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ABSTRACT
This work deals with the determination of changes in
orientation of the human body in a state of free fall
(weightlessness), the changes resulting from specified
motions of the arms relative to the remainder of the body.
A computer program, written in Fortran IV for the IBM 360/67,
is documented and examples in the use of the program are

given.
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I. INTRODUCTION

Within recent years, there has emerged considerable
interest in the problem of maneuverability of the human body
in a state of free fall (weightlessness). Studies have been
made of devices such as hand held jet guns, jet shoes, and
Jet back packs for maneuvering the body in space. The pre-
sent work deals with the reorientation of the body by means
of relative motions of body parts during states of motion in
which the angular momentum of the entire system relative to
its mass center 1s equal to zero. More specifically,
changes in orientation resulting from specified motions of
the arms relative to the remainder of the body are consid-
ered. To this end, the human body is regarded as consisting
of three rigid bodies: a main body, representing the head,
neck, trunk, legs and feet; and two additional bodies repre-
senting the arms. (The phrase '"free fall" refers to a state
in which the system is subjected To no external forces other
than gravitational forces which may be replaced with a
single force applied at the system's mass center.)

The dynamical analysis of the problem is presented in
Chapter II, and Chapter III is devoted to the documentation
of a computer program that may be used to solve the equa-

tions developed in Chapter II.



1. THEORY

1.1 Consider a system, S, consisting of three rigid bodies

B B, and Bg, as shown in Fig. 1.1, where B is composed

0’ "1 0
of rigid bodies Bs, Bé, By, By and By, as shown in Fig.

1.3. B1 and B2 are connected to BO at points A1 and

Ag, respectively, and are constrained to move relative to
BO in a manner described in Sec. 1.2.

Several sets of unit vectors are needed in the sequel.
Every vector shown in Figs. 1.1 - 1.3 belongs to one of a

number of sets of three mutually perpendicular unit vectors,

such as € EQ"E3 and g&o),‘géo), E%O), etec. The

—

vectors n§J), i=1,2,3, are parallel to principal axes of
*

body BJ for the mass center Bj of Bj’ j = 1,2,3,4,5.

Unit vectors n(o), i=1,2,3 are parallel to principal

—

*
5 5°

Body BO is assumed to be symmetric as regards geo-

axes of B for B

metrical and inertial properties, the plane of symmetry

O). This

being parallel to the unit vectors vﬁéo) and gg
is simply the usual assumption of left-right symmetry of
the human body, which may be expected to be valid whenever
the legs occupy symmetric positions relative to the trunk.
(For further discussion of this assumption, see Sec. 1.5.)
The mass of Bj is denoted by mj. The mass of Bl
and B2 are equal to each other and are denoted by my -
Similarly, the mass of B3 and Bé, and the mass of B4
and B;, are equal to each other and are denoted by m3

and My respectively.

-2 -






Fig. 1.2



Fig. 1.3




*
i

The principal moments of inertia of body Bi for B
are denoted by Igl), J =1,2,3, the principal axils associ-

J
the symmetry characteristics of BO, the principal moments

ated with I(l) being parallel to ‘géi). Again, because of

1 1
of inertia of B3 and B4 are equal to corresponding prin-
cipal moments of inertia of B3 and B4, respectively.

Furthermore, it is assumed that B and B2 have equiva-

1
lent inertial and geometrical properties, i.e. Igg) = Igl)

3 b

j=1,2,3.

1.2 The prescribed motion of B, (B,) relative to B, may

1 0
be thought of as a "coning" motion in which the center line

of By(B,) acts as a directrix of a cone, e, (ey), with
apex at Ay (AE)’ see Fig. 1.2. The variables a;, B,
615 ¢ (az, Bos 6o; ¢2), defined subsequently, are used in
describing this "coning" motion.

Let &, denote a line parallel to the vector n{®),
i=1,2,3, and let Ei - Qj denote a plane containing the

lines Ei and 8., i, J =1,2,3. Then, the axis of @€

J 1
is located with respect to BO by two angles 0 and Bl’
where Qy is the angle between fl and the projection of
the axis of Gl onto the £1 - £3 plane, and ﬁl is the

angle between the axis and the projection of the axis onto
the £1 - £3 plane.

A reference frame, E fixed in € is defined by

1J 1)
the unit vectors _gﬁl), gél): Egl)’ where these vectors are

ffixed in the cone Gl and have directions such that
(1) _ (o) (1) _ _(0)
& =05 7, €5 = I3

, and sgl) = 21(-0) when a, = Bl = 0
-6 -



i.e., when the centerline of arm B is forward parallel
1

to _ggo)). The centerline of Bl‘ 1s located with respect

to E1 by the angles 91 and ¢l, where 6 is the semi-

1
vertex angle of Gl, and ¢l is a prescribed function of

time 1Indicating the position of the centerline of B on

1
61 at time ¢, relative to the initial position at t = O.
Similarly, the "coning" motion of B, is described by the
angles QAss By 655 &5

B1 and B2’ which represent the arms of the human
body, are required to move relative to BO in a physiologili-
cally feasible manner. To express this requirement in ana-

lytical terms, let Pl be the plane containing the points

P. B
Ays Cys Dy (Fig. 1.2); lg 1 the angular velocity of B,
E. P
in a reference frame fixed in Pls and 19‘1 the angular

velocity of P1 in reference frame El' Appropriate mo-
tions of Bl are then those that satisfy the constraint

equation

P, B E, P
1,0, (1) _ g (1) (1.1)
= =3 = =3
and, similarly, for B2
P, B EL P
29‘2 . 2}2) _ 29-2 . ng) (1.2)

l;é‘ The equations of motion are obtained by use of the
angular momentum principle. Since 1t is assumed that the
sSystem is in a state of "free fall', as was discussed in
the introduction, the sum of the moments of all contact and

- 7 -



gravitational forces about the system mass center i1s zero.
Therefore, from the angular momentum principle, the angular
momentum of the system with respect to the system mass cen-
ter is constant in an inertial reference frame. In this
report, this constant is taken to be zero.

s/s*

The angular momentum, A’ , of S relative to §*

in an inertial reference frame can be expressed as

* * *
* B./B B,/B B,/B
é?/S _ A.O 0 + é,l 1 + A 2772
* * * *
By/S B, /5 B, /3"
+ A + A + A (1.3)
*
B, /By .
where A denotes the angular momentum of By relative
B./S
*
to B, and A T is the angular momentum relative to

i 8
S* of a particle of mass my located at B;.

The analytical expressions for the elements of (1.3)
will be meaningful only after further definition and rela-
tionships between existing quagtities have been described.

Bo/Bo
For example, To express A

analytically, the inertia
properties of BO must be known in terms of the inertia
properties of B3, Bé, Bq, BL and B5. These properties as
well as other necessary quantities are determined in sec-

tions that follow, and expressions for each term in (1.3)

are then given.

1.4 The following relationships between unit vectors are

needed:



(<9} - (] fao) -

where
(1) n{0)

v

{E(l)} = <_€‘él)} , {p‘(o)} = | rléo)

Egl) kngo)J
andT
Ca1 SB]_ CB]_ Sa:L SB:L7
[A§l)] = SO(,1 0 Cal
Lcal By By oy %y (1.5)
) - 4] )
where
a(1)
(i) = )]
ntl)

T s and ¢ denote sine and cosine functions, i.e.,
Sal = sin (al), 061 = cos (ﬁl), etc.

-9 -



and

_ 6, "9y 6, ¢y o, | (2.7)
Hence
() - [Agu} [Ai”] () - o) e} (1.8
(4
where
0] = [0 ] L] (1.9)
so that, if Tg%) denotes the element in the ith row

and  j°% column of [T(l)J, then

(1)

- 10 -




I

)

: 2 2 )
= C c S + ¢ + 8 S S c c. -1
23 Qy ( o1 % ¢ ) By ¢ 79 ( ° )

1)

T( = S S S - C S S C + c ¢} c
1 @ 91 % o By TEy e T Tay By ey
(1)

T = C S C + s C
32 By 781 Oy By 7O

Tg%) = C S S + s s S c - 8 C ¢

@1 f1 % e, By 8 9 oy By T8 (4 q0)

The only time dependent quantity in [T(l)] is the

angle ¢1. Hence, the time derivatives of the elements of
[T(l)} are

(1) ) ( 2 2 )
T = s c. -1 c - 8 + 2 c S S c N
11 oy ( 61 ¢ 9 A By 6y 9y ( o )

o3

1l
i
N
¢}
w
[
n
©-
=
O
©
[
—
Q
D
o
1
—
S ———
4-
6]
w
-
2]
D
[
7]
©
[
| G
©
[
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- 8 c S ] 0]
@ By 5 ¢1] 1
(1) [ ( 2
T 28 s c c —1) - c S c., =8 ) (c -1)
21 P e\ ay By ( ¢q b1 %)
- C c S c. ¢
ap "By 9y wl] 1
(1)

(L) _ T

T = s S c + ¢ S S 8 0)

31 _al 81 "9y a; "By 01 ¢l] 1

(1) _ T ]

T = |- ¢ s S ¢

-(1) -~ ] .

Ty3 = |e. s c. =-S_ 8, 8, 8 o) (1.11)
33 i %y 81 ¢1 ay Bl 91 ¢l 1

All necessary transformation matrices relating the unit

vectors fixed in B, n(g), i=1,2,3 and the unit vectors

2(0)

» 1 =1,2,3 may be obtained from (1.4) - (1.11) by
replacing the superscript (1) by (2) wherever it appears in
the vectors and matrices, and by replacing the subscript 1
of the angles Q- Bl’ 91, ¢1 by a 2. For example, analo-

gous to (1.5)

- 12 -



[~ i
- S C S S
ay "By Bo a Bo
[A:(Lg)] = s 0 c
) )
S -3 c
i Cay g, B ar Bp (1.12)

1.5 1In (1.3) the factors involving B can be expressed

0
analytically when the geometric and inertia properties of

BO are known.

The assumption that BO is symmetric in all respects

requires that B and Bé (B4 and BL) be identical

rigid bodies, and that the positions of By and Bé (B4
and BL) relative to 35 be constrained such that a line
between any two corresponding points of B3 and Bé (B4
and B;) remains parallel to a line connecting the points

t
Ay and Ay (i.e., the legs remain parallel for all config-

urations of BO). Also, in this analysis B3 and B, are

required to remain in a plane parallel to the fl - £3
plane (Sec. 1.2), and it is assumed that there exists a
principal plane for B3 and B4 parallel to the El - £3
plane.

*
The principal moments of inertia of BO for BO are

*
obtained from second moments of BO relative to BO for
directions géo), i=1,2,3, which are in turn obtained

*
from the second moments of Bj relative to Bj’ Jj = 3,4,5,

for the direction géo), i=1,2,3.

- 13 -



The second moment,

for the direction nl©)

Similarly,

B, /B,
1,

where

¥*
B./B
3773
s

s Of B3 relative to B;
o ) 1= 1:2,3, is given by
2 2 3
(Cwl ) 54, 1$3)) n{®)
i S1//1 Cwl (Ié3) ) Ig3) r-]-(BO)
I:(L3) Qéo)
(3) 3
¥, %y (12 ) Ig )) 950)
* (Sil )+ Cil 1$3) 28 (1.13)
2 4 4
(67, 38+ 3 16%) of)
+ sw3 Cw3 Ié4) - Igu) g}o)
154) géo)
4 I
i3 vy (€Y - 1 )) uf®
2 by 2 4 0
* (SW3 Ié ' 3 Ig )) Qg )(1.14)
V/3 - 11/1 - 1//2 (1.15)

- 14 -




! 1
Since B3 and B3 (B4 and B4) are identical,

1 1 ¥ *
By/By _ | B3B3
4 =1y
] 1 ¥ *
/B B, /B
I, R I, 4 s i=1,2,3 (1.16)
Finally,
*
B./B
I, 2 0 = I§_5) ggo) ,  1-=1,2,3 (1.17)

where, in (1.13) - (1.17), the quantities I J), i=1,2,3,

o~

J = 3,4,5, are principal moments of inertia defined in
Sec. 1.1.
By the parallel axis theorem for second moments
* * * *
By/Bo _, By/By . By/Bg
. =1, + I

= =3 =i s 1=1,2,3, J = 3:4’

(1.18)
BJ/BO

*
where i is the second moment of the point Bj re-

garded as having a mass equal to the mass, mj, of Bj’

i.e.,
»* ¥* * *
B B B./B
J/Bo=m.rj/BOx(n(O)er Ol i=1,2,3
(1.19)
where
* *
2?3/BO = [}-E; (m3 23 SW + my £4 8 + my L3 S )]
"o 1 V3 4]



+ £y s ] n 0) + [a3] Q(O)

1
+ [ES (- m5 a5 + 2 m3 23 Cwl + 2 my, E4 cw3
- (0)
+ 2 my Ly cwl) Ly cwl] ny (1.20)
* *
4/Bg

= |- _g-(m b~ 8 + my £, S + my, L, 8 )

3

+ Ly Sy, + 4y sw3] g§o) + [as] Qéo)

s |
+ | = (- mz a5, + 2 my £5 C + 2 my 4, c
[mo 5 72 373 Tuq bR Tyg

i} _ (0)

(1.21)

and

My = 2 mg + 2 my + Mg (1.22)

Again, because of equivalent inertial and geometrical

t
properties and symmetrical locations of B3 and B3 and of

t
B4 and B4,

. B3®o _ : B3/By
iy =1
1 * *
/B B, /B

- 16 -



Also,

+ 2 my Ly cwl) + a2] géo) (1.26)

*
Finally, the second moment of BO relative to BO for the

direction géo) is

i=1,2,3
(1.27)
*
The principal moments of inertia of B for B

0 o’

I§O), Iéo), Igo), are obtained from the three second
*
Bo/Bo

—i 2

2 1/2
-1
(0)  Ti1 * Is3 (Ill 33) 2]
I ) s + > + (113)

i=1,2,3 as follows:

- 17 -



where

Iij = l:-j_ : =j s i, J =1,2,3 (1-29)

As BO is symmetric with respect to the £l - £3 plane,
it follows that this plane is a principal plane; and Qéo)
is parallel to principal axis of BO for B;,
ated principal moment of inertia being given by

the associ-

1(0) ZEEBO/BO . nf0) (1.30)

The angle, V1 between the axis of largest principal

moment of inertia, I&O), and a line parallel to Qﬁo), is

given by

(1.31)

1.6 One further topic must be discussed before analytical
expressions for the terms of (1.3) are presented, namely
the location of the system mass center, S*, relative to g
reférence point, 0, fixed at some point of S.

Let O ©be the point of intersection of the line be-
tween A, and A, and the e - 23 plane. Then O is

1

fixed in B5 and in the plane of symmetry of B The

O)
91 - £3 plane. The position vector of O relative to the

- 18 -



*
mass center, S,

given by

*
L0/5

—

where

ay

and

1r

then it

of S 1is denoted by r

o/s™

s 50 a0

+ 2 m

il
I

-m- a0 + 2 m, £, C
mq ( 5 72 373 wl

-2 (
= — {m5 £~ 8 +my £, S

*
EQ/S is expressed as

*
EQ/S

follows from (1.32) that

) ) 140 o

+ 2 m, &, C
4L 7y U3

+ mu_ L3 811/1)

0) 4 £(0) 5{0)

rgo) = % [mo a5 - ml a1 (Tgi) + Tgl )]
réo) - & [} my a (Tg%) + ng))]

- 19 -
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(1.35)
The time derivative of EQ/S* in BO is given by
%0 4 (0/s*)_ :(0) (0) , :(0) (0) , 2(0) (0
(T‘E'(E— ):rl 2| +r2)92)+r3 93)
(1.36)
and from (1.35)
. m a . .
H0) - I (D i)
féo) - mlMal (Tgé) 4 égg))
. m a . (2
LR LD) wn

1.7 Finally, the terms compiéiing (1.3) can be clearly
' B
expressed analytically. A 0°70 is given by

—

- 20 -



where

0 0
Qj_ =0 * EI(L ) , 1 =1,2,3
Bo
and denotes the angular velocity of BO in an
inertial reference frame.
Next,
*
B,/B
N 1771 _ 1/1 25 Al/i 4 Eéo)
i=2
' 1/ < [
L 1* 1/1 0)
+ ji €3] 5
L 1=2 -
- 4 “I
+ 1/1 : Ei 1/1 r](o)
£3.1] B3 (1.39)
| 1=2 -
where

[
Il

11" 1) (1) .
Aij 2: A’ Ty ) 1,...,4, j =1,2,3

(1.40)
and
ay) - - ot o, %, %1 afy) -1t oy
S SR
ay) - - it 6, o) o afp) - ol 2y
NERINCORNER R EO R (DR CO I

- 21 -



(1) _ (1) - ) (1) _ (1) (1)
a3y = 1§ (091 1) é, L a3y =13 oy
(1) _ (1) (1) (1) _ (1) (1)
A33” = 1377 T35 o Ap3t = 1377 T33
(1.41)
Similarly,
x 4
B,./B
/B2 _ | 2/2% 2 /0% (0)
A = A7 6 7 ZE Ay 9.
i=2
i 2/2% : 2/2 1 (0)
A2 9 22 A 1-1] B
L 1=2 )
+ [a222" z A2/2 Lo e8P e
where
2/2 . .
:2 Alk .) L, 4= 1,...,4, 5 =1,2,3.

(1.43)

and A(?), i=1,...,4, j =1,2,3 are obtained from (1.%41)

1]
by replacing the superscript (1) of Tgﬁ)

by (2), and the
subscript 1 of 61 ¢1, ¢1 by a 2.

For example,

(2) _ (1) o(2) (2) _ _ £(2) ; te.
Aor = I TI s AppT = - 17T 8y Se ¢y, €LC
(1.44)
* *
The angular momentum, A , relative to S of a

*
located at B is

particle of mass m 0

0]
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* »* *
Bo/S By/S By
A = my T X v (1.45)
where
3* ¥* ¥* *
By B, Bo/s* Po Bo/S
vO-e’xr? o+ gl (1.46)
and

. (rgo) - ay - Ll) n(0) (1.47)

B * ¥ B
0 d(BO/S)_ 0 d(o/s*)

_ (o) (o) _ - _(0) , -(0) _(0)
=ry ny + T, D +r3/ n3
(1.48)
where fgo), i=1,2,3 are given by (1.37).
Similarly,
* * * *
Bl/S Bl/S B,
A =m Xy (1.4%9)
where
’ * * * * *
B, B, B/S Po 4 ( BL/S
Vo o=w  Xr + IT \L (1.50)

- 23 -



B*/S
r 1 = (P§O) + aq Tg%)) g&o) + (réo) + aq Tgé) + bO) néo)
(e 4 ey L) o) (1)

and

1 ~32 -2
~(0) '(1)) (0)
+ (r3 +a) T337 ) n3 (1.52)
Also,
* * *
B /S B~/S B
A : = my 2.2 Xy 8 (1.53)
where

v =w"Xxr + TT (1.54)
_Bg/S _ (P§o) v Tgf)) p_&o)
e (50 4 oy 28D - ng) o)
R

and



2 1 2o
o (00 4 ) 28)) nlO) (2-56)

Thus, all terms in (1.3) have been expressed analyti-

cally, with certain mathematical operations such as cross

B ey

multiplication and series summation left unperformed. How-
ever, when all operations are performed, the terms of (1.3)

may be grouped into the following form:

* *
S/S s/s s/s s/s S/s (0
A = { 11t AT g+ A3] $ip + AR 93 0y )
s/s s/s” s/s* s/s ] (0)

* * *
S/S S/S S/S
+ [A13 + A23 Ql + A 9]

33 S/S 93] “go)

2

(1.57)

As discussed in Sec. 1.3, the equations of motion are ob-
tained by setting the coefficients of Qéo), i=1,2,3, in
(1.57) equal to zero. This leads to three simultaneous non-
homogeneous linear algebraic equations 1in Ql, 92, 93,
which may be solved simply by applying Cramer's Rule.

l;é Recall that the objective of this work is to determine
the orientation of the main body in terms of Euler angles.
A step in this direction 1is to determine certain Euler

parameters for the motion.

- 25 -



The angular velocity components Ql, 92, 93, as found
in Sec. 1.7, are used in Euler's kinematical equations for
Tthe determination of the Euler parameters ei, i=1,2,3,

and T of BO in an inertial reference frame:

1
1 =5 (Q3 €5 = S5 €3 + Qq n)

|
N+

(- Qg € +0p €3+ 0, n)

€y = 2 (0, €1 - Qo €q + Q5 M)

372 2 "1 1 -2 3

ﬁ = - % (Ql €1 + Oy €5 Q3 63) (1.58)

Ir Ei’ i=1,2,3 are three mutually perpendicular
unit vectors, each parallel to an axis fixed in an inertial
reference frame, then the Euler parameters may be used to
express the nine direction cosines relating QgO) and NJ’
i, j =1,2,3, as shown in Table 1.1.

Table 1.1
Ny Ny Eg
géo) 1 - eg - €3 €) € t €3 N €, €3 - € M
Qéo) €, €p - €3 N 1l -~ e% - €3 €5 63 + ey N
géo) €) €3 + & M €p €3 S 1 - - eg

- 26 -




These relationships can also be expressed in the form

(1.59)

(1.60)

lel

where
r } .
(0) (]
oy N,
0 0
B} e
(0)
1237 23
\ J
and
-(1 - €5 - 62) (e en + €5 M) (e, €5 - € ﬂ)-
2 3 1 =2 3 1 73 2
— 2
[ ij] = (e1 €y - €3 n) (1 - ¢ €3 (es €3 + € )
(e; ex + e, M) (e, €5 -, M) (1 - e - 62)
LR 2 2 3 1 1 2/ |
1.9 1In terms of three axis Euler angles, 91, 92, 93, with
rotations performed in the order 17 about an axis paral
to _ng)’ i = 3,2,1, the direction cosines relating géo)
and ﬁj’ i, jJ =1,2,3, are given by Table 1.2.
Table 1.2
Ny N, NS
(0) c ,
n c c s s
i) 6, ‘65 8, "03 %
(0)
n sS. 8, ¢ - c, s s +c,c S c
= 91 02763 "9; 03 616563 6y 03| "6 6
(0) |
n c. 8, ¢ + 8. 8 s - s, ¢ c c
- 91 62 93 61 93 61 62 63 91 63 61 92




The order of rotation described above was chosen so
that the change in orientation associated with 91’ 055 93
may be demonstrated with a mechanical model similar to a two

axis gyroscope, in which the man plays the part of the rotor

mounted on the inner gimbal.

1.10 The time dependence of the Euler angles ei, i=1,2,3,

can be found by equating certain elements of Table 1.1,
Table 1.2, and using the definition of Eij given by (1.60).

The elements in the first row, third column, show that
(- By3) (1.61)
It is convenient to require that

-T/2 < 6,5 < T /2 (1.62)

1
Next, if a quantity 93 is defined as

' -1 [Eip
6, = sin —Z
3 Ch

2
and 1is required to satisfy
/2 < 05 < T/ (1.63)
then
1
93 = 63 if Ell 2 0
(1.64)
t
= - i <
and 93 T 93 if Ell 0
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1
Finally, if @ is defined as

1
] - E
6, = sin”? (-113) (1.65)
o
2
with the requirement that
/2 <o, < T/2 (1.66)
then
' >
Gl = 91 if E33 20

(1.67)
6 =T - 6, if E33 <0

These three Euler angles, 68 0 then determine

l’ 2, 93’
the orientation of the main body, BO, in an inertial

reference frame.

1.11 The angles ¢1 and ¢2, defined in Sec. 1.2, may be
any functions of time compatible with physiologically possi-
ble motions of the arms. However, if it is assumed that

is at rest in an inertial frame,

0 *
then it follows from the requirement és/s = 0, that

initially (t = 0) B

él(o) = ég(o) =0, 1i.e., the arms, B, and B,, have no
motion relative to BO.

It may be desired to find the reorientation of BO
when the arms have completed one cycle of motion, i1.e.,

when B and B2 have swept once around their respective

1

cones, @l and @2. The only additional requirement on ¢1
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and ¢, 1is that for some time T, ¢,(T) = ¢,(T) = er (the
arms have returned to their original position).

Once the matrix [Eij]’ see (1.60), has been deter-
mined for one cycle, the Euler angles for n cycles can be
e

found by using the matrix [Ei. and proceeding as in

J
Sec. 1.10.

%;lg. The preceding analysis 1is presented in a form such
that the pertinent equations may be readily solved by means
of a digital computer for the desired quantities, 91, 92,
93, associated with the motion. A program for this solu-
tion is documented in Chapter III. In essence this program
performs the operations indicated in equations (1.10),
(1.11), (1.32), (2.37), (1.38), (1.41), (1.%0), (1.39),
(1.42), (1.47), (1.45), (1.49), (1.51), (1.55), (1.53),
(1.58), (1.60), (1.61), (1.64), (1.67).
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IIT. COMPUTER PROGRAM

In this chapter the problem discussed in Chapter II is
programmed in Fortran IV language for solution on the IBM
360/67 digital computer.

To use this program one need only know what data must
be supplied and in what units these data are given. For
this purpose the input and output data are described in
detail.

To aid the reader who may wish to follow the program
through step by step, a documentation of each subroutine is
presented. Usually it is less difficult to follow mathema-
tical language than the corresponding transliteration of
this language into computer program language. To help the
reader in following this transliteration, many of the equa-
tions 1n the program are referred to by their corresponding
equation numbers in Chapter II.

A listing of the complete program including each sub-

routine 1is given in the example problem discussed in Sec.

2.13.

2.1 The purpose of the main program, FREFALI, is to deter-

mine the orientation of the main body, BO’ with respect to
an inertial reference frame by means of three-axis Euler
angles, for a maneuver in which B1 and B2 perform one
cycle of the '"coning'" motion described in Chapter II.

In this program the inertia and geometric properties

of BO are supplied as input data. Therefore, the
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properties must be found by hand calculations (for simple
configurations) or by using a separate program in which the
subroutine INRTBO is used to make these calculations. 1In

Sec. 2.2 a program including INRTBO is discussed.

PROGRAM: FREFAL1
SUBROUTINES REQUIRED: ELMAIN, ANGMOM, CURLAB, SIMEQ,
DFEQKM, DCOSEP, EULERS3.

INPUT DATA:

First Data Card Contains five numbers according to the

format E12.4 in the following order:
ay5 Gps 91, 92, mey

The angles, Qq s ag; 61, 82, are given in degrees and me

is given in slugs.

Second Data Card Contains five numbers according to the

format E12.4 in the following order:

my al, bO’ Ll’ Wl

where my is in slugs; a4 bo, and L are given in

1
feet; and Y1 is in radians.

Third Data Card Contains two numbers according to the

format E12.4 in the following order:

ay a5
where a) and a5 are given in feet.
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Fourth Data Card Contains two numbers according to the

format El2.4 in the order:
Bl) 62
where Bl and 62 are given in degrees.

Fifth Data Card Contains two numbers according to the

format El12.4 in the order:

where these numbers are given in Slug—ftg.

Sixth Data Card Contains the numbers

given in slug—ftg.

Seventh Data Card Contains the numbers

given in Slug-ftg.
The functions ¢l, ¢1, ¢2 and ¢2 must be supplied

in ELMAIN as program statements.

OUTPUT DATA:
The values of the three-axis Euler angles 91, 92, 93
are the main output quantities. These angles are calculated

in the last subroutine, EULER3, called in FREFAL1l. The

angles are given in radians and in degrees; the first number
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in each column being in radians and the second number in
degrees. Note that the angles are printed out only when

IP2 = 1 in the argument of subroutine EULERS3.

INTERMEDIATE DATA:
Other data calculated by the subroutines may be printed
by using appropriate print options contained in each sub-

routine.

2.2 The inertial and geometrical properties of By for
other than simple configurations are found by using the sub-
routine INRTBO. These calculations may be made through a
separate program in which the properties of the bodies com-
prising BO are the input data and the properties of BO

as a whole are the output data, or another main program, say
FREFALZ2, may be written which includes INRTBO. For the

reader who may wish to make this modification, INRTBO has

been included in the documentation of the subroutines.

2.3 If it 1is desired to obtain the three-axis Euler angles
assoclated with a reorientation resulting from a maneuver
in which the arms complete more than one full cycle of mo-
tion, then the main program XROTT may be used. XROTT uses
the data obtained from one cycle of the motion to find the
reorientation for n cycles, where n 1s any positive

integer greater than one.
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PROGRAM: XROTT
SUBROUTINES REQUIRED: MTXMLT, EULER3
INPUT DATA: -

The input data consist of the elements of two matrices,
E and B, of direction cosines. E 1s the matrix of direc-
tion cosines associated with one cycle of the maneuver and
1s obtained from FREFAL1l as output from the subroutine
DCOSEP. B 1s identical to E when the calculations are
made beginning with two cycles, then three cycles, etc., up
to n cycles. However, if the reorientation for n cycles
is known, then the reorientation for m cycles, m > n,
may be found without starting over at two cycles and calcu-
lating to m cycles. To do this the B matrix is the
matrix of direction cosines for n cycles, E d1is unchanged;
and M 1n the argument of MTXMLT is equal to m-n, see the

documentation of MTXMLT given in Sec. 2.10.

Data Cards

There are six data cards, each containing three numbers
according to the format El12.4 representing one row of the
two input matrices. The first three cards contain the
elements of the E matrix, the first card representing the
first row of E, etc. The next three cards contain the

rows of B in order.

OUTPUT DATA:
Again the three-axis Euler angles are the output data

and are displayed as described previously in Sec. 2.1.
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2.4 SUBROUTINE: ANGMOM

PURPOSE: To determine the components of the angular momen-

*
fum vector, IQS/S , of the system, S, with respect to

the mass center S*. This subroutine determines the compo-

nents A.. of
1)

AS/S a4

A 11+ (Bpy) @5 + (A39) Qp + (R),) 03] 95

+ [A12 + (A22) Q, + (A32) Qp + (Ays) Q3] Qéo)

+ [A13 + (A23) Gy + (A33) Uy + (A43) 93] ny

where

s P) i=1,2,3 (2'2)

B
and 0 denotes the angular velocity of BO

inertial reference frame. See Chapter II, Sec. 1.7 for

in an

further details.

SUBROUTINES REQUIRED: CURLAB
CALL ANGMOM (GAMl, ALP, THT, PH, DPH, MO, M1, Bl, B4, B5,

BO, L1, I, ASS$, IP1l, IP2, BET)
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PARAMETERS:

PARM TYPE DESCRIPTION
GAM1 Real variable The angle between the axls of maximum
inertia of body BO for B; and
the E§O) axis.
Note: GAM1 = O for legs completely
extended in the attention position.
If the legs are in a "tucked" posi-
fion, GAM1 is calculated in INERTBO.
ALP Real array The angular position of the arms,
(2x1) bodies B, and B,, in the
e -
1 33 plane.
THT Real array The cone angles, 6 and 8,, of
(2x1) L 2
The motions of bodies Bl and BE‘
respectively.
PH Real array The angular positions of B1 and B2
(2x1) relative to their initial positions,
specified as explicit functions of
Time.
DPH Real array The time derivative of PH.
(2x1)
MO Real variable The mass of body BO which includes
the head, neck, trunk and legs.
M1 Real variable The mass of bodies B1 and B2.
* *
Bl Real variable The distance between Bl or B2
and the respective points of
attachment Al or A2.
B4 Real variable The measure number of the position

*
vector of 0' with respect to BO

along the 25 axis. (B4 is nega-
tive as shown in Fig. 1.1.)
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PARM TYPE DESCRIPTION
B5 Real variable The measure number of the position
*
vector of O' with respect to BO
along the 91 axis. (B5 is nega-
tive as shown in Fig. 1.1.)
BO Real variable The distance between the £3 axis
and the pivot point A1 or A2.
Ll Real variable The distance between points O and
O 1
I Real array The principal moment of inertia of
(3<2) bodies B, and B, (B, same as
Bl) for their respective mass
*
Bo/BS
centers. [I(1,1) =TI, )
Bo/Bo
I(2,1) = 12 ete.]
ASS$ Real array The angular momentum components
(4x3) determined by this program.
IPl Integer Print option, IP1 =1 => print in-
variable
put data, otherwise no print.
Ip2 Integer IP2 = 1 => print output data, other-
variable wise no print.
BET Real array Additional angles required to locate
(2x1) the cone axes of B1 and Bg.

Note: Angles are in radians, masses in slugs, lengths in

feet, moments of inertia in slug—feetg.

2.5 SUBROUTINE: CURL
PURPOSE: To find the components of the cross product of

two vectors A and B where
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(=

|t

(2.3)
+ b

w
S
w

CALL CURL (A, B, C, IP1l, IP2)

PARAMETERS:
PARM TYPE DESCRIPTION
A Real array The two vectors involved in the
! (3Xl) operation A X B.
B Real array
| (3x1)
C Real array The resulting vector, C = A X B.
(3x1)
IP1 Integer Print options; IPl1 = 1 => print
variable input data; IP2 = 1 => print
Ip2 Integer output data, otherwise no print.
variable
2.6 SUBROUTINE: CURLAB
PURPOSE: To find the components of the cross product of two
vectors A and B where
A= (Apy T Ap) + Agy + Ayy) ny + (Ryp + App + Ay + Ayy) ny

+ (A13 + Aoy + Agg 4 A43) ny

(2.5)
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B = (Bl) 0y +'(B2) 0o +'(B3)23 (2.6)

if
C=AxXB (2.7)
then
C = (C11 + Chy + 031 + 041) in, + (C12 + ...+ 042) In,
.o 2.
+ Cyg + 043) 1ng (2.8)
where
Cip = Ay By ~ Ay3 By
C12 = A13 B1 ~ All B3 (2.9)
Ciz = 847 Bo - Ajp By
SUBROUTINES REQUIRED: None
CALL CURLAB (A, B, C, IP1, IP2)
PARAMETERS :
PARM TYPE DESCRIPTION
A Real array The vector expressed in (2.5).
(4x3)
B Real array The vector expressed in (2.0).
(3x1)
C Real array Result of A X B with elements
(#x3) given by (2.8) and (2.9).
IP1, Integer Print options; IPl = 1 => print
1Fe variable input; IP2 = 1 => print output,
otherwise no print.
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2.7 SUBROUTINE: DCOSEP

PURPOSE: To calculate the nine direction cosines associated
with the Euler parameters relating two sets of mutually per-
pendicular unit vectors, ng and NJ, i, j =1,2,3, from

the following table:

Table 2.1
N, N, Ng
n 1l - e5 - eg + -
ny > 3 € €5 €3 N € e3 €5 i
0, el €5 = 63 il 1 - el - €3 €5 63 + €4 N
n €, €5 + € €r €5 =~ 1l - 2 . &2
ns 1 €3 > N o0 €3 = €1 T €1 " &
Reference: Table 1.1, Sec. 2.8 of Chapter II.
SUBROUTINES REQUIRED: None
CALL DCOSEP (EPS, E, IP1, IP2)
PARAMETERS:
PARM TYPE DESCRIPTION
EPS Real array The input values of the Euler
(Bx1) parameters EPS(1) = e;, etc.
E Real array The resulting matrix of direction
(3%3) cosines as given by Table 2.1.
IP1, Integer IP1 =1 => print input data;
1pe variable IP2 = 1 => print output data,
otherwise no print.
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2.8 SUBROUTINE: ELMAIN
PURPOSE: ’

1. To initialize the input data from FREFALl for use
in the subroutines ANGMOM and SIMEQ which are
called in ELMAIN.

2. To supply expressions for the quantities ¢1, él’
$0s ég, which are given by program statements in
ELMAIN.

3. To provide Euler's kinematical equations through
an ENTRY point (ENTRY ELRKEQ) when ELRKEQ is called
in subroutine DFEQKM.

SUBROUTINES REQUIRED: ANGMOM, SIMEQ.

(These have been listed as required in FREFAL1 but are
actually called in ELMAIN.)

CALL ELMAIN (GAM1, ALP, THT, BET, MO, M1, Al, A4, A5, BO,
Ll, I)

PARAMETERS: All parameters in the argument of ELMAIN are
input quantities to FREFAL1 and are described later in the
particular subroutines in which they are used, i.e., none

of these quantities are used in expressions in ELMAIN.

2.9 SUBROUTINE: EULER3

PURPOSE: To find the three axis Euler angles 61, 92, 93
from the given direction cosine matrix when the rotations
are performed in the order 93, 92, 91 about respective
body fixed areas. See Sec. 1.9, Chapter II for the theory

involved.
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SUBROUTINES REQUIRED: None

CALL EULER3 (E, T, IP1l, IP2)

PARAMETERS:
PARM TYPE DESCRIPTION
E Re?l agray The given matrix of direction cosines
3%3 _
E(I, J) = By
T Real array The resulting three axis Euler
X1
(3x1) angles. [T(1) =6, etec.]
IP1 Integer IP1 = 1 => print input data, other-
variable . .
wise no print.
Ip2 Integer IP2 = 1 => print output data,
variable R .
otherwise no print.

Note: Angles are given in radians.

2.10 SUBROUTINE: INRTBO
PURPOSE: To determine the inertla properties and locate
the principal axes of inertia of body BO for the mass

*
center BO' The theory is given in Chapter II, Sec. 1.5.

SUBROUTINES REQUIRED: CURL
CALL INRTBO (INRT, MASS, BETA, LL3, CL3, LL4, A2, A3, I,

GAM1, A4, A5, IP1, IP2)

- 43 -



PARAMETERS:

PARM TYPE DESCRIPTION
INRT Real array The inertia properties of the indi-
(3x3) vidual bodies for their mass
centers stored by columns in the
order: col. 1, B3; col. 2, B4;
col. 3, B5.
MASS Real array The mass of the individual bodies;
x
(3x1) or (3) MASS(1) = my, MASS(2) = my,
MASS(3) = mg -
BETA Real array The angles Bl and 62 described in
(2) Chapter II, Sec. 1.2. BET(1l) = By
BET(2) = Po-
LL3 Real LL3 = 23 (see Fig. 1.3).
variable
CL3 Real CL3 = Ly (see Fig. 1.3).
variable
LL4 Real LL4 = 2, (see Fig. 1.3).
variable
A2 Real A, = a (see Fig. 1.3).
. 2 2
variable
A3 Real Ag = ag (see Fig. 1.3).
variable
I Real array Products and principal moments of
*
(3, 3) inertia of B for By. I(I,J) =
T;4, see (1.29).
Note: 112 = 121 = 123 = I32 = 0.
GAM1 Real Locates the principal axis associlated
variable

with Ill = I1 with respect to the

[ axis (the principal axis of B
1o x B, /BX "
for 85 associated with Il 5775).
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PARM TYPE DESCRIPTION
OI/B*
Al Real Ay = ay =r 0. n(o) = location
variable \ -3
of point O relative to mass
center Bg parallel to 3 axis.
See (1.33).
1 ¥
. _ 0B (o) _ .
A5 Real A5 = a5 =r 0y = location
variable of point 0' relative to B;
parallel to the £1 axis. See
(1.33).
1Pl Integer IP1 =1 => print input data; IP1 #
1l => no print out.
IPp2 Integer IP2 =1 => print output data.
2.11 SUBROUTINE: MTXMLT
PURPOSE: To determine the matrix C resulting from the
multiplication of two square matrices A and B of order
3, or from raising a square matrix of order 3 to the mth

power.

SUBROUTINES REQUIRED:

None

%31 %32 @33 ]

p-

Dy Byp Pyg

b b

21 Pop Po3

CALL MTXMLT (A, B, C, M, IPR1, IPR2, IPR3)

- U5 -

1”31 P32 P33
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PARAMETERS:

PARM TYPE DESCRIPTION
A Real array One of the input matrices.
(3x3)
B Real array The other input matrix.
(3x3)
¢ Real array The result of A X B or (a)™.
(3x3)
M Integer M<2=> mult. AXB; M=N >2 =>
variable raise A to nth power.
IPR1 Integer IPR1 = 1 => print input data, other-
variable . .
wise no print.
IPR2 Integer IPR2 = 1 => print output data, other-
variable . .
wise no print.
IPRR Integer IPR3 = 1 => print intermediate data,
variable otherwise no print.
2.12 SUBROUTINE: SIMEQ
PURPOSE: To solve the following system of three simulta-
neous linear algebraic equations in X5 Xo x3.
8oy Xq + a31 Xp t a4 X3 = - a7y
= - 2.
app Xq *+ ags Xy + 8y, Xg ayo (2.11)
ap3y X + a33 Xo ayz X3 = - a3

SUBROUTINES REQUIRED:

None

CALL SIMEQ (A, X, IPl, IP2)
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PARAMETERS:

PARM TYPE DESCRIPTION
A Real array The matrix of coefficients (see the
X

(4x3) theory for complete description).

X Real array The three unknown variables which are
(3X1) determined by this subroutine.

IP1 Integer IP1 = 1 => print input data, other-
variable . .

wise no print.

1Pp2 Integer IP2 = 1 => print output data, other-

variable

Wise no print.

2.13 To illustrate the use of FREFAL1 and XROTT, let
_ — o) _ _ 0 _ o) - _us0 4 _ =
A = ay = 90-, 91 = 92 = 309, Bl = 450, 62 = -459, ¢y ¢2

T + 7T sin (7t - w/2), my = 4. 458 slugs, my = 0.288 slugs,

=0, b
0)

a; = 0.903 feet, a) = -0.06047 feet, a = 0.665 feet,

5

L, = 1.542 feet, I§O) = 8.336 slug-feet?, Ig
feete, Iél) = 0.1320 slug—feetg, Igl) = 0.0020 Slug—feetg.

0
= 8.150 slug-

Calculate the reorientation of BO ffor one cycle of arm

motion. Also, using XROTT, calculate the reorientation for

10 cycles.
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$SWATFOR

30

109

400

15D

20

REAL 1(3,2),ALP{2),THY{2),BET(2), Y(4), MO,M1,L1
EXTERNAL ELRKEQ

WRITE(6,6)

READ(S,41) ALPHID ALPHZ2D,THETID,ZTHET2D,MO
READ(S5,1) ™M1,A1,B0,L1,GAM1

READ(5,2) A4,A5

READ(5,2) (BET(J}yJd = 1,2)

WRITE(6,10) GAM1,ALPHID,ALPH2D
WRITE(64T) THET1D,THET2D

WRITE(6,11) MOsM1,AlL

WRITE(6,12)A4,A5,B0

WRITE(6,13) L1

WRITE(6,16) (BET(J)yed = 1,2)

READ(5,2) ((T({Kyed)eJ=142)4K=1,3)
WRITE(6,14) (I(144d)yd=1,2)

WRITE(6415) (I124J)9d=1,2)

WRITE{6414) (1(3,J)49d=1,2)

X = 0.0

DO 30 J=1,3

Y(J) = 0.0

Y{4) = SQRT{(2.0)
DRC = 1.0/57.296
ALPHIR = DRC*ALPHID
ALPH2R = DRC*ALPH2D
THETLR = DRC*THET1D
THET2R = DRC*THET2D
ALP(1) = ALPHIR
ALP(2) = ALPHZR
THT(1) = THET1R
THTU2)= THETZ2R
BET(1) = ORC*BET(1)
BET(2) = DRC*BET(2)

CALL ELMAIN{GAM] ,ALP,THT,BET, MO,M19ALl4A4,A5,4B0,L1,1)
WRITE(6,202)

CALL DFEQUM{44X40.059Y4ELRKEQyleE-591.E-4,86200,.TRUE.)
[F{X.LT.0.,99) GO TO 400

WRITE(6,450)

CONTINUE

ANRITE(6,9) X
EPMAG=Y(1)xY(1)+Y(2)%Y(2)+Y(3) %Y (3)+Y(4)*Y(4)
DELT=ABS(EPMAG-2.0)

[F(DFLY.LT.0.001) GO TO 150

X=1.0

WRITE(6,5,32) (Y(J)yd=1,4%)

WRITE(6,432) DELT

GO 1O 300

CONT INUE

REAL £(3,3)

REAL EPS(4)

DO 20 K=1,4

EPS{K) = Y(K)

CALL DCOSER(EPS,E,0,1)

REAL T(3)

CALL EULER3(E,T,0,1)

[F{X.LT.0.99) GO TO 100

GO 1O 300
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WRITE(6,498) X

FORMAT(5€E12.4)

FORMAT (2E12 .4)

FORMAT(*1°*,58X,* INPUT DATA')

FORMAT('0" 928Xy *THETID ="' 9E12.442Xy"THET2D =',E12.4)

FORMAT('0*,49X,'TAU =',FT7.2)

FORMAT('0' 428Xy *GAML =% 4EL12.492Xy*ALPHLID ="'y E12.442Xy*ALPH2D ="',

El2.4)

FORMAT(90" 428Xy " MO ="4E12.494Xy'M1 =7,E12,444Xy"*Al =*,E12.4)

FORMAT(' 0" 28Xy "A4 =%,F12.%494X9"A5 =',FE12.494Xy*'B0 =',E12.4)

FORMAT(*0*,28X4'CL1 =%,E12,.4)

FORMAT('Q*,30Xy3E16.4)

FORMAT( 0" 428X+"I =1,3E15.4)

FORMAT('0" 428Xy *BETY ='4E12.442X,"BET2 =%,E12.4)

FORMAT(P0'y15Xs 'YLl =% ,F12.442X4?'Y2="3E12.4,42X,'Y3=',E12.4+2X,
'Y4=1,E12.4)

FORMAT(*0'4 15X, *DELT=*,E12.4)

FORMAT(*SOLUTION ENDED AT*,Fl10.7)

FORMAT(*17%,49X, *RESULTS®)

FORMAT(*1"*)

CONTINUE

RETURN

END
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SUBROUTINE ELMAIN(GAML ALP,THT,BET, MOyM1,A14A4,A5,BC,L1,1I)
REAL ALP{2),THT(2)4PH{2)4DPH{2)41(352)4M0O,M1,L1,BET(2)
P2 = 0.0
RETURN
ENTRY ELRK EQ(X,Yy DY)
REAL X,Y{(4),DY(4)
REAL OMEG( 3)
REAL ASS$(4,3)
REAL LM{(3)
IP2 = 0
PI = 3,14159
P = PI1/2
ARG = PI®*X - P
PH(1) = PI + PI*SIN(ARG)
PH(2) = PH(1)
DPHI(1) PI%P I*CCOS (ARG)
DPH(2) DPH(1)
IF{X.NE.P2) GO TO 10
P2 = 1
P2 = 0.05 + P2
1D CONTINUE
CALL ANGMOM(GAM1 ,ALP,THT,PH,DPHyMOyML Al yA%4,AS5,BO,L1y1,A55%,0,1P2,
1 BRET)
CALL SIMEQ(ASS$,CMEG40,1IP2)
DO 30 K = 1,3
30 LM(K) = ASS$(1,K) + ASS$(2,K) *OMEG(1)Y+ASS$(3,K)*CMEG(2)+
1 ASSS$(4,K)*0OMEG( 3)
DELT =LM{L)*LM{L1)+LM(2)%LM(2)+LM(3)%LM(3)
IF(DELT.LT,.0.0001) GO TO S0
DO 60 J=1,4
60 JY(J) = 0.0
WRITE(6,70)
WRITE(6,31) (LM(K),K=1,3)
GO TN 900
EULER'S KINEMATICAL FQUATIONS FROM (1.58)

50 DY(1) = (0.5)*(Y{4)*OMEG(1) + Y(2)*0OMEG(3) - Y(3)*0OMEG(2))
DY(2) = (0.5)*(Y(4)%0MEG(2) + Y(3)*OMEG(1) - Y(1)*OMEG(3))
DY(3) = (0.5)*(Y(4)XOMEG(3) + Y(1)*0OMEG(2) - Y{(2)*0OMEG(1))
DY(4) = —(0.5)*(Y(1)*QMEG(1) + Y(2)*0OMEG(2) + Y(3)*0OMEG(3))

31 FORMAT(*'0",30Xy"LM]l =9 ,E12.442Xy"LM2 =*,E12.442X,'LM3 =1,FE12.4)
70 FORMAT('0O',20X, *ANG MOM NOT EQ ZERO')
900 RETURN
END
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SUBROUTINE ANGMOM(GAML ¢ALPyTHTyPHe DPHyMO,M1,B81,84,B85,B0,L141,ASSS$,

. 1 IP1,IP2,BET)
c
REAL ALP(2)3THT(2),PH{2)4DPH(2),1(3,2),AS5%$(4,3),R0S$(3),DROSSE(3),
1 AOOS$(4+3),AL(4,3),A118(4,3),A2(493),A228(4+3)4+RO0858(3),
2 OMEGBO(493)4y0R(4,3)+IV(4,3),A0858(4,3),R185¢(3),T1(3,3),
3 T2(3,3),DT1(3,3),D72(3,3),A1858(4,3),R2858(3),A28656(4,3)
REAL MO,M1,L1,M,MF,BET(2])
ALP1 = ALP(1)
ALP2 = ALP(2)
THT1 = THVY(1)
THT2 = THT(2)
P1 = PH{1)
P2 = PHI(2)
DP1 = DPH(1)
DP2 = DPH(2)
SA1l = SINU(ALPLl)
SA2 = SIN(ALP2)
CAl = COS{ALP1)
CA2 = COS(ALP2)
STL = SIN(THTL1)
ST2 = SIN(THT2)
CTl = COS(THT1)
CT2 = COS(THY2)
SP1 = SIN{(P1)
SP2 = SIN(P2)
CPl1 = COS(P1)
CP2 = COS(P2)
SP12 = SP1x%*SPl
SP22 = SP2%SpP2
CP12 = CPL%CP1
CP22 = CP2%(CP2
SP1CP1 = SPL1*CP1
SP2CP2 = SP2%CP2
S81 = SIN(BET(1))
SR2 = SIN(BET(2))
CB1 = COS{BET(1))
CB2 = CNOS(BET(2))
Cl = CT1 - 1.0
C2 =CT72 - 1.0
C FROM EQ. (1.10)
T1(1l,1) = SA1*SPI1CP1*Cl - CAL*SB1*(CT1%CP12 + SP12) - CAL*CBL*ST1*
1 cPl
T1(1,2) = CRL*(CT1%CPL12 + SPl2) - SBL*ST1*CP1
T1(1,3) = CA1*SPICPLl*C1l + SAL*SB1*(CT1*CP12 + SP12) + SAL*(BLl*%ST1x
1 CP1
T1(2,1) = SAL*(CT1%SP12 + CP12) - CA1*SB1*SP1CPL1*(C1l - CAL*CB1*ST1*
1 Sp1
T1(2,2) = CB1*SP1CP1*%*C1 - SB1*ST1*SP1l
T1(2,3) = CA1*(CT1%SP12 + CPl2) + SA1#*SBL1*SP1CPL*Cl + SAL*CB1*5T]1*
1 SP1
‘ Tl(3,1) = SAL*ST1%SP1 — CAL1*SB1*ST1*CP1 + CAL*CBL*CTl
T1(3,2) = CB1*ST1*#CP1 + SBL*CT1
TL(3,3) = CAL*ST1%SP1 + SA1%SB1%*ST1*CP1 - SAL*CB1*(CTl
c
T2(14,1) = SA2%SP2CP2%C2 —~ CA2*SB2%(CT2%CP22 + SP22) - CA2%(B2*ST2*
1 cpP2
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T2(1,2) = CB2%(CT2%CP22 + SP22) - SB2*ST2%CP2

T2(193) = CA2%SP2CP2%C2 + SA2*SB2%{CT2%CP22 + SP22) + SA2%CB2%ST2*
1 cP2
T2(2,1) = SA2%((CT2%SP22 + CP22) - CA2%#SB2%SP2CP2%(C2 - CA2%CB2%ST2%
1 SP2
T2(242) = CB2%SP2CP2%C2 - SB2*ST2%5p2 ,

T2(253) = CA2%(CT2%SP22 + CP22) + SA2%SB2%SP2CP2%(C2 + SA2%CB2%ST2%
1 Sp2
T2(3,1) = SA2%ST2%SP2 — CA2%SB2%ST2%CP2 + CA2*CB2%CT2

T2(3,2) = CB2%ST2#CP2 + SB2*CT2

T2(3,3) = CA2%ST2%SP2 + SA2%SB2#ST2%CP2 -~ SA2%CB2%CT2

F1 = CP12 - SP12

F2 = CP22 - SP22

FROM EQ. (le11)

DT1(1,1) = (SA1%C1%*F1 + 2.*%CAL*SBL*SP1CP1*C1l + CAL*CBL*ST1%*SP1)%
1 DP1
DT1(142) = (—=2.%CBL*SP1CP1 *C1 + SBRL1*ST1*SP1)*DP1

DT1(1,3) = (CAL*F1%Cl - 2.%SAL%SB1%*SP1CP1*Cl — SA1*CB1*ST1%SP1)*
1 DP1
DT1(241) = (2.%SAL*SP1CP1*C1 - CAL*SB1*F1%*C1l - CALl*CBl*ST1%CP1)*
1 nP1
DT1(242) = (CBL*F1%C1 - SB1%ST1%CP1)*DP1

DT1(293) = (2.%CAL%*SPICPl #%Cl + SAL*SBI1*F1*Cl + SA1*CB1%ST1%*CP1)*
1 DP1
DT1(3,1) = (SAL*ST1#CP1l + CAL*SB1%*ST1%*SP1)*DP1

DT1(3,2) = (-CBL*ST1%SP1)*DPL

DT1(3,3) = (CAL*ST1*CPl ~ SAL1*SB1%ST1%SP1)*DP1

DT2(1s1) = (SA2%C2%F2 + 2.%CA2#SB2%SP2CP2%C2 + CA2%CB2*ST2%S5P2)*
1 NP2
DOT2(142) = (-2.%CB2%SP2CP2 *C2 + SB24ST2%SP2)*DP2

DT2(1,3) = {CA2%F2%(2 — 2.%SA2%SR2%SP2CP2%C2 - SA2%CB2%ST2%S5P2)%
1 DP2
DT2(241) = (2.%SA2%SP2CP2%C2 - CA2%SB2%F2#%C2 - CA2*%CB2%ST2#CP2)%
1 DpP2
DT2(242) = (CB2%F2%C2 — SB2%ST2%CP2)4%DP2

DT2(243) = (2.%CA2%SP2CP2 #C2 + SA2%SB2%F2#(C2 + SA2#CB2#ST2%CP2)*
1 DP2
DT2(3,1) = (SA2%ST2%CP2 + CA2%SB2%ST2%SP2)*DP2

DT2(342) = (-CB2%ST2%SP2)#DP2

DT2(3,3) = (CA2%ST2%CP2 - SA2%SB2%ST2%SP2)*DP2

M = MO + 2,0%Ml

ME = 1.0/M

FROM EQ. (1.32)

ROS$(1) = MF*(MO%BS5 —-M1%B1%(T1(3,1) + T2(3,1)))

ROS$(2) = MF%(-ML*B1#(T1(3,2) + T2(3,2)))

ROS$(3) = MF#(MO%*(B4 + L1) - M1*BL1%(T1(3,3) + T2(3,3)))

FROM FQ.(1.37)

DROS$(1) = —MF%xM1#B1%(DT1(3,1) + DT2(3,1))

DROS$(2) = —MF*MI*B1%(DT1(3,2) + DT2(3,2))

DROS$(3) = —MF*M1%B1%({DT1(3,3) + DT2(3,3))

CGl = COS(GAM1)

CGl2 = CG1%CG1

SG1 = SIN(GAM1)
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SG12 = SG1%*SG1
SGLICGl = SG1*CG1
FROM EQ. (1.38)

ACOs${141) = 0.0
AOOS(2,1) = T(1,1)¥%CG12 + 1(3,1)%SG12
AOO0$(3,1) = 0.0
AOOS{4,1) = SGICGL*(I(1,41) - [{3,1))
AOO%(1,2) = 0.0
A00S$(2,2) = 0.0
AQDS$(3,2) = 1I{2,1)
A0O0S${(4,2) = 0.0
ADO%{1,3) = 0.0
ACOS$(2,3) = SGICGL*{I(1l,1) - I(3,1))
A0O0$(3,3) = 0.0
AQOS(443) = I(1,1)%SGLl2 + I(3,1)%CG12
FROM EQ. (1.41)
Al(l,1) = =1(1,2)%ST1*CPL1*DP1
DO S5 J = 2,4
5 Altd,1) T(142)V%T1(1,0-1)

wnon

Al(l,2) -1(2,42)%ST1*SP1%DP1
Nno 6 J = 21‘0

6 Al(J,2) = T(2,2)%T1(2,J-1)
Al{143) = 1(3,2)%{CY1 - 1.,0)%DP1
Do 7 4Jd = 2"0

7T AL(J,43) = T(3,2)%T1(3,4-1)

FROM EQ. (1.39)
DO 107 J=1,3
107 ALLS$(1,4J) = ( ALCL,1)%T1(1l,J)+AL(1,2)%T1(2,J)+AL(1,3)%T1(3,4) )
DO 9 K = 193
DO B J = 244
B8 ALLS(JsK) = AL(J91I2TL(14K) + AL(J42)%T1(2,K) + AL1(J,3)%T1(3,K)
9 CONTINUE

A2(141) = =1(1,2)%ST2%CP2%DP2
DO 10 J = 2,4

10 A2(J,y1) = T(1,2)%T2(1,J-1)
A2(142) = —1(2,2)%ST2%SpP2%DP2
DO 11 J = 2,44

1l A2(Je2) = 1(2,2)%T2(2,4-1)
A2{1,43) = I(3,2)%(CT2 ~ 1.0)%DP2
DO 12 J = 244

12 A2(J3,3) = 1(3,2)%72(3,4-1)

FROM EQ. (l.42)
no 112 J4=1,3
112 A228(1yJ)=( A2(141)%T2(1,J)+A2(1+2)%T2(2,J)#A2(1,+3)%T2(3,J) )
DO 14 K 1,3
DO 13 J = 2,4
13 A228(J,K) = A20Jo1)%T2(1,K) + A2(J,2)*T2(24K) + A2(Jy3)*T2(3,K)
14 CONTINUE
FROM EQ. (1l.47)
RO$S$(1) ROS$(1) -~ BS
RO$S$(2) ROS$( 2)
RO$S$(3) ROS$(3) - B4 - L1

OMEGBO(1+1)
OMEGBO(241)
OMEGBO(3,1)

o
Q=0
* o
Qoo
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16

17
18

19
20

21
22

23

24

OMEGBO(441)
OMEGBO(1,2)
OMEGBO(242)
OMEGBO(3,2)
OMEGBO(4,2)
DO 16 J = 1,
OMEGBO(J,3)
OMEGBO(4,3)

O O00
e & o o o

(oN o] OO0OO00OC

[TV 2 I T T

0.
l.

CALL CURLAB(OMEGBO,R0O$S$y0Ry0,+0)
OR(ly1) = OR(1,1) + DROSS(1)
OR(1,2) = OR(1,2) + DROS$(2)
OR(1,3) = OR(1,43) + CROSS$(3)
CALL CURLAB(OR,RC$S$,1IV,0,0)
FROM EQ. (1l.45)

DO 18 K = 1.4

DO 17 J = 1.3

AOSSS$(KyJd) = —MOXIV(K,yJ)

CONTINUE

FROM EQ. (1.51)

R1$Ss(1) = ROS$(1) + BL*T1(3,1)
R1$S$(2) = ROS$(2) + B1*T1(3,2) + BO
R1$S$(3) = ROS$(3) + B1*T1(3,3)

CALL CURLAB(OMEGBO,R1$S$,0R,0,0)

OR(ly1) = OR(1l,1) + DROSS$(1) + B1*DT1(3,1)
OR(142) = OR(1,2) + DROS$(2) + B1*DT1(3,2)
JR(1,3) = OR{1,3) + DROSS$(3) + B1*DT1(3,3)

CALL CURLAB(OR,R1$S$,1IV40,0)
FROM EQ. (1.49)

DO 20 K = 1,4

DO 19 J = 1,3

AL$SS(KyJd) = —MLI%IVIK,yJ)
CONTINUE

FROM EQ. (1.55)

R285%(2) ROS$(2) + B1x*72(3,2}) - BO

(
R2$S${1) = ROS$(1) + B1*xT2{3,1)
R2$S$(3) = ROS$(3) + B1%T72(13,3)

CALL CURLAB(OMEGBO,R2$S$40R40,0)

OR(1l,s1) = OR(1ly1) + DROSS(1) + BL%DT2(3,1)
OR(1,2) = OR(1,2) + DROSS$(2) + B1*DT2(3,2)
OR(1,3) = OR(1,3) + DROSS(3) + B1*DT2(3,3)

CALL CURLAB(OR,R2$S%,1V,40,0)
FROM EQ. (1.53)

DO 22 K = 1ly4

DO 21 J = 1,3

A2$S$(Kyd) = —MLI*XIV(K,yJ)
CONTINUE

FROM EQ. (1.3)

DO 24 K = 1,4

DO 23 J = 1,3

ASS$(KsJ) = AQOS(KeJ) + ALLS(K,J) + A228(KsJ) + AOSSS(K,J) +
AL$SS(KyJ) + A28S$(K,J)

CONTINUE

IFCIP1.NE.1) GO TO 449

WRITE(641)
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449

25
29
30
41
42
102

103
104
105
200
201
202
203
204
205
206
207
450
900

WRITE(6,102)GAML,{ALP(4) 4 d=1,2)
WRITE(64,103) (THT(J)yJ=1,2)
WRITE(6,104) (PH(J),J4=1,2)
WRITE(6,105) (DPH{J),J=1,2)
WRITE(6,3) MO4 Ml ,R1
WRITE(644) B4,85,80
WRITE(6,425) L1
WRITE(6429)(1(1,J)4d=1,2)
WRITE{6430) (1(2,4)9d=1,42)
WRITE(6429)(1(3,J4),4J=1,2)
IF(IP2.NE.1) GO TO 900
WRITE(6,450)
WRITE(6442) (ASS$(Kyl),K=1,4)
WRITE(G6441) (ASS$(K,42)4K=1,4)
WRITE(6,42) (ASSS(K43),K=1,4)
WRITF(6,200) (ROS$(J), J=1,3)
WRITE(6,201) (DROSS$(J), J=1,3)
WRITE(6,202) (All1$(1,4),J0=1,3)
WRITE(6,203) (A22%(1,J),Jd=1,3)
WRITE(64204) (RO$S$(J),eJ=1,3)
WRITE(6,205) (A0$S$(1,J),J0=1,3)
WRITE(64206) (A18S$(1,4),J=1,3)
WRITE(6,207) (A2858(1,4)4J=1,3)
FORMAT(49X, *INPUT DATA FOR ANGMOM?)
FORMAT(?0% 428Xy MO =" ,F12,4,2Xe'M]L =% ,E12,442X,%A1 =1",E12.4)
FORMAT(P0" 428X 'A4 =" 3E12.492X9%A5 =0 ,F12.492X,*'B0O =',FE12.4)
FORMAT(*0?,28X4'CL1=*4E12.4)
FORMAT('0*430Xy3F16.4)
FORMAT( 0! 427X 4'[ =',3FE16.4)
FORMAT(*10',22X, Y ANGMOM =1t ,4F16,.,4)
FORMAT (Y0 ,30X44F16.4)
FORMAT (09 428Xy *GAML =9 ,F12,442Xe*ALPHAL =%,FE12.4+42Xy*ALPHA2 =1?,
F12.4)
FORMAT{'0*,2BX s * THETAL =" yEl2.4¢2Xy '*THETA2 =*',E12.4)
FORMAT('0% 428Xy 'PHILl =',E12.442Xs'PHI2 =',E12.4)
FORMAT{('0? 428X ' DPHI1 ='4,E12.442Xy 'DPHI2 =?,E12.4)
FORMAT(*0" ,5X,'ROSS$ '4,3F16.4)
FORMAT(*0?',5X,*DROSS$',3FE16.4)
FORMATI('0%',5X,%All% *",3F16.4)
FORMAT(*0® SX,'A22% ',3E16.4)
FORMAT('0',5X4*RO$S$',3E16.4)
FORMAT(* 0" ,5X,*A0$5%',3FE16.4)
FORMAT('0" ,5X,*A1$S8',3FE16.4)
FORMAT(*0*,5X,+'A2%858',3F16.4)
FORMAT({'0* 440X ,'0OUTPUT DATA FROM ANGMOM')
CONTINUE
RETURN
END
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SUBROUTINE CURLAB(A,B,C,41P1,1P2)

DIMENSION A(443),8(3),C{4,3)
IF{(IP1.NE.1) GO TO 10
WRITE(6,415)
WRITE(6412) (A(I,1)yI=1,44)
WRITE(6,13) (A(I42),1=1,4)
WRITE(64512) (A(I,3),I=1,4)
WRITE(6,14) (B(I1),I=1,3)
10 DO 1 I =1,4
C FROM EQ. (2.9)
1 C(I,1) B(3)1*A(T1,2) - B{2)1*¥A(1,3)
00 2 J 1,4
2 C(J,2) B(1)*A(J,3) - B(3)*A{J,1)
Nno 3 K 1+4
3 C(Ky3) B(2)*A(K,1) - B(Ll)*¥A(K,2)
IFUIP2.NE.L) GO TO 900
WARITE(6,16)
WRITE(6412) (C{I,41),1I=1,4)
WRITE(6,17) (C(142),1I=1,44)
WRITE(6,12) (C(I1,3),I=1,4)
12 FORMAT(®'0',30X,4E16.4)
13 FORMAT('0',27X ¢s"A =',4FE16.4)
14 FORMAT('0' 27Xy 'Bl1l) = ,F12.442X,'B{2) =%,FE12.442X,*B(3) =*,EL12.4)
15 FORMAT(*0?,49X,* INPUT DATA FOR CURLAB')
16 FORMAT('Q',47X,'QUTPUT DATA FROM CURLAB®)
17 FORMAT( Y0 ,27TX,'C =',4E16.4)
900 RETURN
END

o o
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SUBROUTINE DCOSEP(EPS,E4IP1,1P2)
REAL EPS(4),E(3,3)

IF(IP1.NE.1) GO TO 20

WRITE(6,1)

WRITE(642) (EPS({I),1I=1,2)
WRITE(643) (EPS(J)yJ=3,4)

EP12 = EPS(L1)*EPS(1)
EP22 = EPS(2)*EPS(2)
EP32 = EPS(3)*EPS(3)
EP1EP2 = EPS(1)*EPS(2)
EPLEP3 = FPS(1)*EPS(3)
EP1EP4 = EPS(1)*EPS{4)
EP2EP3 = EPS(2)*EPS(3)
EP2EP4 = FPS(2)*EPS(4)
EP3EP4 = EPS(3)*EPS(4)
FROM TABLE 2.1

E(ls1) = 1 - EP22 - EP32
E{l,2) = EPLlEP2 + EP3EP4
E(1,3) = EPLEP3 - EP2FP4
F{241) = EPLlEP2 -EP3EP4
E(242) = 1 - EP12 - EP32
E(243) = EP2EP3 + EPLEPS4
E(3,1) = EP1EP3 + EP2EP4
E(3,2) = EP2EP3 - EPLEP4
E(3,3) = 1 - EP12 - EP22

IF(IP2.NE.1) GO TO 300

WRITE(6,44)

WRITE(645) (E(14J)yd=1,3)

WRITE(646) (E(2,4J)4J=1,3)

WRITE{(645) (E{(34J),Jd=1,3)

FORMAT(*0?,49X, *INPUT DATA FOR DCOSEP ')
FORMAT{Y0" 427X "EPSL =% ,E14.4,6X4'EPS2 =',E1l4.4)
FORMAT (04 2TXy *EPS3 =", El4.496Xy'FTA  =',E14.4)
FORMAT{'0* ,45X,'CUTPUT DATA FROM DCOSEP ')
FORMAT(Y0*,30X,3E16.4)

FORMAT('0' 427Xy *E =*,3E16.4)

RE TURN

END
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13

13

20
21

27

25

49

35

SUBROUTINE EULER3(E,T,I1P1,1IP2)
REAL E(3,43),7(3),7TD(3)

IF{IPL.NEL.L1) GO TO 10
WRITE(6,45)

WRITE(6,2) (E(149J)sJ=1,3)
WRITE(6,3) (E(24J)44=1,3)
WRITE(6,2) (E(3,J),J=1,3)
Pl = 3.14159

P = Pl/2

FROM EQ. (1.61)

T(2) = ARSIN(-F(1,3))
ABT2 = ABS(T(2))
DELY = P - ABT2

I (DELT.GT,.0.001) GO TO 15
IF (IP2.NE.1) GO TO 900
WARITE(6,45)

WRITE(6,1)

GO TO 900

CT2 = COS(T(2))

ARG = E(1,2)/CT2

TEST = ABS{ARG)
IF(TEST.LT,1.0) GO TO 19
[F{TEST.GT.1.001) GO TO 890
IF(ARG.GT.0.0) GO TO 18
T(3) = -P

GO 10 21

T(3) =P

G3 19 21

IF (E{1,1).LT.0) GO TO 20
T(3) = ARSIN(E(Ll,2)/CT2)

GO TO 25

T(3) = P1 - ARSIN(E(1,2)/CT2)
ARG = E(2,3)/CT2

TEST = ABS(ARG)
[F(TEST.LT.1.0) GO TG 25
IF(TEST.GT.1.001) GO TO 895
IF(ARG.GT.0.0) GO TO 27
(1) = -P

GO TO 40

T(1) =P

GO T3 40

IF (E(3,3).LT. O0) GO T9 30
FRCOM EQ. (1.65)

T{1) = ARSIN(E(2,3)/CT2)

GO TD 40

T(1) =PI - ARSIN(E(1,2)/CT2)

IF (IP2.NE.1) GO TO 900

DO 35 J = 1,3

TOUJ) = 57.296*%T(J)
WRITE(646)

WRITE{(644)

WRITE(6945) (T(I)yI=1,3)
WRITE(6945) (TD(J)yd = 1,3)
GO TO 900
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895

CONTINUE

WRITE(64891)

WRITE(6,892) ARG

GO TO 21

CONTINUE

WRITE(6,891)

WRITE(6,4896) ARG

FORMAT('0%42Xy*'T1l = T3 = 0,0 T2 = PI/2 ' )
FORMAT('0°%, 30Xy 3E16.4)

FORMAT('0%*, 27Xy ?'E =?43EL16.4)
FORMAT("0°?,38X, *THET1?',11X,*THET2',11X,*THET3")
FORMAT(*0O* ,49X,* INPUT DATA FOR EULER3')
FORMAT('0*,45X,"OUTPUT DATA FROM EULER3')
FORMAT('0",30X,y3E16.4)

FORMAT('0*', 15X, *ARG. OF ASIN IMPROPER?)

FORMAT (0%, 15Xy "E(1,2)/CT2 =0,E12.4)
FORMAT('0' 415X 4" E(2,3)/CT2 =',E12.4)
RETURN

END
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SUBROUTINE SIMEQ (A,X,IP1l,1IP2)

DIMENSION A(443)4X(3),B8(1,3)
IF(IP1.NE.1) GO TO 10
WRITE(6,1)
WRITE(6+2) (A(I,1),1I=1,4)
WRITE(643) (AlI42)y1=1,y4)
WRITE(6,2) (A{I,3)41=1,4)
10 D = A2y L)*(A{342)%A(443) — A(4,2)%A(3,3)) + A(3,1)*(A(4,2)%A(2,3)

1 —A(292)%A(443)) + A{4 1 )*(A(2,2)%A(3,3) - A(3,2)%A(2,3))
DA = ABS(D)
IF (DA.LT.0.00001) GC TO 99
DI = 1/0
B(l,1) = —-A(1,1)
B(l1,2) = -A{1,2)
8(193, = “A(193)
LL X(1) = DI*( B(l,1)%(A(3,2)%A(4,43) — A(442)%A(3,3)) + A(3,1)*(
i At4,2)%B(143) - Bl1,2)%A(4,3)) + Al4,1)%(B(1,2)*A(3,3) -
2 A(3,2)*%B(1,3)) )
X(2) = DI*( A(2,1)*%(B(1,2)%A(4,43) - A(4,2)%B(1,3)) + B(1,1)*(
1 A(4,2)%A(293) — A(2,2)%A(443)) + Al4,1)0%(A(2,2)%B(1,3) ~
2 B{L1+2)%A(2,3)) )
X{3) = DI*{ A(2,1)%{A(3,2)%B(1,3) - Bl1l,2)*A(3,3)) + A(3,1)*{
1 B(1,2)%A(2,3) — A(2,2)%B(1,3)) + B{1l,1)*(A{(2,2)%A(3,3) -
2 A(3,2)%A(2,3)) )

[F(IP2.,NE.1) GO TO 100
WRITE(6,5)
WRITE(646) (X{I)41I=1,3)
GO 70O 100
99 CONTINUE
D0 200 J=1,3
203 X{J) = 0.0
WRITE(6495)
FORMAT('0',45X, * INPUT DATA FOR SIMEQ')
FORMAT(*0*,30Xy4E16.4)
FORMAT('0 ', 27X 4 "A =" ,4FE16.4)
FORMAT('0',45X, *OUTPUT DATA FROM SIMEQ')
FORMAT(* 0% 430Xy " X1 =V 4F12.442X3%X2 =% 4FE12.492Xe*X3 ='9E12.4)
95 FORMAT('0',10X,'COEFFICIENT DETERMINANT IS SINGULAR?)
109 RETURN
END

OV N -
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GAM1 = 0.0000E 00
THETID = 0,3000E 02
MO = 0.4458F 01

A4 = -0.,6047E-01

CLl = 0.1542€ 01

BET1 = O0.4500E 02
0.8336E 01
I = 0.8150€ 01
0.3900E 00

INPUT DATA

ALPH1ID = 0.,9000E 02

THEY20 = 0,3000E
M1 = 0.2880E 00
A5 = C.0000F 00

BET2 = -0.4500E 02
0.1325E 00
0.1320E 00

0.2000E~-02

TAU = 1.00

OQUTPUT DATA FROM DCOSEP

0.8733E 00
= -0.4870E 00

-0.9346F-02

0.4870F 00

0.8734E 00 -

~-0,.,2429E-02

QUTPUT DATA FROM EULER3

THET1
~0.2430E-02

-0,1392E 00

THET2
-0.9346E-02

-0.5355E 00
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ALPH2D = 0.9000E 02
02

Al

0.9030€E 00

BO 0.6650E 00

0.9346E-02
0.2430E~02

0.1000F 01

THET3
0.5087€ 0O

0.2915E 02



$WA IFUR

REAL F(3:3)1,C(343),7(3),8(3,3)
WRITE(6,2)
READ(541) ((E(led)ed=143)y1=1,3)
WRITE(643) (E(14J)yd=1,43)
WRITE(644) (E(24Jd)y J=1,3)
WRITE(643) (E(34J)9d=1,3)
READ(S5,1)Y({RB(14J)9J=1,43),1=1,3)
WRITE(643) (B(leyJd)yd=1,3)
WRITE(6,12) (B(2¢Jd)eJd=1,43)
WRITE(6,3) (B(3,J)4J=1,3)
M = 2

T CONTINUE
WRITE(6,11) M

B CALL MYXMLT(E.B,C, 29y041,0)
CALL EULER3{CsT40,11)

M=M=+ 1
D0 10 I = 1,3
DO 9 J = 1,3

9 B(I1,J) = C(I,J)

10 CONT INUE
IF(M.LE.10 ) GO TO 7

1 FORMAT(3E12.4)
2 FORMAT({'1"*,58X,*' INPUT DATA')
3 FORMAT(*'0"y30X,3E16.4)
4 FURMATI{'0',27Xy'E ="93E16.4)
11 FORMAT('0*,53X,'M =7,13)
12 FORMATI'0" 427Xy 'R =143E16,4)
RETURN
END
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19
20

21

30
40
50

59
60

80
SO

9CO

SUBROUTINE MTXMLT (A,ByC,
REAL A(3,3),8(3,3),C(3,3)
IF(IPR1.NF.1) GO TO 19
WRITE(6,18)

WRITE(6,1)

WRITE(6,920) {A{1,J)y J=1,3)
WRITE(6,2) (A{2,J)y J=1,3)
WRITE(H+920) (A(3,4d)y Jd=1,3)
WRITE(6,920) (B(1l,4)y J=1,3)
WRITE(6,43) (B(2+,Jd)y J=1,3)
WRITE(6,920) (B(34d)y J=1,3)

L =1

CONTINUE

L =L +1

DO S0 1 = 1,3
DO 40 J = 1,3

ClIyd) = 0.0

DO 30 N = 1,3

CeIyJ) = A(CT,NI%®B(N,J) + C(I,J)
CONTINUE

CONTY INUE

TF(IPRINE.L) GO TO 59
WRITE(6,452)

WRITE(6,920) (ClLlyd)ed=1,3)
WRITE(6,51 ) (C(2yJd})4Jd=1,3)
WRITE(5,920) (C(34J)9J=1,3)

IF (M,LE.L) GO TO 900
L =L + 1

NN 90 1 = 1,3

DO 30 J = 1.3

B(I,Jd) = Cl1,J)

CUNT INUE

CONT INUE

Gl TO 21

IF(IPRZ2.NELL) GU TN 950
WRITE(6,910)

WRITE(64920) (Cl1yJ)9d=1,3)
WRITE(6,921) (C(293)9J=1,3)
WRITF(64920) (C{3,J)9d=1,3)

FORMAT (50X, *INPUT DATA FNR MTXMLT')
FORMAT (101 427X y'A =%,3F16.4)
FORMAT(*0O® 427X ,'B =*4y3E16.4)
FORMAT("17)
FORMAT(*0 427X,y £BR=",3E16.4)

FORMAT ('O 449X, *INTERMEDIATE DATA *)
FORMAT ('0%",49X, *OUTPUT FROM MTXMLTY)
FORMAT ('0%,30X,3E16.4)

FORMAT (*01,27X,'C ="'"4y3Fl4.4)
RETURN
END
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10

15

13

19

20
21

27

25

30

40

35

SUBRUUTINE EULER3(E,T,IP1,I[P2)
REAL E(3,3),7(3),TD(3)

IF(IPl.NE.1) GO TO 10
WRITE(6,45)

WRITE(642) (E(1l4d)yd=1,3)
WRITE(643) (E(2,J)9d=1,3)
WRITE(64,2) (E(3,J),40=1,3)
PI = 3.14159

P = Pl/2

FROM EQ. (la61)

T(2) = ARSINI(-E(1,3))
ABT2 = ABS(T(2))
DELT = P - ART2

IF (DELT.GT.0.001) GO TO 15
I[F (IP2.NE.1) GO TO 900
WRITE(645)

WRITF(6,41)

GO TN 990

CT2 = CAS(T(2))

ARG = E(1,2)/CT2

TEST = ABS(ARG)
IF(TEST.LT.1.0) GO TO 19
IF(TFST.GT.1.001) GO TO 890
IF(ARG.GT.0.0) GC TC 18
T(3) = -p

GO TO 21

T(3) = p

GU TN 21

IF (E(l1,1)4LT.0) GO TO 20
T(3) = ARSIN(E(1,2)/CT2)

GO Tu 25

T(3) = PI - ARSIN(E(1,2)/CT2)
ARG = E(2,3)/CT2

TEST = ABS (ARG)
IF(TEST.LTL.1.0) GO TO 25
IF(TEST.GT.1.001) GO TO 895
[F(ARG.GT,0.0) GO TO 27
T(L) = =P

GO TO 40

T(1) =P

GU TO 40

IF (E(3,3).LTe O) GO TO 30
FROM FQe (1.65)

T(1) = ARSIN{(E(2,3)/CT2)

GO TO 40

T(Ll) = Pl - AKSIN{E(1,2)/CT2)

IF (IP2.NE.1) GO T8O 900

NG 35 J = 1,3

TD(J) = 57.296%T(J)
WRITE(6,46)

WRITE(6, 4)

WRITE(6,45) (T(I)yI=1,3)
WRITFE(6445) (TD{J)yd = 1,3)
GO Ti 920
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890

865

CONTINUE

WRITE(6,4891)

WRITE(64892) ARG

G0 TO 21

CONT INUE

WRITE(6,4891)

WRITE(64896) ARG

FORMAT('0%'42X9*'Tl = T3 = 0.0 T2 = PI/2
FORMAT(*0*430X¢3E16.4)

FORMAT('0? 427X, "E ="',3E16.4)

FORMAT(*0* 438Xy * THET1%,11X, ' THET2',11X, *THET3')

FORMAT('0¢,49X,* INPUT DATA FOR EULER3')

FORMAT('0',45X,'0UTPUT DATA FROM EULER3')

FORMAT('0',30X,3E16.4)
FORMAT(*0?',15X,*ARG. OF ASIN IMPROPER')
FORMAT('0* 15X, *E(1,42)/CT2 =',E12.4)
FORMAT (20" ,15X,"E(243)/CT2 =%,E12.4)
RETURN

END
M =10
OQUTPUT FROM MTXMLT
0.3665E 00 -0.9300€ 00
C = 0.9300E 00 0.3666E 00
0.1785E-01 -0.1217€-01
OQUTPUT DATA FROM EULER
THET1 THETZ2
-0.1217€-01 0.1785E-01
-0.6971E 0O 0.1023E 01
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-0.,1785E-01
-0.,1216E-01
0.1000E 01
3

THET3

-0.1195€ 01

-0.6846E 02



