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ABSTRACT

A randomly. varying medium causes both amplitude and phase fluctuations
on a wave prqpagating through it. The time variations of the medium are
shown to provide a mechanism for viewing isolated regions along the pro-~
pagation path. A general technique for locating these fluctuation regions
is introduced by this research. This allows one to measure the distribu-
tion of refractive index variations versus distance along the propagation
path. The unusual feature of the new technique is that this distribution
is obtained by using only one antenna at each end of the propagation path.

The technique is mechanized for space applications by using a trans-
mitter and receiver both in the spacecraft and on the ground. The space~
craft receiver and transmitter are connected in a manner which enables the
integrated uplink phase modulation to be relayed back down to the ground
receiver on a slightly different carrier frequency. This bistatic-radar
technique provides two copies of the modulation waveform from each source
region. The two copies are separated with a time delay which corresponds
to the range of the source. Autocorrelating the ground receiver signal
gives a positive correlation only when the time delay of each source re-
gion is matched.

In developing the description of the technique, several extensions
to the theory of wave propagation in a random medium are made. A non-
linear wave equation is derived to include the‘time variations in addi-
tion to the usual spatial variations. This equation leads to the retard-
ed potential solution which is then applied to the bistatic-radar mechan-
izatioﬁ. The wave theory solution is extended to point out the Fresnel
zone weighting effect which varies with the distance along the propagation
path.

The resolution of a source distribution in the medium is shown to be
limited by the larger of either the spatial scale size or the time scale
size. Some effects on the resolution cell due to the radar motion are

also discussed.

iii SEL~68-037



The signal autocorrelation function is estimated by integrating or
time averaging the receiver output lag-product over the total length of
the observation time. It is shown how the signal-to-noise ratio may be
improved by processing the time averaged autocorrelation through a match-
ed filter.

An experiment at S-band is proposed to ﬁeasure the electron density
variations in the solar wind over a path length on the order of one AU.
Processing ten hours of data will give a unity signal-to-noise ratio for
forty~two resolution cells in a four-tenths of an AU path length or fif-

teen resolution cells in_one'AU path length.
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SYMBOLS
A Magnitude of RS(T) for 7 at source center
A(;,t) Amplitude of the em wave
a Spatial scale size
a', b’ Generalized scale sizes
B Magnetic field density vector
B Log amplitude-fluctuation ratio
b Local source distribution scale size
c Speed of light in a vacuum
D Electric field density vector
D Wave parameter, squared ratio of the first Fresnel =zone
radius over the scale size
DF Diameter of the first Fresnel zone
dR Minimum resolution distance
E Electric field intensity vector
E Electric field intensity scalar
e0 Permittivity of free space
F(z, 1) local, ﬁormalized, refractive index correlation
f Frequency
Gk Shape factor in the eigenvalue U,
H Magnetic field intensity»vector
H(FE) * Filter transfer function
h(t) Filter impulse function
i N-1
J Current density vector
k Direction of wave propagation vector
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A
s(t), S(r,t)

T

Vna,b
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Wave number for free space, k = lk]
Likelihood ratio

Raypath separation

Refractive index power spectrum
Number of resolution cells along the prépagation
Number of independent observation samples
Electron number density function

Mean electron number density

Thermal noise spectral density

Whitened noise spectral density

Refractive index function

Mean refractive index value

Range to source, i = blank,1,2,...

Power spectrum of the received phase signal
Autocorrelation of the received phase signal
Propagation path length

Position vector

Magnitude of r

Magnitude of (r* - 1)

Phase fluctuation of the em wave
Observation time duration

Time ambiguity associated with dr

Time

Refractive index variable quantity
Radar-site velocities along the path

Radar-site velocities perpendicular to the path
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V(r,t)

d(1), B,
J

A(t/T)

Complex phase of the em wave

Propagation velocity

Equivalent bandwidth of thé medium
Receiver bandwidth

Unit vectors

Whitened received signal plus noise
Received signal plus noise
Propagation path coordinates

Z difference coordinate

2~ %

(z2 + zl)/2, sum coordinate

RMS magnitude of the refractive index variations
RMS magnitude of the electron density variations
Mismatched filter performance coefficient

Dirac delta functions

y(t) = m(t) + n(t) eigenvalue

Triangle function

m(t) eigenvalue

n(t) eigenvalue

Signal correlation shape function

Permeability of free space

Pi

Volume charge density

Refractive index distribution function

Time lag |

Functions related to the Fresnel zone
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I. INTRODUCTION

A, Background

This research introduces a new use for bistatic* radar--a technique
for obtaining spatial resolution of the refractive index variations along
the line of propagation in a random time varying media. The advantages
of bistatic radar for the study of the solar system have been utilized by
several authors, Eshleman in 1960, introduced the idea at severdl meet-
ings and wrote a summary [1] in 1964 of the theoretical and experimental
aspects of bistatic radar measurements of the solar system. Lusignan [2]
in 1963, proposed the use of bistatic radar to detect a polarization ef-
fect on em waves traveling through relativistic-solar particle streams.
Fjeldbo [3] in 1964, demonstrated that bistatic radar could be used to
study planet surfaces, atmospheres and ionospheres. Fjeldbo, et al [4]
successfully used this technique to study the Martian atmosphere and
ionosphere. Gee [5] in 1965, investigated the detection and measuring
of shock waves propagating outward from the sun with a bistatic radar.
Tyler [6] in 1967, developed a bistatic radar imaging technique for the
mapping of planetary surfaces. He has successfully used his technique
to study the surface of the Moon.

Before going into the specific details of this research, a broad
view of the objective is presented. Figure 1 shows the essential ele-
ments of the bistatic radar equipment and the fesulting processed data.
As in the usual bistatic mode, there are two well separated sites which
we have labeled as the spacecraft and the ground station. Both sites
have a receiver and tranémitter such that transmitterl on the ground
sends to receiver1 at the spacecraft and transmitter2 at the spacecraft
sends to receiver2 on the ground. The phase coherent transponder causes
the spacecraft receiver and the transmitter which operate on two differ-
ent frequencies to act like a mirror to the uplink carrier phase modula-
tion. It does this by stripping the phase from the uplink carrier and

immediately phaseémodulating it onto the downlink carrier,

*
In a bistatic-radar the receiver and transmitter are well separated.
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The solar wind shown in Fig. 1 is basically an electron-proton plasma

in which the refractive index variations are due to electron density wari-

ations. Regions of variation cause both phase and amplitude modulation on

the em carriers which pass through them. From Fig. 1 it is apparent that

both an uplink transmitter wave and a downlink transmitter wave are trav-

eling in each region along the path., 1In any single region the electron B

density variations cause the same random waveform to be modulated onto

SPACECRAFT

RECEIVER

RANDOM MEDIUM

TRANSMITTER,

GROUND/ STATION

R (r)K
R(r) J/f\\“ /\ .

A43855  NOTE: v= THE PROPAGATION VELOCITY

Fig. 1. DUAL BISTATIC RADAR SYSTEM.
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both transmitter waves. The modulated downlink transmitter wave reaches
the ground receiver first and is immediately demodulated to yield the
random waveform corresponding to the source variations. The modulation
on the uplink wave arrives at the ground receiver somewhat later because
it must first travel to the spacecraft and then bhe retransmitted back to
the ground receiver. Upon receiving the ground receiver it is demodu-
lated to yield a delayed copy of the random waveform corresponding to
the source variations. The time delay between the two modulation wave-
forms is determined by the time it takes the uplink phase modulation to
be reflected back to the source region. This delay 1 is proportional

1

to twice the range p1 of the source from the spacecraft; Tl = 2p1/v.

Additional source regions at other ranges also contribute random modula-
]

tion waveforms on top of the waveforms from region p however, they

H
have correspondingly different time delays. The 1ag—;roduct of the
phase modulation from the ground receiver is formed with a lag of Tl'
Time averaging this lag-product will cause the correlated waveform from
the source region p1 to yield a positive mean value which corresponds
to the mean square magnitude of the source electron density variations.
The random waveforms from the other sources will average to zero because
they are uncorrelated at a 1ag‘of Tl.

B. Description of Present Work

To determine what properties of the refractive index variations can
be measured, the effect of the medium on the transmitted em carrier wave
is derived. A fairly standard nonmagnetic medium is defined by a list of
assumptions. Notably, the random medium is assumed to be statistically
nice: statistically homogeneous (locally), statistically isotropic, and
stationary. From the appropriate constitutive relations and Maxwell's
equations, a general wave equation is derived. It is a nonlinear and
inhomogeneous differential equation. We neglect the inhomogenheous terms
by constraining the rate of change of the refractive index relative to
both the carrier wavelength and period. Finally, using the Rytov [9]
approach, with an incident plane wave, the general equation is trans-

formed into a complex-phase wave equation.
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1772 + 9%V - /0 [w-0? + 171 = 0

This equation is an extension of the wave equation used by Chernov [7]
and Tatarski [8] because it includes the time varying terms V and V.
The above equation leads to the retarded potential form of solution which
is essential to this research, -
The real part of V 1is proportional to the wavenumber k., By let=
ting k get large in the complex-phase wave equation and considering only
zeroth and first order terms in khl we get the ray theory version of the
differential equation. 1In addition, the above step neatly separates the
real (actual phase) and the imaginary (log-amplitude ratio) parts into two
separate equations. Solving the equations by the Greens function/Fourier
transfofm method we get the phase and amplitude fluctuation expressions
as a function of time. At this point the dual bistatic radar setup of
Fig. 1 is incorporated into the solution to yield the coherent two way
phase and amplitude fluctuations as seen by the ground station. The two
way amplitude fluctuation is not actually available unless one usesg an
amplitude coherent transponder. The phase and amplitude time autocor- g
relations are now a straightforward calculation,. The nhew form of these
correlations is a direct result from using the coherent biétatic radar
and the retarded potential wave equation solution. The phase correla-

tion is

R
R (1) = k2 dz. dz, olz,)o(z)[F(z,T - z/v) + F(z, T + z/V)
s 0 1 2 1 2

+ F(z,T = ZZO/V) + F(z,T + ZZO/V)] ,

SEL-68-037 4



The complete derivation of this equation in Chapter II and the study of
its properties in Chapter II1I are a major result of this research.

The o( ) function gives the magnitude and distribution of each
source as a function of its position along the path., o( ) is the quan~-
tity we wish to measure. F(z,T) is the normalized correlation function
of the refractive index. It has a value of one for z = 7 = 0; and,
experimental evidence [22] indicates that it is ﬁearly zero When either
7z exceeds some spatial scale size 'a' or T exceeds some time scale
gsize 1/W. R is the total path length as shown in Fig. 1.

The two receiver self-correlation terms F(z,T * z/v) act as an all
pass weighting function to enable RS(T) to sum all values of the prod-
uct o(zl) c(z2) for [z] <a and |7 <1/W+ a/v. They cause the
large peak at the origin of RS(T) as shown in Fig, 1, The two receiver
cross-correlation terms F(z,T * 2zo/v) will cause RS(T) to selectively
view a small range of O(Zl) o(zz) at each nonzero value of 7T when
|z| <a and |7T¢% 2z0/v[ < 1/W. For example when 1T takes on values
around 2p1/v in Fig. 1, RS(T) will correspond to the mean square mag-
nitude of the source distribution centered at py. It will be slightly
smeared due to the nonzero values of a and 1/W.

Returning to the complex-phase wave equation, it may be 1inearizéd
by the difference equation approach. Again the Greens function/Fourier
transform method of solution yields the wave theory version for the phase
and amplitude fluctuation expressions. Again the bistatic radar is in-
corporated to calculate the two way phase and amplitude correlations, In
contrast to the ray case, the Fresnel zone now enters into the correlation
integrands with a multiplier for each of the four F(,) terms. The mul-
tiplier weights the fluctuation source magnitude as a function of its
location A and spatial scale size a. As the traveling wave accumu-
lates the fluctuations, the sources near the path center are always
-weighted the heaviest in the two cross-correlation F(,) terms as shown
in Fig. 2. The wave parameter D 1is the squared ratio of the first
Fresnel zone over the scale size, When D << 1 the multiplier has a

constant value of two over the entire path.
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A=l-z,/R

D=4R/knga?
0 I | | -
0 0.25 0.50 0.75 1.0
(GROUND) (SPACECRAFT)
243857 NORMALIZED PATH LENGTH-A
Fig. 2. WEIGHTING FUNCTION FOR CROSS-CORRELATION TERMS. i

Equivalent power spectrum expressions are easily obtained for the
fluctuating signals, also. The power spectrum for the phase correlation

R (1) is,
s

Qs(f) = 4k2.}gi/~dzl dz2 c(zl) g(zz) M(z, f) cos (mzl/v) cos (wzz/v)

M(z, f) is the Fourier transform of F(z,7). The equivalent bandwidth
W of the medium is now defined in the usual manner as the square root of
the second moment of the spectrum M(o,f). W is the inverse of the time
scale. The bandwidth parameter and the spectral representation are used
in later resolution and filter discussions.

There are three parameters related to the refractive index variation

source which may be measured from the autocorrelation function, They are

SEL-68-037 6
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the location, magnitude, and scale size shown in Fig, 3 for a sinéle
source region. The general scale a' from the receiver self-correlation
terms is used to classify the medium into a narrow or wide band category.

Under gaussian assumptions,

Rs(r)

MAGNITUDE

SCALE SIZE, o'

SCALE SIZE, 2b
T (sec)

A
~——— | OCATION ————|

A43856

Fig. 3. MEASURABLE CROSS-CORRELATION PARAMETERS,

Most real mediums appear to be in the narrow band category where

2 2,2
(1/W7) > (a"/v"). Another general scale size b' appears in the re-
ceiver cross-correlation terms shown in Fig. 3. It combines the time

scale and the source distribution scale b,

I/é

2
1 4b
t — — ———
b' = WZ + 5 >
v

The resolution of sources in the correlation function is first
approached by considering the minimum distance between two equal, inde-

pendent point sources. A second approach treats the square of the source
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correlation function as a signal ambiguity function. Both approaches give

approximately the same value, TR = 1.26/W (gaussian case), for the cor-
relation time ambiguity TR' This means the resolution distance is
dR = VTR/Z = 0.63 v/W. dR sets a practical lower limit on the propaga-

tion path length such that R > dR' Finally, the sample interval is re~
lated to the ambiguity as Vi < 1/2W = ZdR/v =4TR/2.52 (gaussian case).

It is an advantage to filter out the very low frequency effects
which cause the large spreading seen in the autocorrelation function.
Additionally one may wish to use bandpass filtering to select a desired
section of the spectrum for closer serutiny. The price one pays for this
is first a reduction in the number of independent samples which reduces
the signal to noise ratio. Secondly, there is a smoothing (spreading) of
the remaining correlation peaks with a resulting loss in resolution.

The relative motion between the sources énd the radar sites causes
both cumulative and relativistic aberrations. Both depend upon the ratio
of "spacecraft velocity/propagation veloeity", hence, they will generally
be negligible., However, the cumulative aberration also depends on the
observation time such that long records may need correcting. The cumula-

tive aberration for a source-spacecraft relative velocity V,a along the

path is,

AT = 2t(vza/c)/(1—vza/c) <t T

_— —

Time averaging the received'signal lag-product y(t) y(t + ) is
the most natural way to estimate the correlation function. For a sta-
tionary random Pprocess thié procedure is a minimum mean square error
(MMSE) estimator of the correlation funetion.

The quality of the estimate is expressed in terms of the estimator
signal-to-noise ratio (SNR). By assuming a gaussian signal collected
from all of the sources and a large, additive, white, gaussian noise of
bandwidth W; an explicit form of the SNR is obtained. If A is the

magnitude of RS(T) for a typical source loecated at T = 2p/v and M

SEL-68-037 8
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is the number of resolution calls along the propagation path, the SNR

is approximately,

SNR,, = 2WTAZ/(UN, + 2417
Maximum likelihood (ML) estimation enables one to estimate the mag-
nitude and location of a single, independent, refractive-index variation
source, This estimator is the familiar matched filter. TIdeally it
requires a priori knowledge of the location and scale size or shape of
the source autocorrelation function, The structure of the dual bistatic
radar autocorrelation function causes the matched filter to be sensitive
to the source location but not the source shape. By sweeping a reason-
able shape function through values of T corresponding to the propaga-
tion path, the source locations and magnitudes can be measured from the
noisy data. This is, in fact, how a trained investigator examines the
time-averaged correlation data. The matched filter is obviously a better
estimator than the time average because it weighs the data relative to
the signal source. If TS is the signal time resolution constant, the

SNR of the matched filter is,

2 2
= 2 ]
_ SNRML TA TS/NO

In the worst case (WNo > 2AM), the SNRML is larger than the SNR by the

factor WTS which is usually larger than one. "

Radar astronomy is the primary motivation for this research, The
results of this research may be applied to the study of the solar wind.
The basic model of the solar wind assumes that electron-proton plasma
clouds are flowing more or less radially outward from the Sun. An im-
portant effect of this plasma medium is that the magnitude of the re-~
ceived signal correlations are inversely proportional to the carrier
frequency. Thus the lowest carrier frequency consistent with other as-
sumptions is desired for maximum sensitivity. Several spacecraft out in
the solar wind operating at VHF-band and S~band frequencies already carry
a coherent transponder. They could be used to apply this new technique

as shown in Fig. 1.
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II, THE SIGNAL AND THE MEDIUM

All real propagation media have inhomogeneities which are random in
size as well as being randomly distributed through the medium. Most of
these media also have time variations which are due to the inhomogeneities
having a drift velocity, turbulence, heat conduction, diffusion, etc. If
we transmit an em wave through such media, the radiation will be scattered
by the random inhomogeneities and it will arrive at the receiver with am-
plitude and phase fluctuations.

The problem of characterizing these fluctuations has been studied by
many investigators throughout the world., The most complete treatments
appear in books written by Chernov [7] and Tatarski [8]. Both books also
contain lengthy lists of references to most of the other authors. Chernov
uses a method attributed to Rytov to calculate the fluctuations of acous-
tical waves. The advantage of Rytov's method over the small perturbation
method is that the fluctuations calculated are not restricted to be small.
In Chapter II we use the Rytov approach in our derivation of the amplitude

and phase fluctuations of em waves for the dual bistatic radar system.

A, Quasi-Homogeneous Wave Equation

The necessary wave equation is derived from Maxwell's equations and
to the constitutive relations., A linearized form of the wave equation is
solved by the method of Greens function and Fourier transforms.

The following assumptions are made to define the medium:

. Non~conducting

Infinite in extent

.

Isotropic

W N e

. Slowly varying

|vn/n| << |kn]?

and,
|a/n| <<w .

n is the refractive index, k is the wave number, and w 1is
the frequency.

11 SEL-68-037



5., Weakly inhomogeneous
n(f,t) = n_ + u(r,t) , e < n_ .
6. Statistically homogeneous and isotropic

(u(Tl) u(?z)) = O(Fl) o(?é) F(I'f2 - ?1|)

This defines the spatial randomness. Statistically homogeneous

means the correlation depends on the coordinate difference while
statistically isotropic means the correlation has the same scale
size in all three directions. ‘

F() describes the properties local to an arbitrary point,

7. Wide sense stationary
(u(t)) = constant ,
(u(tl) u(tz)) = F(t, - t) .

This defines the time randomness to be a function of the co-
ordinate difference, also.

8. Large scale size ‘'a’
kn a >> 1 .
(o}
This condition means the scattering is directed into a narrow

cone centered on the line of propagation,.

The following Maxwell equations are used.

VXE=-B,
VxH=J+D,
VeD=p (2.1
The constitutive relations are required, also.
B=“0H,
- p-
D = en E . (2.2)

SEL-68-037 12



The list of assumptions implies that p = J = 0; that is,
there are no sources in the medium,

Observe from (2.2) that V . D = 0 but,

- - — 2
V. E=E.Vn /n2 . 2.3
Using (2.3) and the vector identity,
- o

VXVxE=V(W*E) -VE,

in (2.1) and (2,2) gives,

v?E - u D = -V(E + Vin n))
(¢}

Carry out the two time derivatives in D to get

sz - (n/c)zﬁ = -V(E * Vln n2) + (ZﬁZE + iizf:-)/c2 .. (2. 4)

By using the slowly varying assumption, No. 4, the two right-hand quan-

tities in (2.4) can be neglected (Appendix A) to get,
D 22
VE - (n/c)zE =0, (2.5)

The rectangular components of E may now be found from three similar
scalar wave equations, Without loss of generality, we consider the equa-

tion for one of the components,
vE - (n/c)zﬁ =0. (2.6)
In general, we are looking for a solution E(T,t) of the form

i(wt = 8)
e

E=A 2.7

13 SEL~68-037



where the amplitude and phase are reél functions of ¥ and t; A = A(F, t)
and S = S(¥,t). We use Rytov's [9] approach and define a complex-phase
function V = V(¥,t) such that,

E=A (2.8)
&
where Ao is constant.
Comparing (2,7) and (2.8) gives, -
V=S+1iln (A/AO) . (2.9)

Observe that the Re V =S, the phase; and, the Im V = 1n (A/Ao), the
amplitude. Plugging (2.8) into (2.6) gives an equation for the complex
phase V, ‘

19912 + %V - /o ? [w-02 + i1 =0 . (2.10)

This important equation for the complex phase is the starting point for
both the ray theory and the wave theory characterizations in the next two
sections.

The inclusion of the retarded potential argument in'(2.10) represents
a slight extension to the existing theory on propagation through a ran=-
domly inhomogeneous medium. This argument is neglected by most authors
since there is no way to make use of it in the existing measurement ap-
paratus. The proposed dual bistatic radar scheme motivates this extension

since it relies on the retarded potential argument for its operation.»

B. Ray Theory

We first solve (2,.10) for the geometrical opties or ray theory ap-
proximation, The appropriate equation is found by letting the free space
wave number k get very large (k = w/c). This is the same as assuming
that a, the scale size of the inhomogeneities, is large compared to
wavelength A. A second condition required for the ray theory approxima-~

tion (to be shown in Section II.C) is that ~JAR << a. R is the length

SEL-68-037 : 14



of the propagation path. The physical meaning of the second condition
is: +the size of the first Fresnel zone must be small compared to the
scale size of the inhomogeneities.

To demonstrate the k dependence in (2.10), we write S in an

alternate form, S = k82 such that (2.9) is

V=%kS_+ i /n (A/A ) . (2.11)
2 o

2
By putting (2.11) into (2.10), dividing by k , and grouping terms

-n
according to k ,

k2 |€§g|2 - (m/0? (e - é2)2 =0, (2.12)

-1 2 . . .
k1. [29S, VIn (A/A )+ voS.] - (n/e)2 [-2(c - §.) 4n'(a/A ) + §.1 = 0,
2 o 2 2 o) 2
(2.13)
k_z: neglect.
This process conveniently separated (2.10) into real, (2.12), and
imaginary, (2.13), parts.
Rewriting (2.12) and (2.13) in our S8 and V notation gives
2 2 . 2
]VS] = (n/e)” (w - 8) ’ (2.14)
S 2 2 o . .
S - V 4n A/A0 + V'8 = (n/c)” [-2(w - 8) gn (A/Ao) + 81 . (2.15)

Define a vector (n/k)k to represent the index of refraction in the

direction of the wave normal. Rewrite (2.14) as

VS = (n/w) (w - Nk = - (n8/w)k + nk. (2.16)

We have chosen the same sign for both square roots in writing (2,16) be-
cause it leads to the retarded potential form of solution., Different

signs for the square roots would give the advanced potential form.
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To check the form of (2.15) and (2.186), define the following operator,

BEF+ mwEd, . (2.

This makes the phase equation (2.16),

—— —

0s = nk . (2.18)

By substituting for VS from (2.16) into (2.15) and using (2.17), the

amplitude equation (2.15) is

2G.0B+0+ G= 0, (2.19)
where
¢ ¥ (- Nk,
B Y yn A/ - (2.20)

Equations (2.18) and (2.19) are similar in form to those derived in
Stratton [10], but significantly differ in that we have included the time
variation in the refractive index. The importance of this time variation
is that it leads to the retarded potentiai phase and amplitude solutions.

To solve (2.18) we first find the difference equation between the
actual equation and the static homogeneous equation, This difference
equation is solved by finding the Greens function through the method of
Fourier transforms and countour integration, Using the Greens function,
we write the final answer in integral form.

For the static homogeneous medium, the refractive index n(r,t) = s

a constant, (2.18) or (2.16) gives

(2.21)

Define the difference variable as 81 = 8 = So_ and the refractive index

as n(r,t) = n_ o+ u(r,t). n_ is the mean value of n(r,t); and, u(r,t)
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is a random process such that |u| << n_ by assumption No. 5 of Sec-
tion IIA.
Substract (2.21) from (2.16) to get

vs, + (n8/wWk = (n - n )k . (2.22)
By assumption No. 5,

nS = nS, = (n0 + u)S1 g‘nos1 ,

such that,
VS, + (n /w8, k = uk . (2.23)
1 1) 1

Without loss of generality, we may solve (2.23) by finding any one of the
" three typical components. After the manner in (2.17) we define the spa-
tial derivative as Br U S/r for r = x,y,z and S = le/Br.

A typical component is

Slr + (no/w)Slk = uk (2.24)

(r)

where we keep in mind that k is really k , that component of the
wave normal in the r-th direction,.

Define the following Fourier transform,

S(p,s) = f dr f dts(r, t) e (st - PT) (2.25)
and,
S(r, t) =f (dp/2m) f (ds/2m) S(p,s) e (5t ~ PP (2.26)

To find the Greens function, S replace uk in (2.24) by k&(r - r')

1G’
3(t - t') and compute the Fourier transform of (2,24) with (2.25). Since
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the solution depends upon the difference of r-r' and t-t', set

r' = t' = 0. We get
-1pS1 + 1s(1/v)S1 =1
df
where v = c/no. Therefore,
Sl(p, s) = -iv/(s - vp) . (2.27 -
The inverse transform of (2.27) by the use of (2.26) gives SlG'

0o

Sig(r®) = —iv/(21t)z f dp e ¥ L ds e %%/(s - vp) . (2.28)

The s integral involves a choice in the path of integration. Make the
assumption that S1G =0 for t < 0, that is, the process is causal,
Then the contour must go under the pole as shown in Fig. 4.

AIm s

.s-PLANE

A43859

Fig. 4. CASUAL CONTOUR.
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Using this contour (2.28) becomes

00

—-ilr -
8,6(m 1) = (v/2m) f ap e 1 T VOP | e - vy (2.29)
/. .
The solution of (2.24) is (recalling r — ]r - r'[ and t >t - t!)

SlG(r,t) = kadr'fdt' u(r',t") 6[‘r -r'| - v(t - tH] .

Doing the +t' integration,

r = x,y,z,
Sl(r,t) = ku/ﬁdr’ u(r',t - |r - r']/v); r' =x',y',2", (2.30)

r!

(Z':Y"Z')‘

Equation (2.30) is a statement of Fermat's principle of least time. It
states that an em ray between two points travels the path which it can
traverse in the shortest time. Sl(r,t) is called the retarded-potential
phase because of the time argument in wu. This argument, t - |r - r']/v,
says that the contribution to the phaée at time t and position r must
take into account the finite propagation velocity v for a disturbance
which is a distance |r - r'| away from r.

We want to compute the autocorrelation function of S = So + Sl'
SO = nokr is a constant once the path length is fixed and would be sub~
tracted out of the correlation. Therefore, the subscript 1 is dropped
in (2.30). Furthermore, we choose the direction of propagation to be
along the +z axis such that the spacecraft is at =z = 0 and the ground

station is at z = R as shown in Fig. 1. We update (2.30) for the one-

way phase‘from the spacecraft to the ground station,

R .
S(R,t ) =k f dz' u(x',y',z', t - (R - z")/v). (2,31)
g o g
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tg is time measured at the ground., We switch the time reference to the

spacecraft by noting that tg = ts + R/v. Then
S(R,ts) =k ]B dz' w(x',y',z', ts + z2'/v) . (2.32)
(¢]

The one-way phase going from the ground to the spacecraft is [by setting
r=0 4in (2.30)]

R
S(o,t ) = k f dz' u(x',y',z', t_ - 2'/v) . (2.33)
(o)

In the ray theory approximation the inclination of the ray is small so
that x << a and y << a. Therefore, we set x' = y' =2 0 such that

r' = (0, 0, z') = (2'). The total phase at the ground, receiver is the

21
sum of (2.32) and (2.33). Dropping the "s" subscript and the prime

notation, ’

R
s(t) =k f dzfu(z,t - z/v) + ulz,t + z/v¥} . (2.34)
, ()

The time autocorrelation is the expected value of the product S(tl) Setz}

which is written as

Multiply S(tl) and S(tz) and take the expected vidlue to get
R _ ’ ‘ .
Rs(tl,tz) =k _/(;fdzl d22 ([u(zl., tl - zl/v) + ur(z.l,wl::L * zl/v)]
O

- [ulzy, t, - z,/V) + u(zz,t2:+ zz/v)]) . (2.35)
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At this‘point we use the two statistical assumptions of Section IIA:

6. The medium is locally statistically homogenous so that the
correlation function depends only upon the spatial coordinate

difference of u(d,P), namely 52 - o .

7. The medium is statistically stationary so that the correlation
fugction depends only upon the time coordinate difference of
u(@,p), namely |B, - 61

The expected value quantity in (2.35) gives four terms which are the
refractive index correlations. We represent these four terms with new

functions o() and F(,).

(u(zl,t1 - 2;/V) u(zy, t, - zz/v))

2 U(Zl) U(zz) Flz, - zl,t -t, - (z, = zl)/v]

2 1

(u(zl,t1 + zl/v) u(z,, t, + zz/v)) = o(zl) o(zz) Flz, -

2 -t + (z, - zl)/v]

2 " oty Yy

(u(z,t, - 2,/v) ulz,,t, + zz/v))

2 c(zl) c(zz) ¥Flz, - z,,t, - t, + (2, + zl)/V]

(u(zl,t1 + zl/v) u(zz,t2 - zz/v)) = c(zl) o(z,) Flz, - z,ty -ty - (z, + zl)/v]

(2.36)

o() is a source distribution function which depends upon position.
At a particular point its magnitude is the standard deviation of the
source variation at this point. PF(,) is the normalized refractive index
correlation function such that ]F(,)i <1 and F(o,0) = 1. Essentially
the two arguments of F contain the space and time scale size informa-
tion. F is implicitly a function of position through the scale size
parameters, also.

The following change of variables is used to reduce (2.35) and (2.36).

zo = (Zz + zl)/Z
zZz = Z2 - Z1

= - . .37
T t2 tl (2.37)
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Now (2.35) may be written as,
5 R |
RS(T) =k ./:é. dz1 dz2 d(zl) c(zz) [F(z,7 = 2/v) + F(z,7 + z2/v)

+ F(z, 1T —2z0/v) + Flz, T + ZZO/V)] . (2. 38)

The two F functions F(z,7 % z/v) in (2.38) represent the one way
self-correlation terms; and, their arguments depend only upon the co-~
ordinate differences. The last two F functions F(gz;7 % ZZO/VY in
(2.38) represent the two way cross-correldtion 'terms stch that the sum
of (z1 + zz) = 2z0 appears in the time argument of F., The ternis with
the sum argument enable one to Use RS(T) to igolate the local sources
versus position along the path, Chapter III discusses these two terms in
detail.

We return to (2.19) and solve for the damplitude fluctuations., This
is done by fixing the k vector to lie along the +z axis such that

k = k2. This reduces (2.19) to the following scalar equsation.

B, + (n/c)Bt = =1/2(w = é)[az(w = 8) + (n/c) Bt(w - 91 . (2.39)

We get for the solution,
B = -(1/2) 4n (w = §) 4+ constant , (2. 40)
where from (2.34),

S =k /R dz [G(z,t - z/¥v) + G(z;t + 2/vV] . (2.41)
o]

The constant in (2.40) is found by observing that for zero path length
(R=0), S=0 such that,

w
]

in [A(o,c,o)/Ao} =0 = «(1/2) gn w + constant .
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Plugging this into (2.40) gives

w
il

en A/A_ = -(1/2) m (1 - S/w), (2.42)

or

pS
i

A/ - &/ (2. 43)

Equation (2.43) is inconvenient for computing statistical averages

so we use (2,42) to compute the log-amplitude autocorrelation.

RB(tl,tz) = (B(tl) B(’cz)) = (1/49) {g4n (1 - S(tl)/w) gn (1 - S(t2)/w)> .

By the slowly varying assumption, é/w << 1, we may use the power series

expansion of gn to write,

2 . .
RB(tl,tz) = (1/40") (S(tl) S(tz)) Foea (2.44)

and neglect all higher order terms. Using our previous assumptions of

stationarity and statistical homogeneity, (2.44) becomes
2 2 2
RB(T) = -(1/40") 4 RS(T)/dT (2. 45)
In writing (2.45) we have made use of the autocorrelation derivative [11].

c. Wave Theory

Reconsider (2.10) for the more general wave theory case, Equation

(2.10) may be written as

heomend 2 2 2 -2 » .. 2

|[VV| ™ + VTV - (n/e)” (V7 - 20V + iV) = (kn) " . (2. 46)
The difference equation approach, motivated by Chernov, is used to solve

the complex-~phase equation. Denote the solution for a static homogeneous

medium to be Vo corresponding to a constant refractive index no,

23 SEL-68-037



It

17V |2+ v = ()2, (2.47)
o o (8] .

Define the difference variable as Vl =V = Vd and the refractive index

as n=n_+u(r,t), Subtract (2.47) from (2.46) to get (¥, = V)
2 o == 3 o w/el? 1P
[VV |7 + WV - WV, + VTV - [+ w/el” V)
- 20V, + iV, ] = k"u(2n  + u) . (2.48)
1 iV 0

For a weakly inhomogeneous medium, assumption No. 5 of Section IIA,

u << n such that (2.48) is,

— 2 | == == 2 2 .2 .
[VV, |7+ 29V - WV VTV - (/W7 (V) - 208

L8 2
L F 1V1) = 2k'n u,

(2.49

where v = c/no. The two underlined terms in (2.49) are approximately,

VVl : (VV1 + ZVVB) = ZVVl . VVO

(2.50)
%ﬁ%luaﬂ %—%Nl
by requiring that
|9V |/|9V | = |VV.|/kn << 1 (2.51a)
1 o 1 o
RACESE (2.51b)
The approximation (2,.50) makes (2.49) a linear equation,
R e L2, 2 5 2
[NV, - VV_+ V'V, ] -« (L/v) [~20V, + iV. ] = 2k n u (2.52)
1 o) 1 1 1 0

The conditions in (2.51) are a definition of the "slowly varying"
medium for the complex=phase functioft V. Since V1 = S1 + ign (A/Ao),
(2.51) says that the relative phase change must be small in one RF wave-

length and one RF period,
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|V, | /kn_ << 1
and

|5, |/w << 1. (2.53

Also, the relative amplitude change must be small in one RF wavelength

and one RF period
|V en A/A |/kn << 1
o o

and

len’A/A | /0 << 1 . (2.549)

The inequality (2.54) is true if the amount of scattering in going a cycle
is small. The inequality (2.53)%implies that the angle of inclination of
the ray to the initial direction‘is small,

Observe that (2.54) is always true in a weakly inhomogeneous medium
(lu] << no). For large scale fluctuations (knoa >> 1), the scattered
power is concentrated in a small solid angle & ~ 1/kn0a such that the

angle of inclination of the ray is small, also. Small scale fluctuations

(knoa << 1) cause isotropic scattering where it is not always true that
the amplitude of the scattered waves is small compared to the amplitude
of the incident waves. Therefore, the solution of (2,52) is generally
restricted to the knoa >> 1 case, assumption No. 8 of Section IIA.

We proceed to the solution of (2.52) by the Fourier transform and
Greens function method. Motivated by Chernov [7] we define a function

W(r,t) such that the static solution E0 = exp [i(wt - Vo)] factors out

of V..
ot Y
V. = WE =w e Wt -V (2.55)
1 o
This converts (2,52) to,
V2W - (1/v)2 W o= —Zikznou E_ . (2.56) .
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To find the Greens function for (2.56) we consider,

VW - (/W2 = (T - T 8t - t') . (2.57)

Equation (2.57) is in a wvery standard form, more so than (2.24) of ‘the

ray theory section, We quote from [12] the Greens function as

W = ~(v/4n|r = ' ). B[|T - '] - w(t - t)], t >t . (2.58)

This gives the solution of (2.56) as the volume and time integral

W(F, 1) = i(kznov/ZTt)fdv‘f 4t u(F',t) E_(r',t)

- BT - x| - vt - tDHV/|T -7 .

Integrating out t' and letting Ar af v - 7 ,

w(i«“, t) = i(kzno/zar)fdv' wT,t - Ar/v) EO(F’,t - Ar/v) /IO .

(2.59)

Putting (2.59) into (2.55) gives

Vl(?,t) = i[#zno/Zﬂ EO(F,tﬂd/adv' u(r',t - Ar/v) EO(F',t - e/v) /e .

(2.60)

By directing the k vector along the 2z direction, V = knoz in EO
of (2.55). Replacing Eo in {2.60) gives,

v (F, 0 = i(k2n0/2ﬂ)fdv' w(T',t - Ar/v) %"?p {—iknomr - (z - z")]}.

(2.61)
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For large scale inhomogeneities (knoa >> 1), there is negligible re-
flection so that the region of integration is the infinite slab between
z'= 0 and 2z' = z., 1In fact the region which contributes most to the
signal at the receiver site is a cone whose apex is at the receiver and
whose angle is 1/knoa. This angle is usually much less than an antenna
beamwidth so that we can neglect the antenna pattern transfer function in
our derivations.

The real and imaginary parts of (2.61) are the one-way phase and

amplitude fluctuations at T = (0,0,2).

S.(z,t) = (k°n /21 f dz'ff ax' dy'
1 (o) o oo

+ (sin kno [Ar - (2 - 2")1/8r) w(T',t - Ar/v) (2.62)

B =gn [A(z,t)/A ] = (kzn /2m) /Z dz'ff dx' dy'
o 0] 0 oo

. (cos kno [Ny - (2 - 2')]/00) uw(®',t - Ar/v)

(2.63)

Equations (2.62) and (2.63) are identical to (90) and (91) derived by
Chernov [13] with the exception that the retardation argument has been
included here. This argument is necessary for our bistatic radar ap-
plication. Before writing (2.62) and (2.63) in the bistatic form similar

to (2.34) we form the Fresnel approximation with

il
Z

~

N

1

N
~

+
©

where
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Because of the cone argument following (2,61), it is a good approximation

2 2
touse p << (z - 2z') . Since z' < z,

Lr =~ (z - z') + pz"/Z(z - z') (2.64)

and,

(2.65)

Using (2.64) and (2.65) in the sin and cos terms of (2.62) and (2.63) we

define

@S(z - z',0) 4t [kno/ZH(z - z')} sin Eﬂ%pz/z(z - Z'ﬂ

®c(z - z',0) af [kno/Zﬂ(z - z')] cos [%nop2/2n(z - z'ﬂ .

(2.66)

Then (2,62) and (2.63) can be written in the Fresnel approximation form.

zZ r o
Sl(z,t) =k f dz' /f dx' dy' @Su(T“,tv z -z |/V)
(o] -0
~Z 0
B(z,t) = k f dz’ [/ dx' dy’ <I>C wF®,t ~ |z - z'|/V)
() Y %0

(2.68)

Using the same argument leading up to (2.34), the phase from the space-

craft to the ground is,

R )
S(R,ts) =k ./f dz* .}C/~ dx' dy’ @s (R -~ 2",p) u(’f’,ts + z'/v)
(o] o0 .

(2.69)
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The phase from the ground to the spacecraft is,

R oo
S(o,ts) =k f dz* /:[ dx' dy' <1>S (z',p) u(?',ts - z'/v) .
(o)

(2.70)

Sum (2.69) and (2.70) (dropping the "s" in t_ and the prime

notation) to get the bistatic signal at the ground station, receiverz.

R o0 :
S(t) = k [ dz -/l‘ dx dy{@s (z,p) w(F,t - z/v) + <DS (R - z,p)

u(r,t + z/v)} . (2.71)
Similarly,
R 0
B(t) =k -[ dz /;[ dx dy {@c (z,p0) u(r,t - z/v) + e, (R - z,p)
e u(r,t + z/v)} . (2.72)

We compute the time autocorrelation of the phase 8 as in (2.35),

R 00
2 ] —
Rs(tl,tz) =k [/dzl d22 ./_././],dx1dx2dy1dy2 <{<I>S (zl,pl) u(rl,t1 —zl/v)
, r 2o

+0_ (R - 2,0 u(F,t + zl/v)} {@2_112_ " <I>2+u2+}> . (2.73)

Again make the assumption of a statistically homogeneous and stationary
medium so that the correlation function depends on the coordinate dif-
ferences.  We define the same ¢() and F(,) functions as in (2.36) from

the four product‘terms in (2.73).
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For example,

(u(rl,tl + z,/v) u(rz,t2 - zz/v)) = o(r;) olry)
- F(|ry, -1y ],T - (2, + 2 ) /W)

We make the assumption that the standard deviation distribution is in=

dependent of the x and y directions, That is,
(ulu2 = o(z)) o(zy) F(|r, - rll,T - (z, - Zl)/V) .

Physically this amounts to orienting the wave normal perpendicular to

the homogeneous strata in the x and y directions, Even when there

is no such strata the assumption is good because the x and y changes

are masked by the scale size along the z-axis. Using (2.36), (2.73)

becomes,
2 R o 200
RS(T) =k _/Z dzldz2 a(zl) 0(z2) /]_ZZ dx dxo dy dyo {(Ds(zl,pl) @s(zz,pz) Fl,(Ar,'r - z/v)

+ QS(zl,pl) <I>S(R -z ) F2(Ar,'r + 2zo/v) + ®S(R - =z

27 pZ 1’ pl‘

+‘¢S(R - zl,pl) <I>S(R - zz'pz) F4(Ar,'r + z/v)}.

) ~<I>S(z2,pz) FS(Ar,T - 2zo/v)

(2.749)

We have used the following center of mass and difference coordinates

in (2.74):

i
<
N
+
g
=
1
N
o
!
=
]
1
il
!
al
3
™
|
>
o+
M
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Also, in (2.74) note the coding of the F(,) function arguments by a
subscript (i.e., F(Ar,T - 2zo/v) = F3). F, and F, are the self-

correlation terms while F2 and F3 are the cross-correlation terms.

X, and yo can be integrated because they appear only in ®s
through the p variable. For example, the first term in (2.74) contains

the integral,

* 2
I=. g dxo dyo @S(zl, [(xo - x/2)
( /2)2]'/2 o | '[( /22 4+ ( /2) 2]/>
+ (v, -¥ | o zz, X, + X +(y +y .

Using the idenfity in Appendix B this integral is

I =300 (2,0 + & (22,001, (2.75)

where )
2 2 %
p=(& +y) .

Integrating the remaining three terms in a similar manner (2.74) becomes,

R
R (7) = (x%/2) /f dz, dz, o(z;) o(z,) '[7 dx dy [@S(Z,D)(Fl + F,)
(o] .

0]
+ S(2zo,p) F

- 0] -
Lt QS(Z[R zo],p)F4 + s(R 2zo,p)(F2 + F3)

- ) 2,76
+ @S(R Z,p) F, + <I>S(R + z,0) FB] . ( )

Starting with (2.72) we go through a similar exercise for the amplitude

to get,

31 SE1-68-037



R %
2 ' [
Rp(7) = (K7/2) [/ dz, dz, d(z,) o(z,) ﬂ dx dy [@S(z,p)(FI + Fp)
O -0

o+ QS(R, - 220,p)(F2 + FS)

- ®S(2z0,p) F, - @s(zm - zo],p) ¥,

- 0 (R -2,0) F, - ¢ (R + 2,0) F3] : (2.77)

The six terms in the integrands of (2.76) and (2.77) are identical. It
is the + and - operations which cause the difference between RS
and RB.

Further simplification of RS and R is obtained by introducing

B
polar coordinates (p,%) in the (x,y) plane,

2%

ff dx dy = f odp / ae . (2.78)
00 (34 (5

By assuming the scale size is the same in both x and ¥, all of the

terms in (2.76) are independent of ¢. Doing the ¢ integral gives,
5 R oo -
RS(T) = rk Jé7~ dz1 dz2 c(zl) G(Zz) .Zr pdp [@s(z,p)(Fi + F4)

+ QS(ZZo,p) F, 4+ QS(Z[R zo],p) F4 + S(R 2zo,p)(F2 + F3)

1
- ~ . . .79
+ @S(R Z, 0) F, + <I>S(R + Z,p) FB] (2.79)

A1l six of the p integrals in (2.79) may be written as,

00
I=2x “/5 pdp QS(B,p) Fi(p,z,Ti) i=1,2,3,4.
G

B = z/kno, 2z0/kn0, 2[R -~ zo]/kno, eesy [R + z]/kn0 .

©_(B,p) = (1/27B) sin (o°/26) . (2.80)
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. 2
Make the change of variable q = p /2 such that (2.80) becomes,

1= (1/B)f dq sin (a/B) Fi(q,z,Ti) . (2.81)
(o]

Successive integration of (2.81) by parts gives,

bT) = . (2.82)

2 4
I ="F(z,711) -BF (0,z,7T.) + BF (0,z,71.
i 1526)’ i 1546) i

where

df <n n
Fi(nq) = 0 Fi(q,z,Ti)/Bq n=123,....

Further study of (2.82) requires a function Fi whose q derivatives
are well behaved at the origin. The gaussian function in p 1is the
classical choice; but, it probably is also realistic--at least near the
origin. Lastly, a great deal of insight is gained using the gaussian

function. Therefore, we let

_ 2/a2
F (py2,7) = g;(z,7) e e , (2.83)
which 1is,
2
-2q/a
Fi(q,z,Ti) = gi(z,Ti) e .
Plugging (2.83) into (2.82) gives the desired solution.
2.2 2 2
I = gi(z,Ti)/[l + (2B8/27)7]1 = Fi(O,z,Ti)/[l + (2B8/a7) 7] . (2.84)

Putting (2.84) back into (2.79) we can write RS(T) subject to the
regular assumptions of Section A and the assumption that Fi is gaussian

for p near zero.
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R 2
RS(T) = (kz/Z)J(Zﬁ dzldz2 g(zl) c(zz) (F1 + F4)/[; + (ZZ/knoaz) ]

22 22
+ F /[} + (4z /kn a™) ] + F /{1 +(4[R~ z 1/kn a") ]
1 o o 4 o o J

2
+ (F_ + F )/[1 + (2[R - 2z 1/kn aZ) ]
2 3 o o

2 2
Fz/[l + (2[R - z]/knoaz) ] + FS/[; + (2[R + z]/knoaz) ] (2.85)

In the above,

F, = F,(0,z,7.) = F.(z,7,) and z = z,_ - %
i i i i i

9 1’ 220 = 22 + Zl'

. 2
The maximum value of the 2B/a term in (2.84) is D q£ 4R/knoa2;D

is called the wave parameter. By introducing in (2.85) a normalized

distance A =1 - Zo/R and using the wave parameter D, (2.85) can be

made a little more readable.

R
RS(T) = (k2/2) f.[ dzldz2 a(zl) G(zz)

Fl(Z,T

+ F4(z,T

+ F2(z,T

+ FS(Z,T

SEL-68-037

- z/v) 1 + 1

1+ D2(z/2R)2 1+ D2 Az

1

+ 2/v) 21 2t 2 2

1 + D" (z/2R) 1 +D @ - A7)
+ 22./v) P - 5 * 3 - )

1+ (D/D@ -207 1+ (/DA - z/R)7]
- 2z /v) L + 1
o]

1+ 0na-2m? 1s 0/0a s e

(2.886)
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The amplitude correlation RB is easily found by comparing (2.76) and
(2.77) and changing four of the + signs to - signs in (2.85) or
(2.86).

For the small wave parameter case D << 1, the denominators in

(2.86) approach unity. This reduces (2.86) to
2 R ’
RS(T) =k [[ dz, dz, cr(zl) c(zz) [F1 + F, + F, + FS] ) (2.87)

which is the ray theory expression (2.38). Physically a small wave par-
ameter means that the radius of the first Fresnel zone is small compared

to the inhomogeneity scale size as shown in Fig. 5a.

T SCALE S1zE r, RADIUS OF
z | FIRST FRESNEL
aii ZONE

o

A43858

a. Small D, ray case b, Large D

Fig. 5. WAVE PARAMETER.

The physical meaning of the large D >> 1 wave parameter case is
shown in Fig. 5b. The large wave parameter case gives complicated ex-
pressions for the multipliers in the square brackets of (2.86). 1In
general, a << R such that the z/R terms may be neglected. Then the
multipliers for the cross~correlated F functions (F2 and F3) are

as illustrated in Fig. 6.

Figure 7 shows the multiplier for the F1 or ground receiver self-

correlation term. The F4 or spacecraft self-correlation term is
identical in shape but has its maximum value in the phase correlation
(minimum in the amplitude correlation) at the spacecraft. For D<< 1
in both Figs. 6 and 7, the multiplier value is a constant; it is very
near two in the phase integrand and very near zero in the amplitude
integrand. |
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{GROUND) (SPACECRAFT) (GROUND} (SPACECRAFT)
A43854 PATH-LENGTH-A PATH-LENGTH-A

Fig. 7. SELF-CORRELATION WEIGHTING MULTIPLIERS.

Several conclusions may be drawn from these figures for the medium
and large wave parameter cadse,  First, the c¢ross-correlation terms always
weight the refractive index variations near the path center the heaviest.

Thus and R

B
fluctuations are much stronger for large wave parameter conditions,

RS will "view" the path center best. Second, amplitude

that

is, when several blobs can fit inside the first Fresnel zone, Three, the

self-correlation terms will dominate in the RS integrals near the ends

of the path while they dominate in the R integrals nedr the path center.

B
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We conclude this section with a brief look at the spherical wave
approach to computing the amplitude and phase correlations. The fluctu-
ations resulting from an incident spherical wave may be calculated from

(2.60) by substituting,

i(wt - kn r)
o

E = (1/1) e , r = ]?] . (2.88)

Thus,

9 ox {—ikn[Ar - (r - r')]}
Vl(r,t) = i(k nor/Zﬂ)fdv‘ wT,t - Ar/v) P

r'Ar

(2.89)

where Ar |F - F'|. Equation (2.89) is equivalent to (2.61) for the plane
wave case. By following the development from (2.61) to (2.88) it is ap-
parent that the o( ) and F(,) functions and their arguments will re-
main the same and only the magnitude of the fluctuations may change. In
fact for the large wave parameter case D >> 1 the correlation expres-
sions Rs and RB are exactly the same [14]. Thus a spherical wave

analysis does not change the basic results of this section.

D. Bandwidth

We finish the discussion of the signal and the medium by defining
the equivalent bandwidth W of the medium. 1/W is the time scale of
the medium, This is most easily done from a spectral analysis approach.
The Fourier-Stieljes integral expansions for both the refractive index

variation u(z,t) and the received signal S(t) are formed in (2.90),

SCH) =f as() eiZ:rft’

-00

00

ulz, t) =f du(z, £) e 2™t (2. 90)
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Taking the expected value of the quantities in (2.90) gives,

R(D) = (8(t)8 () =]]' (as(g)) ds*(s,)) o' (Trty - by

0(z,) o(z,) F(z,7) =“[7” (dU(z,£)) auk(z,,1,)) S12m(fty ~ £t

(2.91)

But stationarity implies,

% 3
(ds(f)) ds™(£,))

5(f1~— f2) Qs(fl) dfldfz‘

(du(z, %) dU*(zz, £)) = 8(8, - £) olz) o(z,) W(z, 1) df af,

1
(2.92)
where Qs(f) >0 and M(z, ) > 0.
Therefore,
R_() = f af Q_(f) e 2" (2.93)
L, s
o o]
) ¥ i2wfT
F(z, 1) = f df M(z, £) ~ T
Lo (2.94)

The power spectral density for F(z,7T) is defined‘by (2.94) as
M(z, £). Using M(f) = M(o,T), the one sided equivalent bandwidth W,

termed the "medium bandwidth", is defined by the following three formulas:

00 00

f df M (f) = E_;(1/E )f af £ M(f) = £ -
J s s Ko le)

(o) (o}

o ] ,,"%
ar(t - f ) ‘M(if)J (2.95)

v [am, |
8

(¢}
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Equation (2.93) defines the power spectral density of RS( ). By
inverting (2.93) and substituting for Rs from (2.38) we get,

R
Q (D = sz[ dz dz, o(z) 0(2,) M(z,1) [cos (wz/v)

+ cos (w2zo/v)] . (2.96)
With a trigonometric change, (2.96) may be written as,

R
2
Qs(f):=4k~ZZT dzldz2 c(zl) 0(z2) M(z,f) [cos (wzl/v) cos (wzz/v)]

(2.97)

where z = zz - 2. Either (2.96) or (2,97) gives the equivalent fre-
quency domain formula corresponding to the time domain formula (2.38).

Figure 8 illustrates the autocorrelation RS(T) and its power spec-
trum Qs(f) for a point source located at z = P. For the point source
case, the correlation shape is TF(z,17); and, its Fourier transform
M(z,f) is the envelope of the power spectral density. The effect of the
two cross~correlation terms located at T = % 2p/v causes a sinusoidal
oscillation in the envelope of the power spectrum with a distance between
peaks of Af = v/2p. This envelope oscillation results because the dual
bistatic-radar of Fig. 1 provides two copies of the source waveform at
the ground receiver; these two copies are separated by the delay
T = 2p/v. Sources at different locations may have identical power spec~
trums M(z,f) and still be separated in RS(T) because the envelope
oscillation is different for each location. An exponential shape is
arbitrarily chosen for the power spectrum envelope.

A similar pair of curves is shown in Fig. 9 for two identical point
sources of the same magnitude and shape. Again the overall shape of the
spectrum is determined by the shape of the two sources. However, the
spectral oscillation which coﬁtains the location information does not

give a direct readout of the source locations. This illustrates why the
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autocorrelation function has been emphasized in the previous sections;
it readily aids the eye in locating the signal sources.

In summary, Chapter II has developed from first principles the
retarded-potential fluctuation signal for the dual bistatic-radar at the
ground receiver. Two useful statistical characterizations RS and RB

have been derived for this signal., Section Ila also lists the properties

which define the propagation medium. Through the wave parameter D and

Rs(r) Qs(f)
| {
\
AY
\
h\\’]Af Af =v/2p
1724 in
2/W .
| U
0 2p/v T 0] )
43851
Fig. 8. SINGLE POINT SOURCE REPRESENTATION.
Rs(i)
i
— = | /W
1/4
2] AW |
0 2p,/v 2,/ = 0 fo '
A43852

Fig. 9. DOUBLE POINT SOURCE REPRESENTATION,
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Figs. 5, 6, and 7 some insight into the construction of the time correla-
tion versus path length and scale size has been gained. Figures 8 and 9
illustrate the basic nature of the important cross-correlation terms in

RS and R_. They are also useful for understanding the effects of fil~-

B
tering on the resolution as discussed in Chapter III.
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ITI. CORRELATION FUNCTION INFORMATION

We will concern ourselves with the phase autocorrelation function
(2.38) in the remaining chapters. It is the simplest expression with
which to work; and, the results which we derive are applicable (with
more complexity) to the amplitude correlation (2.45) and the wave theory
correlation expressions derived in Chapter II, Section C. The discussion
emphasizes the two cross-correlation terms of RS and the propagation~-

medium information which may be obtained through these two terms,

A. Measurable Parameters

Upon reception of the carrier signal at the ground station, the car-
rier signal is demodulated by a phase lock loop demodulator. The output
voltage waveform from the demodulator is the superposition of the modu-
lation waveforms from each source region along the path.

The output voltage is proportional to S(t) given by (2.34). We
defer the consideration of the output noise from the demodulator until
Chapter IV. Letting the gain of the receiver and processor be unity, the
autocorrelation of the output voltage is given by (2.38). Both (2.34)
and (2,38) are repeated below.

R
s(t,) = kfo dz, [ulzy,t, - 2,/v) + u(z,t, +z/9], (3.1)

R
R (1) = kz dz_dz_ o(z,) o(z) [F(z,T ~ 22/v) + F(z,T + 22/v)
s 0 172 1 2

+ ¥(z,T - 2zo/v) + P(z,T + ZZO/V)] , (3.2)

= - = T = - .
where =z z,, .zl, 2z0 z2 + Z» t2 tl

The source distribution function o( ) is the quantity which is
actually desired. The two functions F(z,7 * 2zo/v) act as weighting

function windows to enable one to measure o( ) through RS(T). The

43 SEL-68-037



first example to illustrate this measuring ability is the point

source

of refractive index variations,
ulz,, t) = 08(z, - ) £(t) . | (3.3)
Let,
(£(t)) £(t,)) = F(1) # 0 for [t} < /v,
=0 for ]T[ >> 1/W .
and F(o) = 1. Then,
R
S(t) = ok fo dz [8(z, - D) £(t = 2,/v) + 6(z - B) 2(t + 2,/)]

ok[f(t - p/V) + £(t + p/VT .

The correlation function is,

RS(T) = (S(tl) S(tz)) = a2k2[2F(T) + F(T + 2p/v) + F(T’— 2p/M71 .

If F(1) 1is a gaussian function,

F(7) = e , (3.4)

Then,

RS(T) = azkz[% exp (—W2T2) + exp [—WZ(T +,2p/v)2] + exp {—WZ(T - 2p)v)2ﬂ.

(3.5)
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-2p/v 0 2p/Y T

2/W

A44284

Fig. 10. AN AUTOCORRELATION FUNCTION EXAMPLE.

Figure 10 demonstrates three parameters which can be measured from the

autocorrelation function.

Range: The peaks for T # 0 occur at T = *2p/v. Therefore,

¥

p = vi/2 (3.6)

is the range in meters to the source from the spacecraft.

Magnitude: The magnitude of the variance of u(,) at =p 1is

z
1
found from the magnitude of RS(T) at T = *#2p/v. For our point source

2 2
(3.3), the variance is a constant ¢ (p) = & . From (3.5) we get

o2 (p) = R (7 = 2p/v) /K2 = of . (3.7)

Scale Size: The time scale size  1/W 1is obtained by halving the
width of the sub-peak which occurs at 7T = *2p/v. In general a combina-
. tion of spatial and time scale size appears in the correlation function

RS(T). This will be shown in the next example.

From Fig, 10 and (3.5) it is apparent that the point source is
smeared out by the weighting function F(7) of (3.4). Since the time

scale 1/W 1is the width of the viewing window, one cannot expect to
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resolve any source narrower than 1/W. Although the shape is not re-
coverable, the source magnitude and location are preserved in RS(T).
The local scale size 1/W of the source while not a parameter of o( )
is still a valuable piece of information about the medium.

A second example is given to show the effect of spatial scale size
and source distribution on RS(T). Let the source have a gaussian dis-

tribution with the scale b,

2,2
u(zl,t) = O exp [—(z1 - p) /b1 f(zl,t) . (3.8)
F(zl,t) is a random function such that,

(u(zl,t) u(zz,t)) - o? exp [-—(z1 - p)z/b2 - (z, - p)z/bz] F(z,T)

2

Let the local refractive index correlation also be gaussian with spatial

scale a and time scale 1/W.

F(z,1T) = exp (--zz/a2 - Wsz) (3.9)

Now the phase demodulated signal is found from (3.1) and (3.8),

R
S(t) = Cﬂi/~ dz1 exp [—(z1 - p)2/b2] f(zl,t - Zl/V)
[e]

+ exp [--(z1 - p)z/bzl f(zl,t + Zl/V) .

Computing the autocorrelation of S(t) we get [after (3.2)1,

2 2 2,2 2, 2
RS( ) = (S(tl) s(tz)) = Otk/j dzo E dz exp [-zczo - P /BT - 27/2b7]

« [F(z,T - 2/v) + F(z,T + z/v) + F(z,T + 2z0/v) + F(z,1 - ZZO/V)] .

(3.10)
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To convert dzldz2 to dzodz with - < z2<ow , one must assume that

a << R, that is, the spatial scale is much less than the total path
length, . Using (3.9) we get,

R (1) = ozzk2 f
S
O

-{exp [—WZ(T - z/v)z] + exp [—WZ(T + Z/V)2]

R o0
dz0 -/. dz exp [-2(zo - p)z/b2 - zz/qz]
+ exp [—WZ(T + 2zo/v)2] + exp {—WZ(T - 2z0/v)2 , (3.11)

where,

2a2b2/(a2 + 2b2) . (3.12)

L]
1]

Doing the integrals in (3.11) we get,

[-(T/a')21}+ exp {-[(7 - 2p/v)/b'1%}
a' b’

R (D) = (nazkqu/w)[% exp

. &xp {—[(T + 2p/v)/b']2§] .
b’ '

(3.13)

In (3.13),

b’ (3.19)

|
A~
leH
+
Y
<Nhﬁg
S

Equation (3.13) is similar to (3.5), and, a plot of it would look much
like Fig. 10. The difference is that the central peak has its magnitude
changed by mngb/Wa' and its scale is now a'. The side peaks have their

magnitudes changed by mwgb/Wb' and their scale is now b'. From (3.14)
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one concludes that the source location is undistorted in the general case;
although, a broad correlation peak makes it difficult to measure precisely.
However, the source magnitude generally is distorted by a combination of
all the statistical scale sizes in the source region.

The three quantities g, a', and b' are given above for the gaus«
sian case. However, modified forms of the quantities will appear for any
choice of shape function so that they are fundamental factors. For ex-
ample, b' demonstrates that the source distribution b is not measur- -
able unless the transformation of b into the time domain is greater than
the time scale, 2b/v >> 1/W. That is, the equivalent time distribution
2b/v must be larger than the weighting function window-width 1/W.

The quantity q in (3.12) is approximately q2 =1 2b2 when the
spatial scale is larger than the distribution scale, a >> b, For a real
medium one expects a << b which gives q =@ a. Using the expression for

a' in (3.13) and q & a, the medium is separated into two categories.

Case 1. Wideband Medium. This case corresponds to W >> v/a. This

changes only the central peak term at T = 0 in (3.13). It becomes,

(Znazkzb v/W) exp [-(Tv/a)z]

Case 2. Narrowband Medium. In this case W << v/a. The central peak

term of (3.13) now changes to,

2 2 2
2% kzab exp (-W 77) .

In a propagation medium with a steady drift velocity such as the

solar wind, the drift velocity is the dominant cause of the time fluctua-

tions. For this case W is proportional to Vdrift/a' When considering

electromagnetic propagation vd << v = ¢ so that the medium is always in

the narrowband category.
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B. Resolution Cell

The resolution of the correlation function is a measure of the
smallest meaningful detail that can be distinguished, This statement is
made precise by giving a mathematical definition of resolution based on
" the minimum distinguishable distance between two point sources. Two ap-
proaches will be taken: first, the minimum distance between two gaussian
point sources will be calculated directly; and, second, a time resolution
constant as defined by Woodward [15] will be calculated. Both approaches
give approximately the same answer with the latter being more general,

Consider two point sources of refractive index variation at p1 and

pz similar to the one in Example 1 of Section IIIA,
ul(zl,t) = a&(zl - pl) fl(t)
uz(zl,t) = a&(zl - pz) fz(t) . (3.15)

fl and f2 are random functions of time such that the expected values

are,

2 2
(fl(tl) fl(tz)) = Fl(T) = exp (~W 1)
(fz(tl) fz(tz)) = F2(T) = exp (~W2T2) (3.186)
=0 for all T

(fl(tl) fz(tz))

As in Section IIIA the received signal is of the form,

R
S(t) = ok fo dz,(8(z, - PPLE (t ~ 2, /W) + £,(t + 2,/V)]

+ 8(z1'— p2) [fz(t - Zl/V) + fz(t + zl/v)]}

= ak[fl(f - pl/v) + fl(t + pl/V) + f2(t - p2/v) + fz(t + pz/v)]

(3.17)
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2
RS(T) = (S(tl) S(tz)) = azk EZFl(T) + Fl(T + 2p1/V) + Fl(T - Zpl/v)
+ ZFZ(T) + FZ(T + 2p2/v) + FZ(T - 2p2/v)] . (3.18)

Using (3.16) in (3.18),
RS(T) = @2k2{4 exp (—WzT% + exp [-WZ(T + 2p1/v)2]

+ exp [-W2(T = 2p1/v)2] + exp [—W2(T + 2p2/v)2] (3,19

+ exp[—Wz(T - 2p2/v)2]} .

Figure 11 is a sketch of (3.19).

2/W

2/W | | 2/W

- 2pa/v - 21‘.)l /N
A44285

Fig. 11. RESPONSE WITH TWO POINT SOURCES.

We focus our attention on the response within the dotted rectangle
of Fig. 11 and shift the T origin midway between p1 and Py With

daf

d = p, - P the two terms within the rectangle are described by

1’
R(1) = exp [~W2(T + d/v)z] + exp [—WZ(T - d/v)Z] . (3. 20)

The approximate minimum value of d corresponds to equating R(0) to

R(*d/v). Thus,

2 exp [~(Wd/v)2] = 1 + exp [-4(Wd/v)2] . (3.21)
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Equation (3.21) gives a slightly large value for dr since the actual

peak has shifted off of d toward the origin (see Fig. 12).

2d
R(r)

A44286 0 —
Fig, 12, APPROXIMATE SOLUTION FOR dr.
The solution of (3.21) is,
2 .
(Wdr/V) = 0.61 . (3.22)

Define a time resolution constant in seconds as,

df
Th = 2dr/v . (3.23)

TR is a measure of the amount of ambiguity the signal u(zl,t) produces

in 7. Using (3.22) in (3.23) we get,

T 1.562/W . (3.24)

R

il

Let us think of the problem in a communication sense, We transmit a
carrier waveform which of itself contains no information. Information
about the medium is modulated on the carrier with a code over which we
have no control. This code gives range information based on the time
delay between the uplink and downlink waveforms. A measure of the ambi-
guity which the code produces in 7T 1is given by Woodward [15]. We

interpret his formula to apply to the local correlation function (7
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around 2p1/v, say) of a single point source. We write the local

R(1) as
2 ) 2. o
R(T) = exp [-W (1 - 2p1/v) 1. (3.25)

Then from Weoodward,

T, = 2,2
R Lgion dt |R(D|"/R"(2p,/V)
around
2pl/v
=] J. d1T exp [-2W2(T = 2p1/v)2]

= h]n/2/w (3. 26)

or
TR = 1.26/% . (3.27)

Equations (3.27) and (3.24) are in reasonable agreement and we shall con-
sider (3.26) as a better definition of TR' Then it is not necessary to
assume an analytical form for R(7) in order to calculate TR.

It should be noted that our use of W in terms of the time ambiguity
implies that W is the frequency span or the range of occupied frequen~-
cies of the signal. If the medium were acting as a pulse modulator the
frequency span would not be equal to W. For the continuous type of

media, with which we are concerned, W 1is equal to the frequency span.

We use (3.27) in (3.23) to get the resolution distance,
dr = 0.63 v/W . . (3.28)

Referring back to (3.19) and Fig. 11 we observe that the large cen-

tral peak at T = 0 can also be used in (3.26) to find the average TR'
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In fact, this is a preferable method since the local peaks for T # 0
are likely to be dominated by the source distribution scale size b
rather than by 1/W.

One final observation concerning TR is its connection to the Wide-
band Medium, Case 1, Section IIIA. 1In this case we note that W is re-
placed by v/a. Therefore, [from (3.23) and (3.27)] for the gaussian

case,

T =1.26 a/v

or

[o N
Il

VTR/2 = 0.63a . (3.29)

2K
€
0
"o
= 200 K d = 0.63 c/W
o
2
o
IMPOSSIBL
20K d, AND W
AN COMBINATIONS
2 ,
0.1 ! 10 100 1K
A44287 BAND SPAN,W (H2)

Fig. 13. RESOLUTION.

Figure 13 is based on (3.28) with v = c¢. The physically possible
combinations of W and dr are in the unshaded region above the line
dr = 0.63c/W. For example, a bandwidth of 10 Hz would enable one to

resolve inhomogeneities of size 20,000 km and larger.
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For useful results the propagation path length R must be longer
than 0,63a in the wideband medium and longer than 0.63 v/W in the narrow=
band medium. For electromaghetic waves a real medium is narrowband so

that,

R > 0.63v/W . (3. 30)

Up to this point the discussion has considered only the resolution
cell length dr' The effective cross-sectional diameter of the cell may
be computed in terms of Fresnel zones; the number of zones depends in a
complicated way on "a", But, the first zone is always the most signifi-
cant, Thus, the effective diameter of the eylindrical resolution volume
isg,

Diameter, = 2[%21(1 - zl/R)]'/é ; 0<z <R. (3.31)
The resolution volume has the same significance in three dimensions as
the resolution length has in one dimension: The detdil of inhomogene-

ities smaller than the resolution volume is averaged togethei by the

propagating wave and lost.

c. Filtering and Resolution

The fundamental tie between filtering and resolution is the frequency
span of the signal. That is, an increase in the frequency span increases
the resolution while the converse is true for a decrease in the frequency
span. Equations (3.26) and (3.27) state this fact which is illustrated by
the figure of this section,

Assume the ground and spacecraft receivers have a bandwidth large
enough to eapture the entire signal speetrum. There are three general
reasons for filtering the signal further. First, to remove thevvery low
signal frequencies which cause the wide sgkirts on the correlation peaks.
Because the low frequencies usually contain the most energy they basi-
cally determine the frequency span of the unfiltered signal. BY removing

the high energy, low frequency spectra the energy at higher frequencies
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enters into the frequency span calculation; and, the resulting frequency
span is often larger, This increase in the frequency span causes an
increase in resolution which means smaller detail is now more visible,
Second, one may wish to select a particular frequency band for study
(e.g., to look at some particular resonance in the spectrum). A loss

in resolution is usually experienced because the frequency span is re-
duced. For a fixed observation length, a narrower band reduces the
number of independent samples; and, this reduces the statistical signal
to noise ratio.

Third, and sometimes most important, unwanted interference noise
can be removed with a filter. This usually means removing all portions
of the spectrum which do not contribute significant signal energy., How-
ever, large interference spikes in the signal spectrum are often removed,
'also. This third type of filtering does not affect the resolution when
it is accomplished with a minimum effect on the signal energy spectrum.

Let h(t) or H(jf) represent the filter.

H(jf) =./. dt h(t) exp(~i2xnft) (3.32)

-0

The received signal may be directly filtered. It is expressed in the-

convolution form below,.

Sf(t) = h(t) * S(t) . (3.33)

The signal also may be filtered in the autocorrelation/power spectrum

space as shown in Eq. (3.34).

R (1) = h(D) * h(- 7) * R_(T)

Q _(f)

o lnGo 2 Q () (3.34)

Qs(f) is defined at the end of Chapter II to be the Fourier transform
of RS(T).
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The series of drawings in Fig. 14 illustrate the before and after
filtering effect on a signal with very low frequency components (all
coordinates use linear scales in the figure). An RC high pass filter is
used to remove the near—-dc signals., The effective bandspan is seen to
increase from 2.03 Hz in Part b to 3.14 Hz in Part d. The net effect,
as shown in Part c, is the removal of the wide skirts around the
correlation peak. Thus, our ability to distinguish the peak when it
is among other sources is better.

Figure 15 illustrates the same effect except that the source is
much closer to the origin. Now the negative correlation values in Part
c begin to reduce the relative height of the correlation peak at 2p/v.
The negative correlation results from the remdval of the near-dc energy;
and, it causes some distortion of the correlation near the <+t origin,
However, one still improves the resolution of the peak at 2p/v.

In Fig. 16 the above filter processing is applied to a correlation
signal with three closely spaced correlation peaks. Again the improve-
ment in resolution is apparent in Part c over the unfiltered data in
Part a. The narrowest correlation peak on the left is distinguished
better than the other two because its wider power spectrum is least

affected by the removal of the very low frequency energy.

D, Moving Radar Sites

An aberration error in the range value may result from the relative
motion between the radar sites and the refractive index source. At the
outset we note that this aberration is usually negligible because it
depends on the ratio of the "radar site velocity over the propagation
velocity." The propagation velocity is approximately c¢, the speed of
light. However, there is a cumulative effect associated with the aber-
ration which may be important for long observation times T.

Relative motion along the propagation path is considered first.
Suppose both the ground’station and spacecraft have velocities relative
to a fixed source as shown in Fig. 17a. The spacecraft motion tends to
lengthen the path and the time delay between the uplink and downlink

modulation waveforms. But the motion of the ground station acts to
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Fig. 15. FILTERING DISTORTION NEAR 1 ORIGIN,
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GROUND SPACECRAFT

(8) v, SOURCE (n) 2
‘——)» b . ——3——,' Vv

a. Radial motion

Vab Vna

0 SOURCE
P
444291 °
b. Perpendicular motion

Fig. 17, RELATIVE SOURCE/RADAR-SITE MOTION.

shorten the time delay. Thus the static time delay TO = 2po/c

beconles,

T

o
T! = ,
o (1 + Vzb/c)(l - Vza/c)

(3.35)

where the denominator product accounts for the fixed aberration effect.
For a fixed 1 it is clear that the resolution volume moves with
the coherent spacecraft. Therefore, the common resolution volume
shortens as the observation time increases. This effect is the cumu-
lative aberration associated with the radial motion. We calculate it
by noting that po increases with time as Vzat. Using this fact in

Eq. (3.35),

2(p0 + Vzat)/c
T' =
o | (1 + Vzb/c)(l - Vza/c)

®2(p  +V, t)/e, 0StST. (3.36)

The quantity (VzaT/po) is the quantity which must be small. Since
0< P, < R, this quantity may be significant. If important, this
cumulative effect can be eliminated by tracking the relative source

motion with Té of Egq. (3.36) during the data averaging. This is done
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by averaging the lag-product with Té,

T T
(1/1) j dt y(t)y(t + 1:(')) = (1/T) f dt y()y[t(1 + 2vza/c) + 2p0/c] .
[o]

(o]

Thus, the resolution cell remains fixed at the point source as the space-
craft continues to move away.

There is no range aberration associated with purely perpendicular
motion as shown in Fig. 17b. Figure 18a is an exaggerated sketch of the

spatial position at regular time intervals when Vna =V =V It is

nb )
possible for the uplink and downlink carrier waves to be in thz same
spatial volume at the same time. They simply start out at the appro-
priate time from their respective transmitters as shown in the figure.
Since both the uplink and the downlink rays see a common volume at the
proper range p, there is no range aberration. One can also see this
by Lorentz transforming into the moving coordinate system of the radar-
sites. Then, both sites are fixed such that the rays travel the same
path between the spacecraft and the ground. Note that R and p are
not changed because they are perpendicular to the direction of motion.
Since p 1is unchanged by the transformation, there is no range
aberration.

For the case when Vna # an, the uplink and downlink rays never
see exactly the same volume., We Lorentz transform into the moving space-
craft coordinate system to get Fig. 18b., The ground station relative
change of position is due to Vn

b
The ray path separation 4 at range p increases until p = R/2;

being larger than Vna'

and then it decreases as shown in Fig. 18b. In the derivation of 4 1let
AV = an - Vna and 2X be the base of the triangle formed by the two
rays in Fig., 18b. The time for the ray to travel from the ground station

up to position p is

At = (2 + BD%®R - p)/Re . (3.37)
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b. Unequal velocity case, an > Vna

Fig. 18, RAY PATH SEPARATION EFFECT.

The value for X 1is AVAt or,

At = X/AV .

Putting At into (3.37) and solving for X gives
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X = R(L - p/RYAV/DIL - (1 - pR) /2175 .

From similar triangles £ = 2pX/R. Therefore

=
1l

2p(1 - p/R)(AN/b)7p , (3.38)

where 7
2.2 R
yp=[1 - (Q - p/R)V /c2] .

For any practical radar system 7p ~ 1 in (3.38).

£ is maximum when p = R/2; ﬂM = (AV) R/2c. EM is significant

when it is on the order of the effective resolution volume diameter DF'
Normally DF is the diameter of the local first Fresnel zone associated
with the range p and given by (3.31). Putting Z1 =p in (3.31)
gives, ,Z/DF = (/W/c) [p(1 - p/R)/K]l/z. Figure 19 is a plot of the
percent common volume loss versus 'ﬂ/DF. The curve is based on the

common area of two equal circles which are separated as shown.

100

PERCENT LOSS
o
(@]
|

£/0,
o |
0 0.5 1.0
RAYPATH SEPARATION
- A44293

Fig. 19, LOSS OF COMMON RESOLUTION VOLUME,
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The percent loss of common volume between the uplink and downlink
rays reduces the signal correlation. The total phase fluctuation is
unaffected by the size of [/; but, the amount of common signal from a

given region is reduced according to Fig. 19. That is,
Sz(t) = (1 - percent loss)S(t) .

The noise is increased by the amount (percent loss)S(t)4 but this is
probably insignificant compared to the uncorrelated signal from other

regions, Thus, correlation values will be reduced by

RSZ(T) = (1 - percent 1oss)2 RS(T) . (3.39)

Equation (3.39) applies only when the relative motion between the
resolution cell and the medium is zero. When the relative motion is
not zero, both the up and the down rays eventually see nearly the same
fluctuation phenomena. However, there is an additional time delay ?Z
given by the time required for the phenomena to move across the fixed
ray path separation distance 4. In this case, the signal correlation
is reduced only by the amount of decorrelation of the phenomena in
time Tz.

The final effect associated with the perpendicular motion of the

~source and/or radar—siteé is the change in the fluctuation spectral
width W. This is a desirable effect when the width increases because
the resolution increases, Consider the case of Vna = an = Vn as shown
in Fig. 18a where the resolution cells move with the velocity Vn' Let
Vm be the drift velocity of a medium in which the irregularities are
frozen with respect to each other. The spectral broadening is largest
when Vn - Vm is largest. Thus, the best resolution of source regions
within the medium occurs when the resolution cell and the medium are
moving in opposite directions. In the case of a static medium one can
make it visible by putting the radar sites in motion., Also, the turbu-

lent, nondrift type of medium is more visible when the bandwidth is

increased by the resolution cell motjon.

SEL-68-~-037 64



. IV. ESTIMATING THE CORRELATION FUNCTION

- A. Time Average Estimator

We seek an accurate estimate of the autocorrelation function RS(T),
R 7 < 2R/V, based on the data obtained in an observation of length T.
The data is the phase demodulated carrier wave which is corrupted by
" additive thermal noise, 1In this chapter we assume the carrier powers
are fixed and large enough to lock up the spacecraft and ground receivers.

The receiver output data is,
y(t) = s(t) + n(t) (4.1)

n(t) is the noise referred to the output of the phase detector. It is
assumed to be gauésian, zero mean, stationary, and to have a constant

spectral density NO/2 in the frequency band -Wr to Wr.
(n()n(t + 1)) = N W _ sinc (2W T (4.2)

n(t) is also uncorrelated with s(t),
(n(t)s(t)) =0 . (4.3)

The random process s(t) is also assumed to be gaussian, zero mean, and

stationary in the interval 0 < t < T,

(s(®)s(t + 7)) = RS(T) , (4. 4)

RS(T) is given by (2.38) or (2.86).
Consider the lag-product random variable y(t)y(t + 1) for a fixed

7. The time average of this random variable is,

T
ﬁy('r) = (1/T) f dt y(t)y(t + 1) . (4.5)
o .
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The expected value of ﬁy(T) is,
N T
(Ry(’f)) = (1/T) f dt (y(O)y(t + 7)) .
o

From (4.1) to (4.4),

(y(O)y(t + D) = R () + N W_sinc (2W 1) .

Therefore,
(Ry(T)> = RS(T) + Nowr sinc (2WrT) . (4.6)
By restricting <t away from the origin, ]TI > 1/2 Wr’
(Ry(T)) = RS(T) 4.7)

”~

Therefore, the time average Ry is an unbiased estimator of RS for
1/2w < |,
r .
In Section IV.B we show that the variance of ﬁy-e 0 as T — o,
This is another measure of the estimator quality which is stated

mathematically as,
PR 5R; |[t|>1/2w] 51 as T »w ., (4.8)
ry s r

This means the estimator is consistent in statistical terminology. Equa-
tion (4.8) merely states that the estimate ﬁy becomes ngar the true
correlation RS with probability approaching one as the observation
length increases.

Just as we arbitrarily chose to time average the lag-product random
variable in (4.5), we now choose to find the minimum average mean—square
error (MMSE) estimate of y(t)y(t + 7) Dby a coqstant A. The average
mean square error of the estimate is,

T 2

edf (1/T)f at [y()y(t + 1) - 1% .
0
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The minimum of € is found by setting d¢/0A = 0. This gives,

T
A = (1/T)f dt y(£)y(t + 1) . (4.9)
0

N

N
Since A = Ry we say Ry is a MMSE estimator of RS. The MMSE criteria
is another measure of the quality of the time average estimator. There-
fore, three reasons for using ﬁy are: (1) it is unbiased, (2) it is

consistent, and (3) it is a MMSE estimator.

B. Signal-to~Noise Ratio and Variability

The estimator signal-to-noise ratio is defined as

snr(n) % (ﬁy}z/Var ﬁy . (4.10)

As a measure of how close the estimated value ﬁy is to its mean Rs'

1/2Wr < lT, < 2R/V, we use the relative deviation [16],

R -r_|/|R_],
y s s

assuming Rs is not zero.

Using Chebyshev's inequality we get the result in probability that,

Pr [l(ﬁy - RS)/RS] <38l >1- 1/628NR , >0, (4.11)

Equations (4.10) and (4.11) establish the significance between SNR and

o)
the estimator Ry' Sepcifically (4.11) is used to establish the length
of the observation T such that our error in estimating RS most likely

does not exceed o.

1. Continuous Data SNR

A more explicit form of (4.10) is developed using the results

of Section IV.A, The variance is,
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Var B, = (R = \R 4,12)
L= (B - (R ,(

From (4.5)

T

a2 2

(i) = am® [far; atlye) vy v 0 vy, +0)
0 (4.13)

Since y(t) 1is a zero mean gaussian variable we can use the product rile,

(9175955, = (yy90(535,) + {yyy)0{yyv,) + {3, 0(v5y5) . (4.14)

The terms in (4.14) have a direct correspondence to those in (4,13).

Combining (4.12) to (4.14) gives

T .
~ 2
Var Ry = (1/T )ff dt, dtz[(Y(tl) y(t2)>(y(tl + 7) y(t, + 7))
0

* {y(t)) vty + D)yt + D y(t,))] (4.15)

From (4.6)

(y@y@)) = N W _ sinc [2wr(5-oa)] + RS(B-Ot) (4.16)

Use the form of (4.16) in (4.15) and a change of variables, t =+t , - t
to get

T
~ f 2 i
Var R = (1/T) J(‘ dt A (£/T) {N W2 sincz(ZW t) + 2N W R (t) sinc @w t)
y - or r or s r

+ Rz(t) + NZW2 sinc [2W (t + 1)1 sinc [2W _(t = D]
s or r r
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+ Rs(t + T) Rs(t - 7) + N W _ sinc [2Wr(t + 7] Rs(t - 1)

+ Nowr sinc [Zwr(t - 1)l Rs(t + 1) . (4.17)

These terms can be integrated by a straight forward process.

The redquired integrals are listed below.

- |t]/™ for t<T
AE/T) =
0 otherwise
T
f dt A (£/T) sinc? (2W_t) = 12w .
=T
T

jf dt A (£/T) sinc [2W (t = 7)1 R (t + T) = R (27)/2W ..
- r s s T

T

J/.dt A (t/T) sinc [2Wr(t - 1)1 sinc [2Wr(t + 7)1 = sinc (4Wr'r)/2wr .
-T
(4.18)

Using the evenness of RS(T) and (4.18) the reduced variance is,

var R = (1/T) {éW N2/2)[1 4+ sinc (4 W Tﬂ + N [ﬁ (0) + A(T/T)R (214
y ro r ol s s

T

+f at A (t/T)[Ri(t) +’RS(1: - DR_(t + T)]} ) (4.19)
-7

Expressions (4.6) and (4.19) when substituted in (4.10) give the SNR{T)
in terms of No’ RS(T), and T. Note in (4.20) that the SNR(71) is
directly proportional to T, the observation length. For ,Tl > 1/2 Wr
and T large,
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T R?(T)
S

T
W N2/2 + N [R () + R (21)] + J(.dt[Rz(t) + B (t=®)R (t+1)1]
r o o] s S ;-*T S s ]

SNR(71) =

(4.20)

For the case of no additive noise, n(t) =0, there still
exists cross noise which causes variability in the measurement. 1In this

case the S8NR(7) is found by setting No =0 in (4,12) and (4.19).
Then,

T
SNR(7) = TR?(T)/{/fdt [Rz(t) + R (t - DR (t + T)] ) (2.21)
s 2 S s S

It is useful to evaluate the SNR for M independent, identical
point sources along the propagation path. The distribution and correla-

tion weighting functions are,

M
o(zl) = z 8(zl-jc/2W), 0< =N <R .
)
J (4.22)

F(z,7) = sinc (2z/a) sinc (2Wt) .

The source magnitudes are all o and the sources are separated by
c/2 W. From F(z,7) we see that ¢/2 W is the sinc function resolution
distance, Thus, M is also the number of resolution cells along the

path. Note, M can never be larger than 2WR/C. Using (4.22) in (2.38)

one gets,

RS(T) = azkz §£:§:sinc [(c/aw) (j-£)] {sinc [2W(t=(j=£)/2W) 1]
j 4

+ sinc [2W(T+(§=£)/2W)] + sinc [2W(t-(j+2)/2W)]

+ sinc [2W(T+G+ﬂ)/2w)]} . | (4.23)
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. In Chapter V, we point out that a = Vm/2nW (W = L here) in
the solar wind where Vm is the solar wind velocity. Thus, c/aW =

- 2nc/Vm is very large such that,

i sinc [(c/aW) (j=£)1 = sz . (4.24)
. Using (4.24) in (4.23) gives,
M (sinc [2W(z-j/W)]
2 2 .
RS(T) = k |2M sinc (2WT) +Z (4.25)

J=1 { + sinc [2W(T1+j/W)]

Putting (4.25) into (4.21) and integrating with the aid of (4.18) one
gets, for ]T] > 1/2W,

SNR = T/(4M2/2W + M/W + smaller terms) . (4.26)

For M > 1

SNR = 2TW/4aM% = N/4aM° . (4.27)

Although idealized, (4.27) demonstrates the fundamental relationship
between the SNR and the number of sources or resolution cells M.
Basically (4.27) is the crossnoise SNR., As expected, the SNR is propor-
tional to the length of observation T or the number of independent
signal samples N. Equation (4.27) is to be used as a first order cross-
noise SNR estimate. Equation (4.20) is the exact expression to use when

considering additive noise and general source distributions.

2. Sampled Data

The data is most likely to be processed via digital techniques.
R For this reason equivalent expressions to those in Section IV.B.1l are

developed. The sampled data is,

y. =S, + n, i=0, ... N-1 (4.28)
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(9;%5.5) = <Sisi+j) +{myn, ) = NP+
j=0,..., N-1 : (4.29)
1, j=0
5, = . (4.30)
J 0, 340

Wr enters (4.29) because we have assumed a band limited signal in order
to sample y(t) correctly.

The sample estimator is

N-1
Ry =R, = (/™ ZO Y4343 (4.31)
1 =
var B = (8) - (R)” (4.32)
N-1
~n2 !
<Ry> = (1/N2) ZX <yiyi+,jykyk+j> (4.33)
1,

The yi's are still Gaussian variables so that (4,14) (See. IV,B.1) is

true. Hence

y + (yiyk_+3_>(yi,+.yk)3 . (4.34)

J

, N~-1
~ 2 B

var R = (1/8) 2 [<‘Yiyk><yi+j’yk+j
i,k

. (4-035)
-

(yayB) = Nowrsﬁ R

B-at)

Use the form of (4.35) in (4.34) with the change of variables £ =k - i
to get
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N-1

A 2 2
Var Ry = (/N) Z A(,Z/N){(Nowréz) + 2N0wr5£ + Rsz

£ =N+1
2 .
NV Byt Nowr[Rs(z—j)E’m * Rs<z+j)5z—.j}

* Rs(ﬁz"j)Rs(ﬂ-i-J)} . (4.36)

The sampling implicity assumes a bandwidth of Wr so that the evaluation

of the 62 term is straightforward.

N1l
z Z 5, =N . | (4.37)
i=0 k=0

Upon evaluation of the remaining terms in (4.36) we get,

A 2 .
Var Ry = (1/N) {(Nowr) (1 + aj) + _zwrNo[Rso + A(J/N)Rszj]

N-1

2
+ Z : A(.(&/N)[Rsz + Rs(ﬂ—j)Rs(,e+j)]}' (4.38)
£ =N+1

Expressions (4.29) and (4.38) when substituted into (4.10) give the
discrete SNRJ in terms of No’ st and N. As in the continous case,
we note that SNRJ is directly proportional to N, the number of
observation samples (N = 2WrT). For j # 0,

NRz.
SNR, = 2 J
(NOWI_) + 2WI_NO [RSO + A(G/N) Rst]

N-1 ’

2 .
+ z AL/N) [RS£+RS(£_J)RS(E+J.)] (4.39)
£ =N+1
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C. Maximum Likelihood Estimator

In this section the maximum likelihood (MLH) estimator of the signal-
correlation amplitude is developed for some fixed value of 7 for
1/2 LS |t] < 2R/v. The signal correlation function must be known
a priori for this approach., For our proposed application of the MLHE
we do not have complete knowledge of this correlation function; in fact,
that is the unknown quantity which we wish to measure. Hence, this sec=
tion shows how to use some indirect a priori knowledge to measure the
signal correlation function in addition to developing the MLHE form,

The two pieces of information at our disposal are: (1) the general
correlation shape as shown in Fig, 20, and (2) a low signal-to—-noise
ratio. The first arises (see Chapters I and 1I) because two copies of
the signal-source modulation waveform with a fixed delay are generated
by the dual bistatic-radar. This substitutes for source-loeation and
shape knowledge.. A low SNR results because a long propagation path con-
tains many sources which generate crossnoise in addition to thermal and
receiver background noise. This eliminates the need for a priori source
magnitude knowledge. A low SNR results as a practical matter, also. ©One

does not wish to pay the extra cost of using a MLHE until the SNR is Iow.

| . L R o
=2p/v 0} 2pfv T -

A44294
FIG. 20. SIGNAL AUTOCORRELATION FUNCTION

The received (and demodulated) signal has the form,

y(t) = m(t) + n(t) (4.40)

SEL-68~037 74



m(t) is the gaussian signal from one independent source as opposed to
s(t) (in See. IV.A) which is the accumulated signal from all sources.
Correspondingly n(t) now includes the remaining accumulated signal from
all other sources in addition to the additive, bandlimited to Wr, white
noise which is gaussian with zero mean and power spectral density NO/Z.
Hence, n(t) is a colored noise.

The signal correlation is initially assumed to be,

Rg('c) =2 E(1) + E(T - 2p/v) + E(T + 2p/Vv) . (4.41)
£E(0) =1 .

Rg is shown in Fig. 20 with the shape of £ being arbitrarily chosen
as gaussian.

The derivation of the MLH estimator A follows the general approach
of Root [17] and Hofstetter [18]. Our primary interest is to reduce the
general form of the optimal estimator by using the specific correlation
shape of Fig. 20, This leads to the data scanning realization of the MLH
estimator.

There are two cases of noise to be considered. 1In the first, the
white noise NO is assumed to dominate over the colored cross noise
from other sources. One usually tries to design the receiver so as to
make the detector output noise No negligible. Thus, in the second case,
the colored cross noise with the same spectral shape as the envelope of
the signal source is the dominant noise. This case is made equivalent
to the first by using a whitening filter on the signal plus noise. We
consider the general colored noise case first and introduce the whitening
filter later.

Form the following Karhunen-Loeve expansion of the received signal

correlation function, R =R + R,
y m n
T

fdt R (t1 tz)cbk(tl) = )\kd)k(tz) 0< t2 <T & k=0,1,2,... (4.42)
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where,

T

/ dt @i(t)@j(t) = 6ij .

We define eigenvalues My K

noise.

T

[dthg(tl,tz)Qk(tl) = p.k@k(tz) ;
T

'{dth.n(tl,tz)@k(tl) = vkcbk(tz) .

Using (4.41) to (4.43) we conclude,

With @ as defined in (4.42) we have the signal expansion,

T

Yy =fdt y(t)@k(t) , k=0,1,2,...
) .

and the autocorrelation contraction,

e <]

Rg(tl,tz) = z uk®k(t1)<bk('t2) y
k=0

which is proved by substituting (4.46) into (4.43).

and Vv to correspond to thé signal

and the

(4.43)

(4.44)

(4, 45)

(4. 46)

The likelihood ratio L is formed by taking the ratio of the joint

probability density functions of "signal plus noise'" over "noise alone."

Since we are assuming zero mean gaussian random signals and noise, only

the variance is needed for these two cases,
(yi9 = NPy -
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For noise alone,

(y;90 =By -

Then,
L = Pm+n [yi’yzs---]/Pn[ylvyzyco-] ’
1 2
L = exp{— 5 z [yk(l/?\k—l/vk) + ln(?\k/Vk)]} . (4.47)
k=0 -

A necessary and sufficient condition [17] for the estimation problem

to be nonsingular is,

S22 <o
0

The strong equivalence condition of the signal plus noise probability

measure [17] is,

[>o]

E;uk/vk <o (4.48)

The eigenvalues My and Vk are positive and real because R§ and

Rn are real and even functions. Since we are considering the noise

k
Assuming (4.48) is true we note that maximizing L 1is equivalent to

v to be larger than the signal b, one expects (4.48) to hold.

maximizing,
oo

4 = zil}i A“k/vk(vk + Apk) - In(1 + Auk/vkﬂ .
k=0
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Setting O¢/0A = 0 yields an equation for A&,

2 ~ 2 A
Z Vo /v, + Bu® = 2 b/ + B (4.49)
k=0 k=0

One solution for A may be expressed in terms of A. Equation

(4.50) is easily shown by manipulating (4.,49).

2 &, )2

G - v /v, + Bu)

A k_2kk,k ;\k . k™ (4.50)
Zp’k/(vk + Auk,)

Hofstetter has shown that (4,50) is the Cramer-Rao minimum variance
estimator of A, provided that A on the RHS is close to the true A.
He also pointed out the iteration version of (4.50) whereby one uses the
present estimate Kn in the RHS to get the next estimate Kn*l'
our application of (4.50), the signal-to-noise ratio per observable

For

(SNRO) is less than one,

df

SNR, = Apk/vk <1 .

For small SNR0 (4.50) becomes,

o0
9 2
n %:(Vyk‘ - VIV

A - 2.2
;“k k

(4.51)

The estimator efficiency of (4.51) is nearly unity in this case [18].

The whitening filter appears in (4.51) through the vk. Later in

this section we show that the My and Vv for k=0,1,...,» are basi-

k
cally Fourier transforms of their reéspective autocorrelation functions,

That is, the k values are proportional to frequency and the Vk are
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the magnitude of the noise power spectral density. Restrict k to the
band where'significant signal exists and such that vk # 0; say
k=0,1,...,K. Define N /2 = max[vk, k =0,...,K]. From the Fourier
transform of (4.25), we see that Nw ~ M times larger than the maxi?um
of “k . The normalized whitening filter is now given by (Nw/2vk)é;

k=0,...,K. The whitened data and signal correlation are,

- B
x, = yk(NW/ka) ;
(4.52)
ok = Mk Nw/zvk '
Substitute for Yy and Hy in (4.51) to get,
K
2
20 G = N/,
A= 5 (4.53)
é? Hwk

When white noise No dominates, = No/2 such that,

Y

B t—xg—u— (4.54)

It is no surprise that the estimators for the two noise cases are of the
same form; but, it is of interest to see their equivalence as shown by
(4.51) through (4.54). From this point on we use (4.54) to represent
both (4.53) and (4.54).

The mean value of (4.51) is easily shown to be,

so that the estimator is unbiased., The variance for the SNR0 << 1 is

found to be,

K
var & = 10/2 ) 1y (4.55)
0
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Hence,

_ A2 ~ 2 2 :
SNR, = (AY /Var A = 2(A/N ) i“k . (4.56)
0

The continuous version of (4.56) is found by squaring and integrating
(4.46).

T

SNRA = 2T(A/NO)2/ dt A(t/T)Rz(t) . (4.57)
-T

Similar to the time average case, SNRA is proportional the obsérvation
length T.-

Using the Fourier transform fact and (4.41),

The continuous version of the (4.54) is found using (4.45) and (4.46)
with the above 25 to get,

T
I [ at, dat. y(t.)y(t. )R, (t.,t.) = N
A - 0 1 2T 1 2 £ 172 o (4.58)
v/ dt AG/DR ()
- ¢

Equation (4.58) shows the matched filter nature of the MLHE, The

matched filter is the known signal correlation R as shown in Fig. 20

3
or RWE’ the whitened version of R,. This filter weights the data

4
lag-products to enhance the most likely data and negate the least likely

data. Since R is not actually known, the filter is usually mismatched

g

to the data. Starting with a mismatched R we study the sensitivity

é,
of the estimator to the source location and shape parameters. From

(4.54), the mismatched estimator is,
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2 \
. R E(yk - N /2w

" 2w
- k
The signal~to-noise ratio for Km is
: SNR_ = 2(A/N )2( Y Y wH? 4.60)
m o z:“k“k My * (4.60

Using SNRA in (4.56) and SNRm above, we compare the mismatched filter

performance,

df (Z Hyehy )2

7 = SNR_/SNR, = . (4.61)

A 2 3
2ok 20D

Applying the Schwartz inequality to (4.61) we get,

=1 .

2, 12
y E%Z‘Hk)

. = 2 2
Sl

7 =1 only when ué = by for all k in (4.61). Thus, the properly
matched signal correlation truly gives the best performance.
In order to study 7Y versus source position p and scale size a,

we must express the eigenvalues in terms of p and a.

v
The problem of solving (4.43)kfor the eigenfunctions and eigenvalues
is a complicated one because of the finite integral limits. For example
Helstrom [19] works out the detailed solution for Rg(T) = @o eﬂx,Tf.
The eigenfunctions turn out to be the sine and cosine functions, How-
ever, by assuming large valués of T, the effect of the finite limits
- is small,

For the stationary statistics case the eigenfunctions are

@k =N2/T cos (nkt/T) ; k=0,1,2,,., .
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Hence, for large T,

T :
N2/T .[dtl Rg(tl e t2) cos (Kktl/T)

T

= N2/T cos (nktz/T)~/:h:Rg(T) cos (nki/T) . (4.62)
~T

Recall the R is alsoc an éeven function in (4,62). Thus, the eigen-

S

values are,

T

by Sfd"r RE(T) cos (nkt/T) , k=0,1,2, ... (4.63)
-T

Since RE(T) is zero for !TI > 2p/v, Hy

transform of R_(7). Since R, (1) 1is a real, even function it is clear

€ €

that b, are always positive and real.

is basically the Fourier

Substituting for R,é from (4.,41) we get

My 2[1 + cos (%§'%§>] Gk . (4.64)

Gk is just the Fourier transform of the shape function £(71).

T

Gk = ‘/ﬁdr E(1) cos (skt/T) , k=0,1,Z,... . (4.65)
=T

Gk ig unity over k=0,1,..., K when the data y(t) are whitened.
For our application the bandwidths are narrow and we expect the

dominant noise to be the colored crossnoise arising from other source

regions. In this case the noise and signal are whitened., The perfor~

mance is found by putting (4.64) into (4.61) with Gk = unity.
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K
2
(z;[l + cos (nk2p/vDD]1I[1 + cos (nkZp’/vT)])

7 = . (4.66)
t[l + cos (nkZp/VT)]ziil + cos (JtJ'Zp'/vT)]2
0 0

A plot of 7 versus the position mismatch p'/p is shown in Fig.
21. It is cleaf from the figure and (4.66) that the cosine nature of
the eigenvalues or the power spectral envelope (see Fig, 9a) makes the
estimator sensitive to position. The scale and shape of the ¢&(1) do
not enter into (4.66) at all. The parameter KX is shown to have some
importance. Physically K is the bandwidth of the processor. As K/p
becomes large, more cosine cycles enter into the calculation of 7.
Thus the ambiguity is reduced and the sensitivity to p 1is increased as

shown in Fig, 21,

. ‘7
)
1.0
10
s}
] 20
§ 0.5}
& K =200
W P =100
T=1000
0 | | | - :_\'/p
0.2 05 1.0 1.5 20
A44298 NORMALIZED POSITION

FIG, 21, MISMATCHED FILTER PERFORMANCE.

This positional sensitivity suggests a scanning technique for pro-
cessing the data. From a preliminary study of the large central correla-~
tion peak in the data or the power spectrum envelope, one can determine
the whitening filter and K. Then, using a whitened version of Rg,
all values of p,0 < p< R are scanned through the data with the
estimator formula (4.58).

Using 7 =t, = t and the whitened data notation, an equivalent

1 2
form for the numerator of (4.58) is,
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2R/v T

An(p) =f dTt ng('r,p)f dt x(t)x(t+7) - Nw . (4.67)
-2R/v 0

Figure 22 is a processor block diagram of (4.67).

Swér,P) N,
Rwy( 7) de: v + A.(p)
-2p/v

A44296

FIG. 22, MAXIMUM LIKELIHOOD ESTIMATOR.

For each change of the value p, the time average data Rwy(T) is
recycled through Fig, 22. It is clear that the MLHE A is a better
estimator of the signal correlation than ﬁy of Section IV.A. This is
because the MLHE uses the time averaged ﬁy(T) data in a post—averaging

and weighting process. It is better by the factor,

T

—w fm: AGT/T) B (1) . (4.68)
Ir w

SNR A/ SNRT ¢

A

In summary, Chapter IV has pointed out the best way to estimate the
signal correlation function from the noisy received data signal. The
general data processing is done in three steps. First, the data y(t)
are filtered to eliminate noise, interference, and very low frequency
signal. ,Se¢ond, the lag-products of the filtered signal are time
averaged. Third, the time averaged correlation function is matched fil-
ter processed as shown in Fig. 22, The SNR for the time averaged data

is given in Section IV.B; and, the SNR for the MLHE is given by (4.56).
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V SOLAR WIND EXPERIMENTAL APPLICATION

The dual bistatic radar system provides a way to simultaneously study
a sizable section of the solar wind. This application is the primary mo-
tivation for the development of the dual bistatic radar technique, How-
ever, the technique is general and applications are not limited to a solar
wind type of medium nor to electromagnetic propagation situations. The
solar wind experiment is discussed in detail in this chapter while other

potential areas of application are suggested in Chapter VI.

A, General Model of the Solar Wind

The solar wind is basically an electron-proton plasma moving radially
outward from the sun. 1Its electromagnetic propagation characteristics are
primarily determined by the electron number density. The refractive index
for a static, homogeneous plasma is

2

n 1 - 80,68/ (5.1)

I

N 1is the mean electron density; f is fhe RF carrier frequencéy. For a
slowly varying medium n(r,t) will not depart too much from the form of

(5.1). Therefore we assume

2, 2, = —

n(r,t) =1 -~ (80.6/£ )N + N(T, )] (5.2)
and investigate (5.2) in terms of the two assumptions (1) weakly inhomo-
geneous and (2) slowly varying.

By choosing
9 _
f >> 80.6N , (5.3

we may write

n(r,t) = 1 - 40,3 N(T, t)/f2 (5.4
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Thus we identify no and u in n=n_+ u as

1 - 40.3 'ﬁ/fz

=
Il

u(T,t) = -40.3 N(F,t)/£> . (5.5)

il

The "weakly inhomogeneous" assumption, |u| << ]nol; is immediately true
from (5.5).

The slowly varying assumption is rewritten in terms of N(T,t).

2, 1= 2
|vo/n| = (40.3/£7) |VN| << k
. 2., 5.6
|a/n] = (40.3/£)|N| << w (5.6)
Rewriting (5.6) we get the slowly varying criteria in terms of f,
= 2 4, 2
|VN| << (#/N)° = £ /¢
. 3
IN| << £ (5.7

The mean electron density has been well measured [20] and appears to
vary with solar activity., The mean density is approximately 10 elec cm_3
at ranges just under 1 AU from the sun, Theoretical models [21] of the
solar wind which take into account the latest measurements give the mean
electron density prdfile ve distance from the sun. Ref. [21] also points
out a profile of the solar wind velocity vs distance. At 1 AU the velo-
city is about 400 km/sec.

Very little data are available concerning the fluctuations of the
electron density about the mean value. Scintillation of radio stars by
the solar wind plasma provides some information, however. Cohen, Gunder-
mann, Hardebeck and Sharp [22]; through scintillation measurements, have
concluded that the rms fluctuation in electron density is about 2 percent
of the mean; and it remains constant for 0.2 < r < 0.9 AU: r is the

distance from the sun center. This number is probably low because it is
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obtained near the sunspot minimum. More important for our purposes,
Ref. [22] concludes that the spatial scale size a = 110 km in the range
0.2 < r < 0,9 AU,

"a" is calculated both from diffraction theory and from dividing
the solar wind velocity Vm by the second moment of the fluctuation
spectral width, W. The latter method (a = Vm/ZﬂW) implies that the
drift velocity is the dominant cause of the intensity fluctuations.

Ref. [22] estimates the proton gyro radius to be 40 km at SORQ; and, it
suggests that the irregularity size "a" is limited by the proton gyro
radius, The fluctuation spectrum [22] for the weak scattering case ex-
tends up to 2 or 3 Hz. For this case the rms phase deviation is less than
unity. The spectra are fairly close to gaussian with a second moment W
of approximately 0.5 to 0.8 Hz. Figures 23a,b,c, and d are examples of
the fluctuation sﬁectra for radio star sources 3C-286 and 3C-287. Eighty
percent confidence intervals are shown; these are applicable only to the
left of the arrow. ‘

We conclude that the parameters for the velocity dominated solar
wind model are a = 100 km, the solar wind velocity is Vm = 400 km/sec,
and the equivalent bandwidth is W = Vm/2na =~ 0.6 Hz.

The interplanetary magnetic field appears to take the form of a co-
rotating Archimedian spiral in the ecliptic plane. Measurements from
the IMP-1 satellite [23] indicate that the field is directed outward over
two opposite 100° angular sectors of the spiral and inward over two op-
posite 60°~-100° sectors. The inward sectors alternate with the outward
sectors. Within the total ecliptic plane, more field ié directed outward
than in toward the Sun. The transition between the inward and outward
field lines is fairly abrupt and also rotates with the field sectors in
a 27-day periocd around the Sun. Thus, one expects a very large scale
distribution of similar fluctuations on the order of a 100° sector of the
ecliptic plane. Also, the slowly rotating transition regions should be
more active relative to the interior of a large sector; therefore, they
Qill be more visible.

Other small scale spectral features may appear in the received sig-

nal modulation under certain conditions. For a mean electron density of
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10 elec cm—3, a narrow peak may occur at the plasma critical frequency
fcr = 9N’2 = 30 kHz. Thermal energy is the energy source for these os-
cillations; however, they are very difficult to detect because of the
very small spread of the critical frequency peak. Thermal motions may
also give rise to proton or electron gyro resonance [24]. When the car-
rier wavelength is less than the Debye length %D(%D = 2m in the solar
wind) one may possibly see the electron gyro resonance around

feg = eB/me = 280 Hz where B = 10_8 Weber/mz. If A> KD one may
possibly see the proton gyro resonance around fpg =~ 1/6 Hz; actually,
this is so low that it would be completely masked by the drift velocity
‘fluctuations. In order see the gyro resonance phenomena, one must be
propagating nearly perpendicular to the magnetic field lines and the col-
lision frequency must be small,

Near the Earth the region between the magnetopause and the outer
shock boundary is shown to be a turbulent medium [25]. The data pre-
sented in Ref. [25] are averaged to give one sample every 5.46 minutes.
In the shock wave region these data are very random, clearly undersam-
pled, which suggests a smaller time scale than 5.46 minutes. Because of
the higher fluctuation rate, the shock region should be more visible
than the surrounding medium in our dual-bistatic radar experiment. A
similar shock region exists around the moon [25],[26]; and, it should
be more visible than the surrounding medium, too.

Our experimental setup for observing the solar wind first of all
requires a satellite out in the wind with a coherent transponder or a
phase repeater transponder, Assuming the transponder is on board the
satellite, the rénge R and the frequency f are the two parameters
which describe the satellite and ground equipment.

Several satellites exist in the solar wind which carry the required
transponder. They are the Pioneer, Mariner, and Lunar Orbiter series at
S band; and, the Interplanetary Monitoring Platforms (IMP) at VHF band.
In addition to those satellites in orbit, it is expected that future

satellites will carry similar transponders.
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B. S-band Experiment

We consider the deep space S-band satellites, Pioneer and Mariner,
which orbit the Sun in this section. The results apply to the S-band
Lunar Orbiter corrected to the shorter moon range; however, one wishes
to use the VHF IMP satellite at this range because of its increased fre-
quency sensitivity.

The orbits pass as close to the Sun as Venus and as far away as
Mars., Figure 24 shows the orbital band and a possible 1 AU path length.
In the ecliptic plane this order of range looks at a 60° cross section
of the solar wind. Figure 25 is a block diagram of the coherent S-band
transponder. A 2.1 GHz uplink signal is coherently translated by a ratio

of 240 to 221 yielding a downlink, phase modulated, carrier frequency of
approximately 2.29 GHz.

MARS ORBIT
EARTH ORBIT
VENUS ORBIT

SATELLITE

A4d297

Fig. 24, §S-BAND SATELLITE GEOMETRY IN THE
ECLIPTIC PLANE.

PHASE
DETECTOR MIXER
X = —rcomme
| A
o ANTENN
veo X240 5T 60ING
A442%8

Fig. 25. 'S-BAND PHASE COHERENT TRANSPONDER.
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From Section V.A, the effective bandwidth is W = 0.6 Hz. Using

(3.28) the minimum resolution cell length is,
dr = 0.63c/W = 1 light second . (5.8)

In a 1 AU path length the maximum number of resolution cells is,

M

R/d_ = 500 .
r

The sensitivity of the autocorrelation function magnitude to the
refractive index variations is calculated using (3,13). We consider only

one source of blobs of scale size "a" located at range p. Using

b=2a<1/W in (3.13) we get the mean square magnitude of the phase

fluctuation.

RS(T = 2p/V)

o
x>
i

ok a (5.9)

Jﬁl/a is basically the phase deviation per effective blob variation.

/Al/a = A/t ka radians . (5.10)

O is the rms magnitude of the refractive index variations. Hence, the
phase deviation is directly proportional to f(k = 2xf/c) and to the
scale size or correlation length of the blobs. The sensitivity to the
electron density variations may be computed from (5.5) and (5.10). 1In
this case O = (40.3/f2)0ﬁ where Ok is the rms magnitude of the elec-
tron density variations. Using this in (5.9),

Al/O&FZﬂB/z 40,3 a/cf radians . (5.11)

Now the phase deviation is inversely proportional to the carrier fre-

quency. Equation (5,11) tells us to choose f as low as possible.

Hence, the sensitivity requirement is in direct conflict with (5.3)

91 SEL-68~037



and (5.7) which require high frequencies, At S band the phase deviation

per effective blob density variation is (a = 102 km)
-11 3
/Al/aN = 7.1 x 10 rad/(rms elec/m") (5.12)

The experiment SNR for the time averaged data is found through (4, 20).
To use (4.20) we need a form for RS(T). Over the solar wind path one
expects a fairly uniform distribution in the rms fluctuation magnitude,.

Consequently, we assume,

U(zl) o rect[(z1 - R/2)/R]’

2 2)

F(z,T) = exp(—zz/az - W1 (5.13)

A
Use (5.13) in (3.2) and the fact that [1/W2 + (a/c)%] = 1/W to get,

2 2

R (1) = (@°kac/W) [(2Nﬁ?RW/c) e T 4 (w2 rect(cT/4R)]. (5.14)

Equation (5.14) is approximately the form given by (3.13) if b = p = R/2.
The difference is in the choice of a uniform distribution for (5.14).

The number of resolution cells in a length R is [from (3.28)1,

M

R/dr =~ 3WR/2¢c = BWRC/Z , (5.15)

where, Rc = R/c. Substitute for W from (5.15),

, 2 2
A[:(4,\/E—M/3) e-w Ty (x/2) rect(cT/4R)] , : (5.16)

]

R (1)
s

where

2
2
A = &®kZac/w = (40.3/£%) aik ac/W . (5.17)
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The following integral is computed for (4.20) using (5.16)

. T 2 2 2 —ow? 2
f dt [RZ(t) + R_(t+1) R (t-11 = (20°A%M/3W) { (8M/3/2m) [1 + e ]
- s s s
+ 2[1 + rect(et/2R)] + [1 + A(ct/2R)] . (5.18)

Using (5.16) and (5.18) in (4.20) we get the average SNR for T > 1/W,

WrTﬁZ/Z
SNR

IR

(5.19)

2
2 ; 4 M{ r
(WrNo/A) + (8, [« M/3)(WrNO/A) + —?T—C%>(M + 3)

We have neglected the rect ( ) and A( ) functions from (5,18) since these
terms are zero for the last half of the path and for M > 6 these terms
have little effect on the SNR. The denominator is nearly of the form

(Nowr/A + ZﬂM)z. In order to make the SNR independent of the phase detec-

tor output noise we require a detector such that
W N << 2rAM (5.20)
r o

As discussed in Section V.A, the rms density variations are approximately

: 5 3
two percent of the mean density. Using QN = 0,02 N=2 x 10 elec/m and

. 9 -7 2
the S-band frequency f = 2.1 X 10" Hz in (5.17), A =2 X 10 /W rad .

R

2 2
Let EC = carrier power and En = mean square noise power/cycle. Thus,

the mean square phase deviation due to noise is,
2, 2 2
N =E /E rad /Hz . (5.21)
o) n e
Wr is the effective noise bandwidth. Hence,

- WN =W E2/E2 < 27AM .
r o rnc
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Putting in the value for A gives,

Ez > W E2/2ﬂAM . (5.22)
C r n

Note in Fig. 23 that the effective noise power bandwidth is Wr ~ 3w,
Thus (5.23) is,

2
B > 3WEi/2nAM > 2.4 x 10° EiWZ/M i (5.23)

Before calculating the necessary carrier power needed to make (5, 20)
valid, we assume (5,20) is true. This will enable us to find the best
possible combinations for W and M. Using these wvalues, thé required
carrier power capability can be computed.

Removing the WrNo/A terms in (5.19) gives,

SNR =~ 3WT/8M(M + 3) . (5.24)

Substitute for W from (5.15) and rearrangé-to get,

M = [T/4RC(SNR)] - 3. (5.25)

A plot of (5.25) is shown in Fig, 26 for unity SNR. The corresponding
resolution cell length dr is also shown, Averaging 10 hours of data
from a 1 AU path length gives a unity SNR for 15 resolution cells; and,
for 5 hours it gives approximately 6 resolution cells, The resolution
cell length is 107 km in the 10 hour case and 2,5 X 107 km in the 5 hour
case, TFigure 26 implicitly includes the bandwidth reduction associated
with the decrease in M and the increase in Rc. This is seen in (5.15),
also. From the data processing point of view the bandwidth is reduced

by averaging groups of resolution cells together, and, this implies

fewer resolution cells of longer length as shown in the figure. Hence,

the performance deteriorates as the range increases.
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Fig, 26. UNITY SNR PLOT,

The noise power is calculated for the Goldstone 85-ft dish receiv-

ing antenna. The noise temperature is approximately 30°K. Thus,

23

2 -
En = (Boltzmann) X 30° = 1.38 X 10 X 30°

4.14 x 10722 yatt sec.

(]

From (5.23) the minimum carrier power above where the thermal noise power

is negligible is,

-15 _2
min Ei =~ 10 W' /M watts . (5.26)
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The satellite antenna gain is 20 dB and the receiving area of the 85-ft
2
dish is (efficiency = 0.7) 370 m". The satellite transmitter power is

approximately 5§ W, Thus the received power is,

2
= A 4 2
Er GTPT r/4er2 =~ 1,5 x 10 /R~ watts . (5.27)

Using (5.26), (5.27) and Fig. 26 some typical values are computed and
listed in Table 1.

Table 1

S-BAND PERFORMANCE

2

2 85 ft E,
Range T M w min E, Goldstone
¢:Xip) (hr) (cells) (Hz) (dbm) (dbm)
0.4 5 19.5 0.065 -156.6 -143.8
0.4 10 42 0.14 -~153.3 -143.8
1.0 5 6 0, 008 -169.7 -151.7
1.0 10 15 0.02 ~165.8 -151.7

From Table 1 it is clear that the WrNo/A term can be neglected.
That is, the received carrier power is always larger than the lower
bound "min Ei” needed to make this approximation. Hence, the S-band
experiment for ranges on the order of 1 AU with 10 hours observation
time is limited by the cross noise from other sources. The overriding
feature of the deep space S-band experiment is the long range involved.
In order to get the SNR within a reasonable value one must narrow the
effective bandwidth. This helps to reduce the noise power but hurts the
resolution.

The values used for the above calculations are based on numbers for
quiet Sun conditions. During the active Sun or solar storm periods,
fluctuation amplitudes should be larger. The fluctuation spectrum should

be wider also because the solar wind velocity is higher. This does not
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improve our resolution since we have plenty of spectrum; however, it
does provide a wider spectral frequency range in which to look at the
medium.

We conclude that a dual bistatic-radar experiment is feasible in the
solar wind, Path lengths up to and larger than 1 AU give approximately
10 resolution cells., This is an order of magnitude more resolution than

currently exists in similar solar wind studies,

C. VHF~band Experiment

This section considers the potential of the IMP satellites for a
dual bistatic radar experiment. These sateliites are in orbit around the
Earth and the Moon. We consider the Moon orbiters because their maximum
ranges from Earth- are usually largest. For our purposes we shall assume
500,000 km is a typical peak range.

The IMP satellites carry a phase repeater type of transponder as
shown in Fig. 27. This transponder uses a crystal controlled local oscil-
lator to generate the downlink carrier frequency. It is not as stable as
the S-band PLL; however, the phase jitter occurs mostly at very low fre-

quencies and is not a limiting factor.

MULTIPLIER

INCOMING
ANTENNA

LOCAL PHASE QUTGOING

OSCILLATOR MODULATOR

A44300

Fig. 27. VHF BAND PHASE REPEATER TRANSPONDER.

The phase is not actually demodulated in this transponder. The
136 MHz frequency and phase are translated to a 900 kHz signal which is
phase modulated onto the 148 MHz downlink carrier. Because the modula-
tion phase deviation is one radian, the downlink spectrum looks like
three carrier waves. The higher frequency of the three carries the up-

link phase modulation down to the ground station. The lower frequency
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also carries it in an inverted form and with more phase jitter from the
local oscillator.
The sensitivity per effective blob density variation is found from

(5.11), 1t is 15 times better than at S band (a = 102 km). -

-1 3
NA/0 = 1.07 x 1070 rad/(zms elec/n’) . (5. 28)
The minimum resolution cell length is still one light second as
given by (5.8). For this shorter range, the maximum number of resolution

cells is,

M= R/dr = 2. (5.29)

There are several reasons why M is probably lower than actual.
First, it may be possible to.widen the effective bandwidth W by filter-
ing out the very low frequencies as demonstrated in Section III.C, Fig-
ure 23, for a quiet Sun, shows that energy éxists up to 3 Hz. Second,
during an active Sun or during solar storm periods, the solar wind velo-
city increases which should widen the spectrum and W. Third, the solar
wind and Earth interaction region has higher fluctuation rates. The
shock wave is a particularly turbulent region and should have a larger W
associated with it. Also, the Earth's ionosphere is fairly turbulent and
may be resolvable, also. Hence, we assume W = 3 Hz in some regions
along the VHF path, This makes M = WR/0.63c = 8 cells.

The value of A 1increases by a factor of 152 bécause of the lower

frequency; but, it also decreases due to the wider bandwidths, Thus,

A = (40.3/1) a§ kz ac/W= 4.5 X 10'5/w rad2 . (5. 30)

Use (5.30) and Wr = 3W in (5.22) to get the carrier power requirement

for neglecting the thermal noise

Ei > 104 Ei W2/M . (5.3
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The noise temperature for the VHF receiver is around 700°K.

Then,

3

2 -2 -
En = 1,38 x 10 X 700 = 9.6 x 10 21 watt sec .

2
Using W = 3 Hz, M = 8, and En above in (5.31) gives,

Ei > -130 dBm . (5.32)

The received power at the ground station is based on (5.27) where

P = 38 dBm, G_ = -3dB, A = 30 m?, and R = 500,000 km. This gives
T T r !
E2 = G.P A /4rRZ = -125 dBm (5.33)
r TTr - : :

Since (5.33) is 5 dBm larger than (5.32), the thermal noise can be neg-
lected in (5.19) for first order calculations. One could easily use a
larger antenna to make the noise power completely negligible. From (5.24)

the time T needed get a unity SNR is,
T = 8M(M + 3)/3W = 80 sec . (5.34)
We see that the VHF band experiment is also feasible provided the
fluctuation phenomena have a wider spectrum, It is reasonable to expect

a wider spectrum during solar storms, in the solar wind shock wave, and

in the Earth's ionosphere.
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VI. CONCLUSIONS

A method for observing and studying a tenuous medium by means of
two well separated radar systems is introduced by this research. Fig-
ure 1 summarizes the basic concept very well. The unique feature of the
dual bistatic-radar system is the employment of a repeater satellite to
return a delayed copy of the cumulative phase modulation waveform from
the tenuous medium back to the ground station. Another undelayed copy
of the modulation waveform comes from the direct modulation of the down-
link carrier by the tenuous medium.

The random time variations of the medium are shown to provide a
window via the received signal autocorrelation function through which
one may measure the spatial distribution of the variations. Hence, the
autocorrelation processing of the ground receiver phase demodulated
waveform yields a one dimensional mapping of the fluctuations along the
propagation path.

The minimum resolution length is shown to depend upon the fluctua-
tion rate or the spectral width of the fluctuations. Resolution length
is inversely proportional to this width. During data processing resolu-
tion length may be traded for signal-to-noise ratio in the usual manner,
The data processing is basically a time averaging of the signal lag-
product. This may be followed by an optimal matched filter processing
when one needs additional signal-to-noise ratio.

The proposed experiment to observe the tenuous solar wind variations
may be expected to yield an order of magnitude improvement in locating
these variations along a 1 AU path.

The general dual bistatic-radar concept can obviously be applied
to any random time varying medium subject to the restrictions pointed
out in previous chapters. One would expect that it could be used in
the/ocgan in the form of a dual bistatic-sonar. For example, one might
drop a coherent sonar transponder to the ocean bottom and use a surface
transmitter and receiver on a ship to continuously monitor temperature
changes at all depths simultaneously.

The phase fluctuation case is emphasized in this research because

the experimental equipment already exists in other scientific uses.
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However, the technique may be applied to the amplitude fluctuations of
a medium, also. -

In principle the satellite station can be replaced by a refiector
surface which coherently returns the phase and/or amplitude variations
and provides an effective downlink carrier. An alternate transmit and
receive‘period are required to avoid receiver saturation; or, the re- -
flector must be moving so that the doppler shift moves the receiver
carrier frequency away from the transmitter carrier frequency.

The coherent transponder requirement may be removed. One then
records data at both ends of the path and subsequently cross-correlates
it. This approach is more difficult if not impossiblé to mechanize.
Recording provisions must be available at both ends of the path and some
means for keeping track of the time reference must be used so as not to
lose the source location information. The advantage of this approach is
a reduction in the noise by 3 dB; and, the elimination of the large self
correlation peak which masks information near the origin of the auto-

correlation function.
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Appendix A

THE SLOWLY VARYING ASSUMPTIONS

The purpose of this section is to show that the slowly varying

assumptions
[Vn/n| << Ikn]z . (A.1)
lﬁ/n] << W (A.2)

allow us to drop the terms on the right hand side of (2.4). n is the
refractive index function, k is the free space wave number, and w
is the rf frequency.

We consider first the space variations of n, n = n(x,y,z). The

exact wave equation for this case is (letting K(r) = nz(r)
VZ— — 2 —
E-V(V - E) + KKE =0, (A.3)

Now V .E 1is found by using

and

Then

V-E = -E-VK/K . (A.4)

11

To show that V(V.E) in (A.3) and (2.4) is small, we will show that
V-E is small with respect to either of the remaining terms in (A.3).

With the Schwartz inequality

|v -E| = |E-VK/K| < |E||VK/K| . (A.5)
VK = 2nVn, so that,
|VK/K| = 2|vn/n| << |kn]? (A.6)

by assumptions (A.4).
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Using (A.6) in (A.5),
v E| << &%|k||E| Q.E.D. (A.7)

Thus the spatial slowly varying assumption (A.1) leads to the quasi-

homogeneous approximation
75 + 1 ‘
E + KkKE =0, (A.8)

from (A.7) and (A.3).
The time varying condition is examined by considering n to be

n = n(t). We get the following exact wave equation

vE - p;ﬁ =0 (A.9)

nz(t). Then

where D = eOKE and K(t)
D=cKE +e KE . (A.10)

We desire the K term in (A.10) to be small with respect to the K term.

In Chapter II, our solution for E is shown to be of the form

—_— ~ i{wt—-
5 . £a e1( t-v)
O
such that |[V| << w. Then
E =% A1 (w- ) LWt -V L E . (A.11)
Now (A.10) is
D= eo_ﬁ(in-i- K) = iweoKﬁ (A.12)
if

[k/k| = 2|d/n| << w . (A.13)
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Similarly,

L2 2 — a2
Dx-We KE = e KE , (A.14)
o o
so that (A.9) is approximately,
2 x5 s
VE - pbeoKE = VZE - (n/c)zﬁ =0 . (A.15)

Hence the slowly varying assumption of (A.2) allows us to drop the time

derivative terms on the right hand side of (2.4).
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Appendix B

SINUSOIDAL CONVOLUTION IDENTITIES

This appendix works out the identity used in (2.75) and a related
identity needed to find (2.77). The identity is the evaluation of the
following integral

[s ]

2

. X
11 —/]dxodyOS1n A[(2 + xo) + (

-0

Nl
+
~
[#]
—
N
| SRS
0
He
B
i
IA'
oM
'
b
V)
+
——
Nl
|
<
(<]
™
N
| W——
ittt

= G sin[C(x2 + yz)J + H sin[D(x2 + yz)], (B.1)

where x = 32 X, Y=Yy "V 2xo = Xy + X, and Zyo =Y, + Yy
The identity is complete when C, D, G, and H are expressed in terms
of A and B. First convert the sin functions to exponentials. Using a

one to one correspondence with the LHS of (B.1)

—4sin(Q§ + By) sin (7X + Sy) = exp [i(0%+7x+6y+5y)]

- expli (O!X— 7x+f3y—6y) 1 - exp'[—i (le~ 7X+By- Sy) 1 + expl-i (Otx+ 7X+f3y+5y) 1.

(B.2)
These give four separate integrals of the following type
2 " 2 < 27 - g 2 g 2
'/‘dxO exp 1[A(—2- + Xo) + B(§ - x0> ] fdyo exp i[A(—z- + yo) + B(E - yo> ]
-00 ~00
2
= [in/(A + B)] exp {i[AB/(A + B)1p } (B.3)

2 2 2
where p =X + Yy .
The remaining three integrals in (B.2) can be done by merely changing

the sign on A or B. Correctly summing the four results gives,

‘ 2 2
e . ABp 7 . ABp
- X .4
. L 3G -® Sln(A - > 3G 5 B) sm(A n B> (®.4)
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Using the correspondence between (B.4) and the RHS of (B.1) gives,

G

w/2(A - B) , C = AB/(A - B) ,

H

w/2(A + B) , D = AB/(A + B) . (B.5)

The second identity involves the double integral of the cosines. We

quote the result because the integration procedure is the same as above.

o]

ty = fforgareon a[Z 0 5} (30 5] Jfoos b5 - )+ (3= 0) ]

00

Nl

2 2
b X ABp T . ABp
N S - B.
2( - B) Sln(A - B> 2(A + B) Sm(A + B> (B.6)
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