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The Analysis of S t ruc tu ra l ly  C r t b t r o p i c  Shells 
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I. I n t  mduct ion 

The object ive of this report  is t o  state t h e  s i x  mnth  progress 011 

XASA Grant I G R  bki-001-031, Supplenent Eo. 2 .  

renewal of ?fASA Grant XGR @-OOl-O3l ,  3upplenerrt Tic. 1, whici,: i n  turn i s  

a renewal of ITGZ bODl-03l. 

The current gran'; i s  a 

The current gmnt  has four Objectives 

1, Continuation ef experimental ve r i f i ca t ion  of c o q l i a n c e  rela- 

t i o n s  as applied t o  right c i r c i l m  cy l ind r i ca l  shells 

2. A study and ana lys i s  of l i n e a r  shell theory e l a s t i c  constant 

instability conditions for symmetrically loaded snells of 

revolution 

Generalization of l i n e a r  s h e l l  theory e l a s t i c  constant ins ta -  

b i l i t y  conditions i n  order that the condition be avoided 

Non l i n e a r  analysis f o r  the determination of stable s h e l l  con- 

f igura t ions  when l i n e a r  shell theory e l a s t i c  constant i n s t a b i l i t y  

is manifest. 

3. 

4. 

A t  present, the  greatest e f f o r t  has been directed toward o b j e t t i v e  

number two. 

ing degrees of e f for t ,  though none have been brought t o  a s t a t e  of com- 

p le t ion .  A de ta i l ed  discussion of t he  results obtained f o r  each of tne  

l i s t e d  object ives  i s  given i n  t he  following port ion of t he  report .  

However, a l l  of the object ives  have been acted upon i n  vary- 



11. Discussion of Results 

1. F i r s t  Objec3ive - 
A comparison of a n a l y t i c a l  and experimental r e s u l t s  f a r  a r ib  

s t i f f ened  c i r c u l a r  cy l ind r i ca l  panel has been given i n  the report  

on NGR-14-001-031, Supplement No. 1, December 22, 1967. 

time, an e r r o r  i n  t he  a n a l y t i c a l  r e s u l t s  has been uncovered. 

error is  due t o  an incorrect  statement of  the boundary conditions. 

Hence the equations of t h e  analysis a.t i n  t h e  p x c e s s  of being 

reprogrammed with t h e  edqec ta t ion  of better cor re la t ion  between 

a n a l y t i c a l  and experimental data. 

Since that 

The 

A t  the present time, experiments on a full cy l ind r i ca l  s h e l l  

U n t i l  a good cor re la t ion  is  obtained are i n  a conceptual stage.  

between the  a n a l y t i c a l  and e q e r i m e n t a l  results f o r  the s t i f f ened  

panel, it is f e l t  that full cylinder t e s t i n g  would be of no avail. 

2 .  Second Objective 

The problem of e l a s t i c  constant i n s t a b i l i t y  had been first noted 

and reported i n  NGR 44-001-031, December 1, 1966. 

analagous t o  that given by Sanders f o r  first order s h e l l  theory had 

been given f o r  a displacement formulation of t h e  plane anisotropic  

s h e l l  equations. In reducing t h e  equations to t h e  case of a c i r c u l a r  

cy l ind r i ca l  shell, a nm-sa t i s fac t ion  of boundary conditions had been 

noted f o r  c e r t a i n  combinations of e l a s t i c  constants . 

A development 

In order t o  more fully inves t iga te  t h i s  e f f ec t ,  a c l a s s i c a l  first 

order der ivat ion f o r  a symmetrically edge loaded, e l a s t i c a l l y  plane 

anisotropic  r igh t  c i r c u l a r  cy l ind r i ca l  s h e l l  had been undertaken. 



The analys is  and i t s  r e s u l t s  are given i n  Appendix A.  

As i s  noted i n  t h e  der ivat ion,  eleven cases r e s u l t  i n  a non- 

s a t i s f a c t i o n  of t he  bou6ary  conditions . Eowever, tnoush these 

cases are possible  nathematicalljr, a physical constraint  e x i s t s  

which may l i m i t  t h e  physically possible cases. This constraint  

is involved with the e q r e s s i o n  for t hz  p o t e n t i a l  energy i n  that 

t h i s  quant i ty  must be pos i t i ve  de f in i t e .  Thus a number of' i n -  

equa l i ty  r e l e t ions  an t h e  e l a s t i c  constants w i l l  r e su l t  which i n  

turn may r u l e  out from consideration some of t he  mathematically 

possible  cases noted. 

A t  the  present time, a check i s  being completed en t he  s t r a i n  

energy f'unction and t h e  r e su l t i ng  r e l a t ions  f o r  t h e  e l a s t i c  con- 

s t a n t s  * 

3 .  Third Objective - 
The general  first order plane anisotropic  shell  equations have 

been developed. However an e l a s t i c  constant s t a b i l i t y  ana lys i s  of 

these equations w i l l  not be attempted u n t i l  t h e  second object ive is 

completed and t h e  results indicate that mathematically and physically 

possible  unstable states e x i s t .  

4. Fourth Objective 

An engineering or iented non-linear analysis  of s h e l l  eqaations 

is i n  t h e  process of development. The term "engineering oriented" 

is u t i l i z e d  i n  t'mt unlike general non-linear s tudies ,  t he  present 

study only considers first order non-l inear t ies .  That is ,  quadratic 

i n  displacements and/or t h e i r  der ivat ives  a r e  retained but cubics 



and higher order products a r e  neglected. 

that the equilibrium, co!npatibility and cons t i tu t ive  equations 

may be s t a t ed  i n  terms of physically measurable quant i t ies  otkrer 

In  t h i s  way it is hoped 

than disphcenent  components . 
The derivat ions f o r  t h e  first quadratic form, t h s  equilibrium 

and cons t i tu t ive  equation has been completed. However, considerable 

d i f f i c u l t y  has been encountered i n  the development of t he  second 

quadratic form. The pr inc ipa l  d i f f i c u l t y  l i e s  i n  defining t h e  

angle of ro ta t ion  f o r  an element. A t  t h e  present time, the e f f o r t  

is being d i rec ted  toward t h i s  def in i t ion .  



Displacements and E h s t i c  Constant Stabi l i ty  of a Plane Anisotropic 

Edge Loaded Semi-Infinite Cylinder 
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Nomenclature 

elastic constants 

Lame’ surface parameters 

elastic coefficients occurring in constitutive equations 

membrane strains 

principal curvature of the undeformed reference sJrface 

Sending and twisting moment sfress resultant 

radius of the shell refcrcxe surface 

membrane force stress resaltant 

displacenent componci?.ts ia the directions 4, a:-.i y 

principal coordinates in the longitudinal and circLz.- 

ferential direction of t h e  cylindsr 

direction normal to shell surface 

principal curvi 1 in ear coordinate curves 

shell thickness 

Md,Nd curvature change of the reference surface 
torsion of the reference surface ‘7 

Introduction 

An intrinsic plane anisotropic symnetry condition inthe elastic 

constants is a relatively rare phenomena in shell structural materials. 

However with the advent of  composites and laminates, materials csiiibit- 

ing intrinsic orthotropic elastic constant symmetries are bezomir.$ 

increasingly important as primary structural materials in hi+ strength- 

low weight applications. 
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Planc anisotropic clastic materials contain but one plane of 

eliistic symetry acd hence one principal elastic axis. The number 

Of icdcpcndent elastic constants associated with such a ;:iaterisl 

is thirteen. Orthotropic elastic materials contain thrae planes of 

elastic symmetry, three principal elastic axis and contain nine 
4 

_- -- 

independent elastic constants. Relative to an orthogonal 1-2-3 

coordinate system, the s imp le s t m& t hems t ic a 1 form, or equivalentciy, 

the canonical form of the plane anisotropic and orthotropic stress 

strain relations is obtained under the following conditions. In the 

first case, the principal elastic axis is coincident with one of th=s 

coordinate axis and in thz second case when the three principal elxitic 

axis constitute coor diziat e axis. As s wiling that ths 3 axis is the 

principal elastic axis for the plzne anisotropic material, the canonical 

form of the stress-strain equatioas for the two anisotropies is given 

as .follows. For the plane anisotropic material 
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Since the stresses may be considered independent variabies, 

the Tathematical characteristics of two sets of canonical stress- 

strain relations fundementally are different from each other. 

Whereas the canonical orthotropic formulation is identical mathemat- 

ically to that which would be encountered in isotropic elasticity, 

the canonical plane anisotropic formulation contains coupling effects 

not found in the canonical orthotropic equations. In particular, the 

normal strains in the canonical plane anisotropic fLI mlat ion are 

functions not only of  normal stresses but also of shear stresses and 

visa- v er sa. 

Thin shell theory is based on three independent formulations. 

The eqciifbrium equations, the compatibility equations and the 

constitutive equations. 

of the  shell reference surface to its kinclmatics. 

this formulation is the only one which utilizes tlr.2 stress-strain 

The ccastitutive equations relcl:e :he kinstics 

As a consequcncc, 

re 1 a t  ions. 
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As mentsionzd, the c x o n i c a l  s t r e s s - s t r a i n  r e l a t i o n s  for  materials 

posszssing or thotropic  and p ~ n c  anisotropic  c i a t i c  propert ies  

fundamentally d i f f e r  f ron  each other i n  nathenat ical  form. It would 

then be r s a o n a b l e  t o  espect t h a t  tne corresponding cons t i t u t ive  

s h z l l  equations for  the two 3later is ts  w m l d  a l so  exhibi t  t h i s  difference.  

Tkat is, the cons t i t u t ive  equations for plane anisotropic  m t e r i a l s  

would be expected t a  contain r2fsrence surfzcc shear force  stress 

re su l t an t s  and twist ing Eoments i n  the  espressions for  the reference 

surface nornal s t r a i n s  acd curvature c 'naqzs.  

Given a shell geonictry, loading ar=C boanlzry conditions,  the  

cquilfbriu-n and corcpacibility equacLons reyain iden t i ca l  i n  form 

whatevcr t he  material propert ies  may be. However t h e  cons t i t u t ive  

equations are a necessary p a r t  o f  the  formulation. Xence i f  thcy 

d i f f e r  i n  mathcrnatical form f r o a  one material t o  another,  t h e  corres-  

ponding resu l tan t  s h e l l  equations will r z f l e c t  t h i s  difference.  

From the discussion of t he  previous paragraph, i t  is obvious then 

t h a t  the r e su l t i ng  s h e l l  equations when developed from t he  canoniczl 

form of the plane anisotropic  s t r e s s - s t r a i n  r e l a t i o n s  w i l l  d i f f e r  

i n  s t h e m a t i c a l  form from those developed from e i t h e r  the i so t rop ic  

o r  canonical or thotropic  s t r e s s - s t r a i n  r e l a t ions .  

Shel l  coordinizat ion is based on the pr inc ipa l  curv i l inear  

curves of the unclekrncd reference surface and the normal d i r ec t ion  

t o  tha t  surface.  

or laminates i n  s h e l l  const-iction, the or ien ta t ions  of the p r inc ipa l  

I n  the use  o f  or thotropic  mater ia ls  such as coxposites 



6 

e l a s t i c  axis of ths matcriaf very o i t c n  ate  skewed r e l a t i v e  t o  the  

shell coordinates. Titis condition is espec ia l ly  true if the shell 

is of the  lsyersd type i n  which case rhe skewing may vary from layer  

t o  layer. 

layer or layers is  such t h a t  when foraed i n t o  a s n e l l  s t r u c t u r e ,  

one p r inc ipa l  elastic axis remains no rm1  to  the  s h e l l  reference 

surface.  

iiowcver thlz physical  c h a r a c t z r i s t i c s  of t h e  or thot ropic  

Unlike i so t rop ic  e l a s t i c i t y ,  an iso t ropic  e i a s t i c  constants  vary 

i n  magnitude with coorc'tnate t ransfornat iou.  

law for  e l a s t i c  cocstants  from one cootdinizat ion to  another is 

given as 

The trarrsforaation 

The q u a n t i t i e s  2 i j  are the  d i r e c t i m  cosines of t h e  

with respect  t o  t h e j 9 4  o r i g i n a l  ax is .  

given an orthozropic aaterial, the  canonical form previously given 

for  the  s t r e s s - s t r a i n  r e l a t i o n s  is appl iczble  only f o r  a unique coordini-  

zation, namely one i n  which the coordinate axis coincide with the  

p r inc ipa l  e l a s t i c  axis. Also, i t  is equally obvious t h a t  given a 

general coordinizat ion,  the  inathecatical form of t he  or thot ropic  

s t r e s s - s t r a i n  r e l a t i o n s  becomes undistinguishable from tha t  encountered 

i n  general  anisotropy. 

are prescnt ,  contains twenty one independent e l a s t i c  constants  whereas 

the former s t i l l  contains only nine indepmdent e l a s t i c  constants.  

new a x i s  

it is obvious then t h a t  

The latter case, &,ere no e l a s t i c  spane t r i e s  

From the discussion of the preceeding paragraph i t  i s  apparent 
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that the canonical form of t h e  orthotropic stress-strain relations 

cannot be utilized wlicn daling with the skewed orthotropic shell 

layers. Since the refcrence surface principal curvilinear curvcs 

and norm1 form the coordinate systen, then the stress-strain relations 

of the xlcatariaf. must 52 expressed relative to that coordinate syster?.. 

Thus a coorCinate transfornation of thc canonical orthatropic stress- 

strain equations nust be effected. 

That the principal elastic axis z o m l  to the shell surface 

coincides with a coordinate axis allows a relatively simple trans- 

formation. The coordinate transfornation w i l l  consist of a rotation 

about this elastic a i s  through an angle q u a l  to the skew value. 

Thus the new coordinization for the elastic constants will be the 

same as that for thz shell. The transforaed stress-strain relatioris 

will be identical in mathe~ratical form t o  the canonical plane arLisotropic 

stress-strain equztions previously givea. Xowever, these transformzd 

orthotropic stress-strain relations still will contain only nine 

independent elastic constants. 

The mathenatical equivalence of the canonical form of the plar,e 

anisotropic and the transformed orthotropic stress-strain relations 

is extrernely important. 

follows directly that the constitutive equations will be idmticcli 

mathematically to thase obtained from the canonical form of the plane 

anisotropic shell equationz. In the case of the multi-layered shell 

wherein each or' the layers is orthotropic but the principal elastic 

If the shell is single layered, then it 
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axis arc skewed dit'fermt mounts in different layers, the problcn 

is nore coqles. However cvcn in tliis case it can be S~OLTL that thc 

appropriate constitutive equations zay be derived froia the cclnozicrti 

f o r n  c i  the stress-straifi equation of a hypothesized single layered 

Fkne anisotropic continuuin. 

The discussion of the pz cxzeding Tzrclgraphs allows the following 

importaat conz1clsio.i to be  3rzmi. The nsiienatical form of the consti- 

tutive equatiors 'crivcd from the camnical for= of the plane anisorropic 

stress-strain relztions is a2plicable to not only natdrials possessing 

intrinsic elastic plane anisotropy but also t a  m ~ e r i a l s  possessing 

elastic orthotropy and whose principal c ia s t i c  asis are skewed to 

the principal geoaetric directions. Coqos i t e s ,  lamhates and fiber 

windings form a relatively inportant class or' structural shell materials. 

Since these materials in many applications fit the latter category, 

then the importance of the analysis of the plane anisotropic constitutive 

equations and hence the plane xisorropic shell equations is self 

evident. 

At the present time, very few analytical solutions for plane 

anisotropic materials have appeared in the literature. hbartsunian 

(1; discusses plane anisotropy and even formulates constitutive shell 

equations for plane anisotropic layered materials. However his shell 

equation solutions are applicable only t o  mterials eshibiting t k  

canonical form of t:ic ortkocropic stress-strain relations relative 

to the shell coordinate system. A pcrturbacion analysis for solving 
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plane anisotropic shells of revolution has been cievelopcd by Dong (2) .  

Though tlic xcthod is Zpplicatlc for gcncral plane anisotropies, thz 

slow convzrgsncc of the  perurbation series relegates thc ncthod to 

the trcatmnt 3f mild plane anisotro?ics. 

Thc difficulty in s o l v i n g  the plane znisotropic shell ccjuatior.~ 

xcurs because of thz inhcrent coupling effect which esists in the 

six11 constitutive equations Ixtwcen the nmbrane shearing and axial 

deforizations and between the reference surface bending and twisticg 

defornations. 

or canonical orthotropic clasticicy, this couplins effect prevents 

the separation of reference surface twisticg ar,d shearing from oendiag 

and stretchicg. 

shell equations for elastic plane anisotropic macerials furidamentally 

are different from their isotropic or canoaically orrhotropic counter- 

parts. As a consequence, the well devsloped techniques and syxnetry 

conditions associated with the solution of isotropic and canonically 

orthotropic shell problems cannot be extended to the analysis of 

plane anisotropic materials. 

Unlike the constitutive equations of either isotropic 

Thus the constitucive e q u t i o n s  2nd hence the resulticg 

The paper is concerned with the first order linear analysis 

and solution of a semi-infinite right circular cylindrical thin elastic 

shell. The material properties are assumed to be canonically plane 

anisotropic relative to the shell coordinatc system and the loading 

is assumed to consist of an axially symmetric edge bending moment 

and transverse shear. 
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The result of the analysis is a fourth order ordinary linear 

honagcncous diffzrcntial equation definicg the noma1 displacexmt 

of the shell reference surface. 

poses no difficulty in that it may be found by elencntary aathcmatical 

techniques. 

Scnce tlic solution of the equation 

Ths problem solution is interesting because of its simplicity. 

Thus it illustrates scvzral features peculiar to plane anisotropic 

shell analysis azd which frcquently are obscured by more complex shell 

problens. First, the derivation of the shell equations does illustrate 

that plane anisotropy and the resulting constitutive equations destroy 

axial symetry even tnough the loading zad si1211 geonetry may exhibit 

this symmetry. Secondly, the fact that the solution is of a relztively 

simple form allows a qualitative and quantitative characterization 

of plane anisotropy as weak, mild and s t rong .  

of the solution and hence the mode shape or' thz normal displaceaent 

changes with each of the degrees of plane anisotropy. Thirdly, it 

illustrates a type of instability peculiar oilly to inaterials whose 

stress-strain equations are stated in plane anisotropic canonical 

form. Instability, as referred to in this paper, is defined as that 

condition wherein the normal displacemeat 2 s  determined from linear 

theory tsnds to infinity. 

As is shown the character 

The instability uncovered in the analysis is solely a function 

of the elastic constants and is indcpendcnt of the external loading. 

Hence in nature it differs from the elastic instability encountersd 

in either isotro?i.c or canonically orthotropic shell ana!.ysis. In 
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order to differentiate the two instabilities, the former will be termed 

elastic constant instability. 

Though the clastic constant icstability is a function of all of 

the clastic constants, one pcrrticular set of clastic constants n s t  

bs presmt if the instability condition is to occur. These constants 

are the coupling constants, that is, those constacts which differentiate 

the canonical form of the planc anisotropic stress-strain relations 

from the canonical form of the orthotropic stress-strain relations. 

Xence as previously stated, the elastic constant instability is peculiar 

only to shells whose strss-strain ecpations are in canonical plans 

anisotropic mathematical form. 

Because of the many possible nuaerical values that anisotropic 

elastic constants may possess, alsebraic rather than numerical solutions 

are presented. In order to verify that the elastic constant stability 

is a possible physical condition, a single layered skewed orthotropic 

material is used to generate the forn of the plane znisotropic stress- 

strain relations. The result is that instability always occurs at 
0 

a skew angle of 45 . Further, the instability is independent of the 

mzgnitude of the elastic constants appearing in the cannonical form 

of the orthotropic stress-strain equations. 

Problem Solution 

A. Gcneral Right Circular Cylindrical Shcll Equations 

The reference surface of a right circular cylindrical shell 

of constant thickness S and mean line radius 2 will be chosen to 
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bc t he  m a n  surface.  

uppcr and lowcr bounding sur faces  of t he  cy l ind r i ca l  s h e l l .  

t h e  reference surface a l so  i s  or' r i g h t  c i r c u l a r  cy l ind r i ca l  geometry 

and is of r a d i u s  4 .  

This sur facc  i s  posit ioned midway between the 

Kence 

The p r inc ipa l  cu rv i l i nea r  coordinate curves a f  t h e  undeforncd 

reference surface a r z  i n  t h e  longi tudina l  and circumferent ia l  d i r ec t ions  

of  the surface.  These curves may bc paraneterized by the  va r i ab le s  

x and 6 , whcrc X is a l i n e a r  zcasure ia t h c  longi tudinal  d i r e c t i o n  

and 0 is an angular measure i n  thc  circurnfcrcntial  d i r ec t ion .  

coordinate Lt is  measured norinal t o  the uadefornled sur?acc: (md i s  

assumed p o s i t i v e  when ac t ing  i n  t h e  C O I Z V ~ X  d i r e c t i o n  t o  the  s ~ r 2 z c e .  

The p o s i t i v e  d i r ec t ions  of t h e  S and 8 coordinate curves a r z  scch 

t h a t  u n i t  vec tors  tzngcnt t o  these  coordinate curves and directed. 

toward increasing coordinate values together  with a u n i t  vec tor  nornal 

t o  t he  surface and a c t i n g  i n  the  p o s i t i v e  r' d i r e c t i o n  f o r n  a ri$x 

handed orthonormal t r i a d  of vectors .  ,ne reference sur face  and i t s  

coordinizat ion is shown i n  Fig. 1. 

';'ne 

-t 

Relat ive t o  t h e  coordinizat ion described, t h e  l inear equi l ibr ium 

equations may be s t a t e d  i n  stress r e s u l t a n t  form. 

convention fo r  force  and monent stress r e s u l t a n t s  as given by Novozhilov 

( 3 ) ,  the following equcltions r e s u l t .  

U t i l i z ing  t h e  p o s i t i v e  
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L e t & ,  v,  UT rcprcscnt  t he  reference sur face  displacement vec tor  

coinponcnts. The cocponcnts and rcspcc t ive ly  w i l l  be  on t h e  d i r e c t i o n  

of t h e  p o s i t i v e  tangent vec to r s  t o  t h e  and coordinate curves. 

The coxponent w i l l  be noma1 t o  th2  sur face  aad p o s i t i v e  i n  the 

pos i t i ve  d i rcc t ion .  The rc ferzncz  sur fzce  deformations, t k a t  is, 

s t r a i n s ,  curvacure changes and to r s ion ,  are csp res s ib l c  i n  terzs or' 

t h e  displaceincnt conponents as  t he  following. 

The compatibi l i ty  relations f o r  the  reference sur face  deformations 

are given as t h e  following se t  of equations. 

The r e l a t i o n  between the  stress r e s u l t a n t s  and t h e  s t r e s s  d i s t r i -  

bution through the  s h e l l  thickness i s  s t a t e d  i n  i n t e g r a l  form. These 

r e l a t i o n s  a r e  t h e  following. 
/. b/t * f fz  
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IT? to this poin t ,  the  r e l a t i o n s  s t a t e d  are l i n e a r l y  exact. 

However the  d e f i n i t i o n  of the  s h e l l  problen is  not complete i n  t h a t  

the cons t i t u t ive  equations have not been given. In order t o  s t a t e  

these r e l a t i o n s ,  i t  must be possible  t o  i n t e g r a t e  the  s t r e s s  r e s u l t a n t  

s t r e s s  equations which implies t h a t  t he  s t r e s s  d i s t r i b u t i o n  through 

the shell thickness is known. 

The Kirchhoff hypotheses define the  displacement v a r i a t i o n  and 

hence also the  s t r a i n  v a r i a t i o n  through the  shell thickness. However 

these va r i a t ions  are hypothesized r a the r  than being f s c t  and hence 

lead t o  analysis  e r ro r s .  For a cy l ind r i ca l  s h e l l  of the type discussed, 

the  error a t  l e a s t  i s  of order ( $1,). 

The simplest  form of t he  s t r a i n  d i s t r i b u t i o n  through the  she l l  

thickness and yet which contains the  maximum accuracy allowable from 

the  Kirchhoff hypotheses i s  one which is a l i n e a r  function of the  

coordinate 2 . Thus the  s t r a i n s  e d ~ ,  e&@, e,, , a t  points  away from 

the  reference surface may be expressed as functions of the  reference 

surface deformations and t h e  coordinate 2 .  These r e l a t i o n s  a r e  given 

as t he  following. 



I f  the st rain v a r i a t i o n  i n  the  she l l  i s  known, then the  s t r c s s  

v a r i a t i o n  can bc ca lcu la ted  from the approgriatc  s t r e s s - s t r a i n  r a l a t i o n s .  

For tlie problem being considered, t h e  shell mate r i a l  i s  assumed t o  

e s h i b i t  the canonical form of the  plane an iso t ropic  s t r e s s - s t r a i n  

r e l a t i o n s  re la t ive t o  the  coordinate ax i s  chosen. The d i r e c t i o n  

is assumed t o  be the d i r e c t i o n  of a p r inc ipa l  e l a s t i c  axis. Thus the 

s t r e s s - s t r a i n  r e l a t i o n s  are t he  followinz. 

The four subscr ip t  system f o r  the e l a s t i c  constants  is a nec tssary  

one i f  t h e  s t r e s - s t r a in  laws and the e l a s t i c  constant t raxsformst ion 

laws are t o  be presented i n  t e n s o r i a l  form. I-iowever s t r u c t u r a l  sheil 

a2pl ica t ions  where o f t en  analyses are based on contradictory hypotheses 

negate o r  a t  least minimize the  use of t e n s o r i a l  representat ions.  

Hence fo r  t he  sdke of convenience i n  presenta t ion ,  a double subscr ip t  

no ta t ion  i s  adopted f o r  t h e  e l a s t i c  constants.  Such i n  f a c t  w i l l  

be t he  s i t u a t i o n  i n  t h i s  paper. Thus when r ewr i t t en  i n  a double 

subscr ip t  no ta t ion ,  the canonical form of the  plane an iso t ropic  strcss- 

s t ra in  l a w  is  the  following. 
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I5 t h e  s t r a i n  -;;:iation has been determined from the  Kirchholi  

hypothesGs, then certaii-i cons is ten t  s impl i f i ca t ions  an8 omissions 

must  be introduced i n t o  strecs-strain r e l a t i o n s  i n  order  t5at  t he  

stress d i s t r i b u t i o n  be appl icable  t o  the  aaa lys i s .  To begin wi';h, 

the Kirchhoff hypotheses neglect  normal st resses  and normal strains 

normal to t h e  reference surface.  

s t r a i n s , e s t ,  must be se t  t o  zero. 

equzl t o  zero a t  each point i n  the material leads 4 . - 9  J. simultaneous 

Hence t k e  stresses,<-, ,  and t h e  

Se t t i ng  these two q u a n t i t i e s  

condition of cu rv i l i nea r  plane stress and plane s t r a i n .  Xuwevzr 

Kozik (4 )  has shown t h a t  t h e  stress r e s u l t a n t  EormGlation of the 

l i n e a r  t h i n  e las t ic  s h e l l  equaticns i s  in sens i t i ve  wi th in  the Kirchhoff 

error bounds t o  t h i s  cont rad ic t ion  and fur ther  t h a t  f o r  such an 

ana lys i s  the  s t r e s s - s t r a i n  equation for t h e  normal s t r a i n  e,zshould 

be suppressed. 

Secondly, t he  Kirchhoff hypotheses neglect  t h e  e f f e c t s  of t ransverse  

shear s t r a i n s .  However t h i s  neglect  is an impl i c i t  r a t h e r  than 

e x p l i c i t  r e s u l t  of t h e  hypotheses. Hence r a t h e r  than s e t t i n g  the  
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transverse shear strain expressions equal t o  zero, the  s t r e s s - s t r a i n  

cquatioas r e l a t i n g  thssc q u a t i t i c s  t o  the  corresponding t ransverse 

s!icar stresses are suppresscd. Thus the  s t r e s s - s t r a i n  r e l a t i o n s  

q q c o p r i a t e  t o  an analysis  based on the  Kirchhoff hypotheses are thc  
% 

following. 

As is noted, t he  nurnber of independent e l a s t i c  constants appearing 

i n  the per t inent  s t r e s s - s t r a i n  r e l a t i o n s  is si:; r a the r  than the 

t h i r t e e n  encountered i n  general  ?lane anisotropy. 

The stresses nay now be s o l v d  i n  t e rns  of the  s t r a i n s .  The 

resu l t ing  r e l a t ions  are the  following equations. 

In these expressions, t h e  constants A;iIre defined i n  terms of t he  e l a s t i c  

constants. Thus 

and 
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Uowing the  s t r a i n  va r i a t ion ,  t he  stress va r i a t ion  is detem.incd 

snd iicncs rhe stress re su i t an t - s t r e s s  equations integrated. The 

consci tut ive equations now can be derived. In s t a t i n g  these eqiatians, 

again use is mads of the  Kirchhoff 3inir;iin error bound of 

Tkus the siiqfest fornulat ion or‘ the  cocstitutive equations, and yet  

%/R . . 

one winich preserves  t h e  maximin possible  accuracy, consists of the 

followiq r e l a t ions .  

The boundary condi t ions also are ef fec ted  by the  ‘firchnoff 

hypotheses. Analyses based on these a s s u p t i o n s  can not  account 

fo r  a l l  the  poss ib le  stress r e s u l t a n t s  ac t ing  on a free boundary or’ 

a shell. 

on the  boundary and fur ther ,  the  explicit  statement of the twis t ing  

Hence equivalent shear stress r e s u l t a n t s  aus t  be define6 

moment stress re su l t an t  be suppressed. The e f f e c t i v e  shear  stress 

resultailts ac t ing  on f r e e  edges coicciding with the  coordinate  curves 

are the  following. 



g= c o ~ s f a n f  e =  COAJS+OH+ 19 

-. D . Equation S Lqlir' icat  io3 

,&S;~GIZ tht  the cy l ind r i ca l  shcli is i n f i n i t e l y  long acd is 

subjcctsd t o  a m i f o r =  d i s t r i b u t i o n  of edge bending rianeat,Mo, a d  

i s r a sve r se  shear,Qo, as shown i n  Fig. 2. The ex terna l  sur face  loading 

is z s s u ~ ~ e d  t o  be non-esistent,  Equatiozs I - 9 given i n  thz previous 

section axl which def ine ths per t inen t  cy i ind r i ca l  s h e l l  equations 

assuiic a siqler  forn. 

I n  s h p  1 if y ing these equations not3 t &en of t h e  f a c t  

that t hz  geonetry and loading a r e  axially s;=ctrical  wit5 respec t  

t o  t he  axis of the cyl ineer .  Hence it &?pears reasonable t o  assme 

tnat the s h e l l  dependent variables w i l l  be independent of the  coordinzte 

8 . However, fu r the r  s i q l i f i c a t i o n  is sot possible .  

The c o n s t i t u t i v e  equations for the  given s b i l  contain coupling 

e f f e c t s  between t h e  nenbrarre axial force s t r e s s  r e s u l t a n t s  axi =he 

nenbrane shear s t r a i n s .  h r t h e r ,  the coupling crffect a l s o  e x i s t s  

between the nmbrarie bendins moment and the  r s fe rence  sur face  tors ion.  

Thus unlike an i s o t r o p i c  o r  canonically orthotropic analys is ,  given 

32 axial force o r  bsndins n m e n t  stress resultant, it follows t h a t  

there  w i l l  aiso be a nernbrane shear force stress r e s u l t a n t  and a 

twist ing noaent s t r e s s  r e s u l t a n t .  Heace i n  enera l ,  it mst also be 

assuncd t h a t  t he re  w i l l  be correspondinzly a mexbrane shear s t r a i n  

arid a reference surface tors ion.  It also 3 l l o w s  t h a t  t he re  w i l l  
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esist a cangentid displacciicnt V” ,  i n  the 8 direction. 

The siriplif i e d  shell equations tdce tlic fol lowins form. Since 

the variables-are only a function of X then ordinary derivatives 

Equiiihriun 

Displacement -de fornat ion 

Corcparibility 
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Cons t i t u t  ive  

Boundary Conditions 

A d f l , - e o  as x-2-m 
C. Resultant D i f f e r e n t i a l  Equation 

Ul t ina t e ly  t h e  r e s u l t a n t  s h e l l  equztions will be transformed i n t o  

displacement forin. The compatibi l i ty  equations are assumed t o  be 

s a t i s f i e d  i d e n t i c a l l y  i n  displacemsnt form and hence these e q u a t i m s  

need not be considered i n  the  analysis .  

The c o n s t i t u t i v e  equations when expressed i n  s t r e s s  r e s u l t a n t  

displacement form a r e  as given i n  the following s e t  of r e l a t i o n s .  
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3 

In order  t h a t  t h e  stress rcsuicant  e q a z i o n s  be transforxed t o  

displacement fora ,  t h e  transverse s&ar s t re s s  r e s a l t a n t s  nxs t  >e ziiz-ina- 

red from the equations. Thus f ron  t h e  iast LWO e q u i i i b r i u a  equztioas,  

Subs t i t u t ing  these r e l a t i o n s  inzo the  second and t h i r d  e q u i l i b r i m  

equations, these two equations and tlk f i r s t  equation become the following. 

The f i r s t  two equations can be iiltegi'atcd d i r e c t l y .  Further s ince  

the  in tegra ted  equations a r e  applicable f o r  any value of  X, they 2re 

also a p p l i c a b l e  a t  the boundary. However t h e  in tegra ted  equations a r e  

equal i d e n t i c a l l y  t o  two of  tk.e boundary conditions.  Thus the above 
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rhrcc equations m y  now be wri t ten as 

Note t h a t  two 05 thc boundzry conditions a r e  i d e n t i c a l l y  s a t i s f i e d .  

Subs t i tu t ing  these  r e l a t i o n s  i n t o  t h e  second and t h i r d  equi l ibr iu i i  

equations,  these  two equations to se the r  with t h e  f i r s t  equilibrium 

equation y i e l d  the  following. 

The first of these  two equations can be in tegra ted  d i r e c t l y .  

Further,  t he  constants  of i n t e g r a t i o n  can be evaluated d i r e c t l y  s ince  

the i n t e g r a i s  of t h e  f i r s t  two equations are equal identically t o  two 

of the  boundary conditions. Thus t h e  prcceecling three e q u i l i b r i u n  

equations may now be  written as, 

I - 
R 

0 



24 

Kote that the first two equations guarantee identical satisfaction of 

two of the boundary conditions. 

The s t r i s s  resultant-displacement form or' the constitutive equations 

when substituted into the three equilibriun equations ,ransforas these 

latter equations into displacencnt form. Substituting and simplyfying 

by neglecting terms of order S2' in  comparison to unity, 

414. w-= 0 I A,, + A,, SIX -I- - dr: d A  R 

The first two of the equations nay be solved f o r  the derivatives 

dL/&and d'/dx as functions of u / .  Thus the result becones 
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Equations (14) and (15) wnen subs t i t u t ed  i n t o  t h e  t h i r d  equilibrium 

cquatioLi t r m s f o r n  t h a t  equation i n t o  one containing only t h e  va r i ab le  

W. Xcncc the  t h i r d  equilibrium equation, when s impl i f ied ,  i s  given 

as tile 
t 

4,2i 
It 

P- 
following. 

Equations (14), (15) and (IG) define t h e  displacenent conponents 

of the shel i .  However i n  order t o  deternine t h e  t zngen t i a l  dispiacsments, 

t h e  nom31 displacement Wrnus t  be Xnoxi, Eeacc thc  so iu t ion  af equation 

(1G) a l t i n a t e l y  def ines  tile d i sp lacexex  s o i u z i o a  ai t he  shel i  equations 

The equation def in ing  :i-.-.e n o r i d  displacement IC/; equation (iG), 

is of relati-dely simple form. That is, i t  i s  a fou r th  order l i n e a r  

honogeneous d i f f e renc ia1  equacion with constant coe f f i c i en t s ,  

respect t h e  equation is simiiar i n  form t o  the equation given by Timoshenko 

(5) fo r  an iso'iropic she l l  of similar geometry and loading. 

unl ike t h e  i s o t r o p i c  ana lys i s ,  t h e  present equation contains a second 

de r iva t ive  of  t h e  displacement zcf; 

i n  t h i s  

However 

I f  t he  c o n s t i t u t i v e  equations were reduced t o  t h e i r  corresponding 

i s o t r o p i c  form, the coupling constants ,  A I L  and 

values.  

term, equation (15) would y i e l d  zero value f o r  t he  displacement 2r', xnd 

equation (16) would s implify by the  omission of t he  second de r iva t ive  

term. In p a r t i c u l a r ,  the  equations would clegencrare t o  t h e  i s o t r o p i c  

, would assume zero 

Equation (14) would s implify by t h e  omission of the d i f 2 c r e n t i a l  
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form given by Timoslicnko. Thus the  ne t  r e s u l t  of planc anisotropy 

o n  tlia prcscnt problem is t h e  inc ius ion  of d i f f e r e n t i a l  terns i n  t h c  

equation f o r  the displacenent U andWand t h e  e s i s t ence  of t h e  t angen t i a l  

displaccxcnt T. 

In order  t o  e f f e c t  a so lu t ion  f o r  the displacement coqonen t s ,  the 

boundary conditions must be s t a t c d  i n  displaccrriant form. Eowever, s i n c e  

t v o  of tlic boundary conditions are i d e n t i c a l l y  s a t i s f i e d  from the  

fornula t ion  of t he  displacement e q u ~ t i o n s ,  only t h r e e  b o u d a r y  conciizions 

ar2 i n  existence.  Turther, on2 of t he  boundary conditions already is  

s taced i n  displacenent form. Hence only two boundary c o n d i t l m s  need 

be trmsformed. 

Subs t i t u t ing  the c o n s t i t u t i v c  stress r e su l t an t -d i sp lacmen t  equations 

i n t o  t h e  boundary conditions,  the r e s u l t  becomes t h e  following. 

However these  two equations can also bs transformed i n t o  equations 

containing only t h e  normal displacement V. 

(15) and i t s  de r iva t ive  i n t o  t h e  transformed boundary equations,  t h e  

f i n d  set  of boundary Conditions on the  displacement conponcnts ,k  3 

Thus s u b s t i t u t i n g  equation 

, W ,  become t h e  following. 
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D. Equation Solution 

It has b e t s  shown i n  the previous sec t ion  t h a t  t he  so lu t ion  f o r  

rer'zrence surface shell disp1,cenent components i s  scrlely dependent 

on the  so lu t ion  fo r  t h e  normal displacenent c o n p o n c n t X  

na ture  of  so lu t ion  f o r  this  displacement cmponent a l s o  w i l l  def ine  

the na tu re  of  t h e  remaining displaccmenc coxponeats. 

w i l i  be concerned s o l e l y  with t h e  so lu t ion  of equation (16) and i t s  

boundary condi t icns  (17) . 

Hence t h e  

Thus t h i s  s ec t ion  

One fea tu re  of t h e  s tudy will be t h e  determination of t h z  

e f f e c t s  of t h e  e l a s t i c  constants ,  a;,., which appear i n  t h e  stress- 

s t r a i n  equations. The constants ,  A,.;, appearing i n  t h e  d i f f e r e n t i a l  

equation and boundary conditions are  the  e f f e c t i v e  e l a s t i c  constants  

given i n  t h e  c o n s t i t u t i v e  equations. 

r e l a t i o n  between t h e  two sets of constants.  Thus it i s  poss ib le  t o  

transform squations (16) and (17) i n t o  a form containing the stress- 

s t r a i n  c l a s t i c  constants.  

However equation (6) def ines  t h e  

The r e s u l t i n g  transformed equations are t h e  

following. 
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In order to f a c i l i t a t e  the manipulation 3f the equations, der'ine 

the quantities b and c as f o l l o w .  

- A (23) 
/] dT Q44 (Q,,Q,- L2.g 

/ 2  c =  - 
The differsntial equation and boundary conditions then b z c c x  the 

ZJ-0 > x-703 

@=O) 

Consiclcr now assuming il solution of the type 

where 2 a n d  6 are canstants to be deternincd, Substitu : ing the a,.;sumccl 

solution into the differential eqution, t he  following characteristic 
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equation i x  X results.  

c'n2rzccc.r is c Lc q u a t  ion,  

(29) 

the VAUC a i  t ke  roo t s  my De r e d ,  li=,-,,-irtcry or ~ o ~ ~ i ~ > < .  rn &he valucs 

)-deternine the so lu t ion  f o r  t hz  n o r x ~  c i i sp l acemx i K  ECXZ :he 

nature  of thz  roots and the conditions x k i c h  deternine a change iz Lheir 

nature are extrencly i q o r t a n t  t o  the z x l y s i s .  

If the s h e l l  nater ia l  s t r e s s - s t r a i n  equations were e i t h e r  i s o t r o 2 i c  

or canonically orthotropic i n  for=, iZent icz l ly ,  

p l a n e  anisctropy, 3ecausc of tnis f a c t ,  zn arbitrary quan t i t a t ive  

chsracterLzaiion of t he  degree of plane anisotropy may be givec, 

Lett ing the terms wczk, m i l d ,  s:rong and very s t rong  charac te r izz  ? lmc  

anisotropiess and noting tha t  the constants b a n d L  may be e i t h e r  p o s i t i v e  

91: negative, the  fJl lowing de f in i t i ons  are 

1. Weak anisotropy 

L 7 U  ; 

set fo r th .  
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X s ins lc  i n q u a l i t y  sign i n  tha above equatidns indicate  tha t  the 

. *  tcrris ~~~i~~ c m ? t x &  crz  or" the S ~ C  order of xzn icudc .  XI? incc,usfity 

on t h  2 x 3  :err. dci incs  the (rlgcbraic s i g z  or' thz tcrz. '3.;"nca 2 Ciau3le 

incqusf i iy  sign is sho\;,~t, it F . C ~ G S  onc tcrn is at  cn order of inagzicu2z 

lzrggilr thm rhc a z h r .  

proccss of d d i t i o n  31: subtract ion.  

Ycncc the smller ccrz m y  5e nzglected i n  any 

Ziie cord i t i on  :hat ~J-0a.s %-=iq i i z s  t h a t  so?ctior,s Thick 

sazisr 'y :he Soundcry corzLiriozs 2nd zrif firrite xcst be those vhich ccntz in  

t h  nczat ive exTonentia1. 

nct 211 correspondin; solutions s a t i s f y  this condition. 

czlculatzd dispfaccxnts  are either i n d e t s n i n z c ?  o r  i n f i n i t e  i n  vaiuc, 

Soltltions of w which do not contain K ~ C  ns,rrative exponential 

These so lu t ions  

Hawever of all ti12 poss i j ie  cascs staced, 

3 n c e  the 

occur in a l l  four- catesories of p k a e  acisotropy. 

correspond io t h e  following conditiocs:  

1. 

2. 

3. 

Weak anisotropy 

K ( 0 ;  
Xi ld  anisotropy 

Ibl (7 
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3 .  Strong anisotropy 

C .  - b d O ; , C  > O  

C. 

. 
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4 .  Very s t rong miso t ropy  - 

b. 

The  i n s t a b i l i t y  conditions noted occurs f o r  certain ratios of  

the p l a n  an.is3tropi.c clastic c o n s t x x s .  i n  order t o  detcrninc viiietker 

thc phe..,i is physically p o s s i b l e ,  c3 orthotropic raterial ske\qcC! 



0 
sc $5 

m i s a t r o 2 i z  c h s c i c  cmsZants.  .issune t k t  the crinonical fo rn  of t h e  

orthocro?ic stress s t ra i2  r c l z t i o n s  i s  given as t h e  following. 

t o  t l x  g c o n c t r i c d  shel l  zxcs can bc used t o  gzncrate t h e  p l m c  

- 
l i e  i n  plai1c t a g e a t  t o  shell surface and t hc  

or' G5 with tile shell X ases. Using the  trans- 

zkstic c o n s t m t s ,  the strzss s t r a i n  relaticzls 

0 

r e l a t i v e  t o  t he  she l l  coordinate axes tzi.2 the plaae aniso t ropic  canoniczl 

form, 

aniso t ropic  s t r s s s - s t r a i n  lzw ca t h s  cazonical a r tho t ro9 ic  c l a s t i c  

-- ,u,owver t he  r e l a t i o n  of t1-x slaszlz c o z s t ~ i ~ ~ ;  i>f the plar.2 

const%nts i s  

a - r r  = 

Q,Z = 

given zs the followlng. 

I 
ut Ca, - a,: ) 

and Hence i t  follo\;;ts t h a t  a,,=(& =Qw 9 

T t c  quant i ry  i s  i d e n t i c a l l y  zero znd hence 

c = o  
I The quant i ty  o z l s o  calculates to be zero. 
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m Ahus thc  miso t ro2y  can 32 charactcr izcd as strong. Thc r e s u l t i n g  

s o l u r h n  for  t h i s  p a r t i c u l a r  p r o b l m  is t h  f o l l o v i a g ,  

Again i n  t h i s  irtst anc e t’nc 

C o x  ILS i ons  

. .  . - .  Ccpndent  only oil the  a a t u r c  of t i l2  10~~ ; r .g .  h physical  juscir;czcio:. 

for t h i s  condition can be given f a r  at lszst  022 i n s t a x e ,  rxri2i.y, th2 

s i tua t io i l  xhen 2 s i n g l e  or thot ropic  layer i s  skcewe2 a t  45 t o  rsii; skell 
0 

axes. Uhether a l l  o f  th2  i n s t a b i l i t i e s  noced zire phys ica l ly  p l ausL>l s  

is open t o  questicn. 

The t e r m  i c s t a b i l i t y  i s  dea l t  v i t h  loosely. I n  many of  t h e  ciises 

given i n  the p p c r  t h e  Ccrm simply mans  thar  all of t h e  boundary 

conditioss cannot be s a t i s f i d ,  2specisll . l  t he  a s - p p t o t i c  decay or‘ the  

nornal Lispfacement. Thus the  nornal displacement becornes indc tern inz te  

i n  valuz. Eicwevcr, when t he  nornal displacement incrsases  without 

bound it is  also indeterminate and hence t h e  cormon terminology f o r  t he  

Whether i i z  f a c t  th2  i n s t a b i l i t y  is physical ly  p l aus ib l e  o r  no t ,  

one f a c t  docs exisc .  Sanely, that f o r  c e r t a i n  vzlues of t h c  coupl ics  
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r c f z t i o n s ,  a s o l u t i o n  s a t i s f y i n g  t h e  boundary condi t ions  i s  not  

i n  e i t h e r  i s o t r o p i c  o r  -. 
I , U" Ahher, c such a s i t u a t i o n  docs not 

o r t h o t r o p i c  a n d y s i s .  

The f c r x u l a t i o n  of t k c  six11 

occur 

quat il 

cons t m t s  appearing i n  t h e  canonica l  plane a n i s o t r o p i c  s r r c s s - s t r a i n  

possible. 

canonica l ly  

as i s  based on thii l i n  a r l y  

e:i;ict a q r e s s i a n s  f o r  t h e  c q u i l i b r i u n  cquat ions,  t h e  c o n p a t i b i l i t y  

equat ions,  the dispiacexlcnt deforna:ioa r e l a t i o r s  and t h e  stress- 

s t r a i n  r e l a t i o n s .  Tbc i n t r o d u c t i o n  of t b e  :<irck'noff hypotheses and t h e  

sonscquent c o n s t i t u t i v e  equat ions 3riz tile so l e  source of e r r o r  beyond 

t k t  which i s  es?ectcd i n  l i n e a r  a x l y s i s .  Howcver t h e  Rirchhoff hyporkeses 

y i e ld  recsonablc r e s u l t s  e s p e c i a l l y  fo r  r e l a t i v e l y  sin212 problems of 

vhich tile problem under d i scuss ion  i s  an esa ip le .  

s t a b i l i t y  noted i n  t h i s  papsr is p h y s i c a l l y  not p l a u s i b l e ,  t h s n  one or' 

two  o r  both conclusions must be drawn. Xrst ,  that non-l inear  a n a l y s i s  i s  

Hence i f  t h e  in-  

not a p p l i c a b l e  t o  a l l  p l ane  a n i s o t r o p i c  she l l  ?'roblens even though 

loadings are ex t r ene ly  small ,  Secmd,  t h a t  the Kirchhoff hypothzses 

are not  a p p l i c a b l e  t o  a l l  p lane  a n i s o t r o p i c  s h e l l  problems e v a  chough 

the shelf nay be e x t r e x e l y ' t h i n  and o f  the s i n g l e  layered  type. 



Figure 1. -Middle surface coordinate system for 
r ight  c i rcu lar  cylinder 



Figure 2. Semi-infinite r ight  circular cylinder with 
aniformly applied edge loads 


