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Abstract 

Conjugate points on extrema1 f i n i t e  t h rus t  
rocket t r a j e c t o r i e s  i n  a c e n t r a l  g rav i t a t iona l  f i e l d  
are invest igated using both ana ly t i ca l  and numerical 
methods. 
components and the  radius) are considered, it appears 
t h a t  conjugate points occur only after the circumfer- 
e n t i a l  ve loc i ty  component has changed sign, irrespec- 
t i v e  of the choice of  i n i t i a l  conditions, a r e s u l t  
suggested by Darboux's theorem and symmetry considera- 
t ions .  
featur ing four s t a t e  var iables  I (two posi t ion and two 
veloc i ty  components), although no general  qua l i t a t ive  
r u l e s  governing them have been deduced. 
r e s u l t s  are presented f o r  launches from the  moon. 

When three state var iables  (two veloc i ty  

Conjugate points are a l s o  found i n  problems 

Numerical 
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Nomenclature 

B function defined by Eq. (8b) 

C function defined by Eq. (8c) 

accelerat ion of gravi ty  a t  r 

32 . 174 

spec i f i c  impulse 

0 g 

ge 

SP 
I 

- 

m 

r radius  

T t h rus t  

t t i m e  

U radial  veloci ty  component 

V c i rcumferent ia l  veloci ty  component 

W weight, gem 

X s t a t e  var iables;  u, v, r, 8 i 

e cen t r a l  angle measured from an a r b i t r a r y  reference l i n e  
drawn through the center of a t t r a c t i o n  

Lagrange mult ipl iers  i A 

?# t h rus t  direct ion angle measured from the loca l  
horizontal  
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Introduction 

Of the  methods i n  use for optimizing rocket t r a j e c t o r i e s ,  

many do not test whether or not t he  Jacobi necessary condition 

i s  s a t i s f i e d  o r  otherwise guarantee the  minimizing character of 

t he  extremal obtained. Thus the  question of possible occurrence 

of conjugate points on rocket extremals i s  of some i n t e r e s t ,  and 

i n  the present paper we invest igate  the  simplified case of planar 

vacuum f l i g h t  i n  an inverse square l a w  gravi ty  f i e l d  under con- 

s t a n t  t h r u s t .  The r e s u l t s  indicate  t h a t  conjugate points do in-  

deed occur and shed some l i gh t  upon the  circumstances incident t o  

t h e i r  appearance. 

In the following w e  b r i e f ly  review the  f i r s t  order necessary 

conditions and the conjugate point condition for the  rocket tra- 

j e c t o r y  problem. We then demonstrate t h a t  f o r  Mayer problems the  

conjugate point test  may be performed using a Lagrange mul t ip l ie r  

and the  determinant of a s ingle  minor of the  usual test matrix. 

The s i t u a t i o n  f o r  extremals in u, v, r-space, of i n t e r e s t  fo r  

commonly occurring problems featuring cen t r a l  angle unspecified, 

i s  then examined. 

extremals. 

t o  this t r a j ec to ry  obeys a s ingle  second order d i f f e r e n t i a l  equa- 

t i o n  which may exhib i t  an osc i l l a to ry  solut ion whose zeros specify 

Vert ical  launch trajectories a r e  shown t o  be 

The s ta te  var ia t ion defined by an extremal adjacent 
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conjugate points.  It i s  proven ana ly t i ca l ly  t h a t ,  f o r  the case of 

nonvertical  launch with zero i n i t i a l  veloci ty ,  t he  s ign of t he  

circumferential  ve loc i ty  component must change before a conjugate 

point occurs. 

j e c t o r i e s  with a r b i t r a r y  i n i t i a l  veloci ty .  

and numerical r e s u l t s  are offered i n  substant ia t ion.  Numerical 

confirmation of the existence of conjugate points  i n  u, v, r ,  8- 

space i s  a l s o  presented. 

It i s  conjectured t h a t  t h i s  i s  also t r u e  fo r  t ra -  

A p l a u s i b i l i t y  argument 

The problems studied i n  Refs. 1, 2, and 3 exhib i t  fea tures  

t h a t  w e  w i l l  f i nd  on extremal rocket paths also.  

problems are in s t ruc t ive  because t h e i r  two-dimensional character 

permits exhaustive p lo t t ing .  The problem of Ref. 1 exhib i t s  a 

l i n e  of symmetry, the i n i t i a l  point  i s  on t h i s  l i ne ,  and conjugate 

points  occur on extremals a f t e r  they have crossed it. These fea- 

t u r e s  a l s o  character ize  the  problem of Ref. 2, and t h i s  paper in-  

ves t iga t e s  a s t a r t i n g  point which i s  off the  l i n e  of symmetry. In 

t h i s  case the  conjugate points s t i l l  do not  occur u n t i l  a f t e r  t he  

l i n e  of symmetry has been crossed. 

whose members extend beyond envelope contacts which are a l s o  cor- 

ners ,  i s  of i n t e r e s t  since t h r e e  exceptional members continue t o  

minimize beyond the  envelope contact points.  

cenditicn dces not apply  tc these arcs in  the absezce c?f the s ~ a e t h -  

ness  propert ies  assumed i n  the c l a s s i c a l  derivation of the condition. 

These simple 

The extremal family of Ref. 3, 

The Jacobi necessary 



Extrema1 Rocket Paths 

The planar f l i g h t  of a constant t h rus t  nonthrot t leable  rocket 

i n  a cen t r a l  g rav i t a t iona l  f i e l d  i s  governed by the  following equa- 

t ions. 

0 

r = u  

e = v / r  
0 

(la) 

The quan t i t i e s  u, v, r, 8 are state var iables  and w i l l  sometaes  

be designated by the generic symbol xi" The Lagrange mul t ip l ie rs  

A associated with the  s t a t e  var iables  obey i 
0 

( 2 4  r A = (v/r)A - A 
U V 

. 
A = (-2vA + uA - he)/' (2b) V U V 

0 

( 2 4  
2 3  A = (v 2 A - uvAv + vAe)/r 2 - (2gro/r )Au 

r U 

0 

he = 0 (2d) 
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t an  $ = h / A  u v  (3) 

I 
I 
1 

with the quadrant determined uniquely by the  s igns of h and 
U 

h .  
V 

The extremal family associated with the i n i t i a l  point xi(0) 

may be constructed by integrat ing the system of equations (l), (2 ) ,  

(3) with various sets of values f o r  the  

tremals are stopped a t  a fixed f i n a l  t i m e  t h e i r  end points  define 

a three-dimensional manifold which may be termed the  isochronal 

hypersurface. 

hi(0).  When these ex- 

The Jacobi Necessary Condition 

Consider the family of extremals t h a t  o r ig ina t e  a t  a given 

point in  state var iable  space. 

s e c t s  one of i t s  neighbors as it contacts  an envelope i s  ca l l ed  a 

A point a t  which an extremal i n t e r -  

conjugate point .  The Jacobi necessary condition 4 states t h a t  i f  a 

normal nonsingular extremal without corners provides a r e l a t i v e  

minimum, then no conjugate point precedes i t s  terminal point.  

For purposes of locat ing conjugate points Eqs. (1) , (2) , and 

(3) are l inear ized:  

I 
31 
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6 @ =  ( A  6 A  - A 6A )/(A2 4- A2) v u  u v  U V 

Four sets of i n i t i a l  conditions are assigned t o  t h i s  d i f f e r e n t i a l  

system. The 6xi(0) of each set are a1.1 zero while the  6?ii (0) 
& 

of the  j th set are equated t o  Kronecker's Sij ., A 4 x 4 

matrix of 6x. ( t )  

and (6) with these i n i t i a l  conditions simultaneously with E q s  (1) , 
rows i s  formed by integrat ing Eqs. (4)  , (5), 

1 

(2), and ( 3 ) .  The element i n  t he  j th row and i th column of 

t h i s  test matrix i s  thus equal t o  axi( t ) /ah.  (0) 
J 

The four 6x.(t)  vectors l i e  i n  the hyperplane tangent t o  
1 

the  isochronal defined i n  the previous section. Thus the 6xi(t) 

vectors  span a t  most three dimensions and the rank of the 4 x 4 

test  matrix i s  a t  most three,  

l y t i c a l l y  by means of the f i r s t  i n t eg ra l  

These propert ies  may be derived ana- 
4 
C 6x. (t)Ai(t) = constant., 
i= 1 1 



(The latter r e l a t i o n  may be checked by deriving and using Eqs. (2), 

( 3 ) ,  and (4) .) Since t h e  6xi vanish i n i t i a l l y  w e  have 

4 

1 6Xi(t) A. 1 ( t )  
i=l 

so t h a t  t he  four  6xi(t) vectors are 

= o  

l i n e a r l y  dependent . 

(7) 

I f  a t  a pa r t i cu la r  t i m e  neighboring extremals have iden t i ca l  

values f o r  a l l  of t he  x,(t) except one (designated x j  ( t ) ) ,  then 

from Eq. (7) t he  values of x . ( t )  must a l s o  coincide - unless 
J 

h . ( t )  i s  zero. Therefore t o  test f o r  conjugate points  one f i r s t  
3 

es tab l i shes  whether or  not  it is possible t o  cover with extremals 

the project ion on a three  dimensional space of the neighborhood of 

each point x i ( t ) ,  to < t < tf lying on the nominal extremal. I f  

t h e  three-space chosen excludes the  jth dimension, then one ex- 

amines the determinant of the minor of any of the elements of the  

jth column of the  test matrix axi(t)/aA. (0). Whenever the  de- J 
terminant i s  zero there  i s  an adjacent extremal with three  of i t s  

xi( t )  i den t i ca l  t o  those of the nominal, and i f  A.(t) i s  nonzero J 
t he  four th  coordinate a l s o  coincides. Thus when both conditions 

hold the  determinants of the f i f t e e n  other  minors must a l s o  vanish 

and the  test matrix degenerates from rank three  t o  rank two. It 

is  possible  t o  generalize t h i s  statement t o  abnormal problems and 

assert t h a t  whenever the test matrix degenerates i n  rank from any 

value as  ti= increases an in te rsec t ing  neighboring extrema1 e x i s t s .  



This procedure may be found i n  Ref, 5 i n  appl ica t ion  t o  the  

normal case and is  the  extension t o  Mayer problems of the  test 

used i n  Lagrange problems presented i n  publications such as Ref. 4. 

It a p p l i e s  t o  a l l  f ixed i n i t i a l  point problems regardless  of whether 

t he  payoff conditions cal l  for  a f ixed or  var iab le  f i n a l  point.  

Ver t ica l  Trajector ies  i n  u, v, r-Space 

Since the  cen t r a l  angle 8 does not  appear i n  many engineer- 

ing problems it is  of some i n t e r e s t  t o  consider t r a j e c t o r i e s  de- 

scribed by merely three state var iables  - u, v, and r.  Therefore, 

throughout t h i s  sect ion and the next Eq. (Id) w i l l  be ignored and 

he he 

by v i r t u e  of Eq. (2d). 

w i l l  be examined f i r s t .  

w i l l  be set t o  zero, which i s  possible  because i s  constant 

The special case of purely v e r t i c a l  motion 

Euler Condition 

Suppose 

t o  the s t a t e  

A > O , A  = 
U V 

( 3 )  t h a t  the  

t h a t  the following i n i t i a l  conditions a re  assigned 

var iables  and mult ipl iers :  

0 ,  X < 0. It can be seen from E q s .  (I), (2), and 

r e su l t i ng  extrema1 path w i l l  be v e r t i c a l  and w i l l  be 

0) 
u = v = 0, r = r 

r 

upward provided t h a t  the acceleration due t o  the th rus t  exceeds 

t h a t  due t o  gravi ty .  

a t  the  i n i t i a l  time w i l l  persis t  throughout the trajectory how- 

ever long i t  may be maintained. Ver t ica l  ascents may a l s o  be ob- 

ta ined when hr i s  i n i t i a l l y  pos i t ive ,  although Xu may i n  t h i s  

case eventually become negative and cause a reversa l  of the th rus t  

The algebraic signs t h a t  the Xi's possess 

7 



direct ion.  The arc w i l l  have a corner a t  the r eve r sa l  point. The 

term v e r t i c a l  w i l l  be employed only f o r  those v e r t i c a l  p a t h s  t h a t  

do not  have corners.  

Thus a v e r t i c a l  t r a j ec to ry  i s  an extrema1 and by v i r t u e  of 

t he  freedom of choice of the  mult ipl ier  i n i t i a l  values has, apar t  

from scal ing f ac to r  choice, a one-parameter family of m l t i p l i e r  

vectors.  Because the re  i s  a one-parameter family of m u l t i p l i e r  vec- 

t o r  d i rec t ions  and because the r e l a t i o n  (7) implies orthogonality 

between the isochronal and the mul t ip l ie r  vector, a corner i s  ex- 

h i b i t e d  by the isochronal a t  the point associated with the  v e r t i c a l  

path. 

Jacobi Condition 

Since the i n i t i a l  value of hr/Au associated w i t h  the  v e r t i c a l  

t r a j ec to ry  i s  not unique, a par t icu lar  i n i t i a l  hr/hu w i l l  generate 

the same t r a j ec to ry  a s  (Ar +6h ) / A  o r  hr/(Au + 6 h  ). .Consequently, r u  

t h e  two sets of 6xi obtained from Eqs. (4) with 6hu(0) nonzero 
Y 

i n  one case and 6hr(0) 

t .  When 6h (0) = 1, 6u(t) and 6 r ( t )  are iden t i ca l ly  zero, but 

not  6v(t) .  Thus i n  the  3 x 3 test matrix of the  Jacobi condi- 

nonzero i n  the  other case vanish f o r  a l l  

V 

t i o n  there  i s  but one nonzero element. A conjugate point occurs 

when the matrix degenerates from rank one t o  rank zero, i.e., when 

th i s  element r e tu rns  t o  i t s  i n i t i a l  value of zero. 

8 



A single second order equation for 6v(t) may be obtained by 

inserting Eq. ( 6 )  into Eq. (4b), differentiating Eq. (4b) and 

using Eqs. (1) a (2), (4) , and ( 5 ) .  

0 

h 
- 2  

h 
U 

We see that 6v(t) is a function of hr/hu and investigation 

shows that there is a family of neighboring extremals that inter- 

sect the nominal arc at widely varying times and define a family 

of conjugate points. 

with the nonuniqueness of the multipliers and because the vertical 

trajectory is also the locus of singular points (the corners at 

On account of the abnormality associated 

which thrust reversals occur), the smoothness assumptions of the 

classical Jacobi condition derivation are not met. That smoothness 

assumptions are essential for the necessity of the Jacobi condition 

and not merely a convenience in the derivation has been shown by 

Dreyfus from the dynamic programming viewpoint (Ref. 6); hence the 

condition is not applicable t o  the vertical trajectory. 

Numerical Results 

Conjugate points on vertical trajectories are determined by 

intersecting adjacent extremals that are nonvertical. Computation 

9 



has confirmed that the  latter have conjugate points  neighboring t o  

t h e i r  in te rsec t ion  points  with the  vertical arc. Thus although 

the Jacobi condition i s  inapplicable t o  v e r t i c a l  t r a j e c t o r i e s ,  a 

study of these extremals gives a general  idea of how soon conjugate 

points  may be expected on closely r e l a t e d  paths. 

Launches from the surface of the moon w i l l  be invest igated 

numerically. Equations (1) can be used s ince the moon has no atmo- 

sphere and i f  i t s  ro ta t ion  i s  neglected the i n i t i a l  values of u 

and v are zero. The i n i t i a l  r is  5,702,395 f e e t .  The gravi- 

t a t i o n a l  accelerat ion on the  moon's surface is taken as g = 5.324 

f t / s e c  . 2 

The values of m/mo = 1 - (T/Wo)(t/Isp) a t  the  earliest con- 

juga te  points  on trajectories with various values of T/Wo are 

p lo t t ed  i n  Fig. 1 f o r  a par t icular  chemiqal rocket 

and a par t icu lar  nuclear rocket (Isp = 1000 sec) .  

T/Wo considered was 0.2,  which w a s  barely large enough t o  over- 

come the  grav i ta t iona l  a t t rac t ion .  For each t r a j ec to ry  the  f i rs t  

of t h e  one parameter fKmily of conjugate points'was obtained with 

(Isp = 300 sec) 

The smallest 

( 0 )  = hv(0) = 0 and hr(0) < 0 .  U 

Nonvertical Trajector ies  i n  u, v, r-Space 

We now d i r e c t  a t t en t ion  t o  nonvert ical  trajectories governed 

by t h e  f i r s t  three members of Eqs. (1) and (2). A t  f i r s t  the  i n i -  

t i a l  conditions w i l l  be: u a rb i t ra ry ,  v vanishing, and r posi t ive.  

10 



t h a t  a con j uga t e point cannot occur u n t i l  

Equations (l), (2), and (3) indicate  t h a t  fo r  any pa r t i cu la r  ex- 

tremal with t i m e  h i s to ry  u ( t ) ,  v ( t ) ,  r(t), hu(t), hv ( t ) r  and 

hr( t )  there  i s  a mi r ro r  image with ti= h i s to ry  u ( t ) ,  - v( t ) ,  

-A  (t) and hr( t )  . This is because Eqs. (la), (IC), r ( t ) ,  p, V 

(2a), and (2c) are even i n  v and hv whereas Eqs. (lb) and (2b) 

are odd. The v = 0 plane i s  a plane of symmetry i n  u, v, r-space. 

An extremal and i ts  mirror image w i l l  i n t e r sec t  with equal ti= 

values i f  v ( t )  happens t o  re turn t o  zero. 

Here w e  digress  t o  recall Darboux's theoremO7 This theorem 

states t h a t  every extremal path ceases t o  provide the  absolute  min- 

imum t i m e  t o  i t s  current  end point a t  a point t ha t  precedes the 

conjugate point .  (This point coincides with the  conjugate point  

only i n  c e r t a i n  exceptional cases.) The point  a t  which two non- 

neighboring extremals in te rsec t  with equql t i m e  values w i l l  be 

c a l l e d  the Darboux point.  The preceding paragraph's argument shows 

t h a t  the  t r a j e c t o r i e s  of the  present problem do not  reach Darbow 

poin ts  u n t i l  the  v ( t )  functions r e tu rn  t o  the  v = 0 plane of 

synrmetry. It follaws 

a f t e r  v ( t )  has changed sign. 

Extrema1 paths along which v ( t )  returned t o  zero w e r e  cal-  

cu la ted  numerically and it was v e r i f i e d  that the conjugate points 

always ncccrred afterward. 

Now consider an extremal family whose v(0) i s  nonzero. The 

i n i t i a l  point has been shif ted t o  one s ide  of the v = 0 plane of 

11 



synnnetry. W i l l  the  Darboux points s h i f t  t o  the same s ide  o r  t o  

the opposite side? 

the s h i f t  i s  t o  the opposite s ide.  

A carefu l  computational study indicates  t h a t  

When the i n i t i a l  point lies 

on the plane of symmetry, then two extremals t h a t  meet a t  t h e i r  

common Darboux point l ie  on opposite s ides  of the plane, and when 

the i n i t i a l  point i s  moved a l i t t l e  t o  one s ide,  two such extremals 

s t i l l  l i e  on opposite s ides  of the plane most of the  t i m e .  

crosses the plane once, ra ther  than one twice and the  other not a t  

a l l .  Thus it appears tha t  conjugate points  do not occur on any of 

the t r a j e c t o r i e s  i n  u, v, r-space u n t i l  a f t e r  v ( t )  has changed 

sign; however, i n  the absence of exhaustive calculat ions fo r  a l l  

p o s s i b l e  i n i t i a l  conditions and thrust/weight r a t io s ,  t h i s  mst be 

regarded as a conjecture. 

Each 

Trajector ies  i n  u, v, r, +Space 

We r e s t r i c t  our invest igat ion t o  the i n i t i a l  conditions 

u = v = 8 = 0, r = r . 
a given extrema1 with time h i s to ry  u ( t ) ,  v ( t ) ,  r(t), and e ( t )  

has a mirror image with u ( t ) ,  -v( t ) ,  r(t),  and - e ( t )  . Inter-  

sect ions between mirror image t r a j e c t o r i e s  were cormon i n  the  three 

s t a t e  var iab le  problem of the previous sect ion but here  they are ex- 

cept iona l  s ince v ( t )  and O(t) must re turn  t o  zero s iml taneous ly .  

This is unfortunate s ince (except when v ( t )  and e ( t )  vanish 

simultaneously) it appears not t o  be possible t o  formulate qual i -  

t a t i v e  r u l e s  governing Darboux and conjugate points ,  

Equations (l), (2), and (3) indicate  tha t  
0 

12 



When hu(0) > 0, hv(0) = 0, hr(0) < 0, and he = 0; Eqs. ( l ) ,  

(2), and (3) indicate  t h a t  the r e su l t i ng  extrema1 is  a v e r t i c a l l y  

ascending t ra jec tory .  The 4 x 4 test  matrix of exi vectors  

contains but four elements t h a t  a r e  not  i den t i ca l ly  zero. They 

are the 6v(t) and W(t )  generated with 6hv(0) nonzero i n  one 

case and with 6he(0) nonzero i n  the other.  Thus the test  matrix 

has a t  most rank two. When it degenerates i n  rank an adjacent ex- 

tremal can be found t h a t  in te rsec ts  the  nominal a t  a conjugate 

point  . 
Conjugate points on v e r t i c a l  launch t r a j e c t o r i e s  from the 

moon were found with the a i d  of a computer. As i n  the  three-  

dimensional state space problem a one parameter family of conju- 

ga te  points  was exhibited along each path. 

a t  the earliest conjugate points w e r e  p lo t ted  i n  Fig. 2. 

n i f i c a n t  fea tures  t o  be observed are the extremely short  range of 

t h e  curve fo r  the nuclear rocket 

( f o r  T/Wo > 0.2) of the  curve f o r  the  chemical rocket (Isp = 300). 

The values of m/mo 

The s ig-  

(Isp = 1000) and the nonexistence 

Conclusions 

A family of conjugate points has been found on extrema1 rocket 

paths  i n  u, v, r-space. Numerical r e s u l t s  indicate  tha t  they 

appear only a f t e r  v ( t )  - the  horizontal  ve loc i ty  component - 
has changed sign. When v(0) = 0 t h i s  can be proved ana ly t ica l ly  

from symmetry considerations and Darbouxl s theorem. Since v ( t )  

13 



seldom changes i t s  sign on powered f l i g h t  t r a j e c t o r i e s  of engineer- 

ing in t e re s t ,  the  r e s u l t  i s  reassuring. Computer searches fo r  

other  families of conjugate points were conducted without success. 

Conjugate points  have a l so  been found i n  u, v, r 8-space, 

although i n  the  case of lunar t r a j e c t o r i e s  they are apparently 

qu i t e  rare. 

they w i l l  a l s o  when Cartesian or  other coordinates are used. 

general  qua l i t a t ive  r u l e s  governing these conjugate points  have 

been discovered. 

Of course i f  famil ies  exhibi t  envelopes i n  t h i s  space 

No 
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F,g. 1 Mass Ratio a t  F i r s t  Conjugate Point fo r  Vert ical  Launches 
from the Moon (u,v,r - Space) 

16 



0.4 

0. 

Fig. 2 Mass Ratio a t  F i r s t  Conjugate Point for Vert ical  Launches 
from the  Moon (u,v,r,8- Space) 
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