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ABSTRACT

The density profile of a positive column of
a gas discharge is measured by the comparison of two
microwave cavity measurements. The two cavity modes

used are the TE and TMO

0l1 20°



INTRODUCTION

The positive column of a low pressure discharge has been
diagnosed by various techniques. In particular, the radial
density profile has been measﬁred by Langmuir probe and
interferometer techniques. No attempt, to our knowledge, has
been made to make such measurements using resonant cavities.

The Langmuir probe method has been used successfully to measure

the profile only for large diameter tubes. Interferometer
techniques can be used for small diameter tubes; they have been
carried out by many authors and have been summarized in a book.?!
However, it is known that interferometer measurements are in general
only 1% as sensitive to plasma density changes as are resonant
cavity measurements (with the possible exception of a recently
reported experiment using a Fabry-Perot resonator®). It is, there-
fore, desirable that resonant cavities be used to make such
measurements.

Resonant cavities have been used extensively to measure the
density of plasma in the positive column. In making these measure-
ments, the plasma was always assumed to be uniform, and so an
effective number density was actually measured. But, it is

noticed that different cavities give different results. This is



due to the different electric field configurations associated with
the different cavity modes, which interact with the inhomogeneity
to give the observed difference in plasma frequencies. By using
two or more modes (one or more cavities), this difference can be
explored, and allows us to obtain the radial density profile.

From various theories, we can estimate the electron radial
density profile. First, one can obtain the well-known Bessel
function profile n =n_ J_ (/2 r/ro) based on the balance between
the generation of electrons due to ionization collisions and the
loss to the wall due to amplipolar diffusion. Second, one can
estimate the profile of electrons in the bulk part of plasma
through that of the ions because of quasineutrality conditions.

It was shown in a recent calculation® for the positive column that
the ion density has a profile of the form

2 =n (1 + Crg/ri)-l+u/2(u+v), where y, and v are collision and
ionozation frequencies, respectively. Since p is two orders of
magnitude less than y for the mercury plasma,* the density profile
becomes n = n_ (1 + Crg/ri)-l. In either case, if we accept these

formulas from an asymptotic point of view, we can write

n = n_ (1- Crg/ri) (1)

where r_ is the tube radius and C is the "profile parsmeter".F



EXPERIMENTAL THEORY

For the chosen general form of the density profile, we

consider what cavity modes should be used, and how they should be

(-]

used. In the literature, Brown® suggested using the TE and

011

TMlll modes to obtain information about the radial electron density

distribution. However, the three non-zero electric field com-

ponents of the TMlll mode, make calculations virtually impossible.

For our purpose the ™™ mode is used. This mode has similar

020

desirable features as the TM except that it has only one non-

111

zero component. The field components of both modes are given below:

For the TMO20 mode:
E = 0
r
E@ = 0
2
E = X_g (x,, r/r )
Z Jae o *T02 c
H = 0
r X
02
H(P = ? Jl (x02 r/rc)
H = 0

(2)



For the TEOll mode:

Er = 0
%01
E¢ = ?:: Jy (XOl r/rc) sin ( = 2z)
E =0
z .
0L L1 (xg r/r,) sin (3 2)
H = — — J, (x.7 r/r ) sin ( 5 2z
r chleblelc d
H = 0
@ xoi2 o
H, = = Jg (xOl r/rc) sin ( 3 z)
c

where r. is the radius of the cavity, d is the cavity height, and
X512 ¥go 8TE zeros of the Bessel function.

We notice that these modes have two other desirable features
in addition to each having only one electric field component. As
shown in the diagram (Fig. 1), the electric field intensity of

the ™™ mode is approximately constant over the plasma region,

020
while that of the TE011 varies greatly, being zero at the origin,

and growing as r2. It follows that these two fields interact very

differently with the plasma, whose density profile is also shown
in the same diagram. It is this difference that allows us to
"weigh" the density profile differently so as to determine the
"profile parameter" c given in equation (1). The second desirable

feature is that in both cases the electric field component is



parallel to the plasma-glass boundary. Thus, there are no
localized electrostatic modes generated as in the case of Tonks-
Dattner resonance.” The strongest reflection is from the plasma-
glass interface, and there is negligible reflection from the
density profile itself. This is a very important point for our
experiment and will be made use of in the appendix.

But for plasma tube currents < .1 amps, we can estimate
that Er << Eo and therefore shall use the approximation Ei S Eo’
where Eo’ Er’ Ei are the electric field components without the
plasma column present, that reflected from the plasma-glass
boundary, and that inside the plasma, respectively.

The perturbation equation for a cylindrical cavity with
a plasma tube symmetrically placed about its center is given by:

) fs IEOI2 dv

AT _ AV

% 2f§f |E°|2 av

¢

v

(3)

where fo is the resonant frequency of the particular cavity mode
Af is the shift in resonant frequency
Av is the volume occupied by the plasma in the cavity

V is the volume of the cavity.

From equation (1), one writes:

2 2 2, 2
fp = fpo (1 -er/r)) (&)

where fpo is the local plasma frequency at r = O.



After substitution, the perturbation equation becomes:

s)
EO < av
1 1 Av
f2 2f Af I E 2 av
po o)
v
r2 E 2 dv
- (o] AV °© (5)
;§ j E 2 dv
o (o}
v

We now evaluate equation (5) for the ™20 and TE,,; modes, where

fo, Af are superscripted with M or E, depending on whether they

are of the ™ o9 °T TE 11 mode, respectively:

020 0)
r
Mypo Mode: f © J2 (x., r/r_ ) r dr
_— o ‘702 c
1 1 o)
2 r
2
fpo 2f2 ac™ f ¢ Iy (xo2 r/rc) r dr
o
r
o 2 3
I Jg (x02 r/rc) r° dr
c o
- 2
r
o

e 2
I J (x02 r/rc) r dr
o (6)

We make the approximation

T3 (op T/7g) = 1= 3 (xgp r/r,)° )

where the higher order terms contribute a negligible amount to the
integral. Substituting the above, and evaluating the integrals,

we obtain:



r o [Ji(u) + Ji(u)]uszQ ro/rc

_l_-___.l__ (_9.)
2 7 r 2 2 u=x
fpo 2f2 A" c [Jo(u) + Jl(u)] 02
5 2
c G /XOQ 1 b 1 6ju=x., r /r
_—2(«)—(—) ) 5 e [Hu —1,—.)11] 02 "o ¢
r 02 [Jo(u) + Jl(u)] 02 -

(8)

The various dimensions for the experiment are listed below:

r = .54 cms
o

r = 8.12 cms
c

xo2 = 5.52

Substituting these in the perturbations equation (8), one obtains

; = 1 3.68 - 1.82 ¢ ) -+ 1072 (9)
£ 2f™ Af™
po
TEOll Mode:
ro o,
J7 (x. r/r ) rdr
1 _ 1 £ 1 0l c
2 r 2 ..,
fpo or AfE [Te J] (xol r/r,) r dr
o
r N
o 2, ., 5
. £ Iy (xOl r/rc) r'dr 1
-] r 2 )
v, JTe dy (xgy r/re) Todr (10)
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Once again we make the reasonable approximation

2 4
Ji (xg1 ¥/7e) % (x5, ®/r) - f% (xgy ¥/r) (11)

and carry out the integration

[Ji(u) - 7 (u) J2(u)]u=x61 /e

1 1 To |2
2o 2 (2
£, ef A Te [05(u) - J_(u) Jy(u)1"01
1
[p] '2
c e (2 * 01
= —? ( %! )
r_ 01 (u) - Jo(u) I (u)]
. [% 6 _5]_._ 8]u—xOl /r (12)
where r o= .54 as before
r, = 5.4 cms
x' = 3.83
01

Substituting the above in (12), we obtain

o)

-

1 1
= .113 - .0725¢ - 10
2T { }

Po



11

We have evaluated the two perturbation equations for the
TM020 and TEOll modes. The plasma radial inhomogeneity has been
included in these equations via the parameter c. By carrying out
2
perturbation experiments such that fpo is the same for both modes,

we can eliminate it, and hence have an expression of c¢ in terms

of the measured quantities fg, fg, Afm, AfE.
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EXPERIMENT AND RESULTS

Two cylindrical cavities, excited in the TM020 and TEOll
modes, respectively, were placed in turn over a chosen region of
length 8 cms of the positive column. The cavities were excited
by a 2-4 GH_ oscillator, and the tube current read with a
calibrated ammeter. After the positive column had warmed up and
reached a steady state, measurements of Af against plasma tube

currents for current < .12 amps were made. The data is shown

below:

Current I -3 )
(oot Af™-1077GH_ AfE. 10 GH,
.06 Ll + .1 .10 + .005
. Ok 7.6 + .15 .18 + .007
.12 11.3 + .2 .27 + .010

The three points are plotted on the same graph using
the same current axis but different units of frequency shift so

that both plots may appear on the graph.
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As was already stated, it is reasonable to assume that for
a given current each cavity sees the same fio. Hence, we obtain
an expression for C in terms of the known parameters.

5.68 AfS/Af™ - L0925
C =

1.82 aff/af™ - .0593

We choosge values of AfE, Af™ for currents .070, .075, .080 amps,
find C for each, and average to obtain a C corresponding to .75 amps.

The values are tabulated below:

T s Ne Af™ af /af™ c
.07 127 5.5 .0230 JAus
.075 .1ho 6.0 .0231 435
.08 .152 6.5 .0230 .4ho
Average .075 - - - pn

We can evaluate the % difference which, including the radial
inhomogeneity in our perturbation equation, is produced in evaluat-

2
ing (£)

instead of f2 . We use the value of C for 0.075 amps,
p’ave. po

namely C = .hl,



For the T™™ mode:

020

4 difference

For the TE mode:

011

% difference

124

100%

100%
30%

14

(1

(1 -

_ 3.68 - 1.82 ¢ )

5.68

115 - .0(25 ¢

.113

)
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CONCLUSION

The radial electron density distribution of the positive
column was measured using resonant cavities. For a current of
0.075 amp, the 'profile parameter' c characterizing this distri-~
bution was found to be 0.44 + .1. The errors arose from two
sources, namely, the measurement of the tube radius (which was
made with a travelling microscope after the tube had reached a
steady state), and the approximation E = E_ in the perturbation
equation. It should be emphasized that some assumption had to
be made as to the form of the distribution function. The general
method can obviously be applied to other choices of the distri-
bution forms such as trapezoid.! Furthermore, one could pick a
more complicated form of the distribution function, characterized
by say, two 'profile parameters', and by using more than two cavity

modes, estimate both of them.
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APPENDIX

In equation (3), we have made the approximation that the
field inside the plasma tube remains approximately unchanged,
i.e., E ~ Eo' In this appendix, the error due to such an

approximation is calculated. In the calculation, we shall choose

£°)

p’ave.’ This

a fixed current of 0.075 amps and write f§ = (
choice is good for the case of no generation of local modes,

which is true for our choice of cavity modes.

The exact form for equation (3) is

AT AV P ©
F - > 2
o er r E dv
o . (o]
v
(f2) I E.E av
p'ave. AV 0
of j’ E dv
(o] (o]
v

where E is the field in the plasma

EO is the unperturbed field.

The general scheme is to write E in terms of Eo and to
compare with the case where E is set equal to Eo' The calcula-

tion is carried out for the TM020 mode with the remark that the

results for the TEOll mode are similar.
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The incident, reflected, and transmitted fields are given,

respectively, as:

. (= oc
Einc. Jo (kr) Hinc. le(kr)
o
E g < R%(kﬂ Ho e 1wﬂkﬂ
1 [o d t 1
Etrans?: TJo (k r) Htrans. k Jl (k r)

where

=Y
no
~~
o
b
—
(@]
~—

Matching solutions at the boundary r = r_ for the electric and

magnetic components, we obtain

Jo(nkro)
(1+R) = T T kT
(o] O
nJl(nkrO)
(l - R) = T —Ezrizgj—
Jo(nkro) Jl(nkro)
SRR "
E = TE (E)

(e}
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We have here implicitly assumed that because the glass tube
itself is thin-walled, there is negligible reflection due to it.

Our perturbation equation becomes:

)
(fe) TE_ dv
Af p’ave. Av
T - 2 2
) of j E_ dv (F)
v

Thus, the % error in Af on making the approximation E = EO in the

numerator of the perturbation equation is:
(T - 1) - 100% where T is given in equation (D).

For a current of .075 amps, about which our measurements were made

2 2
n o= (1- (fp)ave./fo)
2 0
and if we take (f7) as the mean between f~ and its value near
p’ave. po

the plasma boundary, we obtain from equation (9)

2
nx(l_gﬁj:n.-];o?X.S)

(o]

But, for the TM,,, mode,

020

.66 cm™t
.54 cm

k

r
o
and we find that the % error is:

(i—+'2~.—9[;—1)'100%&‘f)%.

which is small, as desired.
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9, equation 8: Close curly bracket at end of equation.
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