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Abstract

Conjugate points on extremal finite thrust

‘rocket trajectories in a central gravitational field

are investigated using both analytical and numerical
methods. When three state variables (two velocity
components and the radius) are considered, it appears
that conjugate points occur only after the circumfer-
ential velocity component has changed sign, irrespec-
tive of the choice of initial conditions, a result
suggested by Darboux's theorem and symmetry considera-
tions. Conjugate points are also found in problems
featuring four state variables .(two position and two
velocity components), although no general qualitative
rules governing them have been deduced. Numerical
results are presented for launches from the moon.
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Nomenclature

B function defined by Eq. (8b)

c function defined by Eq. (8¢c)

g acceleration of gravity at r,

8e 32.174

ISp specific impulse

m mass, mo{l - (T/Wo)(t/ISp)}

r radius

T thrust

t time

u radial velocity component

v circumferential velocity component
w o weight, gl

X state variables; u, v, r, 9

e central angle measured from an arbitrary reference line

drawn through the center of attraction

%i Lagrange multipliers

Y thrust direction angle measured from the local
horizontal

( )f final value of a variable

( )o initial value of a variable

") time derivative of a variable

iii



Introduction

Of the methods in use for optimizing rocket trajectories,
many do not test whether or not the Jacobi necessary condition
is satisfied or otherwise guarantee the minimizing character of
the extremal obtained. Thus the question of possible occurrence
of conjugate points on rocket extremals is of some interest, and
in the present paper we investigate the simplified case of planar
vacuum flight in an inverse square law gravity field under con-
stant thrust. The results indicate that conjugate points do in-
deed occur and shed some light upon the circumstances incident to
their appearance.

In the following we briefly review the first order necessary
conditions and the conjugate point condition for the rocket tra=-
jectory problem. We then demonstrate that for Mayer problems the
conjugate point test may be performed using a Lagrange mﬁltiplier
and the determinant of a single minor of the usual test matrix.
The situation for extremals in u, v, r-space, of interest for
commonly occurring problems featuring central angle unspecified,
is then examined. Vertical launch trajectories are shown to be
extremals. The state variation defined by an extremal adjacent
to this trajectory obeys a single second order differential equa-

tion which may exhibit an oscillatory solution whose zeros specify
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conjugate points. It is proVen-analytically that,'for the case of
nonvertical launch with zero initial velocity, the sign of the
circumferential velocity component must change before a conjugate
point occurs. It is conjectured that this is also true for tra-
jectories with arbitrary initial velocity. A plausibility argument
and numerical results are offered in substantiation. Numerical
confirmation of the existence of conjugate points in u, v, r, 6=
space is also presented.

The problems studied in Refs. 1, 2, and 3 exhibit features
that we will find on extremal rocket paths also. These simple
problems are instructive because their two-dimensional character
permits exhaustive plotting. The problem of Ref. 1 exﬁibits a
line of symmetry, the initial point is on this line, and conjugate
points occur on extremals after they have crossed it. These fea-
turés also characterize the problem of Ref. 2, and this paper in-
vestigates a starting point which is off the line of sym@etry. In

this case the conjugate points still do not occur until after the

line of symmetry has been crossed., The extremal family of Ref, 3,
whose members extend beyond envelope contacts which are also cor-
ners, is of interest since three exceptional members continue to
minimize beyond the envelope contact points, The Jacobi necessary
tion does not apply to these arcs in the absence of the smooth-

ness properties assumed in the classical derivation of the condition.




Extremal Rocket Paths

The planar flight of a constant thrust nonthrottleable rocket
in a central gravitational field is governed by the following equa-
tions.

: 2
2 r g (T/W )sin y
X. o ¢ (=3 o
= - e (D)

e
]

tT @) T ) (1a)
] ge(T/Wo) cos ¢
Ve YT @iy @i, (1b)
r=u (1c)
6 = v/r | (1d)

The quantities u, v, r, 6 are state variables and will sometimes

be designated by the generic symbol Xso The Lagrange multipliers

%i associated with the state variables obey

%u = (v/r)7\v - A (2a)

iv = (-2vA_ + ud - Ke)/r (2b)

ir = (v27\u -.uvkv + v7\e)/r2 - (Zgrg/r3)7\u (2¢)

Ay = 0 (24)
In accordance n in

with the Pontryagin maximum principle, the control

variable ¥ 1is obtained from



tan ¢ = Ku/kv_ (3)
with the quadrant determined uniquely by the signs of Au and
7\ .
v
The extremal family associated with the initial point xi(O)
may be constructed by integrating the system of equations L, 2,
(3) with various sets of values for the Ki(O). When these ex-
tremals are stopped at a fixed final time their end points define

a three-dimensional manifold which may be termed the isochronal

hypersurface.

The Jacobi Necessary Condition

Consider the family of extremals that originate at a given
point in state variable space. A point at which an extremal inter-
sects one of its neighbors as it contacts an envelope is called a
conjugate point. The Jacobi necessary condition4 states.that if a
normal nonsingular extremal without corners provides a relative
minimum, then no conjugate point precedes its terminal point.

For purposes of 1ocating conjugate points Egs. (1), (2), and
(3) are linearized:

2

2 r ge(T/WO)cos Y

. _ 2V A ) e
Bl = ov = + g r + T oY (4a)
r (rz r3> 1 (T/wo) (t/ Isp)

8o (T/W ) sin ¢

= \'A e uyv
v = = X fu - T ov + =5 Or - 7= oY (4b)
r r r2 1 (T/Wo)(t/lsp)
o = Bu : (4c)
60 = r Llov - vr 26r (44)
4
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6& = r-lk v - vr-ZK br + vr-lak - BA (5a)
u v v v T
N = (- - - BA
BKV ( Zkubv 2v6ku + Avﬁu-+ uﬁkv o} 9)/r
- (5b)
+ (2vA, - ul, + A)r or
6& = [(ka - uh + A)Obv + VZBK - vA_Bu = uvbA_ + voA ]/rz
T u v. 6 u v v 6]
‘ (5¢)
o2y 3 2 ~h N . 2 =3
l2(v ku uvkv + VA /x 6gror N oE 2gr xr "OA
Eke =0 (54d)
s = (A BN - A 6A)/ (A2 + D) (6)
vou u v u v

Four sets of initial cdnditions are assigned to this differential
system, The 5xi(0) of each set are all zero while the ﬁki(O)
of the jth set are equated to Kronecker's aij‘ A 4 x 4'
matrix of 6xi(t) rows is formed by integrating Egs. ), (5),
and (6) with these initial conditioné simultaneously with Eqs. (1),
(2), and (3). The element in the jth row and ith column of
this test matrix is thus equal to Bxi(t)/alj(O).

The four 6xi(t) vectors lie in the hyperplane tangent to
the isochronal defined in the previous section, Thus the 6xi(t)
vectors span at ﬁost three dimensions and the rank of the 4 x 4

test matrix is at most three. These properties may be derived ana-

lytically by means of the first integral = 8x,(t)?, (t)= constant.
i=1
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(The latter relation may be checked by deriving and using Egqs. (2),

(3), and (4).> Since the 6xi vanish initially we have

4
2 ox, (£) A, (£) =0 (7)

i=1
so that the four 6xi(t) vectors are linearly dependent.

If at a particular time neighboring extremals have identical
values for all of the xi(t) except one (designated .xj(t)>, then
from Eq. (7) the values of xj(t) must also coincide — unless
%j(t) is. zero. Therefore to test for conjugate points one first
establishes whether or not it is possible to cover with extremals
the projection on a three dimensional space of the neighborhood of
each point xi(t), t, <t <t lying on the nominal‘extremal. 1f
the three-space chosen excludes the jth dimension, then one ex-
amines the determinant of the minor of any of the elements of the
jth colum of the test matrix Bxi(t)/akj(O). Whenever the de~
terminant is zero there is an adjacent extremal with three of its
xi(t) identical to those of the nominal, and if %j(t) is nonzero
the fourth coordinate also coincides. Thus when both conditions
hold the determinants of the fifteen other minors must also vanish
and the test matrix degenerates from rank three to rank two. It
is possible to generalize this statement to abnormal prqblems and
assert that whenever the test matrix degenerates in rank from any

value as time increases an intersecting neighboring extremal exists.




This procedure may be found in Ref. 5 in application to the
normal case and is the extensioh to Mayer problems of the test
used in Lagrange problems presented 1in publications such as Ref. 4.
It applies to all fixed initial point problems regardless of whether

the payoff conditions call for a fixed or variable final point.

Vertical Trajectories in u, v, r-Space

Since the central angle 6 does not appear in many engineer-
ing problems it is of some interest to consider trajectories de-
scribed by merely three state variables — u, v, and r. Therefore,
throughout this section and the next Eq. (l1d) will be ignored and
Ke will be set to zero, which is possible because Ke‘ is constant

by virtue of Eq. (2d). The special case of purely vertical motion

will be examined first.

Eulér Condition

Suppose that the following initial conditions are aSsigned
to the state variables and multipliers: u=v =20, r = ros
ku > 0, KV =0, kr < 0. If can be seen from Eqs. (1), (2), and
(3) that the resulting extremal path will be vertical and will be
upward provided that the acceleration due to the thrust exceeds
that due to gravity. The algebraic signs that the Kib possess
at the initial time will persist throu
ever long it may be maintained. Vertical ascents may also be ob-
tained when kr is initially positive, although ku may in this

case eventually become negative and cause a reversal of the thrust



direction. The arc will have a corner at the revefsal point. The
term vertical will be employed only for those vertical paths that
do not have corners.

Thus a vertical trajectory is an extremal and by virtue of
the freedom of choice of the multiplier initial values has, apart
from scaling factor'choice, a one-parameter family of multiplier
vectors. Because there is a one-parameter family of multiplier vec-
tor directions and because the relation (7) implies orthogonality
between the isochronal and the multiplier vector, a corner is ex-
hibited by the isochronal at the point associated with the vertical

path.

Jacobi Condition

Since the initial value of Rr/ku associated with the vertical
trajectory is not unique, a particular initial Kr/ku will generate
the same trajectory as (Kr-+61r)/1u or Kr/(Ku-+6Ky). »Consequently,
the two sets of ox obtained from Eqs. (4) with BKu(O) nonzero
in one case and akr(O) nonzero in the other case vanish for all
t. When 6Kv(0) =1, 6u(t) and ©6r(t) are identically zero, but
not ©&v(t). Thus in the 3 x 3 test matrix of the Jacobi condi-
tion there is but one nonzero element. A conjugate point occurs
when the matrix degenerates from rank one to rank zero, i.e., when

this element returns to its initial value of zero.



A single second order equation for v(t) may be obtained by
inserting Eq. (6) into Eq. (4b), differentiating Eq. (4b) and

using Eqs. (1), (2), (4), and (5).

5v + Bov + Coév = O : (8a)
T/W A
' 0 T
B = - — - (8b)
Lsp (?/Wo)t *a ,
3g I _=~-u T/W gr2 2  ul_
C= [Iﬁeh-ﬁ%r/w )t = _Zsél_-r_7\1:. (8c)
sp 0 r r u

We see that ©o&v(t) 1is a function of Rr/ku and investigation
shows that there is a family of neighboring extremals that inter-
sect the nominal arc at widely varying times and define a family
of conjugate points. On account of the abnormality associated
with the nonuniqueness of the multipliers and because the vertical
trajectory is also the locus of singular points (the corners at
which thrust reversals occur), the smoothness assumptions of the
classical Jacobi condition derivation are not met. That smoothness
assumptions are essential for the necessity of the Jacobi condition
and not merely a convenience in the derivation has been shown by
Dreyfus from the dynamic programming viewpoint (Ref. 6); hence the

condition is not applicable to the vertical trajectory.

Numerical Results
Conjugate points on vertical trajectories are determined by

intersecting adjacent extremals that are nonvertical. Computation



has confirmed that the lattef have conjugate pointé neighboring to
their interseétion points with fhe verﬁical arc; Thus although
the Jacobi condition is inapplicable to vertical trajectories, a
study of these extremals gives a geﬁerél idea of how soon conjugate
points may be expected on closely related paths. |

Launches from the surface of the moon will be investigated
numerically. Equations (1) can be used since the moon has no atﬁo-
sphere and if its rotation is neglected the initial values of u
and v are zefo. The initial r is 5,702,395 feet. The gravi-
tational acceleration on the moon's surface is taken as g = 5.324
ft/secz.

The values of m/mb = ] - (T/wo)(t/Isp) at the‘eérliest con-
jugate points on trajecfories with various values of T/Wo are
plo;ted in Fig. 1 for a particulér chemical rocket (ISp = 300 sec)
and a particular nuclear rockgt (ISp = 1000 sec). The gmallest
‘I‘/Wo considered was 0.2, which was barely large enough to over-
come the gravitational attraction. For each trajectory the first

of the one parameter family of conjugaté points was obtained with

A,(0) = A (0) =0 and A_(0) <O.

Nonvertical Trajectories in u, v, r-Space

We now direct attention to nonvertical trajectories governed
by the first three members of Eqs. (1) and (2). At first the ini-

tial conditions will be: u arbitrary, v vanishing, and r positive.

10



Equations (1), (2), and (3) indicate that for any ﬁarticular ex~
tremal with time history u(t), v(t), f(t), Ru(t), Kv(t), and
Kr(t) there is a mirror image with time history u(t), - v(t),
r(t), ku(t), -%v(t) and kr(t). Thié is because Eqs. (la), (lc),
(2a), and (2c) are even in v and kv whereas Eqs. (1b) and (2b)
are odd, The v = 0 plane is a plane of symmetry in u, v, r-space.
An extremal and its mirror image will intersect with equal time
values if’ v(t) happens to return to zero.

Here we digress to recall Darboux's theorem;7 This theorem
states thét_every extremal path ceases to provide the absolute min-
imum time to its current end point at a point that precedes the
conjugate point. (This point coincides with the conjuéate point
only in certain exceptiénal cases.) The point at which two non-
neighboring extremals intersect ﬁith equal time values will be
called the Darboux point. The preceding paragraph's argument shows
that the trajectories of the §resent problem do not reach Darboux
points until the v(t) functions return to the v = 0 plane of
symmetry., It follows that.a conjugate point cannot occur until
after v(t) has changed sign.

Extremal paths along which v(t) returned to zero were cal-
culated numerically and it was verified that the conjugate points

Now consider an extremal family whose v(0) 1is nonzero. The

initial point has been shifted to one side of the v = 0 plane of

11
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symmetry. Will the Darboux.points shift to the saﬁe side or to
the opposite side? A careful cémputational stﬁdy indicates that
the shift is to the opposite side. When the initial point lies

on the plane of symmetry, then two ext?emals that meet at their
common Darboux point lie on opposite sides of the plane, and when
the initial point is moved a little to one side, two such extremals
still lie on opposite sides of the plane most of the time. Each.
crosses the plane once, rather than one twice and the other not at
all. Thus it appears that conjugate points do not occur on any of
the trajectories in u, v, r-space until after v(t) has changed
sign; however, in the absence of exhaustive calculations for all
possible initial conditions and thrust/weight ratios, éhis must be

regarded as a conjecture.
Trajectories in u, v, r, 9~Space

We restrict our investigation to the initial conditions
u=v=0-= 0, r = re Equations (1), (2), and (3) indicate that
a given extremal with time history wu(t), v(t), r(t), and o(t)
has a mirror image with u(t), -v(t), r(t), and -6(t). Inter-
sections between mirror image trajectories were common in the three
state variable problem of the previous section but here they are ex-
ceptional since v(t) and 6(t) must return to zero simultaneously.
This is unfortunate since (except when v(t) and e(t)' vanish
simultaneously) it appears not to be possible to formulate quali-

tative rules governing Darboux and conjugate points.

12




When ku(O) >0, KV(O) ? 0, Kr(O) < 0, and Xe = 0; Eqgqs. (1),
(2), and (3) indicate that the resultiﬁg extremal is a vertically
ascending trajectory., The 4 x 4 test matrix of Sxi vectors
contains but four elements that are‘nof identically zero. They
are the ©6v(t) and ©086(t) generated with 6Kv(0) nonzero in one
case and with ake(O) nonzero in the other., Thus the test matrix
has at most rank two. When it degenerates in rank an adjacent ex-
tremal cah be found that intersects the nominal at a conjugate
point.

Conjugate points on vertical launch trajectories from the
moon were found with the aid of a computer. As in the three-
dimensional state space problem a one parameter family~of conju-
gate points was exhibited along each path. The values of m/m0
at the earliest conjugate points were plotted in Fig. 2. The sig-
nificant features to be observed are the extremely short range of
the curve for the nuclear rocket (ISp = 1000) and the nonexistence

(for T/w0 > 0.2) of the curve for the chemical rocket (ISp = 300).

Conclusions

A family of conjugate points has been found on extremal rocket
paths in u, v, r-space. Numerical results indicate that they
appear only after v(t) — the horizontal velocity component —_
has changed sign. When v(0) = 0 this can be proved analytically

from symmetry considerations and Darboux's theorem. Since v(t)

13




seldom changes its sign on pbwered flight trajectofies of engineer-
ing interest, the result is reaésuring; Computer searches for
other families of conjugate points were conducted without success.
Conjugate points have also beeﬁ faund in u, v, r 6-space,
although in the case of lunar trajectories they are apparently
quite rare. Of course if families exhibit envelopes in this space
they will also when Cartesian or other coordinates are used. No
general qﬁalitative rules governing these conjugate points have

been discovered.
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