@ https://ntrs.nasa.gov/search.jsp?R=19680018836 2020-03-12T09:57:38+00:00Z

Technical Report 68-67 May 1968

The PAX II Picture Processing System

by
James W, Snively, Jr.*
and

Edgar B. Butt

* Now with the Sun 0il Company, Philadelphia, Pa.

The development of PAX II was supported in part by the
National Institutes of Health under Contract PH-43-67-1099
and in part by the National Aeronautics and Space Adminis-
tration under Grant NsG 398,

& oo o o o ay o on o 4 o o as s B o e s

|

FOREWORD . . . ¢ v o ¢ ¢ o o o « .
Description of PAX II
2.1 Planes « « « . .
2.2 Windows . . .+ + ¢« ¢ « o «
2.3 Stacks of planes
2.4 Shifting . . . +. « ¢« + .« .
2.5 Directions and direction lists
2.6 Data structure
2.7 Labeled Common . . « . « .

TABLE OF CONTENTS

Subroutines . ¢ ¢ ¢ ¢ ¢ 4 e o o o

3.1

Key to subroutine parameters .

Index of user subroutines .

User subroutines classified by function.

Index of system subroutines

List of assembly language subroutines

Documentation of subroutines
(alphabetical order)

10

11

13

15

15

16

20

21

22

23

I.__l

1. Forewcrd

Over the past fifteen years, a body of techniques for
processing pictorial information by computer has been ac-
veloped. Many of these techniques involve operations which
are "uniform" {(or "space-invariant") in the sense that they
do not depend on position within ithe picture., ol zamp
"pblurring" a picture (the new value at each point is the
average of the old values over a given neighborhood of the
point), or "differentiating" it (e.g., the new value is the
magnitude of the gradient of the old value), are uniform
operations, since their definitions are independent of;
position.

In these examples, the operations could in principle be
performed "in parallel", i.e., simultaneously at every point
of a picture, since their effect at any point does not depend
on their effects on other points. If a computer could perform
many operations in parallel, it would be possible to process
pictures very quickly.

Although conventional digital computers normally exécute
only a single arithmetical opgration at a time, it is possible
to achieve a cert;in degree of parallelism by taking advantage

of the fact that most computers can perform basic logical and

'shifting operations simultaneously on each bit of a "word".

This implies a potential saving in picture processing time
by a factor equal to. the word length, typically 32 or 36.

Even if a picture contains many gray levels, one can
regard it as a stack of binary pictures (each "bit plane"
specifying one binary place of the gray level value), and
perform arithmetical operations on the stack by applying
appropriate sequences of logical operations to the individual
bit planes; this still allows considerable savings over se-
guential processing.

An IBM 7090/94 program designated PAX, which nerforms
operations on digital pictures using the approach just describ-
ed, was written at the University of Illinois during 1963 [1-37].
{This program simulates the "pattern articulation unit" (PAU)
of the ILLIAC III computer, which can perform operations in
parallel on digitized pictures stored in two-dimensional re-
gisters.] A CSC 3600 version of PAX, called COMPAX, has been
implemented at the Tata Institute of Fundamental Research,
Bombay, India [4]. PAX has also been implemented at the
National Bureau of Standards in IBM 7094 versidns called STAND-
PAX and SPIFII (STANDPAX Imbedded in FORTRAN II).

The present report describes a revised and expanded version
of PAX, designated PAX II, developed at the University of Mary-

land during 1967. The chief features of this version are:

‘
i .

T G R G B ay an GE T e W

GE G & =N T e

(L.) PAX II is a collection of subroutines which may
be called by a program written in FORTRAN (any version
equivalent to FORTRAN IV). Hence the PAX II user has at
his disposal the computational and testing features of
FORTRAN,

(2.) Most of the PAX II subroutines are written in
FORTRAN to facilitate implementation on various computers,
At present, PAX II has been implemented on the IBM 7094,
IBM 360 and Univac 1108 computers.

(3.) The pictures operated on by PAX II, except for
several computer dependent restrictions, are arbitrary in
size and number, Fast access external storage can be used,

if available.

In the remainder of this report, PAX II will be referred

to for brevity as PAX. It is assumed that the reader is

familiar with FORTRAN.

References

(1]

[2]

(3]

[4]

J. H. Stein, "User's manual for PAX, an IBM 7090
program to simulate the pattern articulation unit
of ILLIAC III", Report No. 147, Digital Computer
Laboratory, University of Illinois, July 1963,

, 'Program description of PAX, an

IBM 7090 program to simulate the pattern articulation
unit of ILLIAC III", Report No. 151, Digital Computer
Laboratory, University of Illinois, September 1963.

R. Narasimhan, "Labeling schemata and syntactic de-
scriptions of pictures", Info. Control 7, July 1964,
151-179.

. "Syntak—directed interpretation of

classes of pictures", Comm. Assoc. Comp. Mach, 9,
March 1966, 166-173.

A T S

g N I e TR Ot T

HE Sy W TN N S Y e as

- ..

2, Description of PAX

2.1 Planes

The basic data unit for PAX is the plane, a matrix
whose elements are either zero or ones. An element, or point,
in a plane is identified by its column number and row number.
(Note that this coord
and matrix notations.) The dimensions of the planes are deter-
mined by parameters stored in a labeled common, subject to the
restriction that the number of elements in a row must be a mul-
tiple (at least two) of the number of bits in a computer word.
On the IBM 7094, and UNIVAC 1108, the number of elements in a
row may be 72, 108, 144, etc. On the IBM 360 the number may be
64, 96, 128, etc. For different applications, plane size may be
changed by altering the block data program, COMMON, which in.-
itializes labeled commen. During execution of a given program,
however, plane size remains fixed.

The number of planes available is also determined by para-
meters in labeled common, subject to restrictions of internal
and external storage space available. In computers with fast
access external storage, PAX has the capacity to store planes
externally and to move planes or parts of planes to and from

core storage as they are needed. The PAX user need not be con-

cerned with details of when and how the planes are moved.

When a PAX user wants to use a plane, he chooses an in-
teger variable, sets it to zero, and uses it as an output
argument in a PAX subroutine. (Output arguments are those
which begin with the letters IPO in the subroutine document-
ation in this manual.) 'PAX, when it detects the zero, selects
an unused plane, stores a number identifying the plane in the
integer variable, and performs the requested operation on the
plane. Subsequent use of the same integer variable as an
argument in a PAX subroutine will cause the same plane to be
operated upon. A FORTRAN integer variable so used to identify
a plane will be called a plane index. The following FORTRAN
instructions will select a plane, set all points to zero, and

then set the third point in the first row to one,

IP =0
CALYL, CLEAR (IP, O)
CALL WRITEC (IP, 3, 1)

If all planes are in use and a request for an unused plane
is attempted, PAX provides a core dump and then terminates
execution of the program. To help avoid this situation, planes
that are in use but no longer needed should be released, that
is, returned to unused status by calling subroutine RELEAS.
Assume that plane IP is in use. The following instructions
select a new plane, IPS, put on plane IPS the result of shifting

plane IP one element to the right, combine the two planes on

plane IP with a logical OR, and release plane IPS. The same

AR 2B SO S

G W S 2 o W W

L

-‘ - - - -l - ‘ ! ! ! '

number of planes 1s in use before and after the instructions

are executed.

IPS = O

CALL SHIFT (IPS, IP, 1, O)
CALL OR (IP, IP, IPS, O0)
CALL RELEAS (1, IPS)

The user must keep in mind that the operation of many

- PAX subroutines requires planes in addition to those he is

using. Any subroutine using such "scratch planes" will re-
lease them when it completes its operatién.

Some of the PAX subroutines have an argument called a con-
tex£ plane. In general, a context plané is a binary plane used
as a mask to limit the operation of a subroutine to a subset of

the points on a plane or stack of planes.

2.2 Windows

Some PAX routines operate on rectangular subsets of a plane
known as windows. A window is specified by an array of four
integers which represent respectively 1) the first column, 2)

the first row, 3) the width, and 4) the height, of the window.

The following statements will define IW as a ten by ten
window in the upper left-hand corner of a plane and then
will cause that window of plane IPX to be printed.

DIMENSION IW(4)
DATA IwW /1, 1, 10, 10/

CALL PRINT (1, IW, IPX)

2.3 Stacks of Planes

To represent a grayscale picture--a matrix whose elements
are non-negative integers that may be greater than one--PAX
uses an array or "stack" of planes. The value of a point in
the jth column, kth row of a stack of planes IP(1),...,IP(NP)

is
NP
z -1y,
s
i=1

where Mi is the value (0 or 1) of the point in the jth column,
kth row of plane IP(i). Subroutine WRITEZ may be used to set

a point in a stack of planes to a given value, Subroutine READZ
sets an integer variable to the value of a specified point in a
stack of planes. Subroutines INPUT and OUTPUT transmit values

between an integer array and a window of a stack of planes, one

row at a time.

"k obE SR N R S O e BN N B O T U 2 =

The following instructions establish a stack of three
planes, set all points to zero, read values from the first
ten columns of ten cards into a ten by ten window in the
upper left corner of the stack, and then set JVALUE %c the

value of the point in the first column, fifth row of the

stack.
DIMENSION IP(3), IW(4), K(10)
DATA IP/53*0/, IW/ 1,1,10,10/
CALL CLEARS(IP, 0, 3)
CALL INPUT (3, IW, IP, K, JGT)
10 READ (5,20) K
20 FORMAT (10I1l)
CALL INROW
GO TO (10, 30), JGT
30. CALL READZ (JVALUE, 1, 5, 3, IP)

The user must insure that stacks of planes are large
enough for the values they will contain. A program ﬁay
operate on stacks of different sizes, since subroutines
that operate on stacks require the size of the stack as an
argument.

2.4 Shifting

Shifting operations in PAX require the user to specify
two integer shift parameters which indicate the number of
points the plane is to be shifted horizontally and vertically.
Positive parameters indicate right and up shifts; negative
parameters indicate left and down shifts. Zeros are shifted
onto the edges of the plane opposite the direction of the

shift.

10

The following instructions select a new plane, IP,
set all points to one, shift the ones off all edges of
the plane, and complement the plane. The result is a
plune with ones only along its edges.

IP =0

CALL CLEAR (IP,1l)

CALL SHIFT (IP, IP,2,2)
CALL SHIFT (IP,IP,-1,-1)
CALL EQUAL (IP,IP,1l).

2.5 Directions and Direction Lists

Pairs of shift parameters are called directions. The
identity direction is 0,0. A direction list is an array of
shift parameters and has the following form: The first ele-
ment of the array specifies how many directions follow in the
array. Then successive pairs of elements of the array are the
directions. Some subroutines require a direction list as an
argument. Other subroutines require the location of a direction
list, that is, an address constant point to the first element
of a direction list. Integer Function LOC generates such
address constants.

The following instructions define a direction list, IDL,
containing five directions, and makes LDL its location.

DIMENSION IDL(11)

paTA IDL/5, 0,0, -1,0, O,1 1,0, O,-1/
LDL=LOC (IDL)

11

Direction lists are used to define neighborhood and
connectedness. Let IDL be a direction list, The IDL-
neighbors of a point are the points obtained by shifting
the given point in the directions in the list. An IDL-
connected string of points in a plane is a finite sequence
of points PO’ P ,...Pn such that all the points have the

1

same value and Pi is an IDL-neighbor of Pi for i = 1,

-1
2,...,n. A point P is IDL-connected to a point PO if there
is an IDL-connected string PO,..., Pn such that P = P _,

2.6 Data Structure

The points in one row of a plane are represented by
successive bits of consecutive computer words. Successive
rows are stored one after the other. Planes may be divided
horizontally into blocks containing equal numbers of rows.
Except in the case described below, one block per plane should
be specified. Fast access external storage may be used to per-
mit very large planes or to increase the number of planes avail-
able. When external storage is used, blocks are the data ele-
ments that are moved between internal and external storage.
If internal storage is sufficient for only a few planés, then
each plane must be divided into several blocks so that blocks
of many planes may be in interna} storage simultaneously.

Blocks of planes are stored internally in buffers. Sub-

routine LOCATE controls the buffer assignments and calls Sub-

=
o

routine DISK, when necessary, to move blocks between
buffers and external storage. Subroutine DISK controls
external storage allocation.

When a PAX subroutine needs a block of a particular
plane, it calls Subroutine LOCATE, which finds the block.
If the block is not in a buffer, an available buffer is
found or a buffer is made available by moving its contents
to external storage, and then the specified block is moved
into the buffer. The buffer is marked so that its contents
are ineligible to be moved to external storage, and the
address of the buffer is returned to the calling subroutine.
When the subroutine is finished with the block it calls
LOCATE which marks the buffer so that its contents are
eligible for external storage.

To minimize movement of blocks between internal and
external storage, Subroutine LOCATE maintains an activity
queue of buffers. Unused buffers are kept at the headfof
the queue. When a buffer is active it is moved to the end
of the'queue. If a buffer is needed and none are unused,
the contents of the buffer at the head of the gueue--the
least active buffer--are moved to external storage.

Subroutine LOCATE also supervises the status of the

planes., If a subroutine passes a plane index of zero to

13

LOCATE, it selects an unusued plane, stores its number in
the index and marks the plane as being in use. Planes are
returned to unusued status by Subroutine RELEAS which is

an entry in Subroutine LOCATE.

2.7 Labeled Common

The following blocks of labeled common are used by PAX.
Some of these blocks are inipialized by a block data program.
Others are initialized on the first call to Subroutine LOCATE.
Some of the blocks are of interest to the user because ﬁhey
contain parameters referring to plane size. By using these
parameters, a program may be written that will operate pro-
perly if the plane size is altered.

A. Machine dependent blocks

. /MWX/ NEW, NAW
/PRX/ NWL, NCH, FL1(3), FL2(3)

NEW - Number of bits in a word (integer variable)

NAW '~ Number of machine addresses per word

NWL - Number of words (packed with A-format
characters) per print line,

NCH - Number of characters (excluding carriage
control) per print line.

FL1 - Format for printing one line of packed
A-format characters with single spacing.

FL2 - Format for printing one line of packed

A-format characters with overstrike,
B. Blocks specifying plane size and number.
/LSZ/ LPB, LBA, LBR, LRE, LCE, LRA

/PLX/ NPLN, NBUF
/WEP/ IW(4)

14

LPB -
LBA -
LBR -
LRE -
LCE -
LRA -
NPLN -
NBUF -

Iw -

Length
Length
Length
Length
Length
Length
Number
Number

block
Window

of
of
of
of
of
of
of
of
of

plane in blocks.

block in addresses.

block in rows.

row in elements (bits).
column in elements (bits).
row in addresses.

planes.

buffers (each holds one

a plane).

for the entire plane.

Blocks used for storage.
in terms of previously mentioned parameters.

given

/PIX/
/BUX/
/BUF/
/ROW/

PLANES (NPLN)

BLOCK (5,NBUF)
BUFFER (LBA/NAW,NBUF)
IR (MAXO (LRE,NCH))

PLANES
BLOCK

BUFFER
IR

Dimensions of arrays are

Array indicating status of each plane.
Array containing five control words

for each buffer.

Buffers for storing blocks of planes.

- Array which may be used on a temporary
basis to store values from one row of
a plane.

Characters used by Subroutine PRINT

/LTX/LT(32)

LT

- Array containing characters used by
Subroutine PRINT.

3. Subroutines

15

3.1 Key to subroutine parameters

The conventions described below are followed in the

subroutine documentation in this manual., Programmers using

PAX are urged to follow these conventions in their own pro-

grams and documentation.

character.

*GT
IDL***
INV#**%

Ip*k%*

IPC*%*%
IPT*%%

IPO***

IWkkk*
Jkkeddk

KX
Ky
LDL

NP*%%%

NX

NY
R¥ % k&%

Stars may be replaced by any valid

Computed go to parameter

Direction list

Inverse switch associated with
plane IP*%%

Plane index or array of plane indices
Index of a context plane

Index or array of indices of input
planes

Index or array of indices of output
planes

Window of a plane

Integer argument which may be altered
by a subroutine

Column of a plane

Row of a plane

Address constant or array of address
constants pointing to direction lists

Number of plane indices in array IP****

Horizontal shift parameter

Vertical shift parameter

Real argument which may be altered by
a subroutine

1é

3.2 Index of user subroutines

Subroutines preceded by '=' are functions. All other
subroutines are referenced by a 'CALL' statement. Cross-
references are given on subroutines whose documentation is
not in alphabetical order.

The first time a plane index is used, it must be used

as one of the arguments beginning with the letters IPO.

ADD1TP (IP, IPS, NPS)

ADDSUB (IPO, NPO, IPI1l, NPI1l, IPI2, NPI2, IADSB)
AND(IPO, IPI1, IPI2, INVI2)
ANDS(IPO, IPI1, IPI2, INVI2, NP)
APPLY(IPO, NPO, IPOS, IPI, LDL)
AREA(IP, INV, IPC, JAREA)
BOOFUN(IPO, IPI, IPC, FUN)
BORDER(IP, JGT)

CARDS (NPO, IW, IPO)

CIRCLE (IP, KX, KY, KRAD)
CLEAR(IPO, INVO)

CLEARS (IPO, INVO, NPO)

COMPAN (LDL, IP, INV, JARRAY, JN)
CONNEC (LDL, IPO, IPI, IPC, JCOUNT)
=COORD (KX, KY) INTEGER COORD

CPROP (IPO, IPI, IPC, KRAD)

DIST(IPO, NPO, IPI, INVI, LDL, NbL, MAX)
DLTOIR(LDL, JX, JY, JGT, JID)

EDGES (IPO, IPI, LDL)

EQUAL (IPO, IPI, INVI)

EQUALS(IPO, IPI, INVI, NP)

EXCHAR
EXOR(IPO, IPI1, IPI2, INVI2) See AND
EXORS (IPO, IPI1l, IPI2, INVI2, NP) See AND

EXTRM(JVALUE, MINMAX, IP, NP, IPC)
EXTRMP (JVALUE, MINMAX, IP, NP, IPC, IPO)
FRAME (IP, NSIZE)

GRID(IPO, NSIZE)

INETIA (NP, IP, IW, JX, JY, RECC, RANGLE)
INPUT(NPO, IW, IPO, NROW, JGT) |
INROW

INSERT(IPO, NPO, IPI, NVALUE)

LETTER

LISTXY(IP, IW, JARRAY, J)
=LOC (IDL)

MARK (LDL, IPO, IPI, IPC)

MAXIMA (LDL, IPO, IPI, NPI)

MINIMA (LDL, IPO, IPI, NPI)

17

18

NEIGHB(IP, NP, KX, KY, IDL, JARRAY)
NULL(IP, JGT)

OR(IPO, IPI1l, IPI2, INVI2)

ORS(IPO, IPI1, IPI2, INVI2, NP)
OUTPUT(NP, IW, IP, JROW, JGT)
OUTROW
=POINT(LOCATN, N)

PRINT (NP, iw, IR)

PROP (LDL, NDL, IPO, IPI, IPC, NPROPS)

PUNCH (NP, IW, IP)
=RANDNO (NR)
RANPIC(IPO, IW, PROB, NVALUE, NR)
READZ (JVALUE, KX, KY, NPI, IPI)
RELEAS (NP, IP)
RPROP(IPO, IPI, IPC, NX, NY)
SHIFT(IPO, IPI, NX, NY)
SHIFTS(IPO, IPI, NX, NY, NP)
SLICE(IPO, IPI, NPI, KREL, NUM)
SNAP
SPRINT(NP, IW, IP, NSP)
SUMONE (IP, NP, IPS, IPI, IADSB)
TMARK(LDL, IPO, IPI, IPC, KREL, NUM)
TSHIFT(IP, NX, Ny, JGT)

UNCOOR (KP, JX, JY)

See AND

See AND

See PRINT

/7 o oo OGN G5 N G5 S M0 G e Nt s e

WINDOW (IPO, IW)
WRITEC(IP, KX, KY)

WRITEZ (NVALUE, KX, KY, NP, IP)

19

20

3.3 User subroutines classified by function

This classification does not include all user routines.
It is intended as a guide for those not familiar with PAX,

A. Input to planes
WRITEX, WRITEZ, INPUT, CARDS

B. Output from planes
READZ, NEIGHB, LISTXY, OUTPUT, PRINT, PUNCH

C. Figure creation
CIRCLE, FRAME, GRID, WINDOW, INSERT

D. Logical operations
CLEAR, EQUAIL, AND, EXOR, OR, BOOFUN

E. Arithmetical operations on stacks of planes
ADD1TP, SUMONE, ADDSUB, MAXIMA, MINIMA, SLICE

F. Testing and measuring operations
NULL, EXTRM, AREA, TSHIFT, BORDER, INETIA

G. Shifting and iterated shifting operations
SHIFT, MARK, PROP, CPROP, RPROP

H. Operations relating to connectedness
CONNEC, COMPAN, EDGES

21

3.4 Index of System Subroutines

The following subroutines, although available o the
user, are primarily for use by other PAX subroutines. Sub-
routines preceded by '=' are functions. All other subroutines
are refercnced by a 'CALL' statement. Cross references are
given on subroutines whose documentation is not in alphabetical

order.

DISK(BUFFER)

FP (LWORD, BIT, ARRAY, N, POS)

KGB (LOCATN, N)

=KGC (KV, K)

KPB(I, LOCATN, N)

KPC(KAR, KV, N)

LOCATE (NP, IP, IB, LOCATN)

OP (LOCATN) See SETOP
PF(LWORD, BIT, ARRAY, N, POS)

RSEEK (NPB) See DISK
SETOP (OPCODE, LENGTH)

SETSH (COUNT, LENGTH)

SH(LOCIN, LOCOUT) See SETSH

WSEEK(NPB) See DISK

22

3.5 List of asscmbly language subroutines

COORD
FP
KGB
KGC

KPB

LOC

PF

POINT
RANDNO
SETOP, OP
SETSH, SH
SNAP

UNCOOR

3.6 Documentation of Subroutines

23

ADD1TP

Subroutine ADDILTP
Purpose:

To add the values in a plane to the values in a stack of
planes.

Usage:
CALL ADD1TP(IP, IPS, NPS)
Parameters:

IP - Index of plane to be added

IPS - Array of indices of planes in the stack to which
plane IP is to be added

NPS - Number of planes in stack IPS

Execution:

Plane IP is added to the stack IPS(l),..., IPS(NPS).
Overflow from the stack is lost and is not detected.

ADDSUB

Subroutine ADDSUB

Purpose:
To add or subtract two stacks of planes.

Usage:
CALL ADDSUB (IPO, NPO, IPI1l, NPI1l, IPI2, NPI2, IADSB)

Parameters:

IPO - Output stack

NPO — Number of planes in stack IPO
IPI1 - First input stack

NPI1 - Number of planes in stack IPI1l
IPI2 - Second input stack

NPI2 - Number of planes in stack IPI2

IADSB - Integer set to 1 f£for addition or 2 for subtraction

Execution:

Stack IPI2 is added to (IADSB=l) or subtracted from (IADSB=2)
stack IPI1 and the result is put in stack IPO. The stacks of
planes need not be distinct. Some restriction is put on the rela-
tive sizes of the stacks. NPIZ2 must not exceed NPI1, ang NPI1l
must not exceed NPO.

If there is addition overflow or if subtraction would result
in a negative value an error message is printed and execution is
terminated.

[) GG 6N GN G G0 0 AN N G Mt SN M 6D G N D e e

LND, ANDS,
EXOR, EXORS,
OR, ORS

Subroutines AND, ANDS, EXOR, EXORS, OR, ORS

Purpose:

To set each point of a plane (stack of planes) to a
logical combination of the corresponding points on two
planes (stacks of planes).

Usage:

Call XXX(IPO, IPI1, IPI2, INVI2)
CALL XXXS(IPO, IPIl1, IPI2, INVI2, NP)
XXX is AND, EXOR, or OR

Parameters:

IPO - Array of indices of output planes

IPI1 - Array of indices of input planes

IPI2 - Array of indices of input planes

INVI2 - Inverse switch associated with IPI2

NP - Number of indices in IPO, IPI1l, and IPI2
Execution:

Points in plane IPO(I) are set according to the values of
corresponding points in planes IPIL(I) and IPI2(I) for I = 1,
«++, NP according to the following table. For Subroutines,
AND, EXOR, and OR, NP is assumed to be 1.

IPI1(I) IPI2(I) IPO(I)]
AND, ANDS EXOR, EXORS OR, ORS
INV2=0 |INV2#0 | INV2=0 |INV2#0 |INV2=0 INV2#0
0 o} 0 0 0 1 0 1
0 1 0 0 1 0 1 0
1 0 0 1 1 0 1 1
1 1 1 0 0 1 1 1

APPLY

Subroutine APPLY

Purposc:

To determine the difference of the sums of the values
of the points in two specified neighborhoods of each point
of a plane. This is equivalent to cross-correlating of
template, having values 0, +1, or -1 at every point, with
the plane.

USAGE:

CALL APPLY (IPO, NPO, IPOS, IPI, LDL)

Parameters:
IPO - Stack of planes to receive absolute value of
the differences
NPO - Number of planes in IPO
IPOS - Plane containing the signs associated with the
values in IPO
IPTY - Index of input plane
LDL - Array containing the locations of two direction
lists
Execution:

The absolute value stack and the sign plane are cleared.
Plane IPI is shifted the opposite of each direction in the
list pointed to by LDL(1l) and added to the absolute value
stack. Then plane IPI is shifted the opposite of each direction
in the list pointed to by LDL(2) and algebraically subtracted
from stack IPO and its associated sign plane IPOS. When the sub-
routine is finished, points on plane IPOS have the value 1l if
the corresponding value on stack IPO is negative.

The user must see that stack IPO has enough planes to con-
tain any possible result. Overflow is not detected.

~

/----"--—---.

~

AREA

Subroutine AREA
Purpose:

To find the number of ones or zeros in a plane which
correspond to the ones in a context plane.
Usage:

Call AREA (P, INV, IPC, JAREA)
Parameters:

ip - Index of the plane whose area is being determined

INV - Inverse switch associated with plane IP

IPC - Index of the context plane (if not zero)

JAREA - Variable which is set to the area

Execution:
If IPC=0, JAREA is set to the number of ones (if INV=0) or
zeros (if INV#0) in plane 1IP.

If IPC#0, the counting operation is restricted to points of
plane IP which correspond to points of plane IPC which are one.

BOOFUN

Subroutine BOOFUN

Purpose:

To set each point of a plane to a Boolean function of the neigh-
bors of the corresponding point in a specified plane.

Usage:
CALL BOOFUN (IPO, IPI, IPC, FUN)
Parameters:

IPO Index of output plane

IPI -~ Index of input plane

IPC - Index of context plane

FUN - Array containing numeric and special characters which
specify the Boolean function. Valid special characters
are: BLANK / () -, + * §

Boolean Function:

Elements of the function are of the form (NX,NY) or /(NX,NY)
where NX and NY are strings of digits, possibly preceded by a minus
sign. (NX,NY) represents the result of shifting plane IPI with the
parameters specified by NX and NY. /(NX,NY) is the complement of
(NX,NY) . Products (logical and) of elements are represented by el-
ements separated by asterisks or merely by a string of elements.
(0,0)*(1,1)*/(-1,-1) and (0,0) (1,1)/(-1,-1) are equivalent products.
An entire product may be complemented by a following slash as in
(0,1)*(-1,-1)/. Finally, products may be combined with the logical

or operation by means of the plus sign.

Blanks are ignored. The last character must be a dollar sign.
Examples of Boolean Functions:

(0,1)*(0,~-1)*(1,0)*(-1,0)$

(0,1) (0,-1) (1,0) (-1,0)/ $

/(1,0) + /(2,0) + (3,0) + (4,0) s

(0,1)(0,-1)/ + (1,0) (-1,0) s

(_ll -l) +(Ol_l)+(l' -l) $

"N SR R an Sk ff S A AE 8 S @0 Y 0 G o0 0 e o

BOOFUN {continued)

Execution:

Plane IPO is set to the result of applying the Boolean function

to plane IPI. Then if IPC is not 0, plane IPC is anded onto plane
IPO.

FUN may be a Hollerith constant, an array that has been initia-
lized by a Hollerith field in a data statement or an array into
which the function has been read with A or H format.

BORDER

Subroutine BORDER

PUrposc:
To determine whether
plane have the value 1.

Usage:
CALL BORDER (IP, JGT)

Parameters:
IP - Index of plane

or not any points on

being tested

JGT - Variable set by the subroutine

Execution:

the border of a

JGT is set to 2 if plane IP has a point in its first row or
column or last row or column with value 1.

to 1.

Otherwise JGT 1is

S

et

CARDS
Subroutine CARDS
Purposc:
To input values from cards to a window of a stack
of planes,
Usage:
CALL CARDS (NPO, IW, IPO)
Parameters:
NPO - ©Number of planes in the stack (not more than 5)
IW - Window
IPC - Array of plane indices
Execution:

This subroutine requires data cards with characters
for the window of the stack of planes punched on successive
columns. Characters for each row of the window must begin
in the first card column,and, if necessary, continue on
successive cards. The card characters O, 1, ..., 9, A,B,
...,V correspond to picture values 0, 1,...,31, ,Picture
values which exceed the capacity of the stack are changed
to zero. Card characters other than those mentioned will
produce a picture value of zero.

If IPO is O (for I=1 or 2 or ...or NPO), then plane
IP (I) is cleared before the cards are input.

CIRCLE

Subroutine CIRCLE

Purpose:
To set the points on a circle to one.

Usage:
CALL CIRCLE (IP, KX, KY, KRAD)

Parameters:

IP - Plane index .
KX - Column in which the center lies
KY - Row in which the center lies

KRAD - Radius of the circle

Execution:

A point in plane IP is set to one if the distance from the
point to the center of the circle is between KRAD-1/2 and KRAD +
1/2. All other points in the plane are unaltered. The circle
need not lie entirely on the plane.

CLEAR,CLEARS

Subroutine CLEAR, CLEARS
Purpqse:

To set all of the points of a plane or a stack of
planes to zero or to one,

Usage:

CALL CLEAR (IPO, INV)
CALL CLEARS (IPO, INV, NPO)

Parameters:
IPO -~ Array of plane indices
INV - Inverse switch
NPO - Number of indices in IP
Execution:

All points of plane IPO(I) are set to 0 if INV=0 or
to 1 if INV # O for I =1,..., NFO. For Subroutine CLEAR,
NPO is assumed to be one.

COMPAN

Subroutine COMPAN

Purpose:

To perform an @nalysis of the connected components in

a plane.

Usage:

CALL COMPAN (LDL, IP, INV, JARRAY, J)

Parameters:
LDL
IPL

INV

JARRAY

Execution:

Address constant pointing to IDL, a direction
list which determines connectedness

Index of plane in which connectedness is being
analyzed

If INV is zero, plane IP will be analyzed;
Otherwise the complement of plane IP will be
analyzed

Integer array to receive the areas of the
connected components. JARRAY must be dimensioned
no smaller than the initial value of J

Variable set by the user to indicate the maximum
number of components to record. J is reset by
the subroutine to indicate the number of com-
ponents found

The areas of the first J connected components are put in

JARRAY. The search for connected components ends when all have been

found or when the (J+l1)-st component is found. On exit, J is
reset to the number of components found.

CONNEC

Subroutine CONNEC
Purpose:

To determine the points in a plane which are connected
(according to some direction list) to any one of a specified
set of points. Also, to determine the minimum number of calls
to Subroutine MARK (using the same direction list) needed to
expand the specified set to include all the connected points.
Usage:

CALL CONNEC (LDL, IPO, IPI1l, IPI2, JCOUNT)

Parameters:

LDL - Address constant pointing to a direction list,
IDL, which determines connectedness

IPO - Index of output plane

IPI1 - Index of plane in which connectedness is being
examined

IPI2 - Index of plane which specifies a set of points

JCOUNT -~ Variable to be set to the number of calls to
subroutine MARK needed to expand the set of
points specified by plane IPI2 to include all
connected points

Execution:

A scratch plane, IPS, is initially set to the logical and
of planes IPI1 and IPI2. Then Subroutine MARK is applied to
plane IPS with direction list IDL and the plane IPI1l is anded
onto the result. This process 1s repeated until it adds no
new l's to plane IPS. Then plane IPS is copied on plane IPO.
JCOUNT is set to the number of calls to Subroutine MARK which
added 1l's to the output image.

This Subroutine operates more efficiently if the direc-
tion list does not contain the direction (0,0).

COQRD

Integer Function COORD
Purpose:

To pack two positive integers into a single integer
variable.

Usage:

INTEGER COORD
K = COORD(I, J)

Parameters:

I, J - Positive integers with not more than half the
number of significant bits in an integer variable

Execution:

I and J are packed into the variable K. Subroutine UNCOOR
performs the unpacking.

CPROP

Subroutine CPROP

Purpose:
To generate a plane which has a circular disk of 1's (0's) with

a given radius centered at each point corresponding to every 1 (0)
on an input plane.

Usage:
CALL CPROP (IPO, IPI, IPC, KRAD)

Parameters:

IPO - Index of output plane
IPT - Index of input plane
IPC - Index of context plane

KRAD - Radius of propagation (positive or negative)

Execution:
If KRAD is not negative, each point in plane IPO is set to 1
if it is less than KRAD+% units from a point corresponding to a 1 in
plane IPI. If KRAD is negative, <:wn point in plane IPO is set to
0 1if it is less than iKRADl+% units from a point corresponding to
a 0 in plane IPI. 1If IPC is not O, then plane IPO may differ
from plane IPI only on points corresponding to a 1 in plane IPC.

A unit is the distance between adjacent picture elements on
the same row or column.

DISK, WSEEK, RSEEK

Subroutines DISK, WSEEK, RSIEEK

Purpose:

To move blocks of planes between internal buffers and external
storage.

Usage:

CALL WSEEK (NPB)
‘CALL RSEEK. (NPB)
CALL DISK (BUFFER)

Parameters:

NPB - Array of two words containing plane number and block
number

BUFFER - Internal array which contains or will receive the
block to be moved

Execution:

When WSEEK is called it prepares the external storage device to
write block NPB(2) of plane NPB(l). RSEEK performs a similar task
for reading.

When DISK is called it moves the block stored in BUFFER to ex-
ternal storage or moves a block from external storage to BUFFER
according to the most recent call to WSEEK or RSEEK. The number of
words in a block is determined by parameters in labelled common.

Subroutine DIST

Purpose:

To set the value of each point in a stack of planes to the dis-
tance from the point to the closest of a specified set of points.
Distance is determined by an array of direction lists.

To s

lod~N4
CoAg T .

CALL DIST (IPO, NPO, IPI, INVI, LDL, NDL, MAX)

Parameters:
IPO - Array of plane indices
NPO -~ Number of planes in stack IPO
IPI -~ Index of plane which specifies set of points from which

distance is measured

INVI - Determines whether distance is measured from points in
plane IPI with value 1 (IPI=0) or O (IPI#O)

LDL - Array of address constants pointing to direction lists
used to determine distances

NDL - Number of address constants in LDL

MAX -~ Maximum distance to appear on stack IPO. Points with
distance greater than MAX will have value MAX

Execution:

Stack IPO is cleared and the complement of plane IPI is added to
the stack. Subroutine MARK is applied to plane IPI and the complement
of the result is added to the stack. Subroutine MARK 1s applied re-
peatedly to the result of the previous call to MARK and the comple-
ments of the results are added to the stack. The NDL direction lists
pointed to by elements of LDL are used cyclically in calls to MARK.
The process is terminated when some points have achieved the value
MAX or when overflow from the stack would occur.

DLTOIR

Subrout.ne DLUOIR
Purpose:

To facilitate an instruction loop using successive
shift parameters from a direction list.

Usage:

JID=0
10 CALL DLTOIR(LDL,JX,JY,JGT,JID)
G0 TO (20,30), JGT
20 .
.(Instructions using shift parameters JX and JY)

GO TO 10
30 .
Parameters:
LDL - Address constant pointing to a direction list IDL
JX - Horizontal shift parameter
JYy - Vertical shift parameter
JGT - Computed go to parameter
JID - Variable set to indicate which pair of shift

parameters has been returned

Execution:

IDL(1l) is the number of pairs of shift parameters which
follow in the array. If JID is less than IDL(l), JID is in-
creased by one, JX and JY are set to the JIDth pair of shift
parameters, and JGT 1s set to one. If JID is not less than
IDL(1l), JID is set to O and JGT is set to 2.

EDGES

Subroutine EDGES

Purpose:

To find the edges, defined by a direction list, of all
the objects in a plane.

Usage:

CALL EDGES(IPO, IPI, LDL)

Parameters:

IPO - 1Index of output plane
IPI -~ Index of plane containing objects being examined
LDL - Address constant pointing to direction list IDL
which defines edges
Execution:

Each point of plane IPO is set to 1 if the corresponding
point in plane IPI has the value 1 and is an IDL-neighbor of
a point with wvalue O.

EQUAL, EQUALS

Subroutine EQUAL, EQUALS
Purpose:

To set a plane (stack of planes) equal to another
plane (stack of planes) or its inverse.

Usage:

CALL EQUAL(IPO, IPI, INV)
CALL EQUALS (IPO, IPI, INV, NP)

Parameters:

IPO

Array of indices of output planes

IPI - Array of indices of in»ut planes

INV - Inverse switch associated with IPI

NP - Number of indices in IPO and IPI
Execution:

If INV = 0, plane IPI{(I) is copied in plane IPO(I)
for I =1, ..., NP, If INV#ZO, the inverse of plane IPI(I)
is put in plane IPO(I). For subroutine EQUAL, NP is assumed
to be 1.

OGN NN W S UGB TN A B 4 B I B . - .. .

EXCHAR
Subroutine EXCHAR

Purpose:
To exchange the print characters currently being used
by Subroutine PRINT and the characters stored within this

subroutine, Initially, characters whose blackness corres-

ponds to the gray levels they represent are stored in this
subroutine,

Usage:
CALL EXCHAR

Execution:

The contents of the arrays LT(32) (in the labeled common
block/LTX/) and ALT(32) (in this subroutine) are exchanged.

See subroutine PRINT for a discussion of print characters.

EXTRM, EXTRMP

Subroutines EXTRM, EXTRMP

Purpose:

To determine the extreme values (eirther minimum or
maximum) of a stack of planes.

Usage:

CALL EXTRM (JVALUE, MINMAX, IP, NP, IPC)
CALL EXTRMP (JVALUE, MINMAX, IP, NP, IPC, IPO)

Parameters:
JVALUE - 1Integer varizble to be set to minimum or
maximum value
MINMAX - Integer indicating whether the minimum
(MINMAX=1) or maximum (MINMAX=2) value
will be found
Ip - Array of indices of planes in the stack
to be examined
NP - Number of planes in stack IP
IPO - Index of output plane (used by Subroutine
EXTRMP only)
Execution:

JVALUE is set to the minimum or maximum value appearing
on stack IP. Subroutine EXTRMP sets each point of plane IPO
to 1 if the corresponding point on stack IP has the extreme
value JVALUE,

rp

Subroutine FP

Purpose:

To facilitate bit-plane encoding. Specifically, to set succes-
sive bits, beginning with a specified bit, to the values of the bits
in a specified position in successive words of an array.

Usage:
CALL FP (LWORD, BIT, ARRAY, N, POS)

Parameters:

LWORD

Address constant pointing to the word containing <the

first bit that will have its value set

BIT - Number, counting from 1 on the left, of the first
bit in the word pointed to by LWORD that will have
its value set

ARRAY - Array of N words in which bits will be examined.

N — Number of bits .to be set

POS - Word containing a single l-bit which specifies the

bit to be examined in each word of the array

Execution:

N consecutive bits beginning with the one specified by LWORD
and BIT are set to the values of the bits in the position speci-
fied by POS in the words ARRAY(l),..., ARRAY(N).

L RADL

Subroutine FRAME
Purpose:

To put a frame of ones on a plane.
Usage;

CALL FRAME (IP, NSIZE)

Parameters:

ip ~ Plane index

NSIZE - Size of frame in picture elements
Execution:

Each point on plane IP which is not more than NSIZE
elements from the edge of plane IP is set to one. Other
points on the plane are not altered.

GRID

Subroutine GRID
Purpose:

To generate a square grid of arbitrary size on a plane,
Usage:

CALL GRID(IPO, NSIZE)

Parameters:
IPO - Plane index
NSIZE - Size of grid
Execution:

Plane IPO is cleared, and each point whose row number
or column number is a multiple of NSIZE is set to 1.

INETIA

Subroutine INETIA

Purpose:

To determine the centroid and principal axis of the contents
of a window of a stack of planes. Also to determine the eccen-
tricity of the ellipse whose major and minor axes are equal in
magnitude to the maximum and minimum moments of inertia.

Usage: :
CALL INETIA (NP, IP, IW, JX, JY, RECC, RANGLE)

i Parameters:

| NP - Number of planes in the stack
IP — Indices of planes in the stack
Iw - Window being examined
JX, JY - Column and row of centroid
RECC - Eccentricity described above

RANGLE - Angle in radians (-m 2 0 = m) from a horizontal line
to the principal axis

Execution:

Values in the window are retrieved a row at a time using INPUT
and INROW. The above parameters are calculated using well known
formulas.

o o e s S S N B BN B 2 B B e aE T = e

Subroutines INPUT, INROW
Purpose:

To put values in successive rows of a window of a
stack of planes.

Usage:

CALL INPUT(NFO, IW, IFO, NARRAY, JGT)

10 .
. (Instructions to put the values for one row of the
. window into NARRAY)
CALL INROW
GO TO (10,20), JGT
20 .
Parameters:
NPO - Number of indices in IPO
Iw - Window
IP0 - Array of plane indices
NARRAY - Integer array large enough to hold values
for one row of the window
JGT ~ Computed go to parameter set by the subroutine
Execution:

INPUT and INROW are entries to the same subroutine. When
INPUT is called, the subroutine is initialized and JGT is set
to 1. When INROW is called, the values for one row of the
window which the user has put in NARRAY are put in the stack
of planes. On the call to INROW for the last row of the window,
JGT is set to 2.

If TEO(I) is O (for I=1 or 2 or ... or NPO), plane IPO(I)
is cleared.

INSERT

Subroutine INSERT

Purpose:

To put an object on a binary plane into a stack of planes with
a specified value.

Usage:
CALL INSERT (IPS, NPS, IP, NVALUE)

Parameters:

IPS Stack of planes into which object will be inserted
NPS - Number of planes in IPS

IP - Index of plane containing object to be inserted
NVALUE - Value object will have when inserted into stack
Execution:

'Each point of the stack IPS(l),...,IPS(NPS) that corresponds to
a 1 in plane IP is set to the value specified by the NPS low order
bits of NVALUE. Other points of the stack are not altered.

R SN WE Ba A N BN S En A "

XGB

Integer Function KGB

Purpose:

To set an integer variable to the value of a specified
bit following the first bit in a specified woxd.

Usage:
e e 1T AT mMAT ar)
LD = NGD (\LuULnalL, Wvy
Parameters:
LOCATN - Address constant (generated by Integer Function
LOC) pointing to a word
N - Position of the bit desired counting from left
to right beginning at the first bit in the word
pointed to by LOCATN and continuing to successive
words if necessary
Execution:

IR is set to 0O or 1 according to the value of the bit
specified by LOCATN and N.

KGC

Integer Function KGC

Purpose:
To determine a specified character in a Hollerith field.
Usage:

KAR = KGC(KV, N)

Parameters:
RV - Variable containing first characters in the
Hollerith field
N - Position of the character desired counting
from left to right, beginning at the first
character in KV and continuing to successive
words '
Execution:

The bit configuration for the Hollerith character
specified by KV and N is put in KAR, right adjusted with
leading zeros.

[. A L] _—] s - | ¢] el] n

XPB

Subroutine KPB

Purpose:

To set a specified bit to 0 or 1.

CALL KPB (I, LOCATN, NBIT)

I - Integer which is O 1if bit is to be set
to 0 or not 0O if the bit is to be set
to 1

LOCATN - Address constant (generated by Integer Function
LOC) pointing to a word *

N - Position of the bit to be set, counting from
left right at first bit in the word pointed to

by LOCATN and continuing to successive words
if necessary

Execution:

The bit specified by LOCATN and N is set to 0 4if
I=0o0r to 1 if I # O.

KPC

Subroutine KPC

Purpose:

To insert a character into a specified position in
a Hollerith field.

Usage:

CALL KPC (KAR, KV, N)

Parameters:
KAR - Variable containing the character to be in-
sérted, right adjusted
Rv - Variable containing the first characters in
the Hollerith field
N - Position into which the character is to be
inserted counting from left to right, beginning
at the first character in KV and continuing to
successive words
Execution:

The Hollerith character in KAR is inserted into the
position specified by KV and N.

pr—— S Smm—— e pr— Y —— R . s [~ [] b S 4N] [O

Purpose:

To read characters from a card for use as print
characters by Subroutine PRINT.
Usage:

CALL LETTER

Execution:

32 vairs of print characters are read from a card
with a 32A2 format. See Subroutine PRINT for a discussion
of print characters.

LISTXY

Subroutine LISTXY
Purpose:

To determine the points in a window of a plane which
have the value 1.

Usage:

CALL LISTXY(IP, IW, JARRAY, J)

Parameters:
Ip - Index of plane being examined
Iw - Window
JARRAY - Array whose elements will be set to indicate the

location of points with value 1. JARRAY must be
dimensioned at no less than the value of J when
the subroutine is called

J - Integer variable that is set by the user to indi-
cate the maximum number of points to record in
JARRAY and is set by the subroutine to indicate
the number of points actually recorded

Execution:

The value of J is recorded, and then J is set to 0. Then
successive rows of window IW are examined from left to right,
beginning with the top row. When a point with value 1 is found,
J is increased by 1. Then, if J does not exceed its initial
value, the column and row of the point are packed into JARRAY (J)
by Integer Function COORD. If J exceeds its initial value,
however, the point is not recorded and execution of the subrou-
tine is terminated. The user may use Subroutine UNCOOR to
unpack the row and column of each point.

LoC

Integer Function LOC
Purpose:

To determine the machine address of a variable.

L = LOC{M)
Execution:
L is set to the address of the variable M. This

subroutine is freguently used toc set a variable to the
location of a direction list,

LOCATE

Subroutine LOCATE
Purpose:

To supervise the internal storage of planes and the
movement of blocks of planes between internal and external
storage.

Usage:

CALL LOCATE (NP, IP, IB, LOCATN)

Parameters:
NP - Number of plane indices in array IP
Ip - Arxray of plane indices
IB - Block number
LOCATN -~ Array which will receive or already contains

address constants
Labeled common and internal variables:

The array PLANE in the labeled common block /PIX/ con-
tains a status word for each plane, PLANE(I) is zero if the
I-th plane is not in use and is nonzero if it is in use.

The labeled common block /BUF/ contains the buffers which
are used to store blocks of planes.

An activity queue of the buffers is maintained. The
variable JOLD points to the head of the gueue and JNEW points
to the tail. If there are any unused buffers they are always
at the head of the gqueue. JMT points to the last unused buffer.
Active buffers are moved to the end of the queue,

The array BLOCK (dimensioned at 5, NBUF) in the labeled
common block /BUX/ contains 5 control words for each buffer in
/BUF/. BLOCK(I, J) is the I-th control word for the J-th buffer.
The function of each control word is:

1. Buffer status. A negative value means the buffer is
unused., A zero means the buffer contains a block which
may be moved to external storage if necessary. A
positive integer means the buffer contains a block
which is being operated on and hence must remain in the
buffer., The positive integer indicates the number of
subroutines that are operating on the block.

. SIS 2N W m =

LOCATE {continued;

2. Plane number of the block currently or most
recently in the buffer.

3. Block number of the block currently or most
recently in the buffer,

4. Number of the buffer which follows on the
queue. JZero indicates that this buffer is
last on the queue.

5. Address constant pointing to the beginning
of the buiffer.

Initialization. On the first call to LOCATE only, the
block data initialization is tested and buffer control words,
plane status words and several internal variables are initia-
lized.

Selecting a new planc. If IB is a valid block number,
then for each I = 1,..., NP such that LOCATN(I)=0 and IPI(I)
=0, an unused plane is selected anéd IP(I) is set to the ne-
gative of the plane number to inhibit input. The action de-
scribed in the next paragraph is then taken.

Locating a block. If IB is a valid block number, then
for each I = 1,..., NP such that LOCATN(I)=0, the buffers are
searched for block IB of plane |[IP(I)|. If no buffer contains
the block, a buffer must be assigned to the block. If there
are no unused buffers, the buffer nearest the head (JOLD) of
the queue with a status word of O is made available by moving
its contents to extérnal storage via Subroutine DISK, If
IP(I)>0, block IB of plane IP(I) is moved from external storage
to the available buffer. If IP(I)<0, movement is inhjibited.
Subroutines which are going to assign new values to ewvery point
in a block would call LOCATE with negative plane numbers to in-
hibit unnecessary movement. Finally, the buffer which contains
the block or has been assigned to the block is moved to the
end (JNEW) of the queue, its status word is increased by 1 or
set to 1, whichever is larger, and LOCATN(I) is set to the
address of the buffer,

Releasing a block. If IB is a valid block number, then
for each I = 1,..., NP such that LOCATN(I)#0, the status word
of the buffer containing block IB of plane |[IP(I)| is reduced
by 1 and LOCATN(I) is set to 0. This action is requested by
a subroutine that has previously located a block and is now
finished operating on it.

LOCATE (continued,

Releasing a plane. If IB = 0O, then I =1,..., NP, such
that IP(I)#0, plane |IP(I)| is returned to unused status,
buffers containing blocks of plane |IP(I)| are returned to
unused status, and IP(I) is set to 0., 'CALL LOCATE (NP, IP,
0, LOCATN)' is equivalent to 'CALL RELEAS (NP, IP)'.

Simplified LOCATE:

There is a simplified version of this subroutine:.which
may be used when external storage of planes is not impliemented.
It requires that there be only one block per plane and that
the number of planes equal the number of buffers. Using the
simplified version will save storage space and execution time.

Error Messages:

When certain errors are encountered, this subroutine will

print an error message, call Subroutine SNAP and stop execution.

The error message is 'LOCATE ERROR N' where the values of N
and their meanings are:

1. 1IB has an illegal value.

2. |IP(I)| exceeds the number of planes for some I.

3. An unused plane has been requested when all planes
are in use.

4. A buffer is needed but all buffers have positive
status words.

5. The block data program has not been loaded.

6. There has been a request for a block of a plane
which is not in use.

7. The simplified version of Subroutine LOCATE has been
loaded when the standard version is needed.

GEN N N0 NN B o) B TR SN N D b o

Supreutine MARK
Purpose:

To shift an input plane in each direction of a direction
list and combine the results with logical ors on an output
plane.

Usage:

CALL MARK(LDL, IPO, IPI, IPC)

Parameters:
LDL -~ Address constant pointing to a direction list IDL
IPO - Output plane index
IPI - Input plane index
IPC - Context plane index
Execution:

The input plane is shifted according to each direction in
direction list IDL. The results are combined on an initially
clear scratch plane with logical ors. If IPC = O, plane IPO is
set equal to the scratch plane. If IPC#0, plane IPO is the
logical and of plane IPC and the scratch plane.

MAXIMA, MINIMA

Subroutines MAXIMZA, MINIMA
Purpose:

To determine the points in a stack of planes which are
maxima or minima with respect to a specified set of neighbors.

Usage:

CALL MAXIMA(LDL, IPO, IPI, NPI)
CALL MINIMA(LDL, IPO, IPI, NPI)

Parameters:

ILDL - Address constant pointing to direction list IDL
IPO - Index of the output plane

IPI - Array of indices of input stack

NPI - Number of planes in the input stack

Execution:

Subroutine MAXIMA (MINIMA) sets each point of plane IPO
to 1 if the corresponding point in the stack IPI(1l),...,IPI(NPI)
is not less than (not greater than) any of its IDL-neighbors.

If a neighbor of a point is off the plane, it has the value of
1.

NEIGHB

Subroutine NEIGHB

Purpose:

‘To list the values of the neighbors of a given point in
a stack of planes.

Usage:

CALL NEIGHB(IP, NP, KX, KY, IDL, JARRAY)

Parameters:
IP - Array of indices of the planes in the stack
NP -~ Number of planes in stack IP
KX - Column of the point
KY ~ Row of the point -
IDL - Direction list which defines neighbors _
JARRAY - Integer array to receive values of the neighbors

of the point

Execution:

READZ is called IDL(1l) times to put the values of the
IDL-neighbors of the point in column KX, row KY of the stack
of planes IP(l),...,IP(NP) in JARRAY.

NULL

Subroutine NULL

Purpose:
To determine whether or not all the points on a plane are
zero.

Usage:
CALL NULL (IP, JGT) .

Parameters:
IP - Plane index _
JGT - Parameter set to indicate result of test

Execution:
If all points of plane IP are zero, JGT is set to 1. Other-
wise, JGT is set to 2.

OUTPUT, OUTROW

Subroutine OUTPUT, OUTROW

Purpose:

To move the values from successive rows of a window
of a stack of planes to an array.

Usage:

CALL OUTPUT(NP,IW,IP,JARRAY,JGT)
10 .
. (Instructions to process values for one row of the
. window which have been put into JARRAY)
CALL OUTROW
GO TO (10,20),JGT

20 .
Parameters:

NP - Number of indices in IP

Iw -~ Window

IP - Array of plane indices

JARRY - Integer array large enough to hold values for one

row of the window

JGT ~ Computed go to parameter set by the subroutine

Execution:

OUTPUT and OUTROW are entries to the same subroutine.
When OUTPUT is called, the subroutine is initialized, JGT is set
to 1, and the values from the first row of the window are moved to
JARRAY. When OUTROW is called the values for the next row, if there
is another row, are moved to JARRAY. If there is not another row in
the window when OUTROW is called, JGT is set to 2.

PF

Subroutine PF

Purpose:

To facilitate bit-plane decoding. Specifically, to set bits in
a specified position in successive words of an array to the values
of successive bits, beginning with a specified bit.
Usage:

CALL PF (LWORD, BIT, ARRAY, N, POS)

Parameters:

LWORD -~ Address constant pointing to the word containing the
first bit to be examined

BIT — Number, counting from 1 on the left, of the first
bit in the word pointed to by LWORD that will be exam-

, ined

ARRAY - Array of N words in which bits will be set

N - Number of bits to be set

POS - Word containing a single l-bit which specifies the
bit to be set in each word of the array

Execution:

The bits in the position specified by POS in the words ARRAY (1),
..., ARRAY(N) are set to the values of the N consecutive bits be-
ginning with the one specified by LWORD and BIT. It is assumed that
when FP is called the bits in the position specified by POS in the
words ARRAY(1l),..., ARRAY(N) have the value 0. Thus action is re-
quired only if a bit is to be set to 1.

£7] e te

POINT

Integer Function POINT

Purpose:

To set an integer variable to a specified element in an array
located by an address constant.

Usage:

INTEGER POINT
I = POINT (LOCATN, N)

Parameters:
LOCATN - Address constant (generated by Integer Function LOC)
pointing to the first element of an array
N - Positive integer specifying an element of the array

Execution:

I is set to the value of the Nth element of the array pointed
to by LOCATN.

PRINT, SPRINT

Subroutines PRINT, SPRINT

Purpose:
To print a window of a digitized picture.
Usage:
CALL PRINT(NP,IW,IP)
CALL SPRINT(NP,IW,IP,NSP)
Parameters:
NP - Number (not greater than 5) of planes which contain
the picture
Iw - Window of the picture to be printed
Ip - Array of indices of the planes which contain the
picture
NSP - Number of blank spaces-to appear to the left of
the printed image of the window
Execution:

_ The window of the digitized picture stored in IP(l),...,
IP(NP) is displayed on the line printer as a rectangular array
of print characters., The window is normally centered horizontally
on the page, but the alternate entry, SPRINT, allows the programmer
to specify horizontal spacing. This routine performs no vertical
spacing. Printing begins wherever the printer is positioned when
this subroutine is called. Windows which extend beyond the picture

are truncated.

The print characters which correspond to the digitized
values 0 to 31 are stored in a 32-word block of labelled common
(/LTX/LT(32)). Each word contains two characters left adjusted.
When the print routine is selecting a print character for the
digital value I(I=0,...,31), the two characters in LT(I+l) are ex-
amined. If the second character is blank, the first character is
used to represent I. If the second character is a prime ('), the
first character will be used to represent I in odd columns, and a
blank will be used to represent I in even columns. In all other
cases, I will be represented by the first character overstruck with

the second character.

The standard characters used to represent O to 31 are
BLANK, 1,2,...,9,A,B,...V. See subroutine LETTER and EXCHAR for

information on changing the print characters.

Subroutine PROP

Purpose:

PROP

To call Subroutine MARK a given number of times with
a given set of direction lists

CALL PROP(LDL,NDL,IPO,IPI,IPC,NPROPS)

Usége:
Parameters:
’ LDL -

NDL
IPO
IPI
IPC
NPROPS

Execution:

Array of address constants pointing to direction
lists IDL :

Number of direction lists pointed to by LDL
Output plane index

Input plane index

Context plane index
Number of times that MARK is called

Plane IPI is copied on plane IPO. Then IPO is used as
the input plane for NPROPS calls to MARK using the direction lists
pointed to by LDL(1l),..., LDL(NDL),LDL(1),... The output from each
call to MARK is ored onto plane IPO before the next call to MARK.,
Plane IPC is used as the context plane in the calls to MARK,

PUNCH

Subroutine PUNCH

Purpose:
To output values from a window of a stack of planes to cards.

Usage:
CALL PUNCH (NP, IW, IP)

Parameters:

NP - Number of planes in stack IP (not more than 5)
IW -~ Window
IP - Array of plane indices

Execution:

One card is punched with IW(l). . . IW(4) and NP in 5I5 format
followed by the word 'PUNCH'. Then characters corresponding to
values for each row are punched with an 80Al1 format. Card charac-
ters BLANK, 1, 2, ..., 9, A, B, ..., V correspond to values 0, 1,
..., 31. Finallv, a card is punched with the words 'END PUNCH'.

RANDNO

Real Function RANDNO
Purpose:

To provide a sequence of pseudo-random real numbers
between O and 1.

Usage:
X = RANDNO (NR)
Parameters:

X =~ Real variable that the subroutine will set to a
number between 0 and 1
NR - Integer variable that will be altered by RANDNO

Execution:

RANDNO generates a periodic sequence of real numbers
between 0 and 1. The period, however, is sufficiently large
to make the numbers seem random. NR is used to store a posi-
tive integer which indicates which element in the sequence
was last returned. When RANDNO is called, it examines NR.

If NR is a positive integer, the next ‘element of the sequence
is generated and stored in X, and NR is modified. If NR is
not positive, NR is set to a positive integer obtained by mak-~
ing a hash total of some active section of core and then
execution proceeds as before.

The user may force the starting point in the sequence by
setting NR to a positive integer before calling RANDNO the
first time.

Subroutine RANPIC

Purpose:

To add noise (0's or 1's) to a window of a plane with a
given probability.

Usage:

CALL RANPIC (IPO, IW, PROB, NVALUE, NR)

Parameters:
IPO - Plane index
Iw : - Window
PROB - Probability with which noise is to be generated
NVALUE - Value of noise (0 or 1)
NR - Integer variable used by Integer Function RANDNO
Execution:

If IPO=0, plane IPO is cleared. Then points in window IW of

plane IPO are set to O (if NVALUE=0) or 1 (if NVALUE$0) with pro- .

bability PROB,., See Integer Function RANDNO for a discussion of
NR.

READZ

Subroutine READZ

Purpose:

To determine the value of a point in a stack of planes.

Usage:

CALL READZ(JVALUE,KX,KY,NP,IP)

Parameters:
JVALUE
KX
KY
NP
Ip

Execution:

Variable which will be set to the value of
the point '

Column of the point

Row of the point

Number of ‘indices in IP

Array of plane indices

JVALUE is set to the value of the point in column KX,
row KY of the stack of planes IP(l), ..., IP(NP).

RELEAS

Subroutine RELEAS

Purpose:
To return a plane currently being used to unused status.

Usage:
CALL RELEAS (NP, IP)

Parameters:
NP - Number of planes to be released
IP - Array of indices of planes to be released

Execution:
Planes IP(l),..., IP(NP) are released and the indices

I1P(1),..., IP(NP) are set to zero.

RPROP

Subroutine RPROP

Purpose:

To generate a plane which has a rectangle of 1's of given length
and width for each 1 on an input plane. Each 1 on the input
plane will correspond to a corner of a rectangle on the output plane.
The sides of the rectangles are parallel to the edges of the plane.

Usage:
CALL RPROP (IPO, IPI, IPC, NX, NY)

Parameters:
IPO - Index of output plane
IPI - Index of input plane
IPC - Index of context plane
NX, NY - Shift parameters which determine the size and orienta-
tion of the rectangles
Execution:

Each point in plane IPO is set to 1 if its column number is
from KX to KX+NX and its row number is from KY-NY to KY where KX
and KY are the column and row of any point in plane IPI with value 1.

If IPC is not 0, then plane IPO may differ from plane IPI only
on points corresponding to a 1 in plane IPC.

SETOP, OP

Subroutines SETOP, OP

Purpose:

To perform the word and bit manipulation necessary for logical
or bit counting operations on planes.

Usage:

CALL SETOP (OPCODE, LENGTH)

CALL OP (LOCATN)

Parameters:

LOCATN - Array of 1, 2, or 3 address constants pointing to

arrays designated ARRAY1l, ARRAYZ2,

OPCODE -~ Integer whose values and meanings are:

0]

1

2

3 -

4

5 - Set ARRAY1

6 - Set ARRAY1
complement

7 - Set ARRAY1

8 - Set ARRAY1l
complement

9 - Set ARRAY1
and ARRAY3

10 - Set ARRAY1

to
to
of
to
to
of
to

to

the logical
the logical
ARRAY3

the logical
the logical
ARRAY3

the logical

the logical

- Perform a null test on ARRAY1
- Set all bits in ARRAY1 to O
- Set all bits in ARRAY1l to 1
Copy ARRAY2 into ARRAY1
~ Copy the complement of ARRAY2 into ARRAY1l

and ARRAY3

and of ARRAY2 and ARRAY3
and of ARRAY2 and the

or of ARRAY2

or of ARRAY2’

exclusive or

exclusive or

and the complement of ARRAY3
11 - Count the number of l-bits in ARRAY1
12 - Count the number of 0-bits in ARRAY2

and ARRAY3
and the

of ARRAY2

of ARRAY2

LENGTH - Length in machine -addresses of érrays pointed to by

LOCATN

Execution:

SETOP is ‘an initialization entry to the subroutine.
called the operation specified in the last call to SETOP is per-
formed on the arrays pointed to by LOCATN.
rays are also determined by the previous call to SETOP.

need not be distinct.

When OP is

The lengths of the ar-

The arrays

SETOP (continued)

The null test (OP = 0) and area operations are functions. For
the null test a value of 0 is returned if all bits in ARRAY1l are
0; otherwise, a 1 1is returned. For the area operations the num-
ber of 1l-bits or 0O-bits is returned. ’

SETSH, SH

Subroutines SETSH, SH

Purpose:

To perform the word and bit manipulation necessary for shifting
the bits in consecutive words to the right or left.

Usage:

CALL SETSH (COUNT, LENGTH)
CALL SH (LOCIN, LOCOUT)

Parameters:

COUNT

Integer specifying number of positions each bit is to
be shifted. Positive values are for right shifts,
negative values are for left

LENGTH - Length in machine addresses of input and output arrays
LOCIN - Address constant pointing to input array

LOCOUT - Address constant pointing to output array

Execution:

SETSH is an initialization entry to the subroutine. When SH is
called, the output array is set to the result of shifting the input
array according to the count specified on the previous call to
SETSH. Bits shifted beyond the output array are lost. Zeros are
put in each bit position of the output array which received no bit
from the input array. The input array is not altered. The input
and output arrays must be distinct.

SHIFT, SHIFTS

Subroutines SHIFT, SHIFTS
Purpose:

To shift a plane (stack of planes) onto itself or onto
another plane (stack of planes).

Usage:

CALL SHIFT (IPO, IPI, NX, NY)
CALL SHIFTS (IPO, IPI, NX, NY, NP)

Parameters:
IPO -~ Array of indices of output planes
IPI -~ Array of indices of input planes
NX - Horizontal shift parameter
NY - Vertical shift parameter
NP - Number of indices in IPO and IPI
Execution:

Plane IPO(I) is set to the result of shifting plane IPI(I)
NX elements horizontally (right is positive) and NY elements
vertically (up is positive) for I = 1,2 ..., NP, For Subroutine
SHIFT, NP is assumed to be 1.

SLICE

subroutine SLICE

Purpose:

To determine the points in a stack of planes whose values
satisfy a relation with a given integer.

Usage:

CALL SLICE(IPO, IPI, NPI, KREL, NUM)

Parameters:

IPO - Index of output plane

IPI -~ Array of indices of planes in the input stack
NPI - Number of planes in the input stack

KREL - Integer specifying a relation. Possible values

and

Ul W N

NUM

their corresponding relations are:
less than

less than or equal to

equal to

greater than or equal to

greater than

Integer with which points in the input stack are

compared

Execution:

Each point of plane IPO is set to 1 if it corresponds to
a point in stack IPI(1l),...,IPI(NPI) whose value is in the
relation specified by KREL to NUM. Other points in plane IPO

are set to 0.

SNAP

Subroutine SNAP

Purpose:

To provide the PAX user and the PAX subroutines with a means
of obtaining memory dumps.

Usage:
CALL SNAP
Execution:
This subroutine is dependent upon the type of machine and the

operating system being used. 1Ideally, it provides a subroutine
trace and then dumps those portions of memory being used by PAX.

SUMONE

Subroutine SUMONE

Purpose:

To add (subtract) a plane algebraically to (from) a stack of
planes and an associated sign plane.

Usage:
CALL SUMONE (IP, NP, IPS, IPI, IADSB)

Parameters:

Ip ~ Stack of planes for absolute value of the sum

NP -~ Number of planes in IP

IPS - Sign plane associated with IP

IPI - Plane to be added or subtracted

IADSB - Integer whose value is 1 for addition or 2 for

subtraction
Execution:

When the subroutine is called, plane IPS has the value 1 at
each point corresponding to points in stack IP that are to be con-
sidered negative. Negative zeros are not valid. When the subrou-
tine is finished, stack IP and plane IPS have been altered to re-
flect the result of adding or subtracting plane IPI. Since over-
flow is not detected, the user must see that stack IP is sufficient-
ly large.

TMARK

Subroutine TMARK
Purpose:

To determine each point in a plane'whose number of

neighbors with the value 1 satisfies a relation with a given
integer.

Usage:

CALL TMARK(LDL, IPO, IPI, IPC, KREL, NUM)

Parameters:

LDL. - Address constant pointing to direction list IDL
which defines neighborhoods
IPO -~ Index of output plane

IPI =~ Index of input plane
IPC - Index of context plane

KREL - Integer specifying a relation. Possible values and
' their corresponding relations are:

l - less than

2 - less than or equal to

3 - equal to

4 - greater than or equal to

5 - greater than
NUM -~ Integer for comparison

Execution:

A point in plane IPO is set to 1 if the number of IDL-
neighbors of the corresponding point in IPI is in the relation
specified by KREL to NUM. Then, if IPC is not O, plane IPC is
anded onto plane IPO.

The direction list IDL may contain up to 127 directions.
Directions in excess of 127 will be disregarded.

TSHIFT

Subroutine TSHIFT
Purposge:

To determine whether a specified shift would shift any
points with value 1 off a plane.

Execution:
CALL TSHIFT(IP, NX, NY, JGT)

Parameters:

IP - Plane index
NX -~ Horizontal shift count
NY - Vertical shift count

JGT - Computed go to parameter set by subroutine
Execution:
If the instruction, CALL SHIFT(IP, IP, NX, NY), would

shift a point with value 1 off plane IP, JGT is set to 2.
Otherwise, JGT is set to 1.

UNCOOR

Subroutine UNCOOR
Purpose:

To retrieve two positive integers that were packed
into an integer variable by Integer Function COORD.

Usage:
CALL UNCOOR(K, I, J)
Parameters:

K - Variable containing two positive integers
I - Variable to be set to the first integer
J - Variable to be set to the second integer

Execution:

I and J are set to the positive integers which were
packed into K by Integer Function COORD.

WINDOW

Subroutine WINDOW

Purpose:

To clear a p

to one.
Usage:
CALL WINDOW
Parameters:
IPO - Plane
IW -~ Window

Execution:

Plane IPO is
are set to one.
are not reliable.

lane and then set all the points in a window

(IPO, IW)

index

cleared and then all points in window IW
If the window is larger than the plane, results

WRITEC

Subroutine WRITEC

Purpose:
To set a point on a plane to 1.

Usage:
CALL WRITEC (IP, KX, KY)

Parameters:
IP - Plane index
KX - Column of the specified point
KY - Row of the specified point

Execution:
The point in the KX column, KY row of plane IP is set to 1.

WRITEZ

Subroutine WRITEZ
Purpose:

To set a point in a stack of planes to a given value.
Usage:

CALL WRITEZ(NVALUE, KX, KY, NP, IP)

Parameters:
NVALUE - Value to which point will be set
KX - Column of point
KY - Row of point
NP - Number of indices in IP
ip - Array of plane indices
Execution:

The point in the KX column, KY row of the stack of
planes IP(l), ..., IP(NP) to set to NVALUE. Only the NP
low order bits of NVALUE are considered. '

