Henceforth the notation _a = (la,2a) indicates a k-component

vector whose component-vectors l_and 2_ have _ and (k-E) components

respectively and a matrix

D

indicates a k X k matrix whose principal submatrices _ii and _22 are

X _ and (k-E) X (k-E) respectively. In addition, if B = A -I has

similar submatrices _ii' write -mmA[}= --mm_'''and--mmB_}: --ll_'"in order to

distinguish between submatrices of inverse matrices and inverses of

submatrices, i = 1,2.

Denote the joint likelihood function by

n

:
(_:i

Then the likelihood equations under alternative and null hypotheses

respectively are the following:

_e
r

- 0_ r : l_..._k_ (l.3.l)

_e
r

: 0, r : _ + l,..._k.
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The following notation is introduced for use in subsequent

sections.

n _inf (x(_,
n l _in_(x'i)_ 1 z

L (8_) = n _@ n (z--i _O '
r r

r=l,...,k, (1.3.3)

o

Ln (e) 1 _-Inm(x'e-) 1 n %21nf(_,e_)
rs- :n _e de :_ Z de de '

r s _:I r s
r, s:l,...,k, (l.5.h)

i _31n_(x, 8_) n _}inf(_,! )

Lnst (8-) = _dOr dos dOj I O_=IEdOr dos dOt,r,s,t=l ,....,k. (1.3 5)

Lemma 1.3. Under Assumptions A and B, for the given sequence [8_n]

and any c, N > O, the following hold for all (9 such that II8_-sfll < i/2v2:

(i) P1 = P[IT'rn(!) - Ar(!'_)l<n, for all r:l,...,kl!n]>l-c,

(ii) P2 : P[ILrns (e-) - Brs(8-'--8 )I<_'

for all r,s=l,...,kI__ n] > l-c, for n > N(c,n).

Proof: For the given sequence [Sf], one can find for each _ > 0

a positive integer N(_) such that II_sn-8*_II j _ whenever n > N(_).

(i) By the general form of the Tchebyshev inequality, the

triangular inequality, the definitions of Ar(@,en)__ and Ln(e)r-- given

in equations (1.2.1) and (1.3.3) respectively, and for any _ > 0

W _
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k

P1>-1 - r_l P[IT'_(£)-Ar(£'J)I > _le-n]

k

> i - Z
-- r=l

E n[ {Lr (8_)_Ar (e, 8n) ]2In _ _ + JAr (8_, 8_n)-Ar (£,(9")]2
e

2

-rf II......en-e*ll < 1/2_2, then II en-ell < '_2" Thusby Lena 1.1

,4"

i

[-]'_lnf n 2
r -- ---- = _ -Ar(e--'_ )) ]

EsnE[Ln(e)_Ar(e,en)]2 ] i E8 n LL_r 8

s<!_ _- <-
- n _n_ n

r

for n > N(I/2_2), and by Lemma 1.2 there exists a positive real number

61 such that for IIef-e/ll <_ 61, [Ar(e_,ef)-Ar(_--,J )]2 < 1/2 _2/k. Thus,

if n>rrax[2Sk/c_2,kN(_2v2 ), N(61) ], then P[ILn(_)-Ar(e_,e_r- )I > c

for any small c > 0 and hence Part (i) of Lemma 1.3 follows.

(ii) By the general form of the Tchebyshev inequality, the

(8,8 n) giventriangular inequality, the definition of Lns(e_) and Brs __

in equations (1.3.4) and (1.2.27 and for any h > 0,

k k

P2 > i - Z Z
-- r-i s=l

PEl_r_s(£)-Brs(L_)l > hie _]

k

> i - Z

k Esn[{Lns(8-)-Brs(8--'Q--n)]2-i + [Brs(8--'£)-Brs(8--'8--*)]]9

g -- 2
r=is=l
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.ow if IIen-e_ll <_l/2 2, thenII_0n-011__< _2" Thus, by Assumption B,

E@n[ [LTs (e)-Brs (e_,@2) ]2] = _ EenL%er aes

n Esn \c_@ r C_es] < --- n

for n > N(i/2v2) , and by Lemma 1.2 there exists a positive real number

82 such that for IIen-Fll < $2 , [Brs(!,en)-Brs(__,@$)] 2 < I/2eN2/k2.

Thus if n > max[2Tk2/e_2,k2N(i/2_2),N(62)], then

k k

P2 >i - Z Z
-- r=l s=l

P[ILrns(!)-Brs(!,S)1 > _le._n] > 1 - c

for any small c > 0 and hence Part (ii) of Lemma 1.3 is proved.

The following result is a restatement of Lemma 2 of Aitchison

and Silvey [1958, p. 819] and is thus given without proof.

Lemma 1.4. If g is a continuous function mapping Rk into itself with

the property that, for every _ such that II _-e$11 = 8, _ > 0,

k

_ !-! 11<8r_igr(!)(@r-8 ) < O, then there exists a point _ such that II +

for _hich _(_) : 2"

Theorem i.I. (The consistency of the two estimators 8_,8. ) Given

Assumptions A and B and the given sequence [02] of local alternatives,

(i) there exists a sequence [_2] of solutions to the likelihood

equations (1.3.1) which converge in probability to 8_ ,
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(ii) there exists a sequence [_n (18_o 2_)_ : , ] of solutions to the

likelihood equations (1.3.2) which converge in probability to 8
m

Proof: (i) Consider the likelihood equations

L:(e)_= O, r = l,...,k,

obtained from (1.3.1) by dividing through by n and noting the definition

of Ln((9) given in (1.3.3). It follows from Lemma 1.3 that given q and c_

arbitrary positive constants, there exists a positive integer N(_,c)

such that, for all (9 such that II8_-(9"11< 1/2 v2,

P[ILn(8_)-Ar((9,82)I < _, for all r = l,...,klS_ n] > 1 - c

for n > N(_,c). Thus with probability greater than i - c the following

hold for n > N(_,c) given 8n:

ILrn((9)-Ar(8_,(9*)l < r_, r : 1,...,k,

{Lrn((9)-Ar((9,(9*)](Sr-8:) < ql@r-(9:[ , r = 1,...,k,

and

k k

Z [L_(8)-Ar(@,@*)](Or-SL')"_,± < h
r=l -- ---- r:l

l r- r l = •

Now, for each (9 such that II _e-°*_ II = _ < 1/2 V2, one has

k

Z Ln(e)(@r-e:) <
r:l r --

k

g A (@,8"r=l r-- )(er-° ) + _5.
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By expanding _inf(x,e)/8@ in a Taylor series about e = @ in the-- -- r -- --

Ar(0,9* ) * .expression for , noting that A (0 ,O ) = O, multiplying by
_ m r m m

(Or-O_) and summing over r, one may obtain

% k

g A "----''r'(O'0")(@r-0"] =
r=l r

k k

(e ,e )Z sZ-1(8r-8-*-) (e s-St)Br sz" s _ _
r:l - -- --

k k k
i * * * n

+ _ r=iZ s=iE t=iE (0r-0r)(0s-Os)(0t-Ot)E0*[Lrst(0')]

for some __' such that 11o_'-ZII< II o_-ZII

then, by Assumption A4,

if IIe_-Zll= _ <__z,

k

E A (e'8*)(Sr -8_)_r <
r=l r -- --

k k

Z Z (Sr-Sr_)(Ss-8:)Brs(e*,8 *) + 1/263M.
r=l s=l

In addition, from Assumption A2, the matrix [Brs(e_,e_")]_ = [-Crs(8_*)]

which is negative definite by Assumption A3 so that there exists a

> 0 (namely the characteristic root of the matrix [Brs(8_*,S])]

which is smallest in absolute value) such that

k k

E Z
r=l s=l

(er-8_) (Ss-Ss%)Brs(J,e *) < -!3B 2.

Thusfor II£-ZII = 5 <_ min(_l,1/2v2) one has

k

g L (8)(e -e ) < -_62 + 1/263M + hB.
r=l r -- r r
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k

Z Lnr(8)(@r-8:) < -IB52 + 63M < 0
r=l --

if 6 <_ min(_/M,_l,i/2_2). One may now apply Lemma 1.4 to conclude that

P[L_(e)]_ = O, for all r = l,...,k for some __n such that

II 8f-e211 < 61@2] > i - c for n > N(TI,C ).

Thus there exists a sequence of roots [an] to the likelihood equation

(1.3.1) with probability greater than i - e, for n sufficiently large,

_n ^_i

in the region II_ -_ 11 < 6. Since c and 5 are arbitrary and may be

taken small, [@p] converges in probability to

It remains to show that the sequence [_n] of estimators are

maximum likelihood estimators. By Lemma 1.3 there exists an N(c,_)

suchthatwhenever11e_-SII< 1/2 2,

m[ILns(£)-Brs(a_,j)l < U for aim r,s = l,...,kle2] > l-e

for n > N(c,_). In addition, it follows from the proof of part (ii)

of Len_ua 1.2 that Brs(__,S) is continuous at 8 = 8"_ _ , r,s = 1,...,k.

Since the matrix [Brs(e_ ,8_ ); r,s = 1,...,k] = [-Crs(e_ ); r,s = 1,...,k]

is negative definite by Assumption A3, one can find a _3 such that the

matrix [Brs(e,e_*); r,s = 1,...,k] is negative definite for all (9 such

that II_8-8"II_ < M3 <- 1/2_ 2. Thus, one can find an Nc such that,
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wheneverII £-ojll <

P[the matrix [Lrns(e)_ r,s : l,...,k] is negative definite] >l-c

%

i

#

for n > NE, so that with arbitrarily large probability __n yields a

relative maximum and thus is a maximum likelihood estimator.

(ii) A parallel argument suffices to show that there exists

a sequence of roots [8__'] to the likelihood equations

L (e®) :0, r : _,...,k
r --

which converge in probability to 8 , where it is recalled that
b

mn 8__ * o1_ : i : 18_ : i8_ by definition.

Lemma 1.5. Under Assumptions A, B, and C, and given the sequence [__n],

the vector Yn(en) : [<(8n);_ r = l,...,k] = [ _ Ln(@n);_ r = l,...,k]

has a cumulative distribution function (c.d.f.) designated by jn(_y) such

that

lim _n(_y) : _(y;_,C)
n -

where _(y;e_,C) is the multivariate normal c.d.f, with mean vector O

and dispersion matrix C = [Crs(e_ ); r,s : l,...,k].

Proof: In the proof given here it will be demonstrated that Assumptions

A, B, and C suffice for the multivariate limit theorem given by

Bergstr_m [1963, pp. 320-321]. A special case of this theorem is now
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restated in a form which is more suitable for the present context:

Let [U_n] and IV(_n] (z = i, ,n be sequences of

k-dimensional randomvariables having c.d.f.'s IFn] and

[Gn] respectively and zero expectations, n -- 1,2, ....

Thenthe n-fold convolutions IFn*n] and [Gn_n], the distri-

n u_n nbutions of _--i -- and _Z=I_V(_n respectively, converge at

all points of continuity to limits and these limits are

equal if and only if the following sets of limits exist

and satisfy the conditions below.

(i) For each _ = [_i "'''Dk] where Dr > O, r = l,...,k

lim n P[I<I > _r; for all r = l,...,k]
n_

= lim n P[I<I > _r; for all r = l,...,kJ
n_

(ii) dFnn u (].u.=lira
r

n --, oo

lUrl_< 

lim n _ VrdGn(v),
n ..._oo

IVr1<_ 

(iii)lim n _ UrUsdFn(u)_ =
n_

lUr1,1UsI<_ 

lim n _ VrVs dGn (v),
n -+ oo

IVrl,lVsl<_ 

for r : l,...,k and r,s = l,...,k respectively.

The following correspondences will be made in the application of

this theorem. Let

-V2r = n r = i,. ,k, _ = l,...,n.
r 8n' ""
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TrY<f)'=Then Suppose that

_inf r : i, k, have joint c d.f Hn_ it is known that
e_r en, •.., • .

f_infl _ = 0, r = l,...,k, and that the variance-covariance
Een <-_r I8

matrix of the k random variables at 8 : 8n is C(Sf). The c.d.f, of

D_n = [_rn; r = i,...,k] is then Fn(u) = Hn( _ u). In addition, let

VOn, c_ = i,...,n_ have the k-element multivariate normal c.d.f, with

mean vector zero and variance-covariance matrix n-iC(8_n), and let

n

W n : _E__I V(xn

It will now be shown that Assumptions A, B, and C are sufficient

for conditions (i), (ii), and (iii). Consider first the sequence [Fn]

(i) nPFl_nl>_r;for all r =i,...,k I < n Z I > I
-- r=l

k _FI:.O_rl_InfI@n nl/2 hr 18--hI
= n z _r,-_-_-I >

r=l

m

k EenL_l_ _ 12+_2
<n Z r n

K

- 2+'_2
r:l (nl/2nr) ni/212

k -2-h2

E _rr:l
Q

by a form of the Tchebyshev inequality and by Assumption C, where

_2 denotes the constant of Assumption C. Therefore,

lim n p[iu[]nl,o_,±. > hr _ for all r : 1,...,klS--J'n'__ : O.
n .--> co



(ii)
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-- r r ,

lu l<_v lu l>v

f_fl _ = o.
the latter form following since Een \-_rl_

n

Set t = _-nu
r r

and

lUrl<Y ItrJ> J_ Itrl> J_Y

i

K

< -

nI/2 2
by Assumption C.

Therefore,

lira n _ UrdFn(u) = O, r = I, k
n -> oo _ °°'' °

U <

(iii) It will now %e shown that

lim
n -_oo

n _ u u dFn(u) = C (@*
r s ---- rs- )' r,s = l,...,k.

furl _ Ju <21_7

4



Now

n

= n
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J 3u u dFn(u) = n u u dHn (_u)
r s r s --

n <lu,l,lUsl<_ l rl,Isl-

UrUsdH n (_u) - n_ u u dHn (_u>
r S

Ek ]Ur]< Y, ]Us]> Y

- n u u dHn (_u) - n _ uu dHn (_u),
. r S r S

]Ur]>Y, lUs]<Y fUrl>Y, ]Us]>Y

where Ek denotes k-dimensional Euclidean space. Then, using (ii)

of Lemma 1.2, one obtains

lira n _ UrUsdFn(u ) = lim f t t d}{n(t)
n _ n _ r s --

E k E k

(9_n) = Crs(8_*)= lira Crs _ r_s = l_..._k.

An examination of the second integral on the right-hand side of the

expression above yields

= i,...,k.
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From the discussion in (ii) above, the right-hand side can be made

arbitrarily small for n sufficiently large. Thus

lira n _ UrUsdFn(u)_ : lim n _ UrUs dHn (_-u) : O, r,s : l,...,k.
n_ n_

fUr I__ Y, lUs I> Y fUr I__ _,lUs I> Y

Similarly

limn _ u u dFn(u) = lira n _ u u dHn (_ u) = O,
n-*oo r s -- n-*oo r s --

u < furl> lusl_-fUrl> _,I sl_ _ _, Y

r,s = l,...,k.

Finally, it may be seen with the use of the Cauchy-Schwartz inequality

and Assumption C that

In_ UrUsdFn(u)l

l_rl,lusI>_

<

lurl,lusl>_

In [ Ur2dH n (_ u)] 1/2 In _ u 2 dHn

lu_l,l_sl>_ lurl,lus

Itrl,ltsl> S _ It_l,ltsl> _

< 1 [ _ itrl _(t)]l/2 F

-nl/2_2 _'-2
Itrl> _

_ Itsl d_(t)] I/2

Its I> dn-

<
K

nl/2_2 y_2
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lim n _ UrUsdFn(u ) =
n -.co

lurl,lusl>

lim n] u u dHn (_u) : O, r,s : I, k.
r S "'''

n-.oo

furl,l sl>

Combining the four integrals one obtains

lim n _ UrUsdFn(u_) : Crs(F), r,s : 1,...,k.
n --> co

lurl ,l sl<

Now consider the sequence [Gn] of normal distributions

[q[v; _e,n-ic(en)]]'__ It is clear that the existence of third absolute

moments implies that the limits corresponding to (i), (ii), and (iii)

equal zero, zero, and Crs(e_*), r,s = i,...,k respectively.exist and

Thus the conditions of BergstrSm's theorem are satisfied and hence

[f(en)] and If] have the same limiting distribution. But Wn has

the multivariate normal c.d.f., _[w; e, c(@n)] with limit, _[w;e_,c(e )],

as n _ _, through the continuity of C(ef) as established in Lemma 1.2,

(ii) . Hence

lim _n(y) = q[y_; _, C(SF)].
n --> oo

Lemma 1.6 Given Assumptions AI and A4, Ln• rst' as defined in (1.3.5)

has a limiting bound in probability; namely, for any c > 0

n

P{ITrstl < M; for all r,s,t : 1,...,kl_P_ n] > 1 - e
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for n sufficiently large, where M is the positive constant introduced

in Assumption A4.

Proof: By Assumptions AI and A4

n l_31nf(_,e_) 1 n

iLrstl _< in _=lZ 1Be r 6e s 8etl <-n _=lZ Hrst(_)

for all e c _.
m

Chanda [1954] considered a sequence of independent and identi-

cally distributed random variables so that the existence of the mean

of Hrst(X]._.was sufficient to conclude that

nt-1

p lim I_---_

n _ _ L_I _=l
Hrst(_) - E[Hrst(X)]] = 0.

However in the present situation there is a triangular array of

random variables which are identically distributed within rows but

for which the distribution is changing from one row to the next. Thus

stronger conditions of the type given in Assumption A4 appear to be

required.

It will now be shown that

n

[isp lim n
n _ _ _=l

Hrst(_) - E n[Hrst(X)]#
8

r, ,t= n]--O.

This may be accomplished by appealing to the multivariate limit theorem

of BergstrSm, which was restated in the proof of Lemma 1.5, to show
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that the distribution of the vector

n

zn=! _i E
-- n c_:l

Hrst(_) - E n[Hrst(X)]_ r,s,t = l,...,k]
e

converges at all points of continuity to a distribution having all its

mass concentrated at zero_ namely_

a(z) = { o
1

if any Zrs t < 0

if all Zrs t _ 0

The application of this theorem requires a demonstration that

Assumptions AI and A4 are sufficient for conditions (i), (ii), and (iii)

of BergstrSm's theorem. Let the following correspondences be given.

Setting the vector

-u_n=r 1n _ ](Hrst(X__) - E n[Hrst(X)]); r,s,t = l,...,k

n

one obtains Zn : E U_n.
-- _=l--

Also let VCrn, _ --l,...,n have the c.d.f.

G of the point mass distribution given above for all n. Consider

first the sequence {Fn] of c.d.f.'s for U_n, _ = l,...,n.



28

(i) n P st _rst _ = "" --

k k k

< n Z Z Z
-- r=is:it=l

P[ l<nt I > _rstlS_nl

= n

k k k

Z Z Z
r=l s=l t=l

k k k

< n E Z Z
-- r:l s:l t:l

p [IHrst(_) - E n{Hrst(X)]l > nnrstl! n]
e

Fl rst(_ )-  on{ rst(X)]l]I+nI
_n

i+_l l+WI
n _rst

k k k -i-_ IL
< _ E Z E

n_l r=l s=l t=l _rst

by a form of the Tchebyshev inequality and by Assumption A4. Therefore

lira n P rlU_rstl > _ for all r_s,t : l,..._klSn] : O.nrst
n_

(ii) n I Urst dFn(u) : - n _ UrstdFn(u)

lUrstl < Y lUrstl >

since the integral over the entire range is zero. Now

nl _ UrstdFn(u)l <

lUrst I>

m

n _ lUrstl<lUrstl > dFn(u) < L

(n_)_l
lUrst I>
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by the definition of Urs t and Assumption A4. Therefore

%

lim n _ UrstdFn(u )
n _

lUrst I<

= O_ r_s,t = 1,...,k.

(iii) In_ UrstUr,s,t,dFn(u)I

lUrstl ,lUr,s,t, I<_ Y

S << <n _ u 2 dF n 2 {n 2 ,dFn(u)-- rst (u) _ Ur's't

IUrstl, fUr, s,t, I<7 lUrstl ,lUr,s,t, I_<Y

by the Cauchy-Schwartz inequality. Now

n _ U2stdFn(u) < n _ U2rstdFn(u )

lUrstl,lUr,s,t,I< Y lUrst I< 7

-- 2 i+_i

Then, if 0 < _i < i, one has Urs t : lUrstl I

over the region of integration

m

i-_ I

Urstl , so that

n _ U2rstdFn(u)< ny I-_I _ lUrstll+_idFn(u)< Ly I _i/n_l

lUrst1<- l rstl!



again by the definition of Urs t

3o

and Assumption Ah. Hence

n I U2st dFn(u) < L_ 1 _l/n_l

lUrst I,lUr,s,t, I__

and thus

lim
n -, oo

_ UrstUr,s,t,dFn(u ) = 0, r,s,t = l,...,k.

lUrstl ,lUr,s,t, I__ Y

Now consider the sequence V_n, _ = l,...,n, of random variables

having the point mass distribution for all n. It is clear that the

limits corresponding to (i), (ii), and (iii) exist and equal zero.

Thus the conditions of BergstrSm's theorem are satisfied and hence [Zn}

converges in distribution to the point mass distribution, or equivalently

nFl

p lim _

n _ _ _n _=i
Hrst(X__)__ - E n[Hrst(X)}l_'_I_ = O, r,s,t = l,...,k.

@

Now

P!I n < for all In]Lrstl M_ r,s,t--1,...,k_e__

Z Hrst(X_,) < M_ for all r,s,t = l,...,k I

n

> l-z
-- _ n C_=l Hrs t (_) - Een[Hrs t (x) }I< M-Een[Hrst (x) }

,or r,s, =
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By Assumption A4, E@{Hrst(X)] < M for all e_ c _, and by the demonstration

above, the final probability can be made arbitrarily close to unity.

Hence, for any e > 0

P[I n , ,kie_n] > 1 eLrstI < M; for all r s,t = i, ....

for n sufficiently large.

Lemma 1.7. Let {_n] be a sequence of parameter estimates in _ which

96

converge in probability to 8_ under the parameter sequence [_en]. Then,

given Assumptions A and B and the sequence [Sp],

n -_n *
p lim LLrs(e )102] =-Crs(e_ ), r,s = 1,...,k.

n -@ co

Proof: Consider the Taylor series expansion of Ln (_n) about e = @*
rs -- --

k

Tn(p) : T:=(E)+
t=l

Ln
Gt - et) rst(i')

for some _' suchthat IIe_'- SII <_II___- e__*ll ThenfromLemma1.5

p lira ILTs(2*)l_ n] =-Crs(2.*), r,s = 1,...,k
n --> _

while from Lemma 1.6, Lnrst(e_'), r,s,t = l,...,k, has a limiting bound

in probability for all e e _. Since p lim [{_n _ e*]18 n] = 0, it

n -_ co

then follows with the use of Slutsky's theorem (cf. Cram6r [1946],

P. 255) that

k

p lim r E (8_ - e{) LTst( _')lP] : O, r,s : 1,...,k.
n -* _ Lt=l
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Therefore, a second application of Slutsky's theorem gives

p lira [Lnrs(r)lr] =-Crs(e_)' rs-- , = l, . . ., k.
n -_ _

Theorem 1.2. (Limiting normality)

Let _n and _n be the two sets of estimates of Theorem i.i. Let the

matrix _ = _(@f) = [Crs(e2); r,s = l,...,k], _ = _-i and

= (51,...,5%,0,...,O). Then under Assumptions A, B and C, and for

the given sequence [_n],

(i) _n (@n__ 2_*) has a limiting multivariate normal distribution with

mean 6_ and variance-covariance matrix Z_,

2 ,

(ii) _n (2__n - 2e_ ) has a limiting multivariate normal distribution

p

with mean 2e_ and variance-covariance matrix Z_22.

Proof: First consider a Taylor series expansion of Yrn(e_*) about e:e n.

96

Since Onr = Or' r = Z + 1,...,k this expansion is given by

£

<(82 ) = yn(_) +_n g
s=l

(e: n n _ =- es)Lrs(_n), r l,...,k,

for some 82 such that II_ - ZII <_ II @f - PII • Now lime n = e
m

n_

96

implies lim _n = 8
n--> _

so that it follows from Lemma 1.7 that

p lim
n --> co

[Lrsn (P)IP] : - Crs(J), r,s : 1,...,k.
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Thus, it follows from Slutsky's theorem that

%

Z £ k

p lim I_n Z (O*- n n (_n)le_n]= E 5 C (e_*)es)T,rs_ :_8c ( )
n-_ _ s:l s s:l s rs s:l s rs '

r,s = l_..._k.

(i)

so that

By Lemma 1.5, Yn(sn) has a limiting multivariate normal distri-
m

bution with mean vector 8 and variance-covariance matrix C. Hence it

follows from Lemma 1 of Chiang [1956, p. 358] that [YT(e*)_ :l_..._k]r

has a limiting multivariate normal distribution with mean vector 5 C

and variance-covariance matrix C.

Consider now the Taylor series expansion of Ln(@*) about e =_n
r--

k

¢(f):
s=l

(87- 8:)LTs (_n)' r : 1,...,k,

for some _n such that il__n _ 2__ll <_ II __n _ jll •

p l_ [_nl£n] e_* *_ : sothatp [#nI =
n ---> _ n ---> _

Now by Theorem i.i,

Then by Lemma 1.7

p lim

n -. co

n _n (Z), r,s = i, ,k.[Lrs( _ )I 8n] : _ Crs ---

Therefore

k

T )= z (o -o Cr_ +o (l)], r=l,.., k, (1.5.6)
s=l P '

where o (i) denotes a quantity which converges to zero in probability
P

under IOn]. For large n, the matrix [Crs(e_*) + Op(1); r,s=l,...,k]
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approaches C in probability and thus may be inverted to give the matrix

[_rs(e*)__ + Op(1); r,s -- 1,...,k] where Z_ = [C_rs(e*);__r,s = l,...,k].

Thus one has

k

(_n- er*) = Z Ln(2_*) [qsr(e*)+ Op(1)}, r = 1,...,k.
s--1

After multiplication by _n and use of the definition in Lemma 1.5 that

Yn(e) =_n Ln(e), s = 1,...,k, it follows that

k

_n (_n er*) n *- = Z Y (8){_sr(e_)*+ Op(1)] r =i,.. k. (1.3.7)
s:l S -- ' "'

It then follows from Lemma 1 of Chiang [1956, p. 338] that _n(en_ - S)

has a limiting multivariate normal distribution with mean vector

5 C C -1 = 5 and variance-covariance matrix C-1C C -1 = C -1 = Z.

(ii) By an analogous argument one can expand Ln(@ *) about e = _n
r _ _ _ '

r = _+l,...,k, to obtain, since _n = e* =

A

eo
r r r' r = I,...,Z_

k

Tn Z>=
s=_+l

(_n- @:)Lns(_n), r = _+l,...,k

for some _n such that II__n _ e*il _< il__n _ ZII • By Theorem 1.1,

p lim [__nI8n] = e* and as above one can obtain from Lemma 1.7

n_

n _n *
p lim [Lrs(d )102] = - Crs(_ ), r,s = _+l,...,k.

n--boo
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%

k
n

Lr(e- )-- E
s=_+l

(8s_ - 8*)[Crs(8* ) + o (i)] r = #+l,...,k.
s -- p '

(z.3.8)

Now for large n, the matrix [Crs(S ) + Op(1); r,s = _+l,...,k]

approaches the matrix [Crs(Z); r,s -- #+l,...,k] and may be inverted

to give the matrix [OLs(e_*) + Op(1)_ r,s -- $+l,...,k] where

_ __2 ---[Ors( )_ r,s -- _+l,...,k] = C22!. Thus one has

(_n 8r)* k n(Z)- : Z L + Op(1)], r : _+l,...,k,
s:_+l

or_ after multiplying through by,n,

<n (_rn- 8r*)

k

: E Yn(S ) [_sr(S ) + Op(1)], r : _+l,..._k.
s:_+l

(1.3.9)

n

Now 2_ (_) has a limiting multivariate normal distribution with mean

vector 2_ and variance-covariance matrix _22 as it is the marginal

distribution of the last (k-_) components of f(F) whose limiting

distribution was obtained at the beginning of the proof of this theorem.

Thus again using Lemma i of Chiang [1956, p. 338], one sees that

in_n (2 - 2_ ) has a limiting multivariate normal distribution with

mean vector 2_ and variance-covariance matrix_22_22_22 =_22"



II. ASYMI_IOTICDISTRIBUTIONS

2.1 Asymptotic distribution of -21nkn

It is now possible to prove the following theorem which is the

main result of interest in this study.

Theorem 2.1. Let [en] be the sequence of local alternatives with

e_ = 85 + 5in/J-n , lim 5 = 5i, i = l,...,z, and e_ : e*m m in m i '
n-=

i=£+l,...,k where 2£ is the vector of true values of the nuisance

parameters. Let F_(_2,t) be the distribution function of the non-

eentral ehi-square distribution with £ degrees of freedom and non-

centrality parameter _2. If X is the likelihood ratio statistic for
n

testing the hypotheses Ho: _e = _ew where _ew = (1 £°, 28 ) e a, then under

Assumptions A, B, and C,

lim P[-21nk n _ tle_n ] -- Fz(_2,t) ,
n_ _

-i _ii_' if the hypothesis to be tested iswhere _2 = i_ _ll I_ , l_

false, and _2:0 if the hypothesis to be tested is true.

Proof: Consider the Taylor-series expansions of ln_(_,e... _)
A

A

about en and en respectively:

in(_(x,e*) = ing_(x,e n) + 1 k k An er n :)< (8_n), __ [ r, r. n(e - )(e - e_ S

r=l s=l

J

^

k k _ . ^ .

E n(8 n - 8r)(e n - 8s)Lns(en),_ln¢(_,e*): m¢(x,en) + ! z
.... 2r=_+l s:_+l

_n ^ _ _nfor some_ such that lien - < lie n and some such that

_6
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A

lie n e_.*ll < lien _11 where en (1_o _n)-- - - -- = '2 . Now

^

^ ^

p lira [enle n] p lira [enle n] 8"= = by Theorem i.i so that
n_= n_

p lira [enlen] = p lira [enlen] : e By Lemma 1.7
n_ n_

p in [T,ns(en) len ] = p lira [Ln (en)le n] : - Ors(e* )-- -- rs -- -- -- '
n-* oo n-,oo

r,s : l,...,k.

Thus

^

- 21nk n = 2[ln6(x,8 n) - in6(x, en)]

r, z n( - er) (e n - e )Ors
r=l s:l

^

k k _ . ^ *

E Z n(8 n - er)(e n - es)Ors(e* ) + Op(1).
r=£+l s=£+l

In matrix form this becomes

- 21nk
n

A ^

^ ^ __n ^ Op(1)* n * ,+
= n(ef- e*)c(e n- e*)'- _(2 - 2£ )c22(2e_- 2£ )

It has been shown by Doob [1935, P. 164] that, if one has two

sequences of random variables the first of which converges in distri-

bution while the second converges in probability to zero, then the

product sequence converges in probability to zero. Hence, it follows

from Equation (1.3.9) that

A

^ .

_(_ on- 2e ) = 2_(eZ) -_22+ Op(l),

and that
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A A

^ A

n - C_22 (2 e - '

= 2_(Z ) Z22c22 Z22 {2-_(e') }' + %(1)

= pC(eE) Z22 _yn(£)1' + op(X).

_o_ multiplying by V_ in Equation (1.5.6), noting that ¢-_ (e_n - e_*)

has a limiting distribution by Theorem 1.2, and again using Doob's

result, one obtains

A

P(e*) = F (e_n - e_*)! + %(1)

so that

Thu s

2.Yn(0*) : ,/-£ (_n- 0") [C-127 + 1)
_ _ LC22 j Op( .

A ^

n(2f 28_8.) (2,@8n 2e_*)'- C22 -

: [ V_ (_n e*) Fc127 -1 (_n FC127
LC22 j Op(1)] C22 [V_ - 8")_ - _ _ + _ _ LC_22J

: n(@_n - _e*) D (e n - _e*)' + Op(1),

where

-i

F-CI_7 _-z _ C12 c-22 c21 ' C121

_ : _C22 C21 _D Lc2_J Lc21,c22i : [ c22J

+ op(m)]'+ op(1)
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The re fore

A

21nX n = n(@n - @__*)[_C - D](@ n - _6")' + Op(1)

A

-i (l@_n _@_o) , + (i)= n(l@_n - i@_°) [_CII - C12 C_22 _C21] - Op

= n(l£n - i@_°) E_ll[l@-l_̂n _ i_@°) ' + Op(1)

A

= n(l£ n - i@_°) __ii(i@_ n - i@_°) ' + Op(1).

Thus

- 21nk
n

_ ^ ^

r=l s=l

Now, since _ (i@_n - l@_O) has a limiting normal distribution with

mean vector 1_ and variance-covariance matrix --Zll by Theorem 1.2, it

is clear that

z

% £ ^

oE r n( _ @r)(@n_ @o) _rs
r=l s=l

has a limiting noncentral chi-square distribution with £ degrees of

freedom and with noncentrality parameter

_2 = lira Z Z n(@ n - @°r)(@n - @°)_rs(£ ) = i __ _ii i _-''
n _ _ r=l s=l

Thus, since - 21nX n and _ have the same limiting distribution in that

they differ only by a quantity which is converging to zero in proba-

bility, one has

< t l@n] = FZ(_ 2, t)lira P[-21nX n _ _
n_
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2.2 Samplin_ from associated populations

Situations often arise in which observations are made on several

distinct populations which are related in the sense that their under-

lying probability distributions depend on common parameters. Such

populations have been referred to as "associated" by Bradley and Gart

[1962] who have extended the results of Chanda [1954] on the large-

sample properties of maximum likelihood estimators to such situations.

In Section 2.4 of their study, Bradley and Gart have commented that an

analagous extension of the results given in earlier sections of the

present study should be straightforward. That this is in fact the

case will now be indicated.

Let fh(_Xh_), h l,...,m, denote m density or probability

functions (continuous or discrete) where _xh is a random vector with

values over a region Rh independent of _ = (_l,...,_k), a parameter

vector lying in a k-dimensional parameter space _. Each fh(_Xh,_)

need not depend on all ei,i=l,...,k. Let [_ h_],o_l,...,nh, be nh

independent observations on_xh, h=l,...,m. Then in the case where

the random vectors _xh have continuous c.d.f.s, the assumptions of

Section 1.2 are generalized as follows:

A'I. For almost all_x h ¢ Rh and for all _ ¢

8inf h 821nf h 831nf h
and

_ ' Be _ _er_e s_e tr r s

A12 e

exist for r, s, t = l,...,k; h = l,...,m.

For all fh(_Xh,8_) that are densities, for almost all _xh ¢

and for every e e G,
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82fh I_e _9 < F_ __.rs(_ ),
r s

where Fhr(_Xh) and Fhrs(_Xh) are integrable over Rh,

r,s = l,...,k; h = l,...,m. These assumptions will permit

certain interchanges of differentiation and integration.

For every£ ¢ _, the matrix _(£) = [Crs(£); r,s = l,...,k]

with

m _$Inf h _Inf h ]Crs(@) = 2] bh E@ _ _-_ @ [se e
h=l -- r -- s --

is positive definite with finite determinant. One defines

m

the constant _ : n_/N where N : Z
&& l&

h=l
nh, h:l, ...,m.

For almost all _xh ¢ _ and for all _ ¢ fl

I 831nfh

< _rst (h) '

and

E@ [_rst(--Xh)] < Mh < _'

and there exists a positive real number I]1' such that

1+I]I
se [i_rst(_xh)- E@[Hhrst(Xh) ]i ] < Lh <_

for r,s,t = l,...,k; h = l,...,m, and where Mh and Lh are

positive constants, h = i, ...,m.

There exists a positive real number v 2 such that whenever

lie"..... - e'll < _2' e', e" ¢ m,
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821nfh 0 >2]F_ <Th<__'e' L\_-_ _6
-- r S ''

for r, s = l,...,k, and where Th is a positive constant,

h : l,...,m.

C' There exists a positive real number _2 such that

_fh 2+_2

r : l,...,k, for all 8- _ _, where _ is a positive constant,

h : l,...,m.

Subject to Assumptions A' and B', Lemmas i.i and 1.2 of Section

1.2 clearly hold for each h, h = l,...,m.

Suppose now that one wishes to consider the following

hypotheses :

o (lO ,2Z)HO: 8_ = @f = (18-- ,28_) and HI: 8- = _

with 8Nz = 871 + 5iN/_, where as nh = bhN, h = l,...,m, and N become

large, one has lim 5iN = 5i, i = I,...,£.
N_

Denote the joint likelihood function by

m n h

_(x, _) : E I_ fh(__, e_).
h:l o_:i

Then the likelihood equations under alternative and null hypotheses

respectively are the following:

81n0(x,8_)

_8
r

0 , r : 1,...,k, (2.2 .i)
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_e

r

43

= O, r=_+l,...,k. (2.2.2)

II

Now suppose that

i _in¢(_,_) i m nh _infh(_Xh_,£ )_N

_r (£) -_ _e -_ z z _e
r h=l o_i r

, r=l,...,k,

1 _21n@(_'£) 1 m nh _21nfh(_Xh_,e)

_s (£) =_ _e _e =_ z z _e
r s h=l o_i r

, r,s=l,...,k,

m n h _31nfh(_Xh_,8)1 _3lne(x'e) 1 - -

L_st (£) - N $@ _es_e t = _ z z _er_es_e t
r h:l C_l

, r, s,t=l_ ...,k.

Then one may obtain the following generalization of Lemma

1.3 by simply noting that a finite linear combination of continuous

functions is itself continuous.

Lemma 1.3' Under Assumptions A' and B' and for the given sequence

[el], the following hold for all _ such that !I_ - _8"II _< 1/2 v2:

LNr eN ] m -- L'_-@F_lnfh 9](i) p lira [ (e) l = E b_Ee* , r 1,...,k,
N _ _ h=l - r --

(ii) p lira [T#rs(e)le_] =
N --_ oo

m [-_ 21nfh q
E bhE@*L_ _-@ eJ' r, s=l_...,k.

h=l - r s --

The remaining results generalize directly from those given

in previous sections when Crs(@ ) as defined in Assumption A3 is

replaced by the definition given in A'3, namely
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Crs(e-)= _ _h_'eh_ e

h=l -- r --
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$1nfh ] m ra21nfh ]e = - Z t_hE e L_ _-@ e
_e s -- h=l -- r s --

These extensions hinge on the fact that one is dealing with finite

linear combinations of quantities which satisfy the assumptions

which were sufficient for the results for a single population. In

particular one has the following generalization of Theorem 2.1.

Theorem 2.1'. Let [eN] be the sequence of local alternatives with

eN = _o + 8iN/_, where as nh = _h N, h = l,...,m and N _ =,
l l

N .
lira 6iN = 5i, i = i,...,£, and with _ = ei, i = £ + l,...k, where

N_._ 1

2_e is the vector of true values of the nuisance parameters. Let

F_(_2,t) be the distribution function of the noncentral chi-square

distribution with £ degrees of freedom and noncentrality parameter

_2. If kN is the likelihood ratio statistic for testing the

hypothesis Ho: e_ = _f where 0f = (le_°,2e_) e fl, then under

Assumptions A' B', and C'

lim P[-21nk N _< tle9] = FZ(_ 2, t),
N-_oo

m
-1

where N = S nh, _2 = 15- ZII 15_, = 15 CI I 16_, if the hypothesis
h=l

to be tested is false, and _2 = 0 if the hypothesis to be tested

is true.

2.3 Transformations on the parameter space

In the discussion thus far attention has been restricted

to tests of a null hypothesis in which certain components of a

parameter vector e have been specified. In this section the
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asymptotic theory will be generalized to tests of a more general

hypothesis of the form

where _ is the space of all 8e_ for which there is a transformation

!(_) such that

0

li(£): ({,l(£),...,{_(e_))= 1i° : ({_,...,{_)

o 0

where {i''" "'{_' Z __ k, are constants. In addition the trans-

formation g(e) will be required to satisfy the following peoperties:

(a) There exists a vector

2[(2) : ({_+l(£),...,{k(£))

such that the inverse relationships

(b)

e_(__)= (el(!),...,ek(__))

exist, where i : {(8) : (l__(@_),2i(e)).

The first-, second- and third-order partial derivatives of

8r(i) with respect to __ exist, and there exist positive

real numbers Rri , Rri j and Rrijh such that

_er(i)
I _[[ <Rri'

l_i D_jh_h < Rrijh'
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those of Section 1.2 or assumptions which imply the same results, then

Theorem 2.1, the main result of interest in this study, may be gener-

alized to the situation presently being considered as follows:

Theorem 2.1 T. Let kT be the likelihood ratio statistic for testing
n

the hypothesis Ho: __ : {f against the local alternatives [{f], where

{_ : ( o {n *_ 1__ ,2_) and_ : (l__n,2_) ¢ _T and where the transformation

__ : {(8) satisfies properties (a), (b), and (c). Let FZ(_2,t) be the

distribution function of the noncentral chi-square distribution with

degrees of freedom and noncentrality parameter [2. Then under

Assumptions A, B, and C

im P[-21nXTn < tI_n] = F_(_2,t)
n-_ _

T-1

where _-2 = I_T _Eli I__T' with I__T = (sT,...,S_), zf--C T 1 and

821nfT ,k]=[- =
R

The properties of fT(x_) will now be discussed in general

and then given a detailed development Let A T, BT, and CT denote

the assumptions on fT(x,__) which correspond to Assumptions A, B, and

C on f(x,8). It may be established, using Assumptions A, B, and C

and the properties (a), (b), and (c) of the transformation _ (@),

that Assumptions AI T, A2 T, A3 T, BT, and CT are satisfied. However,

_,T _ti_±-_ "- _ _^it cannot be shown that Assumption _ is ........ -._ _, ......

existence of a function _ijh(X) corresponding to Hrst(X) cannot be

guaranteed. In the first four sections of this study seven lemmas

and three theorems are given and of these only Lemmas 1.2 and 1.6 and
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_7

for all_ee_ and r, i, j, h = l,...,k.

The greatest lower bound, with respect to ee_ of the

absolute value of the Jacobian

_([l'"" "'[k)/_ (el,"" "'ek)

is positive.

The preceding assumptions on the transformation __(e_) are

identical with those given by Bradley and Gart [1962, p. 209] and

Wald [1943, p. 463], with the exception of the assumption on the

third partial derivatives of e(_), which have been added.

Under the transformation _ = _ (9), the null hypothesis H
-- O

can be expressed as

:

where 2__ is unspecified. As in earlier sections attention is restricted

to the following class of local alternatives: [_n}, a sequence of

n o T
"true" values of __ such that __n = (l__n,2_*) where _i = _i + 5in/_-_

with lira sT'in= 5Tz' i = I,..._Z, and where 2__* is the vector of true
n_

--X- 0 * -.x-

values of 2_. Setting _ = (i__ ,2_ ), it is seen that lira __n = __
n_

Now the hypothesis Ho: __ = __w and the sequence of local alternatives

[__n} are in the same form as those given in Section 1.3. Again let

f(x,e), the density or probability function of the random vector x,

satisfy Assumptions A, B and C of Section 1.2, and let fT(x,_), __sflT,

be the transformed density or probability function where _T, the

parameter space of __, is the image of _ under the transformation

_ = _(_). If fT(x,_) can be shown to satisfy assumptions similar to
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Theorem i.i require the use of Assumption A4. In fact, the proofs of

Lemma 1.2 and Theorem i.i only require the property that

_31nf l ] < M
Ee'_ ?e r bgs bet le"

(2.3.1)

for all 8_', 8_" ¢ _ such that I18_'- e_"II< v2, where v 2 is defined in

Assumption B. This condition may be shown to hold in the trans-

formed case for fT(x,_), namely

b31nfT ] < MT (2.3.2)

,, , T where v T is such thatfor all __', _ ¢_T such that II__ - __"II< v2,

II@(_') - __(__")II< v2 whenever II__'- __"II< vT- Assumption A4 is required

in its entirety in the proof of Lemma 1.6 but it is noted that Lemma 1.6

is used only in the proof of Lemma 1.7. However, if Lemma 1.7 T, the

result which corresponds to Lemma 1.7, can be established independently

by use of Assumptions A, B, and C and the properties (a), (b), and

(c) of the transformation _ (8), then Assumption A4 T will not be required.

That this is in fact the case will be demonstrated.

It will first be shown that fT(x,__) satisfies Assumptions

AI T, A2 T, A3 T, BT, and CT, and the condition given by Equation (2.3.2).

Consider the following relationships:

T I_ _A

.... r _znf (2.3.3)
blni'- _ Z _i be '_{ i r:l r
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k b2e k k be be
r blnf r s b21nf

E b_ib_j + Z E _ b_ be ber:l ber r:l s:l i j r s
(2.3 .g)

b{ib{j_{h

k _3e
r 31nf

r=iZ _{i_j_ h he_r
+

k k k _8 r _e $e ts bSlnf

E 7 r _{h _e _es_etr=l s=l t:l b{i b{j r
(2.3.5)

k k _28 r _e s b2e _e ;_2e be[ r s]
+ r:lZ s:lE "_{i_{j _{h + _{i_{h b{j + _{j_{h _{z _erbes

By Assumption AI on f(x_8) and property (b) of the transformation

{_ : { (e), the above are linear combinations of partial derivatives

which exist. Thus fT(x,{) satisfies Assumption AI T.

To satisfy Assumption A2 T, fT(x,{) must be such that

b2fT FT

I_-_i _ and < (x)

for almost all xcR and every _¢_T where FT(x) and FT.(x) are
-- - m-- zO -

integrable over R, i, j = l,...,k. Now by Assumption A2 on f(x,e)

and property (b) on __ = __(_), one obtains, by use of expressions

analogous to (1.6.7) and (1.6.4), that

bfT k be r _ kbg i _< r _ bf < Zr=l r=l
RriF (x) = FTr - i (_)'



and

5O

k k;52fT k I_2er__ ;Sf + Z Z
S z _gi_gjr=l r=l s=l

_e r ;ge s _2f I
_ $Sr$e s

k k k

< Z RrijFr(X ) + Z 7
r=l r=l s=l

RriRsjFrs(X) = FTj(x).

The functions FT(x) and FT._ lj(X) are integrable over R, since they are

linear combinations of functions which are integrable over R.

To satisfy Assumption A3 T, the matrix

T

cT(_) = [Cij(_) ; i,j = l,...,k] with

[5inf T 81nf T ]

must be positive definite with finite determinant.

T k k 8er _e s

Cij(_--) : rZ=l sZ=l _-_il__ _-_j'e_ Crs(_)"

Now

(2.3.6)

Then,

cT({) : D'C(e)D

where

D=
-- tS_ i 8

r, i = l,...,k]

Assumption A3 and D is nonsingular with finite determinant by

properties (b) and (c), thu_ cT(_) is positive definite with finite

determinant.
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For fT(x,_) to satisfy Assumption BT there must exist a

positive real numberv2T such that whenever If{_' - {_"If < v2T,

_, _,, aT_ _ _ e ,

{,,

for i, j = l,...,k. Now, with use of (2.5.4) one obtains

E [/_21nfT

I< k _28IE_ r i)infl k k _r _8 Is _21nf_ )21
: ES'-- r-i ?{i_gj 8" _Sr 8" + r=ll s=12 _ 8" ?gj 8" ?0r_Ss 8"

Due to the continuity of 8({), there exists a positive real number

T

v 2 such that I18_'- 8_"II< v 2 whenever If{_'- {_"]I< v2 T, where v2 is

defined in Assumption B. By multiple use of the inequality

m m
2 2

( Z ai) < m Z a. , first with m = 2 and then with m k and-- l
i:l i:l

m : k 2 respectively, one obtains
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k 828 2

[( r _inf _]
< 2E@,_ r--iZ8_i8_j 8" 88r e"

+%' _ _ _ _ e" _e-7_-- r=l s=l e" j @"

< 2k
k 82e r 2 2

r--1 -- r

+ 2k 2 Z 2, _ Ee' Lk'_r--_sler=l s=l e" _j @" - "

k k k

< 2k Z R2. . S + 2k 2 E r R2.R 2.T = U < _,

r=l rij r=l s=l rm sj

where the last inequality follows from Assumption B, Lemma i.i, and

property (b), for II__'- __"II< _2 T. Thus fT(x,{_) satisfies Assumption

BT "

For Assumption CT to hold there must exist a positive real

number _2 T such that

E__[ _-nfTW,
Zi

i = l,...,k, for all __¢_T. Let
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p(x,e) = max{l_lnfr _-_r } "

_T
Then, if _2 : _2' one obtains by use of (2.3.5)

Fl_znfTl 2<2] <(rZl l_Til/ Ee [{_(x,e)}2+_2]S_LI_-_-_I_ - = _ --

k _2+_ 2

<(tEl= Rr._ K = KT < _,

where the last inequality follows from Assumption C and property

(b). Thus fT(x,__) satisfies Assumption CT.

As was indicated earlier, fT(x,_) does not necessarily

satisfy Assumption A4 T but can be shown to satisfy Equation (2.3.2) .

Note that by use of (2.3._) one obtains

rh II-' :

_ I _3e_• I r l_fl ]
r=l 8_" -- e"

+

+
k k i 529r 59 s

r=l s=l-

628r B8 s
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where 8_' : 8([') and 8_" = 8(["). For all __', __,,¢_T such that

II__'- _"II ( v2T, where by the continuity of _[(__), v2 T is such that

II__'- _"II < v2T implies I18_'- 8_"II< v 2, one has

II $31nfT II k SI/2 k k k
El, __hl[,, < Z Rrijh + Z Z Z RriRsjRthM
- _ r=l r=l s=l t=l

k k

E r [RrijRsh + + ]TI/2
r=l s=l RrihRsj RrjhRsi

=M T,

by Assumption A4, B, Lemma i.i and property (b). Thus fT(x,[) satis-

fies Equation (2.3.2).

Finally, consider Lemma 1.7 T which is to be proved independently

by use of Assumptions A, B, and C and the properties (a), (b), and (c)

of the transformation _(8).

Lemma 1.7 T. let _n be a sequence of parameter values in _T which

9_

converge in probability to _ under the sequence of local alterna-

tives [_n]. Then given Assumptions A and B on f(x,8), and properties

(a), (b), and (c) of the transformation __ = _(8),

T _ T *

n Cij(_- ) i,j l,...,kp lira[Lij = _ , =
n_

where

T_ 1 n _21nfT(_,__)

_ : -- E _{i_ {
Lnj ({n) n (z=l j _n

D
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Using (1.3.3), (1.3.4), (1.3.5), and (2.3.4), one can write

T _ k 82e r _ k k 8e r 8e s

Lij(_n n u_i_je _- 7n v_j 7n Lrs(e )) = Z _--_--_-,_n Ln(en) + Z Z _ n n
-- r=l _ r=l s=l _ _

N

where _n = e(_n).

continuity of 6 (_),

P

* e_nLet 0_ = e_(_F) and = e_(_n). Then by the

lira 8n = 8" since lira _n = _*_ _ and

n-_ _o n-_ co

zim [enle n} = e_* *
n -_ co n -_ co

Expanding Ln(e n) in Taylor series about e = e yields

N k _ * n n

(en _ es)Lrs(e_ ),
s=l

for7 n such that 119_n - fl*ll _< II8_n - fIl-

p lira {e_nle n] = __ , and thus

n-_ co

Now p

r : i_ .••,k

lim

z-*co

_nien ] *(e -- e implies

96
n n

p z_ {_s(£ ) I en] :- C_s(e_)
n _ co

by Lemma 1.7. Also, by Lemma 1.3, one has

n _ co

Thus by Slut sky's theorem

p lim [Ln(9_n) I9n}_ = O, r = l,..._k.
n--,_

In addition

N

n np lira {_rs(e_)le_t :- %s(e_*),
n -_ co

r_s = l_...,k



by Lemma1.7.
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Using (1.6.6) and Slutsky's theorem, one can conclude that

-nT,_-n, _ CT

thus completing the proof of Lemma 1.7 T

This completes the discussion of the conditions necessary

for Theorem 2.1 T. The discussion of this section could also be

extended to the case of associated populations and would lead to

the appropriate generalization of Theorem 2.1' of Section 2.2.
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III. INTRODUCTION

The purpose of this part of this dissertation is to give

possible methods of making decisions about the unknownnoncentrality

parameters of noncentral chi-square distributions. In each of the

decision procedures considered, the noncentrality parameters are

assumedto be randomvariables with continuous distributions.

Thenotation _2 used for the noncentrality parameter in Part

i will be simplified to X in Part 2. This simplification is introduced

since the noncentrality parameter is referred to manytimes in Part 2.

The decision procedures are developed in Chapter IV. In Section

4.2, a two-decision procedure is considered on the magnitude of the

noncentrality parameter k, where the two decision regions are the two

sets [XIO _<X < _] and [XI_ < X < _], and T is a specified constant.

In Section 4.3, two extensions of the work in Section 4.2 are considered.

Oneextension is the combination of p two-decision procedures on the

magnitudes of the noncentrality parameters kl,...,k p. If

_Oi : [(kl'''"kp )I0 < ki < Ti] and Wli : [(kl,...,kp) I_ i < k i < co],

i = l,..,p, the combination of decision procedures yields 2p possible

P

decisions of the form i_l wJii' Ji = O, i, i : i,...,p. This combined

decision procedure is developed through the use of a paper by Lehmann

[1957]. The second extension is a q-decision procedure based on one

noncentrality parameter, giving the q decision regions IX! T*I -< k < _*i+l ],

i = O,...,q - i, where the T*. i = 0 q are specified constants,
i _ ,°''_

58
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such that m*. < m*
l i+l' m_ : 0 and T* : +_. This decision procedure isq

developed through the use of a paper by Karlin and Rubin [1956].

The decision procedure given in Section 4.4 is a comparison

of the magnitudes of two noncentrality parameters _i and k2, through

the three decision regions: (i) [(kl,k2) IkI > k2 + m],

(2) [(kl,k2) Ilk I - k21 < T] and (3) [(kl,k2) Ik2 > kI + m], where m

is a finite positive constant. This decision procedure is obtained

through the combination of two two-decision procedures which have

decision regions [(kl,k2) IkI < k2 + m], [(kl,k2) IkI > k2 + m],

[(XI,X2) IX2 < X I + T] and [(kl,k2) Ik2 > hI + m]. In all these deci-

sion procedures, the loss functions are assumed to be additive,

continuous and monotone in X for each of the decision procedures.

Also when more than one noncentrality parameter is considered, their

distributions are considered to be independent.

Chapter V is concerned with the presentation of aids which

will help the experimenter in his use of the decision procedures

developed in Chapter IV, when a gamma prior distribution is assumed

for the noncentrality parameter. Tables to facilitate the use of the

decision procedures are described in Section 5.3 and are displayed in

the Appendix. These tables give the critical values which are needed

to conduct the decision procedure developed in Chapter IV and they

also give a set of values from which the new approximate parameters can

be obtained, when it is approximated by a gamma distribution.

In order to use these tables, it is necessary to assume that

the loss functions are linear in the noncentrality parameter and zero

when the decision which is made is true. The latter restriction means
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the loss functions are actually regret functions. An approximate

method for finding the optimal sample size for each of the decision

procedures developed in Chapter IV is discussed in Section 5.4.

Chapter VI is concerned with the situation when the distribution

of the statistic of concern is only knownto have a noncentral chi-

square distribution asymptotically. It is shownthere the risk

functions obtained by using the decision procedure based on the exact

noncentral chi-square distribution converge to the minimumrisk func-

tions of the exact noncentral chi-square distribution.

Chapter VII contains a discussion of two examples of the

decision procedures developed in Chapter IV one which deals with an

exact noncentral chi-square distribution and the other is concerned

with a distribution which is asymptotically a noncentral chi-square

distribution. Chapter VIII contains a sun_naryand evaluation of the

investigation reported in this part of the dissertation.



IV. DECISIONPROCEDURES

4.1 Introduction

This chapter will be concerned with four types of decision

procedures dealing with one or more noncentrality parameters of non-

central chi-square, distributions, three of them will be concerned with

the magnitude of noncentrality parameters in relation to specified

tolerances and the fourth will be concerned with the relative magni-

tude of two noncentrality parameters.

Throughout this chapter, whenever more than one noncentral

chi-square random variable is considered, these random variables will

be assumed to be independent. When U is a noncentral chi-square random

variable whose distribution has noncentrality parameter k and S degrees

of freedom, g(UIX,S) will denote its probability density function.

4.2 The two-decision procedure

This section will deal with the development of a two-decision

procedure for the magnitude of the noncentrality parameter. This two-

decision procedure will be used to help develop a multiple decision

procedure for several noncentrality parameters by use of a method given

by Lehmann [1957].

The noncentrality parameter k given in Section 4 .i will be

assumed to be a continuous random variable with cumulative distribu-

function F(k) = J f(t)dt, where f(t) > O for t¢(O,_). The two-tion

0

decision procedure 82(U), where U is the noncentral chi-square random

61
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variable to be considered, will have the two decisions

do: k¢ k l0 < X < T and dl: kctkl T _< X _< _ , where T is a tolerance

assigned by the experimenter. The loss function corresponding to

52(U ) will be considered to be

: +

where

(4.2.1)

<O, k <T

(I) L0(X,T ) - LI(X,T ) : = O, k :

>0, k >T;

(II) L0(X,T) is a continuous non-decreasing function of k¢[0,=)

and LI(X,T) is a continuous non-increasing function of

(II]) The integral _ Li(k,T)g(UIk,S)f(k)dk exists for i = 0,1;
0

(IV) @o(U) + el(U) : 1 for all U;

(V) _0(U) has a countable number of discontinuities;

(VI) 90(U) equals one on the open interior of all sets U for

which 52(U ) = dO and zero otherwise.

Condition (VI) will not change the form of the optimal decision, since

at most a countable number of points would be excluded and these would

have measure zero. Conditions (IV), (V) and (VI) imply that 62(U ) = dO

when %o(U) : i and 62(U) = dI when 9I(U) = i, except on a set of measure

zero. The functions L0(X,T) and LI(X,T ) defined in conditions (I), (II)

and (III) are the losses incurred when decisions dO and dI are made,

respectively. The restrictions made on L0(X,T) and LI(X,T) are reason-

able, since it is desirable that L0(X,T ) be less than LI(X,T) when

k < T, that is, when dO is the correct decision, and greater than
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LI(K,_ ) when k > T, so that dI is the correct decision. Similarly, the

assumptions of monotonicity are reasonable since the difference between

LO(X,T ) and LI(X,T ) would tend to be less when the difference between

k and • is small than when that difference is large.

The average risk associated with $2(U) is given by

oo

0 0

!

The minimum average risk procedure 82(U ) is determined by the form of
! ! !

__ (U) -- (¢0(U),@I(U)) of __(U) = (@0(U),@I(U)) which minimizes R(62,S,T,f ).

Now using the definition of L($2(U ),k) it can be seen that

_o _ (4.2.2)

R(62' S"r' f) J'0 J'0= ¢0(U) [L0(X,'r) - LI(X,?) ]g(U IX,S) f(k)dUdk + constant

T

To find _ (U), it will be necessary to change the order of integration

in (4.2.2). This can be done by use of Tonelli's Theorem, Royden

[1963, p. 234], since the conditions (II), (V) and (VI) guarantee that

the function @o(U)[Lo(X,_ ) - LI(X,_)] will be measurable.

can be expressed as

R(52, S,_,f) =
0

where

[¢0 (U) H(U,_) ] P(U) dU + constant,

co

- [L0(X,_) - TI(X,_) J_(xl U)_U,H(U,T) ]'0

Thus (4.2.2)

(4.2.3)

(4.2._)

P(U) =]" g(UlX,S)f(X)dX
0

and

_(XIU) = g(U IX,S) f(X)/P(U). (4.2.5)
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Since P(U) _> 0 for all U, the form of @o(U) which minimizes (4.2.3) is

the form of 90(U) which minimizes

@0(U) H(U,T) , (4.2.6)

for each value of U. Now it is easily seen that the form of @o(U)

which minimizes (4.2.6) is given by:

I l, H(U,T) < 0
!

%(u) = t
I o, >o.
k

(4.2.7)

The assignment of the equality in (4.2.7) is arbitrary, since (4.2.6)

will be zero when H(U,T) = O, so the equality is assigned as to make

!

}o(U) : i only on open sets. This procedure says to make decision

dO if H(U,T) < 0 and dI if H(U,T) _ O.

There are three possible situations which may occur in (4.2.7):

(1) H(U,_) > 0 for all U, (2) H(U,_) < 0 for all U and (3) H(U,_)

changes sign at least once in the interval (0,=). Situation (i) is when

decision dI is always made, regardless of the value of the observed U

and situation (2) is the case where decision dO is always made, regard-

less of the value of the observed U. In these two situations no experi-

ments need be performed, since the decision of whether to accept dO or

dI can be made without further evidence. In the third situation, the

decision will depend on the value of U observed. So from now on, assume

that situation (3) prevails; that is, H(U,T) changes sign at least once

for U¢ (0,_) .

Now for the decision procedure to be practical, a value U0 = C

must exist such that H(U,T) < 0 for U < C and H(U,_) _ 0 for U _ C, so

that (4.2.7) can be expressed as
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{
II, U< C

0 (_) : _ (4.2.8)
!0, U > C,
<

where C is such that H(C,T) : O. The remainder of this section up to

the statement of Theorem 4.1 deals with the use of a paper by Karlin and

Rubin [1956] to show that Equation (4.2.8) holds and may be skipped

without loss of generality by the reader who is not interested in the

details of this demonstration.

Now to verify Equation (4.2.8), use can be made of a paper by

Karlin and Rnbin [1956] on decision procedures for distributions with

monotone likelihood ratios. The definition they give for a distribu-

tion to have a monotone likelihood ratio is as follows:

Definition: Let the cumulative distribution of a random varia-

ble x, when the true state of nature is described by a parameter _,

have the form

x

P(xI_) : ] p(tI_)dt, (4.2.9)

where if xI > x 2 and 61 > 62 , then the pdf satisfies

p(Xll%)p(x21 2) - P(Xll 2)p(x21 l)_>o. (4.2.1o)

Any distribution of the form (4.2.9) which satisfies (4.2.10) will be

said to have a monotone likelihood ratio.

The fact that the noncentral chi-square distribution has a

monotone likelihood ratio is known to others, as indicated by Karlin

[1956], but the author has not been able to locate a proof of this

result in print, so consider the proof of the following lemma:
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Lemma 4.1: The noncentral chi-square distribution has a mono-

tone likelihood ratio.

Proof: Consider the following form of g(UIX,S) , the pdf of the non-

central chi-square distribution:

z (4.2.lZ)
2I/2S j=O F(I/2S+j)j !22j "

Now let UI > U2 and k I > k2 and also let

and

-Z/2(Ul+U2+_I+X2) 1/2S- I/2S

J(j,k) = r(i/2S + j) F(I/2S + k) j!k! 22(j+k).

Note that J(j,k) = J(k,j).

becomes

Then putting p(xl_ ) = g(UIX,S),

g(uli_l,S)g(u2r_2,s)- g(ulI_2,s)g(u21Xl,S)

(4.s.is)

(4.s.lO)

I(UI,U2,XI, X2 ) co uIJU2 k IX (4.2.13)

The double sum in (4.2.13) can be broken into two parts along the

values of j = k. Then by renaming the subscripts and letting _ = k-j

for k > j and using the fact that J(j,k) = J(k,j), (4.2.13) can be

reduced to the following:

I(UI, U2,XI, X2) E E

j=O

(4.2.1Lr)

(UIU2X i x 2 ) J.....{o,f- >o.
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The strict inequality holds since UI > U 2 and _i > _2" Thus the non-

central chi-square distribution has a monotone likelihood ratio.

Since the noncentral chi-square distribution has a monotone
,4

likelihood ratio and satisfies (4.2.10) with a strict inequality and

since h(k,T) : [L0(X,T ) - LI(k,T)] satisfies the conditions of Lemma I

as well as Corollaries 1 and 2 of the paper by Karlin and Rubin [1956,

!

pp. 276,277], Equation (4.2.8) is the correct form of _0(U). Thus

the form of !(U) = (@o(U),_I(U))which minimizes (4.2.2) is given by:

!(i,0), < c
!

(u): !(o,i), u>c

where H(C,'r) = O.

(4.2.15)

The above results can now be summarized in the following

theorem:

Theorem 4.1: Let U be a random variable coming from a non-

central chi-square distribution with S degrees of freedom and noncen-

trality parameter _. Further assume that X is a continuous random

variable with cumulative distribution function F(X) : J of(t)dt, where

f(t) > 0 for t¢(0,_). Consider a two-decision procedure $2(U), whose

decisions are do: X¢[XI0 i X < T] and dl: X¢[XIT < X < _], where T

is a positive tolerance, and whose loss function L($2(U ),X) is defined

by (4.2.1) and satisfies conditions (I) through (IV). The form of

_2(U) which minimizes the average risk function R($2,S,T,f), defined by

(4.2.3), is given by:

Id°' 2(u): dl'
i

U<C

U>C

, (4.2.16)
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!

where H(C,T) : 0, or by 52(U ) : dO if H(U,T) < 0 for all U, or by
!

52(U ) = dI if H(U,_) _> 0 for all U. The equation H(U,T) is defined

by (_.2._).

Some values of a function of C have been tabulated for several

choices of S, T_ f and L(52(U ),X). These tables are described in

Section 5.9 and are displayed in the Appendix. Then the decision of

whether to choose decisions dO or dI can be made by comparing the

observed value of U to C.

4.3 Multiple decision procedures

In this section the development of two multiple decision pro-

cedures will be outlined. The first will be the combination of p two-

decision procedures arising from p independent noncentral chi-square

distributions. The second procedure will be a q-decision procedure based

on one noncentral chi-square distribution.

In the first case, a method of combining decision procedures

with additive losses will be used to combine p independent two-decision

procedures of the type given in Section 4.2. This combining method is

given by Lehmann [1957]. In this case p independent noncentral chi-

square random variables UI,...,Up, whose distributions have noncentrality

parameters kl,...,k p and degrees of freedom SI,...,Sp, respectively,

will be used. The noncentrality parameters XI,...,X p will be assumed

to be independent random variables with prior distributions

Fi(Xi) : ]o±fi(t)dt' fi(t) > 0 for t¢(O,_), i = l,...,p. The decision

procedure of concern in this first case will be 5p(Up),__ where

U = (UI,...,Up). The number of possible decisions is 2p. These--p
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decisions are given by the Cartesian product of the p sets of deci-

sions[d0,j,dl,j] , j = l,...,p, where do,j: k_p¢[k_pIO i Xj < Tj], dl, j:

X : IX_pIT < X < _] j = I, .,p, and X = (KI,...,Xp). The tolerances-p j -- j -- , •. _p

TI,...,T will be assigned by the experimenter.P

Under the assumption of additive loss functions and the assump-

tion that each of the individual loss functions for the decision proce-

dures 52,j (Up) with decisiaas do, j and dl,j obeys conditions (I) through

(VI) given in Section 4.2, with U replaced by Up, the form of 8p(Up)

which will minimize the average risk is given by

_ ' ,5 (__p?= (52,1(__p),...,52,p(__p)), (_.3.1)

! !

where 52,j(Up) = 52,j(U j) as defined by (4.2.16) with the proper sub-

script added. The next portion of this section up to the statement of

Theorem 4.2 is just a verification of (4.3.1) and may be omitted with-

out loss of generality by the reader who is not interested in the

details of this demonstration.

Now to develop (4.3.1), let the loss incurred in making decision

dij,j be Lij,j(xj,Tj), i.0 = 0,i, j = l,...,p. Then under the assump-

tion of additive losses, the loss function for 5p(U)_ is

p i p

.,ip(-L)j:l i.=O ll' "" s:l is' s s'<
J

p i

Z E

j=l i.=O
J

¢._j,j(_Up)L j" ,j(kj,_j)

P
: Z

j=l
T.j(52,j(__p),_j), (L.3.2)
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where

p 1

(%) = z z _ .,ip(%) ,%ij,j -- s=l i :0 il''"

s_j s

ij : 0,i and _2,j(Up)-- is the two-decision procedure with decisions

do, j and dl, j and loss function Lj(62,j(Up),Xj). In the above equation

take

and

Ii, . ..,ip

{
'l,

<o
{_pf6p(_p) = (dil,1,..-,dip,p)
otherwise

p i

z _ _" .i (%) = i
j=l i.:O Ii''" ' p-

J

(4.3.3)

for all U . Thus (4.3.3) gives that
-p

_o,j(Up)+ _,j(__p): z

for all _p, j : l,...,p.

Then the average risk function

by

associated with 5p(_p) is given

co co

)jP P p0 UP)'!P Z:Ig(UjlXj'Sj)fj(Xj)j=I [ dU.jj:iZdkj

co co

: j:1'oZ...o T'J(_2'J(-_P)'_J)JrJ l_j,sj)fj(_j)j:iI_d_jj:irl_ j

P

: _ R.(__.,ip,_j,fp) (4.3.4)
j=l J _'J

Sp T and f are defined as are U and k . Now assumingwhere , -P --P --P -P

Lj(_2,j(_p),kj) obeys conditions (I) through (VI) of Section 4.2 for

U instead of U,j = l,...,p, then the form of 6p(_p) which minimizes
--p
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R(Sp,S_p_fp) can be determined by use of the paper by Lehmann [1957] on

multiple decision problems to be

(%)= %)), (4.3.7)

!

where 52,j(Up) minimizes Rj(52,j,Sp,Tj,_fp) , j : l,...,p. It is easily

seen by a method similar to the one used in Section 4.2 that

, , d0,j, _ (_Up) : ¢ : 1

• [dl,j'  l,j( j) 1,
where

! T

%0,j(Uj) + _l,j(%) : i for all U. andJ

{
, 11, U. < C.

%0,j(Uj_,, : ,J J J

I0, U. >Cj- j'

and where C. is defined as C is in Section 4.2.
O

5' (Up) is given byThus the form of P

(4.3.7)

{(dil,l'"'dip,p)' P _ij j(uj) }5 (Up) : • for [I : 1 •
j=l '

(4.3.8)

This result can now be summarized in the following theorem:

Theorem 4.2: Let UI, ...,% be p independent noncentral chi-

square random variables, whose distributions have noncentrality para-

meters X1, ...,Xp and degrees of freedom S1,...,Sp, respectively. Also

assume that hi''" .,Xp are independent random variables with respective
k.

prior distributions Fj(Xj) : JO G fj(t)dt, j : l,...,p, such that

fj(t) > 0 for t¢(O,=), j : l,...,p. Let the decision procedure 5p(UD)__

have the 2p possible decisions (dil, 1,...,d i ,p), ij= O, 1, j=l,...,p,
P



72

where ,0< < <°}Then
the form of 5p(Up) which minimizes the average risk R(Sp,Sp,T_p,__fp)

associated with it is given by:

P !

5p(Up) = {(dil,l_...,dip ,p), when j=IH%ij,j(UpP)= i},

T

where @ij,j(Up), j = l,...,p, is defined by (4.3.6) and (4.3.7).

Now consider the second case, where a q-decision procedure is to

be considered on one noncentral chi-square distribution. This proce-

dure will decide in which of several mutually exclusive intervals the

magnitude of the noncentrality parameter lies. The decision procedure

will be based on critical values like those used in Theorem 4.1.

To consider the form of the decision procedure let U be the

noncentral chi-square random variable of concern, whose distribution

has noncentrality parameter k and degrees of freedom S. Assume also

that k is a continuous random variable with prior distribution function

k

F(k) =_ f(t)dt, where f(t) > 0 for t¢(O,_).
0

Let the q-decision prodecure of concern be 5_(U), where it has

* {j* *}the following possible decisions: dj: k¢ k Tj < k < Tj+ I , j = O, ...,

_ : + co and T j_ < Tj+I, j : O, • q - i Let theq i, where TO: O, Tq .. , •

loss incurred in making decision d. be
J

j q-i

Lj(_,Zq+l): <Ll(X,q)+ Z LO(X,_i),
i-± i:j +i

j : 0,..., q-l, where T
--q+l

( * *) and
: TO_ ..._Tq

0 q-i

E LI(X,T i) : E Lo(k,Ti)=O.
i=l i=q



w

73

Then the loss function associated with 6*(U) will be
q

q-i

T.(6_(U) ,k) -- Z
j=0

_j(u)Tj(_,T_q+l),

where

_j(u)=
0, otherwise

q-i

j = O,..., q - i, such that £ _j(U) = i for all U@(O,co).
j=O

risk function associated with 6 (U) isaverage given by
q- -

oo co

* * = T(_(U),_)g(Ul_,S)f(_)

(4.3.9)

So the

dUa_ (4.3.:I_0)

jr ( z _i(U>)To(Xj,_j>+(q_1 _i(U>>I_zL(_,Tj>g(_Ix,s)f(X)dU_.
= i=O l=j

Now assume that

. j-i

90 j(U)= E _i(U),
' i=O

. q-I

_l,j(U) = Z _i(U),
i:j

(4.3.ll)

and LO(X,T_) and LI(X,Tj) obey conditions (I) through (VI) of Section

4._ j = 1,...,q. These conditions allow the interchange of the order

of integration in (4.3.10) and force LO(X,Tj) and LI(X,Tj) , j 1,...,q-l,

to obey the assumptions of Theorem 3 of Karlin and Rubin [1956, p. 281].

Thus, since the noncentral chi-square distribution has a monotone likeli-

hood ratio and F(X) is a continuous prior distribution, all the assump-

tions of Theorem 3 of Karlin and Rubin are satisfied. This theorem
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then gives the form of 5 (U) which minimizes (4.3.10) to be
q

5q(U) = [dj, for Cj _< U < Cj+I}, (4.3.12)

CO : =+_,where 0, Cq

CO

0

v,

and Cj _< Cj+I, j = O,...,q - i. For j = l,...,q - i, these C.j values

are the same C values which were obtained in Section 4.2, where T is

replaced by T..
J

This result can now be summarized in the following theorem:

Theorem 4.3: Let U be a noncentral chi-square random variable

whose distribution has noncentrality parameter k and degrees of freedom

S. Assume further that k is a continuous random variable with prior

k

distribution F(X) = jof(t)dt, such that f(t) > 0 for t¢(0,_). Let the

q*( * . .decision procedure $ U) have the q decisions d.: X¢[XIT. < k < T ],
3 j -- j+l

= + _ and T < T , j = 0 q - i Also let the
where TO = 0, Tq j j+l '''" "

loss function associated with 5_(U) be given by

q-iq-i j . .

= (U){ Z T,I(X,Ti) + Z Z,o(X,Ti)},
j=O J i=l i=j+l

j-i q-i

where _j(U) is defined by (4.3.9) and where 7 @i(U), E _ (U)
i=O i=j i '

LO(X,Tj) and LI(K,Tj) obey conditions (I) through (VI) of Section 4.2,

.i = i .... , a - i. Then the form of S*(TT_ wh4_ min_,izes +_e average

.K_I .t

risk R(Sq, S, Tq+l,* f) is given by 5q (U), where 5q (U) is defined

by (4.3.12) •
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_T

The critical C values for _ (U) are obtained from the same
q

! T

tables as those used for _2(U) and _p(Up).

E.4 A procedure for comparing the magnitude of noncentrality parameters

In Sections 4.2 and 4.3, the decision procedures developed were

concerned with the location of the noncentrality parameters in the

parameter spaces, but none of these methods directly compared the magni-

tudes of the noncentrality parameters. So in this section, a method

of comparing the magnitudes of noncentrality parameters will be pre-

sented. This method will give a decision procedure which will make

decisions as to whether two noncentrality parameters are within a cer-

tain tolerance of each other and if not, in what direction the difference

lies. To obtain this three-decision procedure, two two-decision proce-

dures will be developed and then they will be combined through the use

of the paper by Lehmann E1957] on multiple decision procedures. Under

the assumption of linear additive loss functions, the resulting minimum

risk decision procedure will be based on the comparison of the posterior

expectations of the noncentrality parameters. That is, if the posterior

expected values of the two noncentrality parameters are within a certain

tolerance of each other, it will be decided that the two noncentrality

parameters are within the same tolerance, but if the two posterior

expected values are not within the tolerance, the two noncentrality

parameters will be said to differ in the same direction as the posterior

expected values differ.

Now to develop the decision procedure, let UI and U2 be the two

independent noncentral chi-square random variables of interest, whose
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distributions have noncentrality parameters kI and k2 and degrees of

freedom SI and $2, respectively, where kl and k2 are continuous inde-

rki

pendent random variables with prior distributions Fi(ki) = J0 fi (t)dt'

f.(t) > 0 for te(0,_) i = 1,2. Let the two two-decision procedures of
1

concern be _i(U2), i = 1,2, where _i(_2 ) has decisions

d0,i:!2_[!21_i<xj + _

and (4.4 .i)

_!_: _2¢[_21ki _ kj + T]

such that i = i, j : 2 or i = 2, j = i, i = 1,2. The tolerance • will

be assigned by the experimenter. Let the loss function associated

with _i(U2 ) be given by

zi¢_i(__2),!2) =_o,i(__2)go,i(k2,_)+ [_,i(__2)z_,i(i2,_),(4.4.2)

where

%,i(-_2) =

l, {_21[i(_ 2) = _o,i I

O, Qtherwise
<

, (4.4.3)

such that _%,i(U2) + Tl,i(U2) : i for all U2, and where _%,i(U2) = i

only on open sets. Also let

and

I°
T.o,i(i2,_) = .- _)

i (_i- _j '

k. <X. +m
l j

k. >X. +T
l-- j

/.

_ fla.- X. +'F), X. <_. +_F_l,i(!2,T) = J • _ j
0 k. >k. +T ,

_ i-- J

(4.4.4)

-such that i = i, j = 2 or i = 2, j = i, i = 1,2, so that LO, i ,_) is
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the loss incurred when decision _O,i is made and _l,i(__2,T) is the

loss incurred when decision _l,i is made. Note that _i(_i(U2),X_2 )

satisfies conditions (I) through (VI) of Section 4.2 when _o,i(U2) = i

only on open sets, i = 1,2, for U 2 and X_2 replacing U and X, respectively.

The average risk function associated with _i(U2) is given by:

(4.4._)

= _ dU. H dki,(_U2),!2) n g(Uilki, Si)q(Xi)i= 1 zi=1Ri('gi'-S2'T'f2) 0 0 0 i=1

i = 1,2. Since Zi(_i(U2),!2) satisfies conditions (I) through (VI) of

Section 4.2, the order of integration in (4.4.5) can be interchanged to

give

=,[o,I"o

CO CO

[J .[
0 0

2 2 2 2

' i- i i=l i:l l

+ constant, (4.4.6)

i : 1,2, where _i(XilUi) and Pi(Ui), i = 1,2, are defined as in Section

4.2. Then in a manner similar to the method used in Section 4.2, the

form of [O,i(U2) which minimizes (4.4.6) can be found to be

-' I l, I-{i(_u2,,)< 0

_°'i(£2) -- ! o, %(£2,,) > o,
<

(4.4.7)

where
t



78

2

- _1,i(_2,'_)] _ _i(_,ilui) _ d_,.
i:l i=l z

: s(xilu i) - s(_,jluj) - _

by (4.4.4), where i = i, j = 2 or i = 2, j = i, i = 1,2.

Now consider the decision procedure _(U2), where the set of

possible decisions for _(U2) is the Cartesian product of the sets of

possible decisions of _i(U2), i = 1,2. That is, _(U2) will have the

<

: k_2¢[k_21kI + _ < k2} , (_l,l,d0,2): k_2e[k_21k2 + T < kI] and (_i,i,_1,2)

: k_2 belongs to the null set, where the loss for making the decision

(ds,l,dr,2) is the sum of the respective losses for ds,l and dr,2,

r,s = 0,i. The the unique form of _(U2) which minimizes itscorre-

sponding average risk function, under the assumption of additive losses,

is given by

! ! !

_'(U2) = (_'l(U2), _'2(U2)) (4.4.8)

by the use of the paper by lehmann [1957] on multiple decision proce-

!

dures, if the inconsistent decision _ (U2) = (dl,l, dl,2) can not be
!

made. But _ (U2) = (d!,l, dl,2) on the set of _2 values given by

{ 21 (Xmlu1) _ s(x21u2) + T}G{u21s(X21U2)_ S(XmlUl) + _} which is a

null set, so the decision _ (U2) = (_l,l, dl,2) can not be made. Thus
!

(U2) is the minimum risk decision procedure. This result can now be

summarized in the following theorem:

Theorem 4.4: let UI and U2 be independent noncentral chi-

square random variables, whose distributions have noncentrality
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parameters kI and k 2 and degrees of freedom SI and $2, respectively.

Also let kl and k2 be independent random variables with prior distribu-

tion functions Fi(ki) = _01 fi(t)dt, fi(t) > 0 for t¢(0,_), i = 1,2,

respectively. Let the two two-decisionprocedures _i(U2), i = 1,2,

have decisions (_0,i,_l,i), i = 1,2, as defined by (4.4.1) and let

the loss function associated with _i(U2) be given by Zi(_i(U2),k_2),

as defined by (4.4.2_ where Zi(_i(U2),k_2 ) satisfies conditions (I)

through (VI) of Section 4.2, i 1,2. The form of _i(U2), i = 1,2,

which minimizes its respective average risk function is given by

6i(U2) , i = 1,2, respectively, where 6i(U2) is defined by @.4.7). Let

_(U2) be the decision procedure whose set of possible decisions is

given by the Cartesian product of the sets of possible decisions of

_i(U2), i = 1,2. Then under the assumption of additive losses, the

form of _(U2) which minimizes its respective average risk function is
! T !

given by _ (U2) = (_l(U2), _2(U2)).
!

Since _ (U2) involves comparing the posterior expected values

of noncentrality parameters, tables are given in the Appendix from

which these expected values can be obtained for several choices of S

and f, where F(X) is taken to be the gamma distribution. These tables

are discussed in Section 5.2 of Chapter V.

The loss functions used in this section are not very general

due to the great difficulty in computing which would arise if a more

general loss function were used.



V. METHODSTOAID IN TH_USEOFTHEDECISIONPROCEDURES

5.1 Introduction

This chapter will present ways to aid the experimenter in the

use of the decision procedures developed in Chapter IV. In all the

aids to be presented, the prior distribution is assumed to be the gamma

distribution

_tP_le_t/20

: L-7 7 )
0

p, e > O. The points that will be covered are: (i) the choice of the

parameters p and e of the prior distribution_ (2) the use of the various

tables given in the Appendix; and (3) the choice of the sample size.

5.2 The prior and approximate posterior distribution

As has been indicated in Section 4.1, any noncentrality param-

eter on which a decision is to be made is assumed to be a continuous

random variable varying between zero and plus infinity. The random

variable will be considered to have a gamma distribution of the form

given in (5.1.1) initially. This form has been chosen for the prior

distribution because it allows the noncentrality parameter to range

from zero to plus infinity, it is a flexible unimodal distribution and

it combines well with the noncentral ehi-square distribution.

Once the gamma distribution has been decided on for the general

form of the prior distribution of the noncentrality parameter, a

8O
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procedure must be considered for selecting the values of the parameters

of the distribution, that is, the values of p and @, for the first

experiment. If there is sufficient information available on the

behavior of the noncentrality parameter, the meanand variance of this

information can be estimated. Then the estimated meanand variance

can be equated to the meanp(2e) and the variance p(2e) 2, respectively,

of the gammadistribution. From these equations estimates of p and e

can be computed.

Three other ways are proposed here for the selection of the

initial prior distribution if sufficient information is not available

to specify the meanand variance of the initial prior distribution.

(i) The first method is to base the prior distribution on the sort of

information which would be likely to be available if an experiment had

been performed, namely, an observed value of the chi-square random

variable that is associated with the noncentrality parameter. Assume

this chi-square randomvariable has S degrees of freedom. This hypo-

thetical observed value can be thought of as an estimate of N times

the noncentrality parameter, where N is the size of the sample from

which the hypothetical observed value would have been computed. Also

this hypothetical observed value would have come from a distribution

which has a meanof at least S and a variance of at least 2S with

equality holding in both instances whenthe noncentrality parameter is

zero. So to approximate the parameters p and e of the initial gamma

prior distribution of the noncentrality parameter, the experimenter

can set the meanand variance of N times the noncentrality parameter

equal to S and 2S, respectively, that is, Np(2@)= S and _p(2e) 2 = 2S,
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and solve for p and 0. This method gives p = I/2S and 0 = I/N. The

experimenter could take N small, say i, if he is fairly certain that

X > 0 and could take N larger if he thought it likely that X - 0. If

the experimenter feels that he cannot make the assumption that the

approximate prior distribution is of the form given above, that is,

that X is likely to be small, then two other possible courses of action

are as follows: (2) The experimenter can assign a uniform weight

function for the first experiment, which will give equal weight to all

possible values of the noncentrality parameter X; (3) In the case when

the experimenter is choosing between decisions of the form 0 < X < T

and _ < X < _, he can assign a prior distribution which will have its

median at _ and thus assign equal weight to both decisions. In (2),

a uniform weight function is the same as a gamma weight function

f*(X) = xP-le -X/2@, with p = i and 0 = +_. When the decisions are of

the form 0 < X < T and _ < X < _, this weight function will assign

unequal weights to these two decisions, even though it seems to be

impartial. So it may be more appropriate in this case to follow (3)

and use a g_nma prior distribution which has its median at T, for

example, a gamma prior distribution defined by p = i and @ = T/(21n2).

Once the prior distribution of the noncentrality parameter has

been selected and the actual chi-square value has been observed, the

problem of. computing or approximating the posterior distribution must

be faced. The _osterior distr_11+_on NOU ]r] ]_¢_i]]_r _I_.T_yQ _r_

simple form and be easily computed, but in this case that is not true.

The actual form of the pdf for the posterior distribution is very

cumbersome even after just one experiment has been performed and
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becomes even more so after each new experiment is performed. For

example, if the random variable U under consideration comes from a

noncentral chi-square distribution with S degrees of freedom and non-

centrality parameter _, then the posterior pdf for K after a value of

U has been observed, when the prior distribution has pdf

f(X) = Xp-1 e -x/2e / (r(p) (2_) p) (5.2.1)

is as follows:

e__./2 _ (u_)j _p-i e-L/2e

j--O r(i/2S+j)j!2 2j ?(p) (2@) p

_ P- e- /203d
o j--o

(5._.2)

So far this function has defied significant simplication.

Thus if these decision procedures are to be used in successive experi-

ments, some approximation must be applied to _(_IU) before it can be

used as the prior distribution for the next experiment. For convenience

this approximation should be of the same form as the previous prior

distribution, so that only one set of critical values need be computed.

It must be simple enough so that the experimenter can determine the

parameter of his new approximate prior just by doing a few calculations

and/or consulting a table. This can be done when the previous prior

was a gamma by approximating _(XIu) by the gamma distribution of the

form

0
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where the parameters q and _ can be found by setting the mean q(2_) and

the variance q(2_) 2 of the gamma equal to the mean and variance, respec-

tively, of the posterior distribution and then solving for q and q0.

This will be an approximation the experimenter can handle, since the

mean and the variance of the posterior can be determined from the tables

given in the Appendix by a few simple operations. Those operations will

be given in Section 5.3. While this methodmay not be the best possible

approximation, it is easy to apply and any other approximation would be

difficult for the experimenter to use.

To give an indication of the appropriateness of this approxi-

mation, the actual posterior density w(XIU ) and the approximate posterior

density f(X) were computed for values of X from .2 in steps of .2 until

_(XIU ) and f(X) were less than 0.0000000001. Then X = _ w(XIU_

was computed in each case. The value of X was computed for the follow-

ing combinations of parameter values: (i) All combinations of the

following parameters_ one through nine in steps of two for S, one

through five for p, five through twenty-five for U, and one-half

through two in steps of one-half for @ and (2) For S equal to thirty-

five, all combinations of five through nine for p, ten through forty

in steps of ten for U and one-half through two in steps of one-half

for @. For each set of parameter values considered the value of X

was found to be less than 0.125.

5.3 The use of the tables given in the Appendix

The tables which are given in the Appendix were calculated on

the IBM 709 and the CDC 6400 computers at the Florida State University.

These tables give values which are necessary to conduct the decision
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procedures given in Chapter IV under the assumption that the non-

centrality parameter has a gamma prior distribution. Tables are also

given to determine the parameters of the gamma distribution used to

approximate the posterior distribution of the noncentrality parameter.

The tables are divided into two sets: (i) Tables i.i.i through

i. 5.5 give a function of the critical value of the noncentral chi-square

random variable which is needed to conduct the decision procedures given

in Sections 4.2 and 4.3_ (2) Tables 2.1 through 2.5 give values from

which the critical expected values needed for the decision procedures

given in Section 4.4 can be obtained and they also give values from

which the parameters of the approximate gamma posterior distribution can

be calculated.

For the decision procedures given in Sections 4.2 and 4.3,

tables of C values are needed, where C is that value of U which satis-

fies (4.2.4), that is, for which

oo

P

:J - Ll( ,T)7 : O. (5.3l)
0

Tables i.i.I through 1.5.5 give a function of C values to two decimal

places for the following type of loss function:

0 , X<Tr,O(X,_) =

ko(k-q') , k > q-

0 , X>T ,

(5.3.2)
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ko, kI > 0, which is a special case of the loss function defined in

Conditions (I), (II) and (III) of Section 4.2. The tables are given

for only one type of loss function due to the rather long time necessary

to determine each C. As was indicated in Section 5.2 cnlya gamma distri-

bution or a gamma weight function with parameters p and @ are used, so

that the probability density n(XIU ) defined by (4.2.5) is given by

OO

_(Xlu)= e-_IE2el(°+l)] _ [-uJ_P+J-kl ] _-ul/2Se-ll2U-_

(5.3.3)

where S is the degrees of freedom of U and p(U) is such that

OO

j
0

Then putting (5.3.2) and (5.3.3) into (5.5.1), making the transformation

2e

y = k/[_-_-[], performing the integration and solving for the ratio

R : (kl-kO)/ko,

(5.3.1) is seen to be equivalent to

R = H(C*,_*,p,S) =

OO

Z [C*j (F(p+j+l)-_f (p+j))/(F (I/2S+j)j! )]
j--o

*(p+l)_ (C'T*) j oo (_ *)i

j=OE(I/2S+j)j ! i=O i! (p+i+j)(p+i+j+l)

(5.3.4)
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c : ec/(2(e+l))
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(5.3.5)

T :

So the tables i.I.i through 1.5.5 are given in terms of C* values, for

selected values of S, p, T* and R. The degrees of freedom S takes on

the values one through five while p takes on values which depend on

I/2S, decreasing from I/2S in steps of 0.2 and p also takes on five

values greater than I/2S, increasing from I/2S in steps of 0.2. The

tolerance T takes on the five integer values one through five. The

ratio R i indicates that the experimenter feels that a wrong decision in

the region T < X < _ is iO+lOi times as bad as a wrong decision in the
m

region 0 _ X < T. These choices of the R's can be compared with the

ratio of the Type II error (5) to the Type I error (6) minus one in

the conventional hypothesis testing situation. That is, if the experi-

menter wishes to have _ one-tenth of _ or _ five-hundredths of 6, he

would choose R to be 9 or 19, respectively.

The appropriate C* values were obtained by using the Newton-

Raphson interative approach on (5.3.4) for the given values of S, p

and R. If a zero entry appears in Tables i.i.i through 1.5.5, this

means that (5.3.1) does not have a zero for C* > 0 and that the decision

> T is always taken for the particular choice of S, p and R which

correspond to the zero entry.

To find an accurate approximation to the infinite sums involved,

two well known lemmas on infinite series were used from Olmsted [1959].
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Consider first the two single infinite sums given in (5.3.4). The

method of approximation used in these two cases is given by the

following lemma :

Lemma 5.1: (Theorem I, Section 720, Olmsted [1959, P. 235].)

130

If a.j > O, Sn = ao+...+an, S = j=OZ aj, rj = _a. , rj_ and lim r.=p<l,
j J _J

then for any n for which r < 1,
n

Sn + an+#(l-p) _< S _< Sn + an+#(l - rn+l).
(5.3.6)

Let

*j
s: z [c T(_-l+,_)_,

j=O =F(m/2s+j)j !J

(5.3.7)

C*j F(p+l+j) (5-3 8)
a, _ ,

j r (I/2S+j) j!

and

r = C <ml+j)/<<I/_S+j#<3+l_#.
J

(5.3.9)

Now r_j > r_+ij for all j, so that r._ andJ

can be applied. Let

lilt. :0.
j_J

Thus the lemma

n

s : z a. (5.3.10)
n j:O J

_.T_=_= _ _ defined in (5.3 _............ _j. In the computations the number of
J

terms n in the partial sum Sn was taken large enough so that both an+ I

and an+I/(l-rn+l) were less than e = 0.0OO0001 for rn+ I < i. Thus Sn
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is within _ of S as given by (5.3.7). A similar procedure was used for

the second single sum in (5.3.4).

Now for the double sum in (5.5.4), the Lemma 4.1, plus the

following well known lemma were used:

Lemma 5.2: (Theorem given Section 715, Olmsted [1959, P. 225].)

OO

An alternating series Z (-i i
i=0 ) Ci' whose terms satisfy the two conditions

(i) Cn+ I < Cn for every n

(ii) C _ 0 as n _
n

converges. If S and S denote the sum and the partial sum of the first
n

n terms, respectively, of the series, then

1Sn - SI < Cn+ I"

So in the double sum in (5.3.4) consider first the alternating

internal sums which are all of the form

s : E (_*)i
J i=0 i!(p+i+j)(p+i+j+l) " (5.5.11)

Then let

C.. : (T*)i/(i! (p+i+j)(p+i+j+l))
IJ

96

Now for i > T , Ci+lj < Cij. Also,

lim C.. : O.
i -_oo ij
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96

Thus for that portion of (5.3.11) for which i > T , the alternating

series lemma can be applied. So if

then

n i (5.3.12)
.: s (-i) cij,Snj i=O

ISj - Snjl < Cn+lj

for n > • . In the calculation of partial sums of the form (5.5.12)

96

M > • was taken large enough, so that

Cn+lj < (¢)/(4k)
(5.313)

96 96

(c • )j
for n > M, where k > T *(p+I) Z (1/2S+j)ji and ¢ = O.O000001. Thej=o r
reason for taking this kind of tolerance will become apparent later.

Now let

N (C*T96) j
WNM = ( *)p+l Z F(I/2S+j)j, SMj'

j=O

WN (T.)p+ 1 N (C%*) J= Z Sj,j=o r(i/2s+j)j!

(5.3.14)

and

W

• 96 96. j® (c-f) s.
= T96(p+1) z _r1/o_': _'_,

j=O _ _i _-' _ _J •

(5.3.15)

96

For n > M> T satisfying (5.3.13),

w_ - _/4 2 w_ 2 w_ + _/4. (5.3.16)
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Now consider

r o =

J

F(I/2S+j+I) (j+l)!/ F(I/2S+j) j!

(C'T*) Sj+I

= (I/2S+j) (j+l) S.
J

which is such that

lim r. = 0

j_ J

since Sj+I/S j approaches one.

dominated by the term

Also as j becomes large, r. will be
J

(c_ -*) / ((1/2S+j)(j+l))

Thus for large j, r. is decreasing. So by Lemma 5.1 given above
J

_*(p+l)(c%*)N+l
WN +

r(1/2s+ml)(_+l)!
SN+l<--W<_WN +

*(p+l (C* *)N+I SN+I

F(I/2S+N+I)(N+I)!(I-rN+ I)

(5.3.17)

for N large enough so that r. is decreasing for j > N and so that
j

rN+ I < i. Then also by (5.3.13), (5.3.16) and (5.9.17),



92

%+l,M - _/4! %+1 i W ! % +

(T*)_+1 (c'T*)_+1 s_+1

F(I/2S+N+I)(N+I )! (l-rN+ I )

_*(ml)(c%*)ml(s +eJ4)
M,N+l " (5.3.18)

A

i Wml,M + e/4+ F(1/2S+ml)(_+l)!(1-r_+l)

where

A (c%*) (sM,m2+ _/4)

i > r_+1 : (i/2S+ml)(N+2) (SM,N+z- _/_)->r_+l' (5.3.19)

for M > • satisfying (5.3.16). In the computations, N was taken such

that

•*(ml)(c%*)_+l (SM,ml + ,/_)

r(1/2S+ml)(ml)!(1-_ml)

so the double sum in (5.3.4) was computed within ¢ of its value.

The methods indicated above for calculating the sums which

make up R, defined in (5.3.4),allow R to be computed correctly to more

than four decimal places, that is, the values of C which are tabulated,

are values which force the ratio (5.3.4) to be within four decimal

places of the specified R value.

To find C values for p, T and R values not listed in the

tables, but which are within the range of the tables, a five point

Lagrange interpolation formula for equal intervals, as given by Kunz

[1957, P. 91], can be used on each p, T and R to give two decimal

place accuracy.
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For the decision procedures given in Section 3.4, tables must

be provided from which the function E(klU,p,0,S ) can be obtained with

a minimumof effort, where

_.(_,[u,p,o,s) =

oo _- 2e _o

]. z dk

0 - j=O F(I/2S+j)j !

2e

F e-k/[_]_

0

oo (u/_)J x_J-11 d_,
j=O r (I/2S+j)j !

(5.3.2o)

The tables which contain the necessary values are Tables 2.1 through

2.5. To see what is tabled and how to use it, consider (5.3.20) after

the integration has been carried out, so that

_O,lu,p,e,s) = [_'t'Y]2e

O0

z (u*)j r(_j+l)
j=O r (I/2S+j)j !

OO

z (u_)j F(_j)
j=O F(I/2S+j)j!

(5.3.2l)

2e * *
= [ygy] [p + u w(p,u ,s)] (5.3.22)

where
CO

z (u_-)j- r(_,j+l)
j=O r (I/2S+j+I) j !

w(p,u*,s) = , (5.3.2_)
(X)

Z (U*) j r (p+j)

j=O r (I/2S+j+I)j !

and U is defined like C in (5.3.5). Tables 2.1 through 2.5 contain

values of W(p,U ,S) for selected values of S, p and U . The values of
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S and p which were used in the first set of tables were also used in

this set, but p will also be allowed to take on five additional values.

The reason for having these extra values will becomeapparent later.

The values of U which are used are O.5 through 15.0 in steps of O.5

and 20.0 through 50.0 in steps of 5.0 along with 75.0 and iOO.O.

The infinite sumsin (5.3.23) were approximated in exactly the

samemanneras the single infinite sumswere approximated in (5.3.4),

with the sametolerance (0.OO00001). This method will give an approxi-

mation of W(p,U*,S) which is accurate to more than two decimal places

but the table is given to only two decimal places. To arrive at values

of p and U which are not tabled, but are within the range of the table,

linear interpolation can be used with two decimal place accuracy result-

ing. If a value of U is observed which is greater than iO0.O, use the

value of W(p,IO0,S) for U near i00.0 and use W(p,U*,S) = i. for U

muchgreater than iOO.O.

In summary,to use the table, first observe the values of p, a,

U and S. Then compute [2e/(@+l)] and U and find the value of W(p,U ,S),

interpolating if necessary, corresponding to p, U and S in the tables.

Then compute

= [p + u W(p,U (5.3.24)

which gives the desired result. For a quick approximation to (5.3.24),

one can compute

"=[2e/(e+l)][p+ u ]
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This approximation will be good if p is close to S/2 and/or if U is

greater than 25.

To determine the parameters of the approximate gamma posterior

distribution discussed in Section 5.2, the following two equations must

be solved:

and

2q_ = E(_lu,p,e,s)

q(2flo) 2 = E(X21U,m,e,s) - [E(XlU,p,e,S)] 2

The solutions are

and

2_ = E(X21u,_,e,S) / E(Xlu, p,e,s) - E0,1U,p,e,S)

q = E(XlU,p,e,S)/(2_).

Now the equation for 2_ can be written as follows:

2qo = (28/(8+1))

Z (U*) j F(p+j+2)

j=O F (S/2+j)j!

O(9

z (u*)j r(_j+l)
j=0 F (S/2+j)j !

(u*)j r(_j+l) _ (u*)j r(p+j)
r t_ . .j=0 (°/2+3)J' j=0 F (S/2+j)j,

= [2e/(e+l)] [1 + u [w(_z,u ,s) - w(p,u ,s)[}]

by (5.3.23). From (5.3.22)

q = [2e/(e+l)] [p + u w(p,u ,s)] / (2_), (5.3.25)
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where W(p,U*,S) is given in Table 2.1 through 2.5. Thus separate

tables need not be prepared for q and _ and to find them, it is neces-

sary only to look up two values in Tables 2.1 through 2.5, one under p

and one under p+l.

In many cases the noncentrality parameter is of the form NX

instead of just X. If this is the case, the procedure for using the

tables would be the same, but (28/(8+1)) would be changed to (28/(N8+I)),

(8U/(28+i)) would be changed to (NSU/(2(Ne+I))) and ((8+i)_/(28)) would

be changed to ((8+N)T/(2N8)). The decisions of interest in this case

would remain as decisions on X and would not change to decisions on NK.

Also in some cases the noncentrality parameter would not vary

between zero and infinity, but would be bounded above by some constant.

This situation can be approximately handled by considering y = NX

instead of X. In this case, the procedure for using the tables would

be the same, except that (28/(8+1)) would be changed to (2N8/(8+N)),

(SU/(2 (8+1)) ) would be changed to (SU/(2 (8+N))) and ((@+I)T/(28) ) would

be changed to ((8+N)_/(28)). The decisions of interest in this case

would be approximately equivalent to decisions on the magnitude of X.

In all the tables given in the Appendix only two decimal places

are given, because the author feels that in most applications at most

two decimal places would be retained.

5.4 An approximate method for computing sample size

This section is concerned with an approximate method for

determining the optimum sample size, that is, the sample size which

will approximately minimize a cost function. In this discussion, the
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cost per observation and the initial set up cost are assumed to be

standardized, so that they are in the same units as the risk function.

Let the parameters of the gamma prior distribution on the

noncentrality parameter h be p and _ and let the parameters of the

approximate gamma posterior distribution which will be observed after

the experiment is performed be q and _. Also let the same size of

this experiment be M.

Now in Part !, to show that minus two times the natural loga-

rithm of the likelihood ratio statistic converge in distribution to a

noncentral chi-square random variable U, an assumption of local alter-

natives had to be made. This assumption causes the noncentrality

parameter MYM to converge to constant h, as M _ + _.

In Chapter VI, it is shown that when the distribution of concern

is only an asymptotic noncentral chi-square distribution and when the

decision procedures developed in Chapter IIl are used, the average risk

function converges to the minimum average risk function for the exact

noncentral chi-square distribution. So to determine the approximate

sample size in the asymptotic case, it is appropriate to use the prop-

erties of the exact case.

For an approximate method for finding the sample size in the

asymptotic case, assume that YM = h. Then the noncentrality parameter

for the approximate noncentral chi-square distribution is Mh. This

technique of setting YM = h to approximate the sample size has also

been indicated by other authors, for example, Kendall and Stuart [1961,

p. 436], Cochran [1954, p. 419] and Patnaik [1949, p. 216]. If the

random variable U has an exact noncentral chi-square distribution,

the noncentralit¥ will either be in the form My or a function of M.
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In most cases when the noncentrality parameter is a function of M

and is not of the form MY, M appears as the upper limit of a summation

of constants which are specified by the experiment and they do not

contribute to the randomness of the noncentrality parameter. Thus if

the noncentrality parameter, in this case is expressed in terms of the

averages of these constants, it can be expressed as MU M . This type of

noncentrality parameter is common in the analysis of variance theory.

So for the sample size determination in this case consider ¥M = Y"

Then the results given here can be applied to all three situations

considered.

So now assume that the approximate or exact noncentral chi-

square distribution in question has S degrees of freedom and non-

centrality parameter My, so its density is

e_ )/2 oo ul/2S+j- (M, )j
g(ul  ,s)= 2U2s zj=O F(I/2S+j)j !22j

and the density of the gamma prior distribution of 7 is

f(,f) = (.yp-1 e-'Y/2e) / (r(p) (2e)P), (5.4.2)

or the prior uniform weight function on 7 is

= l.

To find the approximate sample size M, a relation between the

parameters of the approximate gamma posterior and the sample size must
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be determined. To do this, let UM be the value of the approximate or

exact chi-square random variable U, based on M observations, which

would be observed when the experiment would be completed. Then the

density of the approximate gamma posterior distribution given UM

would be:

1.r(YiUM ) = (,yq-1 e-'y/2q_) / ([,(q) (2_)q),

such that

(5.4.4)

2_ : eM{!+ _Ew(m1,_,s)- w(p,%_,s)_]

and (5.4.5)

q = eM{p+ xMW(p,XM,S)]/2_,

where

xM : rome/ (2(Me+__))

and (5.4.6)

eM: 2e / (Me+l)

for a gamma prior distribution for which e < +_, while

xM = _M/2

and (5.4.7)

8M : 2/M

for the uniform weight function with _ = +_ and p = i.

Now W(P,XM, S) is tabled in the Appendix for various values of

p, XM, and S and it can be seen there that W(p,XM, S ) approaches one
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more rapidly than XM approaches infinity and it is close to one for all

values of XM. So for the approximation of q and _ for use in the sample

size determination, let UM equal its expected value (I/2S + My), and let

W(p,XM,S) and W(p+I,XM,S) both be one. Thus for UM = I/2S + My, (5.4.5)

can be approximated to give

2q_= OM

and (5 8)

where

q =P+X M ,

_ My/2 ,

and (5.4.9)

@M _ 2/M

for all gamma type priors. So let the approximate parameters of the

posterior gamma distribution to be used for the sample size determi-

nation be

= I/M

and (5.4.10)

q =2@ pM.

The form of q is found by replacing y by its prior expected value 2@p.

For an initial uniform prior weight function let

m = I/M

and (5.4.11)

q ----M.
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The choice of q = M is somewhat arbitrary, since the expected value of

7 does not exist in this case.

Now that the parameters of the posterior distribution have been

approximated in relation to M, the cost functions which yield the

approximate optimum sample sizes for each of the decision procedures

given in Chapter IV can be given.

!

For the decision procedure $2(U) given in Section 4.2, let the

cost function be

oo

F*(M): elm + C2 + _ [_O(V,_)+ _l(V,_)]_(v)dv, (5.4.12)
0

where C I is the standardized cost per observation, C2 is the standardized

set up cost, and both CI and C2 are in the same units as the posterior

risk. The losses LO(_,_ ) and LI(Y,T ) are given by (5.3.2). The same

type of linear losses were used in computing the tables given in the

Appendix. The density w*(y) given in (5.h.12) is the density of the

approximate gamma posterior distribution for sample size determination,

whose parameters q and _ are given by (5.4.10) and (5.4.11).

Now substituting (5.3.2) in (5.4.12)

oo

F_(M): CIM + % + ko [ (v-_)_(v)dv
T

T

+ kI _ (T-V)Tv*(v)dV, (5.4.15)
0

where

_*(V) = [V (28pM) e -v/(2M)] /[F(28pM) (2/M) 28pM]
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where both @and p are one if a uniform prior weight function was used.

Then letting k = max(ko,kl) , (5.4.13) can be boundedby

co

F_(M)<__ClM+ C2 + k ]" Iy-2Opl'_(_')d_'+ kl20p - _-I"
0

Q

Applying the Cauchy-Schwartz inequality to the above integral,

F_(M)<__ClM+ C2 + k[v(_,l (2ep)M,l/_)]l/2+k12ep - "_l

<__CZM+ C2 + k[4ep/M]l/2+kl_ep-'_l = FI(M).

Now considering M to be continuous, the minimum of FI(M) can

be found, which gives an approximate minimum of F*(M), by differentiating

FI(M ) with respect to M. Now

_M - cl - k[ep] l/2 M-3/2

Then setting = 0 and solving for the approximate optimum

sample size MO, M 0 is found to be

Mo -- [(ep)l/2 (k/Cl)} 2/3 (5.4.14)

The second derivative _2FI(M)/_M2 at the point M 0 is positive, so that

M 0 yields a minimum as desired.

If instead of just one two-decision procedure on one non-

centrality parameter, there are _ independent two-decision procedures
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!

62,i(Ui) , i : i,...,_ on yl,...,_ which are to be combined through the

use of the Restricted Product method to give the decision procedure

T

6_(_) developed in Section 4.3, the sample sizes are found separately

T

for each of the decision procedures 62,i(Ui), i = i,...,_, since the

combined posterior risk is the sum of the posterior risks of the indi-

vidual two-decision procedures.

*'(U), which wasIn the case when the _-decision procedure 6£

also developed in Section 4.3, is to be used, the cost function can be

expressed as the sum of the posterior risks of (_-i) two-decision

!

procedures 62,i(U), with decisions do, i and dl,i, i = 1,...,(£-1),

where TI < ... < T(__I), plus M times CI, the standardized cost per

observation, and C2, the standardized setup cost. Thus a reasonable

cost function is

F_(M) : ClM + Cs +

co

_ {Lo(_,_i)+ _l(_,_i)]_(y)dy,
i=l

0

(5.4.15)

where Lo(Y,Ti) and LI(_,Ti) are defined as in (5.3.2), i = i,...,(_-i),

and w*(y) is defined as before in (5.4.13). Now (5.4.15) can be

approximated in the same manner as (5.4.13), so that

F_(M)! elm+ C2 + Z
i=l

{k[_ep/M]1/2]+

z [kl2ep-_.[I_: F_(M)
i:l
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The approximate optimum sample size which minimizes F_(M) can now be

found in the samemanner as (5.4.14) was determined. Thus if M_Ois

the approximate optimum sample size,

M_0= [(ep)i/2((_-l)_Cl}2/3 (5.4.16)

If the magnitude of the noncentrality parameters are to be

compared in the manner indicated in Section 4.4, a reasonable cost

function for comparing _i and _2 is as follows:

F (Mi,M2) =elmI+ C2M2 + C + I_ k(_l-_2-_)_l(_l)_2(_2)d_id_2
bo

O0 O0

+[ i kI_2+_-_l)_1(_l)_2(_2)d_d_2'
0 Y2+"r

(5.4.17)

where C. is the standardized cost of taking an observation from popula-
I

tion i, i = 1,2, C is the standardized setup cost, and

(20iPiMi) -_'i/(2/Mi) (2eiPiMi)
1Ti(Yi) = [Yi e ] / [F(28PMi)(2/M) ],

i = 1,2. Now from (5.4.17), it can be seen that

F (Mz,M2) <_!clMI+ C2M2+ c +

CO O0

2![ _l'q-20iPil
i=l 0

i

_l(_Z) _2(Y2)d'_ld'_2+ k12elpz-2e2_2- '_ I. (5.4.18)
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Then applying the Cauchy-Schwartz inequality to the above integrals,

(5.4.18) becomes

. 2 [4eiPiTZ/2
F (MI,M2) <.!ClMI + C2_ + C+ Z _ m. J

i=l 1

+ kl2elp I - 2e,p2 - _-! = FI(MZ,M2).

Now considering M I and M 2 to be continuous and setting

_Fl (MI,M2)

_Mi I (MlO,M2o)
= O,

i = 1,2, MIO and M20 are found to be

Mio : [(eiPi )1/2 (k/Ci)] 2/3 , (5.4.19)

i = 1,2. The values of MIO and M20 minimize FI(MI,M2) since the matrix

of second partial derivatives of FI(MI,M2) is positive definite at the

point (MIo,M20).

If _ noncentrality parameters are to be compared in the manner

given in Section 4.4, the approximate optimum sample sizes can be found

to be

Mi° : [@iPi)Z/2((,__l)dci)]2/3 ,

i = i,...,_, in a manner similar to the way (5.4.19) was determined.
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It must be remembered that in arriving at values of _ and q

for purposes of sample size determination, it was assumed that the

value of M selected would not be small. Therefore, the procedures

would be applicable only when the cost per unit sampled (Ci) is small

in comparison to k, Oi, Pi and _.



VI. ASYMPTOTICCONSIDERATIONS

This chapter will be concernedwith sequencesof randomvaria-

bles which are only knownto have asymptotic noncentral chi-square

distributions. That is, it will be assumedthat the statistic U of

concern has a cumulative distribution function Gn(UIX) : r U dG (tll),
JO n

U

(UIX) : _]og(tIi'S)dt'which is measurable with respect to k, with lim Gn
n _

where g(tlk,S ) is the pdf of the noncentral chi-square distribution with

noncentrality parameter X and S degrees of freedom. To apply the deci-

sion procedures given in Chapter IV to randomvariables which only have

asymptotic noncentral chi-square distributions, the sequence of risk

functions, based on Gn(UIX) and the optimal decision procedure for the

exact noncentral chi-square distribution, must converge to the minimum

risk function given in Chapter IV.

The decision procedures developed in Section 4.2 and 4.9 are

all based on a decision function of the form

, {i, U<C
_0(_) : (6. i)

O, U_>C

So for these cases, it is sufficient to showthat the risk function
!

based on n" ,"G(UIX] and }o(U), which is

!

Rn(_)2'S,T,f) : _ [_ {_0(U)h(X,T)dGn(UI_-)] f(X)dX
0 0

+ Constant ('6.2)

107



converges to the risk function

108

R($2,S,_, f ) --
0

!

+ Constant, (6.3)

where

= - ZI(X, )

has the properties given in Conditions I, II, and III of Section 4.2.

A demonstration that Rn(52,S,T,f ) approaches R(52,S,_,f) in the limit

as n becomes large is given in the proof of the following theorem:

U

Theorem 6.1: Let Gn(UIX ) = _ dGn(UIX ) be a distribution
0

function, which is measurable with respect to k and which converges to
U

the noncentral chi-square distribution G(UI_,S) = _ g(tlk,S)dt and let

k be a random variable with distribution function F(X) = J0 f(t)dt,

!

where f(t) is a continuous function of te[O,_). Also let Co(U), as

defined by (6.1) be the decision function which minimizes the risk

function R(52,S,T,f), as defined by (6.3). Then the approximate risk

function Rn(52,S,_,f ), as defined by (6.2), approaches R(52,S,T,f) in

the limit as n becomes large.

!

Proo_____f:Putting the form of _0(U) given in (6.1) into

R(52,S,_,f) and Rn(52,S,T,f), it is found that

C

0 0
dGn@1X)]f(X)dX

+ Constant

and
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0 0

+ Constant.
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g(_;I_,s)dU]f 0,) d_,

Now by the properties given in Conditions I, II, and III of Section

4.2 for h(X,1.), _ h(_,1.)f(X)dX is finite. Then since it is assumed
0

that lim Gn(U]X ) = G(UIx,s) and since 0 < G (UIX) < i for all n,-- n
n--*_

_ C

lira Rn(_,2,S,T,f) -- lira _ h(t.,T)F _odGn(UIX)]f(X)dXn-. oo n -, oo 0

+ Constant

C

0 n-*_o 0
dOn(_lx)]f(_)d_

+ Constant

C

= _'0 0 g(Ul X, S)dU]f(X) dR + Constant

: R($2, S,1.,f) ,

by the Lebesgue dominated convergence theorem.

Now consider the decision procedure developed in Section 4.4.

This decision procedure is based on a decision function of the form

E(XllU1) < E(_.21U2)+ 1"

E(X].IUl) k E(X21U2) + 1.
(6._)

which is in the same form of Equation (4.4.7). So for this case, it is

only necessary to show that the risk function based on GnI(UIIXI) ,

!

Gn2(U21X2) , ¢%,I(UI,U2), the losses defined by Equation (4.4.4) and



prior distributions Fi(Xi)

ii0

Xi

= _ fi (t)dt,
0

i = 1,2, which is given by

Rl(nl, n2)(_I'$2 '_ ,f2 )

co GO oo co

-- J'o Io EIo ,Io _0,1(ul's) (Xl- _2- '")d_l(U:] I_,)d_2(U21_2)-I

fl(kl) f2(k2) dlldk 2 + Constant (6.5)

converges to the minimum risk function defined in Equation (4.4.5),

which is

E].(5:]_,s2,',,£2)

co co co

fl(kl) f2(12) dlldk 2 + Constant. (6.6)

To see that if Rl(nl,n2)(_l,_2,T,_2) converges, it converges to

RI($I,_2,T,_2) , it is sufficient to prove the following theorem:

Theorem 6.2: Let Gnm(UllX1) and Gn2(U21X2) be distribution

functions which are measurable with respect to X1 and X2 and which con-

to the noncentral chi-square distributions G(UilXi,Si)verge
U.

1

= i_ g(tlki, Si)dt , i = 1,2, respectively, and let ki, i = 1,2,
be

0

_. co

Z _0tfi(t)random variables with Fi(Xi) = I fi(t)dt, such that dt exists
0

and f'z(t) is continuous, i = 1,2,. Also let _0,1(UI'U2)' as defined by
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(6.4), be the decision function which minimizes the risk function

RI(51,_2,T,_2) , as defined by (6.6). Then at least one subsequence of

the risk function RI(nI,n2)(51,_2,T,_2) , as defined by (6.5), converges

to Hl(51,S2,m,_2) as n I and n 2 become large.

T

Proof: In the decision function @--O,I(UI,U2) , defined in (6.4),

let re(U2) : E(X21U2) + m. Then (6.4) is in the same form as the deci-

sion function, defined by (4.2.7), for the two decision procedure dis-

cussed in Section 4.2 when the linear losses defined by Equation

(5.3.2) for k0 = kI and m = T(U2) are used. So that for each U2,

_O,I(UI,U2) can be expressed in the same way as the decision function

given in Equation (4.2.8) with C = CI(U2). That is,
!

' ll' _l < ci(u2)

Similarly, setting m(Ul) = E(XIIUI) - T, (6.h) can also be expressed

in the form

!

i
l, _2> c2(h)

o, _2S02(u l) •

Then putting (6.7) and (6.8) into (6.5) yields

(6.7)

(6.8)

Rl(nl, n2)(_I'$2' m' f2)

co co

(_1- k2- "I')H(nl' n21kl' Z2) f2 (k2)fl(X1 ) d_ldk2 + Constant

where



H(nl,n21XI,X 2)

oo

j
0
[
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Cl(U 2)

c2(u1)

Since the Gn. (Uilk i) converge to noncentral chi-square distributions,
1

use of the Lebesgue dominated convergence theorem and the Generalized

Second Theorem of Helly, (Gnedenko [1963, p. 267]) leads to

cl(u2)

mira lira E(n]_,n21_.l,_. 2) = lira l:i.m dGn _.l ) dGn U21_.2)
nj _ nZ = n_ _ nZ _ 0 0

n2_ _ 0

Cl(_2)

]'o_{_-I_'_-'s_-)_'_]-]_n_(_l_'#

c1(_2)

!

_0,1 (_l' ";2) g(_l I),1' Sl) g(_21)'2' s2)d._:]_d,J2

- E(),1,;_2), (6.9)

and similarly

lira liraE(nz,n21_l,_2)

nl_ _ n2_

=i-

co

IoE
c2(ul)

J_ g(:u21;_2,S2)d_2]g(_ll_.1,sl) dU1
0

:- E(_u,),2) (6.1o)
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Next consider the seqhenee H(nl,n21Xl,k2) jointly in (nl,n2).

Since 0 i H(nl,n21XI,X2) i i for all (nl,n2) , the First Theorem of

Helly, (Gendenko [1965_ p.264]), indicates there exists at least one

subsequence (nlk, n2k) such that lira I_l, X2)
(nlk, n2k) _ (_,_)H(nlk'n2 k

converges. (It should be noted here, that in the First Theorem of

Helly, as stated in Gnedenko, it is specified that H(nl,n2, IXI,X2)

be an increasing function of (Xl,k2), but this is required only so that

the limiting function will also be increasing in (Xl,k2) , which is not

needed in this context.) Since both the iterated limits of

H(nl,n21Xl,k2) converge to H(XI,X2) , the joint limit of the subsequence

H(nlk,n2klXl_X2) also converges to H(XI,_2). Thus

lira _1 (nlk, (_'1' $2' T
(nlk, n2k ) -, (_,_o) n2 k) -- 'f2)

= lira lim "Rl(nl,n2)(_'I,S2,T,f2)
nl.-,, oo n2_ oo

= Rl(_l_2,T,_2) (6.1l)

If either of the iterated limits given in (6.9) and (6.10) is uniform

in the other index, the limit in (6.11) holds for (nl,n2) also.

So when the decision procedure developed in Section 4.4 is used

as the decision procedure for the distributions GnI(UIIXI) and

Gn2(U21X2) which only have asymptotic noncentral chi-square distribu-

tions, the approximate minimum risk function based on them and

D

_O,I(UI,U2), when it converges, approaches the minimum risk function

for the exact noncentral chi-square distribution.



VII. APPLICATIONSOFTHEDECISIONPROCEDURES

Twoapplications of the decision procedures discussed in

Chapter III will be presented in this chapter. The first one is a

genetic study for which it is reasonable to makeassumptions which

lead to the noncentral chi-square distribution for any sample size.

The secondapplication is a goodness-of-fit test which involves the

use of -21nXn, where Xn represents the likelihood ratio statistic,

which is asymptotically distributed as a noncentral chi-square under

local alternatives as shownin Part i. In addition to meeting the

distributional assumptions required for the use of the decision proce-

dures developed herein, these examples are appropriate because in each

of them the noncentrality parameter is a measure of the characteristic

about which a decision is desired.

In the first example, humanchromosomesmust be described as

normal or abnormal. At present only the twenty-two nonsex chromosomes

will be included so that both males and females can be studied jointly.

Each of these chromosomeshas two long arms and two short arms. The

main aim of the research is to correctly classify the chromosomes

based on the average long and short arm measurementsinstead of re-

quiring individual examination by a technician. So far 1440 sets of

chromosomeshave been observed from one hundred people and more subjects

will be sampledbefore any chromosomesare examined for abnormality.

Let _ be the vector of average chromosomearm lengths for an

individual. Then$ will have forty-four elements, that is, a long

i14
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and short arm measurement for each of the twenty-two nonsex chromosomes.

Several assumptions will be made about the probability distribution of _.

The assumptions are as follows: (i) If _ is a vector of measurements
m

of normal chromosomes, then _ is a random vector from a multivariate

normal distribution with mean vector _ and variance-covariance matrix

_; (2) If _ is a vector of measurements of abnormal chromosomes, then

is a random vector from a multivariate normal distribution with mean
b

vector _ and variance-covariance matrix E_; (3) The vector __ is made up

of five subvectors --_i'_--2'_--3'_' and --_5which are statistically inde-

pendent. The values of _ will be different for different kinds of

abnormalities. The breakdown of the chromosomes into the five groups

was done by visual inspection by biologists before measurements were

taken on any chromosomes.

Let N be the number of sets of chromosomes observed and let

be the maximum likelihood estimate of _. Then because of the assumptions

(i), (2), and (3), decisions on the normality or abnormality of chromo-

somes or a subset of the chromosomes are based on the noncentral chi-

square random variable

: - z_-1(i- (7.1)

whose distribution has noncentrality parameter

}_ : Ny

• : N(a* - _)' ! -1 (_* - _) (7.2)
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if the chromosomesobserved are abnormal or

k=O

if the chromosomesobserved are normal.

of the distance between the vectors

The function _ is a measure

and __and thus can be used as

a basis of decisions on the normality of the chromosomes. So for the

remainder of the discussion on this area of application, _ will be

considered to be in the form defined in (7.2), with the exception that

maybe replaced by _i' i = 1,...,5, with corresponding changes_ , _,

and Z.

Before specifying the type of decisions to be madeabout _,

the selection of the initial prior distribution of y will be considered.

The basic form of the initial prior will be assumedto be that of a

gamma,so the tables given in the Appendix can be used. This is not

an unreasonable assumption, for even if a group of individuals do not

have abnormal chromosomes,the meanlengths of their arms can be

expected to vary about _ in a manner in accord with a normal probability

distribution. Then y would be a central chi-square randomvariable, so

that its distribution would be a particular type of gammadistribution.

Twopossible approaches to determine the initial prior are as follows:

(i) Assumethat _ has a central chi-square distribution_ and (2) Using

the data on the 1440 sets of chromosomesobserved initially, estimate

the meanand variance of y and then set these equal to the meanp(2_)

and the variance p(20) 2, respectively, of the gammaand solve for p

and _.
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Nowthe types of decisions will be considered in two parts:

(i) Decisions of the type developed in Sections 4.2 and _.3_ and

(2) Decisions of the type developed in Section 4.4. The first group

of decisions to be considered will be decisions regarding the normality

or extent of abnormality of a particular group of individual's chromo-

somesor a subset of them. These decisions will be based on N sets of

chromosomeswhich will be observed from a particular group of individuals.

Nowlet dO be the decision that the chromosomesare normal and dI be the

decision that they are abnormal. Then dOwill be the decision that

c _I0 _ _ _ T_ and dI will be the decision that y c [_IT _ _ _ _.

The value of _ would be specified by the experimenter in the following

manner. Hewill specify a tail probability for the central chi-square

distribution and T will be the value that cuts off this probability.

This method is used because if there are no abnormalities present in

the chromosomes,then the _ will act like a central chi-square random

variable. Later whenthe experimenter has more experience, including

experience with abnormal chromosomes,he maywish to redefine the T

values. It is also possible that the experimenter will be able to

define degrees of abnormality in the chromosomes. That is, the interval

[T,_) could be broken up into several subintervals, with each subinterval

indicating a different degree of abnormality. So let dO be the decision

that the chromosomesare normal and let d. be the decision that thel

chromosomeshave abnormality of degree i_ i = l,...,k. Then dO will be

the decision that _ c [ylO __y _ TI) and d.l will be the decision that

... = +_. In this case theY e [yl_ i _ y < _i+l] , i = I, ,k, where _k+l

values will be defined by the experimenter based on his past experience.
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The second set of decisions will be used to compare apparent

abnormalities in the chromosomes associated with different types of

physical or mental abnormalities. The methods of Section 4.4 will be

used to select the appropriate decisions in each comparison. For this

decision procedure let _i be the distance measure associated with one

set of chromosomes and Y2 be the distance measure associated with the

other set. Then there are three decisions which can be considered;

(i) do, the decision that the chromosomes associated with the first

physical or mental abnormality, exhibit less abnormality than the

chromosomes associated with the second physical or mental abnormality;

(2) dl, the decision that the abnormalities exhibited in both groups

of chromosomes are about equal; and (3) d2, the decision that the first

group of chromosomes exhibit more abnormalities than the second group

of chromosomes. Then do is the decision that (?i,_2) c {(_I,_2)I_2>_I+T},

is the decision that (_l,Y2) e _(_i,_2)I I_i-_21 < T} and d2 is thedI

decision that (_l,Y2) £ {(yl,_2)IYl > _2 + _}" The value of • would be

specified by the experimenter, since at the time that he would be ready

to make these types of decisions, he would have sufficient experience

to select T.

The purpose of decision procedures of this type is to aid the

biologists in linking apparent physical or mental abnormalities with

abnormalities in the chromosomes so that if abnormalities are indicated

in one of the subgroups of the chromosomes, future research can be

concentrated on these subgroups.

In the second example a two-decision procedure will be considered.

The two decisions are as follows: (i) do, an unknown distribution G has
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approximately the specified form F0; and (2) dl, the distribution G

does not have the form FO. An appropriate method for considering these

decisions is to divide the domain S of F0 into k subsets S1,...,S k and

consider decisions based on whether G(Si) = Fo(Si) , i = 1,...,k-1.

This can be done by using the theory developed in Part l, that is,

using the asymptotic distribution of the likelihood ratio statistic

k n.

=-21n _ i_l[Fo(Si)] l.}-21nXn k n.n. (7.3)

7Y I i

under the local alternatives

/n (G(Si) - Fo(Si) ) - 5i (7.4)

as n -. c% i : l_..._k-l.

The form of (7.3) satisfies all the conditions specified in

Part I, so that -21nkn, as specified by (7.3), under the local alterna-

tives (7.4) has an asymptotic noncentral chi-square distribution with

k-i degrees of freedom and noncentrality parameter

k

i=l :

Then the decision procedure can be specified according to the magnitude

of k in the following manner: (i) Let dO be the decision that

k c [klO <_ k < _] and (2) dI be the decision that k c [k1_ <_ k <_ _],

where T is a positive tolerance. The value of k can be considered as
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a measureof the distance between G and F0 and thus an appropriate

measure of how close G is to FO. The value of • will depend on how

close the experimenter wants G to be to F0 before he will say that G

is approximately equal to FO. Onemethod of determining possible

values would be to approximate 5i by G(Si) - Fo(Si) and then have the

experimenter specify what proportion r i of Fo(Si) he would allow G(Si)

to differ from Fo(Si) in each of the k subsets SI,...,S k. That is,

he would allow

F0(Si) - riFo(Si) < G(Si) < Fo(Si) + riFo(Si) (7.6)

and will still be able to say that G is approximately equal to F O.

Then T would be taken as

T
k )2
E (riFo(S i) / Fo(S i)

i=l

k
2

: Z r. Fo(Si).-
t _

i:l l

For an initial experiment very little would be known about the

possible distribution of k, so to be able to use the tables given in

the Appendix it could be assumed that k has a gamma prior distribution

with parameters p and 8 and the parameters p and 8 could be specified

so that T would be the median of the gamma prior distribution, as was

discussed in Section 5.2. This procedure would assign equal prior

probability to the two decisions and thus would favor neither of them.



Vlll. SUMMARY

Critical values are given for two minimumaverage risk decision

procedures with the following respective decision regions:

(i) [kl0 < k < T] or [kIT < k < _] and (2) [(XI,k2) IE(XI!UI) < E(X21U2)+r]

or [(XI,k2) IE(XIIUI) > E(X2!U2) + T], where U, UI, and U2 are random

variables with noncentral chi-square distributions with S, SI and S2

degrees of freedom and noncentrality parameters k,kl, and k2, respec-

tively, where 0 < k, kI, k2 < _. These critical values are determined

for the case when the loss function is a linear regret function and

the noncentrality parameter has a gamma distribution. These decision

procedures were extended by the use of the Restricted Product method

of Lehmann [1957] to give several multiple decision procedures involving

several independent noncentra! chi-square random variables.

When the noncentrality parameter has a gamma distribution and

the posterior distribution of the noncentrality parameter is to be used

for the prior distribution of a future experiment, a way of approximating

the posterior distribution by a gamma distribution was considered. This

approximation was made so that the same set of critical values can be

used for each experiment.

To aid the experimenter in determining his sample size, an

approximate method for determining an optimum sample size, that is,

the sample size which approximately minimizes a specified cost function,

has been provided. The cost functions were formulated under the

assumption that the loss function is a linear regret function and that

121
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the prior distribution of the noncentrality parameter is a gamma

di st ribut ion.

To provide a larger area of possible application, it was shown

that under certain conditions, the decision procedures could be applied

to a randomvariable which had only an asymptotic noncentral chi-square

distribution.

The decision procedures discussed in this paper are mainly

decision procedures on a distance function which will usually measure

the distance between the parameters or a subset of the parameters of

a distribution under question and a standard distribution. Two such

applications were given, one involving a noncentral chi-square distri-

bution exactly, the other only asymptotically.



APPENDIX

i TABLES OF C* FOR WHICH H(C*; A*; P; S) = R

Table i.i.i. - C* for A* : 1.0 and S = 1.0

R_ p O. i0 0.30 O. 50 0.70 0.90 i. i0 1.30 i. 50

19.0 6.55 3.23 2.52 1.97 1.50 !.!i 0.79 0.54

39.0 7.78 3.87 3.14 2.55 2.04 1.60 1.22 0.90

59.0 7.70 4.27 3.52 2.91 2.38 1.91 1.50 1.15

79.0 8.01 4.55 3.80 3.18 2.63 2.14 1.71 1.34

99.0 8.24 4.77 4.02 3.38 2.83 2.33 1.89 1.49

Table 1.1.2. - C* for A* -_ 2.0 and S = 1.0

_P o. io o.3o o. 5o o.7o o.9o 1.io 1.3o i.5o

19.0 8.33 4.90 4.29 3.75 3.26 2.82 2.41 2.04

39.0 9.20 5.69 5.06 4.51 4.00 3.53 3.09 2.68

59.0 9.70 6.16 5 -53 4.97 4.45 3.96 3.50 3.08

79.0 i0.06 6.50 5.87 5.30 4.77 4.27 3.80 3.37

99.0 i0.34 6.77 6.14 5.56 5.02 4.52 4.04 3.60

Table 1.1.3. - C* for A* = 3.0 and S = 1.0

R_ p O. i0 0.30 0.50 0.70 0.90 i.i0 1.30 1.50

19.0 i0.05 6.40 5.84 5.33 4.85 4.40 3.97 3.57

39.0 ii .03 7.30 6.74 6.22 5.72 5.25 4.79 4.37

59.0 ii .61 7.84 7.28 6.74 6.24 5.75 5.29 4.85

79.0 12.01 8.23 7.66 7.12 6.61 6.12 5.65 5.20

99.0 12.33 8.53 7.96 7.h2 6.90 6.40 5.93 5.47
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Table 1.1.4. - C* for A* : 4.O and S : i.O

R_ p 0. iO 0.30 0.50 0.70 0.90 I. i0 1.30 1.50

19.0 11.72 7.82 7.30 6.81 6.34 5.89 5.46 5.04

39.0 12.80 8.83 8.30 7.79 7.31 6.84 6.39 5 -95

59.0 13.43 9.42 8.89 8.38 7.88 7.40 6.94 6.50

79.0 13.87 9.85 9.31 8.79 8.29 7.81 7.34 6.89

99.0 14.21 i0.18 9.64 9.12 8.62 8.13 7.65 7.20

Table 1.1.5. - C* for A* : 5.0 and S : 1.0

R_ p 0 .iO 0.30 0.50 0.70 0.90 i.i0 1.30 1.50

19.0 13.34 9.21 8.71 8.23 7.76 7.31 6.88 6.45

39.0 14.50 i0.29 9.79 9.29 8.81 8.35 7.90 7.46

59.0 15.17 i0.94 iO .42 9 -93 9.44 8.97 8.51 8.06

79.0 15.65 11.40 i0.88 i0.38 9.89 9.41 8.94 8.49

99.0 19.21 11.76 11.24 i0.73 i0.23 9.75 9.28 8.82
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Table 1.2.1. - C* for A* = 1.0 and S = 2.0

R_ O.20 O.40 O.60 O.80 1.00 1.20 1.40 1.60 1.80 2.OO

19.0 4.69 3.69 2.95 2.35 1.83 1.39 i.O1 0.70 0.44 0.23

39.0 5.39 4.38 3.62 2.98 2.42 1.93 1.51 1.14 0.82 0.55

59.0 5.80 4.79 4.02 3.36 2.78 2.27 1.82 1.42 1.O7 0.77

79.0 6.10 5.09 4.31 3.64 3.05 2.52 2.05 1.63 1.27 0.94

99.0 6.33 5.32 4.53 3.86 3.26 2.72 2.24 1.81 1.42 1.O9

Table 1.2.2. - C* for A* = 2.0 and S = 2.0

R_P O.20 O.40 0.60 O.80 1.00 1.20 1.40 1.60 1.80 2.OO

19.O 6.19 5.38 4.74 4.17 3.65 3.18 2.74 2.34 1.98 1.65

39.0 6.98 6.18 5.53 4.94 4.41 3.91 3.44 3.O1 2.61 2.24

59.0 7.45 6.66 6.O1 5.41 4.86 4.35 3.87 3.42 3.00 2.61

79.0 7.79 7.01 6.35 5.75 5.19 4.67 4.18 3.72 3.29 2.89

99.0 8.06 7.28 6.62 6.01 5.45 4.92 4.43 3.96 3.52 3.10

Table 1.2.3. - C* for A* = 3.O and S = 2.0

R--_ 0.20 O.40 O.60 O.80 1.00 1.20 1.40 1.60 1.80 2.OO

19.0 7.52 6.85 6.27 5.73 5.23 4.76 4.32 3.89 3.50 3.12

39.0 8.42 7.76 7.17 6.63 6.11 5.62 5.15 4.71 4.28 3.88

59.0 8.95 8.30 7.71 7.16 6.63 6.13 5.66 5.20 4.76 4.34

79.0 9.34 8.69 8.10 7.54 7.01 6.50 6.02 5-55 5.11 4.68

99.0 9.64 8.99 8.40 7.84 7.31 6.79 6.30 5.83 5.38 4.94
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Table 1.2.4. - C* for A* -- 4.0 and S = 2.0

R_ 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

19.0 8.83 8.24 7.71 7.20 6.71 6.24 5.80 5.37 4.96 4.56

39.0 9.83 9.25 8.71 8.19 7.69 7.20 6.74 6.29 5.86 5.44

59.0 10.43 9.85 9.30 8.77 8.27 7.78 7.30 6.84 6.40 5.97

79.0 10.86 10.28 9.73 9.19 8.68 8.19 7.71 7.24 6.79 6.36

99.0 11.19 10.61 10.06 9.52 9.01 8.51 8.02 7.55 7.10 6.66

Table 1.2.5. - C* for A* = 5.0 and S = 2.0

R_ 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

19.0 10.15 9.60 9.09 8.60 8.12 7.66 7.21 6.78 6.36 5.96

39.0 11.24 10.70 10.18 9.67 9.18 8.71 8.25 7.80 7.36 6.94

59.0 11.89 11.34 10.82 10.31 9.81 9.33 8.86 8.41 7.96 7.53

79.0 12.35 11.81 11.28 10.76 10.26 9.78 9.30 8.84 8.39 7.95

99.0 12.71 12.17 11.64 11.12 10.62 10.12 9.64 9.18 8.72 8.28

Table 1.3.1. - C* for A* -- 1.0 and S = 3.0

R_ 0.70 0.90 i.i0 1.30 1.50 1.70 1.90 2.10 2.30 2.50

19.0 3.24 2.59 2.04 1.55 1.13 0.77 0.46 0.20 0.00 0.00

39.0 3.95 3.27 2.68 2.15 1.69 1.27 0.91 0.60 0.34 0.12

59.0 4.37 3.69 3.07 2.52 2.03 1.59 1.20 0.86 0.57 0.32

79.0 4.68 3.98 3.36 2.80 2.29 1.83 1.42 1.06 0.74 0.47

99.0 4.92 4.21 3.58 3.01 2.49 2.02 1.60 1.22 0.89 0.60
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Table 1.3.2. - C* for A* = 2.0 and S = 3.0

R_ 0.70 0.90 i.i0 1.30 1.50 1.70 1.90 2.10 2.30 2.50

19.0 5.11 4.51 3.97 3.47 3.01 2.59 2.20 1.84 1.51 1.22

39.0 5.92 5.31 4.75 4.23 3.74 3.29 2.86 2.47 2.11 1.77

59.0 6.41 5.79 5.22 4.69 4.19 3.72 3.27 2.86 2.48 2.12

79.0 6.76 6.14 5.56 5.02 4.51 4.03 3.57 3.15 2.75 2.38

99.0 7.03 6.41 5.83 5.28 4.76 4.27 3.81 3.38 2.97 2.59

Table 1.3.3. - C* for A* = 3.O and S = 3.0

R_ 0.70 0.90 1.10 1.30 1.50 1.70 1.90 2.10 2.30 2.50

19.0 6.65 6.O9 5.57 5.08 4.62 4.18 3.77 3.37 3.OO 2.66

39.o 7.56 7.o0 6.47 5.96 5.48 5.o2 4.58 4.16 3.76 3.38

59.o 8.11 7.54 7.o0 6.48 5.99 5.52 5.o7 4.63 4.22 3.83

79.o 8.5o 7.93 7.38 6.86 6.36 5.88 5.42 4.98 4.56 4.15

99.o 8.81 8.23 7.68 7.16 6.65 6.16 5.7o 5.25 4.82 4.41

Table 1.3.4. - C* for A* = 4.0 and S = 3.O

_ 0.7o o.9o i.i0 1.30 1.5o 1.7o 1.90 2.1o 2.30 2.5o

19.0 8.08 7.55 7.05 6.57 6.11 5.67 5.24 4.84 4.45 4.08

39.0 9.09 8.55 8.04 7.55 7.07 6.61 6.17 5.74 5.33 4.93

59.0 9.69 9.15 8.63 8.13 7.6L 7.17 6.72 6.28 5.86 5.45

79.0 10.12 9.57 9.05 8.54 8.05 7.57 7.11 6.67 6.24 5.82

99.0 10.45 9.91 9.38 8.87 8.37 7.89 7.42 6.97 6.53 6.11
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Table 1.3.5. - C* for A* = 5.0 and S = 3.0

R_ 0.70 0.90 i.i0 1.30 1.50 1.70 1.90 2.10 2.30 2.50

19.0 9.46 8.95 8.46 7.99 7.53 7.09 6.66 6.25 5.85 5.46

39.0 10.55 10.04 9.54 9.05 8.58 8.12 7.68 7.25 6.83 6.42

59.0 11.20 10.68 10.17 9.68 9.20 8.74 8.28 7.84 7.41 7.00

79.0 11.66 11.14 10.63 10.13 9.65 9.17 8.72 8.27 7.83 7.41

99.0 12.02 11.49 10.98 10.48 9.99 9.52 9.05 8.60 8.16 7.73

Table 1.4.1. - C* for A* = 1.0 and S = 4.0

R_ 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00

19.0 2.16 1.63 1.17 0.77 0.42 0.12 0.00 0.00 0.00 0.00

39.0 2.86 2.30 1.79 1.34 0.94 0.59 0.29 0.03 0.00 0.00

59.0 3.28 2.70 2.17 1.70 1.27 0.89 0.56 0.27 0.02 0.00

79.0 3.58 2.99 2.45 1.96 1.51 i.ii 0.76 0.45 0.19 0.00

99.0 3.82 3.22 2.67 2.16 1.71 1.29 0.93 0.60 O.32 0.07

Table 1.4.2. - C* for A* = 2.0 and S = 4.0

R_ 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00

19.0 4.23 3.71 3.23 2.78 2.37 1.98 1.63 1.31 1.02 0.76

39.0 5.05 4.50 3.99 3.52 3.07 2.66 2.27 1.91 1.58 1.28

59.0 5.53 4.98 4.46 3.96 3.50 3.07 2.66 2.29 1.94 1.61

79.0 5.88 5.32 4.79 4.29 3.81 3.37 2.95 2.56 2.20 1.86

99.0 6.16 5.59 5.05 4.54 4.06 3.61 3.18 2.78 2.40 2.06
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Table 1.4.3. - C* for A* = 3.0 and S = 4.0

R_ 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00

19.0 5.88 5.37 4.89 4.44 4.00 3.60 3.21 2.84 2.50 2.18

39.0 6.79 6.27 5.77 5.29 4.84 4.41 3.99 3.60 3.23 2.88

59.0 7.34 6.81 6.30 5.81 5.34 4.90 4.47 4.06 3.67 3.31

79.0 7.73 7.19 6.67 6.18 5.70 5.25 4.81 4.40 4.00 3.62

99.0 8.03 7.49 6.97 6.47 5.99 5.53 5.08 4.66 4.25 3.87

Table 1.4.4. - C* for A* = 4.0 and S = 4.0

R_ 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00

19.0 7.37 6.88 6.40 5.95 5.51 5.09 4.69 4.30 3.94 3.58

39.0 8.38 7.87 7.38 6.91 6.45 6.01 5.59 5.18 4.79 4.41

59.0 8.97 8.46 7.96 7.48 7.01 6.56 6.13 5.71 5.31 4.92

79.0 9.40 8.88 8.38 7.89 7.42 6.96 6.52 6.09 5.68 5.28

99.0 9.73 9.21 8.70 8.21 7.73 7.27 6.82 6.39 5.97 5.56

Table 1.4.5. - C* for A* = 5.0 and S = 4.0

R_ 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00

19.0 8.79 8.30 7.84 7.38 6.94 6.52 6.11 5.71 5.33 4.96

39.0 9.87 9.38 8.90 8.43 7.97 7.53 7.11 6.69 6.29 5.90

59.0 10.52 i0.01 9.53 9.05 8.59 8.14 7.70 7.27 6.86 6.46

79.0 10.97 10.47 9.98 9.49 9.03 8.57 8.13 7.69 7.27 6.86

99.0 11.33 10.82 10.32 9.84 9.37 8.91 8.46 8.02 7.59 7.18
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Table 1.5.1. - C* for A* = i.O and S = 5.0

R_ 1.70 1.90 2.10 2.30 2.50 2.70 2.90 3.10 3.30 3.50

19.0 1.16 0.71 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00

39.0 1.84 1.35 0.92 0.53 0.19 0.00 0.00 0.00 0.00 0.00

59.0 2.25 1.74 1.28 0.87 0.50 0.18 0.00 0.00 0.00 0.00

79.O 2.55 2.O2 1.55 1.12 0.73 0.38 O.08 0.00 0.00 0.00

99.O 2.78 2.25 1.76 1.31 0.91 0.55 0.24 0.00 0.00 0.00

Table 1.5.2. - C* for A* : 2.0 and S : 5.0

R_ 1.70 1.90 2.10 2.30 2.50 2.70 2.90 3.10 3.30 3.50

19.O 3.40 2.93 2.49 2.09 1.71 1.37 1.O6 0.77 0.52 0.29

39.O 4.20 3.71 3.24 2.80 2.39 2.O2 1.66 1.34 1.O4 O.77

59.0 4.68 4.17 3.69 3.24 2.81 2.41 2.04 1.70 1.38 1.O9

79.0 5.03 4.51 4.02 3.55 3.12 2.70 2.32 1.96 1.63 1.32

99.O 5.30 4.77 4.27 3.80 3.35 2.93 2.54 2.17 1.82 1.50

Table 1.5.3. - C* for A* : 3.0 and S = 5.0

R_ 1.70 1.90 2.10 2.30 2.5O 2.70 2.9O 3.10 3.30 3.50

19.0 5.13 4.66 4.21 3.79 3.38 3.OO 2.64 2.31 1.99 1.69

39.O 6.04 5.54 5.O7 4.63 4.20 3.79 3.40 3.04 2.69 2.36

59.O 6.57 6.07 5.59 5.13 4.69 4.27 3.87 3.48 3.12 2.77

79.O 6.96 6.45 5.96 5.49 5.04 4.61 4.2O 3.81 3.43 3.08

99.O 7.26 6.75 6.25 5.78 5.32 4.88 4.46 4.06 3.68 3.31
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Table 1.5.4. - C* for A* = 4.0 and S = 5.0

R_ 1.70 1.90 2.10 2.30 2.50 2.70 2.90 3.10 3.30 3.50

19.0 6.67 6.21 5.76 5.32 4.91 4.51 4.13 3.77 3.42 3.09

39.0 7.67 7.18 6.72 6.27 5.83 5.41 5.01 4.62 4.25 3.89

59.0 8.26 7.77 7.29 6.83 6.38 5.95 5.54 5.14 4.75 4.38

79.0 8.68 8.18 7.70 7.23 6.78 6.34 5.92 5.51 5.11 4.73

99.0 9.01 8.51 8.02 7.55 7.09 6.64 6.21 5.80 5.40 5.01

Table 1.5.5. - C* for A* = 5.0 and S = 5.0

R_ 1.70 1.90 2.10 2.30 2.50 2.70 2.90 3.10 3.30 3.50

19.0 8.12 7.66 7.21 6.77 6.35 5.95 5.55 5.17 4.81 4.46

39.0 9.20 8.72 8.26 7.81 7.37 6.94 6.53 6.13 5.74 5.37

59.0 9.83 9.35 8.88 8.42 7.97 7.54 7.11 6.70 6.31 5.92

79.0 10.29 9.80 9.32 8.86 8.40 7.96 7-53 7.12 6.71 6.32

99.0 10.64 10.15 9.67 9.20 8.74 8.29 7.86 7.44 7.03 6.63



2 TABLES OF W(p_ 8"_ S)

Table 2.1. - W(p, 8*, S) for S = I

0"_ O. i0 0.30 O.50 0.70 0.90 i.10 1.30

1.0 0.33 0.74 1.00 1.19 1.34 1.46 1.57

2.0 0.50 0.84 1.00 1.11 1.20 1.27 1.34

3.0 0.66 0.9O 1.O0 Z.07 1.14 1.19 1.24

4.0 0.79 0.93 l.O0 1.05 l.lO 1.15 1.19

5.0 0.86 0.95 1.00 1.04 1.08 1.12 1.15

6.0 0.90 0.96 1.O0 i .04 1.07 l.lO 1.13

7.0 0.92 0.97 i .00 1.03 1.06 1.08 i.ii

8.0 0.94 0.97 1.O0 1.03 1.05 1.07 1.10

9.0 0.95 0.9S 1.00 1.02 1.04 1.07 1.09

i0.0 0.95 0.98 1.00 1.02 1.04 1.06 i .08

11.0 0.96 0.98 1.00 1.02 1.04 1.05 1.07

12.0 0.96 0.98 1.00 1.02 1.03 1.05 1.07

13.0 0.97 0.98 1.00 1.02 1.03 1.05 1.06

14.0 0.97 0.98 1.00 1.01 1.03 1.04 1.06

15.0 0.97 0.99 1.00 1.01 1.03 1.04 1.05

2O .0 0.98 0.99 1.00 1.01 1.02 1.03 1.04

25.0 0.98 0.99 1.00 1.01 1.02 1.02 1.03

3O .0 0.99 0.99 1.00 1.01 1.01 1.02 1.03

35.0 0.99 0.99 1.00 1.01 1.01 1.02 1.02

4O .0 0.99 0.99 l.O0 Z.01 l.Ol 1.01 1.02

45.0 0.99 1.00 1.00 1.00 1.01 1.01 1.02

5O .0 0.99 1.00 l.O0 1.00 1.01 1.01 1.02

75.0 0.99 1.00 1.00 1.00 1.01 1.01 1.01

i00.0 1.00 i .00 1.00 i .00 1.00 1.00 1.01

132
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Table 2.1. - Continued

e*_ 1.50 1.70 1.90 2.10 2.30 2.50

1.0 1.67 1.75 1.84 1.91 1.98 2.05

2.0 i_.40 1.46 1.51 1.56 1.61 1.65

3.0 i .29 1.33 1.37 1.41 1.4a i .48

4.o 1.22 1.26 1.29 1.32 1.35 1.3s

5.0 i.18 i.2i i.24 i.27 i .29 i.32

6.0 i.15 i.i8 i.20 i.23 i.25 i .27

7.0 i.i3 i.i6 i.i8 1.20 i,22 i.24

8.0 i.12 i.i4 i.16 i.18 i.20 i.2i

9.0 i.ll 1.12 i.14 i.i6 1.18 i.i9

iO.O i.lO i.ii i.i3 i.14 i.16 i.i8

ii.o i.09 i.io i.12 i.13 i. 15 i.16

i2.0 i.08 i.09 i.li i.12 i.14 i.i5

13.0 1.07 1.09 i.i0 I.ii 1.13 1.14

i4 .o i.o7 i.08 i.o9 i.ii i.i2 1.13

i5.0 i.o6 i.08 i.o9 l.iO l.ii i.12

20.0 i .05 i.06 i.07 i.08 1.08 i .09

25.0 1.04 i.05 i.05 i.06 i .07 1.08

30.0 1.03 1.04 1.05 1.05 1.06 i .06

35 .o i.o3 i.o3 1.o4 1.o4 i.o5 i.o5

4o .o i.o2 i.o3 i.o3 i.o4 i.o4 i.o5

45.0 1.02 1.03 1.03 1.03 i.04 1.04

50 .o 1.o2 1.o2 1.03 1.o3 1.o4 i .04

75.0 i.Ol i.02 1.02 i .02 1.02 i.03

i00.0 1.01 1.01 1.01 1.02 i.02 i .02
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Table 2.2. - W(p, 8", S) for S : 2

8*_'_p O .20 0.40 0.60 0.80 i.O0 1.20 1.40 1.60

i .0 0.30 0.52 0.71 0.87 1.00 ! .12 1.23 1.33

2.0 0.42 0.64 0.79 0.91 1.00 1.08 1.15 1.22

3 .O O .55 0.74 0.85 0.93 i.O0 1.06 i.ii 1.16

4 .O O .67 0.81 0.89 0 -95 i .00 i .05 1.09 1.13

5 .O O .76 0.85 0.91 0.96 i.O0 1.04 1.07 i.ii

6 .O O .82 0.88 0.93 0.97 i .00 1.03 1.06 1.09

7 .O O .85 0.90 0.94 0.97 i.O0 1.03 1.05 1.08

8 .O O .88 0.92 0.95 0.97 i.OO 1.02 1.05 1.07

9 .O O .90 0.93 0 -95 0.98 i .00 i .02 1.04 1.06

i0 .O O .91 0.94 0.96 0.98 1.00 1.02 1.O4 1.O6

ii .O O .92 0.94 0.96 0.98 i.O0 i .02 i .04 1.O5

12.0 O .93 0 -95 0.97 0.98 1.00 i .02 i .03 i .05

13 .O O .93 0.95 0.97 0.98 i.O0 i .02 i .03 1.O4

14 .O O .94 0.95 0.97 0.99 1.00 i .O1 1.O3 1.04

15.0 0.94 0.96 0.97 0.99 i .OO i .01 1.03 1.04

20.0 O .96 0 -97 0.98 0 -99 i.O0 i .O1 1.02 1.03

25.0 O .97 0.98 0.98 0 -99 i .00 1.01 i .02 1.02

30 .O O .97 0.98 0 -99 0.99 i .00 i .01 1.01 1.02

35 .O O .98 0.98 O .99 0 -99 i.O0 1.01 1.01 1.O2

40.0 O .98 0.98 0.99 0 -99 i.O0 1.00 1.01 1.01

45 .O 0.98 0.99 0.99 i .00 i .00 1.00 1.01 1.01

50.0 O .98 0.99 0.99 i .00 i.O0 1.00 1.01 1.01

75 .O O -99 0.99 0.99 i.O0 1.00 i .00 i.O1 1.01

i00.0 O .99 0.99 0.99 I.O0 1.00 1.00 i.O0 1.01
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Table 2.2. - Continued

e*_ 1.80 2.00 2.20 2.40 2.60 2.80 3.00

1.0 1.42 1.50 1.58 1.65 i .72 i .79 1.86

2.0 1.28 1.33 1.39 1.44 1.48 1.53 i .57

3.0 1.21 1.25 1.29 1.33 1.37 1.40 i .43

4.0 1.17 1.20 1.23 1.26 1.30 i .32 1.35

5.0 1.14 1.17 1.19 1.22 i .25 i .27 1.30

6.0 1.12 1.14 1.17 1.19 1.21 1.24 1.26

7.0 i.i0 1.13 1.15 1.17 1.19 1.21 1.23

8.0 1.09 l.ll 1.13 1.15 i .17 1.19 1.20

9.0 i .08 i.i0 1.12 1.14 i .15 i .17 1.18

i0.0 1.07 1.09 l.ll 1.12 1.14 1.15 1.17

ii .0 1.07 1.08 i.i0 1 .ii 1.13 1.14 1.16

12.0 i .06 1.08 1.09 i .i0 1.12 i .13 1.14

13 .o 1.o6 1.o7 1.o8 1.10 1.11 1.12 1.13

14 .o 1.o5 1.o7 1.o8 1.o9 i.io i.ii 1.13

15.0 1.05 1.06 1.07 1.09 i .lO 1.11 i .12

20.0 1.04 1.05 1.06 1.07 i .07 1.08 i .09

25.0 1.03 1.04 1.05 1.05 1.06 1.07 1.07

30.0 1.03 1.03 1.04 1.04 1.05 1.06 1.06

35.0 1.02 1.03 1.03 1.04 1.04 1.05 i .05

40.0 1.02 i .02 1.03 1.03 1.04 1.04 1.05

45.0 1.02 1.02 1.03 1.03 i .03 1.04 i .04

50.0 1.02 1.02 1.02 1.03 1.03 1.03 1.04

75.0 1.01 1.O1 1.02 1.02 1.02 1.02 1.03

lO0.0 1.O1 1.O1 l.O1 1.O1 1.02 1.02 1.02
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Table 2.3. - W(p, _*, S) for S = 3

_*_ O. 50 0.70 0.90 i. i0 1.30 1.50 1.70 1.90

i .0 0.43 0.57 0.69 0.80 0.90 1.00 1.09 i .17

2.0 0.53 0.66 0.76 0.85 0.93 1.00 1.07 1.13

3.0 0.63 0.73 0.81 0.88 0.94 1.00 1.05 i.i0

4.0 0.70 0.79 0.85 0.91 0.96 1.00 i .04 i .08

5.0 0.76 0.83 0.88 0.92 0.96 1.00 1.03 1.07

6.0 0.81 0.86 0.90 0.94 0.97 1.00 1.03 1.06

7.0 0.84 0.88 0.91 0.94 0.97 1.00 1.03 1.05

8.0 O.S6 0 .S9 0.92 0.95 0.98 1.00 1.02 1.04

9.0 0.88 0.91 0.93 0.96 0.98 i .00 1.02 i .04

I0.0 0.89 0.92 0.94 0.96 0.98 1.00 1.02 1.04

Ii.0 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.03

12.0 0.91 0.93 0.95 0.97 0.98 1.00 1.02 1.03

13.0 0.92 0.94 0.95 0.97 0.98 1.00 1.01 i .03

14.0 0.93 0.94 0.96 0.97 0.99 1.00 1.01 1.03

15.0 0.93 0.95 0.96 0.97 0.99 1.00 1.01 1.03

20.0 0.95 0.96 0.97 0.98 0.99 1.00 i .01 1.02

25.0 0.96 0.97 0.98 0.98 0.99 i .00 1.01 1.02

30.0 0.97 0.97 0.98 0.99 0.99 1.00 1.01 1.01

35.0 0.97 0.98 0.98 0.99 0.99 i.00 i .01 1.01

40.0 0.97 0.98 0.98 0.99 1.00 1.00 1.00 1.01

45.0 0.98 0.98 0.99 0.99 1.00 i .00 i .00 1.01

50.0 0.98 0.98 0.99 0.99 1.00 1.00 1.00 i.01

75.0 0.99 0.99 0.99 0.99 i .00 1.00 1.00 1.01

i00.0 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00
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Table 2.3. - Continued

0"_ 2. lO 2.30 2.50 2.70 2.90 3. lO 3.30 3.50

1.O 1.25 1.33 1.40 1.47 1.53 1.60 1.66 1.72

2.0 1.18 1.24 1.29 1.33 1.38 1.42 1.47 1.S1

3.0 1.14 1.18 1.22 1.26 1.30 1.33 1.36 1.40

4.0 1.12 1.15 1.18 1.21 1.24 1.27 1.30 1.33

5.0 1 .lO 1.13 1.15 1.18 1.21 1.23 1.26 1.28

6.0 1.08 1.11 1.13 1.16 1.18 1.20 1.22 1.24

7.0 1.07 1.10 1.12 1.14 1.16 1.18 1.20 1.22

8.0 1.07 1.09 1.11 1.12 1.14 1.16 1.18 1.19

9.o m.o6 1.o8 1.1o 1.11 1.13 1.15 1.16 1.18

lO .0 1.05 1.07 1.09 1.10 1.12 1.13 1.15 1.16

ll.O 1.05 1.06 1.08 1.09 1 .ll 1.12 1.14 1.15

12.0 1.05 1.06 1.07 1.09 1.10 1.11 1.13 1.14

13.0 1.04 1.06 1.07 1.08 1.09 1.11 1.12 1 .13

14.0 1.04 1.05 1.06 1.08 1.09 l.lO 1.11 1.12

15.0 1.04 1.05 1.06 1.07 1.08 1.09 i.I0 i .12

20.0 1.03 1.04 1.05 1.06 1.06 1.07 1.08 i .09

25.0 1.02 1.03 1.04 1.04 1.05 1.06 1.07 1.07

30.0 1.02 1.03 1.03 1.04 1.04 1.05 1.06 1.06

35.0 1.02 1.02 1.03 1.03 1.04 1.04 1.05 1.05

40.0 i .01 i .02 1.02 1.03 i .03 1.04 i .04 i .05

45.o I.Oi 1.o2 l.o2 1.o3 i.o3 i.o3 1.o4 1.o4

50.0 1.01 1.02 1.02 1.02 1.03 1.03 1.03 1.04

75.0 l.O1 i .01 1.01 1.02 1.02 1.02 1.02 1.03

i00.0 1.01 1.01 1.01 1.01 1.01 1.02 1.02 1.02
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i .00

Table 2.4. - W(p, 8*, S) for S : 4

i .20 1.40 1.60 1.80 2.00 2.20 2.40

1.O 0.58 0.68 0.76 0.85 0.92 1.O0 1.07 1.14

2.0 0.66 0.74 0.81 0.88 0.94 1.O0 1.06 1.11

3.0 0.72 0.79 0.85 0.9O 0.95 1.00 1.04 1.09

4.0 0.77 0.82 0.87 0.92 0.96 1.00 1.04 1.07

5.0 0.81 0.85 0.89 0.93 0.97 1.00 1.03 1.06

6.0 0.84 0.87 0.91 0.94 0.97 i .00 i .03 1.05

7.0 0.86 0.89 0.92 0 -95 0.97 1.00 1.02 i .05

8.0 0.88 0.90 0 -93 0.95 0.98 i .00 1.02 1.04

9.0 0.89 0.91 0.94 0.96 0.98 1.O0 1.02 1.04

lO .0 0.9O 0.92 0.94 0.96 0.98 1.00 1.02 1.03

l1.0 0.91 0 -93 0 -95 0.97 0.98 i .00 1.02 i .03

12.0 0.92 0 -93 0 -95 0.97 0.98 1.00 i .02 1.03

13.0 0.92 0.94 0.96 0.97 0 -99 i .00 1.01 1.03

14.0 0.93 0.94 0.96 0 -97 0 -99 1.00 1.01 1.03

15.0 0.93 0 -95 0.96 0.97 0 -99 1.O0 1.01 1.02

20.0 0.95 0.96 0.97 0.98 0 -99 i .00 1.01 1.02

25.0 0.96 0.97 0.98 0.98 0 -99 i .00 1.01 1.02

30.0 0.97 0 -97 0.98 0 -99 0.99 1.00 1.01 i .01

35.0 0.97 0.98 0.98 0 -99 0 -99 1.00 i .01 1.01

4O .0 0.97 0.98 0.99 0.99 1.00 i .00 1.00 1.01

45.0 0.98 0.98 0.99 0 -99 i .00 1.00 1.00 1.01

50.0 0.98 0.98 0.99 0 -99 1.00 i .00 1.00 i .01

75.0 0 -99 0 -99 0.99 0 -99 1.00 1.00 i .00 1.01

i00.0 0.99 0 -99 0.99 1.O0 1.00 1.00 1.O0 1.00
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Table 2.4. - Continued

e*_ 2.60 2.80 3.o0 3.2o 3.4o 3.6o 3.80 4.oo

1.0 1.21 1.27 1.33 1.39 1.45 1.51 1.56 1.62

2.0 1.16 i .20 1.25 1.29 1.34 i .38 1.42 1.45

3.o l.Z3 1.16 1.2o 1.23 1.27 1.3o 1.33 1.36

4.0 l.lO 1.14 1.17 1.20 1.22 1.25 1.28 1.30

5.0 1.09 1.12 1.14 1.17 1.19 1.22 1.24 1.26

6.0 1.08 i.i0 1.13 1.15 1.17 1.19 1.21 1.23

7.0 1.07 1.09 i.ii 1.13 1.15 1.17 1.19 1.21

8.0 1.06 1.08 1 .i0 1.12 1.14 1.15 1.17 1.19

9.0 1.06 1.07 1.09 i.ii i .12 1.14 1.16 i .17

i0.0 1.05 1.07 1.08 l.lO 1.11 1.13 1.14 1.16

ii.0 1.05 1.06 i .08 1.09 l.ll i .12 i .13 i .15

12.0 1.04 1.06 1.07 1.08 i.I0 i.ii 1.12 1.14

13.0 i .04 1.05 i .07 1.08 i .09 I. i0 i. ii i.13

14.0 1.04 1.05 1.06 1.07 i .09 1 .i0 1.11 1.12

15.0 1.04 1.04 1.06 1.07 1.08 1.09 1 .i0 l.ll

20.0 1.03 1.04 i .05 1.05 1.06 1.07 1.08 i .09

25.0 1.02 1.03 i .04 1.04 1.05 i .06 1.06 1.07

30.0 1.02 1.03 1.03 1.04 1.04 1.05 1.05 1.06

35.0 1.02 1.02 1.03 1.03 1.04 1.04 1.05 1.05

40.0 1.01 1.02 1.02 1.03 1.03 1.04 1.04 1.05

45.0 1.01 i .02 i .02 1.03 1.03 1.03 1.04 1.04

50.0 1.01 1.02 i .02 1.02 1.03 1.03 1.03 1.04

75.0 1.O1 1.O1 1.O1 1.02 1.02 1.02 1.02 1.03

lO0.0 1.O1 1.O1 1.O1 1.O1 1.O1 1.02 1.02 1.02
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Table 2.5. - W(p, @*, S) for S = 5

@*_ 1.50 1.70 1.90 2.10 2.30 2.50 2.70 2.90

1.0 0.66 0.74 0.81 0.87 0.94 1.00 1.06 1.12

2.0 0.72 0.78 0.84 0.90 0.95 i.O0 i.05 1.09

3.0 0.77 0.82 0.87 0.92 0.96 1.00 1.04 1.08

4.0 0.80 0.85 0.89 0.93 0.97 1.00 i .03 1.07

5.0 0.83 0.87 0.90 0.94 0.97 1.00 1.03 1.06

6.0 0.85 0.89 0.92 0.95 0.97 i .00 1.03 1.05

7.0 0.87 0.90 0.93 0.95 0.98 1.00 i .02 1.04

8.0 0.89 0.91 0.93 0.96 0.98 1.00 1.02 1.04

9.0 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04

i0.0 0.91 0.93 0.95 0.96 0.98 1.00 1.02 i .03

ii.0 0.91 0.93 0.95 0.97 0.98 1.00 1.02 1.03

12.0 0.92 0.94 0.95 0.97 0.99 i .00 1.01 i .03

13.0 0.93 0.94 0.96 0.97 0.99 i .00 1.01 1.03

14.0 0.93 0.95 0.96 0.97 0.99 i .00 1.01 1.03

15.0 0.94 0.95 0.96 0.98 0.99 1.00 1.01 1.02

20.0 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02

25.0 0.96 0.97 0.98 0.98 0.99 1.00 1.01 1.01

30.0 0.97 0.97 0.98 0.99 0.99 1.00 1.01 1.01

35.0 0.97 0.98 0.98 0.99 0.99 1.00 1.01 1.01

40.0 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.01

45.0 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.01

50.0 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.01

75.0 0.99 0.99 0.99 0.99 1.00 i .00 1.00 1.01

i00.0 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00
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Table 2.5. - Continued

6"_ 3.iO 3.30 3.50 3.70 3.90 4. i0 4.30 4.50

i.O i.18 i.23 i .29 i.34 i.39 i.44 i .49 i .54

2.0 i.14 i.18 i.22 i.26 i.30 i.34 i.38 i.4i

3.0 i.ii i.i5 i.18 i.2i i.25 i.28 i.3i i.34

4.0 i.iO i.i3 i.i5 i.i8 1.2i i.23 i.26 i.28

5.0 i.08 i.ii i.i3 i.i6 i.i8 i.20 i.23 i.25

6.0 i.07 i,iO i.i2 i.i4 i.i6 i.i8 i.20 i,22

7.O i.07 i.09 i.ii i.i2 i.i4 i.i6 i.i8 i.2o

8.0 i.06 i.08 i.iO i.ii i.i3 i.i5 i.i6 i.i8

9.0 1.05 i.07 i.09 i.iO i.i2 i.i3 i.i5 i.i6

iO .0 i.05 i.06 i.08 i.09 i.ii i.i2 i.i4 i.15

ii.O i.05 i.06 i.07 i.09 i.iO i.ii i.i3 i.i4

i2.0 i.04 i.06 i.07 i.08 i.09 i.ii i.i2 i.i3

i3.0 i.04 i.05 i.06 i.08 1.09 l.iO i.ii i.i2

i4.0 i.04 i.05 i.06 i.07 i.08 i.09 i.iO i.i2

i5.0 i.03 i.05 i.06 i.07 i.08 i.09 i,iO i.ii

2O .0 i.03 i.04 i.04 i.05 i.06 1.07 i.08 i.09

25.o i.o2 i.o3 I.O4 i.o4 i.o5 i.o6 i.o6 i.o7

30.0 1.02 1.02 1.03 1.04 1.04 1.05 1.05 1.06

35.0 i.02 i.02 i.03 i.03 i.04 i.04 i.05 i.05

4O .0 i.Ol i.02 i.02 i.03 i.03 i.04 i.04 i.05

45.0 i.Oi i.02 1.02 i,03 i.03 i.03 1.04 i.04

5O .0 i.Oi i.02 i.02 i.02 i.03 i.03 i.03 i.04

75.0 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.03

i00.0 1.01 1.01 i .01 1.01 1.01 1.02 1.02 1.02
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