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The Analysis of Structurally Crthotropic Shells

By licans of the Compliance ll2trod

I. Introduction

The objective of this report is to state the six month progress or
NASA Grant NGR 44-001-031, Supplement No. 2. The current gran: is a
renewal of MASA Grant INGR 44-001-031, Supplement Mc. 1, which in turn is
a renewal of NGR 44-001-031. The current grant has four objectives

1. Continuation cf experimental verification of compliancs rela-

tions as applied to right circular cylindrical shells

2. A study and analysis of linear shell theory elastic constant

instability conditions for symmetrically loaded snells of
revolution

3. Generalization of linear shell theory elastic constant insta-

bility conditions in order that the condition be avoided

4. Non linear analysis for the determination of stable shell con-

figurations when linear shell theory elastic constant instability
is manifest.

At present, the greatest effort has been directed toward objeccive
number two. However, all of the objectives have been acted upon in vary-
ing degrees of éffort, though none have been brought to a state of com-
pletion. A detailed discussion of the results obtained for each of the

listed objectives is given in the following portion of the report.



II.

Discussion of Results

1. PFirst ngective

A comparison ¢f analytical and experimental results for a rib
stiffened circular cylindrical panel has been given in the report
on NGR-44-001-031, Supplement No. 1, December 22, 1967. Since that
time, an error in the analytical results has been uncovered. The
error is due to an incorrect statement of the boundary conditions.
Hence the equations of the analysis a.: in the process of being
reprogrammed with the expectation of better correlation between
analytical and experimental data.

At the present time, experiments on a full cylindrical shell
are in a conceptual stage. Until a good correlation is obtained
between the analytical and experimental results for the stiffened
panel, it is felt that full cylinder testing would be of no avail.

2. Second Objective

The problem of elastic constant instability had been first noted
and reported in NGR 44-001-031, December 1, 1966. A development
analagous to that given by Sanders for first order shell theory had
been given for a displacement formulation of the plane anisotropic
shell equations. In reducing the equations to the case of a circular
cylindrical shell, a non-satisfaction of boundary conditions had been
noted for certain combinations of elastic constants.

In order to more fully investigate this effect, a classical first
order derivation for a symmetrically edge loaded, elastically plane

anisotropic right circular cylindrical shell had been undertaken.



The analysis and its results are given in Appendix A.

As is goted in the derivation, eleven cases result in e non-
satisfaction of the boundary conditions. However, though these
cases are possible mathematically, a physical constraint exists
which may limit the physically possible cases. This constraint
is involved with the expression for the potential energy in that
this quantity must be positive definite. Thus a number of in-
equality reletions on the elastic constants will result which in
turn may rule out from consideration some of the mathematically
possible cases noted.

At the present time, a check is being completed cn the strain
enérgy function and the resulting relations for the elastic con-
stants.

3. Third Objective

The general first order plane anisotropic shell equations have
been developed. However an elastic constant stability analysis of
these equations will not be attempted until the second objective is
completed and the results indicate that mathematically and physically
possible unstable states exist.

k. PFourth Objective

An engineering oriented non-linear analysis of shell equations
is in the process of development. The term "engineering oriented"
is utilized in that unlike general non-linear studies, the present
study only considers first order non-linearties. That is, quadratic

in displacements and/or their derivatives are retained but cubics



and higher order products are neglected. In this way it is hoped
that the equilibrium, compatibility and constitutive equations
may be stated in terms of physically measurable quantities other
than displacenent componenté.

The derivations for the first quadratic form, the equilibrium
and constitutive equation has been completed. However, considerable
difficulty has been encountered in the development of the second
quadratic form. The principal difficulty lies in defining the
angle of rotation for an element. At the present time, the effort

is being directed toward this definition.



Aprendix A

Displacements and Elastic Constant Stability of a Plane Anisotropic

Edge Loaded Semi-Infinite Cylinder



Nomenclature
Q;j elastic constants
A8 Lame' surface parameters
AQJ elastic coefficients occurring in constitutive equations
€;; membrane strains
’é;lée principal curvature of the undeformed reference sarface
4?2} bending and twisting moment stress resultant
V< radius of the shell reference surface
72[ membrane force stress rcsultant

&, v, wr displacement components in the directions «, & and 7
© principal coordinates in the longitudinal and circuz-
ferential direction of the cylinder
Z direction normal to shell surface
«,/4 principal curvilinear coordinate curves
S shell thickness
’%’;ﬁd curvature change of the reference surface
7~  torsion of the reference surface
Introduction
An intrinsic plane anisotropic symmetry condition inthe elastic
constants is a relatively rare phenomena in shell structural materials.
However with the advent of composites and laminates, materials exhibit-
ing intrinsic orthotropic elastic constant symmetries are becoming
increasingly important as primary structural materials in hizh strength-

low weight applications.



Planc anisotropic clastic materials contain but one plane of
elastic symmetry and hence one principal elastic axis. The number
of independent elastic constants associated with such a wmaterial
is thirteen. Orthotropic elastic materials contain three planes of
N
elastic symmetry, threce principal elastic axis and contain nine
independent elastic comstants. Relative to an orthogonal 1-2-3
coordinate system, the simplest mathematical form, or equivalente.y,
- the canonical form of the plane anisotropic and orthotropic stress
strain relations is obtained under the following conditions. In the
first case, the principal elastic axis is coincident with one of the
coordinate axis and in the second case wnen the three principal elastic
axis constitute tue coordinate axis. Assuming that the 3 axis is the
principal elastic axis for the plane anisotropic material, the canonical

form of the stress-strain equations for the two anisotropies is given

as follows. For the plane anisotropic material

)
I

Ry 95 * Quyp 92 7 Ruzz Oz2 7 2,353 933

€12 = Quzp 9 *Q,2/2%z * 2,222%2 * %235 %33

6?43 = 49349?42; 7 ‘zc£83'czis

RQupz Uy * Ryz22 972 # Rzz22 Ozz * 22223 U=
€23 = Q52305 " Qz323 933

€33 = Ruzs 9 " Rigzz O 7R3z Iz © 22535935



For the orthotropic material
s = Quy T4 *@,229z2 * RXusz Y35

€2 = R,,29, Q3222022 * %233 %3

€3 = a,3,3 9.3

€22 = Quzz2 0,, + Q2222 Gz2 7 Qz253 C3z

€25 = 22323 933
Cs33 = @433 C,, * Q33353072 * Rz3335 J=23

Since the stresses may be considered independent variables,
the mathematical characteristics of two sets of canonical stress-
strain relations fundementally are different from each other.
Whereas the canonical orthotropic formulation is identical mathemat-
ically to that which would be encountered in isotropic elasticity,
the canonical plane anisotropic formulation contains coupling efrfects
not found in the canonical orthotropic equations. 1In particular, the
normal strains in the canonical plane anisotropic fc..aulation are
functions not only of normal stresses but also of shear stresses and
visa-versa.

Thin shell theory is based on three indewendent formulations.
The equilfbrium equations, the compatibility equations and the
constitutive equations. The constitutive equations relcce che kinetics
of the shell reference surface to its kinematics. As a consequonce,
this formulation is the only one which utilizes thz stress-strain

relations.



As mentionad, the caronical stress-strain relations for materials
possessing orthotropic and p.ane anisotropic elastic properties
fundamentally differ from each other in mathematical form. It would
then be reasonable to expect that the corresponding comstitutive
shell equations for the two materials would also exhibit this difference.
That is, the constitutive equations Ior plane anisotropic materials
would be expected to contain reference surface shear force stress
resultants and twisting moments in the expressions for the reference
surface normal strains and curvature changzes.

Given a shell geometry, loading and boundary conditions, the
equilibrium and compatibility equations remain icdentical in form
whatever the material properties may be. However the constitutive
equations are a necessary part of the formulation. Hence if they
differ in mathematical form from one material to another, the corres-
ponding resultant shell equations will reflect this difference.

From the discussion of the previous paragraph, it is obvious then
that the resulting shell equations when developed from the canoniczal
form of the plane anisotropic stress-strain relations will differ

in mathematical form from those developed from either the isotropic
or canonical orthotropic stress-strain relations.

Shell coordinization is based on the principal curvilinear
curves of the undefermed reference surface and the normal direction
to that surface. In the use of orthotropic materials such as composites

or laminates in shell const—iction, the orientations of the principal



elastic axis of the material very oiten are skewed relative to the
shell coordinates. This condition is especially true if the shell
is of the layered type in which case the skewing may vary from layer
to layer. However the physicai characteristics of the orthotropic
layer or layers is such that when formed into a shell structure,
one principal elastic axis remains normal to the shell reference
surface.

Unlike isotropic elasticity, anisotropic elastic constants vary
in magnitude with coordinate transformation. The transformation
law for elastic constants from one coordinization to another is

given as

7

Qijez = Yim din Lep 2.122. Arryp g

The quantities /,; are the direction cosines of the ¢ 7 new axis
with respect to the y#4 original axis. It is obvious then that

given an ortho:ropic material, the canonical form previously given

for the stress-strain relations is applicable only for a unique coordini-
zation, namely one in which the coordinate axis coincide with the
principal elastic axis. Also, it is equally obvious that given a
general coordinization, the mathematical form of the orthotropic
stress-strain relations becomes undistinguishable from that encountered
in general anisotropy. The latter case, where no elastic symmetries
are presont, contains twenty one independent elastic constants whereas
the former still contains only nine ind2pendent elastic constants.

From the discussion of the preceeding paragraph it is apparent



that the cancaical form of the orthotropic stress-strain relations
cannot be utilized when dealing with the skewed orthotropic shell
layers. Since the reference surface principal curvilinear curves

and normal form the coordinate system, then the stress-strain relations
of the material must be expressed relative to that coordinate system.
Thus a coordinate transformation of the canonical orthotropic stress-
strain cecquations must be effected.

That the principal elastic axis normal to the shell surface
coincides with a coordinate axis allows a relatively simple trans-
formation. The coordinate transiormation will consist of a rotation
about this elastic axis through an angle 2qual to the skew value.
Thus the new coordinization for the elastic constants will be the
same as that for the shell. The transformad stress-strain relations
will be identical in mathematiczl form to the canonical plane anisotropic
stress-strain equations previously given. However, these transformad
orthotropic stress-strain relations still will contain only nine
independent elastic constants.

The mathematical equivalence of the canonical form of the plane
anisotropic and the transformed orthotropic stress-strain relations
is extremely important. If the shell is single layered, then it
follows directly that the constitutive equations will be identical
mathematically to those obtained from the canonical form of the plane
anisotropic shell equationz. In the case of the multi~layered shell

wherein each of the layers is orthotropic but the principal elastic



axis arc skewed differ~nt amounts in different layers, the problem
is more complex. However cven in this case it can be showa that the
appropriate constitutive equations may be derived irom the canonical
form ¢. the stress-strain equation of a hypothesized single layered
Fiane anisotropiz continuum.

The discussinn of the pieceeding paragraphs allows the following
important con:lusioa to be drawn. The mathematical form of the consti-
tutive equatiors ‘erived from the canonical form of the plane anisotropic
strass-strain reliations is applicable to nct only materials possessing
intrinsic elastic plane anisotropy but also to materials possessing
elastic orthotropy and whose principal elastic axis are skewed to
the principal geometric directions. Comnosites, laminates and fiber
windings form a relatively important class of structural shell materials.
Since these materials in many applications fit the latter category,
then the importance of the analysis of the plane anisotropic comstitutive
equations and hence the plane anisotropic shell equations is self
evident,

At the present time, very few analytical solutions for plane
anisotropic materials have appeared in the literature. Ambartsumian
(1, discusses plane anisotropy and even formulates constitutive shell
equations for plane anisotropic layered materials. However his shell
equation solutions are applicable only to materials exhibiting the

canonical form of the orthocropic stress-strain relations relative

to the shell coordinate system. A perturbation analysis for solving



planc anisotropic shells of revolution has been developed by Dong (2).
Though the method is cpplicable for gencral plane anisotropies, the
slow convargence of the perturbation series relegates the method to
the treatment >f mild planc anisotropies.

The difficulty in solving the plane anisotropic shell equationrs
occurs because of the inherent coupling effect which exists in the
shell comstitutive equations between the membrane shearing and axial
deformations and between the reference surface bending and twisting
deformations. Unlike the constitutive equations of either isotropic
or canonical orthotropic elasticity, this coupling effect prevents
the separation of reference surface twisting and shearing from pending
and stretching. Thus the constitutive cquations and hence the resulting
shell equations for elastic plane anisotropic materials fundamentally
are different from their isotropic or canonically orthotropié counter-
parts. As a consequence, the well developed techniques and symmetry
conditions associated with the solution of isotropic and canonically
orthotropic shell problems cannot be extended to the analysis of
plane anisotropic materials.

The paper is concerned with the first order linear analysis
and solution of a semi-infinite right circular cylindrical thin elastic
shell, The material properties are assumed to be canonically plane
anisotropic relative to the shell coordinate system and the loading
is assumed to consist of an axially symmetric edge bending moment

and transverse shear.
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The result of the analysis is a fourth order ordinary linear
homogeneous differcential equation defiring the normal displacement
of the shell reference surface. Hence the solution of the equation
poses no difficulty in that it may be found by elementary mathematical
techniques.

The problem solution is interesting because of its simplicity.
Thus it illustrates several features peculiar to plane anisotropic
shell analysis and which frequently are obscured by more complex shell
problems. First, the derivation of the shell equations does illustrate
that plane anisotropy and the resulting constitutive equations destroy
axial symmetry even though the loading zand shell geometry may exhibit
this symmetry. Secondly, the fact that the solution is of a relztively
simple form allows a qualitative and quantitative characterization
of plane anisotropy as weak, mild and strong. As is shown the character
of the solution and hence the mode shape of tha normal displacement
changes with each of the degrees of plane anisotropy. Thirdly, it
illustrates a type of instability peculiar only to materials whose
stress-strain equations are stated in plane anisotropic canonical
form. Instability, as referred to in this paper, is defined as that
condition wherein the normal displacement as determined from linear
theory tends to infinity.

The instability uncovered in the analysis is solely a function
of the elastic constants and is independent of the external loading.
Hence in nature it differs from the elastic instability encountered

in either isotropic or canonically orthotropic shell analysis. 1In
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order to differentiate the two instabilities, the former will be termed
elastic constant instability.

Though the clastic constant instability is a function of all of
the elastic constants, one particular set of elastic constants must
be present if the instability condition is to occur. These constants
are the coupling constants, that is, those constants which differentiate
the canonical form of the plane anisotropic stress-strain relations
from the canonical form of the orthotropic stress-strain relatiouns.
flence as previously stated, the elastic constant instability is peculiar
only to shells whose str:ss-strain equations are in canonical plane
anisotropic mathematical form.

Because of the many possible numerical values that anisotropic
elastic constants may possess, algebraic rather than numerical solutions
are presented. In order to verify that the elastic constant stability
is a possible physical condition, a single layered skewed orthotropic
material is used to generate the form of the plane znisotropic stress-
strain relations. The result is that instability always occurs at
a skew angle of 45°. Further, the instability is independent of the
magnitude of the elastic constants appearing in the cannonical form
of the orthotropic stress=-strain equations.

Problem Solution
A. General Right Circular Cylindrical Shell Equations
The reference surface of a right circular cylindrical shell

of constant thickness & and mean line radius &2 will be chosen to
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be the mean surface. This surfacc is positioned midway between the
upper and lower bounding surfaces of the cylindrical shell. Hence
the reference surface also is of right circular cylindrical geometry
and is of radius < .

The principal curvilinear coordinatc curves of the undeformed
reference surface are in the longitudinal and circumferential directions
of the surface. These curves may be parameterized by the variables

X and & , where X 1is a linear measure in the longitudinal direction
and & 1is an angular measure in the circumfercncial direction. The
coordinate Z 1is measured normal to the undeformed surZacc and is

-

assumed positive when acting in the convex direction to the suriaz

¢
w

p4

The positive directions of the X and © coordinate curves ara suc
that unit vectors tangent to these coordinate curves and directed
toward increasing coordinate values together with a unit vector normal
to the surface and acting in the positive Z direction form a righc
handed orthonormal triad of vectors. ZIhe reference surface and its
coordinization is shown in Fig. 1.

Relative to the coordinization described, the linear equilibrium
equations may be stated in stress resultant form. Utilizing the positive

convention for force and moment stress resultants as given by Novozhilov

(3), the following equations result.

1)
D Tax d7ox - = o
2x 7 764— 22A 7
2 2—;9 e 57—{9 o L T = e = o




2N 2/ —_ Ay = O 13
%?9a+_5_ag ox

Letae, v, w represent the reference surface displacement vector
components. The components and respectively will be on the direction
of the positive tangent vectors to the and coordinate curves.

The component  will be normal to the surface

[8)

nd positive in the
positive  direction. The reference suriace deformations, that is,
strains, curvacture changes and torsion, are expressible in terms of

the displacement components as the following.

= o4t = - D°uwr
Gx Sx K, = %_;;_ 2)
U _ 4 Sty 24
€6k 98 T gx "R Jxse TR 9K
-1 sV 4w
Coo "5 Iz Qfur
R o6& R =-_1 | QW
Ko R 3ot Bt 9o

The compatibility relations for the reference surface deformations

are given as the following set of equations.

oK, _ | 27 _
W rRIP =Y @)
Ky _RIT . 3o _ L Du _
EE) Rex'f- t;)f R 9s =<
b

The relation between the stress resultants and the stress distri-

bution through the shell thickness is stated in integral form. These

relations are the following. 5y
& -
T = o, (1+ %)dz My = f 0;‘-2(/+ 5) dz
"S/; "S/L
g/z. %3 -
Tao={ 070 (145)d2 Mo = | Gia® (1+3)d2

574 =273



¥ o
Tocs J, G2 My §, e 29

"9/?. ox —9u 14
7% 8/2_
Tee'-'-j O;OCJ’E Mee:.' OQ'OZCJE
=578 : =4,

I'n to this poing, the relations stated are linearly exact.
However the definition of the shell problem is not complete in that
the constitutive equations have not been given. In order to state
these relations, it must be possible to integrate the stress resultant
stress equations which implies that the stress distribution through
the shell thickness is known.

The Kirchhoff hypotheses define the displacement variation and
hence also the strain variation through the shell thickness. However
these variations are hypothesized rather than being fsct and hence
lead to analysis errors. For a cylindrical shell of the type discussed,
the error at least is of order ( &42).

The simplest form of the strain distribution through the shell
thickness and yet which contains the maximum accuracy allowable from
the Kirchhoff hypotheses is one which is a linear function of the
coordinate Z . Thus the strains €, Coo, €ro» at points away from
the reference surface may be expressad as functions of the reference
surface deformations and the coordinate 2z . These relations are given

as the following.

S (Z)
€op (2) = Coot Z Ko

Eu + Z Ky
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If the strain variation in the shell is known, then the stress
variation can be calculated from the appropriate stress-strain relatioms.
For the problem being considered, the shell material is assumed to
exhibit the canonical form of the plane anisotropic stress-strain
relations relative to the coordinate axis chosen. The direction
is assumed to be the direction of a principal elastic axis. Thus the

stress-strain relations are the following.

Eux = Quu 0;& + amz 0;9 + a:azz Coo + au;g 0';--5

Cxe= Amaz O + Z N Ore + %222 Toot 1233 OEZ-
Cxz ::a"'b"s 073+ a:sza 0;3
€00 = A2z O;A + 62‘n.zz 0;9 + szzz 09194’ azzss 022

Czz= Qysz Ty 01233 O;E' + Laass 0;9+ Q3333 O;z_

The four subscript system for the elastic constants is a necassary
one if the stresc-strain laws and the elastic constant trarsformation
laws are to be presented in temsorial form. However structural shell
applications where often analyses are based on contradictory hypotheses
negate or at least minimize the use of tensorial representations.

Hence for the sake of convenience in preseantation, a double subscript
notation is adopted for the elastic constants. Such in fact will

be the situation in this paper. Thus when rewritten in a double
subscript notation, the canonicai form of the plane anisotropic stress-

strain law is the following.

UG+ Qp Op + Qg Op, + Q Oz
€ = Quz Oixt Qgp Oko + @y Tpp + A, o U=
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€= Q3 %zt Qs Uoe
€os = ata- Oz x + am 0:(6 + d44 0;9 + a% 0::'2-
= +Uss O,

6 Tt Qzg Gro + Qup Oy + Qe Ozz

If{ the strain wvariation has been determined from the Kirchholl
hypothesvs, then certain consistent simplifications and omissions
must be introduced into strecs-strain relations in order that the
stress distribution be applicable to the analysis. To begin wi'h,
the Kirchhoff hypotheses neglect normal stresses and normal strains
normal to the reference surface. Hence the stresses,czge, and the
strains, Cqp, must be set to zero. Setting these two quantities
equal to zero at gach point in the material leads *~ a simultaneous
condition of curvilinear plane stress and plane strain. Huwevar
Kozik (4) has shown that the stress resultant formulation of the
linear ;hin elastic shell equaticns is insensitive within the Kirchhoff
error bounds to this contradiction and further that for such an
analysis the stress-strain equation for the normal strain &,;should
be suppressed.

Secondly, the Kirchhoff hypotheses neglect the effects of transverse
shear strains. However this neglect is an implicit rather than

explicit result of the hypotheses. Hence rather than setting the



17

transverse shear strain expressions equal to zero, the stress-strain
cequations relating these quantities to the corresponding transverse
shear stresses are suppressad. Thus the stress-strain relations

>

appropriate to an analysis based on the Kirchhoff hypotheses are the

following.
exx = au a;x “'Qtz OZQ -+ al4 0;9 )
o = A2 0;;-.‘*' 2, Uxe + a7_4 0;9

Coo= Qi Uu+Qzy Opo + Qs Tgo
As is noted, the number of independent elastic constants appearing
in the pertinent stress-strain relations is six rather than the
thirteen encountered in general plane anisotropy.
The stresses may now be solved in terms of the strains. The
resulting relations are the following equatioms.
Oxx= ApCux+ Az C€e + Au Co0 (3
Oio = Az Cuxt Azz Cxe + Az Con
0;9 = Agq Sxx + R €uo + A Coo

In these expressions, the constants /:":J-"e defined in terms of the elastic

constants. Thus

2 2
A,, = (sz Qu= 2y )/A Azz"(aqu" Q )/A (6)
A, = (am Qu-Q, a44)/ A Az4,=(a,,_a,4_- a, Qz4-)/4
2
Al4 = (a:z azd- - QN- sz)/A A44 = (au sz "an. )/A

and

Z < 2
A= @, sz 444. +2alz Qm Qz:t_ - d/z Q44 - Q” dzf— —aﬁl- sz
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Knowing the strain variation, the stress variation is determined
and hence the stress resultant-stress eguations integrated. The
conscitutive equations now can de derived. In stating these equations,
azain use is made of the Kirchhoff minimum error bound of iﬁz .

Tius the simdlest fo;mulation of the constitutive equations, and yet

one which preserves the maxirmum possible accuracy, consists of the

following relatioms.

T;;L = (ﬁll e"# + All exa + AM ega) 5’ ’. (7)
T*B=Te;& =( Az Cux + A, Eio + Azq Coo) ¥ 5
Tea '-"(9,4 Cux+ Arq Ep+ &4593) g 3

3
M,(*: (/qu H,g +2 All 7‘ + Rl‘- Ha \) %/1’2-
Mig=Mox= (A He+2 A T + Ayy Hg) 5'3/12.
Moo= (A Hx+2 Azg T + Aoy Ky ) %3/12.

The boundary conditions also are effected by the Kirchhoii
hypotheses. Analyses based on these assumptions can not account
for all the possible stress resultants acting on a free boundary oi
a shell. Hence equivalent shear stress resultants must be defined
on the boundary and further, the explicit statement of the twisting
moment stress resultant be suppressed. The effective shear stress
resultants acting on iree edges coinciding with the coordinate curves

are the following.



X= constant 6 = constant
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- \ A - M
T lefflz Ta+ = %__é_xo ; Tog (eff)=Toa + éeie (8)
TotefflaTo+ 5 Mg To,(eff) = Tio

B. Equation Simplirfication
Assume that the cylindrical shell is infinitely long and is
subjected to a uniform distribution of edge bending moment,AAo, and

cransverse shear,Qo » &@s shown in Fig. 2, The external surface loading

ons 1 - 8 given in the previous

¥

is assumed to be non-existent. Equat

ection and which define the pertiment cyiindrical shell equations

v

assunc a simpler fo

5

In simplirying these equations note must be tsken of the fact
tnat the geometry and loading are axially symmetrical with respect
to the axis of the cylinder. Hence it appears reasonable to assume
tnat the shell dependent variables will be independent of the coordinate
© . However, further simplification is not possible.

The constitutive equations for the given shell contain coupling
effects between the membrane axial force stress resultants aad the
membrane shear strains. Further, the coupling cffect also exists
between the membrane bending moment and the reference surface torsiom.
Thus unlike an isotropic or canonically orthotropic analysis, given
an axial force or bending moment stress resultant, it follows that
there will aiso be a membrane shear force stress resultant and a
twisting moment stress resultant. Hence in eneral, it must also be

assuned that there will be correspondinzly a membrane shear strain

and a reference suriace torsion. It also Zollows that there will
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exist a tangential displacement, V”, in the © direction.

The simplified shell equations take the following form. Since

the variables are only a function of X , then ordinary derivatives

may oe usced.

Equiiibrium
dj;::x A 9)
d;tie'-+-f§ '1:9;5 = O
‘g_r;_::‘ —-'é Too= O
L Tye=

(10)
e&ﬂz Au' H,g=" E;j."—"'-r
X dﬂl
— C_J_I = L dv
- W =
Cos = ¥ H,= O
Compatibility
.—,é_o_/_z_’ - dexe = o a1
dX d X
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Constitutive
Tax = (A, Exx # Bz Exo + Ay Coo)s (12)
Tio = (Fg Cax + 43 Cxo 7+ HgC00 ) S
Too = (AgCunx 7 Aoy Cxo *%y Cos)s
Hyw =, He +2 £y 9) S/2
/%yg = /42 /fx 2 /s 7) SZZ
Koo = (A, Xy + X Aeg 7)) 5§20z

Boundary Conditions

7;)( - O )
Hex = o ) X=o

7}—2’ = Go

xo -/--—é/' o = o

L,V , W = 0 a5 x o oo

Resultant Differential Equation

Ultimately the resultant shell equations will be transformed into

displacement form. The compatibility equations are assumed to be

satisfied identically in displacement form and hence these equaticns

need not be considered in the analysis.

The constitutive equations when expressed in stress resultant

displacement form are as given in the following set of relatioms.

-7;—;:(4//2_/&9“4/2%_2:1"%”)5
X

7;9=(4z%/%+4zz§/—}‘+%{_w)5
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3
//XX::- L S 24, 0/”')5/2
<
3
//{9 =—(’4/Z 9;‘/‘5;'{ — 2 A2 Lo S/Z

3
Moo= (4, du _ 94wz Jer ) Sz
dxE 2

LA

In order that the stress resultant equations be transformed to
displacement form, the transverse sacar stiress resultants must de elimina-

ted from the equations. Thus from the last two equilibrium equatiouns,

Ty = dMxx T..- dMye
e dx °¢ d X

Substituting these relations into the second and third equilibriunm

equations, these two equations and the first equation become the following.

Ei C-EL$ ):: (@)

The first two equations can be integrated directly. Further since
the integrated equations are applicable for any value of X, they are
also applicable at the boundary. However the integrated equations are

equal identically to two of the boundary conditions. Thus the above



23

threce equations may now be written as

!
2
d Myx - A T =0
8 —
ax* R
Note that two of the boundary conditions are identically satisfied.
T;2= AMXX PY T“z -— dMKQ
O ————————— 9‘- — —————
dx J d %

Substituting these relations into the second and third equilibrium

equations, these two equations together with the first equilibrium

equation yield the following.

d (T \=0
dkc e

i%: C.T;e;‘*‘%i M) = O
d %My R
'—'—'}—Tz' log = ©

dx®

The first of these two equations can be integrated directly.
Further, the constants of integration can be evaluated directly since

the integrals of the first two equations are equal identically to two

of the boundary conditions. Thus the preceeding three equilibriun

equations may now be written as,

Tee= ©
Teo + & Mre = ©
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Note that the first two equations guaranteec identical satisfaction of
two of the boundary conditions.

The stress resultant=-displacement Iorm of the constitutive equations
when substituted into the three equilibrium equations .ransforms these
latter equations into displacement form. Substituting and simplyfying

z
by neglecting terms of order 5 /4t in comparison to unity,

A .EL- « + A QLET + A ur= O
dx =3

dx
d A d Are wsr - A 52‘ dz""
v o+ ¢ - S = =0
Az .L:Z-k- 22 Iz —I% ‘ZI R dx®

The first two of the equations may be solved for the derivatives

A“’/J,Land C;V/J;(, as functions of w~. Thus the result becomes

_ (A 8 A feed w _ A 2 S cJ w
du _ i4-fizz w 1z (14)
dx (4“ Az - Aiz ) R 12(A, A, -A.) R AX

_\f’ (/qqu% Az /4/4) W + A, Az ?7" Azw L5
Ay bea-As) R (A -Ar) 2R dxe &

0—
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Equations (14) and (15) when substituted into the third equilibrium
ecquatioa transiorm that equation into one containing only the variable
W, Hence the third equilibrium equation, when simplified, is given

as the following.

2 2
“_8_7_ Cﬁ{ﬁ- 54!2(/‘)11 gZﬁ-:/q/z /‘)14—) Sz d_ﬁ__{ + (16)
iz dX CA“ 'qzz."’ﬁ/z ) 1ZR d«

[A@ - H24-(Auﬁz4"ﬂ‘znl‘) - ,4/4_[/414/}23—/4/:4&) L O

Cﬂu 1422 - 'qlzz) (A“ Rzz - H‘E ) RZ

Equations (14), (15) and (16) define the displacement components
of the sheli. However in order to determine the tangential displacements,
the normal displacement 2w must be knowa. Hence the soclution of equation
(16) ultimately defines tihe displacemenc solution of the shell equatioms,

The equation defining the normal displacement %/, equation (1i6),
is of relatively simple form. That is, it is a fourth order linear
homogeneous differential equation with constant coefficients. 1In this
respect the equation is similar in form to the equation given by Timoshenko
(5) for an isotropic shell of similar geometry and loading. However
unlike the isotropic analysis, the present equation contains a second
derivative of the displacement W~

If the constitutive equations were reduced to their corresponding
isotropic form, the coupling constants, ﬂ/z and H24 , would assume zero
values. Equation (14) would simplify by the omission of the dificrential
term, equation (15) would yield zero value for the displacement V~, and
equation (16) would simplify by the omission of the second derivative

term. In particular, the equations would degencrate to the isotropic
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form given by Timoshenko. Thus the net result of planc anisotropy

on the present problem is the inclusion of differential terms in the
equation for the displacement W and W and the existence of the tangential
displacement V.

In order to ecffect a solution for the displacement components, the
boundary conditions must be stated in displacement form. However, since
two of the boundary conditions are identically satisfied from the
formulation of the displacement equations, only three bou.dary conditions
are in existence. Further, one of the boundary conditions already is
stated in displacement form. Hence only two boundary conditions need
be transformed.

Substituting the constitutive stress resultant-displacement equations
into the boundary conditions, the result becomes the following.

(’ A, d ____. + 2 /%z Eikfj
de® dx
()(:.' o)

("‘/qu dsw-i- 2 Az JZ'U' 5’
dx3 R dr*/ 12

However these two equations can also be transformed into equations
containing only the normal displacement W~ Thus substituting equation
(15) and its derivative into the transformed boundary equations, the
final set of boundary conditions on the displacement components, & | U

, W, become the following.
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.z_.M.E:- A;;ﬁz_uf_ 2A, (lqllgz¢‘/4/1.1414) w 27
3 Xa CA“ sz - lez) RZ
(17)

12§o=-tqudj9—f_ qu,'z(ﬁ)/,ﬂyi—ﬂ,&,4,4) __‘{ (X:O)
& d® (A Ap — AL%) o

oy 7’3 W — 0 X —> O

J
D. Equation Solution

It has been shown in the previous section that the solution for
reference surface shell displucement components is solely dependent
on the solution for the normal displacement component Z&~. Hence the
nature of solution for this displacement component also will define
the nature of the remaining displacement components. Thus this section
will be concerned solely with the solution of equation (16) and its
boundary conditicns (17).

One feature of the study will be the determination of the
effects of the elastic constants, 5254', which appear in the stress-
strain equations. The constants,lqdj, appearing in the differential
equation and boundary conditions are the effective elastic constants
given in the constitutive equations. However equation (6) defines the
relation between the two sets of constants. Thus it is possible to
transform equations (16) and (17) into a form containing the stress-
strain clastic constants. The resulting transformed cquations are the

following.

diw_ 305 (0,049, | Jo 4 124 2 g
dx# 2y QT g T 2y Tiyazd )
Q44» ¢ sz Qu e qut ) R ‘1’( Q¢¢ (QuQ#-Qy ) ; R
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1248 /—M-; =-4_z£‘_{+.2 Qs (Ri4&pe=Q, 22z) U{
(‘?zz“u"a;) J¥ Gat (22 Qs —Q04%) R (x=0) (19)
12 A . Qg:___gljg_;'_;, Zaz.q- (Q,«;Qg‘;‘olz.a#i) ! Juf
(2;Ru=%t) &7 ¥ Fut @Qaly-ayt) R JZx: o) (20)
W —>0 ; X—= 0 (21)

In order to facilitate the manipulation of the equations, derine

the quantities © and € as follows.

b.._._. JC: (QM- @,1&‘ 0/3 é;«ﬁ)

Ly ( Q22 Qgq - sz) (22)
C= 22 4 (23)

Q44 (sz d44— C‘?zi)

The differential equation and boundary conditions then becoze the

following.
&4W'-b, eur _;...9... w =0
ey e PO T (24)
Z
Qg C M, =-d v e } ‘
* & ° dx% * &‘55 R (x=0) (25)
3
% x> 3 K- dx
(27)
Consider now assuming a solution of the type
A CX/R)
o= Be (28)

where Rand Bare constants to be determined. Substitu:ing the assumed

solution into the differential equation, the following characteristic
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* A]

- \ ; - .
Thare are four roots,tl;,/uL, /3,_/w, to tme cnaracteriscic cquation.
However since two ol the roots zre the acgatives & the remaininz cow

-

it is morc coavenieng to state e solucion in the followine Zovra.

atis

-~ VA ! ! .2 /q‘.t- /L.

- L e [br—4 2352 ] .
/%,z =z 29vLe &/~ (295

2 ] -
>~ _ / (é ':'_ P /,_‘:,xz_c-?/’ (JO)

= 3 TP O T T = ;

Inspection of the roots revecls thut depending on the magnituce

£ e eo | - samatyd . :
of the conscants pand €, and cn the geomatrical prosercies A and &,

tiie value or the roots may be real, imaginary or compicx. The values

£ Jdetermine the solution for the normc displacemenc Z2¢. Henz: che
nature of the roots and the conditions which determine a change iz their
nature are extremely important to the analysis.

If the shell material stress-strain equations were either isotropic
or canonically orthotropic in form, ﬁhc constan:lb would be zero icenticzally.
Hence an increasing megnitude of é) indicates an increasing efiect from
plane anisctropy. 3ecause of tnis fact, an arbitrary quantitative
characterizacion of the degree of plane anisotropy may be given.

Letting the terms weak, mild, strong and very strong characterize planc
anisotropies, and noting that the constants £>andAC may be either positive

or negative, the following definitioms are set forth.

1. Weak anisotropy

< >0 ;, [b] << Z(’QAS Ve



4.

c<0; bl <<2 (%) el

2. Mild anisotropy
b>0; < >0; 61«4(,@/5);
b6<0; £ >0; b<<4(Fs)c
b>0; c<0; b <<d(%5) el
b<o;, £<0; b<<4(F/s) /el

3. Strong anisotropy
b0, £ >0; 52—4('?/6)2 >0
b >0; c >0, 52-4’(/?/6)2 <O
b<0; . 705 b -#7/8)c<0
pr0;.c >0, b =4(s5)c
b<0; c>0; b=#("8)c >0
L>0; < <0O; éz-¢(’?/<s)7,c/70
b<0; £ <0; b -F(F)cl >0
O<O; € >0; b= ¢(A9/J)tc

Very strong anisotropy 5
b0 cro; 677 £ (%) e
L300, .c<0; b o> -%//\D/é)z/c/
<00 <0; b 27 E(Vs) )/
b<0; cr0; 577 (V) <

30
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A single inequality sign in the above equations indicate that the

incqualicy sign is shown, it means one term is at an order of ma:
iarger thaan the other. lHence the smaller term may be'neglected in any
process of addition or subtractiom.

The condition zhat w/=~0as X=>C2implies that solutions which

be those which centain

ct

inite :

H
4
e

satisiy the boundary coaditions and are s
the nezative exponential. However of all the possidble cases stated,
nc 21l corresponding solutions satisfy this condition. lence the
czlculated displacemencs are either indeterminate or infinite in value.
Solutions of w which do not contain the negative exponential
occur in all four categories of plane anisotropy. These solutions
correspond to the following conditions:
1. Weak anisotropy
Jo—
< <o ; Ibl << Z(EA);/é/
2. Mild anisotropy
ya Y2 2
b>0; c<0; b << £ (%s) Jc!
2 2
b<o; c<o0; b << 4(%k) |cl
3. Strong anisotropy
Z
. 2 2 )
bL<0; >0 b-%(/é L >0
2 Z
HL >0, << 0; 5—4['?/6)//6/70
2 D <
b<C; £ <0; b -2 )l >0
, 2 s\
6<0; £ >0; b = F(%5)«c
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4. Very strong anisotropy

b>0;, £ 70; 6774('95),4
bro;c<0; 677 £(Vs) /el
b<0; c<0; 5274 (55) |/
L<O; < >0; bz>74[’?/<5)z/c

The corresponding solutions are given as the following. Letting £ =

AL , anc ) “?'42= <U€;4;;) f(:

1. Weak anisotropy

_ﬂ.&{. ﬂiﬁ
& =4 e al + 5 € R?‘/{;,Co-o,é’;é_{-/‘/@o'/'ﬂﬂ%

2. Mild anisotropy

e BP0 <O b << 4(’%)2/,5/

5 ) 4 )3
w =/ e—‘_g//’i’%”“) Z r 4" (5%

+4ees i ) ] Ay sl 5)5]

b O<0 5 £<O; b << Z(%5) e/

- /+"éz—7-[- V2 )X
CZ} = ‘/é; e /é?(/' f%? £ £ /622 Cf’é?(/ i&f* R

4 cosz,é(/ X '7"A4_S//7[ﬂ(/~ ] |
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3. Strong anisotropy

Cb<0, <0 b= 4(R) e >0

w = A cos [-6=t6 +/4f)/~’-}/z(z)}
+ A, .w[[ 5-(5 +///)/]/Z }
£ 4. cos { [—A + (b +/w")/2]/z
# Ay 5in {[-54(6 7‘///36:)/.//2(’()}

b LFO; £ <O .b ¢(’P/ el O
Lot 2% [.././ﬁ/)/,c/"’- &
= /[/é+/ "4) JZ/Z/

PPN L A f]”
ity cos [4[(83 165" é]}A Y
44y 530 [ 4 Jf6 #1657 )é ] (%)

c. H<O; <0 ; b—%(f%)///>0
L6587 ) A]}”"(é)

T4 B 165" 871 (L)

&= 4 e
#4, e
* A (as{z—/[(éz*//p’# E é]Z} (‘{)
#y wn [4] 5 e V= ][ (%)



d. é<0;/¢ 79, 5Z=¢(,<7J/;
w = A es[(2)F] A8 G)]
VIRV BN 2007
* 4 5) oSl £V G Al 3) 5l )

4. Very strong anisotropy >
2
v b0 £r0; & L) <

X - 4(&
W= A + 4, (&) # 75 é(f)ﬁ/;,e &

b, L0 LSO é2>7¢/(’€/5)z//c/

é(gjfﬁzf c-b("gj

&=+ (-/—?Z/ + A €

c. 650 ; £<O; ,9’2774(’6/5)75/

/

W= 4+ (%)7‘/7? cos (-é%) */ésxﬁ(-é_/;’{)
. <0 < F0; b > £ (Kf) <

L Vv - /
= <7 -— A -
% /,7‘//3(_{)-%//3505( 0;?_ v‘vffy///a_{ :
A R
The instability conditions noted occurs for certain ratios of

the plan anisotropic elastic constants. In order to determine wihether

the phe..,i .a is physically possible, zn orthotropic material skewed



ell axcs can be used to gencrate the plane
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anisotronic clascic constcants. Assume that the canonical form of the

orthotropic stress strain relations is given as the following.

ex‘)(’ = aul 0;')(' + QM—' 0;‘24'

l
eK‘%‘ = aZ?. (];18‘
{

e%l%' = a,_f_‘?;:x, + QM 0"4/1?/

! ! C .
The X and g axes liec in plane tangent to shell

-

C

surface and the

o
axes makes an angle of 45 with tne shell X axes. Using the traas-
formation laws for the elastic constants, the stress strain relaticms

relative to the shell coordinate axes ta..c the plane anisotropic canoniccal

form. Howaver the relation of the clastic constants of the plane
anisotropic stress-strain law to the canonical orthotropic elastic

constants is given as the following.
= ! ! r I
Q, = 4 (. + CL44 + 2 C"M‘ —.—sz )

Q2= 2 (QM‘, - Q,,')
a[4 = ,/4 (aa: +‘a4‘4 + ZQ.”_ + Qz(?_ 3
aZZ. = (an‘ + quq, -2 a14‘. )
Qog = 1z Qg ~ @,
! \ { \
Qu= tla(a, +a., +20,+C.)
Hence it follows that Q,,zg/,; = Q¢¢ , and &, = Qz¢_

The quantity A is identically zero and hence

C=0

The quantity b also calculates to be zero.
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Thus the anisotropy can be characterized as strong. The resulting

solution for this particular problem is the following.

b4 3
w= A + A (XIR)+ Ay (X/RY + AL(X/r)

b

Again in this instance the type of imstadility previcusly nocad

[

- b hJ P PO SE ~ - -~ - - J - om
be concluded thart at least some of the inscobilis

t

occurs. Hence 1t mus
noted are physically possible conditions.
Conciusions

1C 1s notec Jnut

)]
B
3
{r
o]

In dealing witn the »lane znisstronic prodlen,

an instability phencmona 1s mathemaviccailly plausivle., Further, this

phenomena is independent ox the mogaitucce of the edge loading Lot

-

cpendent only on the nature of tiie loading. A physical justification

- -«

for this condition can be given for at lecst one instance, namely, the
o

situation when a single orthotropic layer is skewed at 45 to the saell

axes. Whether all of the instabilities noted are physically plausibdle

is open to question.

The term instability is dealt with loosely. In many of the cases
given in the paper the term simply means thar all of the boundary
conditions cannot be satisfied, especially the asymptotic decay of the
normal displacement. Thus the normel displacement becomes indeterminate
in valuza. However, when the normal displacement increases without
bound it is also indeterminate and hence the common terminology for the
two phicnomena.

Whether in fact the instability is physically plausible or not,

one fact does exist, Namely, that for certain values of the coupling
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constants appearing in the canonical plane anisotropic stress-strain
ralations, a solution satisfying the boundary conditions is not possible.
Jurther, such a situation does not occur in either isotropic or canonically
orthotropic analysis.

The formulation of the shell equations is based on the linearly
exact expressions for the equilibrium cquatioms, the compatibility
equations, the displacement deformation relations and the stress-
strain relaticns. The introduction of the Xirchnoff hypotheses and the
conscquent constitutive equations are the sole source of error beyond
that which is expected in lincar analysis. However the Kirchhoff hypotheses
yield reasonable results especially for relatively simple problems of
which the problem under discussion is an example., Hence if the in-
stability noted in this paper is physically not plausible, then one of

two or both conclusions must be drawn. First, that non-linear analysis is

?
not applicable to all plane anisotropic shell problems even though
loadings are extremely small. Second, that the Kirchhoifif hypotheses

are not applicable to all plane anisotropic shell problems even though

the shell may be extremely thin and of the single layered type.



Figure 1. Middle surface coordinate system for
right circular cylinder



Figure 2. Semi-infinite right circular cylinder with
uniformly applied edge loads



