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PREFACE 

This report  contains  further results on the  theory and 

applications  of  a quasi-optimum control  technique  obtained i n  

"Study of  Quasi-Optimum Feedback Control  Techniques" under 

Contract NAS 2-3636 with  the Ames  Research Center, National 

Aeronautics  and Space Administration. The results of an earlier 

study, performed under Contract NAS 2-2648 with  the same 

agency,  are contained i n  NASA Contractor Report CR-527, 

"Study of  Quasi-Optimum Feedback Control  Techniques" to 

which  this  report can be regarded as a sequel. 

The principal  investigator was Dr.  Bernard Friedland; 

contributors  included Dr. Frederick E. Thau and Messrs. Sanford 

Welt  and Chong K. Ling, a l l  of  the Controls Department, Aero- 

space  Research Center, Kearfott Group, General Precision 

Systems Inc. Dr. Michael Schilder, of the same department 

assisted with Section 2.1 . Dr.  Elwood C. Stewart,  of the 

NASA Ames  Research Center, served as Contract  Technical 

Monitor. 
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INTRODUCTION AND SUMMARY 

The principal  impediment  to widespread application  of optimum confrol theory 

has been  the lack  of  practically  feasible techniques for  implementing  the  required com- 

putation.  In  particular,  the  implementation requires  a  very rapid  solution  of  a  two-point 

boundary value problem in ordinary  differential equations.  Since  there i s  rarely  a need 

for absolute  optimality,  and in fact  the performance criterion i s  often  quite  subiective,  a 

moderate sacrifice in performance i s  generally  an  acceptable  price  to pay for  simplicity  of 

implementation. 

In 1965, Friedland [A1 ] presented  a  quasi-optimum control  technique  which 

offered  the  possibility of achieving  nearly optimum  performance by means of a  control 

system which can  be readily  implemented. When  the  technique was first  introduced,  only 

the  rudiments of  the theory and  a  simple  example  to  demonstrate  feasibility were given. 

Further  development of  the  theory  and  its  application  to  realistic  guidance  and  control 

problems were  undertaken i n  1965 under NASA Contract NAS 2-2648 and  reported in  

NASA Contractor Report CR-527 [A1  ] and i n  several technical papers [ A2 - A81 . 
This study was continued i n  1966-67 under Contract NAS 2-3636; this  report  gives  the 

results achieved under the  latter  contract. 

The basis of the  quasi-optimum  control  technique  under  investigation i s  the 

well-established  engineering  practice  of  approximating  a  complicated  dynamic process  by 

a  simpler process, designing  a  control system for  the  latter,  and  then  amending the design 

(if necessary) to account  for  the  difference  between  the  original process and  the  approxi- 

mation used. A systematic application  of this  design approach, within  the framework of 

modern optimum control  theory i s  the essence of our  quasi-optimum control  technique. 

In the  application of this  technique i t  i s  necessary that  the  "simplified process", i n  addi- 

tion  to  being  a reasonably faithful representation of the  true process,  must be  such that 

the  solution of the  two-point  boundary-value problem governing  its optimum control  law 

can be reduced to manageable  proportions. The correction  to the  optimum control  law 



then  requires  the  evaluation  of  a  correction  matrix by the  solution of a  matrix  Riccati 

equation. The solution  matrix  of this Riccati  equation i s  used to correct  the  solution  to  the 

simplified process. 

The  process for  which  the quasi-optimum control  law i s  sought i s  represented  by 

the system of  first-order  differential equations 

x = f(x,  u) (1 ) 

where  x = { x  x1 , . . . , x 3 i s  the state  vector,  u = cu 1 ,  u2, ... , u 3 i s the 

control  vector, and f = { f o, fl , f2, . . . , f 3 i s  a  vector-valued  function. The com- 

ponent  x of x i s  a measure of  the performance. A feedback  control  law  u = u(x) i s  

to be  determined  which  takes  the process from some current* state x(t)  to a final state 

x(T), such that  the performance index  x (T) i s  a minimum,  and the  remaining  n states 

satisfy the boundary conditions 

0' n  r 

n 

0 

0 

cp (x(T)) = 0 (2 ) 

where cp = {Cp, , cp2, . . . , cps], s 5 n . The terminal  time T may be either  free or 

specified.  In  addition,  the  control  u may be required to be  a member of  a closed, 

bounded set Q .  

The structure  of  the  optimum  controller can be  determined by the maximum 

principle  of Pontryagin [ B1 ] . Define the Hamiltonian  function: 

where  p = { p  , p , . . . , pn3 and ( ') denotes  transposition,  and where p satisfies 0 1  
the  adjoint  equation 

p = -grad h = -h 
X  X 

(4) 

I t  i s  seen from (1) that 

x = grad h = h 
P P 

*The current  time i s  denoted  by the  variable t, terminal  time by T; time when i t  i s  used 
as an  independent variable i s  denoted  by 7 ,  e.g., t < 7 < T .  

2 



Necessary conditions  for  the  existence  of  an optimum control  u*  are: 

(i) h i s  maximum with respect to  u z 0, that is, 

(ii) h(x, u*, p) = const 

(iii) The adjoint  vector satisfies the  "transversality  conditions" 

where X i s  a  vector of s constants 

and 

Q = [%I t = 1 ,  2,  ... , s; j = 0, 1 ,  ... , n 

The optimum control system  may thus  be conceived as having  the structure shown 

i n  Figure 1 .  The transformation u of  the process state vector  x and the  adjoint  vector 

p into  the  control 

u* = a(p,  x) (8) 

i s  defined by (6a), and i s  determined  by  maximizing  the  Hamiltonian (3) with W C  0. 

Equations (4), (5) and (8), together with boundary conditions (2) and Q), define  a  two- 

point  boundary-value problem. Given the  current  state  x(t) (if a  solution  of  the boundary- 

value problem exists), then  the  adjoint  p(t) may  be determined as the  solution  to  the 

two-point  boundary-value  problem. Thus, (2), (4), (5),  (7) and (8) define  a  transformation 

y of  the  current state x(t)  into  the  adjoint p(t). For  most applications,  the  transformation 

implicit in the  solution  of  the  two-point  boundary-value problem  cannot be obtained by  any 

practical method of computation,  and  hence an  approximate  solution to the  two-point 

boundary-value  problem i s  needed. 

3 



STRUCTURE OF OPTIMUM CONTROL  SYSTEM 
FIGURE I 
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Suppose the state  x  can be regarded as the sum of  two terms 

x = X + (  

where X i s  the state of  the  "simplified process".  Then (1) can  be  written 

I? + i  = f (X  + 5 ,  u) 

Furthermore, assume that 5 i s  small . Then the  original system can be  approximated by 

the system 

X = lim f (X  3. 5 ,  u) = F(X, u) 
5- 0 

where cp (X(T)) = 0. By defining  a  "simplified  Hamiltonian" H = P'F(X, u) , a  corre- 

sponding two-point  boundary-value  for  the  simplified system can be derived,  i.e., 

X = H  P I P = -H X 

and 

where A i s  an s-dimensional  vector of  "slack"variables. 

The "simplified  adjoint"  vector P, which,  by assumption, can  be  solved  for i n  

terms of X, may be regarded as an  approximate  solution  for  p  of  the  exact  problem. For 

nonzero 6 ,  however, this  approximation may be  inadequate.  Consequently, i t  i s  desirable 

to  include  the  effects  of  the state "error" 6 more exactly. For this purpose  suppose that 

a  change $J in  the  adjoint  vector results because of  the error 5 ,  i.e., 

Since p can be expressed a s  a  function  of x, i .e. p(x)  = p (X  + 5 ) , by expanding 

about  the state X, and retaining  only  the  first  two terms, we obtain 

5 
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By (12),the first term p(X) i s  the  adjoint  vector P of  the  simplified problem; the second 

term i s  the  vector 5 premultiplied by a  gain  matrix 

Thus (12) can be written 

p(x)  = P(X) + M(X)5  

and  consequently 

The structure of  the quasi-optimum control system  based on this  approximation 

i s  shown i n  Figure 2. The  suboptimum controller comprises three  units:  the CJ - unit  which 

i s  the same  as determined  for  Figure 1 by maximizing h with respect to  u F 52, the unit 

r which transforms X into P, and the  gain  unit M ( X )  by which 5 i s  multiplied  to 

yield a correction  to P. 

To obtain M, differentiate (13) with respect to time: 

+ M e  
Likewise 

Substituting these relations  into  the  canonical equations (3) and (4) and  expanding  about 

the state and the  adjoint for the  simplified process gives 

i< + 6 = h = h p +  ( H X p +  HppM) 5 + 0 ( 5 * )  
P 

6 



STRUCTURE OF 
QUASI-OPTIMUM CONTROL SYSTEM 

FIGURE 2 
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where, 

x = x  x = x  

HPP - 
- 

x = x  x=x 

2 
Upon use of (1 l), and after  dropping terms of 0 ( 5  ) , (16) reduces to 

Substitution  of (17) into (18) gives: 

( M  + MHXp + HPxM + MHp,.,M + HXX)( = 0 

If this relationship i s  to  hold  for all 5 ,  the  matrix M must satisfy the  matrix  Riccati 

equation : 

-M = MH M + MHppM + HXX (1 9)  XP + HPX 

One method of  solving  the  matrix  Riccati  equation i s  to observe that i t  corres- 

ponds to  the  auxiliary equations 

i = Hxp5 + Hpp# 

# = -H 5 - HPX# xx 

which i s  equivalent  to (16) when the higher-order terms are  dropped. This i s  a  linear 

system  whose solution  can be expressed as 

8 



where 

i s  the "transition  matrix'' corresponding to: 

Equation s (21) are  actually  2(n + 1) equations in  n + 1 unknowns. To solve we need 

(n + 1 )  relations in  addition  to (21). These relations come  from the boundary conditions. 

Suppose that  for  the  exact problem the boundary conditions  at 7 = T are  given by (2) and 

(7). I f   in the  simplified process the boundary conditions  are satisfied at  time T, then in  

the exact  problem these conditions must be satisfied at T -1 dT. By expanding  the exact 

state and adjoint about  the  time T and dropping second-order infinitesimals, we obtain 

x(T + dT) = x ( T )  + ;(T)dT 

= X(T)  + ( ( T )  + k(T)dT 

p(T + dT) = p(T) + p(T)dT 

= P(T) + Q ( T )  + i (T )dT 

Similarly, for  the adjoint we have 

P(  T) + Q( T) + P( T)dT = -+-,-A- [ -l I 

I 



Since 

form , 
n + 1  

the  simplified problem has been assumed to satisfy the boundary conditions of the same 

i.e. , (p(X(T)) = 0 and P(T) = [- ” A- ] , then (24a) and (24b) reduce to  the 

independent  equations 

(P[C(T) + i (T )dT  = 0 

where 

Finally, we  must have 

a H  dH = [ ‘ - - + # ‘ -  a H  
ax a p  

Equations  (25a) , (25b) and (26) give  a  total of n + 2  relations. Since dT i s  an additional 

variable,  there  are just  enough equations needed to solve (21) for (p (t) as a  function  of 

5 (t) and  thereby obtain M(t). In most  cases, the  linear  differential equations (20) have 

time-varying  coefficients and as a  result  cannot  be  solved analytically, Hence, i t becomes 

necessary either  to  approximate  the  solution  to  the  Riccati  equation or to  integrate (19) 

numerically. 

Numerical  integration  of  the  Riccati  equation  requires  that boundary conditions 

(25a) and (25b) be translated into  conditions on M(T). Consequently, (19) must be inte- 

grated  backwards i n  time  starting  at 7 = T. Part of the  complexity  of this problem arises 

because the  matrix M(7) may not  exist at 7 = T, hence, the boundary conditions cannot 

be translated directly  into  conditions on M(T). This problem may be  circumvented by 

expressing M( t) i n  the form 

M ( t )  = S ( t )  - R(t)Q-’ (t)R‘(t) (27) 

integrating systems of  differential equations  for S, Q and R for  a small time A backwards 

from T and  using  the results to compute M(T - A) . It was  shown i n  [A1 3 and [A71 

10 



that  the  matrix S satisfies (19) with S(T) = 0,  and R and Q satisfy 

-k = ( A '  + SB)R 

-Q = R'BR 

with boundary conditions 

R ( T )  = [ -b (T )  3 
1 

where 

@ = [ 4  
i s  the  Jacobian  matrix  of  the  terminal  constraint  vector ~p (x(T)) = 0 . 

Although  the  solution  of (27) - (31) i s  well-suited  to  numerical  integration by 

means of  a high-speed digital computer, we have found, in  several examples, that i t  i s  

practical  to  further  simplify  the  determination  of M by  assuming M M 0 ,  and hence to 

solve the  algebraic system 

MHXp -+ HpXM + MHppM + HXX 0 (33) 

It was anticipated at the  beginning  of our investigation (under Contract NAS 

2-2648) that  the  quasi-optimum control  technique  would be limited  to  practical problems 

in  which 6 i s  so small that  the  simplified  control  law  gives "passable"  performance. We 

were pleased to discover that  the quasi-optimum control  technique works even when the 

simplified control  law i s  patently  unacceptable. 

One  of the examples  considered [ A1 , A41 was minimum time rendezvous i n  

free space.  The simplified problem was obtained by  assuming negligible  angular  velocity 

in  a relative  coordinate system and thereby reducing  the problem to a  one-dimensional 

(second-order) case for  which  the  explicit  control  law i s  well-known. The application of 

this control  law  to  the  true process results i n  purely  radial  acceleration  of  the  controlled 

11 
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vehicle  relative  to target  and causes the  vehible  to  orbit  the  target i n  order to conserve 

angular momentum, and i s  completely  unacceptable  even when the  init ial angular momen- 

tum i s  quite small. When the  quasi-optimum control  law i s  used, however, the rendezvous 

i s  actually achieved,  and the rendezvous time and trajectory compares favorably  with  the 

exact optimum  even when the  initial  relative  velocity i s  purely  tangential. 

Another  application  which  verified  that  the quasi-optimum control  law may 

work  even when the simplified  control  law  doesn't, was in  the  flight  control  of a flexible 

booster [ A l ,  A51 . In  this case, thesimplified problem was obtained by assuming negligi- 

ble bending. When the  control  law  obtained  for  the  rigid  vehicle was  used for  the  flexible 

vehicle, excessive  bending moments  were produced and led to  vehicle  failure. The quasi- 

optimum control law, which  corrected  the  rigid body control  law  to  account for bending, 

however,  gave good performance for  a  vehicle  of moderate f lexibi l i ty. 

In other  applications, considered in 1966-67 under  Contract NAS 2-3636, and 

described in  detail below, we found that  the quasi-optimum control  law gave visible im- 

provement  over that  obtained  with  the  simplified  control law,  but, because the  simplified 

control  law gave passable performance,  the  improvement i s  not as striking. 

One  of  the  general  theoretical questions  concerning  the  quasi-optimum  control 

technique i s  the  estimation  of the degradation  of  performance  resulting  from  the use of  the 

quasi-optimum control  law. This problem has received  attention  in 1966-67. In  particular, 

i n  one  appcoach,we considered  the "mildly-nonlinear" process 

= Ax + p f ( x )  + Bu (34) 

with  a performance criterion 

V = - J (x'Rx + u'Qu)dT 
1 T  
* t  

(35 1 

to be minimized,  where T i s  fixed, Q i s  a  positive-definite  matrix, p i s  a  small  para- 

meter,  and f(x) i s  a  nonlinear  function  which i s  twice  differentiable  with respect to  a l l  

i t s  arguments. Earlier [A1 ] we  showed that the quasi-optimum control  law  for  this process, 

12 



i n  accordance with  the theory summarized  above, i s  

u = Q B' (K(T, T)x + m ( x ,  7 ) ~ )  
- 1  

-ctx 
(36) 

where K ( T ,  t) i s  the  solution to  the  matrix  Riccati  equation for the  simplified process, 

i.e. 

-k = KA + A'K + KEQ-'B,K - R (37 1 

with K(T, T) = 0, and m i s  the  solution  to 
- PX 

+ Kf(x) + - Kx 
a f  
a x  

with 

"PX 
m ( T )  0 

In  the present investigation we have demonstrated that,  for  sufficiently small 

p,the  quasi-optimum control  law (36) i s  indeed  better  then  the  simplified  control  law 

= Q - ' B , K ( ~ ,  t ) x  (39) 

Specifically  the quasi-optimum control  law results i n  a performance V which i s  smaller 

than  the  performance V obtained by  use of  the  simplified  control  law (39) by a positive 

quantity times p . The details  of  this  calculation,  which i t  would appear can. be extended 

to a more general class of problems, are  given  below. Another  approach which was con- 

sidered was to expand the solution of the differential equations obtained by  use of the 

optimum, the  quasi-optimum,  and the simplified  control laws on the actual process about  the 

solution  to the simplified process. A linear, nonhomogeneous differential  equation for the 

difference  between these solutions i s  obtained. The properties of this differential  equation 

can be  used to compare the  performance of the  various cases.  The above approaches yield 

some results  on  the  problem of performance; a considerable amount of work, however, still 

remains to be  done on this problem. 

q 

2 S 
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As an  alternative  to  determining  the performance of the quasi-optimum system 

for processes with performance functionals  of  the form 

1 m 

V = - 2 x'(t)Mx(t) = J [q(x) + h(u)] d7 
t 

i t  i s  reasonable to examine  whether  the  quasi-optimum control  law  optimizes  anything,  and 

i f  so, what i s  optimized. This question has led  to  a study of the  general  inverse  optimum 

control  problem: what i s  optimized by  a control  law  of  specified  form? 

We have  found that performance indices in the above  form which  are  minimized 

by.a  given  control  law 

u = cp(x) 

for the system 

A = f(x) + Gu 

must satisfy 

and 

for a l l  x, where r) = dh/du. Furthermore,  we found  for  linear and nonlinear  single- 

input systems that i f  the  optimum  performance i s  required  to be  a positive-definite  quadratic 

form i n  the  state  variables,  then the optimum control must be a  function  of  a  linear combina- 

tion  of (at least) those state variables  which  are  directly  affected  by  the  control.  Details 

of these calculations  are  contained i n  Appendix 1 and in [ A81 . 

One of  the  important  topics in  optimum control  theory i s  the stochastic  optimum 

control problem, i n  which i t  i s  desired to minimize 

T 
V(x,t) = E [  f L(x(s))ds I x(t) = x ]  (40) 

t 

for the stochastic process, 

& = f(x,u(x)) + Gv 

14 



where v i s  Gaussian white noise with spectral  density matrix C . Determination  of  the 

stochastic  optimum control  law necessitates the  solution  of  the "stochastic Hamilton-Jacobi" 

equation,  which i s  a second-order partial  differential  equation. The  use of the quasi- 

optimum control  technique appears, as i s  shown below, to  offer  an  effective method of 

obtaining  an  approximate  solution  for  the quasi-optimum control  law when the  disturbance 

v i s  small (i.e. C i s  small) and the  solution  to  the noise-free  problem i s  known  exactly. 

This application  of  this  technique has been  worked  out  for  a  simple  example  and  a Monte- 

Carlo  simulation has been  performed which shows that  the quasi-optimum control  law i s  

superior to the  control  law for the  noise-free process. The amount of improvement,  however, 

i s  only modest; i t  remains to be determined  under  which  circumstances  the  quasi-optimum 

control  law i s  worth the additional  complexity. 

15 





PART 1 .  THEORETICAL STUDIES - 

1 . 1  PERFORMANCE OF QUASI-OPTIMUM CONTROL LAW. _ _ _ _ ~ _ _  I .  

Since the  implementation of quasi-optimum control  law necessarily entails  the 

use of a system of  greater  complexity  than  required by the  control  law  for  the  simplified 

process, i t  i s  worth having  an estimate of  the improvement which  can be achieved by use 

of  the quasi-optimum control  law. The general  problem of  estimating performance has not 

yet  been solved, but  a definite answer  has been obtained  for  the  mildly-nonlinear process 

(34), with the  performance index (35). For convenience, we  assume that  the upper l imit 

on the integral  in (35) i s  ; this results i n  no real loss i n  generality. 

Consider  any control  law  u  (x) and the corresponding value  of the performance a 
index V ( x ) .  From the  integral  definition  of V = V we have a CY‘ 

1 
2 a - (x’Rx + U’ Qua) 

But, in  general, i f  V, i s  not  a  function  of  the present time  t , then 

- dva dt = (E)’ La = (7- a va ‘ (Ax + BuLu(x) + pf (x) )  

Where a V / a x  denotes the gradient  of V with respect to x, and ( ’ )  denotes  trans- 

position. Thus, upon  equating  the  above expressions for dV /dt , the following  partial 

differential  equation for VLu i s  obtained: 
o! 

We now  consider  the following 3 control laws: 

(i) Simplified Control  law ua (x) = q X )  = Q”B, K~ (43s ) 

(ii) Quasi-optimum  control  law  u (x) = u (x) = Q B‘ (Kx + m p) (43q) 

(iii) Exact-optimum control  law u&) = uo (x) = Q-’ B‘(Kx + m 1.1 + O( p2)) 

- 1  
Q q -Px 

- u x  
(430) 

17 



where K i s  the optimum gain  matrix  for  the  simplified process, i.e. the  solution  to (37) 
with K 0 . Note  that  the  adjoint  vector  for  the  exact process i s  

p(x, p )  = Kx + m I.1 + 0 ( p 2 )  (44) - I.1x 
and 

m 
-px a x  p = o  

which makes i t  permissible to express u (x) as given by (430)~ since the maximum principle 

asserts that 
0 

uo(x) = Q-'B'p(x) . 
For each of  the  control laws of (43) we assume that  the  solution V (X )  exists* 

01 
and i s  at least twice  differentiable  in  the parameter p .  Then  we can expand v i n  a 

series in  p up  to p , 1.e. , 2 .  Q 

Substitution  of (46) and (43s) into (42) results i n  the  following  partial  differential 

equation  for V (x),  the performance attained by use of  the  simplified  control  law: 
S 

+ 1 [x'(R + KBQ-'B'K)x] = 0 

* An  implication  of  this assumption i s  that the control  law /A (x)  results i n  an asymp- 
totically stable system, unless the integrand of (35) vanishes identically  along any 
trajectory, since  then dVa/dt < 0 a d  Va i s  positive  definite  which  implies asymp- 
totic  stability. 

a 
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0 2 
Equating the coefficients  of p , /A , and p of (47) results i n  

Similarly, substitution of (4%) and (46) into (42) gives 

0 2 
and equating  coefficients of p , p, and p results in 

av av I (&)' ;;x + (3) [ f ( x )  + BQ-lB'm 1 + m'  BQ"B'Kx = 0 

(3)' A x  + (3) [ f ( x )  . I  B Q - l B ' m  " C L X  1 + "m 2 - p x  1 BQ"B'm = 0 (50s) 

- CLX - clx 

- CLX 

Finally, substitution of (430) and (46) into (42) gives 

+ - 1 [ X ' R ~  + (X'K + p m '  + o ( ~ ~ ) ) B Q - ' B ~ ( K ~  + pm + 0 ( p 2 ) ) 1  = o 2 "Crx " C L X  

0 2 (470) 
Again  equating  coefficients of ~.r , p, and p gives 

( . ) '  .. + 1 x ' ( ~  + K B Q " B ~ K ) ~  = o 



a x  [ f (x) + BQ-’ B’m 
- p x l  + Ec1-x 

BQ” B‘ Kx = 0 

Comparison of (47s)’  (47q),  and (470) reveals  that Vso , Vqo , and Voo satisfy the same 

differential equation. Since each must satisfy the same condition V (0) = 0, they  are 

a l l  equal,  and given by 
CY0 

1 V = V = V = - -x ’Kx 
so qo 00 2 

( K  = K‘) 

This i s  verified  by  noting  that i f  (50) i s  the  solution  then 

av av av 
-“ q0 = - K x  

a x  a x  a x  
so - 

and  hence (48s) becomes 

- x ’ ~ A x  + x x ’ ( ~  1 - 1  K B Q - ~ B K ) ~  = o 
L 

or - - x ’ ~  1 K ( A  + B Q - ~ B ‘ K )  + 2 

The matrix  of  the  quadratic form i n  the 

KA + A’K + KBQ-lB’K - 

(A‘  + KBQ- ’B ’ )K  - R - KBQ-lBKIx = 0 

above i s  

R 

But by (37) this  matrix i s  zero.  Consequently (51) i s  the  desired solution for the  zero  order 

term,  and (52) i s  i t s  gradient. 

Substitution  of (51) and (52) into (49s), (49q), and (490) gives 

(2) Ax - x‘Kf(x) = 0 
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Clearly, 

vsl = v = v = v1 q l  0 1  

Since  they a l l  satisfy (53). Thus the  first-order as well as the  zero order terms using a l l  

three  control laws are  equal. This i s  an expected  result, since i f  V q l  f Or 

vs, ic VOl I i t  would  be possible to  find a  value  of p so that V < V 
q l  01 Or v s l  < 

which i s  impossible i f  V i s  optimum. 
0 

The differences  between V V , and Vo are thus i n  the second order terms. 
s '  q 

To evaluate  this  difference'we make use of (45). In  particular, since 

av 
- 00 avol 2 aVo2 

a x  1 L x - P  - a x  
"" 

i t  follows  that \ 

(This also follows from (38) . )  As a consequence,the second-order terms in  each of  the  three 

cases, from (50s)' (50q), and (500)' satisfy 

(s) Ax - m' f ( x )  - - m r  1 l?Q - 1  B'm + O(1) = 0 
- JJX 2 - p x  "C1.x 

(540) 

Now  let 

w = vs2 - v 
q2 

be the  difference between the second-order  terms of the simplified and the quasi-optimum 

performance values. Then W satisfies 
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The solution of this equation, by characteristics i s  

where n 

It i s  evident  that W i s  positive-definite and hence,  we have  established that V i V . 
Since V = V 

q2 
go so and vql = v51 

we have the  principal  result  that 

for  sufficiently small values of p .  

An alternative approach to  the  question  of  estimating  the  difference  between  the 

performance indices  of  the  optimal,  quasi-optimal,  simplified  controls was also  considered. 

Using the theory  developed i n  the  introduction,  rewrite ( l ) ,  

; = f(x,u(x))  x(T) = x 

i n  the form 

where p(x) i s  an  adjoint  vector, 

- 
f(x,p(x)) = f(x,o (P(X)/X))  

and  where u (p,x) i s  defined by (60). The additional assumption i s  made that  the  simplified 

state X i s  i n  a  lower  dimensional subspace L* of  the state space than  the  actual state 

space L and that i f  the  solution of (58) starts out in  this  lower  dimensional subspace, i t  

stays in  L*  for a l l  time. I f  the init ial  state i s  in  this subspace,the exact  control problem 

can be explictly solved, in  accordance  with  the basic assumption of  this method of quasi- 

optimum control. 

Let Q 

i s  the  identity on 

2 be the linear  projection operator from L onto L* . Thus Q = Q , Q 

L* and maps a l l  vectors not i n  L*  onto  the  zero  vector. Let po(x) , 
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x o ( T )  ; pq(x) , xq(T) ; and p,(x) , x ( 7 )  be  the  adjoint vectors  and paths followed by the 

process using the optimum control,  the quasi-optimum control, and the  simplified control, 

respectively. Also let X (7) be  the  path  followed by the process using the optimum control 

but  with  initial  value  Qx. 

S 

It follows from the  above  definitions and (59) that 

and that 

A possibleTaylor series expansion for p (x) i s  
0 

p0(x) = p 0 O x  + (1 - Q ) x )  = p (Qx) + - a 
0 aQx  po(Qx)( I  - Q)x  + O ( ( I  - Q)xf (61) 

Assume now that Q x  = X (T - Q ) x  = 6 ; in the new notation 

From (12) and (1 3) 

p,(x) po(Qx) 

Now compare the solutions of (59) to  that  of (60). By assumption, (60) i s  soluable 

i n  closed form  and  thus all  of  its properties  can be readily determined. If i t  can be shown 

that the solutions to (59)  either converge to the solution  of (60) or  stay very close to  it, 

then i t  follows  that  the solutions to (59) have the same properties. In  particular,  this meth- 

od wi l l  sometimes allow comparison of the zeroth index  of  the various solutions of (59), 

which  gives  a way of estimating  the performance indices  of  the various processes. Also by 

this method, i n  some  cases, one can deduce that  the  quasi-optimal i s  (asymptotically) 

stable. In particular,  let 
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where  x i s  defined  by (59) and X i s  defined by (60). Thus f i  i s  the  difference between 

(60) and (59). We will  derive a  differential  equation  for f i .  From (59) and (63), 
4 q 

By definition, X satisfies (60), and thus by the assumption above, since X 

starts in  L* , it stays i n  L* for a l l  subsequent time. Thus 

Now expand the  right hand side of (65) i n  a Taylor series about X(7) i n  powers 

of i3 (7  ) , to obtain 
4 

- a -   a -  
f (X, P(QX))[ x P0(QX)B x + Pq = f (x, P0(QX) + f (X I P0(QX))Bq + ap a 

4 

a 2 (66 ) 
ax P 0 (Q(X)(I - Q)B q I + OMq ) 

-I-- 

We can rewrite (66) as 
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with  initial  conditions @(t) = (I - Q)x( t )  , and A(T) i s  the  matrix 

Using the  definitions of H  Hpp and M given  in section 1 ,  i t  i s  seen that 
XP 

A = HXP + HppM 

The required differential equation for f l  i s  given by (68). Sometimes the  first- 
q 

order properties of a differential equation  determine  the stability of the  solution.  In 

particular, i f  A(T) i s  constant and has a l l  i t s  eigenvalues  negative, Pq i s  asymptotically 

stable about zero 1B2] , i f  A ( T )  i s  constant, and has a  positive eigenvalue,  then  the solu- 

tion to (68) i s  not stable. 

It should be  noted  that  the possible in i t ia l  conditions  of (68) and (69) are not 

the  whole space but  only  the complement L - L* of the subspace L* . More  effort i s  

needed to  determine i f  the first order matrices  which arise in  control  differential equations 

such  as (58) have  properties  which cnsure that  the  solutions of (69) have some type of 

stability  conditioned on the  fact  that  solutions start out in  L - L* . 
To estimate  the difference y between x and x we note  that  this difference 

0 q 
satisfies 
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I .  e. 

with  the  initial  condition 

2 2 
0 q 

The solution  to ( 7 1 )  thus  depends on the  forcing terms O(@ ) and O ( p  ). In  particular 

where 0 i s  the  fundamental matrix corresponding to A(T). An estimate of  the  forcing 

term  and knowledge  of 0 would permit  the  estimation  of y .  

If we write x,(T) = X(7) + P s ( T )  and suppose x ( t )  = Qx 3. (I - Q)x , and 
S 

use the same procedure as  used in  analyzing x and x we arrive  at  the  differential 
q 0 ’  

equation 

where B ( 7 )  i s  the  matrix 

I t  i s  seen that  the  differential equations  satisfied by p and p are  different 
S q 

even i f  one only considers the  first term since the  matrices A(7) and B (7) are i n  general 

different.  It i s  therefore  perfectly possible that /3 and /3 wi l l  be stable  about  zero, 

and that f i  wil l  converge to  infinity. This fact  will be  brought  out i n  the following 

example. 

0 9 

S 

Consider the  control problem  governed by 
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x2 = 0 

x3 = 1 

with  initial  conditions  x  (t) = 0 , xl( t )  = w , .,(t) = a , x ( t )  = t . 
0 3 

(73) 

We wish to compute u(x(7)) (~(7) = 1.x0(7) , xl(T) , x2(T) , x3(T)1) i n  such 
T 

a way that  x0( T) = 2 s  1 ' 2  (x1 ( 7 )  3 u 2 (x(7))dT i s  minimized. Proceeding as i n  the  intro- 

t 
duction, we write (see(3)), 

Po 2 2 h(p , X, U)  = 2 ( x 1  + u ) - p X X 
1 2 1 + P I U  + p3 

h i s  maximized  with respect to  u i f  

P1 

PO 

u = "  

Thus f (x , p(x)) lsee(58)) i s  
- 

Using  the  Pontryagin maximum principle, we arrive  at the  two  point boundary 

value problem 
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p ( x ) = - l + m  x 4 02 2 

and that 

exp lx3  - T I  - expIT - x31 
p (x) = x 
q l   e x p l x 3  - T I  + exp[T - x31 I +  ml 2 x i  

Thus 

- 
3(xs ps s (x ) )= i = 1 s3 

exp[x3  - TI - exp[T  - 
exp[x3 - T I  - exp[T - x3 
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i 

- 
f 2 ( X  , p (x )) = x = 0 

q q q  q2 

- 
f 3 ( X  , p  (x )) = A = 1 

q 9 q  q3 

with  initial  conditions 

x = x  = o  so qo 

sl q l  

s2 92 

s3 q3 

x = x  = w  

X = x  = a  

x = x   = t  

Solving these equations we find thai 

x (7) = a 

x (7) = 7 

2 s  

3s 

1 20 exp[-2a(T - t)] + (1 -a)  exp[2(T - t)] - (1 +a)exp[2(t-T)] 
e x p l t  - T I  + e x p [ T  - t]  ~ ." 

2 1 - a  
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and that 

x = w exp 
2a - 2a exp [ t - 71 + exp [ T -  T ]  

1q [ 1 + exp [2(T- T)] 1 3. exp [2(t  - T)] e x p [ t  - T ] + e x p [ T  - t ]  

2 w 4a v =  2 1 +exp [2 (T -  T)] 1 
- 

2 (exp [ t  - T ]   +exp [T  - t ] )  t 

(exp[T - 71 + e x p [ T  - TI) + (exp[T -71 - e x p [ ~ - T ] )   + 2 a  
2 2 (exp[T-T]-exp[T-7]) d 7  

exp[T - 71 + exp1.T - TI 31 

If we let T -+ a, then  the  preceding equations simplify  considerably. We have 

x 01 = exp [ -47 ( 7 - 0  t ) ]  

x = a  02 

v =-"("- w 2 1  
S 2 a + l  ) ( a >  - 1 )  
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a nd 

3 v = - ( 1  - a + +  
2 

Cl 

q 2  

x = a  
2q 

= r  

It  can also be seen that X(T)  i s  

The matrix A ( T )  i s  

! 0 2 u e x p [ t  -71 - W  e x p ( 2 ( t  - T ) 1  
2 

0 - 1  0 
A ( T )  = 0 0 0 

0 0 0 0 

It i s  seen that the solution to 
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i s  

I 

The matrix B ( T )  i s  

0 

a 

0 

1 2 - w a e x p [ t  - s] ds 
7 

2 t  

2wexp [ t - T ]  

- 1  

0 

0 

0 

- e x p [ t  -71 w 

0 

0 

The solution  to 

I S  

2 7 
2 w  a s   ( t  - s)exp[t  - slds 

o a ( t  - 7)exp [ t  - 71 
a 

0 

t 

0 

0 :1 

If xo(T) , x ( 7 )  and xs( 7 )  , which we computed  previously, are expanded 
9 

out i n  powers of  a , then i t  i s  seen that  the  zeroth order  term  for  each i s  X ( T )  and the 

first order terms are f l  ( 7 )  , /3 ( 7 )  and p ( 7 )  respectively. The first order correction 

for  the  performance index  at m i s  - (w2 /2 )a  for a l l  three, i.e. 
0 9 S 

2 
8,,(4 = B ( m )  = Pso(-)  = - 2 w 

qo 
a 

I 
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1.2 STOCHASTIC OPTIMUM CONTROL 

Consider the  problem  of  finding  an optimum control  law for the process 

i = f(x,  u) + v (75) 
with performance criterion 

where E { ) denotes expectation,  x = { x , x 3 i s  the state  vector, 

u = {u,, . . . , u i s  the  control  vector, f = {fl, . . . , f } i s  a  vector-valued m n 
function, and Ev 1 i s  a zero-mean, vector  white-noise  distrubance process with 

E{v(t)v ' (T)}  = C 6 ( t  - 7 )  . The state i s  required  to satisfy the boundary conditions 

l ' . "  n 

where cp = {q . . . , (PSI  , s n , and the  control  u may  be required to be a member 

of a closed, bounded set SZ . 
1 '  

The optimum control  which  minimizes (76) for  the process (75)satisfies  the  stoch- 

astic  Hamilton-Jacobi  equation [ 83)  

Subjecr to  the  terminal  condition 

where d i s  the  differential generator for QS), 

and 
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An  approximate  solution to 178) wil l  be obtained under the assumption that  the 

noise acting on  the process i s  "small I' (i .e., that 

a diagonal matrix, 

' 2  
n 

0 . .  . . :.u 
Then p8) becomes 

C i s  a "small"  matrix). Suppose i s  

. Stratonovich [ M ]  has  suggested the  following  iterative  technique  for  solving (83): 

first  obtain  the  noise-free  solution V(O) by  setting all  0: E 0 i n  (83). Then  use the 

following  recursive scheme to  obtain an  approximate  solution: 

Thus, once V i s  determined  one must solve a sequence of  nonlinear,  first-order  partial 

differential equations  for the  controls  u ( k )  and  performance V . Unfortunately, even 

for systems (75)  with  relatively.simple  structure  there appears to  be no way of  finding an 

exact  solution  to  the  first  equation for V , 

(0 ) 

(k) 

(1 1 

Quasi-Optimum  Control - An  approximate  solution for V(') wi l l  be  obtained  by  using 

the quasi-optimum control  technique  developed by Friedland [AI  J .  Note  that i f  the constants 

ut / 2  are  defined as additional state variables  then (85) corresponds to  the  following set 

of canonical equations 

2 
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U 
2 

where x = (xo, 7 ,  y, 7 1 , 

0 
-I 

2 
= - av/axo , = - av/ar , Py = - a w a y  I 

U 
pr = - av/a(,) 

( 87) 

and for notational  simplicity we have used V = V"). The Hamiltonian  function h i s  

given by 

The following boundary conditions  apply  at  the  terminal  time T 

x (T) = minimum 0 PO(T) = - 1  

{ 
free for T fixed 

T(T) = T pr (T) = 
0 for T free 

CP (y(T)) 0 py(T) = @ ' A  

u 2 / 2  pa 0 )  = 0 

where 

a = w t / a Y j l  i = 1 ,  2, . . .,s; j =  1 ,  . . . n (91) 

and X i s  an  arbitrary s - vector. 
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If the optimum control  law  for (85) can  be expressed as 

where X i s  the state of  the noise-free system, x = X + 6 and the correction  matrix M 

can be obtained with the aid of  the  auxiliary system 

5 = HxpS + Hpp@ 

@ = - H  6 - H  xx PX + 

where 

and where the coefficient matrices H . . . , HXX are  matrices of second partial 

derivatives of the Hamiltonian  of the exact problem  evaluated at x = X .  The boundary 

conditions for (94) are 

XP ' 

@[((T) + ;(T)dTl = 0 

@(T) + b(T)dT = @'q 

X f $  = P f 5  

Derivations  of (94), (95)' (96) are given  in [A1 3 .  

This approach wi l l  be applied  to  the second-order process 

x, = u, + VI 

x2 = u2 + v2 

where the  controls  u are subject to the  constraint 1 '  u2 

2 2  
u, + u2 = 1 (98) 

and the random disturbances v and v  are zero-mean white noise processes with  variance 1 2 
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2 E [v, (t)vi ( 7 )  I = ai 6( t  - 7) t = 1 2. The problem i s  to choose u and u to 

minimize  the  expected  time  to hi t  a  circle centered at  the  origin. Thus the performance 
1 2 

criterion i s  the  conditional  expectation 

where t denotes  the  current time  and T i s  the  first  time  that  the random  process  {.x 

hits  the  circle S, 
1 '  

s = [x,,  x2; x1 + x2 2 = R }  2 

The stochastic Hamilton-Jacobi  equation for this problem 

2 2 2  
av av 1 a2v 2 a v O = min { 1  + u  - + u  - +-- - +"] 

ay 1 ay2 

U U 

"; +u; = 1 1 a Y 1  2 a Y 2  2 2 2 2  

Thus the  "optimum"  control i s  given by 

and the  "optimum"  performance satisfies 

2 2 
av 2 av 2 + 1 a2v 2 a2v 0 = 1 - [(-) + (-) ] + -  - 

aY1 

U U 
+ - " 

ay2 2 aY; 2 aY; 

subject to  the boundary condition 

2 2 2  
V(Y1' Y2)  = 0 for y1 + y2 = R 

The canonical equations  corresponding to (103) are 

2 2 -* 
2 2 - *  

Y 1  = Pl lPl  + P21 

i.2 = P+P, + P21 

4 (6 ; )  = 0 

a(&;) = 0 
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and 

ah = -  
1 F) = - F 1  

where 

The solution V (y  ) to  the  "noise-free'' problem 1 '  y2 

i s  well-known and i s  given by 

v = N Y l  + Y2) 2 a - R ]  

Thus, Pt = + aV/ayi  are  given by 

From (106)it i s  seen that P and P are constant i n  time  and thus from (105), 1 2 

(1.1 0) 
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The quasi-optimum control  law i s  found by lett ing 
2 2 

2 av 
aY1 

ay2 

(5 

- = p1 + m (--I + m 1 4 ( 7 )  13 2 

2 2 
1 2 

2 23 2 24 2 
a'V -- = p -1 m (-) + m (-) 

(T U 

2 -  2 2 
where r - y1 + y2 . Since 6 and t4 are constant, i t  i s  a simple matter to  integrate 3 
(1 14) and to  apply (1 15) to obtain 
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3 

- yy; 3 2 

- 2y1y2 , 1  1 y1 

m13 3 [ " - I  r R  
" 

r 2  3 

m14 - - - 3 r  "TI+"- 
r  r 

2y2y: 1 1 - y2 
3 [ T  - , I  +-  

3 

4 m23 
- "- 

r r 
2 

Y 2 Y l  3 2 
m24 3 r  

- 
" 1- - T I  

r 

Thus, the  quasi-optimum control  law i s  given by (102) where 

2 3 2 2 
* Y 2 Y 1  1 1 y2 O2 y2y1 3 2 

(I - - ) + " I  +-1-  -- 
3 2 3 r R  (- - 4 1  

r r r 

It i s  interesting  to  note  that i n  the symmetric special case, OL E uL the  above  control 

law reduces to  the  exact optimum control  law  which  can  be  derived  directly from the soly- 

tion  of (103) with u2 f 0; . 

1 2  

1 

By using the quasi-optimum solution as the  input  to  next stage of the iteration 

(84) (i .e., by compounding the  approximation) a sequence V(k) , u ( ~ )  i s  generated. The 

question of convergence of this sequence to  the optimum solution has not  yet been  thorough- 

ly investigated. However, in  practical problems  one would  expect  that  the  first  iteration 

should yield a  satisfactory control  law. 

We have obtained a Monte-Carlo  simulation  of  the performance of the  above 

second-order  process using  both  the  quasi-optimum and simplified  control laws.  For a l l  

cases considered u = 0 , the in i t ia l  state was (5,5), and the  average  time to reach a 

circle  of radius 1 .O was recorded for a  IO-member "ensemble". Table 1 contains  the com- 

2 
1 

puter results for various  values of u L 2 -  
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. 1  

1 

2 

2.25 

3 

4 

4.5 

4.8 

5 
~~ 

TABLE 1 

AVERAGE TIME TO REACH UNIT CIRCLE 

Quasi-Optimum 

5.679 

6.162 

7.206 

7.117 

8.629 

9.316 

9.141 

6.977 
- 

~~ ~ ~ 

Simplified 

5.682 

6.208 

7.235 

7.622 

8.953 

9.41 4 

9.204 

6.61 1 

- 

k Improvement 

.053 

.75 

.40 

7.1 

3.8 

1 . 1  

.68 

-5.2 
- 

The fact  that  the  expected hitting  time for  both  the  quasi-optimum  and simp1 if ied systems 

does not increase monotonically  with  increasing o2  indicates  that  a larger ensemble 

should probably be  used i n  the performance evaluation. The quasi-optimum control seems to 

provide  an improvement which has a maximum at a  value of u2 between 2 and 3 .  At 

u = 4.8 the simplified  control  law  provides  better performance  than does the  quasi- 

optimum control  law, and for u2 2 5.0 neither system can  reach  the unit  circle. Since 

the improvement in  performance i s  not  striking i n  this example further study of stochastic 

quasi-optimum control i s  required. 

2 

2 
2 

2 

2 





PART 11. APPLICATIONS 

In order to  verify  the  validity of the quasi-optimum control  technique  and  to 

obtain some qualitative  insight  into some of the difficulties  and  limitations  of  the method, 

a number of "practical" problems to  which  the  technique appears to  be  applicable were 

studied. The word  "practical" i s  enclosed i n  quototion marks here to emphasize that  even 

the  equations (1 )  for  the  exact  model  entailed  a considerable simplification  of the  actual 

physical  behavior of the process; the simplified model (10) i s  a st i l l  further  simplification. 

In  al l  cases considered  the  further simplification led to  a  lower-order system of  differential 

equations. In these applications, one of the  devices  employed as a basis for using  the 

quasi-optimum control  technique i s  to represent  parameters which  are small by additional 

state  variables xi with the  differential equations x = 0.  The simplified problem i s  then 

the same order as the original problem  before introduction  of the additional state  variables, 

t u t  i s  simple enough to  permit  an analytic solution. 

i 

No theoretical  difficulties were  encountered in  any of the examples  studied; 

the algebraic  calculations, however, although  straightforward,  were  quite  tedious  and 

involved. Consequently progress  was slow ond calculations had to be checked  frequently. 

The following problems were  considered. 

1. Three-Axis Attitude  Control  of a Space Vehicle 

2. Minimum-Time, Bounded Acceleration Rendezvous i n  a 
Central Force Field 

3. Aircraft Landing Problem 

In the  sections below  the equations for each  problem  are numbered according  to 

the  format (i - 1 )  , (6 - 2) , . . . , where i = 1, 2, or 3 according  to  which  of  the 

above problems i s  under discussion. 

45 



2.1 THREE-AXIS  ATTITUDE CONTROL OF A SPACE VEHICLE 

The first  application study i s  that  of  controlling  the  attitude of a space vehicle 

i n  which  the  gyroscopic  coupling torques are small but  not  negligible. 

Problem Formulation - The equations  governing  the components of angular velocity  along 

principal axes of  the  vehicle  are 

hi = [ - Ik) u p k  + ci fil/I& i j k = 1 2,3 in   cyc l ic  order 

-L # j  # k  
th 

where I represents the momont of  inertia about  the t- principal axis, w represents 

the component of angular velocity  along the i- principal axis, ct represents the mo- 

ment  arm of iet  control, and fi represents the thrust of  jet  control , 

i 
th 

t 

lfJt)l -s Mt t = 1, 2, 3 (1 -2) 

Three additional  coordinates  required  to  completely  describe  the  vehicle  attitude  are the 

Euler angles [ 0 , 0 ] defined as i n  [B5] : 1 f 0 2  3 

sin 0 3 cos e 3 
O I  

- tan f3 cos 0 tan 0 sine - 2 3 2 3 1 J  

Thus (1-1) and (1-3) describe the  vehicle  attitude  motion. 

We wi l l  assume that  the  angles 8 and e3 are  sufficiently small throughout 2 
the  control  interval so that  the  matrix i n  (1-3) becomes the  identity  matrix. Then the eq- 

uations of motion  reduce to 

e .  = w i, j ,  k = 1, 2, 3 

i f j f k  
L i 

(1-4) 

iLl = [(I. - I ) 0 . w  + Cifi1/Ii 
i J k J k  
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We will  define the state variables 

x() = t 

X L  = 5 = 1, 2, 3 (1 -5) 

X 
- 

it3 - I tWt 

The cross-axis inertia  ratios (1 

represented by additional state variables 
J - $)/'J'k 

are assumed to be small but nonzero, and  are 

X = (5 - Ik)/l"Ik i, j ,  k = 1 ,  2, 3 
6 + t  

t # J - # k  

Hence the state equations  can be written as 

x. = 1 

- 
x2 - x5 

- 
'3 - ' 6  

'4 = '7'5'6 + klUl (t) 

x5 = x x x + k2u2(t) 

x6 9 4 5  - x x x + k3u3(t) 

8 6 4  
- 

- - x7 - X8 - x9 = 0 

where k, = c,Mt and 

lu t ( t ) \  1 t = 1 ,  2, 3 

To simplify  nototion we wi l l  ossurne t lwt  k = k = k = 1 . 
1 2 3  

The problem i s  to minimize the time  required to reduce x 1 I * x68 to zero, 

i.e., to  minimize x (T) subject to the  constraint (1-8), where x. (T) = 0, i = 1, 2, . . . , 6. 

The Hamiltonian for this problem i s  
0 L 
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= PO + P1 x4 + P2'5 + P3'6 + P4x7x5x6 + P4'1 

(1 -9) 
+ p x x x   + p x x x  

1 u2 

5 8 6 4 '5'2 6 9 4 5 p6u3 

Maximization  of h with respect to  u and u3 results in the optimum control law 

where the  adjoint  variables  p i = 0, 1 , . . . , 9 satisfy i' 

(1 - 1  1) 

P7 - -P x x 
- 

4 5 6  

P9 - -P x x 
- 

6 4 5  

Simplified System - Suppose the cross-axis inertia  ratios  are  zero (x7 - x8 x9 5 0 ) .  

Then from (1-7) the  three axes are  uncoupled,  and  the optimum control  law  for each axis 

can  be obtained from the  well-known  solution to  the Bushaw problem [ A 2 ] .  Thus we select 

- - 

x = [x,, xl, . . . , x 6 f 0 1  '1 (1-12) 

as the state of the  simplified problem. 

The Hamiltonian for the  simplified  problem i s  

(1 -1 3) 
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. .. 

where P = [ P o f  P1 , . . . , P6 , 0 , 0 , 01 i s  the  adjoint  vector  for  the  simplified prob- 

lem.  The maximum principle  applied  to (1-13) yields  the optimum control  for  the simplified 

problem 
- 

U t  - sgn (pi+3) 5 = 1 , 2 , 3  (1 -1  4) 

where the  adjoint varables satisfy 

P = o  0 

Pt = 0 

Pt+3 = -Pt 

By integrating (1-15) we find  that 

t = l , 2 , 3  (1 - 1  5) 

where 

ui - sgn ( P ( &  +3)o) = 2 1 - 

Substituting (1-16) into (1-7) with x - 
7 " '8 - x9 = 0,  and integrating  to  the  terminal 

time  Ti/, results in expressions for xi(Ti) and x (T.)  as functions of T t  , ti, and 

the in i t ia l  conditions.  Solving  simultaneously for  T and  ti yields 

- 

t t 3  L 

t 

- '(i+3)0 + ' ( i+ 3)O Tt  - - - UiXi0 
ui 

(1-17a) 

(1-17b) 
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By using (1-13) and (1-17a) we find  the  following expressions for the  initial  adjoint  vari- 

ables i n  terms of the in i t ia l  state variables: 

and 

(1 - 1  8 a )  

t = 1, 2, 3 

P 1 
" " _  

(t+ 3)O "t 

X (t+ 3)O 

2 - U t  X t O  I' (1 -1 8b) 

Since the init ial state i s  arbitrary,  dropping the subscript zero i n  (1-18a) results in  the 

general relations for the  adjoint  variables in  terms of  the state variables.  Substitutisn  of 

(1-18b) into (1-14) leads to  the  well-known  control  law for  the simplified problem. 

If the cross-axis inertia  ratios  are not zero, however,  then this control may be 

unsatisfactory for the  original problem. Thus  we will  modify this simplified  control  law  to 

take  into  account small, but non-zero, cross-axis inertia ratios. 

Quasi-Optimum  Control Law - In  accordance with  the procedure outlined  in the  Introduc- 

tion,  the quasi-optimum feedback control  law i s  given by 

u2 - sgn (P5 + m57x7 + m 58'8 59 9 + m  x )  

u3 - sgn ('6 + mb7x7 m68X8 69 9 + m  x )  

- 

- + 
(1 -1 9 )  

where P P5 , P are  the adjoint  variables  of  the  simplified system defined in  the last 

section and the m are components of the  correction  matrix M. The correction  matrix 

i s  obtained by finding  the fundamental matrix for the  auxiliary system where the coefficient 

matrices  are given by 

4 '  6 

i9 
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HXP = 

- 0 0 0 0 0 0 0  0 
- 

0 0 

0 0 0 0 1 0 0  0 0 0 

0 0 0 0 0 1 0  0 0 0 

0 0 0 0 0 0 1  0 0 0 

0 0 0 0 0 0 0 X 5 X 6  0 0 

0 0 0 0 0 0 0  0 

0 0 0 0 0 0 0  0 0 

0 0 0 0 0 0 0  0 0 0 

0 0 0 0 0 0 0  0 0 0 

'6'4 0 

'4'5 

0 0 0 0 0 0 0  0 0 0 - 

( 1  -20) 

HPX - H ' X P  
- 

(1-21) 

0 0 0 0  0 0 0 0 0 0 

0 0 0 0  0 0 0 0 0 0 

0 0 0 0  0 0 0 0 0 0 

0 0 0 0  0 0 0 0 0 0 

0 0 0 0  0 0 0 

0 0 0 0  0 0 0 

0 0 0 0  0 0 0 

0 0 0 0  0 

p5x6 '6'5 

'4'6 '6'4 

'4'5  '5'4 0 

'4'6  '4'5 0 
0 0 

0 0 0 0 0 0 P5X6 0 '5'4 0 
0 0 0 0 P6X5 P6X4 0 0 0 0 

(1 -22) 



(,(TI) = 0 

TABLE 1 - 1  

BOUNDARY CONDITIONS FOR 
QUASI-OPTIMUM CONTROL LAW 



and 

= '154 + '255 + '356 + '4'5'667 + p5x6x458 + p6x4x569 + x4$1 

+ x5$2 + x6$3 + $ + $ + # 1 4  2 5  3 6  

where the last equation i s  evaluated at  time t  and i s  applicable  to  each  of  the  three 

cases. By applying the appropriate boundary conditions defined above we find  that 

-4(t) = NlCl ( t )  

where, for the case T 1 < T2' T3' 

L =  

0 0 0  0 0  

0 0 0  0 0 0  

0 0 0  0 0 0  

'1 4 

0 0 0 -P2/U1 0 0 

0 0 0 -P3/U1 0 0  

0 0 0  X x x  

0 0 0  X o x  

0 0 0  X x 0  

0 0 0  p1 p2 p3 

'1 7 '1 8 

0 0 

0 0 

'57 - '2'48' u1 

'67  '6 8 

X X 

X X 

X X 

'4'5'6  '5'6'4 

'1 9 

0 

0 

' 5 9  

- " 1  '3'49' 

X 

X 

X 

'6'4'5 
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and 

- - 
1 

0 0 
4 0 0 0 0 0  

0 1 0 0 0 0 0 0 0  

0 0 1 0 0 0 0 0 0  

0 0 0 0  

N = -P3'P41 /U1 '63 - '3'44' 1 0 1 0 0 0  

X  X  X  X X X l O O  

X  X  X  X x x 0 1 0  

X  X  X  X x x 0 0 1  

0 0 0  

-p2'P41/u1 '52 0 -P2~44/ U1 1 

x4 x5 '6 u1 u2  u3 - - 

759 - p59 - p2'P49/u, I and y68 = P68 - '3'P48/'1 . 
- 

Upon solving for 9 I #5 I $ J ~  i n  terms of 6 and k9  we find  the  required  correc- 

tions m . The terms labeled X are  not  required in  this  calculation. 
7 " 8 ,  

Li 
d) To account  for a l l  possible  permutations of  the t and T the  relationship i 7 

3 3 '  
between the  switching times t and t i s  determined and a  transformation ti + t 

T t -  T j l  Xi-' XJ , Pi 4 P . i s  made  such that  the order t < t2 < t i s  always  main- 

tained. Based on the above  ordering,  the  gains m are  applied  to  the corresponding 

x . Then the  inverse  transformation i s  used to re-order the  resulting  controls  u to  obtain 

the  input ui which i s  applied to the  dynamical system. 

1 '  t 2 '  

1 .7 3 

ij 

j i d  
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1 The gains m are  given as fo!lows: ij 
Whenever T < T2, T3 we have 1 

p2 '1 7 p3 '1 7 
m57 - q " 4 7  T1  - t 

- - 
- 057 

- 
m67 - T ( ' 4 7  T1 - tl ) - '67 

- 
1 

t - 1 '1 9 
m49 Ult, + x4 - 

"4 'p11 + '2'59 - p6x4x51 

Whenever T2 T , T3 we have 

m49 - -p49 
- m69 = 0.0 
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t 
2 '2 8 "2 8 

m58 U2t2 + X 
- - [X " - 

5 'p22 '"58 T2 - t2 

For T3 < T , T2 we have 

m47 = 0.0 

- 
m a  - -8, 

p1 Q39 p39 

u3 T3 3 
m49 - - ("69 - - 

- t  - p49 T3 - t3 
- 

- 4 9  

J - - 3/ 

m67 U3t3 + X6 "6 'p33 '2'57 - p4x5x61 

t 3 'O39 "39 ) 

Q33 ('69 T3 - t3 
m69  U3t3 -t X6 

- - [X - - - 

The terms cp ij I P t j  are given as follows: 

Case 1: t C T < t2 , T1 < T2 , T3 1 1 
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%7 = PlU3[Ti/3 - T7t1/21 + P1X6LT1/2 2 - Tltll 

3 
2 

3 1 1 3  2 1 4 3  1 
2 '3 2 

+ tlt3 - 2t T t + "T ) + X P (T /2  - Tlt3) 

3 

" + t t  - 2 t t T   + - T ) + P X ( T / 2 - t T )  b6, = P U  (-T1/3 + Tltl - - 3  2  2 t2 2  2 
2 1  3 1 2   1 2 1  2 1 2 4  1 2 1  

Case 2: t < T < t3 , T1 < T2, T3 2 1  

3  2  3  2  2  2 
5 3 1  '47 = U23[-T1/3 -t Tlt2 - t2/3] + U2X6[-T1/2 - t2 + 2t2T1] -t X  U T /2 

u1 

p1 

u1 

p1 

3  2 
'18 = 2"-(T1 - t l ) [ U 3 P 2 ( F  1 2  - ?t2tl) + P x (- - t t )] 2 6  2 1 2  

t 
3  2 
1 1 2  

2 3  3  2 3 1   3 5  2 1 3  ql9 = 2 -  (T1 - t l) [U P (- - -t t ) + P X (- - t  t )] 

1 
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1 3  2 '2 1 2 ' 1  fi  = U P [ - " T  + T t  - - + - t T 2 - 2 t t T   + t t ] + P X [ - - T l t l ]  67 2 1  3 1 1 2  3 2 1 1   1 2 1   1 2  1 5  2 

-2  -2 
1 3  1 

1 3  2 I fi,, = U P [--T + t 3 T  + t ? - 2tlt3T1 - "t + t t 3 + P X [- - 1 
1 3  3 1 1 1  3 1 1 3   3 4  2 T1t31 

t 
3 

1 3  1 1 2  2 f i 6 8 = P U [ - " T  - " + " T t  + t T  2 1  3 1 3 2 1 2  1 1  

Case 3: t2 C T < t T T 2 3 '  2 1 I T 3  

v22 = -2U t (T - t2)/ P2 2 2  2 

4  3  3  4  3  2 2 3  
'P2* = U13[-T2/12 + tlT2/3 - T2t,/3 + tl/61 + X6U1[-T2/6 + t T - T2tl + t1 /31 

1 2  

+ X4U3T2/6  3 + X4T2/2  2 

3 2 3  2 2 2 'ps8 = Ul3[ -T2/3 tlT2 - tl /3 i  + X6Ul[ -T2/2 + 2t2T2 - tl] + X4U3T2/2 + Xd6T2 

u2 1 3 3 1  
929 = 2-(T2 - t 2 ) l + J 1 P 3 ( ( t 2  - tl) + tl) - "U P - x P ) 

p2 2 1 6  4 3  

2 2  
m 2  - tl) 4- tll - P6X4t21 

= P U  (-T2/3 + T2tl - t1 /3  + tlt2 - 2t t T + t2T2/2) + P X  (T /2  - t2T2) 
3 2 3 2 2 2 

'68 2 1 1 2 2  2 4  2 
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3 2  2 
'67 

= P1U2[T2/3 - T2t1/2] + PlX5[T2/2 - T2tlI 

3 3 .  2 2 2 2 
2 3  2 3 5  2 p4, = U P [ -T / 3  - t2 /3  + T2t2 - 2t2t3T2 + t3t2 + t3T2/2] + P X [T /2  - t3T2] 

Case 4: t3 < Tl T2 , T3 

'p, 1 = -2U1t1 (TI - t 1 w 1  

= U [ T  4 /12 - T1(t3 + t2)/3 + 2T1t2t3 + Tl(t3/3 - 2t2t3 - t2/3) - t i / 6  3 2 3 2 3  
'17 23 1 

+.2t2t3/3 3 + t2/6] 4 + U2X6[-T1/6 3 + Ti 2  t2 - Tlt2 2 3  + t2/3] + U3X5[ -T1/6 3 

2 3 
+ T,t3 - T1t3 2 + t3/31 + X56T:/2 

3 2 2 3  
947  2 1 = U (T /3  - Tl( t3  + t2) + 4Tlt3t2 + t i /3  - 2t2t3 - t2/3) 

2 2 2 2 
+ X6U2(-T1/2 + 2Tlt2 - t2) + X5U3(-T1/2 + 2t3T1 - t3) + X56T1 
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Case 5 :  t3 < T2 < T 1' T2 

'22 = -2U t (T - t2)/P2 2 2  2 

3 2 3 2 3  4 
'28 = U13[T;/12 - T2 (t3 + t1)/3 + 2t1t3T2 + T2(t3/3 - 2tlt3 - t1 /3  - t3 /6  

3 4 3 2 2 3  3 + 2tlt3/3 + tl /6] + U1X6[  -T2/6 + T2tl - T2tl + tl /3] + U3X4[ -T2/6 

+ T2t3 - T2t3 + t3/3] + X4T2/2 
2 3  2 

3 2 3 2 3  2 
'58 = U,3[T2/3 - T2(tl + t3) + 4tlt3T2 + t3/3 - 2tlt3 - t l /3] + X6U1(-T2/2 

2 2 2 + 2tlT2 - t l )  + X U (-T2/2 + 2t3T2 - t3) + XUT2 4 3  

q29 = 2 -(T2 u2 - t ) I  P U  (-t2/3 3 - t1 /3  3 + tit; + t3t2/2 2 - 2t t  t + t3t,) 2 

p2 2 3 1   1 2 3  

u2 3 2 2 
'p27 = 2 -(T2 - t2)[  P1U3(t2/3 - t1t2/2) + P1X6(t2/2 - tit2)] 

p2 

3 2 3 2 2 
2 3  2 6  2 /3,, = P2U3[ -T2/3 + T ( t  + t2/2) - 2T2t3t2 - t3/3 $- t2t3] + P X I T  /2 T2t2] 

3 2 3 2 
f16, = P2Ul[ -T2/3 + T2(tl + t2/2) - 2t 1 2 2  t T - t1 /3  + t2t1] + P2X4(T: - T2t2) 

3 2 3 2 2 
1 5  2 

3  2 3 2 2 

j3,, = PlU2[ -T2/3 + T2(t2 + tl /2) - 2T2tlt2 - t2/3 + f1t2] + P X [ T /2 - T2tl] 

/3,, = P3U2[ -T2/3 -t T2(t2 + t3/2) - 2T 2 2 3  t  t - t2/3 + t3t2] + P3X5(T2/2 - T2t3) 

Case 6: t < T3 < T1 , T2 3 

'p33 = -2U t (T - t3)/ P3 3 3  3 
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u3 3 3 2 = 2 -(J3 - t )I P u (-t / 3  - t2/3 + t2< + t1t3/2 - 2t t  t + tlt2) 
2 

'p37  p3 3 1 2  3 1 2 3  

u3 3 3 2 2  2 

p3 
'p38 = 2-(T3 t )[ P U (-t / 3  - t1 /3  + tlt3 + t t /2 - 2t t t + t2tl) 3 2 1  3 3 2   1 2 3  

3 2 3  2  2 
'67 

= PlU2(-T3/3 + T3(t2 + t,/2) - 2tlt2t3 - t2/3 + tlt2) + P 1 5  X (T 3 /2 - tlT3) 

3 2 2 
t3/2) - 2T3t2t3 - t2/3 + t3t2) + P 3 5  X  (T  3 /2 - t3T3) 

3 2 2 
' t3/2) - 2T3tlt3 - t1 /3  + t3tl) + P3X4(r3/2 - T3t3) 

it i s  important to note that when  (1-17)  and  (1-18) are substituted into the 

above expressions for aLi and P L j ,  the quasi-optimum control law is an explicit 

function of the state of the vehicle and i s  thus a feedback control law. 
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FIGURE 1.1 STRUCTURE OF QUASI-OPTIMUM  CONTROL SYSTEM 



The resulting  feedback  control  system has the structure  shown  in  Figure 1-1 . 
Using the  simplified  control  law  indicated  by  transformations  F , F  F the   ad jo in t  

var iables  P P P are determined  from the measured  angular  positions €Ii and  vel-  

oc i t ies  wi . Each nonlinear  correction is appl ied  to the appropriate  amplifier  whose  gain 

depends   on  the cross-axis  coupling.  Thus  the  output  of the ideal switch  functions  provides 

the physical  realization of control  Iaw(1-19). 

1 2 3‘ 

4’ 5’ 6 

Performance  with  Quasi-Optimum  Control  Law - To e v a l u a t e  the effectiveness of the 

quasi-optimum  closed-loop  system  compared to the  simplified  system, the transient  response 

of both  systems  was  obtained  by  means of a digital computer  simulation.  Figures 1-2a and  

1-2bcorrespond  tothe  same  ini t ia l   angular   posi t ions  and  veloci t ies   but   with  cross-axis   in-  

er t ia   ra t ios  that differ  by a factor  of 10. It i s   c lear  from  Figure  1-2a that a f te r  8 uni t s   on  

the  t ime  scale  the  quasi-optimum  system  has  reached  the  origin in  3-dimensional  space 

whereas  the  simplified  system  requires  11 t i m e  un i t s   t o   r each  the origin.  The  figure also 

indicates   that  the transient  response of the  quasi-optimum  system  undergoes  smaller  over- 

shoot  on  the x and x2 axes, but  requires  more t i m e  to null the posi t ion  and  veloci ty  of 

the  third  axis.  
1 

From Figure  1-2b it is seen that, because  of the increase  in  the cross-axis  coupling, 

both the yuasi-optimum  and  simplified  systems  require  more  time to reduce  all of the angular  

posit ion  and  velocity  coordinates to zero. As before the quasi-optimum  control  law  results 

in a more  “damped”  transient  response  than  that  of the simplified  system  on the x and  

x2 axes.  This improvement  of  performance is again  accompanied  by  an  increase  in  the 

time  required  for  the  quasi-optimum  control  law to bring the coordinates  of the   th i rd   ax is  

to   the   o r ig in .  

1 

Similar  results are obtained  for  initial  conditions  shown  in  Figure  1-2c.  Thus it 

would  appear  that   the  quasi-optimum  control  law  provides a generally  smoother  transient 

response  and  reduces the coordinates of two axes to ze ro   i n  a smaller  t ime  interval  than 

does the simplified  control  law. 

! 

I 
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SIMPLIFIED 
OUASI-OPTIMUM -20 

-30 

(a) 

"I = X8 = .02, x9 = - .04 

x3 0 

-I 0 

-20 

-x) 

-40  

(b) 
"7 = X8 = 0.2, x9 = -.4 

UASl-OPTIMUM 

SIMPLIFIED 
-4 

8 TIME 

(c ) 

"7 = X8 = .2, x9 = -.4 

FIGURE 1-2 

COMPARISON OF TRANSIENT  RESPONSE 
OF CLOSED-LOOP SYSTEM USING 

QUASI-OPTIMUM AND SIMPLIFIED CONTROL LAW 
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2.2 MINIMUM-TIME, BOUNDED ACCELERATION RENDEZVOUS IN A CENTRAL 

FORCE FIELD 

This i s  an  extension of  the  minimum-time bounded acceleration rendezvous i n  

free space problem which was considered  under Contract  No. NAS 2-2648, [A1 , A41 wherein 

i t  was  assumed that  the  gravity  field was not  significant  and hence was omitted. In  the 

present application  a  central  gravitational  force i s  considered. 

Exact Problem - It i s  assumed that  the  motion  of  the  target  vehicle i s  known, that i s  

r+ (t) and 0+ (t) are  specified (see Figure 2-1). The mation of  the  vehicle  with respect 

to  the  target i s  defined in a  target-referenced  polar  coordinate system  as follows 

2 
- - r  &r = a r - g r  
d r  

dt 
2 

d2@ dr d 0  - 
r-  + 2 - - -  

d? dt  dt at - 't 

The forcing terms on  the  right hand  side  can be expressed as 

a = a cos 0 
r 

=cL 

a = a sin 8 
t 

cos 0 sin @ 

-sin 0 cos 0 I cos 0 cos 0 

2  2 
V t 

V t - 
r  r 

sin @ 
V 

sin 0 
t 

where  a i s  the (constant) thrust to mass ratio and p i s  the gravity constant (= g R L 

0 0 '  

0 
i s  the  gravitational  acceleration  at  the surface of  the  attracting  body  of radius R ) . 
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REFERENCE  FOR  TARGET  MOTIONS 
FIGURE 2.1 

RELATIVE  COORDINATE  SYSTEM, FOR RENDEZVOUS 
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I 

i 

To apply the quasi-optimum control technique a new set of variables is defined 

as  follows: 

x() = t x3 = r &/a 

x, = ;/a x4 = @ (2-4) 

x2 = r/a x5 = P/a 
j 

The constanf p/a is represented by a n  additional  state  variable x which, in  5 
the simplified problem  is  assumed zero, i.e., the simplified problem  assumes the  absence 

of a  gravitational  field. 

In terms of these new variables, the equations of motion  (2-1) and (2-2)  become 

"2 - x1 
- 

x1 x3 
x3"- 

- x3 

- + u2 - x5h3 
"2 
" 

x4 x2 

x5 = 0 

where u = cos 9 u2 = sin 0 1 

ax2 + rt  cos(x 

+ 2ax r cos(x4 - Ot ) + rt 2 t  

4 - @ t )  cos(x4 - O t) 
h =  1 

- 
2- 3/2 2 

t r - 

-r sin(x4 - Ot) sin (x4 - Ot) h3 = t + [.'$ + 2ax2rtcos(x4 r 2 
t 



The problem  is   then to force the system (2-5) from any  in i t ia l   s ta te   to   the   o r ig in  

of the s ta te   space   in  the shortest  possible  time T ,  i.e., to minimize x (T)   subject   to   the 

constraint 
0 

u ; + u  = 1  2 
2 

The Hamiltonian  function for  this problem is g iven  by 
.-, 

Maximizat ion of h with  respect   to  u and  u subject   to the  constraint  (2-6) 1 2 
results  in  the  following  steering  law 

1 - 
u 1  

- 

( P f  + P;)''2 

- - 3 

u2 (p: + p;) "2 

Using  these  values of u and  u a long   wi th   the   condi t ion   tha t  p E -1 in 1 2' 0 
the Hamiltonian,  yields 

Simplified  Problem - Suppose  that   the   ini t ia l   tangent ia l   veloci ty  of the vehicle   with re- 

spect  to the   t a rge t   and   the   g rav i ta t iona l   f ie ld  of the   a t t rac t ing   body  a re   bo th  zero. Then 

c lear ly ,  the optimum  solution is to   app ly   t he   veh ic l e   t h rus t   a long   t he   i n i t i a l   r ad ius   vec to r  

pointing  either  toward o r  away  from the  or igin  in   accordance  with  the  wel l   known  solut ion 

for  the  minimum  time  double  integral  plant  (Bushaw's  Problem). 

If both  the  re la t ive  ini t ia l   tangent ia l   veloci ty   and  gravi ta t ional   a t t ract ion are 

suitably  small, it i s   reasonable   to   use   the   so lu t ion  of Bushaw's  Problem as   t he   bas i s  for  a n  

approximate  solution  to  the  exact  problem.  Thus  we  select  as the   s t a t e   vec to r  of t h e  sim- 

plified  process 

X = E x o , x l , X 2 ' ~ , 0 , 0 1  (2- 1 0) 
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Then 5 = E o  I 0, 0, X3' x41  x 5 3 where 5 i s  the  approximate  change i n  the performance 0 
index due to  the  simplification. For the  simplified problem, the  Hamiltonian i s  

H = P  + P U + P X  0 1  2 1  (2-1 1 ) 

where P = {Po, P1,  P2, 0,  0, 0) i s  the  adjoint  vector  in  the  simplified problem. Maximiz- 

ing the  Hamiltonian subject to U = f 1 gives 

U = sgn P1 (t) (2- 1 2) 

The state and adjoint equations  for the simplified problem  are 

x. = 1 P = o  0 

x, = u P "P* 1 

x 2  = x 1 P = o  2 

(2-1 3) 

Integration of (2-13) yields 

x = t  0 P = -1 0 

x1 = x1 (0) + u t  (2- 1 4a) P1 = P1 (0) - P (0)t 

x2 = X2(0) + x1 (0)t + u t  /2 

2 (2-1 4b) 

2 P = P2(0) = constant 2 

Eliminating  time from 

x1 ( t )  = x1 (0) + u t  

X2(t) = X2(0) + x1 (0)t + ut /2  
2 

gives the  switching  curve  for  the  simplified problem 

x 2 +  2 
xllxll = 0 

Thus the  control i s  U = - sgn k2 +Y). 
(2-1 5a) 

(2-15b) 

I 

I 



In  the  event  the argument of  the sgn function i s  zero, i t  i s  indicated  that  the 

vehicle i s  on the  switching  curve  and U = - sgn (X,) . 
Substituting (2-12) into (2-14a) and integrating  to  the  switch  time  t and terminal 

S 

time T gives 

time and initial  adjoint variables. 

L L 

1.  
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(2- 1 6a) 

(2- 16b) 

(2- 17a) 

(2-17b) 

(2- 1 7 ~ )  

(2- 17d) 



Since  the initial'state is arbitrary, dropping the subscript zero i n  (2-17) results in  the gen- 

eral  relations for the switch time, terminal time and adjoint  variables. 

If the  initial  tangential  velocity and gravitational field are not zero, however, 

the simplified steering law is unsatisfactory for the  exact problem because no tangential 

acceleration is ever produced. As a  resilt  the  initial angular momentum is conserved, and 

as  the  radial  distance  decreases  the  tangential  velocity  increases until the  vehicle  either 

orbits the  target or escapes  entirely.  Satisfactory performance can be achieved only by 

use of a tangential component of acceleration. 

In addition, if the  gravitational  field is ignored,  the vehicle will either miss 

the  target or reduce  the range to  zero with a non-zero velocity. Either situation is un- 

satisfactory  since  the boundary conditions  require  the range and range rate  to be simultane- 

ously  reduced to  zero. 

Quasi-Optimum  Control Law - In the quasi-optimum control law the radial and tangential 

components of the normalized acceleration  are given by (2-8), in  which the  approximate 

values of p and p3 are used. The  approximations are given by 1 

* = 1 , 3  (2- 1 8) 

From (2-10)  however, 5 = 5 = 0 and 5, = x3, 5, = x4 , and 5, = x5; 1 2  
hence (2-1 8) becomes 

p l = P l + m  5 + m  10 0 13'3 +m14X4 15 5 + m  x (2- 1 9) 

(2-20) 

Thus only m10t m13t  m14/ m i 5 1  m30t m33' m34t and m in  the matrix M are 35 
needed. These are  calculated with the  aid of the matrix Riccati equation (19). The 

coefficient  matricies H and Hxp appearing  therein are found by performing 

the required partial  differentiations on the Hamiltonian  for the  exact problem given by 

(2-7), and evaluating  the result at  x = X, i.e. , = 0. The results are 

XX' HPP' 

'3 - x4 - x5 
- - 
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0 

0 

0 

0 

0 

a h l  -P - 1 ax2 

0 0 0 

0 26(P1)  0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 a h l  
- p l  ax, 

0 0 0 

0 0 - a h l  
p1 7 

p1 

x2 
2- 0 0 

0 0 -P - a hl 
1 ax4 

a h l  0 -  P1 a x 4  0 

0 0 0 

0 0 0 

0 0 0 

U - 
p1 

0 0 

0 0 0 

0 0 0 



0 

0 

0 

0 

0 

-h 1 

0 0 

0 0 

0 

x 1  

0 
1 1 - 

x2 
0 0 

0 -h3 

The result of substituting these matrices into the  auxiliary system  (20)  expressed 

in component  form, i s  

5,  = o  (2-2 1 a) 

(2-2 1 b) 

(2-2 1 c) 

(2-2 1 d) 
x1 U 
x2 p1 

-5, = "-5 - h3-5, + " 9  

1 5,  = - 5 ,  
x2 

(2-2 1 e) 

(2-2 1 f) 5, = 0 

ah 1 Qo = P  - 
1 ax, 55 x = x  

(2-22a) 

(2-22b) Ql = -Q2 

9, = P  - I ax2 (2-22c) 

(2-22d) 
Q = - 2 -  p1 x1 1 
3 x2 + - x2 Q3 - x2 Q4 

I 



a hl 
5, + p  - Q5 = P  - + P -  

a hl 

1 ax2 54+  h19, + h  9 
x=x 1 ax4 x = x  (2-22f) 

The boundary equations  for these differential equations  are 

5, (T) = - X1 (T)dT = - sgn I P, (T)]dT (2-23a) 

E2(T) = - X2(T)dT = 0 

= - PO(T)dT = 0 

$3(T) = - b,(T)dT = 0 

(2-23b) 

(2-23~)  

(2-23d) 

(2-23e) 

(2-23f) 

(2-239) 

Util izing the auxiliary equations, their boundary conditions and the  relationship 

we can  determine  the following properties of the M matrix. 

(1) Equation (2-21f) indicates  that 6 (t) = constant. Thus the first row and 
5 

column of the M matrix  can be determined form (2-22a) and (2-23~). 



Thus  we have  determined that 

(2) In  a  similar manner, using (2-22e) and (2-23e) i t  i s  established that 

m 4 t  = mt4  = 0 t = 0, 1, 2, 3, 4 

T ahl (7) 
m45 - m54 = - s P1 (7) dT  

- 
t ax4 

(2-25) 

(2-26) 

(3) Rewriting equations (2-21d) and (2-22d) i n  matrix form  and noting  that 

9, = m45c5 we obtain the system of equations 

X 1 I = [  ” x2 

p1 -- 
x2 ::I + 

- h3 65 

m45 -- 
x2 55 

Defining  the system fundamental matrix as 

(2-27) 

(2-28) 
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i t  i s  found that T 
J [c(T, X) h3 - - m45 d(T, X)]dX 
t x2 #,(t) = --- 

d (T, t> 55 

Equation (2-29) implies that 

mt3 = m = 0 
3 5  

t = 0, 1, 2, 4 

T J L Ic(T,X)h3 - - m45 x9 d(T, X)] d X  

(2-29) 

(2 - 30a) 

(2-20b) 

(4) The remaining  elements ot the M matrix can  be  determined by integrating 

(2-22b), (2-22c), (2-21b), and (2-21c).  Special attention must be given  to  the  integra- 

tion  of [, (7) due to  the impulse function  that appears at  the  switch  time  t . In 

particular, 
S 

$2(7) = #2(t) + 55'1 (7, t> (2-31 ) 

where 

and 

78 

(2-34) 



where 

For 7 = t 
S 

(2 -37) 

(2-38) 

Substituting P1 (X) = P (0) - P2(0)X into  the  integral and making  the change of  variable 1 

yields 

I S 

~ Making  the substitution  d(at) = 6( t$  a ]  , (2-40) becomes 

(2-41 ) 

After  integrating from the  switch  time  t  to  the  terminal  time T the  four  integrals  are 
S 



where 

(2-43) 

Since  there i s  no  boundary condition for Q (T), equation (2-42b) i s  not  required. 
2 

Applying boundary conditions (2-23a), (2-23b), and  (2-23g) to (2-42) and noting  that 

5,(T) = - sgn [ P1(T)] = UdT 

since h (T) = 0 . The remaining equations i n  matrix form become 
1 

(T-t) 1 
92 

(2-44) 



Elimination of d T  and obtaining Q (t) and Q2(t)  as functions of 5 1 1 J 5 2 ,  
and 5,  results i n  

m = m  = O  l j  j l  
j = 0, 3, 4 

m 2 j = m j 2 = 0  j = 0, 3, 4 

with 

where 

which simplifies to 
2 A =  

P2 (0) 
(2-5 1 ) 

Thus the only  nonzero  components in  (2-19)  and  (2-20) are m and 15' m33r 

m35 
and the quasi optimum control law becomes 

P1 

p3 - m33X3 + m35X5 

= P  + m  x 1 15 5 
- 

and the M matrix is of the  form 
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(2-52 b) 



- 
0 0 0 0 

0 

0 

m05 

m 1 5  

m25 

O ml 2 
O m21 m22 
0 0 

0 0 0 0 
O m33 O m35 

O m45 

m50 m51 m52 m53 m54 m55 - 

(2-53) 

The coefficients  m33(t)  and  m35(t) are given  by  (2-30). To ob ta in   a ( t ) ,   b ( t ) ,  

c( t ) ,  and  d(t)  the  time-varying  second  order  system  (2-21d)  and  (2-22d)  must  be  solved. 

We were unable  to solve  this  system  and  accordingly  obtained  scalar  Riccati  equations for 

m33 and m with  the  use of (19): 35 

- p1 x1 33 
2 

Urn 

-m-33 - x2 - 33 x, p1 
+ 2m (2-54a) 

a h l  
1 ax4  -m45 = - P - ( 2 - 5 4 ~ )  

35 - where  (2-54c)  is  required  to  solve  for m Since   the   f i r s t   two of these   equat ions   a re  

equal ly   intractable ,   an  approximate  solut ion for  m and m was  obtained by  assuming 
33 35 

"35 and m = 0 ,  i.e., 35 

- p1 " [ X ,  - ( X 1 2  - 2X2U) 1/21 
m33 - - x2 
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( 2 - 5 5 ~ )  

(2-55b) 



where 

(2-55~) 

and P, and U are given by (2-17c) and (2-15b) respectively, with zero subscript omitted. 

It should  be  noted that m is exactly  the same coefficient  that was obtained for the  tan- 

gential  velocity  correction in  the problem without the  central force  field, which  was ex- 

pected. 

33 

After inserting (2-43)  and (2-51) into  (2-47), noting that 2/ I P21 = 2 /UP 2 l  
and simplifying we obtain 

The remaining task is to evaluate the  integrals I thru I5 (Il is not  needed) 2 
which are functions of h and its  partial  derivatives with respect  to X and X4 . For 

the  case of a target in  a  circular  orbit, evaluation of these  integrals is facilitated because 

the angle X4 - Ot of the simplified problem is a constant. These integrals must be 

recalculated for other types of orbits. However, the performance of the quasi-optimum 

controller should  not  be effected by t h e  choice of target  trajectory. 

1 2 

For the case of a  circular  target  orbit, further  simplification may be obtained 

i n  h by assuming that the target radius is much larger than the  distance between the  

vehicle and target, i .  e . ,  
1 

Employing this simplification  yields 

(2-56) 

, 
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 ah^ E a 2 2  2 2 
" - (-2a x2 - &x r cos(x - Ot)  + rt (1 - 3cos ( x   - a t ) )  
ax2 rt 

5 2 t  4 4 
(2-57) 

 ah^ += a 2 
" -sin (x - @t)(2ax2 + x r cos(x - Ot)) 
ax4  r 

4 4 2 t  4 
t 

(2-58) 

Inserting these relations into the integrals yeilds 

(2 -5 9) 

P2a [ ts7A4  ts6A3 t s5A2 t s4A 

5 42  12 6 30 20 
r 
t 

" +- +-  +- +- 

P a  [ 30 + 
r 

1 (T - ts) 6 A4 (T-ts)5A3' (T-t,) 4 A; (T-tS) 3 /  A1 (T-tS) 
z2 K t S )  = 5 20 + 12 + 6 + 2 

t 

P a (T-tS) 7 A4  (T-tJ6Aj (T-t,) 5 A i  (T-tS) 4 A; (t-t5) -2 [ 
5 42 30 

+ + 
20 12 6 

+ + 
r 
t 

(2-60) 

(2-6 1 ) 

1 
1 (T,t) = 3 s  (2-62) -t 

(2-63) 



(2-64) 

Pla sin (X4- 0 t) 
I (T,t) = - 12 Et: + (T- t )  5 3 + - 1 [D3t 4 + Di(T-t,) 4 3 5 4 S 4 5 

r 
t 

1 
+ - [ D  1 t 3 + D;(T-t) } + p  [Dits + D,'(T-tS) 3 +Do t  + 3 1  2  2 

3 2 s  S 5 

P 2 asin(X4 - Ot) 6 1  5 
+ 

4 6 C t *  
D4 + (T-ts) 3 + 5 { D3t: + D i  (T-tS) 1 

r 
t 

+ - [ D  t + D;(T-t) } + g { D  t 3  + D,'(T-t) 3 + y f D o t   + D i ( T - t s )  1 4 4 1  3 1  2 
4 2 s  S 1 s  S 5 

(2-65) 

where t and T-ts are given by (2-17a) and (2-17b) respectively. The coefficients 

Ai and Di are as  follows: 
S 

2  2 A. = -2aX2  {2rt cos(X - 0 ) + ax 3 + rt [ 1 - 3cos (X4-@  t) 3 

A i  = - 2aX2 (t> {2rtcos(X4-@ t) -t aX2(t> 3 + r: { l  - 3 cos ( X4- Ot ) 3 

4 t  2 

2 

A 2 = -2a {ax: + aUX + Urtcos(X4 - ot ) I  

A; = -2a [axl (t,) - aUX 2 s  (t ) - Urtcos(X4 - Ot) 1 2 

! 

I 



2 A3 = -2a UXl 

2 A i  = 2a UXl ( t  ) 

A = - a / 2  

S 

2 
4 

D = x2 E2ax2 + r C O S ( X ~ - Q ~ )  1 
0 t 

D, = x1 {&x2 + rtcos(X4 - QJ 1 

0,' = X, (ts) E4aX2(ts) + r+cos(X4 - ! t )  1 

D = 2aX + 2aUX + Ur, cos(X4 - Q t ) / 2  

0; = 2aX ( t  ) - 2aUX (t  ) - Ur, cos( X - Qt )/2 

2 
2 1  2 

2 
1 s  25 4 

D = 2aUXl 3 

D i  = -2aUX, (tS) 

D = a /2  4 

Hence use of (2-55a), (2-55b) and  (2-55c) in (2-19)  and (2-20) results in  

the  following quasi  optimum control law. 

P. 

u1 - - p - y  P + P3 

"2 - - -pyT P + P3 
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. -  

where 

'3'1 GL UP215(T,t) - h3Pl (P2X1 - JT U) 

p 3  - - [ x 1 -  - x2 P2 ] +.i[ F 

(2 - 67)  

Performance  With  Quasi-Optimum  Controller - The  performance of the  rendezvous  control  

system  using  the  quasi-optimum  control  law  (2-8),  (2-66)  and  (2-67)  was  simulated  with 

t h e  aid of a digital   computer.  For  purposes of comparison, the performance  without   the 

gravity  correction ( X = 0 )  was  also  simulated. 5 

The first  example  chosen  illustrates a rendezvous  between a target   in   an 80 

naut ical   mile   c i rcular   orbi t   about   the  moon  and a vehic le   s ta r t ing   on  the lunar  surface. 
2 The  thrust to mass  ratio  (a)  used is 1 0  ft/sec . Lift-off o c c u r s   a s  the target  passes  directly 

over  head. The trajectories  for  the  quasi-optimum  and  simplified  control  laws are illus- 

trated  in  Figures 2-2 and  2-3. Using the quasi-optimum  control  law, the vehicle is steered 

very  c lose to the target   and  the  radial   and  tangent ia l   veloci t ies   are   s imultaneously  reduced 

very  near ly   to  zero. 

The  control  law  without  gravity  corrections  caused  the  vehicle  to miss the   t a rge t  

on  the  f i rs t   pass   and  then  recovered to complete the  rendezvous  (see  Figure  2-2).  The 

engine  burn  times  were: 

With  gravity  corrections: 1,267.8  seconds 

Without  gravity  corrections: 1 ,347.0  seconds 

The  trajectories  in a second  example of rendezvous  between a veh ic l e   i n  a 160 

nautical   mile  circular  orbit   and a target   point   on  the  lunar   surface is i l lustrated  in  Figure 

2-4. Powered  descent is init iated  when the vehicle   passes   over  the target .  The touch- 

down  parameters  for the i l lustrated  t ra jector ies   are   l is ted  below: 
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Guidance Law Time 
(Sec. 1 

I With gravity  corrections I 1152.4 

M i s s  Distance 
(Feet) 

8 

300 

Impact Velocity 
(FPS) 

7 

750 - 60 - 58 , 
The unsatisfactory  performance  of  the  controller  without  gravity  correction i s  illustrated by 

the  high  impact  velocity  of 750 fps  and attitude  rate  of -58 degrees per second. The per- 

formance  using the quasi-optimum control  law  which accounts for  gravitation, however, i s  

quite  satisfactory. 
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2.3 AIRCRAFT LANDING PROBLEM 

Problem  Statement - Another   appl icat ion of the  quasi-optimum  control  technique  which  was 

considered  is the control of the  longitudinal  motion of an   a i rc raf t   dur ing   the   f ina l   approach  

phase. It is assumed  that   the   “ ideal“   descent   path is specif ied,   a long  which the gl ide  path 

angle  is   small   (Figure 3. l a ) .  It is also assumed that the forward  aircraft   speed  is   maintained 

essentially  constant  by  uti l izing  thrott le  control.   Thus,  the longitudinal  motion of t he   a i r -  

craf t  is governed  ent i re ly   by the elevator   def lect ion,   S( t ) ,   which is the  only  control   var l -  

able. These  assumptions  lead to the  so-called  ‘‘short  period”  equations  of  motion of the 

aircraft.  The  control  problem  is  formulated to obtain  an  optimum  control of the e leva tor  

to gu ide   t he   a i r c ra f t   back  to ideal   descent   path if any  deviat ion  therefrom i s  detec ted .  

To obtain the short-period  dynamic  equations  consider  motion  in  the  vertical  

plane.   The  (rigid  body)  torque  acting at the   cen te r  of pressure  (cp) is 

M = 1 - md OjGXsin Q - \jGycos $J ) 
CP  CP 

where I is the  moment of i ne r t i a   abou t   t he   cp   and   t he   o the r   quan t i t i e s   a r e   de f ined   i n  
CP 

Figure 3. lb .   Now 

VGX = v(t)  cos (9 + a) 

VGy = v(t)  sin (Q + a) 

where cx is   the   angle-of   a t tack.   Hence 

.. 
M = I  Q + m d v Q c o s a   + m d v   & c o s a + m d ;  sins 

CP  CP (3-3) 

The  torque M is induced  by  the  nonlinear  aerodynamic  resistance  forcesfthe 
CP 

elevator   def lect ion 6 ,  and  gravi ty   force.   The  respect ive  torques  are  M M6 and M ; 
R ’  g 

M = MR +M6 + M  
CP 9 

It is a genera l   p rac t ice  to represent   the  aerodynamic  res is tance  in   terms of func- 

t ions  of  the  angular  velocity of a i r c r a f t .  Assuming that the   angu la r   ve loc i ty  $ is of such 
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a magnitude that the higher  order  terms 4 3  , i4 , . . . can   be   neg lec t ed ,   t hen  

where K and K a re   cons tan ts .  
D2 

The  moment M6 induced  by  e levator   def lect ion is usually  expressed as a l inear  

function of the   def lec t ion  6 , i.e. 

M6 = K E t 6  

where KE is a constant   coeff ic ient   and i s  as   def ined  in   Figure 3.1 (b). Thus 

M = -2KD 9 - 
CP 1 

T h e  vertical  displacement  from 

K $J I $  I + K E t 6  +mgd cos @ 

the ideal   path is denoted  by  e( t ) ;  i t  is   seen that 

D2 
(3-4) 

To consider   the  dynamics of the  angle-of-attack CY , sum the forces  in  y-direction: 

= mv  sin CY + mv 01 cos CY 

where 

K i s  the   l i f t   fo rce   per   un i t   angle  of a t t a c k  

KD is the   d rag   force   per   un i t   angle  of a t t a c k  

L 

Thus, (3-3),  (3-4), (3-5) and (3-6) completely  specify the system  dynamics. 

Assuming small Q and Q , i.e. sin CY x CY , sin IC, Q , cos Q % 1 , cos#-  1 , 
(3-3),  (3-4) a n d  (3-6), 

K .. D2 - Q + 7Q I4  
1 

CP 

a f t e r  a bit   of  manipulation, become 

+ m d v  KDd KLd (.e + d)KE 

I I I I +  r Q =  - Q +-  + 6 (3-7) 
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m; + KD mg - KL K E  = -  a +  " 6  
mv  mv  mv (3-8) 

For this investigation, we assume that  the  variation  of  angle-of-attack i s  negli- 

gible, dl cv 0 , and that  the  forward  aircraft speed v i s  constant. Then (3-8) gives 

mg - K L -   K E 6  
a =  

KD 
(3- 9) 

and (3-7) becomes 

K 2KD +mdv .. O2 1 1 
$ + ~ - J I l r i r ( + ~ J I = - ( m g d + K E C 6 )  I (3- 1 0) 

CP CP CP 

Observe that  the  right hand side of (3-10) represents a  normalized  total  torque  acting on 

the  aircraft. It i s  reasonable to  keep  the  total  torque  at  reasonably  low  value,  by  proper 

choice of control torque, and hence to  include  total  torque  penalty  into  the  performance 

criterion. 

Since  the  aircraft  altitude and time  duration  for  maneuvering  are  both limited 

during last phase of landing  (typically  altitude i s  about 100 ft at 20 sec. before touchdown), 

i t  i s  important  to  maintain  the  deviation  e(t) as small as possible during  the  control  interval 

and to  force  the  deviation  to zero. 

or 

or 

or 

With these considerations, possible choice  of  performance  indices  are 

T 2  

T 2  

VI = l e  (t) + k(totaI torque) ]d t  2 

0 

V2 = e (t)dt with  ltotal torque 1 5 constant 
0 

1 2 V3 = [ k + (total  torque) ] dt 
0 
7 
I 2 2 V4 = [ kl + k2e (t) + (total torque) ] dt 

0 

i 

I 

I 
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or T 
I 2 V5 = [ k + e  (t)] dt with  ltotal torque I 5 constant 

0 

For this investigation,  the  first case wi l l  be considered. 

From the  viewpoint of safety  and passenger comfort, the  pitch  angle So (t) should 

be kept  within a  small  range during  the  entire  interval  of last phase landing. Thus, i f  we 

let R(t) represent  the ideal descending route  the  glide-path  angle B (t) i s  

/?? (t) = tan R(t) - 1  

hence, i f  we let $ (T) 2 0 , the  ideal  path R(t) should  be so chosen to satisfy 

but T can be  any  instant  along  the  ideal route,  therefore, i n  general 

Exact Problem - In  the  application  of  the quasi-optimum control  technique we have sel- 

ected V1 as the  performance criterion,  and  have  defined  the state variables as follows: 

x, (t) = e x4 = 

x,(t) = $ + C Y  x5 = a = K 
D2 CP 
/I 

x#) = 4 x6 = b = (2KD +mdv) / I  
1 CP 
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Note the use of extraneous  state variables  x and x to represent the constant 

parameters of the process. This device i s  used frequently i n  the  application  of  the  quasi- 

optimum control  technique. 

4 '  x 5 f  6 

The  assumption of constant angle-of-attack and constant forward speed  thus 

lead  to  the  following  dynamic  equations: 

k1 = x  sin  x 4 2  

ic2 - x3 - 

(i.e., x o v )  = V1) 

ic3 = -x  x \ x  I - X6X3 - u 5 3  3 

It i s  desired to  minimize  x (T) with  x 0) = = x v) = 0 . 0 1 3 

The Hamiltonian  for system (3-1 1) i s  

and the maximum principle gives 

p3 ' u = "  

k2 

97 

(3-1 1) 

(3- 12) 
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The corresponding adjoint equations  are 

(3-1 4) 

Simplified Problem - Assuming that  the constant coefficients v, a, b are small,  and 

letting these  constants equal zero, (i.e. 

a  simplified system  whose exact  solution i s  readily  available. Let the state and adjoint 

variables  of  the  simplified  problem be  denoted  by 

x4 - "5 - x6 
- - = 0) in  (3-1l)and (3-14), we obtain 

x = [X,, x1 I x2, x3, 0, 0, 01 

P = [ Po, PII P2, P3, 0, 0, 01 

and 

Then we have  the  simplified system 

- 
1 2  2 2  

X. = z ( X 1  
+ k U ) 

A, = o  

= x3 

x3 = -u 
with  Hamiltonian 

2 2 2  H = - ( X  + k U ) + P2X3 - P3U 2 1  
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(3-1 6) 

(3-17) 



and the  adjoint equations 

P = o  0 

P1 = x1 

i, = o  2 

P3 = -P2 

with  the mixed initial and boundary conditions 

XO(T) free 

X1 (T) free 

X2(T) = 0 

X3(T) = 0 

PO(T) = -1  

P,(T) = 0 

The exact solution for the  simplified system can be summarized as follows: 

* '30 u = - -  

k2 

Pl0 - XIOT 

CI 

1  2kL  2  2  2 
S = - 2 X 10 T + - ( X30T -t 3X20X30T + 3X20) 

T3 

99 

(3- 18) 

(3- 1 9) 

(3-20) 

(3-2 1 ) 

(3-22) 

(3-23) 

(3-24) 

(3-25) 

! 

! 



where the non-unique expressions for T are  given as follows: 

(i) If X3 2 0 and 3 2 0 ,  or, X3 < 0 and  then 

(ii) If X3 5 0 and 3 5 0 ,  or, X3 > 0 and 3 < - -  6x1 
then 

(3-26) 

- + -  (3-27) 

k? 3 k X i  
(iii) If X3 > 0 and -- e X2 < 0 ,  o r ,  X3 < 0 and 0 < X 2  <- 

6x1 6x1 

then 

Quasi-Optimum  Control - In accordance with  the  general theory, the quasi-optimum 

feedback control  law i s  given by 

1 

k 
u = - 7 ( P3 + m 3 4 ~ 4  + m 3 5 ~ 5  + m36x6) (3-28) 

are  the  correction  coefficients  to be obtained by solving  the where m 

auxiliary equations ( 20 ) with  the  coefficient  matrixes  given by 
34' m35' m36' 
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i 

HXX - 
- 

0 0 0 0 0 

0 0. 0 0 0 .  1: :o 
0 0  0 0 'P1 cos 3 0 0 

0 0  0 0 0 -2 Ix, I P, -p3 

0 0 P1 cos 3 0 0 0 0 

0 0  0 -2 IX, IP3 0 0 0 

0 0  0 0 0 0 - p3 

HXP = H'pX - - 

HPP - 
- 

x1 0 0  0 0 0 

0 0 0 0 sin X2 0 0 

0 0 0 1  0 0 0 

0 0 0 0  0 -x3 I x3 I -x3 
0 0 0 0  0 0 .  0 

- 0 0 0 0  0 0 0 

0 0 0 0  0 0 0 

- 
p2 3 

Pik2 

0 

0 

- 

p3 

f$k2 

0 

0 

0 
c 

0 

0 

0 

0 

0 

0 

0 

0 

p3 

POk2 

0 

0 

1 

Pok2 

0 

0 

0 

" 

0 

0 

0 

0 

0 

0 

0 

0 

- 

0 

0 

0 

0 

0 

0 

0 - 

(3-29) 

(3-30) 

1 

(3-3 1 ) 



Or, in component form, 

? 3 p3 5, = X,[, - “ p o  + “Q 
k2 

5, = sin 3 54 

5, = 53 
D 

and 

ljJ = o  0 

i, = 5, - x, $0 

$ =-PCOSX 6 2 2 4  

i, = 2 1 x3 l P 3 t 5  + P35, - 9, 

with the boundary conditions, 

(,(T) = - i l (T )dT = 0 

[,(T) = - X2(T)dT = 0 
P3 (T) 

= -X3(T)dT = U(T)dT = - - 
k2 

d l  

4!J (T) = - Po(T)dT = 0 

$,Cr) = - P4(T)dT = 0 

$,-(T) = - P5(T)dT = 0 

C16(T) = - P6(T)dT = 0 

0 
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and 

or 
p20(p30 - '20T) 

fE3m = - 
k2 

Since, for our purpose, we are only interested in  obtaining 9 (0) in  terms of 3 
4,(0) I s  , an observation of equations (3-32), (3-33) and  (3-34) reveals  that only the set 

of (3-32c), (3-32d), (3-32e), (3-33a), (3-33c) and  (3-33d)  has to be solved. 

However, the  integration of these  equations is complicated by the presence of 

nonlinear terms involving I X I. To illustrate  the procedure we will consider the  integra- 

tion of P3 I X3 I . From (3- 16) and  (3-1 8) we have 
3 

J tP31X31dT = S t P 3 1 X 3 0  + -T '30 - p20 2 
k2 

7 7  I d 7  
0 0 2 k  

- I p20 I 2 k2 X30 '30 2 
- - s t p 3  I +-T - 7 I d 7  

2k2 0 '20 p20 

But 
2 k2x30 '30 

+-T - T 2  = (27 + 
'20 p20 

gives I n n 

7 L 2 kLX30 

7 = E T  - -  
1 p20 

Since 7 2 0 and is real, we have 

( '30)2 

- + 2k2x30 2 0  

'20 p20 

(3-35) 

(3- 36) 

(3-  37) 

(3-38) 

Thus, in general, we  would have a curve of the  appearance of Fig. 3.2(a) for  (3-36). 
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FIGURE 3.2a 
PARABOLIC  CONFIGURATION  OF X3 

CASE (ia) CASE ( i  b) CASE ( i i )  

FIGURE 3.2b 
DIFFERENT  CASES FOR X, 

CASE ( i i i )  

CASE (ia) 

FIGURE 3 . 2 ~  

x30 

CASE (ia) 

REGIONS ON X20 -X30 PLANE FOR POSSIBLE  CASES 
3 

-_ " 
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Notice that the shape  and the location of the curve is governed by P30/P20 and 

(2k X ) /  (P ) . Hence,   we  may  have  the  fol lowing  four   cases .  2 
30 30 

! 

2k2X30 
( i i )  - 2 0  

p20 

( i i i )  - p30 5 0 , 
p20 

2k2X30 
2 0  

p20 

2 k2 X30 
( iv)  - p30 s 0 , S O  

p20  p20 

Using  expressions (3-23) and (3-24) we  have  

and from the fac t   tha t  T > 0 , we  can   show  tha t   case  (iv) is  impossible. 

Furthermore,  from (3-38) we  have  

={  

(3-39) 

(3-40) 

(3-41) 

, 

where 7 > 0 and 7,s 0 , and it can   be   observed  that 7 5 0 corresponds to c a s e  

( i i )   o r   ( i i i ) ,   whi le  7 > 0 corresponds to case (i).  Thus,  in  case  (i),  it is possible to 
2 1 

1 
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have  T~ S T 2  . Denote  the  case  when 7 < T2 by (ia) and  that of 7 1 2 T~ by (ib) then 

we   can  summarize  that 

Case   ( i )  '30 - s o  
p20 

'30T 
(a) If X30 0 and %o - - 3 

'30T 
or X30 2 0 and X20 > - - 3 

'30T  '30T 
(b) If X30 5 0 and - - 3 5 x20 < - - 

2 x20' -- 

2 

'30T  '30T 
or X30 2 0 and - - 3 2 

'30  '30 Case  ( i i )  ;r 0 ,  - D 2 0  
' 20 ' 20 

'30T 
If X30 5 0 and 2 - - 3 

'30T 
or X 2 0 and X20 5 - - 30 3 

then P3 I X3 Idt = P3X3dt T 

0 0 



! 
D 

Case ( i i i )  - r30 5 0 ,  
p20 

If x30 0 

or X30 5 0 

x 3 0 2 0  
p20 

'30T  '30T 
and -- 2 < x20 5 - - 3 

'30T  '30T and - - 
2 

> x20 2 - - 3 

then ST P3 ]X3 (dt  = STP3X3d+ 
0 0 

These cases can be easily seen from the shapes of X as shown in  Fig. 3.2b. 

The regions  for each case on the X 20 '30 plane are illustrated in  Fig. 3 . 2 ~ .  

Thus, integration in  t h e  order, (3-32e), (3-33c), (3-33d), (3-33a), (3-32d) and  

3 

(3-32c)  gives 
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Applying  appropriate  boundary  conditions  in (3-34) to equat ions (3-42), ( 3 4 9 ,  

(3-44) and soJving  for @ (0) in  terms of 5 &(O)'s yields  3 

in par t icu lar ,   the   requi red   coef f ic ien ts   a re   g iven   by :  

m34 - - T 2 c (A + t) . e +  (& + %) t 2 T  - (& + $) t3T2  - (& + 5) L4T3 

-(L+") 168 28 5 T4 + (1+$-)t6T5+(m+2)t7T 252 1 6 (3-46) 

- (1 + &) t 8 T  7 3 
495 

where 

P$P3 - P2T) 
K =  T + 4P2(P3 - P2T) 

1 

t 2 = X 1 ( 1 - - ) -  x; P X X  
2 1 2 3  

4 = x x x  + -  
3 1 2 3  2 (x; + 7) 



n 

m36 = kLX3 

For case (ia) 

(3- 47) 

m35 = C + T ( A  1 1  B + A ~ B ~ - A  3 B 3 + A B  4 4 + A  5 B 5 - A  6 B 6 + A,B7”A8B8) (3-48) 

+ C (A  B - A B + A3B11 - A B + A5B13 +A6B14 - A , B  2 1 9   2 1 0  4 12 

where 

Al = k 

2 p2 A2 = k ” 3 3  
I X P  I 

A = - P  I P  I 4 4 2 3  
1 

As = P21P21 

= P31P31 

1 
8 3 2  A = - ( 2 P  

+ k2P21X31 

IP31 + IP21P3) 

B = T2 - 8T1T + 6f 1 

2 
B2 = 8T1 ( T  - 7,)  

1 4  3 4 
3 2  1 B = - T  + 8 T 1 T - 9 T  

B 4 = 2($ 5 1  
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w 4 E 

' 1  2  2 B5 = "(T -4T1T+3T1  ) 

B6 = 2T1(T - 7  ) 2 
1 

T4 2 2  16 3  4 B = - + 2 7  T "7 T + 3 T 1  
7 6  1 3 1  

B = - T5 +27:? - 6 T 1  4 T + -  18,5 
8 5  5 1  

B9 = 3(? - 4T1T + 27:) 

3  2 
B10 = 2(T - 6T1 T + 4T1) 3 

For case (ib) 

T" 4 8 5  B12 = 6(3- - 2 T 1  T + - T  5 1  ) 

- T6 5 4 2  3  6 
'13";T- - 3T1 T + T l  T + 2 T 1  

2  2  3 B14 = - 2(2T1T - 3T1 T + T1 ) 

B15 = -LT4 - 47 T 3. 8 7   T - 3 T  2 2  3 4 
2 1 1 1 

- -7 T5 - 4T1 T +9T1  T --7 - 3 2  4 18 5 
'1 6 10 5 1  

1 c =  1 2 2  k T [T  + 4P2( P3 - P2T)] 

C2 = 2P ( P  - P2T) 2 3  

For case (ii) and (iii) 

3  2  2  3  4 
= C1 [AIT + C2T (3A1 + A9T + AIOT - AllT + 4A5T ) ]  m35 

w h e r e  
2 A9 = 2k P3 lX31 

A1O - Ip21 3 
- p2 P2 - k2 P2 ] X 3 /  

All 3  2 = P IP 1 

(3-50) 
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Results - Observe that while the simplified control takes  the form 

the quasi-optimum 

where 
t 

u S = $ k t  2' x3) 

control u takes  the form 
9 

Thus, it can be seen from the system dynamic equations  that if both 2 and 

x3 vanish, or become small, simultaneously. The x component of the system  may stay 

at  certain steady state  value  x . This  is so because the  feedback controls u and u 1 ss S q 
are mostly dominated by x and x rather than by x 

1 

2 3 1 '  

However,  for  some given initial  conditions of x it is possible to adjust the 

1 ss 

A computer simulation study of the control system  with a = 0.01 , b = 0.1 , 
v = 2.0 and initial conditions x = 2.0 , = -0.5 , x30 = -0.2 the  value of k 
for  which x1 (T) = 0 is approximately equal to 3.54 for quasi-optimal cpntrol and 5.18 

for simplified control. Fig 3.3 shows the transient response of x for k = 3.54 . 
Fig 3.4 shows the plots of x1 (T), So) and T vs. k and which indicates  that for 

x = 0 the quasi-optimum control system have both better  transient time and performance. 

1 '  
value of k to  eliminate  the  steady-state error x . 

10 

7 '  x2' x3 

1 ss 

For the  initial  conditions  x = -2.0, 2o = 0.5, x30 = -0.2 however, the 10 
situation i s  reversed. In this  case the quasi-optimal control system  has  both  worse 

transient time and performance. 

For the init ial  conditions x = -2.0, = -0.5, x30 = -0.2 and 10 
X l 0  = 2 . 0 ,  = 0.5 , x30 = -0.2 , it is found that no value of k could be  found 

to make x = 0 . 1 ss 

From these results it can be concluded that  the quasi-optimal control system 

derived gives  better performance than the simplified control law  only in  certain cases. 

Further  study of this problem, utilizing  alternative simplified systems,  should  be undertaken. 
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CONCLUSIONS  AND  RECOMMENDATIONS 

O n  the basis of the  resul ts   achieved  in   the  examples   considered  under   Contracts  

NAS 2-2648 and NAS 2-3636, it is   our  conclusion that the quasi-optimum  control  technique 

described  herein is a va luable  tool for  the  design  of  practical   feedback  control  systems. As 

indicated  in  [ A  1 ] , two  condi t ions  must   be  met   in   order   for   our   method  to   be  appl icable   to  

a particular  design  problem.  First, the actual   process  must be capable   of   being  approximated 

by a simpler  process,   and,  second,  the exact control  law  for  the  simpler  process  must  be 

found.  Experience  with  the  physical  problem  to be solved is a n  a id   to   meet ing   the   f i r s t   re -  

quirement,   and  familiari ty  with  the  solved  problems  of  optimum  control  is   an  aid  to  meeting 

the second. The successful  application of t h e   t e c h n i q u e   t o  a particular  design  problem, 

however,  will  ultimately  depend  on  the  user's  ingenuity.  We  regard  this  as a n  asset ,   not 

a shortcoming of t he  technique.  

Although  we  have  shown  that  for  sufficiently  small   values  of  the  parameter p 

in   the  mildly  nonl inear   process  (34) the   performance of the quasi-optimum  control  law is 

superior  to  the  simplified  control  law, a general  proof to this e f fec t  has as yet   not   been 

obtained.  It would  appear,   however,  that the approach  used to establish the above  resul t  

can   be   ex tended   t o  a wider  class of problems  in   which  the  exact   process   reduces to the 

simplified  process  when a parameter p -t 0 . It would  also  appear that the methods  used 

for t h e  mildly-nonIinear.process can   be   u sed  to assess the stabil i ty  of  the  quasi-optimum 

control  law. The problems of performance  and  s tabi l i ty   require   fur ther   invest igat ion.  I I 

More  a t tent ion  should  a lso  be  given  to   the  appl icat ion of the   t echnique  to 

problems  in  stochastic  optimum  control. It would   be   des i rab le   to   ca lcu la te   the   s tochas t ic  

quasi-optimum  control law for a (nontrivial)  problem for which  the  stochastic  optimum  con- 

trol  law is known,  in  order  that  a better  comparison  between  the exact optimum  and the 

quasi-optimum  control  laws  can  be  made. 
'I 

Other   a reas   which   a re   wor thy   of  more work a re   t he   app l i ca t ion   o f   t he   t echn ique  

to   the   t rea tment   o f   s ta te   var iab le   cons t ra in ts   and  to the problem  of  trajectory  optimization. 

1 
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More completed examples will add practical insight into  the advantages and 

limitations of the technique. Consequently  we  recommend completion of the studies of 

aircraft landing described in  Section 2.3 and of reentry guidance described in  [ A  1 ] . 
Studies of the  application of the quasi-optimum  control technique to other problems in  

guidance and  control  should also be undertaken. 
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APPENDIX 1 

ON THE INVERSE OPTIMUM CONTROL PROBLEM 

FOR A CLASS OF NONLINEAR AUTONOMOUS SYSTEMS 

Fred E. Thou 

SUMMARY 

Some aspects of  the inverse  optimum control problem are considered for  a class 

of nonlinear autonomous systems. A closed-loop system with a  known  control  law i s  given; 

the problem i s  to determine  performance criteria  for  which  the  given  control  law i s  optimum. 

Algebraic  conditions  that must be  satisfied  by  a class of scalar  performance criteria  of  the 

form V = sm[q(x) + h(u)] d 7  are  obtained. It i s  shown that i f  the  value  of  the optimum 

Vo i s  required to be a  quadratic form V = x'Mx/2  of  the current  state x, and if cer- 

tain state variables cannot  be measured, then M cannot  be positive  definite. The inverse 

optimum control problem  corresponding to  the problem of Lur'e i s  considered. Examples are 

given  to  illustrate  the  techniques and to compare the  properties  of  a  linear and  nonlinear 

system having  the same optimum  performance V (x). 

t 

0 

0 
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1. INTRODUCTION 

In  recent years engineering  applications  of optimum control  theory have to a  large de- 

gree been confined  to  linear systems. The principal reason for this situation is that  the  theory 

of linear systems with performance criferia  of the form 

V = 1 : = ( X ' Q X  -t u'Ru) d7 
2,  

has been  developed tc  a more advanced point  than has the  theory of optimum ncnlinear systems. 

Moreover,  frequency-domain interpretctions of the  theoretical results for linear systems have 

made  these results more accessible to engineers who  are familiar  with  the  classical  frequency- 

domain  techniques of analysis. 

A major contribution  to the development of  linear optimum control  theory was the paper 

of  Kalman c11 i n  which the point  of  view  of the inverse  optimum control problem was introduced. 

The inverse  problem of optimum control theory can be stated  loosely as follows: "Given a 

dynamic system and a  known  control  law,  find performonce criteria ( i f  any) for  which  this con- 

trol  law i s  optimum."  Kalman  considered a precise formulation of this  problem  for linear 

cuioncmous systems and derived many interesting  time-domain and frequency-domain  properties 

of  linear  control systems. 

The purpose of this paper i s  to investigate some aspects of the  inverse  problem  for  certain 

nonlinear  control systems.  Recent results [33 on  the use of higher-order forms as performance 

criteria  for  nonlinear systems indicate the usefulness of  nonlinear  control laws. This study 

endeclvors to  contribute to an  understanding of the  relationship between  the specification  of  a 

performance criterion c f  the form 

V = J Lq(x) + h(u)I d? 
rm r 

t 

(where  q(x) and h(u)  are  scalar iunctiocs) and the  structure of the  resulting optimum control 

system. The essential assumpticns  upon which the ar.alyzis i s  based  are: 

1) The coctrol acts  over cn  infinite t ime intervai . 
2) There are no constraints  on :he control or  state  variables. 

3) The integrund of the performance criterion i s  a sum of  a  function  of  the 

stcte six) and  a funciion  of the control  h(u). 

4) dh/du i s  a 1-1 mcpping, h(0) = 0, and d h/du > 0 .  2 2  
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In Section 2 the inverse optimum control problem is formulated for a general  class of 

systems  and performance indices, and in Section 3 general  properties impli.ed by optimality are 

obtained. Two special  cases are considered i n  Section 4: first, the algebraic and frequency- 

domain characterizations of optimality which were obtained in c11 for single-input linear 

systems are  generalized  to  multiple-input  linear systems,  and then  it is shown,  for linear and 

nonlinear  single-input systems, that i f  the optimum performance is required to be a positive 

definite  quadratic form in  the  state variables,  then the optimum control must  be a function of 

a linear combination of (at least) those state  variables which are  directly  affected by the control. 

In Section 5 a class of control laws satisfying  the  conditions imposed in the problem of  Lur'e is 

considered and a class of performance criteria for  which the given control law  is  optimum are 

determined. 

In Section 6 two examples involving  cubic  feedback are presented. The first  example 

illustrates  the properfy of single-input optimum  systems mentioned above. The second example 

provides a comparison between a nonlinear system  and a linear system having the same  optimum 

performcnce. It is found that  the  nonlinear system provides smaller excursions of the stat? 

variables  than does the  linear system. This property may be  useful i n  certain  enginzering 

applications. 

2. PROBLEM STATEMENT 

Consider the nth  - order process 

>;: = f(x) + Gu 

where the  state of the process x is a n  n-vector, G is an nxm constant matrix, and  the con- 

trol function  u(t) is a continuous funckion of time. This paper is concerned with performance 

criteria of the form 

! 

V (x(t); u) = sw[q(x) + h(u ) l  Cyr 
t 

where q(*) and h ( * )  are smooth functions of their arguments.  Additional assumptions that 

will be required in the subsequent analysis are the following: the  vector Function q(u )  = dh/du 

is a 1-1 mapping, h(0) = 0 ,  and d h/du2 > 0 .  The motivation for these  conditions will 

become clear in the next section. 

2 
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Note that the integral in (2) i s  a  continuous functional  of the contro!  function  u(T) . 
Of parficular  interest are  feedback control laws of the foirn 

47) = s+47)) 

which when applied  to  the process (1) result in an asymptotically stable  closed-loop system, 

2 = f(x) + Gq(x) (4 1 
Thus the origin x E 0 i s  consideied  the  target set and  the control law (3) i s  assumed to be such 

that 

l i m  x (T; x(t)) = 0 
T" Y 

where  x (T; x(t)) denotes the  trajectory  of  the  asymptotically stable  closed-loop system (4) . Y 
The inverse  optimum control  problem can now be formulated as follcws:  Given a control 

law (3) with the  above  properties, find the most general  performance functional ( i f  any)  of the 

form (2) which i s  minimized by (3) . Note that an  optimum control (3) i s  assumed to exist; in  

the  next  section we w i l l  apply the necessary and sufficient  conditions for (3) to be optimum 

which are implied by  Hamilton - Jacobi  theory C4I. 

The structure of the  given  closed-loop system i s  shown i n  Fig. 1 . Note  that  two systems 

may have the same trajectories  x(t),  t > 0, yet, in  terms of the above  structure,  they wi l l  

be considered as essentially  different  control systems.  (For  example, the system 

x1 = x 
2 (5a 1 

x2 - -x1-x2 + u - 

3 where u = -x, , and the system 

x1 - x2 
- 

x2 = -2x -x 4- u 1 2  
3 
1 1  where  u = -(x -X ) w i l l  have exactly the same trajecfories  {x,  (t),  x2(t)I i f  they  have 

identical  initial states.  However,  (5a) and (5b) wi l l  be treated as essentially  different  control 

systems since  the  vectors f(x) and  GV(x) for (50) and (5b) are clearly  not the same.) 
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FIGURE 1 (APPENDIX) 

STRUCTURE OF GIVEN SYSTEM 

123 



3. STRUCTLJRE OF OPTIMUM SYSTEM 

The necessary  and  sufficient  conditions for optimality  which  were  derived  by  Kalman 

E43 (restated for the   current   context)   are   as   fol lows:  

Let 
a V  ZV 
8, -3, H(x,  -I U )  = - C ~ ( X )  + h(u)I - - Cf(x) + G u ]  

have an  absorute  maximum  with  respect  to u a t  u = V(x)  where ~ ( x )  is differentiable  in x . 
Then 

(1) The  twice  differentiable  function  Vo(x) is the  optimum  performance,  and 

(2) V(x)  is the  optimum  control law 

if, and  only if, V (x) satisfies  the  Hamilton-Jacobi  equation, 0 

avo 
rnax H(x, - ax 

, u) = 0,  VO(0) = 0 
U 

It is  assumed  :hat  there  are  no  constraints  on  the  control u . Then,  since 

2 
d2h/du > 0 and  (u) is a 1-1 mapping, H of (6) is maximized  by  different ia t ing  with 

respect to u . Thus 

and  (7) yields  

To obtain  more  explicit   results,  the v a l u e  of the optimum  performance  index V , a s  
0 

a function of t he   cu r ren t   s t a t e   x ,  is assumed to be   g iven  by 

Vo(x) = "x' Mx 1 
2 (1 0) 

where  M is a constant  symmetric  matrix. It is  well  known  that  linear  optimum  systems  with 

performance  cri teria of t h e  form (14) below  yield  optimum  cost  functions of the form (10) with 

M posi t ive  def ini te .  It is  shown  below  that  certain  optimum  nonlinear  systems  also  have 

optimum  cost  functions of this  form.  Thus, f rom a pract ical   engineer ing viev:point, the  choice 

(10) wil l   a l low a comparison  bt tween the performance of a given  nonl inear   system  and a 

corresponding  l inear  system  to be given  in  Section 6 below. From a mathematical   standpoint 
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the restriction (10) is inessential:  other higher-order forms could be  assumed and an analysis 

similar to  that presented below would follow with only minor changes in the  details. 

The transformation implied by (1 1 )  between state and control-input for the optimum 

system is shown in Fig. 2 . 
In general Vo is non-unique, and the problem  is to determine consistency conditions 

regarding the  choice of motrix M and functions q(x) and h(u) . A technique  that  night be 

considered would involve solving the first-order partia! difFerential equation (1 1 )  by the ne:/ld 

of characteristics. However, since  the  nonlinear ordinary differential  equations  that result are, 

in  general, impossible to solve, another  approach must be used in  the seqael . In Section 5 a n  

explicit form  for the control law ~ ( x )  will be  assumed and (11) and (12) will be used to de- 

termine algebraic conditions  that are necessary and sufficient for the optimality of the given 

control law. 

4. SPECIAL  CASES 

Linear Systems - Consider the compleiely  controllable, multiple-input, linear,  time-invcrknf 

system 

2 = Fx + Gu (1 31 

and  the optimum perfornance is required to be V = -x'Mx . The given control law  which 0 1  
2 
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x -  
-. ri" 0 =' G' i -M U 

. 

FIGURE 2 (APPENDIX) 

CONTROLLER FOR OPTIMUM  SYSTEM 
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drives  the system towards ihe origin is 

u = -Kx 

where K is a know conztorii  mairix  and M and H clre unkncwn ccnstcnf mairices.  Since 

(1 1 )  and (1 2) must hold  for all x ,  (1 1 )  yields 

K = G'M (1 6 )  

and (12) gives 

H'H + K'K = -N\F -F'M + MGK f K'G'M 

Define 

Then (17) becomes 

-MFk - FLM = H'H + K'K (1 9) 

Thus (16) and (19) are necessary and sufficient algebraic conditions for control law (15) to Ix 

optimum for performance index (14) . 
In c 1  3 Kalman considered single-input l inear  systems, required M to be positive 

definite, and (in  Theorem 4) presented (16) and (19) a!ong  with the positive definite condition 

on M as necessary and sufficieni for (15) to be  optimum.  Using (17) one can  obtain  the 

multiple-input version of the frequency-domain characterizatioh of optimality  that was obtained 

in c11 for single-input l inear systems. Using  (16)' write (17) as 

-MF - F'M = K'H - MGG'M (20; 

Add and subtract st4 from the left-hand side of (20) to obtain 

M(5i - F) + (-si - F')M = H'H - MGG'M 

Define 

q s )  = (st - F)- ' I 
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which  is   the  frequency-domain  characierization of optimaiity  for  multiple-input  linear  systems 

with  performance  cr i ter ia  of t h e  form (14) . * 
Single-Input  Systems - Now consider  single-input  asymptotically  stab!e  systems of' the  form 

(1) where G' = (0.. .O 1) . The  follswing  necessary  conditions for M in (10) to  be  positive 

definite  will   be  established: if M is   posit ive  definite,   then u must  be a function of (at 

least)  x . This follows from (1 1)  and  Fig.  2 by a simple  proof  by  contradiction:  assume u n 

is  not a funct ion of x . Then,  since  is a 1-1 mapping 
n 

- G " x  = -(mnlxl f . .. + m x ) nn  n 

where m = 0 and  M is  thus  not  positive  definite.  (Since  one of iis  main  diagonal 

elements  is   zero,  M could be  an  indefinite  matrix.)  This contradiction  establishes  the  above 

necessary  condition for M to be  posit ive  definite.  

nn 

This  condition  can  be  generalized  to  single-input  systems  in  which  the  control  directly 

a f fec ts   more   than   one   s ta te   var iab le :  if M i s  posit ive  definite  than  the  optimum  control must 

be a function of a l inear   combinat ion of (at   least)   those  stake  variables  which are d i rec t ly  

a f fec ted   by  the control.  For  example,  if G' = (0 . . . 010 . . . 01 0 . . . 0) 
fk 1-9 

-n- 

and u is not  a function of x  and  x  then k r '  

-G'Mx = - (mklxl  + ... + mknXn + m x + ... + m x ) (28) rl 1 rn  n 

* 
This result   has  been  obtained  by  Anderson  in C71 wherein  the  sensit ivity  problem for 

linear  systems is also  considered. 
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where  m = -m and m = -m . Therefore, M is  not  posit ive  definite,since one OF 

i ts   principal  cofactors  is   zero.  

kk rk kr  rr 

The above  general   condition,  which  holds  for both nonlinear  and  l inear  single-input 

j systems, is invariant   under  a nonsingular  linear  transformation of s ta te   var iab les .  For, i f  

i y = Tx , where T is a constant  nonsingular  matrix,  then  (1)  and  (10)  become  respectively 
i 

! 9 = Tf(T-'y) + JGu (29) 
l 

a nd  

where A = T"MT is  posii ive  definite i f  and   on ly  if M is  posit ive  definite.  

Equation (1 1)  becomes 

I Suppose G' = (0.. . 01 0.. . 010 . . . 0) . From the  above  resul ts   i t   i s   seen  that  if M is 
*k r j  

posit ive  definite,   then  u must be  a function of a l inear   combinat ion of x and  x  . However, 

i f  M is posit ive  definite,   then from (31) u must be a function of a l inear   combinat ion of all 

components of y  for  which 

k  r 

S ince  T is  nonsingular,  there must be a t   l eas t   one   va lue  3, 1 j * n ,   fo r   wh ich  

Tjk T j r  

before, u must be a function of a l inear   combinat ion of x  and x . 
# 0 . Thus, s ince  y  = Tx , y j  ir; a l inear   combinat ion of x  and x and,  as k r '  

k r 

This  property of single-input  systems  with  performance  cri teria of the  form (2) is  signifi- 

can t   s ince  it ind ica tes   tha t   i f   the   va lue  of the optimum  performance  is  required  to  be a quadra t ic  

form Vo = "x'Mx of the   cur ren t   s ta te  x ,  and  if each state   var iable   which is d i r e c f l y   a f f s c f t d  
1 
2 

! 

i 

I 

i 
by the control  cannot  be  measured,  then  M  cannot  be  positive  definite.  However,  one must 

129 



interpret   this prope:ty with  care .  I f  the optimum  performance V i s  required  to  be of a form 0 
, 
I 

other  thar, (10) and  i f  cer ta in   s ta te   var iables   cannot   be  measured,   then  the  problem of finding 

condi t ions  under   which V is   posit ive  definite  in x is   current ly   an  open  quest icn.  
0 

5. PROBLEM OF LUR'E 

S ince   the   ear ly  1950's there   has   been a g rea t   dea l  of interest   in  determining  the 

asymptot ic   s tabi l i ty  of the  origin for a class of systems  governed  by 

0 = g'x (34) 

where  x b, and  g  are  n-vectors  and  A  is   an  nxn  matrix.  The results of the previous 

sections  will   now be appl ied  to this  class of systems,  where e(0) is  considered to be  a known 

scalar  function,  defined  and  continuous  for all O, 0(0) = 0 , &(a) > 0 for all o # 0, and 

+ W  

0(O) & diverges  

0 

It will  be  shown  that the asymptotically  stable  system (33) - (34) is the  optimum  closed-loop i 

system  for a class of performance  criferia of the  form (2) . 
For  this  case (1 1) and (12) become 

8(g'x) = TI" (-bf Mx) (35) 

and 

1 
q(x) = -gx ' (MA + A'M) X -X'Mbe(g'x)  -h(0(g'x)) (36) i 

respect ively . 
Now  assume  that  e(U) can  be expressed  as a power  series  in  odd  powers of o with 

all posit ive  coefficients,   i  .e. 

m 

i =  1 
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I 

"1 where all ai > 0. It w i l l  be shown that if (u) is also expressed as a power series 
I 

03 

7&) = .y- CiO i 

and if  M is positive definite, then each  coefficient ci can be determined explicitly in  terms 

of the  coefficients ai and  the componenis of the matrix M . From (35), (37) and (38) 

2 =  1 j =  1 
odd 

and 

W n 

where h = -(Mb)J . Thus (35) becomes 4 

i =  1 all k j  
5 odd 

m 

t =  1 all kJ 
odd 

summed over all 

J '=  1 

(41 1 

I 

! 
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Since (41) must hold for a l l  xi , 

Thus from (420) 

"c Mb = a  g 1 1 

Pre-multiplying both sides by b' yields 

c, = -a1 b'g/b'Mb 

Z = l  , . ... I n 

5 ,  ,i = 1 ,  . . . I  n 

5 ,  j , k  = 1, ..., n 

Note that,  since M is positive  definite, b'Mb can be zero only i f  b = 0 . However, this 

i s  impossible i n  a  meaningful  control problem, and thus b'Mb # 0 .  Furthermore, since i n  a 

meaningful  control  problem g # 0 and  since  a 1 > 0 and M i s  nonsingular, (43) reveals 

that c ,  f 0 .  

From (42b), 

c h'Kh = a g'Kg 
2 2 

where K i s  any positive  definite  matrix. Then using h = (a,/cl)g (43) yields 
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From (42c), 

c3(h'k)(h' K h )  = a3(g'k)(g'Kg) (47) 

where K is any  positive definite matrix and k is a  vector whose  components are  all unity.  

Again using h = (a /c )g gives 1 1  

Similarly, it is easily  seen  that  all  the remaining coefficients  c  are  given by i 
a i - ci - - 

a i 
1 (7) 

-1  Thus 77 (a) is ccjmpletely determined in terms of the components of the  positive 

definite matrix M and the  coefficients of the control law e(,',) . The function 

~ ( u )  = dh/du is the inverse series corresponding to 7" (0): 

t =  1 
5 odd 

where, as indicated in  textbooks on elementary  calculus,  the coeFficients dt are obtained by 

substituting (50) into (38). The first few coefficients of the inverse series are 

d l  = l/cl 

4 d = -C / C  3 3 1  

2 2  3 9 d = ( 3 ~  c - c c )/c 5 1 3  1 5  1 

4 - 12c c )/c 1 3 5  - '1'7 1 3  1 
3 3 13 d7 = (8c c c 
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Thus 

i =  1 
i odd 

a n d  (36) becomes 

1 i di q(x) = --x'(MA + A'M)x - x'Mbai(g'x) + - (g'J + 'I (53) 
2 i +  1 

i =  1 
odd 

Hence (52) a n d  (53) with  conditions (44) and (49) yield  expl ic i t   expressions for all performance 

cr i ter ia  of t h e  form (2) that   are   minimized  by  control   laws of t h e  form (37) . 
indirect   Control - Consider  an  nth-order  system  which is again  asymptot ical ly   s table   in   the 

large,  

where r i s  a sca la r   and  6(0) satisfies  the  same  conditions  as  above.  Define 

y' = [x' i UJ. Then (54) a n d  (55) can   be   wr i t t en  as 

and 

where  

= x y  + Le(*) 

U = g'y 
N 
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Note  that (54) ond (57) are of the same from CIS (33) and (24) . Thus define 

kL>k 4 

N 

so that (42) - (49) remain valid with h = -Mb . N N  

6. EXAMPLES 

The second-order exainples of :his section are included to  illustrate t h e  results derived 

above, No essential complication would  be introduced by considering higher-order systems. 

A. Consider the system (33j - (34) where 

3 
1 2 Since  the  given control Q(x) = -x does not depend on x one  expecis to find  that 

m22 = 0 . Indeed, from (42) h = 0; and since Mb = -h , 2 

-m12 = h l  

-m2* = h2  = 0 

' Furthermore, 

c ,  - c2 = 0 - 

and 

13 5 
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Thus, 

c nd 

3 4/3 
4 12" h(u) = "m 

From (36) 

Thus, the performance 

r 

= '("..L t 

3 
index that i s  optimized by the control a!,) = -x1 i s  

Cml 2 - m l  1 -2m12 1 
By starting  with :he system 

2, - - x2 

x2 - -OX2 - x 
" 

i 
P U  

3 
one can easily  verify that :he control u = does indeed yield 

-x 1 

v (x) = "x' 0 1 m12 

m12]x 0 
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as the solution  to  the  Humiiton-Jacobi  equaiion corresponding i o  performance index (65). 

Thus, as indicated in Section 4, V (x) i s  not  positive-definite because the  conirol  law 

0(x) does noi depend on  x 

0 

2 -  

B. Consider  the system (33) - (35) where 

1 

2 3  
Now, since  0(x) = (-x - -x2) depends on  x one expects to find rn f 0 . 

l a  2 22 ' 

From (421, 

= -h 
1 2 2  

a 

Since Mh = -h , 

- a 
m12 - Zm22 

and 

3 3  
c3 = 8/a m22 

Thus M i s  a Funcfion of two  arbitarary constants x and m 11 22 

M =  

m 
11 

a 
'Zm22 

Zm22 
a -  

m22 
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Clearly m and m  can be chosen to make M posifive  definite. 11 22 

From (40) 

1 71 - 1  (u) = -3 8 3  , q(u) = " am22 1/3 
3 3  2 

U 

a m22 

and 

3am 

8 
22 4/3 

h(u) = - U 

Thus (36) yields 

2 

-Orn22 
- "22 - Tm22] a 

2 x + Y  
(74) 

ml 1 - "22 2 m22 -am22 
" 

a 

where 

a  a  a 

2 3  
Hence the  performcnce index that is optimized by the  control 9(x) = (-x- - -x2) 

l a  

I S  

O m 2 2  
a -mil f r 1 - 1 ~ ~  f 

Q 3am 

8 
22 4/3 

2 x - Y + -  u ) dT 

t -,ml, f m + "m + am 
a 

22 2 ' 2 2  (76) 

13 8 



Not?   tha t   the   in tegrand  of (76) can  be writ ten as 

-ml 1 
+ a 

a 2 4  
2 x + -m 22(x1 + --x 1 

a a 2  + m  + -  
22 2 m22 (77) 

Thus,  by  proper choice of m a n d  m the  integrand (77) c a n  be made to be  positive 

semi-definite,   and  thus V in (76) is a Lyapunov  function for the  given  system. 

1 1  22 

Again  by  starting  with  the  system (67) one  can  easi ly   ver iFy  that   the   control  

2 3  
a 2  

u = - ( x l  + "x ) yields  

0 1 
2 

v (x) = - x f  

ml  1 y m 2 2  
a 

a 
Tm22 m22 

X 

a s  the solut ion  to   the  Hamil ton-Jacobi   equat ion  corresponding  to   performance  index (76). 

It is of interest  to campare  the  transient  response of the   above  nonl inear   system  with 

tha t  of a linear  system  having  the  same  optimum  performance (78). Using  the  results of Lll 

one  can  show  that  the linear  control  law, 

yields  the  optimum  performance (78) for  performance  cri terion 
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where I .  
! 

[ fm:2 + m 22 

Q =  I 
a 2  2 

Zm22 + m22(% + 1) - m,, 
a 1 

m22 + am22 1 2 

The volues  a = m = 1/2 were  chosen  and a digital  computer  simvla:ion  was  used 22 

to obtain  the  phase-plane  comparison of the   t ra jec tor ies  of the nonlinear  and  l inear  systems 

shown  in  Fig. 3 . From the   f i gu re   i t   c an  be seen  that   the   nonl inear   system  provides  generally 

smaller  excursions of the posit ion  coordinate x and the veloci ty   coordinate  x Fig. 4 

contains  a comparison O F  the  control  signals  required  by  the  two  systems. It is c l e a r   t h a t  the 

nonlinear  system  requires a genera l ly   g rea te r   magni tude  of control   to   provide the smaller 

excursions oi poslt ion  and  ve!ocity  noted  in  Fig.  3 . This is d u e  to the fact   the   performance 

cr i ter ion (80) of the  l inear  system  provides a greeter pencl ty   on   the   magni tude  O F  control  than 

does the  performance  cr i ter ion (76) of the nonlinear  system.  Thus  in  those  engineering  app- 

l ications  in  which the larger  control  signals  can be tolerated,   one  might   consider  the use of 

nonlinear  control lows to prevent   large  deviat ions O F  the   s ta te   var iab les .  

1 2 ’  

~ .~ ~- 

I 

7. C O N C L U S I O N  

Some  aspects of the  Inverse  optimum  ccntrol  problem  have  been  examined  for a class 

of nonlinear  autonomous  systems  where the optimum  performance  criterion 

V = J Cq(x) + h!u)I d 7  is requi red   to   have   the  form V = -x‘Mx a s  Function OF the current 
4m 1 

t 2 
! 

s ta te  x .  Using  assumptions  out1  ined  in  Section I it WGS shown  that if a given  control  law ?(x) 

is optimum  then iwo equations,  (1 1 ) a n d  (12), must be safisfied for cll x . 
I 
l 

When  appl ied to sirrgle-input  linear  systems the resul ts   reduce  to   condi t ions  c l ready 

derived  by  Kalman Llj .  These   resu l t s   were   esknded   to   nu l i ip le - input   l inear  syskms. 
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For  asymptotically  stable  ncnlinear  and  l inear  single-input  systems it was sho\.vn t h c t  

if each state   var iables   which is d i rec t ly   a f fec ted   by   the   cont ro l   cannot   be   measured   then  M 

cannof  be posi t ive  def ini te .   lh is   property is invariant   under  a nonsinyular  linear  tronsforma:ion 

of the   s ta te   var iab les .  

In examining the problem of Lur'e  consistency  conditions  that  must  be  satisFied  by 

M , q(x), and  h(u)  were  found; two simple  examples  i l lusfrafing the approach  were also 

given.  

These resul ts   apply  to   the  analysis  OF sub-optimum  control  laws  which  are  derived  on 

the basis of certain  simpiifying  assumptions c6i . It is  of interest  f o  determine whai perfor- 

mance  cri terion,  if   any,  is   optimized  by  the  known  suboptimum  control Iuw. This  is an inverse 

optimum  control  problem  and is t he   sub jec t  OF current  research. 
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