SEMIANNUAL REPORT NO. 5

DEVELOPMENT OF COMPRESSOR END SEALS STATOR INTERSTAGE SEALS, AND STATOR PIVOT SEALS IN ADVANCED AIR-BREATHING PROPULSION SYSTEMS

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

20 January 1968
CONTRACT NAS3-7605

Technical Management
NASA Lewis Research Center
Cleveland, Ohio
Air-Breathing Engine Division
D. P. Townsend

Project Manager
L. P. Ludwig

Research Advisor

Written by:

Assistant Project EngineerAnalytical

Approved by:

PREFACE

This report describes the progress of work conducted between 1 July 1967 and 31 December 1967 by the Pratt \& Whitney Aircraft Division of United Aircraft Corporation, East Hartford, Connecticut on Contract NAS3-7605, Development of Compressor End Seals, Stator Interstage Seals, and Stator Pivot Seals in Advanced Air-Breathing Propulsion Systems, for the Lewis Research Center of the National Aeronautics and Space Administration.

The authors wish to acknowledge the assistance of Messrs. H. L. Northup, P. E. Nicolich, H. Shaffer, P. R. Lawell, R. E. Turley, and P. A. Rubenstein in the preparation of material for this report.

Roger M. Hawkins is Project Manager for Pratt \& Whitney Aircraft for this program.

The following National Aeronautics and Space Administration personnel have been assigned to this project:

Contract Officer
- J. H. DeFord
Project Manager
- D. P. Townsend
Research Advisor
- L. P. Ludwig
Contract Administrator
- E. Schiopota

SUMMARY

This report describes the work accomplished during the fifth six-month period of an analytical, design, and experimental program directed at developing compressor end seals, stator interstage seals, and stator pivot seals for advanced air-breathing propulsion systems.

Feasibility analyses of the OC diaphragm thin-strip seal, the semirigid one-piece seal, and the flexure-mounted shoe seal have been completed. Each of these three concepts has been analyzed in both an end seal configuration and an interstage seal configuration, thus completing the Task I work. Results of the analyses indicated that the best configurations were the OC diaphragm end seal and the semirigid interstage seal. Both of these seals have been chosen for further evaluation under Task II.

Most of the work under Tasks II and IV has been concerned with procurement and fabrication of the seals, instrumentation, and test equipment. In addition, a gas-film analysis and a thermal analysis of the one-side floated-shoe end and interstage seals were performed under Task II. Testing has started on the single-bellows vane pivot seal, (Task IV) but no results are available as yet.

No work has been performed under Task III in the last six months.

Milestone Charts are presented at the end of this report.

DEVELOPMENT OF COMPRESSOR END SEALS, STATOR INTERSTAGE SEALS, AND STATOR PIVOT
 SEALS IN ADVANCED AIR-BREATHING ENGINES

by
R. M. Hawkins, A. H. McKibbin, and C. C. W. Ng

Abstract

Tracking analyses and thermal analyses of the OC diaphragm thin-strip seal, the semirigid interstage seal, and the flexuremounted shoe seal are discussed. The tracking analysis includes the effects of seal tilt angle, engine speed (take-off, cruise, and idle conditions), and natural frequencies of the seal. Primary emphasis is placed on the OC diaphragm end seal and the semirigid interstage seal, since these designs were chosen for further evaluation. In addition the preparations for testing the end and interstage seals and the vane pivot seals are discussed.

TABLE OF CONTENTS

Page
PREFACE ii
SUMMARY iii
ABSTRACT iv
LIST OF ILLUSTRATIONS vii
LIST OF TABLES xi
NOMENCLATURE xiii
INTRODUCTION 1
I. TASK I 3
A. Introduction 3
B. Seal Tracking Analysis 7
C. OC Diaphragm Thin-Strip Seal 49
D. Semirigid Interstage Seal Design 74
II. TASK II 93
A. Introduction 93
B. One-Side Floated-Shoe Seal 94
C. OC Diaphragm End Seal and Semirigid Interstage Seal 98
D. Test Rig and Test Stand 102
III. TASK III 103
IV. TASK IV 105
A. Introduction 105
B. Description of Seals and Test Rig 106
MILESTONE CHARTS 119
APPENDICES 123
A. Flexible Seal Tracking Analysis Computer Program 123
B. Thermal Analysis 141
C. OC Diaphragm End Seal Task I Thermal Calculations 149
D. Temperature Analysis of the Semirigid Interstage Seal 179

TABLE OF CONTENTS (Contd)

Page
E. Stiffness and Displacement Calculations for Composite 197
Thin Rings
F. Thermal Rotation Calculations for the Semirigid Interstage 211 Seal
REFERENCES 215
DISTRIBUTION LIST 216

LIST OF ILLUSTRATIONS

Figure Title Page
1
OC Diaphragm End Seal 4
2
Semirigid Interstage Seal 5
3 Geometry of the Flexure-Mounted Shoe Seal 8
4 Free-Body Diagram of the Shoe 8
5
Beam Analogy for the Tab Spring 11
6 Tab Load Diagram 12
7 Dimensions of the Flexure-Mounted Shoe Seal 12
8 Axial Oscillation of the Hoop 14
9 Angular Oscillation of the Shoe 15
10 Axial Oscillation of the Shoe 16
11 OC Diaphragm Thin-Strip Seal Concept 19
12 Semirigid One-Piece Seal Concept 19
13 Rotor Contour, Seal-Ring Instantaneous Deflection, and 20 Seal-Ring Initial Distortion
14 Free-Body Diagram of a Seal-Ring Segment 21
15 Bending of a Seal Segment Because of Angular Displacement α 23
16
Seal-Ring Segment 25
17 Lumped-Parameter Model of the Carrier-Ring System 36
18 Schematic for Mathematical Model of Angular Vibration 39
19 Typical Single-Pad Seal 44

LIST OF ILLUSTRATIONS (Contd)

Figure Title Page
20
Gas-Film Forces on a Double Pad 46
21
OC Diaphragm End Seal Restoring Moment and Minimum 51 Film Thickness
22OC Diaphragm End Seal Film Thickness52
23 OC Diaphragm End Seal Leakage 53
24
Critical Tolerances in the OC Diaphragm End Seal 55
25 Modes of Seal and Runner Distortion Used in Tracking Analysis 60
26 Helical Coil Spring Rate 68
27 Simplified Diagram of the OC Diaphragm Seal 69
28 Force and Moment Diagram for the OC Diaphragm Seal Carrier 71
29
Cross Section of the Semirigid One-Piece Seal 76
30 Cross Section of the Semirigid One-Piece Seal with Insulating 77 Cut Out
31 Minimum Film Thickness and Center of Pressure for the 80 Semirigid Interstage Seal at Cruise
32 Leakage and Stiffness of the Semirigid Interstage Seal 80 at Cruise
33
Minimum Film Thickness and Center of Pressure for the 81 Semirigid Interstage Seal at Idle
34
Leakage and Stiffness of the Semirigid Interstage Seal at Idle 82
35 Minimum Film Thickness and Center of Pressure For the 83 Semirigid Interstage Seal at Take-Off
36 Leakage and Stiffness of the Semirigid Interstage Seal at 84 Take-OffDiagram of Nodal Points and Subvolumes for Thermal Analysis86of the Semirigid Interstage Seal

LIST OF ILLUSTRATIONS (Contd)

Figure Title Page
38 Temperature Distribution (in ${ }^{\circ} \mathrm{F}$) in the Semirigid Interstage 87
Seal
94
One-Side Floated-Shoe End Seal Gas Film Calculation
40 One-Side Floated-Shoe Interstage Seal Gas Film Calculation 96
41 Thermal Map of the One-Side Floated-Shoe Interstage Seal 97 at Cruise Conditions42Semirigid Interstage Seal98
43 Semirigid Interstage Seal Thermal Deflection 99
44 Pressure-Induced Deflections in the Semirigid Interstage Seal. 101 Runner in Retracted and Extended Position
45 Single-Bellows Vane Pivot Seal 107
46
Instrumentation on Single-Bellows Vane Pivot Seal (XP-80138) 108
47 Seal (Left) for Single-Bellows Vane Pivot Seal, and Bellows 109 (Right) (VP-79777)48Seal Housing with Bellows Seal Installed (XP-80136)110
49
Push Rod and 25X View of Strain Gauge (XP-78644, XP-80223) 111
50
Vane Actuation Link (XP-80487) 112
51
Strain Gauge for Vane Actuation Link (XP-80488) 113
52
Test Rig and Instrumentation (XP-80959) 114
53
Instrumentation and Control Panel (XP-80960) 115
54
Close-Up of Thermocouple Leads (XP-8093) 116
55 Thermal Network for Internal and Surface Nodal Points 142
56 Thermal Network for Nodal Points in the Gap between Seal 143 and Seal Plate

LIST OF ILLUSTRATIONS (Contd)

Figure Title Page
57 Temperature Distribution (in Degrees Fahrenheit) in the 150 OC Diaphragm End Seal at Cruise Conditions
58 Nodal Network for the OC Diaphragm End Seal 152
59 Model and Heat Flow Path for Heat Transfer in the Region 176 of Metal Nodes 13, 14, and 15
60 Flow Chart of the Entire Fluid Heat Transfer Path for the 177 OC Diaphragm End Seal
61 Rotation of the Cross Section of a Ring Around a Prescribed 197 Center of Rotation
62 Free-Body Diagram of One Half of a Ring 199
63 Free-Body Diagram of One Half of a Ring with a Uniform Radial 200
Force $\left(Q_{o}\right)$ Applied Outward through the Centroid
64 Mismatch Conditions for a Two-Section Ring 202
65 Rotation of a Thin Ring with a Linear Axial Temperature 209 Gradient
66 Thermal Rotation Model of the Semirigid Interstage Seal 212

LIST OF TABLES

Table PageI Adjusted Residual Moments in the OC Diaphragm End Seal
II Combined Residual Moments for the OC Diaphragm End Seal 57
III Mean and Minimum Film Thickness Resulting From Residual 58 Moments in the OC Diaphragm End Seal
IV Tilted- and Parallel-Film Maximum Seal Leakage in the OC 58 Diaphragm End Seal
V Results of Tracking Analysis of the OC Diaphragm End Seal 61
VI Influence Coefficients for the OC Diaphragm End Seal 62
VII Natural Frequencies of the OC Diaphragm End Seal in Rad/Sec 64
VIII Carrier and Seal Ring Rigid-Body Response Ratios 64
IX Final Minimum Film Thickness of the OC Diaphragm End 65
Seal During Operation
X Balance Results for the OC Diaphragm End Seal 72
XI Film Thickness and Residual Moment Tabulation for the 79 Semirigid Interstage Seal
XII Input Distortions Used in the Tracking Analysis of the Semirigid 88 End and Interstage Seals
XIII Influence Coefficients for the Tracking Analysis of the Semirigid 90 Interstage Seal
XIV Semirigid Interstage Seal Tracking Results 91
XV Design Point Gas Film Characteristics 95
XVI Heat Generation 151
XVII Weighted Axial Clearance 153

LIST OF TABLES (Contd)

Table Title Page
XVIII Input Data for Admittance Calculation 156
XIX Output Data from Admittance Calculation 166
XX Input Data for Admittance Calculation on the Semirigid 183 Interstage Seal
XXI Output Data from Admittance Calculation on the Semirigid 190 Interstage Seal

NOMENCLATURE

A	ring cross sectional area (in ${ }^{2}$)
$\mathrm{B}_{\text {ss }}$	flex shoe tab transverse stiffness (lb/in)
$\mathrm{B}_{\text {sa }}$	flex shoe tab cross coupling stiffness ($\mathrm{lb} / \mathrm{rad}$)
$\mathrm{B}_{\text {cs }}$	flex shoe tab cross coupling stiffness (in-lb/in)
Baa	flex shoe tab angular stiffness (in-lb/rad)
$\mathrm{C}_{\mathrm{A} 1}, \mathrm{C}_{\text {A } 2}$	influence coefficients associated with α_{n}
$\mathrm{C}_{\mathrm{B} 1}, \mathrm{C}_{\mathrm{B} 2}$	influence coefficients associated with β_{n}
$\mathrm{C}_{\mathrm{u} 1}, \mathrm{C}_{\mathbf{u} 2}$	influence coefficients associated with u_{n}
$\mathrm{C}_{\mathrm{v} 1}, \mathrm{C}_{\mathrm{v} 2}$	influence coefficients associated with v_{n}
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$	magnitude of $\gamma_{1}, \gamma_{2}, \gamma_{3}$
E	modulus of elasticity ($\mathrm{lb} / \mathrm{in}^{2}$)
$\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}$	forces on semi-rigid seal (lb/in)
F_{3}	"O" diaphragm pressure load (lb/in)
F_{S}	helical coil spring force (lb/in)
$\mathrm{F}_{\mathrm{S} 1}, \mathrm{~F}_{\mathrm{S} 2}$	C and O diaphragm spring reactions ($\mathrm{lb} / \mathrm{in}$)
F_{o}	carrier axial pressure load (lb/in)
F_{y}	carrier radial pressure load (lb/in)
G	modulus of rigidity ($\mathrm{lb} / \mathrm{in}^{2}$), shear modulus of elasticity ($\mathrm{lb} / \mathrm{in}^{2}$)
I	area moment of inertia (in^{4})
$\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{\mathrm{tt}}$	mass moment of inertia (in-lb-sec ${ }^{2}$)
I_{p}.	area moment of inertia (in^{4})

$\mathrm{K}_{\text {s }}$	axial gas film stiffness (lb/in/in)
$\overline{\mathrm{K}}_{\text {ss }}$	carrier spring stiffness ($\mathrm{lb} / \mathrm{in} / \mathrm{in}$)
$\mathrm{K}_{\text {ss }}$	axial gas film stiffness per unit area ($\mathrm{lb} / \mathrm{in} / \mathrm{in}^{2}$)
$\mathrm{K}_{\text {a }}{ }^{\text {a }}$	angular gas film stiffness (in-lb/in. rad)
$\mathrm{K}_{\text {sa }}$	cross coupling film stiffness (lb/in-rad)
$\mathrm{K}_{\text {as }}$	cross coupling film stiffness (in-lb/in/in)
$\mathrm{K}^{*}{ }_{\mathbf{r}}$	bending stiffness of seal ring $=\frac{E I}{R^{2}}$ (in-lb/in-rad)
$\mathrm{K}^{*}{ }_{\text {ss }}$	OC diaphragm stiffness, (lb/in/in)
$\mathrm{K}^{*}{ }_{\text {sa }}$	OC diaphragm cross coupling stiffness (lb/in-rad)
$\mathrm{K}^{*}{ }_{\text {a }}$	OC diaphragm cross coupling stiffness (lb/in/in)
$\mathrm{K}^{*}{ }_{\text {a }}$	OC diaphragm angular stiffness (in-lb/in-rad)
$\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$	spring constants (lb/in) (See Figure 17)
M	moment (in-lb/in)
$\Delta \mathrm{M}$	gas film restoring moment (in-lb/in)
M_{b}	bending moment (in-lb/in)
M_{c}	residual moment due to "C" diaphragm tolerance,
Mo	residual moment due to " O " diaphragm tolerance
$\mathrm{Moc}_{\text {c }}$	combined residual moment due to tolerances $=\mathrm{M}_{\mathrm{o}}+\mathrm{M}_{\mathrm{c}}$ (in-lb/in)
M_{R}	carrier residual moment (in-lb/in)
$\mathrm{M}_{\text {res }}$	residual moment (in-lb/in)
M_{1}	flexible ring twisting moment (in-lb/in)

$\mathrm{P}_{1}, \mathrm{P}_{2}$	dimensionless quantity defined by Equation 40
$\mathrm{Q}_{1}, \mathrm{Q}_{2}$	unit flow rate ($\mathrm{lb} / \mathrm{sec}$-in)
Q_{T}	total flow rate (lb-sec)
Q_{PR}	piston ring flow rate ($\mathrm{lb} / \mathrm{sec}$)
R	gas constant (in ${ }^{2} /{ }^{\circ} \mathrm{R}-\mathrm{sec}^{2}$)
R	seal ring radius (inches)
S_{s}	combined radial stiffness of seal ring ($\mathrm{lb} / \mathrm{in} / \mathrm{in}$)
$S_{\text {oc }}$	radial stiffness of OC spring diaphragm ($\mathrm{lb} / \mathrm{in} / \mathrm{in}$)
T	temperature (${ }^{\circ} \mathrm{R}$ or ${ }^{\circ} \mathrm{F}$)
U	velocity (in/sec)
V	shearing force ($\mathrm{lb} / \mathrm{in}$)
$\mathrm{W}_{1}, \mathrm{~W}_{2}$	seal or bearing reactions (lb/in)
\bar{W}_{1}, \bar{W}_{2}	dimensionless seal or bearing loads
a	orifice radius, (inches)
a	seal radius (inches)
a_{g}	groove width (inches)
a_{r}	ridge width (inches)
b	pad width (inches)
$\mathrm{b}_{1} \ldots . . \mathrm{b}_{4}$	width dimensions, (inches)
c	pad length (inches)
e	strain (in/in)
g	gravitational constant (in/ sec^{2})
h_{m}	mean film thickness (inches)

h_{1}	step bearing land clearance (inches)
h_{2}	step bearing recess clearance (inches)
$\Delta \mathrm{h}$	Rayleigh pad recess depth (inches)
$\mathrm{hm}_{\mathrm{m} \text { in }}$	minimum gas film thickness (inches)
$\mathrm{h}_{\mathrm{Tm} \text { in }}$	combined mode minimum film thickness (in)
$\mathrm{h}_{\text {R m in }}$	minimum film thickness resulting from residual moments (in)
h_{Rm}	mean film thickness resulting from residual moments (in)
h_{F}	final, combined minimum film thickness (in)
k	thermal conductivity $\left(\frac{\mathrm{BTU}}{\left(\mathrm{hr}-{ }^{-} \mathrm{F}-\mathrm{ft}\right.}\right)$
k_{2}	back up spring stiffness for flexure-mounted shoe seal (lb/in)
ℓ	beam length (inches)
ℓ	net change in axial film thickness (inches)
m	mass in flow (lb-sec/in ${ }^{2}$)
$\mathrm{m}_{1}, \mathrm{~m}_{2}$	mass ($\mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in}$)
n	number of orifice holes
n	operational mode (1, 2, $3 \ldots .$. etc.)
$\mathrm{p}_{1}, \mathrm{p}_{2}$	ambient and supplied pressure respectively (psia)
$\Delta \mathrm{p}$	pressure difference (psi)
$\mathrm{q}_{\boldsymbol{a}}$	restoring force ($1 \mathrm{~b} / \mathrm{in}$)
q	restoring moment (in-lb/in)
r	radial coordinate
t	thickness (inches)

t	time (sec)
u_{1}	transverse seal ring displacement (inches)
u_{2}	transverse carrier displacement (inches)
u_{n}	dynamic seal ring transverse response to runner deformations δ_{n} and ϵ_{n}
v_{n}	static seal ring transverse response to seal-ring deformation (ζ_{n} and η_{n}) (dimensionless)
w	flow rate ($\mathrm{lb} / \mathrm{hr}$)
$\overline{\mathrm{x}}_{\mathrm{c}}$	dimensionless center of pressure
x*	centroid, x coordinates (in)
x_{c}	center of pressure $=\mathrm{b} \overline{\mathrm{x}}_{\mathrm{c}}$ (inches)
$\mathrm{X}_{\mathrm{c}}, \mathrm{x}_{\text {To }}, \mathrm{x}_{\text {Bo }}$	radial displacements of spring diaphragms (inches)
$\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$	rigid body displacements (inches)
$\overline{\mathrm{x}}_{1}, \overline{\mathrm{x}}_{2}, \overline{\mathrm{x}}_{3}$	radial displacements of ring centroid, (inches)
$\mathrm{x}_{12}, \mathrm{x}_{23}$	radial thermal mismatch (inches)
$\bar{y}_{\text {c }}$	dimensionless center of pressure
y	transverse displacement (inches)
y	beam deflection (inches)
$\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}$	force moment arms (in)
y^{*}	centroid y coordinate (in)
z	axial coordinate (inches)
z	axial displacement of OC springs
z_{0}	initial axial position of OC springs
$\overline{\mathbf{z}}$	net axial displacement of OC springs $=\mathrm{z}-\mathrm{z}_{\mathrm{o}}$ (inches)

α	seal tilt angle (radians)
α	coefficient of thermal expansion (in/in/ ${ }^{\circ} \mathrm{F}$)
α_{n}	dynamic seal ring angular response to runner deformations ϵ_{n} and δ_{n}
β	spiral groove angle (degrees)
β_{n}	static seal ring angular response to seal ring deformation ζ_{n} and η_{n}
$\gamma_{1}, \gamma_{2}, \gamma_{3}$	rigid body angular displacement
$\Gamma_{1}, \Gamma_{2}, \ldots \Gamma_{10}, \Gamma_{11}$	special parameters defined in Equation 27
δ	initial transverse deformation of rotor surface (inches)
δ	thermal radial mismatch (inches)
δ_{n}	n-th component of dimensionless, initial transverse rotor deformation
ϵ	initial angular rotor deformation (radians)
ϵ_{n}	n -th component of initial angular rotor deformation (radians)
ζ	initial angular deformation of seal ring (radian)
ζ_{n}	nth component of initial angular deformation of seal ring
η	initial transverse distortion of seal ring (inches)
η_{n}	nth component of dimensionless initial seal ring transverse deformation
θ	coordinate
θ	seal tilt angle due to restraining effect of OC springs
ν	frequency, (rad/sec.)
$\nu_{\mathrm{n} 1}, \nu_{\mathrm{n} 2}$	natural frequencies of flexible seal ring ($\mathrm{rad} / \mathrm{sec}$)
\wedge_{y}	bearing compressibility number, $6 \mu \mathrm{Vb} / \mathrm{ph}^{2}$
μ	viscosity ($\mathrm{lb}-\mathrm{sec} / \mathrm{in}^{2}$)
ξ	EI
	GI_{p}

ρ
τ
ϕ
ψ
ω
mass density ($\mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in}^{4}$)
shear stress ($\mathrm{lb} / \mathrm{in}^{2}$)
net angle between rotor and seal ring, (radians)
wedge angle of shoe section (degrees)
angular speed (rad/sec)

INTRODUCTION

High performance, modern multistage axial-flow compressors built with state-of-the-art features incorporate several air leak paths which are detrimental to compressor performance. Elimination or significant reduction of these leaks would result in a compressor of higher efficiency and possibly smaller size. Some typical areas of leak paths with estimates of percent air loss and potential effect on compressor performance are:

	Air Loss	Effect on Compressor Efficiency
End Seal	0.6\%	1.0\%
Interstage Stator Seals (ten stages)	0.9\%	1.0\%
Vane Pivot Seals (variable stator)	$0.2 \% \text { per }$ stage	$\begin{aligned} & 0.2 \% \text { per } \\ & \text { stage } \end{aligned}$

Increases in compressor efficiency are traditionally sought by means of compressor geometry redesign. A few extra points in efficiency often mean the difference between a successful or an unsuccessful engine design. These increases as a result of geometry change are always very expensive and not always successful. On the other hand, the losses to efficiency as a result of air leaks are strikingly large, and real gains are within reach at a relatively low cost. The gains in efficiency, however, must be balanced against any detrimental effect that improved sealing may have on the engine, such as lower reliability or increased weight.

This program will provide for a research, analytical, and test program having as its goal the development of compressor end seals, stator interstage seals, and vane pivot seals which exhibit lower air leakage rates than those currently in use. This will be accomplished using components of such size, materials, and designs as to be considered applicable to compressors for engines capable of supersonic aircraft propulsion.

I. TASK I
 CONCEPT FEASIBILITY ANALYSIS PROGRAMS FOR COMPRESSOR END SEALS AND STATOR INTERSTAGE SEALS

A. INTRODUCTION

In the initial feasibility analyses, a one-side floated-shoe seal and a two-side floated shoe seal were developed. These designs, however, were sufficiently similar in their basic design concepts that they would leave the program without a radically different conceptual backup if they failed to meet design requirements on test. Therefore, Contract Amendment Number 2 was authorized, providing for the feasibility analysis of an OC diaphragm thin-strip seal. In addition to performing a feasibility analysis of that seal, the contractor has considered two backup seal concepts: the flexure-mounted shoe seal and the semirigid one-piece seal.

The feasibility analysis conducted on all three seals (OC diaphragm, flexure-mounted shoe, and semirigid) has been completed. Both the OC diaphragm and the semirigid seal concepts appear to yield satisfactory predicted performance characteristics. The contractor has therefore requested and received approval to finalize the designs of the OC diaphragm thin-strip seal for the end seal application (shown in Figure 1) and the semirigid one-piece seal for the interstage location (shown in Figure 2). The flexure mounted shoe seal was removed from further consideration at the completion of the Task I feasibility analysis.

Under the terms of the contract, four seals are to be provided by the contractor: two compressor end seals and two stator interstage seals. NASA approval has already been granted for detailing and hardware procurement of the one-side floated-shoe end seal and the oneside floated-shoe interstage seal under Task II. At the present time, the one-side floated-shoe end seal is being fabricated. The one-side floated-shoe interstage seal has been detailed, but procurement had been held in abeyance until the conclusion of the feasibility analysis conducted on the OC diaphragm and the semirigid seal concepts. Since the one-side floated-shoe interstage seal design appears to be competitive with the OC diaphragm and semirigid seal concepts from the standpoint of predicted performance characteristics, the contractor has started procurement of this segmented seal.

1. DESCRIPTION OF THE TWO SEAL CONCEPTS OF CONTRACT AMENDMENT NUMBER 2 SELECTED FOR FINAL DESIGN

The OC diaphragm end seal (Figure 1) employs a thin, flexible, one-piece, annular strip as the primary seal element, providing a high degree of conformability to runner distortion. The thin strip is supported by three C-shaped semitoroidal diaphragms mounted on a floating secondary seal carrier. The secondary carrier provides for axial travel relative to the main engine structure, and a piston ring seal is used between the carrier and the engine structure. One of the C diaphragms forms a seal between the high-pressure and the low-pressure areas. The other two C diaphragms face each other and form a chamber to which the high pressure air flows before reaching the primary seal face. This design, therefore, permits direct balancing of the moments on the thin strip. Further, the thin-strip

ENGINE q

\square

ROTATING PARTS
STATIONARY PARTS

Figure 1 OC Diaphragm End Seal

EN GINE q

Figure 2 Semirigid Interstage Seal
primary sealing element provides flexibility, and, therefore, tracking capability. The moment balance is achieved with methods which are nearly independent of angular displacements of the strip, making low residual moment imbalance easy to achieve. See page 49 for a detailed description of the seal.

The semirigid interstage seal (Figure 2) recognizes the possibility that a semirigid one-piece primary seal element might be provided with a combination of high gas-film stiffness and low structural stiffness so that adequate gas film thickness is maintained during all operating conditions. The feasibility of this design rests primarily on the ability of the seal to perform satisfactorily with a conically tilted seal face, the tilt resulting primarily from axial thermal gradients. The design also requires that runner conical distortion be relatively low and in the same direction as the seal distortion. The seals's cross-sectional stiffness must be high enough to render the seal insensitive to residual moment imbalance resulting from design drawing tolerances or change in operating conditions, yet low enough to allow the seal to conform to runner waviness. See page 74 for a detailed description of the seal.

2. COMPARISON OF THE RELATIVE MERITS AND POSSIBLE SHORTCOMINGS OF THE TWO SEAL CONCEPTS OF CONTRACT AMENDMENT NUMBER 2

- The leakage rates of the OC diaphragm seal are approximately twice as high as those of the semirigid seal.
- Approximate weights of the main seal assemblies are 18 pounds for the OC diaphragm seal and 10 pounds for the semirigid seal.
- Dynamic seal performance characteristics are satisfactory for both end seal designs, and interstage seal designs at cruise and take off conditions. In the interstage location at idle operating conditions, both seals yield low minimum film thicknesses.
- Heat generation and thus frictional power losses are nearly 50 percent lower with the semirigid seal design than those obtained with the OC diaphragm seal.
- The semirigid seal design is simpler, and thus can be manufactured more economically than the OC diaphragm.
- Based upon the above comparison, the semirigid seal has many inherent advantages over the OC diaphragm seal. The OC diaphragm seal may, however, find application in cases where high seal ring flexibility is required to conform to runner distortions and where thermal gradients across the semirigid seal render this design impractical.

B. SEAL TRACKING ANALYSIS

This portion of the report is concerned with the formulation of the tracking analysis for each of the three seal configurations considered under Contract Amendment No. 2. Once formulated and programmed, this analysis should serve as a valuable tool in establishing the seal's response under dynamic conditions. The analysis consists of two parts: one covering the flexure-mounted shoe seal design, and a second part covering the OC diaphragm thin strip seal design and the semirigid design. The second part has been programmed for the IBM-360 computer. The program has been checked out, and solutions to a typical sample problem obtained. The program listing is presented in Appendix A.

1. TRACKING ANALYSIS OF THE FLEXURE-MOUNTED SHOE SEAL

In designing a flexure-mounted shoe seal (Figure 3), it is necessary to know how closely the shoe will track with various modes of rotor oscillation. In this section, the motion of each shoe is analyzed by assuming that each individual shoe and the hoop are represented by a system of two rigid masses connected by a beam spring and that the system's internal shear and moment can be characterized by four spring stiffnesses.

This system of two masses and two springs is depicted in Figure 4. The mass of the shoe is denoted by m_{1}, and the equivalent mass (m_{2}) or the hoop assignable to each shoe is considered to be the total hoop mass divided by the number of shoes. Each shoe is attached to the frame by a back-up spring having a spring rate k_{2} and is connected to the hoop by means of a beam spring. The gas film is represented by a spring system having two directand two cross-coupling stiffnesses.

The imposed motion of the rotor face is denoted by δ and ϵ, where δ is the axial motion and ϵ the twist motion. δ is defined as positive downward, and ϵ is positive in the direction as shown in Figure 4. The shoe is assumed to have a plane motion which is constrained to oscillate in the y and a directions, i.e. the axial and angular directions. The axial oscillation is denoted by u_{1}, defined as positive downward, and the angular motion is denoted by a, defined as positive counterclockwise. The hoop is assumed to have an axial oscillation only, and is represented by u_{2} (defined as positive downward). A free-body diagram of the shoe is also shown in Figure 4. The gas film's forces are represented by an upward force acting through the centroid of the shoe section having a magnitude $K_{s s}\left(u_{1}=\delta\right)+K_{s}(a-\epsilon)$ wise moment having a magnitude $\mathrm{K}_{a s}\left(\mathrm{u}_{1}-\delta\right)+\mathrm{K}_{a a}(a-\epsilon)$. The forces exerted by the beam spring are likewise represented by an upward force, $\mathrm{B}_{\mathrm{ss}}\left(\mathrm{u}_{1}-\mathrm{u}_{2}\right)+\mathrm{B}_{\mathrm{sa}} a$, acting at a distance b_{2} from the centroid, and by a clockwise moment having a magnitude of $B_{a s}$ (u_{1} $\left.u_{2}\right)+B_{a \alpha} a$. The inertia forces of the flex-shoe are an upward force, $m_{1} \ddot{u}_{1}$, acting through centroid and a clockwise moment, $I_{p} \ddot{a}$. The equations of motion of the flex-shoe and the hoop become

$$
\begin{gathered}
\mathrm{k}_{2} \mathrm{u}_{1}+\mathrm{B}_{\mathrm{ss}}\left(\mathrm{u}_{1}-\mathrm{u}_{2}\right)+\mathrm{B}_{\mathrm{s} a} a+\mathrm{K}_{\mathrm{ss}}\left(\mathrm{u}_{1}-\delta\right)+\mathrm{K}_{\mathrm{s} a}(a-\epsilon)+\mathrm{m}_{1} \ddot{\mathrm{u}}_{1}=0 \\
\mathrm{~K}_{\mathrm{as}}\left(\mathrm{u}_{1}-\delta\right)+\mathrm{K}_{\mathrm{aa}}(a-\epsilon)+\mathrm{B}_{a s}\left(\mathrm{u}_{1}-\mathrm{u}_{2}\right)+\mathrm{B}_{a a} a+\mathrm{I}_{\mathrm{p}} \ddot{a}+\mathrm{k}_{2} \mathrm{u}_{1} \mathrm{~b}_{1}+ \\
{\left[\mathrm{B}_{\mathrm{ss}}\left(\mathrm{u}_{1}-\mathrm{u}_{2}\right)+\mathrm{B}_{\mathrm{sa}} a\right] \mathrm{b}_{2}=0} \\
\text { PAGE NO. } 7
\end{gathered}
$$

Figure 3 Flexure-Mounted Shoe End Seal.

1. Shoe 2. Flexure Tab 3. Carrier 4. Coil Spring 5. Piston Rings 6. Carrier 7. Test-Rig Adapter 8. Air Passage

Figure 4 Geometry and Free-Body Diagram of the Flexure-Mounted Shoe Seal

$$
\mathrm{m}_{2} \ddot{u}_{2}-\mathrm{B}_{\mathrm{ss}}\left(\mathrm{u}_{1}-\mathrm{u}_{2}\right)-\mathrm{B}_{\mathrm{sa}} a=0
$$

Let

$$
\begin{align*}
& u_{1}=u_{1 \mathrm{a}} \mathrm{e}^{\mathrm{i} \omega \mathrm{t}} \\
& \mathrm{u}_{2}=\mathrm{u}_{2 \mathrm{a}} \mathrm{e}^{\mathrm{i} \omega \mathrm{t}} \tag{1}\\
& a=a_{\mathrm{a}} \mathrm{e}^{\mathrm{i} \omega \mathrm{t}}
\end{align*}
$$

and the motion of the rotor face be given by

$$
\begin{align*}
& \epsilon=\epsilon_{\mathrm{a}} \mathrm{e}^{\mathrm{i} \omega \mathrm{t}} \tag{2}\\
& \delta=\delta_{\mathrm{a}} \mathrm{e}^{\mathrm{i} \omega \mathrm{t}}
\end{align*}
$$

the equations of motion after substitution of Equations 1 and 2 can be put into the matrix notation as

$$
\mathrm{A}\left|\begin{array}{c}
\overline{\mathrm{u}}_{1 \mathrm{a}} \tag{3}\\
\overline{\mathrm{u}}_{2 \mathrm{a}} \\
a_{\mathrm{a}}
\end{array}\right|=\mathrm{C} \bar{\delta}_{\mathrm{a}}+\mathrm{D} \epsilon_{\mathrm{a}}
$$

where

$$
\begin{aligned}
& \bar{u}_{1 a}=\frac{u_{1 a}}{b} \\
& \bar{u}_{2 a}=\frac{u_{2 a}}{b} \\
& \bar{\delta}_{a}=\delta_{a} / b
\end{aligned}
$$

and,

$$
\begin{aligned}
& \frac{\left(K_{a s}+B_{a s}+k_{2} b_{1}+B_{s s} b_{2}\right)}{I_{p}} b\left|-\frac{\left(B_{a s}+B_{s s} b_{2}\right)}{I_{p}} b\right| \frac{B_{a a}+K_{a a}+B_{s a} b_{2}}{I_{p}}-\omega^{2}
\end{aligned}
$$

$C=\left|\begin{array}{l}\frac{\mathrm{bK}_{\mathrm{ss}}}{\mathrm{m}_{1}} \\ 0 \\ \frac{\mathrm{bK} \mathrm{K}_{\mathrm{as}}}{\mathrm{I}_{\mathrm{p}}}\end{array}\right|$
$D=\left|\begin{array}{l}\frac{K_{s a}}{\mathrm{~m}_{1}} \\ 0 \\ \frac{\mathrm{~K}_{a a}}{\mathrm{I}_{\mathrm{p}}}\end{array}\right|$
The value of ω for which the determinant of the matrix " A " becomes zero represents a natural frequency of this system. By calculating the determinant of "A" for a range of ω, and plotting these values against ω, the natural frequencies of the system can be determined.

Equation 3 can be inverted to obtain

$$
\begin{align*}
& \bar{u}_{1}=\left|\left(u_{1 \delta}\right) \bar{\delta}_{\mathrm{a}}\right|+\left|\left(\mathrm{u}_{1 \epsilon}\right) \epsilon\right| \\
& \overline{\mathrm{u}}_{2}=\left\lvert\, \begin{array}{ll}
\left(\mathrm{u}_{2 \delta}\right) & \bar{\delta}_{\mathrm{a}}|+|\left(\mathrm{u}_{2 \epsilon}\right) \epsilon
\end{array}\right. \tag{4}\\
& a=\left|\begin{array}{ll}
\left(a_{\delta}\right) & \bar{\delta}_{\mathrm{a}}
\end{array}\right|+\left|\left(a_{\epsilon}\right) \epsilon\right|
\end{align*}
$$

A computer program was written to calculate the above six coefficients and determinant A for various values of ω. These coefficients can be used to determine the response according to Equation 4.

The gas film's stiffnesses can be calculated from the basic gas-film performance data by using a computer subroutine "KCAL", as described in Appendix A. The stiffnesses of the tab spring can be derived from the formulas for the deflections of a beam fixed at two ends. Consider a beam whose two ends are displaced axially from each other, as shown in Figure 5a. Because of symmetry, the bending moment at the center vanishes and the beam can be regarded as being composed of two identical cantilever sections, as shown in Figure 5b.

Figure 5 Beam Analogy for the Tab Spring

It follows that

$$
\begin{align*}
\frac{y}{2} & =\frac{P}{3 E I}\left(\frac{\ell}{2}\right)^{3} \\
M & =-\frac{P \ell}{2} \tag{5}
\end{align*}
$$

According to the definition,

$$
\begin{align*}
& B_{s s}=\frac{P}{y} \\
& B_{a s}=\frac{M}{y} \tag{6}
\end{align*}
$$

Hence

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{ss}}=\frac{12 \mathrm{EI}}{\ell^{3}} \\
& \mathrm{~B}_{\mathrm{as}}=-\frac{6 \mathrm{EI}}{\ell^{2}}
\end{aligned}
$$

To determine $B_{s a}$ and $B_{a a}$, one may consider the tab as a beam with one end fixed and the other end constrained to move in a horizontal plane containing the two ends as shown in Figure 6.

Referring to Reference 1,

$$
\begin{aligned}
& a=\frac{\mathrm{M} \ell}{4 \mathrm{EI}} \\
& \mathrm{P}=\frac{3 \mathrm{M}}{2 \ell}
\end{aligned}
$$

Figure 6 Tab Load Diagram

Following the convention used in Figure 3,

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{s} a}=-\frac{\mathrm{P}}{a}=\frac{6 \mathrm{EI}}{\ell^{2}} \\
& \mathrm{~B}_{a a}=\frac{4 \mathrm{EI}}{\ell}
\end{aligned}
$$

where $\mathrm{I}=\frac{\mathrm{bt}{ }^{3}}{12}$
For a numerical example, consider a flexure-mounted shoe seal with dimensions as shown in Figure 7.

Figure 7 Dimensions of the Flexure-Mounted Shoe Seal

The masses of shoe and carrier are $0.00126 \mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in}$. and $0.00226 \mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in}$., respectively. The polar moment of inertia of the shoe about its centroid is $0.000185 \mathrm{in}-\mathrm{lb}^{-\mathrm{sec}^{2}}$. The gas film stiffnesses are given as:

$$
\begin{aligned}
\mathrm{K}_{\mathrm{ss}} & =17,600 \mathrm{lb} / \mathrm{in}^{2} \\
\mathrm{~K}_{\mathrm{sa}} & =3,500 \mathrm{lb} / \mathrm{rad}-\mathrm{in} \\
\mathrm{~K}_{\mathrm{as}} & =2,048 \mathrm{in}-\mathrm{lb} / \mathrm{in}^{2} \\
\mathrm{~K}_{a \mathrm{a}} & =1711 \mathrm{in}-\mathrm{lb} / \mathrm{rad}-\mathrm{in}
\end{aligned}
$$

The backup spring stiffness is given by

$$
\mathrm{k}_{2}=1.76 \mathrm{lb} / \mathrm{in}
$$

and

$$
\begin{aligned}
& \mathrm{b}_{1}=0.137-0.30=-0.163 \mathrm{in} \\
& \mathrm{~b}_{2}=0.137 \mathrm{in}
\end{aligned}
$$

For the beam spring stiffnesses,

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{ss}}=\frac{12 \mathrm{EI}}{\ell^{3}}=\frac{12 \times 30 \times 10^{6} \times 1 \times(.02)^{3}}{12 \times 1.2^{3}}=138.5 \mathrm{lb} / \mathrm{in} \\
& \mathrm{~B}_{\mathrm{sa}}=-\frac{6 \mathrm{EI}}{\ell^{2}}=-83.0 \mathrm{lb} / \mathrm{rad} \\
& \mathrm{~B}_{\mathrm{a} \mathrm{~s}}=-\frac{6 \mathrm{EI}}{\ell^{2}}=-83.0 \mathrm{in}-\mathrm{lb} / \mathrm{in} \\
& \mathrm{~B}_{a a}=\frac{4 \mathrm{EI}}{\ell}=+66.7 \mathrm{in}-\mathrm{lb} / \mathrm{rad}
\end{aligned}
$$

The input data based on the above calculations can be listed as follows:

Analytical Symbol	Computer Symbol	Numerical Value	Units
m_{1}	SM1	0.00126	$\mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in}$
m_{2}	SM2	0.00226	$\mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in}$
I_{p}	FIP	0.000185	in-lb-sec ${ }^{2}$
b	B	1.2	in
b_{1}	B1	-0.163	in
b_{2}	B2	0.137	in
ℓ	FL	3.53	in

K_{ss}	CKSS	17,600	$\mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{~K}_{\mathrm{sa}}$	CKSA	3500	$\mathrm{lb} / \mathrm{rad}-\mathrm{in}$
$\mathrm{K}_{a s}$	CKAS	2048	$\mathrm{in}-\mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{~K}_{a a}$	CKAA	1711	$\mathrm{in}-\mathrm{lb} / \mathrm{rad}-\mathrm{in}$
k_{2}	CK2	1.76	$\mathrm{lb} / \mathrm{in}$
δ	DELTA	1.0	in
ϵ	EPSLON	1.0	radian
B_{ss}	BSS	138.5	$\mathrm{lb} / \mathrm{in}$
B_{sa}	BSA	-83.0	$\mathrm{lb} / \mathrm{rad}$
$\mathrm{B}_{a s}$	BAS	-83.0	$\mathrm{in}-\mathrm{lb} / \mathrm{in}$
$\mathrm{B}_{a a}$	BAA	66.7	$\mathrm{in}-\mathrm{lb} / \mathrm{rad}$
N	W(NW)	$2000-18000$	rpm

The results from the computer are expressed in terms of $u_{1 \delta}, u_{2 \delta} ; u_{1 \epsilon} ;$ etc. These are given below and also plotted in Figures 8 to 10.

Figure 8 Axial Oscillation of the Hoop

Figure 9 Angular Oscillation of the Shoe

Figure 10 Axial Oscillation of the Shoe

If the seal shoe tracks the rotor surface exactly, and if the hoop is to be isolated from the shoe oscillations, then the following ideal conditions must prevail:

$$
\begin{aligned}
& u_{1}=\delta \\
& a=\epsilon \\
& u_{2}=0
\end{aligned}
$$

To determine how closely the shoe tracks the rotor, it is most convenient to calculate ($u_{1}-\delta$), $(a-\epsilon)$, and u_{2}. Perfect tracking demands that all three quantities be zero.

Now using Equations 4, one obtains:

$$
\begin{array}{ll}
\mathrm{u}_{1}-\delta & =\left|\begin{array}{ll}
\left.\mathrm{u}_{1 \delta}-1\right) \delta
\end{array}\right|+\left|\mathrm{u}_{1 \epsilon} \epsilon \mathrm{~b}\right| \\
\mathrm{u}_{2} & =\left|\begin{array}{ll}
\mathrm{u}_{2 \delta} & \delta
\end{array}\right|+\left|\mathrm{u}_{2 \epsilon} \epsilon \mathrm{~b}\right| \\
a-\epsilon & =\left\lvert\, \begin{array}{ll}
a_{\delta} & \left(\frac{\delta}{\mathrm{b}}\right)\left|+\left|\left(a_{\epsilon}-1\right) \epsilon\right|\right.
\end{array}\right.
\end{array}
$$

If for the wobbling mode, the rotor oscillation is given to be

$$
\begin{aligned}
& \delta=1.5 \times 10^{-3} \mathrm{inch} \\
& \epsilon=0.5 \times 10^{-3} \mathrm{radian}
\end{aligned}
$$

Then Figures 8 and 9 give the following coefficients at cruise:

N	$\mathrm{u}_{1 \delta}$	$\mathrm{u}_{2 \delta}$	a_{δ}	$u_{1 \epsilon}$	$\mathrm{u}_{2 \epsilon}$	a_{ϵ}
7100	1.0083	-0.125	0.003	0.000245	0.0635	1.007

Using Equations 6, one obtains at cruise

$$
\begin{aligned}
& \mathrm{u}_{1}-\delta=1.245 \times 10^{-5} \text { inch } \\
& \mathrm{u}_{2}=2.25 \times 10^{-4} \text { inch } \\
& a-\epsilon=7.25 \times 10^{-6} \text { radian }
\end{aligned}
$$

For the saddle mode, the rotor oscillation is given to be

$$
\begin{aligned}
& \delta=0.5 \times 10^{-3} \text { inches } \\
& \epsilon=0.3 \times 10^{-3} \mathrm{rad}
\end{aligned}
$$

Figures 8 to 10 give the following coefficients at the cruise conditions:
2 N
$u_{1 \delta}$
$\mathrm{u}_{2 \delta}$
a_{δ}
$u_{1 \epsilon}$
$\mathrm{u}_{2 \epsilon} \quad a_{\epsilon}$
14,200
1.0568
-0.03
$-0.0742 \quad-0.0127$
0.0157
1.08

Using Equations 6, one obtains at cruise

$$
\begin{aligned}
& \mathrm{u}_{1}-\delta=3.29 \times 10^{-5} \text { inch } \\
& \mathrm{u}_{2}=2.05 \times 10^{-5} \text { inch } \\
& a-\epsilon=5.48 \times 10^{-5} \text { radian }
\end{aligned}
$$

Superimposing the saddle and wobbling motion, the minium gas-film thickness at cruise becomes

$$
\begin{gathered}
\mathrm{h}_{\min }=\mathrm{h}_{\mathrm{o}}-\left(\mathrm{u}_{1}-\delta\right)_{\text {wobble }}-\left(\mathrm{u}_{1}-\delta\right)_{\text {saddle }}-\left[(a-\epsilon)_{\text {wobble }}+(a-\epsilon)_{\text {saddle }}\right] \times \frac{\mathrm{b}}{2} \\
\mathrm{~h}_{\min }=0.001-1.245 \times 10^{-5} \times 3.29 \times 10^{-5}-\left(7.25 \times 10^{-6}+\right. \\
\left.5.48 \times 10^{-5}\right) \times 0.6=0.0009185 \text { inch }
\end{gathered}
$$

The corresponding motion of the hoop at cruise becomes

$$
\left(\mathrm{u}_{2}\right)_{\text {cruise }}=2.25 \times 10^{-4}+2.05 \times 10^{-5}=0.000245 \text { inch }
$$

These figures indicate that at cruise, tracking will be satisfactory if the flexure-mounted shoe seal is used in the end-seal position.

2. FLEXIBLE SEAL RING VIBRATION

The vibration of a flexible seal ring supported by a gas film will be analyzed in this section. Two design concepts are under consideration, a thin-strip seal ring with OC diaphragm, and a semirigid one-piece seal ring; they are respectively shown in Figures 11 and 12.

a. OC DIAPHRAGM SEAL

It is seen from Figure 11 that the seal ring is separated from the rotor by a gas film, and is connected to the carrier by the OC diaphragm. Having a much higher rigidity than the seal ring, the carrier can vibrate only in a rigid-body fashion. On the other hand, the seal ring can vibrate both as an elastic ring and as a rigid body.

Figure 11 OC Diaphragm Thin-Strip Seal Concept

Figure 12 Semirigid One-Piece Seal Concept
Consider the situation that the rotor surface facing the seal ring may be distorted so that it is not perfectly flat. This can be classified into two categories: transverse (axial) distortion ($\delta=\Sigma_{n} \delta_{n} \cos n \theta$) and angular distortion ($\epsilon=\Sigma_{n} \epsilon_{n} \cos n \theta$). Since the rotor is rotating at an angular speed of ω_{1}, the deviation of the rotor surface from its perfectly flat position at any particular instant of time can be represented by

$$
\begin{align*}
& \delta=b \sum_{n} \delta_{n} \cos n(\theta+\omega t) \tag{7}\\
& \epsilon=\sum_{n} \epsilon_{n} \cos n(\theta+\omega t) \tag{8}
\end{align*}
$$

Similarly, assume that the seal ring has initial transverse and angular deformation.

$$
\begin{align*}
& \eta=b \sum_{n} \eta_{\mathrm{n}} \cos \mathrm{n} \theta \tag{9}\\
& \zeta=\sum_{n} \zeta_{\mathrm{n}} \cos \mathrm{n} \theta \tag{10}
\end{align*}
$$

respectively. The sign convention for all angular deformations is given in Figure 11.

(1) Elastic Ring Vibrations

Let y be the instantaneous local deflection of the seal ring. Now, for the purpose of illustration, let us set, for the time being, $\epsilon=\zeta=0$. Then the film thickness is given by

$$
h=h_{m}-y+\delta
$$

where h_{m} is the nominal mean film thickness.
Note that y is the deflection from the perfectly flat position. Both y and δ are defined as positive in the downward direction, as shown in Figure 13.

Figure 13 Rotor Contour, Seal-Ring Instantaneous Deflection, and Seal-Ring Initial Distortion

The free-body diagram of a differential element of the seal ring is shown in Figure 14. The forces and moments acting on this element are shear forces (V), the gas-film restoring force (q), the bending moment $\left(\mathrm{M}_{\mathrm{b}}\right)$, the twisting moment $\left(\mathrm{M}_{\mathrm{t}}\right)$, and the gas film's restoring moment ($\mathrm{q} a$). A double arrowhead denotes vector representation (right-hand system) of angular quantities. The equations of motion can be written as follows:

Figure 14 Free-Body Diagram of a Seal-Ring Segment

Transverse motion (linear translation):

$$
\begin{equation*}
-\frac{\partial \mathrm{V}}{\partial \theta} \mathrm{~d} \theta-\mathrm{qRd} \theta=(\rho \mathrm{ARd} \theta) \ddot{\mathrm{y}} \tag{11}
\end{equation*}
$$

Radial equilibrium of all moments:

$$
\begin{equation*}
\frac{\partial \mathrm{M}_{\mathrm{b}}}{\partial \theta} \mathrm{~d} \theta-\mathrm{M}_{\mathrm{t}} \mathrm{~d} \theta-\mathrm{VRd} \theta=\mathrm{I}_{\mathrm{rr}} \frac{\partial \ddot{\mathrm{y}}}{\partial \theta} \frac{1}{\mathrm{R}} \tag{12}
\end{equation*}
$$

Tangential equilibrium of all moments:

$$
\begin{equation*}
\mathrm{M}_{\mathrm{b}} \mathrm{~d} \theta+\frac{\partial \mathrm{M}_{\mathrm{t}}}{\partial \theta} \mathrm{~d} \theta-\mathrm{q}_{\mathrm{a}} \mathrm{Rd} \theta=\mathrm{I}_{\mathrm{tt}} \ddot{a} \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
& \rho=\text { density of the seal ring } \\
& A=\text { cross-sectional area }(a b) \text { of the seal ring } \\
& M=\text { mass of the differential element }=\rho \mathrm{ARd} \theta
\end{aligned}
$$

$$
\begin{align*}
& I_{r r}=\frac{M\left(R^{2} d \theta^{2}+a^{2}\right)}{12}=\frac{M a^{2}}{12} \tag{14}\\
& I_{t t}=\frac{M\left(a^{2}+b^{2}\right)}{12} \\
& q=\text { restoring force per unit circumferential length } \\
& q_{a}=\text { restoring moment for unit circumferential length }
\end{align*}
$$

Before we express q and q_{a} in terms of displacement, let us define a set of spring constants for the gas film. $\mathrm{K}_{\mathrm{ss}}, \mathrm{K}_{\mathrm{sa}}, \mathrm{K}_{\boldsymbol{a} s}$ and $\mathrm{K}_{\boldsymbol{a} \boldsymbol{a}}$, and a set of spring constants for the OC diaphragm, $\mathrm{K}_{\mathrm{ss}}{ }^{*}, \mathrm{~K}_{\mathrm{sa}}{ }^{*}, \mathrm{~K}_{\mathrm{as}}{ }^{*}$ and $\mathrm{K}_{\mathrm{a} a}{ }^{*}$. Here, K_{ss} is the y -direction restoring force per unit circumferential length due to unit displacement in the y-direction, $K_{s a}$ is the y-direction restoring force per unit circumferential length due to a unit angular displacement in the a-direction, and so on. The units are as follows:

$$
\begin{array}{ll}
\mathrm{K}_{\mathrm{ss}} \text { and } \mathrm{K}_{\mathrm{ss}}^{*} & (\mathrm{lb} / \mathrm{in} / \mathrm{in}) \\
\mathrm{K}_{\mathrm{s} a} \text { and } \mathrm{K}_{\mathrm{sa}}{ }^{*} & (\mathrm{lb} / \mathrm{rad} / \mathrm{in}) \\
\mathrm{K}_{a s} \text { and } \mathrm{K}_{a s}{ }^{*} & (\mathrm{in} . \mathrm{lb} / \mathrm{in} / \mathrm{in}) \\
\mathrm{K}_{a a} \text { and } \mathrm{K}_{a a}{ }^{*} & (\mathrm{in} . \mathrm{lb} / \mathrm{rad} / \mathrm{in})
\end{array}
$$

When the seal ring is displaced from its perfectly flat position by an amount y, the resulting restoring forces from the gas film and the OC diaphragm are respectively $\mathrm{K}_{\mathrm{ss}} y$ and $\mathrm{K}_{\mathrm{ss}}{ }^{*} \mathrm{y}$. In the meantime, let us assume that the rotor deviates from its perfectly flat position by an amount δ (in the same direction as y). This will decrease the gas film restoring force $\mathrm{K}_{\text {ss }} \mathrm{y}$ by $\mathrm{K}_{\mathrm{ss}} \delta$. A similar argument can be applied to the angular displacement. Thus, we can write

$$
\begin{align*}
& \mathrm{q}=\mathrm{K}_{\mathrm{ss}}(\mathrm{y}-\delta)+\mathrm{K}_{\mathrm{ss}}^{*} \mathrm{y}+\mathrm{K}_{\mathrm{s} a}(a-\epsilon)+\mathrm{K}_{a a}^{*}{ }^{*} \\
& \mathrm{q}_{a}=\mathrm{K}_{a s}(\mathrm{y}-\delta)+\mathrm{K}_{a s}^{*}{ }^{*} \mathrm{y}+\mathrm{K}_{a a}(a-\varepsilon)+\mathrm{K}_{a a} * a \tag{15}
\end{align*}
$$

At this stage of the analysis, it appears proper to obtain relationships between M_{b}, M_{t}, and the displacements y and a. Again, take a differential element of the seal ring with length $\operatorname{Rd} \theta$. Because of angular (twisting) displacement a, the upper portion is compressed, while the lower portion is stretched (see Figure 15). At an arbitrary location z, the stretched length of the element is $(\mathrm{R}+\mathrm{za}) \mathrm{d} \theta$. Hence, deformation $=\mathrm{zad} \theta$

$$
\mathrm{e}_{\boldsymbol{a}}=\operatorname{strain} \text { due to } a=\frac{z a \mathrm{~d} \theta}{\mathrm{Rd} \theta}=\frac{z a}{\mathrm{R}}
$$

Figure 15 Bending of a Seal Segment Because of Angular Displacement α

We also know that strain due to transverse bending is

$$
\mathrm{e}_{\mathrm{b}}=-\frac{\mathrm{z}}{\bar{\rho}}=\text { strain due to transverse bending }
$$

where $\bar{\rho}=$ radius of curvature $=\left(\frac{\mathrm{d}^{2} y}{\mathrm{R}^{2} \mathrm{~d} \theta^{2}}\right)^{-1}$
Thus,

$$
\begin{aligned}
\mathrm{e} & =\text { total strain }=e_{a}+e_{b} \\
& =z\left(\frac{a}{R}-\frac{1}{R^{2}} \frac{d^{2} y}{d \theta^{2}}\right)
\end{aligned}
$$

The bending moment is readily obtained

$$
\begin{align*}
M_{b} & =-\int_{-a / 2}^{\mathrm{a} / 2} \text { Eezbdz }=\mathrm{E}\left(\frac{1}{\mathrm{R}^{2}} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{~d} \theta^{2}}-\frac{a}{\mathrm{R}}\right) \int_{-\mathrm{a} / 2}^{\mathrm{a} / 2} \mathrm{z}^{2} \mathrm{bdz} \tag{16}\\
& =\operatorname{EI}\left(\frac{1}{\mathrm{R}^{2}} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{~d} \theta^{2}}-\frac{a}{\mathrm{R}}\right)
\end{align*}
$$

where $E=$ Young's Modulus

$$
I=\text { area of moment of inertia }=\int_{-a / 2}^{a / 2} z^{2} b d z
$$

As for the twisting moment, we have the well-known formula:

$$
\mathrm{M}_{\mathrm{t}}=\mathrm{GI}_{\mathrm{p}} \frac{\partial a}{\mathrm{R} \partial \theta}
$$

for a bar under torsion.
In the case of a circular ring, there is an additional term in the twisting moment. Consider a segment under torsion. The segment has linear displacement y and angular displacement a. It is convenient to use cylindrical coordinates r, θ, and z as shown in Figure 16. The shear stresses contributing towards the twisting moment are $\tau_{\theta_{\mathrm{r}}}=2 \mathrm{Ge}_{\theta_{\mathrm{r}}}$

$$
\begin{equation*}
\tau_{\theta \mathrm{z}}=2 \mathrm{Ge}_{\theta \mathrm{z}} \tag{17}
\end{equation*}
$$

Also, the strain displacement relationships are (Reference 2, page 183).

$$
\begin{align*}
& e_{\theta r}=\frac{1}{2}\left(\frac{\partial u_{r}}{r \partial \theta}+\frac{\partial u_{\theta}}{\partial r}-\frac{u_{\theta}}{r}\right) \\
& e_{\theta z}=\frac{1}{2}\left(\frac{\partial u_{z}}{r \partial \theta}+\frac{\partial u_{\theta}}{\partial z}\right) \tag{18}
\end{align*}
$$

where u_{r}, u_{θ} and u_{z} are the displacements in the respective direction. From Figure 16, it is clear that:

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{r}}=a \mathrm{z} \\
& \mathrm{u}_{\theta}=-\frac{\partial \mathrm{y}}{\mathrm{R} \partial \theta} \mathrm{z} \\
& \mathrm{u}_{\mathrm{z}}=\mathrm{y}-a \overline{\mathrm{r}}
\end{aligned}
$$

Thus, from Equation 18,

$$
\begin{aligned}
& \mathrm{e}_{\theta \mathrm{r}}=\frac{1}{2}\left(\frac{\partial a}{\mathrm{r} \partial \theta}+\frac{1}{\mathrm{r}} \frac{\partial \mathrm{y}}{\mathrm{R} \partial \theta}\right) \mathrm{z} \\
& \mathrm{e}_{\theta_{z}}=\frac{1}{2}\left(\frac{\partial y}{\mathrm{r} \partial \theta}-\overline{\mathrm{r}} \frac{\partial a}{\mathrm{r} \partial \theta}-\frac{\partial y}{\mathrm{R} \partial \theta}\right)
\end{aligned}
$$

Substituting into Equations 17, we have

a. CYLINDRICAL COORDINATES

b. SHEAR STRESSES ON A DIFFERENTIAL ELEMENT dA

Figure 16 Seal-Ring Segment

$$
\begin{aligned}
& \tau_{\theta \mathrm{r}}=\mathrm{G}\left(\frac{\partial a}{\mathrm{r} \partial \theta}+\frac{1}{\mathrm{r}} \frac{\partial \mathrm{y}}{\mathrm{R} \partial \theta}\right) \mathrm{z} \\
& \tau_{\theta^{z}}=\mathrm{G}\left(\frac{\partial \mathrm{y}}{\mathrm{r} \partial \theta}-\overline{\mathrm{r}} \frac{\partial a}{\mathrm{r} \partial \theta}-\frac{\partial \mathrm{y}}{\mathrm{R} \partial \theta}\right)
\end{aligned}
$$

The twisting moment can be obtained by integrating the moments resulting from the shear stresses.

$$
\begin{aligned}
M_{t}= & -\int_{A} \tau_{\theta z} \bar{r} d A+\int_{A} \tau_{\theta r} z d A \\
= & -G \iint_{A}\left[\frac{\partial \mathrm{y}}{\mathrm{r} \partial \theta}-\overline{\mathrm{r}}\left(\frac{\partial a}{\mathrm{r} \partial \theta}\right)-\frac{\partial \mathrm{y}}{\mathrm{R} \partial \theta}\right] \overline{\mathrm{r} d A}+ \\
& G \int_{\mathrm{A}}\left(\frac{\partial a}{\mathrm{r} \partial \theta}+\frac{1}{\mathrm{r}} \frac{\partial \mathrm{y}}{\mathrm{r} \partial \theta}\right) \mathrm{z}^{2} \mathrm{dA}
\end{aligned}
$$

Observe that from geometry,

$$
r=R+\bar{r}
$$

For the seal ring application, R is much greater than $\overline{\mathrm{r}}$. Therefore, we can make the approximation that

$$
\frac{1}{r}=\frac{1}{R+\bar{r}}=\frac{1}{R\left(1+\frac{\bar{r}}{R}\right)} \cong \frac{1}{R}\left(1-\frac{\bar{r}}{R}\right)
$$

Thus, the twisting moment is readily obtained,

$$
\begin{aligned}
M_{t}= & -G \int_{A}\left[\frac{1}{R}\left(1-\frac{\bar{r}}{R}\right) \frac{\partial y}{\partial \theta}-\bar{r} \frac{1}{R}\left(1-\frac{\bar{r}}{R}\right) \frac{\partial a}{\partial \theta}-\frac{\partial y}{R \partial \theta}\right] \overline{\mathrm{r}} \mathrm{dA} \\
& +G \int_{A}\left[\frac{1}{R}\left(1-\frac{\bar{r}}{\mathrm{R}}\right) \frac{\partial a}{\partial \theta}+\frac{1}{\mathrm{R}}\left(1-\frac{\bar{r}}{\mathrm{R}}\right) \frac{\partial y}{\mathrm{R} \partial \theta}\right] \mathrm{z}^{2} \mathrm{dA}
\end{aligned}
$$

Using the condition that

$$
\int_{A} \bar{r} d A=\int_{A} \bar{r}^{-3} d A=0
$$

we obtain

$$
\begin{align*}
M_{t}= & G \frac{\partial y}{R^{2} \partial \theta} \int_{A} \bar{r}^{2} d A+G \frac{\partial a}{R \partial \theta} \int_{A} \bar{r}^{2} d A \\
& +G \frac{\partial a}{R \partial \theta} \int_{A} z^{2} d A+G \frac{\partial y}{R^{2} \partial \theta} \int_{A} z^{2} d A \\
= & G\left(\frac{\partial y}{R^{2} \partial \theta}+\frac{\partial a}{R \partial \theta}\right) \int_{A}\left(\bar{r}^{2}+z^{2}\right) d A \tag{19}\\
= & G I_{p}\left(\frac{\partial y}{R^{2} \partial \theta}+\frac{\partial a}{R \partial \theta}\right)
\end{align*}
$$

where

$$
\begin{aligned}
I_{p} & =\text { the polar moment of inertia } \\
& =\int_{A}\left(\bar{r}^{-2}+z^{2}\right) d A
\end{aligned}
$$

The same expression for M_{t} is given in (Reference 3, page 451). It is important to note that when a rectangular cross section (thin-strip seal ring) or a hollow cross section (semirigid onepiece ring) is under consideration. I_{p} should be replaced by its equivalent polar moment of inertia calculated from the membrane analogy for a bar under torsion (see Reference 4). Thus, for a thin strip seal ring (Reference 4, page 15)

$$
I_{p}=\frac{1}{3}{b a^{3}}^{3}
$$

To summarize, the bending moment and the twisting moment are given by Equations 16 and 19 respectively. If the initial transverse and angular deformations of the ring, η and ζ, are taken into account, then the bending and twisting moments are

$$
\begin{align*}
& M_{b}=E I\left[\frac{1}{R^{2}} \frac{d^{2}(y-\eta)}{d \theta^{2}}-\frac{a-\zeta}{R}\right] \tag{20}\\
& M_{t}=\operatorname{GI}_{p}\left[\frac{\partial(y-\eta)}{R^{2} \partial \theta}+\frac{\partial(a-\zeta)}{R \partial \theta}\right] \tag{21}
\end{align*}
$$

We now proceed to simplify the equations of motion (11,12, and 13), and express them in terms of y and a and their derivatives. Differentiating Equation 12 with respect to θ,

$$
\begin{equation*}
\frac{\partial^{2} \mathrm{M}_{\mathrm{b}}}{\partial \theta^{2}}-\frac{\partial \mathrm{M}_{\mathrm{t}}}{\partial \theta}-\mathrm{R} \frac{\partial \mathrm{~V}}{\partial \theta}=\frac{\rho \mathrm{Aa}^{2} \partial^{2} \ddot{\mathrm{y}}}{12 \partial \theta^{2}} \tag{22}
\end{equation*}
$$

Multiplying both sides of Equation 11 by $\frac{\mathrm{R}}{\mathrm{d} \theta}$,

$$
\begin{equation*}
-\mathrm{R} \frac{\partial \mathrm{~V}}{\partial \theta}-\mathrm{q} \mathrm{R}^{2}=\rho A \mathrm{R}^{2} \ddot{y} \tag{23}
\end{equation*}
$$

Subtracting Equation 23 from Equation 22,

$$
\begin{equation*}
\frac{\partial^{2} M_{b}}{\partial \theta^{2}}-\frac{\partial M_{t}}{\partial \theta}+{ }_{q} R^{2}=\frac{\rho A a^{2}}{12} \frac{\partial^{2} \ddot{y}}{\partial \theta^{2}}-\rho \mathrm{AR}^{2} \ddot{y} \tag{24}
\end{equation*}
$$

Since

$$
\frac{\partial^{2} \ddot{y}}{\partial \theta^{2}} \sim \ddot{y}
$$

Therefore

$$
\frac{\frac{\rho \mathrm{Aa}^{2}}{12} \frac{\partial^{2} \ddot{y}}{\partial \theta^{2}}}{\rho \mathrm{AR}^{2} \ddot{y}} \sim \frac{\mathrm{a}^{2}}{\mathrm{R}^{2}} \ll 1
$$

where \sim denotes "of the order of".
For seal ring applications, a is much smaller than R, so that $\frac{a}{R} \ll 1$. Thus. Equation 24 reduces to

$$
\frac{\partial^{2} \mathrm{M}_{\mathrm{b}}}{\partial \theta^{2}}-\frac{\partial \mathrm{M}_{\mathrm{t}}}{\partial \theta}+\mathrm{qR} \mathrm{R}^{2}+\rho \mathrm{AR}^{2} \ddot{\mathrm{y}}=0
$$

Substituting Equations 14, 20, and 21 into the above equation, we have

$$
\begin{align*}
\text { EI } & {\left[\frac{\partial^{4}(y-\eta)}{R^{2} \partial \theta^{4}}-\frac{\partial^{2}(a-\zeta)}{R \partial \theta^{2}}\right]-\operatorname{CI}_{p}\left[\frac{\partial^{2}(y-\eta)}{R^{2} \partial \theta^{2}}+\frac{\partial^{2}(a-\zeta)}{R \partial \theta^{2}}\right] } \\
& +R^{2}\left[\left(K_{\diamond} *+K_{\diamond}\right) y+\left(K_{s a}+K_{s a}^{*}\right) a\right]+\rho A R^{2} \ddot{y} \tag{25}\\
& =R^{2}\left(K_{s s} \delta+K_{s a} \epsilon\right)
\end{align*}
$$

and substituting Equations 15, 20, and 21 into Equation 7, we have

Equations 25 and 26 become

$$
\begin{align*}
& \frac{\partial^{2} a}{\partial \theta^{2}}-\Gamma_{1} a-\Gamma_{9} \frac{\partial^{4} u}{\partial \theta^{4}}+\Gamma_{10} \frac{\partial^{2} u}{\partial \theta^{2}}-\Gamma_{2} \mathrm{u}-\frac{1}{\mathrm{f}_{1}{ }^{2}} \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{t}^{2}} \\
& =-\Gamma_{3} \epsilon-\Gamma_{4} \frac{\delta}{\mathrm{~b}}+\frac{\partial^{2} \zeta}{\partial \theta^{2}}-\Gamma_{9} \frac{\partial^{4} \eta}{\partial \theta^{4}}+\Gamma_{10} \frac{\partial^{2} \eta}{\partial \theta^{2}} \tag{29}\\
& \frac{\partial^{2} a}{\partial \theta^{2}}-\Gamma_{5} a-\frac{1}{\mathrm{f}_{2}^{2}} \frac{\partial^{2} a}{\partial \mathrm{t}^{2}}+\Gamma_{11} \frac{\partial^{2} \mathrm{u}}{\partial \theta^{2}}-\Gamma_{6} \mathrm{u} \\
& =-\Gamma_{7} \epsilon-\Gamma_{8} \frac{\delta}{\mathrm{~b}}+\frac{\partial^{2} \zeta}{\partial \theta^{2}}-\xi \zeta+\Gamma_{11} \frac{\partial^{2} \eta}{\partial \theta^{2}} \tag{30}
\end{align*}
$$

Differential operators D_{1} through D_{4} are defined as follows:

$$
\begin{aligned}
& \mathrm{D}_{1}=\frac{\partial^{2}}{\partial \theta^{2}}-\Gamma_{1} \\
& \mathrm{D}_{2}=-\Gamma_{9} \frac{\partial^{4}}{\partial \theta^{4}}+\Gamma_{10} \frac{\partial^{2}}{\partial \theta^{2}}-\Gamma_{2}-\frac{1}{\mathrm{f}_{1}^{2}} \frac{\partial^{2}}{\partial \mathrm{t}^{2}} \\
& \mathrm{D}_{3}=\frac{\partial^{2}}{\partial \theta^{2}}-\Gamma_{5}-\frac{1}{\mathrm{f}_{2}^{2}} \frac{\partial^{2}}{\partial \mathrm{t}^{2}} \\
& \mathrm{D}_{4}=\Gamma_{11} \frac{\partial^{2}}{\partial \theta^{2}}-\Gamma_{6}
\end{aligned}
$$

Then we can write Equations 29 and 30 in the form,

$$
\begin{equation*}
\mathrm{D}_{1} a+\mathrm{D}_{2} \mathrm{u}=-\Gamma_{3} \epsilon-\Gamma_{4} \frac{\delta}{\mathrm{~b}}+\frac{\partial^{2} \zeta}{\partial \theta^{2}}-\Gamma_{9} \frac{\partial^{4} \eta}{\partial \theta^{4}}+\Gamma_{10} \frac{\partial^{2} \eta}{\partial \theta^{2}} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{D}_{3} a+\mathrm{D}_{4} \mathrm{u}=-\Gamma_{7} \epsilon-\Gamma_{8} \frac{\delta}{\mathrm{~b}}+\frac{\partial^{2} \zeta}{\partial \theta^{2}}-\xi \zeta+\Gamma_{11} \frac{\partial^{2} \eta}{\partial \theta^{2}} \tag{32}
\end{equation*}
$$

Apply D_{4} on Equation 31 and D_{2} on Equation 32 and subtract:

$$
\begin{aligned}
\frac{E I}{R}[& \left.\frac{\partial^{2}(y-\eta)}{R \partial \theta^{2}}-(a-\zeta)\right]+\frac{\mathrm{GI}_{\mathrm{p}}}{\mathrm{R}}\left[\frac{\partial^{2}(\mathrm{y}-\eta)}{\mathrm{R} \partial \theta^{2}}+\frac{\partial^{2}(a-\zeta)}{\partial \theta^{2}}\right] \\
& -\mathrm{R}\left[\left(\mathrm{~K}_{a a}+\mathrm{K}_{a a}{ }^{*}\right) a+\left(\mathrm{K}_{a s}+\mathrm{K}_{a s}^{*}\right) y-\mathrm{K}_{a a} \epsilon-\mathrm{K}_{a s} \delta\right] \\
& =\frac{1}{12} \rho \mathrm{AR}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) \ddot{a}
\end{aligned}
$$

Defining the following dimensionless quantities:

$$
\begin{align*}
& \mathrm{u}=\frac{\mathrm{y}}{\mathrm{~b}} \\
& \xi=\frac{\mathrm{EI}}{\mathrm{GI}_{\mathrm{p}}} \\
& \Gamma_{1}=\frac{\left(\mathrm{K}_{\mathrm{s} a}+\mathrm{K}_{\mathrm{sa}}{ }^{*}\right) \mathrm{R}^{3}}{\mathrm{EI}+\mathrm{GI}_{\mathrm{p}}} \\
& \Gamma_{7}=\frac{\mathrm{K}_{a \mathrm{a}} \mathrm{R}^{2}}{\mathrm{GI}_{\mathrm{p}}} \\
& \Gamma_{2}=\frac{\left(\mathrm{K}_{\mathrm{ss}}+\mathrm{K}_{\mathrm{ss}}{ }^{*}\right) \mathrm{bR}^{3}}{\mathrm{EI}+\mathrm{GI}_{\mathrm{p}}} \quad \Gamma_{8}=\frac{\mathrm{K}_{\mathrm{as}} \mathrm{bR}^{2}}{\mathrm{GI}_{\mathrm{p}}} \\
& \Gamma_{3}=\frac{K_{s a} R^{3}}{E I+\mathrm{GI}_{p}} \tag{27}\\
& \Gamma_{9}=\frac{\mathrm{b}}{\mathrm{R}} \frac{\xi}{1+\xi} \\
& \Gamma_{4}=\frac{K_{\text {ss }} \mathrm{bR}^{3}}{\mathrm{EI}+\mathrm{GI}_{\mathrm{p}}} \\
& \Gamma_{10}=\frac{\mathrm{b}}{\mathrm{R}} \frac{1}{1+\xi} \\
& \Gamma_{S}=\xi+\frac{\left(\mathrm{K}_{a \mathrm{a}}+\mathrm{K}_{a a^{*}}{ }^{*} \mathrm{R}^{2}\right.}{\mathrm{GI}_{\mathrm{p}}} \\
& \Gamma_{11}=\frac{\mathrm{b}}{\mathrm{R}}(1+\xi) \\
& \Gamma_{6}=\frac{\left(\mathrm{K}_{\mathrm{as}}+\mathrm{K}_{\mathrm{as}}{ }^{*}\right) \mathrm{bR} \mathrm{R}^{2}}{\mathrm{GI}_{\mathrm{p}}}
\end{align*}
$$

and two typical frequencies

$$
\begin{align*}
& \mathrm{f}_{1}=\left[\frac{\mathrm{EI}+\mathrm{GI}_{\mathrm{p}}}{\rho \mathrm{AbR}^{3}}\right]^{1 / 2} \\
& \mathrm{f}_{2}=\left[\frac{12 \mathrm{GI}_{\mathrm{p}}}{\rho \mathrm{AR}^{2}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}\right]^{1 / 2} \tag{28}
\end{align*}
$$

$$
\begin{align*}
& \left(\mathrm{D}_{1} \mathrm{D}_{4}-\mathrm{D}_{2} \mathrm{D}_{3}\right) a \\
& =\mathrm{D}_{4}\left[-\Gamma_{3} \epsilon-\Gamma_{4} \frac{\delta}{\mathrm{~b}}+\frac{\partial^{2} \zeta}{\partial \theta^{2}}+\left(-\Gamma_{9} \frac{\partial^{4}}{\partial \theta^{4}}+\Gamma_{10} \frac{\partial^{2}}{\partial \theta^{2}}\right) \eta\right] \\
& \quad-\mathrm{D}_{2}\left[-\Gamma_{7} \epsilon-\Gamma_{8} \frac{\delta}{\mathrm{~b}}+\left(\frac{\partial^{2}}{\partial \theta^{2}}-\xi\right) \zeta+\Gamma_{11} \frac{\partial^{2} \eta}{\partial \theta^{2}}\right] \tag{33}
\end{align*}
$$

Similarly, apply D_{3} on Equation 31 and D_{1} on Equation 32 and subtract,

$$
\begin{align*}
& \left(\mathrm{D}_{1} \mathrm{D}_{4}-\mathrm{D}_{2} \mathrm{D}_{3}\right) \mathrm{u} \\
& =\mathrm{D}_{1}\left[-\Gamma_{7} \epsilon-\Gamma_{8} \frac{\delta}{\mathrm{~b}}+\left(\frac{\partial^{2}}{\partial \theta^{2}}-\xi\right) \zeta+\Gamma_{11} \frac{\partial^{2} \eta}{\partial \theta^{2}}\right] \\
& \quad-\mathrm{D}_{3}\left[-\Gamma_{3} \epsilon-\Gamma_{4} \frac{\delta}{\mathrm{~b}}+\frac{\partial^{2} \zeta}{\partial \theta^{2}}+\left(-\Gamma_{9} \frac{\partial^{4}}{\partial \theta^{4}}+\Gamma_{10} \frac{\partial^{2}}{\partial \theta^{2}}\right) \eta\right] \tag{34}
\end{align*}
$$

Thus, we have obtained Equation 33 for a and Equation 34 for u. The right-hand sides of Equations 31 and 32 are the respective forcing functions for a-motion and u-motion. Note that in the left-hand sides of Equations 33 and 34 the differential operators are identical. This is because they are the results of solving coupled linear systems.

(2) Natural frequencies of flexible seal ring vibrations

To find the natural frequencies, we solve the homogeneous system

$$
\begin{equation*}
\left(\mathrm{D}_{1} \mathrm{D}_{4}-\mathrm{D}_{2} \mathrm{D}_{3}\right) a=0 \tag{35}
\end{equation*}
$$

or

$$
\left(D_{1} D_{4}-D_{2} D_{3}\right) u=0
$$

Either equation will, of course, yield the same natural frequencies.

Expanding the differential operator in Equation 35 we obtain

$$
\begin{align*}
& \left\{-\frac{1}{f_{1}{ }^{2} f_{2}{ }^{2}} \frac{\partial^{4}}{\partial t^{4}}+\left[\frac{1}{f_{1}{ }^{2}}\left(\frac{\partial^{2}}{\partial \theta^{2}}-\Gamma_{5}\right)+\frac{1}{f_{2}{ }^{2}}\left(-\Gamma_{9} \frac{\partial^{4}}{\partial \theta^{4}}+\Gamma_{10} \frac{\partial^{2}}{\partial \theta^{2}}-\Gamma_{2}\right)\right] \frac{\partial^{2}}{\partial t^{2}}\right. \\
& +\left[\Gamma_{9} \frac{\partial^{6}}{\partial \theta^{6}}+\left(\Gamma_{11}-\Gamma_{10}-\Gamma_{5} \Gamma_{9}\right) \frac{\partial^{4}}{\partial \theta^{4}}+\left(\Gamma_{2}-\Gamma_{6}+\Gamma_{5} \Gamma_{10}-\Gamma_{1} \Gamma_{11}\right) \frac{\partial^{2}}{\partial \theta^{2}}\right. \\
& \left.\left.-\left(\Gamma_{1} \Gamma_{6}-\Gamma_{2} \Gamma_{5}\right)\right]\right\} a=0 \tag{36}
\end{align*}
$$

Because of the cross-differentiation terms in Equation 36, e.g. $\frac{1}{f_{1}{ }^{2}} \frac{\partial^{4}}{\partial \theta^{2} \partial t^{2}}$, the method of separation of variables cannot be applied in general. However, since we are dealing with a ring geometry, the displacements must be continuous and periodic in θ. This strongly suggests that the θ dependence is of the form of $\mathrm{e}^{\mathrm{in} \theta}$. Thus, assume that

$$
\begin{equation*}
a=\mathrm{e}^{\mathrm{in} \theta} \mathrm{~T}(\mathrm{t}), \mathrm{n}=1,2,3 \ldots \tag{37}
\end{equation*}
$$

Substituting Equation 37 into Equation 36 yields

$$
\begin{align*}
& \quad \frac{d^{4} T}{d t^{4}}+\left[f_{2}{ }^{2}\left(n^{2}+\Gamma_{5}\right)+f_{1}{ }^{2}\left(\Gamma_{9} n^{4}+\Gamma_{10} n^{2}+\Gamma_{2}\right)\right] \frac{d^{2} T}{d t^{2}} \\
& -f_{1}{ }^{2} f_{2}{ }^{2}\left[-\Gamma_{9} n^{6}+\left(\Gamma_{11}-\Gamma_{10}-\Gamma_{5} \Gamma_{9}\right) n^{4}-\left(\Gamma_{2}-\Gamma_{6}+\Gamma_{5} \Gamma_{10}-\Gamma_{1} \Gamma_{11}\right) n^{2} .\right. \tag{3}\\
& \left.+\left(\Gamma_{1} \Gamma_{6}-\Gamma_{2} \Gamma_{5}\right)\right] T=0
\end{align*}
$$

For natural frequency calculations assume

$$
T=C e^{i \nu t}
$$

where \mathbf{C} is an arbitrary constant, and ν, a frequency.
Then Equation 38 becomes

$$
\begin{equation*}
\nu^{4}-\mathrm{P}_{1} \nu^{2}+\mathrm{f}_{1}{ }^{2} \mathrm{f}_{2}{ }^{2} \mathrm{P}_{2}=0 \tag{39}
\end{equation*}
$$

where

$$
\left.\begin{array}{rl}
P_{1}= & f_{2}^{2}\left(n^{2}+\Gamma_{5}\right)+f_{1}^{2}\left(\Gamma_{9} n^{4}+\Gamma_{10} n^{2}+\Gamma_{2}\right) \tag{40}\\
P_{2}= & \Gamma_{9} n^{6}-\left(\Gamma_{11}-\Gamma_{10}-\Gamma_{5} \Gamma_{9}\right) n^{4} \\
& +\left(\Gamma_{2}-\Gamma_{6}+\Gamma_{5} \Gamma_{10}-\Gamma_{1} \Gamma_{11}\right) n^{2}-\left(\Gamma_{1} \Gamma_{6}-\Gamma_{2} \Gamma_{5}\right)
\end{array}\right\}
$$

Equation 39 is the characteristic equation. The number $n=1,2,3, \ldots$ represents different modes of vibration. For a given n, Equation 39 has two positive roots. Let them be denoted by $\nu_{\mathrm{n} 1}$ and $\nu_{\mathrm{n} 2}$. They are given by

$$
\begin{align*}
& \nu_{n 1}=\left[\frac{1}{2} \mathrm{P}_{1}+\frac{1}{2}\left(\mathrm{P}_{1}{ }^{2}-4 \mathrm{f}_{1}{ }^{2} \mathrm{f}_{2}{ }^{2} \mathrm{P}_{2}\right)^{1 / 2}\right]^{1 / 2} \tag{41}\\
& \nu_{\mathrm{n} 2}=\left[\frac{1}{2} \mathrm{P}_{1}-\frac{1}{2}\left(\mathrm{P}_{1}^{2}-4 \mathrm{f}_{1}^{2} \mathrm{f}_{2}^{2} \mathrm{P}_{2}\right)^{1 / 2}\right]^{1 / 2} \tag{42}
\end{align*}
$$

where $\nu_{\mathrm{n} 1}$ and $\nu_{\mathrm{n} 2}$ are the two natural frequencies at mode n .

(3) Dynamic Response

As indicated before, the right-hand sides of Equations 33 and 34 are the forcing functions. They consist of influences from the angular and transverse displacements of the rotor surface, ϵ and δ, and the angular and the transverse displacement of the seal ring, ζ and η. Let us rewrite Equations 7 through 10.

$$
\begin{align*}
\delta & =b \sum_{n} \delta_{n} \cos n(\theta+\omega t) \tag{7a}\\
\epsilon & =\sum_{n} \epsilon_{n} \cos n(\theta+\omega t) \tag{8a}\\
\eta & =b \sum_{\pi} \eta_{n} \cos n \theta \tag{9a}\\
\zeta & =\sum_{n} \zeta_{n} \cos n \theta \tag{10a}
\end{align*}
$$

Thus, it is clear that δ and ϵ give rise to dynamic forces, and η and ζ, to static (time-independent) forces.

Based on the above, we can assume that the dynamic response, a, and u, can be expressed in the form,

$$
\begin{align*}
& a=\underset{\pi}{ }\left[a_{n} \cos n(\theta+\omega t)+\beta_{n} \cos n \theta\right] \tag{43}\\
& u=\sum_{\pi}\left[u_{n} \cos n(\theta+\omega t)+v_{n} \cos n \theta\right] \tag{44}
\end{align*}
$$

Here, a_{n} and u_{n} are the response to δ and ϵ. Let the seal ring have initial deformation, η and ζ. Then, through the action of the gas film, the seal ring will reach a static equilibrium position which is indicated by β_{n} and v_{n}.

Substituting Equations 7a, 8a, 9a, 10a, 39, and 40 into Equation 33, we obtain

$$
\begin{aligned}
& \left\{-\frac{1}{f_{1}{ }^{2} f_{2}{ }^{2}} n^{4} \omega^{4}+\left[\frac{-1}{f_{1}^{2}}\left(n^{2}+\Gamma_{5}\right)-\frac{1}{f_{2}^{2}}\left(\Gamma_{9} n^{4}+\Gamma_{10} n^{2}+\Gamma_{2}\right)\right]\left(-n^{2} \omega^{2}\right)\right. \\
& -\Gamma_{9} n^{6}+\left(\Gamma_{11}-\Gamma_{10}-\Gamma_{5} \Gamma_{9}\right) n^{4}-\left(\Gamma_{2}-\Gamma_{6}+\Gamma_{5} \Gamma_{10}-\Gamma_{1} \Gamma_{11}\right) n^{2}+\Gamma_{1} \Gamma_{6} \\
& \left.-\Gamma_{2} \Gamma_{5}\right\} a_{n} \cos n(\theta+\omega t)+\left\{-\Gamma_{9} n^{6}+\left(\Gamma_{11}-\Gamma_{10}-\Gamma_{5} \Gamma_{9}\right) n^{4}-\left(\Gamma_{2}-\Gamma_{6}\right.\right. \\
& \left.\left.+\Gamma_{5} \Gamma_{10}-\Gamma_{1} \Gamma_{11}\right) n^{2}+\Gamma_{1} \Gamma_{6}-\Gamma_{2} \Gamma_{5}\right\} \beta_{n} \cos n \theta-\left\{\left(\Gamma_{3} Q_{1}+\Gamma_{7} Q_{2}\right) \epsilon_{n}\right. \\
& \left.+\left(\Gamma_{4} Q_{1}+\Gamma_{8} Q_{2}\right) \delta_{n}\right\} \cos n(\theta+\omega t)-\left\{\left[n^{2} Q_{1}+\left(n^{2}+\xi\right) Q_{20}\right] \zeta_{n}+\left[\left(\Gamma_{9} n^{4}\right.\right.\right. \\
& \left.\left.\left.\quad+\Gamma_{10} n^{2}\right) Q_{1}+n^{2} \Gamma_{11} Q_{20}\right] \eta_{n}\right\} \cos n \theta=0
\end{aligned}
$$

where

$$
\begin{aligned}
& Q_{1}=\Gamma_{11} n^{2}+\Gamma_{6} \\
& Q_{2}=-\Gamma_{9} n^{4}-\Gamma_{10} n^{2}-\Gamma_{2}+\frac{n^{2} \omega^{2}}{f_{1}{ }^{2}} \\
& Q_{20}=\Gamma_{9} n^{4}-\Gamma_{10} n^{2}-\Gamma_{2}
\end{aligned}
$$

Since $\cos \mathrm{n} \theta$ and $\cos \mathrm{n}(\theta+\omega t)$ are two independent functions, their coefficients must be equal to zero separately.

$$
\begin{align*}
& \Delta_{n} a_{n}=\left(\Gamma_{3} Q_{1}+\Gamma_{7} Q_{2}\right) \epsilon_{n}+\left(\Gamma_{4} Q_{1}+\Gamma_{8} Q_{2}\right) \delta_{n} \tag{45}\\
& -P_{2} \beta_{n}=\left[n^{2} Q_{1}+\left(n^{2}+\zeta\right) Q_{20}\right] \zeta_{n}+\left[\left(\Gamma_{9} n^{4}+\Gamma_{10} n^{2}\right) Q_{1}+n^{2} \Gamma_{11} Q_{20}\right] \eta_{n} \tag{46}
\end{align*}
$$

where

$$
\begin{equation*}
\Delta_{n}=-\frac{n^{4} \omega^{4}}{f_{1}{ }^{2} f_{2}{ }^{2}}+\frac{n^{2} \omega^{2}}{f_{1}{ }^{2} f_{2}{ }^{2}} P_{1}-P_{2} \tag{47}
\end{equation*}
$$

$$
P_{1} \text { and } P_{2} \text { are defined in Equation } 40 .
$$

Similarly, from Equation 34 we obtain

$$
\begin{align*}
& \Delta_{n} u_{n}=\left(\Gamma_{7} Q_{3}+\Gamma_{3} Q_{4}\right) \epsilon_{n}+\left(\Gamma_{8} Q_{3}+\Gamma_{4} Q_{4}\right) \delta_{n} \tag{48}\\
& -P_{2} v_{n}=\left[\left(n^{2}+\zeta\right) Q_{3}+n^{2} Q_{40}\right] \zeta_{n}+\left[n^{2} \Gamma_{11} Q_{3}+\left(\Gamma_{9} n^{4}+\Gamma_{10} n^{2}\right) Q_{40}\right] \eta_{n} \tag{49}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{Q}_{3}=\mathrm{n}^{2}+\Gamma_{1} \\
& \mathrm{Q}_{4}=-\mathrm{n}^{2}-\Gamma_{5}+\frac{\mathrm{n}^{2} \omega^{2}}{\mathrm{f}_{2}^{2}} \\
& \mathrm{Q}_{40}=-\mathrm{n}^{2}-\Gamma_{5}
\end{aligned}
$$

We can rewrite Equations $45,46,48$, and 49 in the form of influence coefficients,

$$
\begin{align*}
& a_{\mathrm{n}}=\mathrm{C}_{\mathrm{A} 1} \epsilon_{\mathrm{n}}+\mathrm{C}_{\mathrm{A} 2} \delta_{\mathrm{n}} \\
& \beta_{\mathrm{n}}=\mathrm{C}_{\mathrm{B} 1} \xi_{\mathrm{n}}+\mathrm{C}_{\mathrm{B} 2} \eta_{\mathrm{n}} \tag{50}
\end{align*}
$$

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{n}}=\mathrm{C}_{\mathrm{u} 1} \epsilon_{\mathrm{n}}+\mathrm{C}_{\mathrm{u} 2} \delta_{\mathrm{n}} \\
& \mathrm{v}_{\mathrm{n}}=\mathrm{C}_{\mathrm{v} 1} \zeta_{\mathrm{n}}+\mathrm{C}_{\mathrm{v} 2} \eta_{\mathrm{n}}
\end{aligned}
$$

$\mathrm{C}_{\mathrm{A} 1}, \mathrm{C}_{\mathrm{A} 2}$, etc. are the influence coefficients. They are defined as follows:

$$
\begin{align*}
& \mathrm{C}_{\mathrm{A} 1}=\frac{\Gamma_{3} \mathrm{Q}_{1}+\Gamma_{7} \mathrm{Q}_{2}}{\Delta_{\mathrm{n}}} \\
& \mathrm{C}_{\mathrm{A} 2}=\frac{\Gamma_{4} \mathrm{Q}_{1}+\Gamma_{8} \mathrm{Q}_{2}}{\Delta_{\mathrm{n}}} \\
& \mathrm{C}_{\mathrm{B} 1}=\frac{\mathrm{n}^{2} \mathrm{Q}_{1}+\left(\mathrm{n}^{2}+\xi\right) \mathrm{Q}_{20}}{-\mathrm{P}_{2}} \\
& \mathrm{C}_{\mathrm{B} 2}=\frac{\left(\Gamma_{9} \mathrm{n}^{4}+\Gamma_{10} \mathrm{n}^{2}\right) \mathrm{Q}_{1}+\mathrm{n}^{2} \Gamma_{11} \mathrm{Q}_{20}}{-\mathrm{P}_{2}} \\
& \mathrm{C}_{\mathrm{u} 1}=\frac{\Gamma_{7} \mathrm{Q}_{3}+\Gamma_{3} \mathrm{Q}_{4}}{\Delta_{\mathrm{n}}} \tag{51}\\
& \mathrm{C}_{\mathrm{u} 2}=\frac{\Gamma_{8} \mathrm{Q}_{3}+\Gamma_{4} \mathrm{Q}_{4}}{\Delta_{\mathrm{n}}} \\
& \mathrm{C}_{\mathrm{v} 1}=\frac{\left(\mathrm{n}^{2}+\xi\right) \mathrm{Q}_{3}+\mathrm{n}^{2} \mathrm{Q}_{40}}{-\mathrm{P}_{2}} \\
& \mathrm{C}_{\mathrm{v} 2}=\frac{\mathrm{n}^{2} \Gamma_{11} \mathrm{Q}_{3}+\left(\Gamma_{9} \mathrm{n}^{4}+\Gamma_{10} \mathrm{n}^{2}\right) \mathrm{Q}_{40}}{-\mathrm{P}_{2}}
\end{align*}
$$

It is to be noted that different modes of vibratory response can be calculated separately. For example, for $\mathrm{n}=1$, we can calculate a_{1}, β_{1} etc, for $\mathrm{n}=2$ we can calculate $a_{2} \beta_{2}$, etc. Then the total response will be $a=a_{1}+a_{2} \ldots, \beta=\beta_{1}+\beta_{2} \ldots$ etc.

These computations have been included in the computer program discussed in Appendix A.

(4) Rigid-Body Vibrations

In the last section, the vibration of a flexible seal ring was considered. There, the carrier was unable to vibrate as an elastic body, and was assumed to be fixed in space.

Now let us consider the rigid-body vibration of the carrier and the seal ring. It can be visualized that the carrier-ring system can have two linear degrees of freedom x_{1} and x_{2}, and two angular degrees of freedom γ_{1} and γ_{2}. Because of axial symmetry, the other two angular degrees of freedom with axes of rotation perpendicular to those of γ_{1} and γ_{2} need not be considered, as they would yield identical results.

Rectilinear Vibrations

The lumped-parameter model of the carrier-ring system is shown in Figure 17.

Figure 17 Lumped-Parameter Model of the Carrier-Ring System

The displacements of the carrier and the ring are represented by x_{1} and x_{2}, while the motion of the rotor is prescribed by x_{3}. This system was considered in Reference 5, and an explicit solution was obtained in page $V-5$, Reference 1. Results are summarized as follows:

The natural frequency is given by the roots of the characteristic equation,

$$
\begin{equation*}
\nu^{4}-\mathrm{A}_{1} \nu^{2}+\mathrm{A}_{2}=0 \tag{52}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{1}=\frac{K_{1}+K_{2}}{m_{1}}+\frac{K_{2}+K_{3}}{m_{2}} \tag{53}\\
& A_{2}=\frac{K_{1} K_{2}+K_{2} K_{3}+K_{3} K_{1}}{m_{1} m_{2}}
\end{align*}
$$

Thus

$$
\begin{align*}
& \nu_{1}=\left[\frac{\mathrm{A}_{1}+\sqrt{\mathrm{A}_{1}^{2}-4 \mathrm{~A}_{2}}}{2}\right]^{1 / 2} \tag{54}\\
& \nu_{2}=\left[\frac{\mathrm{A}_{1}-\sqrt{\mathrm{A}_{1}^{2}-4 \mathrm{~A}_{2}}}{2}\right]^{1 / 2}
\end{align*}
$$

The motions of the carrier and the ring, x_{1} and x_{2}, expressed relative to the rotor imposed motion, x_{3}, are obtained as:

$$
\begin{align*}
& \frac{x_{1}}{x_{3}}=\frac{K_{2} K_{3}}{\left[-m_{1} \omega^{2}+K_{1}+K_{2}\right]\left[-m_{2} \omega^{2}+K_{2}+K_{3}-\frac{K_{2}{ }^{2}}{-m_{1} \omega^{2}+K_{1}+K_{2}}\right]} \tag{55}\\
& \frac{x_{2}}{x_{3}}=\frac{K_{3}}{-m_{2} \omega^{2}+K_{2}+K_{3}-\frac{K_{2}{ }^{2}}{-m_{1} \omega^{2}+K_{1}+K_{2}}} \tag{56}
\end{align*}
$$

where ω is the frequency of the imposed motion x_{3}.
Equations 55 and 56 represent the response of the undamped vibration. They would become very large as ω approaches ν_{1} or ν_{2}.

Although the natural frequencies ν_{1} and ν_{2} can be easily calculated from Equation 54 , let us obtain a simplified expression from which we will be able to predict how to increase (or decrease) the natural frequency by varying certain parameters.

In seal ring application, it is known that the gas film is much stiffer than the OC diaphragm, which is much stiffer than the carrier spring. Thus,

$$
\begin{equation*}
\mathrm{K}_{3} \gg \mathrm{~K}_{2} \gg \mathrm{~K}_{1} \tag{57}
\end{equation*}
$$

Also, we have

$$
\begin{equation*}
m_{1} \approx m_{2} \tag{58}
\end{equation*}
$$

Therefore, from Equation 53

$$
\begin{align*}
& A_{1} \cong \frac{K_{3}}{m_{2}} \\
& A_{2} \cong \frac{K_{2} K_{3}}{m_{1} m_{2}} \tag{59}
\end{align*}
$$

Observe that

$$
\sqrt{\mathrm{A}_{1}^{2}-4 \mathrm{~A}_{2}} \cong\left[\left(\frac{\mathrm{~K}_{3}}{\mathrm{~m}_{2}}\right)^{2}-4 \frac{\mathrm{~K}_{2} \mathrm{~K}_{3}}{\mathrm{~m}_{1} \mathrm{~m}_{2}}\right]^{1 / 2}
$$

$$
\begin{align*}
& =\frac{\mathrm{K}_{3}}{\mathrm{~m}_{2}}\left[1-4\left(\frac{\mathrm{~K}_{2}}{\mathrm{~K}_{3}}\right)\left(\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}\right)\right]^{1 / 2} \tag{60}\\
& =\frac{\mathrm{K}_{3}}{\mathrm{~m}_{2}}\left[1-2\left(\frac{\mathrm{~K}_{2}}{\mathrm{~K}_{3}}\right)\left(\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}\right)\right]
\end{align*}
$$

We have used the binomial expansion and the condition that

$$
\frac{\mathrm{K}_{2}}{\mathrm{~K}_{3}} \frac{\mathrm{~m}_{2}}{\mathrm{~m}_{1}} \ll 1
$$

Using Equations 59 and 60, the natural frequencies given by Equation 54 are reduced to

$$
\begin{align*}
& \nu_{1}=\left[\frac{\mathrm{K}_{3}}{\mathrm{~m}_{2}}\right]^{1 / 2} \\
& \nu_{2}=\left[\frac{\mathrm{K}_{2}}{\mathrm{~m}_{1}}\right]^{1 / 2} \tag{61}
\end{align*}
$$

Thus, we see that under the conditions of Equations 57 and 58, the system is decoupled into two subsystems, namely, the seal ring supported by the gas film, and the carrier supported by the OC diaphragm. In the numerical example, it will be shown that since the gas film is very stiff, ν_{1} is much higher than the rotating speed of the rotor. The lower mode ν_{2}, however, is quite close to the idling speed (based on an estimated $m_{1}=30$ pounds and $K_{2}=17100 \mathrm{lb} /$ in). Efforts should be made according to Equation 61 to vary either m_{1} or K_{2} (or both) so that ν_{2} is sufficiently different from the speed range of the rotor. For actual calculation of the natural frequencies, the exact expressions of Equation 54 should be used.

(6) Angular Vibration

The two angular degrees of freedom are described by γ_{1} and γ_{2} as shown in Figure 18. The axes of γ_{1} and γ_{2} are perpendicular to the paper. Suppose that the rotor has a face runout with half amplitude C_{3}. Then

$$
\gamma_{3}=C_{3} \cos \omega t
$$

where $\omega=$ rotational speed of rotor
The equations of motion are

$$
\begin{align*}
& \mathrm{I}_{1} \ddot{\gamma}_{1}+\mathrm{K}_{\gamma_{1}} \gamma_{1}+\mathrm{K}_{\gamma^{2}}\left(\gamma_{1}-\gamma_{2}\right)=0 \tag{62}\\
& \mathrm{I}_{2} \ddot{\gamma}_{2}+\mathrm{K}_{\gamma_{2}}\left(\gamma_{2}-\gamma_{1}\right)+\mathrm{K}_{\gamma_{3}} \gamma_{2}=\mathrm{K}_{\gamma_{3}} \gamma_{3} \tag{63}
\end{align*}
$$

Figure 18 Schematic for Mathematical Model of Angular Vibration
where $I_{1}=\frac{1}{2} m_{1} R^{2}=$ moment of inertia of the carrier and $I_{2}=\frac{1}{2} m_{2} R^{2}=$ moment of inertia of the seal ring
To obtain the spring constant $\mathrm{K}_{\gamma 3}$, consider the restoring moment of the gas film due to a rigid body rotation γ.

Moment from $\mathrm{K}_{\mathrm{ss}}=\int_{0}^{2 \pi}\left(\gamma \mathrm{R} \sin \theta^{\prime}\right)\left(\mathrm{K}_{\mathrm{ss}} \mathrm{Rd} \theta^{\prime}\right) \mathrm{R} \sin \theta^{\prime}$

$$
\begin{aligned}
& =\mathrm{R}^{3} \mathrm{~K}_{\mathrm{ss}} \gamma \int_{\mathrm{o}}^{2 \pi} \sin ^{2} \theta^{\prime} \mathrm{d} \theta^{\prime} \\
& =\pi \mathrm{R}^{3} \mathrm{~K}_{\mathrm{ss}} \gamma
\end{aligned}
$$

Moment from $\mathrm{K}_{a a}=\int_{0}^{2 \pi}\left(\gamma \sin \theta^{\prime}\right)\left(\mathrm{K}_{a a} \mathrm{Rd} \theta^{\prime}\right) \sin \theta^{\prime}$

$$
\begin{aligned}
& =\mathrm{R} \mathrm{~K}_{a a^{\prime}} \gamma \int_{0}^{2 \pi} \sin ^{2} \theta^{\prime} \mathrm{d} \theta^{\prime} \\
& =\pi \mathrm{RK}_{a a^{\prime}} \gamma
\end{aligned}
$$

There is no contribution from $\mathrm{K}_{\mathrm{s} \boldsymbol{a}}$ and $\mathrm{K}_{\mathbf{a} s}$. Thus,

$$
\text { Restoring Moment }=\left(\pi \mathrm{R}^{3} \mathrm{~K}_{\mathrm{ss}}+\pi \mathrm{R} \mathrm{~K}_{a, a}\right) \gamma
$$

The spring constant is by definition:

$$
\mathrm{K}_{\gamma 3}=\frac{\text { Restoring Moment }}{\gamma}=\pi \mathrm{R}^{3} \mathrm{~K}_{\mathrm{ss}}+\pi \mathrm{RK}_{a a}
$$

Similarly,

But, because

$$
\mathrm{K}_{\gamma_{2}}=\pi \mathrm{R}^{3} \mathrm{~K}_{\mathrm{ss}}{ }^{*}+\pi \mathrm{R} \mathrm{~K}_{a a^{*}}{ }^{*}
$$

$$
\mathrm{R}^{2} \mathrm{~K}_{\mathrm{ss}} \gg \mathrm{~K}_{a . a}
$$

$$
\text { and } \mathrm{R}^{2} \mathrm{~K}_{\mathrm{ss}}{ }^{*} \gg \mathrm{~K}_{a a}{ }^{*}
$$

we obtain

$$
\begin{align*}
& \mathrm{K}_{\gamma_{3}}=\pi \mathrm{R}^{3} \mathrm{~K}_{\mathrm{ss}} \tag{65}\\
& \mathrm{~K}_{\gamma_{2}}=\pi \mathrm{R}^{3} \mathrm{~K}_{\mathrm{ss}} *
\end{align*}
$$

Equations 62 and 63 can be solved by assuming that

$$
\begin{aligned}
& \boldsymbol{\gamma}_{1}=C_{1} \cos \omega t \\
& \gamma_{2}=C_{2} \cos \omega t
\end{aligned}
$$

Using the same procedure in solving the rectilinear vibration, it is found that the natural frequency will satisfy

$$
\begin{equation*}
\nu^{4}-\mathrm{B}_{1} \nu^{2}+\mathrm{B}_{2}=0 \tag{66}
\end{equation*}
$$

where $B_{1}=\frac{K_{\gamma 1}+K_{\boldsymbol{\gamma} 2}}{I_{1}}+\frac{K_{\gamma_{2}}+K_{\gamma 3}}{I_{2}}$

$$
\mathrm{B}_{2}=\frac{\mathrm{K}_{\boldsymbol{\gamma} 1} \mathrm{~K}_{\boldsymbol{\gamma} 2}+\mathrm{K}_{\boldsymbol{\gamma} 2} \mathrm{~K}_{\boldsymbol{\gamma} 3}+\mathrm{K}_{\boldsymbol{\gamma} 3} \mathrm{~K}_{\boldsymbol{\gamma} 1}}{\mathrm{I}_{1} \mathrm{I}_{2}}
$$

and the dynamic responses of the carrier and seal ring with respect to unit rotor input can be respectively expressed by

$$
\begin{align*}
& \frac{\mathrm{C}_{1}}{\mathrm{C}_{3}}=\frac{\mathrm{K}_{\gamma_{2}} \mathrm{~K}_{\gamma 3}}{\left(-\mathrm{I}_{1} \omega^{2}+\mathrm{K}_{\gamma_{1}}+\mathrm{K}_{\gamma_{2}}\right)\left(-\mathrm{I}_{2} \omega^{2}+\mathrm{K}_{\gamma_{2}}+\mathrm{K}_{\gamma 3}-\frac{\mathrm{K}_{\gamma^{2}}{ }^{2}}{\mathrm{I}_{1} \omega^{2}+\mathrm{K}_{\gamma_{1}}+\mathrm{K}_{\gamma_{2}}}\right)} \tag{67}\\
& \frac{\mathrm{C}_{2}}{\mathrm{C}_{3}}=\frac{\mathrm{K}_{\gamma_{3}}}{-\mathrm{I}_{2} \omega^{2}+\mathrm{K}_{\gamma_{2}}+\mathrm{K}_{\gamma_{3}}-\frac{\mathrm{K}_{\gamma_{2}}{ }^{2}}{-\mathrm{I}_{1} \omega^{2}+\mathrm{K}_{\gamma 1}+\mathrm{K}_{\gamma_{2}}}} \tag{68}
\end{align*}
$$

From Equation 64 and 65 we can write

$$
\begin{aligned}
\mathrm{B}_{1} & =\frac{\pi \mathrm{R}^{3}\left(\overline{\mathrm{~K}}_{\mathrm{ss}}+\mathrm{K}_{\mathrm{ss}}^{*}\right)}{\frac{1}{2} \mathrm{~m}_{1} \mathrm{R}^{2}}+\frac{\pi \mathrm{R}^{3}\left(\mathrm{~K}_{\mathrm{ss}}^{*}+\mathrm{K}_{\mathrm{ss}}\right)}{\frac{1}{2} \mathrm{~m}_{2} \mathrm{R}^{2}} \\
& =\frac{2 \pi \mathrm{R}\left(\overline{\mathrm{~K}}_{\mathrm{ss}}+\mathrm{K}_{\mathrm{ss}}^{*}\right)}{\mathrm{m}_{1}}+\frac{2 \pi \mathrm{R}\left(\mathrm{~K}_{\mathrm{ss}}^{*}+\mathrm{K}_{\mathrm{ss}}\right)}{\mathrm{m}_{2}}
\end{aligned}
$$

It is easily identified that

$$
\begin{aligned}
& 2 \pi \mathrm{R}_{\mathrm{ss}}=\mathrm{K}_{1} \\
& 2 \pi \mathrm{R} \mathrm{~K}_{\mathrm{ss}}^{*}=\mathrm{K}_{2} \\
& 2 \pi \mathrm{R} \mathrm{~K}_{\mathrm{ss}}=\mathrm{K}_{3}
\end{aligned}
$$

Hence,

$$
\mathrm{B}_{1}=\frac{\mathrm{K}_{1}+\mathrm{K}_{2}}{\mathrm{~m}_{1}}+\frac{\mathrm{K}_{2}+\mathrm{K}_{3}}{\mathrm{~m}_{2}}=\mathrm{A}_{1}
$$

Similarly,

$$
\mathrm{B}_{2}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}+\mathrm{K}_{2} \mathrm{~K}_{3}+\mathrm{K}_{3} \mathrm{~K}_{1}}{\mathrm{~m}_{1} \mathrm{~m}_{2}}=\mathrm{A}_{2}
$$

Thus, Equations 52 and 66 are identical. The natural frequencies of the angular vibration are the same as those of the rectilinear vibration. Utilizing the identities

$$
\begin{aligned}
& \frac{\mathrm{K}_{\gamma 2}}{-\mathrm{I}_{1} \omega^{2}+\mathrm{K}_{\gamma_{1}}+\mathrm{K}_{\gamma_{2}}}=\frac{\pi \mathrm{R}^{3} \mathrm{~K}_{\mathrm{ss}}^{*}}{-\frac{1}{2} \mathrm{~m}_{1} \mathrm{R}^{2} \omega^{2}+\pi \mathrm{R}^{3} \overline{\mathrm{~K}}_{\mathrm{ss}}+\pi \mathrm{R}^{3} \mathrm{~K}_{\mathrm{ss}}^{*}} \\
& =\frac{2 \pi \mathrm{R} \mathrm{~K}_{s s}}{-\mathrm{m}_{1} \omega^{2}+2 \pi \mathrm{R} \overline{\mathrm{~K}}_{\mathrm{ss}}}+2 \pi \mathrm{R} \mathrm{~K}_{\mathrm{ss}}{ }^{*} \\
& =\frac{\mathrm{K}_{2}}{-\mathrm{m}_{1} \omega^{2}+\mathrm{K}_{1}+\mathrm{K}_{2}}, \text { etc. }
\end{aligned}
$$

We can easily see that the dynamic response $\mathrm{C}_{1} / \mathrm{C}_{3}$ and $\mathrm{C}_{2} / \mathrm{C}_{3}$ as given by Equations 67 and 68 reduce to Equations 55 and 56 respectively.

Thus, the rigid-body vibrations of the carrier-ring system can be predicted by considering either the rectilinear vibration or the angular vibration, because they are completely analogous to each other. The flexible seal tracking analysis computer program discussed in Appendix A includes calculations of the natural frequencies and the dynamic response.

b. SEMIRIGID SEAL RING

The analysis and computer program for vibration of the thin-strip seal ring in the OC diaphragm seal are quite general. They can be easily applied to the semirigid seal ring's vibration if the following quantities are properly identified: $\mathrm{K}_{\mathrm{ss}}{ }^{*}, \mathrm{~K}_{\mathrm{sa}}{ }^{*}, \mathrm{~K}_{\mathrm{a} s}{ }^{*}, \mathrm{~K}_{\mathrm{aa}}{ }^{*}, \mathrm{I}, \mathrm{I}_{\mathrm{p}}, \mathrm{A}$ and I_{tt}.

The seal ring is again supported by a gas film on one side, but on the other side there is no OC diaphragm. A mechanical spring is used instead to hold the ring down. Let the spring constant of this spring be K_{1}, then

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{ss}}^{*}=\frac{\mathrm{K}_{1}}{2 \pi \mathrm{R}} \\
& \mathrm{~K}_{\mathrm{s} \boldsymbol{a}}^{*}=\mathrm{K}_{\mathrm{as}}{ }^{*}=\mathrm{K}_{\mathrm{a} a^{*}}{ }^{*}=0
\end{aligned}
$$

Consider the case that the cross section of the ring is a rectangular hollow section with uniform thickness. Then, the moment of inertia and the equivalent polar moment of inertia are

$$
\begin{aligned}
& I=\frac{1}{12}\left(b_{1} a_{1}{ }^{3}-b_{2} a^{3}{ }_{2}\right) \\
& I_{p}=\frac{4 \bar{A}^{2} t}{\ell}
\end{aligned}
$$

where

$$
\begin{aligned}
a_{1}, b_{1} & =\text { outer dimension of rectangular ring } \\
a_{2}, b_{2} & =\text { inner dimension of rectangular ring } \\
t & =\text { thickness (uniform) } \\
\ell & =\text { linear length }=2 a_{1}+2 b_{1}-4 t \\
\bar{A} & =\text { area }=\left(a_{1}-t\right)\left(b_{1}-t\right)
\end{aligned}
$$

See Reference 4, page 27.
Let

$$
\begin{aligned}
& A_{1}=a_{1} b_{1} \\
& A_{2}=a_{2} b_{2} \\
& M_{1}=\rho A_{1} R d \theta=\text { mass of an element with area } A_{1} \text { and thickness } R d \theta \\
& M_{2}=\rho A_{2} R d \theta=\text { mass of an element with area } A_{2} \text { and thickness } R d \theta
\end{aligned}
$$

Then, from Equation 14,

$$
I_{\mathfrak{t}}=\frac{M_{1}\left(a_{1}{ }^{2}+b_{1}{ }^{2}\right)}{12}-\frac{M_{2}\left(a_{2}{ }^{2}+b_{2}{ }^{2}\right)}{12}
$$

and

$$
A=\text { net area }=a_{1} b_{1}-a_{2} b_{2}
$$

c. GAS FILM CROSS-COUPLING STIFFNESS EVALUATION

(1) Derivation of Angular and Cross-Coupling Stiffness for Single Pad Configuration

In studying the tracking capability of the seal ring with respect to the rotor face distortions, it is convenient to approximate the behavior of the air film by two direct stiffnesses, K_{ss}, $K_{a a}$ and two cross-coupling stiffnesses, $K_{s a}, K_{a s}$. Referring to a typical single pad seal as shown in Figure 19, these stiffnesses may be mathematically defined as follows:

$$
\begin{aligned}
K_{\mathrm{ss}} & =-\frac{\partial \mathrm{W}}{\partial \mathrm{~h}} \\
& =\mathrm{K}_{\mathrm{ss}}^{\prime} \mathrm{b}(\mathrm{lb} / \mathrm{in}) / \mathrm{in}
\end{aligned}
$$

Figure 19 Typical Single-Pad Seal
where W is the upward restoring force per unit circumferential length, h_{m} the mean film thickness, $K_{s s}$ the axial stiffness per unit sealing area, and b the seal width. $K_{s s}^{m}$ can be found in the tabulated performance data.

$$
\begin{aligned}
K_{a a} & =\frac{M}{a} \\
& =\frac{\partial\left[\mathrm{W}\left(\mathrm{x}_{\mathrm{c}}-\mathrm{x}^{*}\right)\right]}{\partial a} \\
& =\left(\mathrm{x}_{\mathrm{c}}-\mathrm{x}^{*}\right) \frac{\partial \mathrm{W}}{\partial a}+\mathrm{W} \frac{\partial \mathrm{x}_{\mathrm{c}}}{\partial a} \mathrm{in}-\mathrm{lb} / \mathrm{in} / \mathrm{rad}
\end{aligned}
$$

M is the counterclockwise restoring moment about the centroid of the cross section per unit circumferential length, a the clockwise tilting angle, x_{c} the coordinate of the center of pressure, and x * the centroid coordinate.

Similarly

$$
\begin{aligned}
K_{s a} & =\frac{\partial W}{\partial a} \mathrm{lb} / \mathrm{in} / \mathrm{rad} \\
\mathrm{~K}_{\mathrm{as}} & =-\frac{\partial \mathrm{M}}{\partial \mathrm{~h}}=-\left[\frac{\partial \mathrm{W}}{\partial \mathrm{~h}}\left(\mathrm{x}_{\mathrm{c}}-\mathrm{x}^{*}\right)+\mathrm{W} \frac{\partial \mathrm{x}_{\mathrm{c}}}{\partial \mathrm{~h}}\right] \\
& =\mathrm{K}_{\mathrm{ss}}^{\prime} \mathrm{b}\left(\mathrm{x}_{\mathrm{c}}-\mathrm{x}^{*}\right)-\mathrm{W} \frac{\partial \mathrm{x}_{\mathrm{c}}}{\partial \mathrm{~h}}(\mathrm{in}-\mathrm{lb} / \mathrm{in}) / \mathrm{in} \\
\mathrm{~W} & =\mathrm{K}_{\mathrm{ss}}(-\Delta \mathrm{h})+\mathrm{K}_{\mathrm{sa}} \Delta a \\
M & =K_{a s}(-\Delta \mathrm{h})+K_{a a} \Delta a
\end{aligned}
$$

In calculating the derivatives, one may make the following approximations.

$$
\begin{aligned}
& \frac{\partial \mathrm{W}}{\partial a}=\frac{\left.\mathrm{W}\right|_{a=\Delta a}-\left.\mathrm{W}\right|_{a=-\Delta a}}{2 \Delta a} \\
& \frac{\partial x_{c}}{\partial a}=\frac{\left.\mathrm{x}_{\mathrm{c}}\right|_{a=\Delta a}-\left.\mathrm{x}_{\mathrm{c}}\right|_{a=-\Delta a}}{2 \Delta a} \\
& \frac{\partial \mathrm{x}_{\mathrm{c}}}{\partial \mathrm{~h}}=\frac{\left.\mathrm{x}_{\mathrm{c}}\right|_{\mathrm{h}=\mathrm{h}_{\mathrm{o}}}+\Delta \mathrm{h}}{}-\left.\mathrm{x}_{\mathrm{c}}\right|_{\mathrm{h}=\mathrm{h}_{\mathrm{o}}}-\Delta \mathrm{h} \\
& 2 \Delta \mathrm{~h}
\end{aligned}
$$

The equations derived above are for direct use in the tracking analyses of the single-pad semirigid seal configuration.

(2) Derivation of Angular and Cross-Coupling Stiffness for Double Pad Configurations

For the double pad, the expression of the film stiffnesses is more complex than for the single pad.

Referring to Figure 20,

$$
\begin{aligned}
\mathrm{K}_{\mathrm{ss}} & =-\frac{\partial \mathrm{W}}{\partial \mathrm{~h}} \\
& =\left(-\frac{\partial W_{1}}{\partial \mathrm{~h}}\right)+\left(-\frac{\partial \mathrm{W}_{2}}{\partial \mathrm{~h}}\right) \\
& =\left(\mathrm{K}_{\mathrm{ss}}^{\prime}\right)_{1} \mathrm{~b}_{1}+\left(\mathrm{K}_{\mathrm{ss}}^{\prime}\right)_{2} \mathrm{~b}_{2}(\mathrm{lb} / \mathrm{in}) / \mathrm{in}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{K}_{a \cdot a} & =\frac{\partial \mathrm{W}}{\partial a}\left(\mathrm{x}_{\mathrm{c}}-\mathrm{x}^{*}\right)+\mathrm{W} \frac{\partial \mathrm{x}_{\mathrm{c}}}{\partial a} \\
\mathrm{x}_{\mathrm{c}} & =\frac{\mathrm{W}_{2}\left(\mathrm{~b}-\mathrm{x}_{2}\right)+\mathrm{W}_{1} \mathrm{x}_{1}}{\mathrm{~W}_{1}+\mathrm{W}_{2}} \text { and } \frac{\partial \mathrm{W}}{\partial a}=\frac{\partial \mathrm{W}_{1}}{\partial a}+\frac{\partial \mathrm{W}_{2}}{\partial a}
\end{aligned}
$$

Figure 20 Gas-Film Forces on a Double Pad

Similarly, the cross-coupling coefficients are defined by

$$
\begin{aligned}
K_{s a} & =\frac{\partial W}{\partial a} \\
K_{a s} & =\frac{-\partial M}{\partial h}=-\left[\frac{\partial W}{\partial h}\left(x_{c}-x^{*}\right)+W \frac{\partial x_{c}}{\partial h}\right] \\
& =\left[\left(K_{s s}^{\prime}\right)_{1} b_{1}+\left(K_{s s}^{\prime}\right)_{2} b_{2}\right] \quad\left(x_{c}-x^{*}\right)-W \frac{\partial x_{c}}{\partial h}
\end{aligned}
$$

where

$$
\begin{aligned}
\frac{\partial W}{\partial a}= & \left(\frac{W_{1}^{+}-W_{1}^{-}}{2 \Delta a}\right)+\left(\frac{W_{2}^{+}-W_{2}^{-}}{2 \Delta a}\right) \\
\frac{\partial x_{c}}{\partial a}= & \frac{1}{2 \Delta a}\left[\frac{W_{2}^{+}\left(b-x_{2}^{+}\right)+W_{1}^{+} x_{1}^{+}}{W_{1}^{+}+W_{2}^{-}}\right]-\left[\frac{W_{2}^{-}\left(b-x_{2}-\right)+W_{1}-x_{1}-}{W_{1}^{-}+W_{2}^{-}}\right] \\
\frac{\partial x_{\mathrm{c}}}{\partial h}= & \frac{1}{2 \Delta h}\left[\frac{W_{2}\left(\mathrm{~b}_{2}-\mathrm{x}_{2}\right)+\mathrm{W}_{1} \mathrm{x}_{1}}{\mathrm{~W}_{1}+\mathrm{W}_{2}}\right]_{\mathrm{h}=\mathrm{h}_{\mathrm{o}}+\Delta \mathrm{h}} \\
& -\frac{1}{2 \Delta h}\left[\frac{\mathrm{~W}_{2}\left(\mathrm{~b}_{2}-\mathrm{x}_{2}\right)+\mathrm{W}_{1} \mathrm{x}_{1}}{\mathrm{~W}_{1}+\mathrm{W}_{2}}\right]_{\mathrm{h}=\mathrm{h}_{\mathrm{o}}+\Delta \mathrm{h}}
\end{aligned}
$$

and

$$
\begin{array}{l|l}
\mathrm{W}_{2}^{+}=\mathrm{W}_{2} & \begin{array}{l}
a=\Delta a \\
\mathrm{~h}_{2}=\mathrm{h}-\frac{\Delta a}{2}\left(\mathrm{~b}_{3}+\mathrm{b}_{2}\right)
\end{array} \\
\mathrm{W}_{2}^{-}=\mathrm{W}_{2} & \begin{array}{l}
a=\Delta a \\
\mathrm{~h}_{2}=\mathrm{h}+\frac{\Delta a}{2}\left(\mathrm{~b}_{3}+\mathrm{b}_{2}\right)
\end{array} \\
\mathrm{W}_{1}^{+}=\mathrm{W}_{1} & \begin{array}{l}
a=\Delta a \\
\mathrm{~h}_{1}=\mathrm{h}+\frac{\Delta a}{2}\left(\mathrm{~b}_{3}+\mathrm{b}_{1}\right)
\end{array} \\
\mathrm{W}_{1}^{-}=\mathrm{W}_{1} & \begin{array}{l}
a=\Delta a \\
\mathrm{~h}_{1}=\mathrm{h}-\frac{\Delta a}{2}\left(\mathrm{~b}_{3}+\mathrm{b}_{1}\right)
\end{array}
\end{array}
$$

$$
\begin{array}{l|l}
\mathrm{x}_{2}^{+}=\mathrm{x}_{2} & \begin{array}{l}
a=\Delta a \\
\mathrm{~h}_{2}=\mathrm{h}-\frac{\Delta a}{2}\left(\mathrm{~b}_{3}+\mathrm{b}_{2}\right)
\end{array} \\
\mathrm{x}_{2}^{-}=\mathrm{x}_{2} & \begin{array}{l}
a=\Delta a \\
\mathrm{~h}_{2}=\mathrm{h}+\frac{\Delta a}{2}\left(\mathrm{~b}_{3}+\mathrm{b}_{2}\right)
\end{array} \\
\mathrm{x}_{1}^{+}=\mathrm{x}_{1} & \begin{array}{l}
a=\Delta a \\
\mathrm{~h}_{1}=\mathrm{h}+\frac{\Delta a}{2}\left(\mathrm{~b}_{3}+\mathrm{b}_{1}\right)
\end{array} \\
\mathrm{x}_{1}^{-}=\mathrm{x}_{1} & \begin{array}{l}
a=\Delta a \\
\mathrm{~h}_{1}=\mathrm{h}-\frac{\Delta a}{2}\left(\mathrm{~b}_{3}+\mathrm{b}_{1}\right)
\end{array}
\end{array}
$$

Since the calculation of these stiffnesses for the double pad from the basic performance data is quite involved, hand computation is not feasible and a computer subroutine has been prepared. This subroutine is used in conjunction with the tracking computer program and requires the basic primary seal data described in Appendix A.
region at the concave side of the upper diaphragm spring. The air passes through the seal gap to the vent recess and proceeds through the gap between the springs to holes drilled in the carrier. The holes vent directly to the low-pressure area.

The lower seal pad is fed through radial holes in the carrier and the O-diaphragm air pocket formed by the lower diaphragm spring. Air enters the individual pads through 154 feed holes $1 / 16$ of an inch in diameter, and is distributed over the Rayleigh recess by means of a $1 / 16$ wide and 0.030 inch deep groove located at the leading edge of the recess.

Secondary sealing between the carrier and the stationary support structure is accomplished through the use of a piston ring. The design details of the piston ring are the same as those of the one-sided floated-shoe seal discussed in Reference 6, page 23. The piston ring's outer surface includes a step bearing configuration which helps to establish an air film between piston ring and seal support.

2. SEAL CONSTRUCTION

The OC diaphragm end seal consists of a seal ring supported on O - and C -diaphragm springs. The springs are welded on one side to the seal ring and on the other to the carrier.

The carrier in turn is preloaded by virtue of 24 helical coil preload springs which rest on riveted spring guides on the carrier and seal support. The carrier is centered and held in place by four antirotation pins similar to the ones employed in the one-sided floated-shoe design (Reference 6, page 7). The seal support separates the high-pressure from the lowpressure chamber and provides the secondary sealing surface for the piston ring to ride on.

The O -and C -diaphragm springs are of toroidal and semitoroidal cross section. These springs are to be fabricated or formed from 0.006 -inch stock and welded into separate subassemblies with the use of spring supports for the O - and C -spring sections, respectively. The subassemblies are then electron-beam welded onto the seal ring and carrier. To avoid prestressing and distortion of the spring diaphragms, and to contain the diaphragm subassemblies prior to final welding onto the seal ring and carrier, the spring assemblies are rabbeted onto the seal ring with light clearance fits.

The seal face is hard coated with aluminum oxide (Linde LC-1C) or Chrome Carbide (Linde LW-5), whichever is more suitable for the etching and/or machining of the spiral groove and Rayleigh recess profiles. The major seal parts are made of Inconel X750.

3. OC DIAPHRAGM STATIC SEAL PERFORMANCE AT CRUISE, IDLE, AND TAKE-OFF

a. STATIC PERFORMANCE CURVES

The static seal performance curves for the double-pad OC diaphragm end seal are shown in Figures 21 through 23. The arbitrarily arrived at limits based upon the cruise static performance curves appear to apply also to the take-off and idle conditions: in order not to fall below 70 percent of the design film thickness, the tilt angle should be restricted to 0.0007 radians for positive and 0.0004 radians for negative tilt.

C. OC DIAPHRAGM THIN-STRIP SEAL

The final configuration of the OC diaphragm end seal is shown in Figure 1. Both the end and interstage configurations of the OC diaphragm seal are similar in design and materials. Because the OC diaphragm interstage seal will not be investigated under Task II, the discussion below is directed primarily toward the end seal configuration. With minor exceptions, however, it also applies to the interstage seal.

1. PRINCIPLE OF OPERATION

The OC diaphragm end seal shown in Figure 1 is a flexibly supported, flexible ring seal operating on the principle of the controlled seal gap. The gap control is achieved through the incorporation of gas bearing profiles in the seal face which are designed to yield gaps or air films between the stationary seal rings and runner.

The end and interstage seals have been designed for operation at steady-state cruise, idle, and take-off conditions as simulated on a Pratt \& Whitney Aircraft test rig. Air-film thickness is a function of speed, air temperature, and air pressure. Thus, at standstill, the seal is in direct contact with the runner and the film thickness is zero. The film thickness develops as the engine reaches the design operating conditions. In order to secure safe starts and stops, the seal ring and runner faces are hardcoated. The hard coats are selected on the basis of their compatibility of operation up to 1400 degrees Fahrenheit, mutual material compatibility, and resistance to wear.

As shown in Figure 1, the seal ring surface is divided into two bearing lands, the two lands being separated by a recessed vent groove. The outer land, henceforth referred to as the upper pad, serves the function of a bearing-seal combination. This pad is designed to maintain a small air film to separate the high from the low air-pressure areas, providing at the same time sufficient stiffness for proper seal operation at dynamic conditions. The upper pad consists of a hybrid combination of a spiral groove pattern and inherently compensated orifices. The spiral groove pattern provides hydrodynamic lift-off capability at conditions when the compressor discharge pressure is low, as at idle, start-up, and shutdown. The inherently compensated orifices enhance the rquired stiffness characteristics during operation.

The inner land, (or the lower pad) serves as a bearing. This pad includes Rayleigh shroudedstep recesses, the function of which is to strengthen the film-generating performance characteristics of the seal. It provides, in combination with the upper pad, the high angular stiffness which is a prerequisite to proper operation of a flexible seal ring and early liftoff capabilities.

The high-pressure areas, as shown in Figure 1, are located on the outside of the seal's outer surface and within the O-diaphragm spring. The low-pressure areas are on the seal's inner surface and on the inner surface and right side of the carrier.

During operation, the upper pad is fed with high-pressure air through the air gap at its outer edge and through the line of 360 orifices connecting the air-film gap to the high-pressure

Figure 21 OC Diaphragm End Seal Restoring Moment and Minimum Film Thickness

Figure 22 OC Diaphragm End Seal Film Thickness

Figure 23 OC Diaphragm End Seal Leakage

Because of the flexibility of the OC diaphragm seal, the chances are very good that the seal ring will follow conical runner distortion, as can be seen from the following comparison of the seal-ring and air-film angular stiffnesses. The bending stiffness of the ring can be calculated, assuming that the ring tilts as a solid body, from

$$
\mathrm{K}_{\mathrm{r}}^{*}=\frac{\mathrm{EI}}{\mathrm{R}^{2}}
$$

where

$$
\begin{aligned}
& \mathrm{I}=\frac{\mathrm{bh}^{3}}{12}=0.211\left(10^{-3}\right) \mathrm{in}^{4} \\
& \mathrm{E}=23 \times 10^{6} \mathrm{psi} \\
& \mathrm{R}=13.5 \mathrm{in} \\
& \mathrm{~K}_{\mathrm{r}}^{*}=\text { seal ring bending stiffness }=27.0 \mathrm{in}-\mathrm{lb} / \text { radian }
\end{aligned}
$$

The restoring moments of the gas film are much higher than those required to overcome the seal ring's internal resistance to bending. The seal ring also can be subjected to tilt in another way, through the application of residual moments. These moments arise as result of changes in operating conditions, dimensional seal variations due to manufacturing tolerances, and thermal deformation. The effects of the residual moments are discussed below.

b. RESIDUAL MOMENTS DUE TO CHANGE IN OPERATING CONDITIONS

The residual moments resulting from change in operating conditions have been previously calculated in Reference 7. Neglecting the seal ring's resistance to tilt, the seal ring will tilt until the imposed residual moment is balanced by a restoring moment created by the tilt angle a. Hence, knowing the residual bending moments, angle a can be directly determined from Figure 22. The tilt angles obtained are high in particular at take-off for the end stage seal. A significant reduction in tilt angle can be achieved through slight increase of the gasforce moment-arm between the lower pad and the centroid from 0.474 inch to 0.494 inch. The resulting residual moments are shown in Table I.

TABLE I

ADJUSTED RESIDUAL MOMENTS IN THE OC DIAPHRAGM END SEAL

$\mathrm{M}_{\text {res }}$
$\mathrm{lb}-\mathrm{in} / \mathrm{in}$

Cruise	0.40	0.2
Idle	0.236	0.38
Take-Off	-0.70	-0.32

The adjustment in the moment arm produces a residual moment on the seal at cruise and slightly increases the residual moment at idle. The residual moments at take-off, however, are reduced from $-1.35 \mathrm{in}-\mathrm{lb} / \mathrm{in}$. to $-0.70 \mathrm{in}-\mathrm{lb} / \mathrm{in}$. As a result of these changes, the tilt angles all fall within the specified range of 0.0007 to -0.0004 milliradian.

c. RESIDUAL MOMENTS DUE TO DRAWING TOLERANCES

The most critical tolerances in terms of their contribution to the residual moment change are the tolerances of the spring diameters (A, B, and C in Figure 24) and their respective concentricities. Based on these tolerances, the residual moment change for all applicable operating conditions can be calculated as shown in the following sample calculation for the end seal at cruise.

(1) Sample Calculation for C-Diaphragm at Cruise

$$
\Delta \mathrm{p}=80 \mathrm{psi}
$$

Tolerance on diameter "C" is ± 0.004 inch, therefore, radial distance x_{1} in Figure 24 can vary by ± 0.002 inch.

Figure 24 Critical Tolerances in the OC Diaphragm End Seal

Tolerance on eccentricity of diameter " C " with respect to diameter " Y " is ± 0.004 inch. This permits an additional change in distance x_{1} by ± 0.002 inch.

Based on the above tolerances, the total increase or decrease in x_{1} is 0.004 inch.
The net gas-force change is thus

$$
\mathrm{F}_{\mathrm{r} 1}=\Delta \mathrm{p} \Delta \mathrm{x}_{1}= \pm 80(0.004)= \pm 0.320 \mathrm{lb} / \mathrm{in}
$$

The moment arm of the $\Delta \mathrm{p} \Delta \mathrm{x}_{1}$, gas force is 0.175 ± 0.002 inch.
It should be noted that when the gas force decreases (Δx_{1} is negative), the moment arm increases by one half the magnitude of the decrease in $\Delta \mathrm{x}_{1}$
In the case of cruise and idle conditions we are only interested in the positive residual moments developed, inasmuch as the residual moments at cruise and idle are positive, and the positive moments due to tolerance changes will be directly additive to yield the worst possible case. At take-off where the residual moments due to change in operating conditions are negative, the problem is not so severe. The total moment change at cruise is thus

$$
M_{c}=F_{r 1} x_{2}=+0.320(0.175+0.002)=0.056 \frac{\mathrm{in}-\mathrm{lb}}{\mathrm{in}}
$$

(2) Sample Calculation for O-Diaphragm At Cruise

Tolerance on Diameter A in Figure 24 is ± 0.004 inch and moment arm x_{3} due to this tolerance will vary by ± 0.002 inch.

Tolerance on dimension x_{4} over which Δp acts is ± 0.002. This will affect gas force $F_{r 2}$ since $F_{r 2}=\Delta p \Delta x_{4}$. This tolerance also effects x_{3} by ± 0.001 inch.

To obtain a positive residual moment at cruise,

$$
\begin{aligned}
\mathrm{F}_{\mathrm{r} 2} & =\Delta \mathrm{p} \Delta \mathrm{x}_{4} \\
& =80(0.002)=0.16 \mathrm{lb} / \mathrm{in} .
\end{aligned}
$$

The moment arm x_{3}, adding 0.002 inches of possible eccentricity effect is

$$
\begin{aligned}
x_{3} & =0.494+0.002+0.001+0.002 \\
& =0.499 \text { inch }
\end{aligned}
$$

The net moment at cruise due to " O " diaphragm tolerance is thus

$$
M_{0}=F_{r 2} x_{3}=0.16(0.499)=0.08 \frac{i n-1 b}{i n}
$$

and the total moment on the seal due to the combined tolerance effect $\mathrm{M}_{\mathrm{oc}}=\mathrm{M}_{\mathrm{o}}+\mathrm{M}_{\mathrm{c}}=$ 0.14 .

The residual moment values calculated for all specified conditions are given below.

Cruise	0.14
Idle	0.02
Take-Off	-0.25

d. RESIDUAL MOMENTS DUE TO THERMAL EFFECTS

Due to lack of thermal data at off-design conditions, the over-all effects of residual moments due to thermal gradients cannot be calculated at this time. The major contribution to the residual moments from thermal effects is expected to come from the thermal gradients existing in the seal support O - and C -diaphragm springs and temperature differences between the diaphragm springs and seal ring. (See Appendix C)

e. COMBINED RESIDUAL MOMENTS

The residual moments due to change in operating conditions, as well as the moments due to drawing tolerances can now be added to yield the worst possible residual moment combinations. The combined residual moments are listed in Table II.

TABLE II

COMBINED RESIDUAL MOMENTS FOR THE OC DIAPHRAGM END SEAL

	$\mathrm{M}_{\text {res }}$ (in-lb/in)	Tilt Angle (milliradians)
Cruise	0.564	0.32
Idle	0.263	0.40
Take-Off	-1.01	-0.40

f. EFFECT OF RESIDUAL BENDING MOMENTS ON FILM THICKNESS

The effect of residual bending moments on film thickness during operation can be found using the data obtained from Table II to find the minimum film thickness from the static performance characteristics shown in Figure 21. The values of minimum film thickness $h_{\text {min }}$ and mean film thickness h_{m} are given in Table III. These values will be later used to adjust the results of the tracking analysis to account for the residual moment effects. Note, that the values given here are conservative, inasmuch as the internal seal ring resistance to tilt is assumed to be zero.

TABLE III

MEAN AND MINIMUM FILM THICKNESSES RESULTING FROM RESIDUAL MOMENTS IN THE OC DIAPHRAGM END SEAL

	$\mathrm{h}_{\mathrm{R} \text { min }}$ $\underline{\left(\mathrm{in} \times 10^{3}\right)}$	h_{Rm}	a $\left(\mathrm{in} \times 10^{3}\right)$

g. EFFECT OF SEAL RING TILT ON SEAL LEAKAGE

Seal leakages have been calculated and tabulated in Reference 7 for all operating conditions at parallel film thicknesses. Having established the maximum residual moments expected during operation and the resulting tilt angles (see Table III), the effect of the seal ring angular tilt on leakage can now be determined from Figure 23.

The net results are shown in Table IV where values of parallel film thickness leakage rates are compared to tilted seal ring leakage rates. The results indicate only slight increases in leakage at cruise and idle. The only appreciable increase in leakage due to tilt (about 25 percent) occurs at the take-off condition. Considering the fact that the calculated tilt angles represent conservative estimates of the expected maximum, the increase in leakage shown at this condition represents also a highly conservative estimate.

TABLE IV

TILTED- AND PARALLEL-FILM MAXIMUM SEAL LEAKAGE IN THE OC DIAPHRAGM END SEAL

	Parallel Film $(\mathrm{lb} / \mathrm{sec})$	Tilted Film $(\mathrm{lb} / \mathrm{sec})$	Tilt Angle \boldsymbol{a} (rad)
	0.113	0.116	0.
Idle	0.024	0.022	0.00032
Take-Off	0.390	0.490	0.00040
			0.00040

h. OC DIAPHRAGM SEAL DYNAMIC PERFORMANCE

(1) Tracking Analysis

The tracking analysis employed to investigate the dynamic seal performance characteristics is described in detail in Section IB of this report. In the course of evaluation of seal tracking performance, the seal is subjected to three runner input modes. In the $\mathbf{n}=0$ mode, no
axial runner input deflection exists but the seal ring (or the runner) is tilted by an angle ξ_{n}, the seal tilt angle being uniform all around the circumference. This condition is representative of the state in which the seal or runner is initially coned or is subjected to thermal tilt or coning. The gas film characteristics required for the input, such as $K_{\alpha a}, K_{s a}, K_{\alpha s}$ and $\mathrm{K}_{\text {ss }}$ have been calculated based on a seal tilt angle of 0.0004 radian.

In the $\mathrm{n}=1$ mode the runner exhibits an 0.003 -inch full indicator runout resulting in a ± 0.0015-inch wobble once per revolution.

In the $\mathrm{n}=2$ mode, the runner is distorted in a saddle shape, exhibiting two high and two low spots symetrically spaced, the maximum deformation being 0.001 inch from planar. At this condition, the runner deformation occurs at a frequency equal to twice the runner frequency of rotation.
The $\mathrm{n}=0, \mathrm{n}=1$ and $\mathrm{n}=2$ modes of distortions are graphically shown in Figure 25. The tracking results based upon the seal distortions discussed above are given in Table V. In this table, $n, \xi_{\mathrm{n}}, \mathrm{h}_{\mathrm{m}}, \delta_{\mathrm{n}}$, and ϵ_{n} are inputs into the computer program. The minimum film thickness for each mode of distortion is calculated from the following relationships established in Section IB.

$$
\begin{aligned}
& a_{\mathrm{n}}=\mathrm{C}_{\mathrm{A} 1} \epsilon_{\mathrm{n}}+\mathrm{C}_{\mathrm{A} 2} \delta_{\mathrm{n}} \\
& \beta_{\mathrm{n}}=\mathrm{C}_{\mathrm{B} 1} \zeta_{\mathrm{n}}+\mathrm{C}_{\mathrm{B} 2} \eta_{\mathrm{n}} \\
& \mathrm{u}_{\mathrm{n}}=\mathrm{C}_{\mathrm{u} 1} \epsilon_{\mathrm{n}}+\mathrm{C}_{\mathrm{u} 2} \delta_{\mathrm{n}} \\
& \mathrm{v}_{\mathrm{n}}=\mathrm{C}_{\mathrm{v} 1} \zeta_{\mathrm{n}}+\mathrm{C}_{\mathrm{v} 2} \eta_{\mathrm{n}}
\end{aligned}
$$

where ϵ_{n} is the seal to rotor angle as shown in Figure 25, $\delta_{\mathrm{n}}=\delta / \mathrm{b}$ (δ being the axial rotor displacement shown in Figure 25), and b the radial width of the seal face. The "C's" are influence coefficients calculated through the use of the computer program. These are listed in Table VI for all operating conditions.

The minimum film thickness is calculated using the following relationships

$$
h_{\min }=h_{m}-\frac{b}{2}\left|\epsilon_{n}-a_{n}-\beta_{n}\right|-b\left|-\delta_{n}+u_{n}+v_{n}\right|
$$

The results indicate that at most conditions, with the given input distortions, the seal would still operate at reasonably safe minimum film thicknesses even if all distortions were to fall in phase in such a manner that the film thickness loss $\left(h_{m}-h_{\text {min }}\right)$ resulting from each mode of distortion would be directly additive yielding the combined $h_{\text {min }}$ shown in Table V .

Figure 25. Modes of Seal and Runner Distortion Used in Tracking Analysis
TABLE V
RESULTS OF TRACKING ANALYSIS OF OC DIAPHRAGM END SEAL
RESULTS OF TRACKING ANALYSIS OF OC DIAPHRAGM END SEAL

Angular Deflection ϵ_{n}	Minimum Film Thickness $\mathrm{h}_{\text {min }}$ (inches)
0.0	0.000995
0.00011	0.000872
0.000037	0.000973
0.0	0.00085
0.00011	0.00068
0.000037	0.00080
0.0	0.000845
0.00011	0.000764
0.000037	0.000831

TABLE VI

INFLUENCE COEFFICIENTS FOR THE OC DIAPHRAGM END SEAL

	Mode Number	Cruise	Idle	Takeoff
$\mathrm{CAI}^{\text {a }}$	0	0.920	0.9411	0.935
	1	0.9043	0.9237	0.9180
	2	0.8580	0.8752	0.8696
$\mathrm{C}_{\mathrm{A} 2}$	0	0.0983	0.0603	0.0625
	1	0.0839	0.0549	0.0534
	2	0.0431	0.0397	0.0271
C_{BI}	0	0.0141	0.0131	0.0136
	1	0.0320	0.0313	0.0320
	2	0.0818	0.0822	0.0832
$\mathrm{C}_{\mathrm{B} 2}$	0	0.0000	0.0000	0.0000
	1	0.0031	0.0030	0.0031
	2	0.0114	0.0113	0.0115
$\mathrm{Cu}_{\mathbf{1}}$	0	0.0111	0.0055	0.0104
	1	0.0133	0.0066	0.0131
	2	0.0196	0.0098	0.0206
$\mathrm{C}_{\mathrm{u} 2}$	0	0.9576	0.9171	0.9715
	1	0.9625	0.9196	0.9745
	2	0.9769	0.9267	0.9834
$\mathrm{C}_{\mathrm{v} 1}$	0	-0.0020	-0.0012	-0.0022
	1	-0.0043	-0.0024	0.0050
	2	-0.0109	-0.0057	0.0129
$\mathrm{C}_{\mathrm{v} 2}$	0	0.0000	0.0000	0.0000
	1	-0.0004	-0.0002	0.0005
	2	-0.0015	-0.0006	0.0017

(2) Natural Frequencies

The OC diaphragm seal system yields four natural frequencies. Two of these, resulting from the seal-ring vibration analysis, are

$$
\begin{aligned}
& \nu_{n 1}=\left[\frac{1}{2} P_{1}+\frac{1}{2}\left(\mathrm{P}_{1}^{2}-4 \mathrm{f}_{1}{ }^{2} \mathrm{f}_{2}^{2} \mathrm{P}_{2}\right)^{1 / 2}\right]^{1 / 2} \\
& \nu_{\mathrm{n} 2}=\left[\frac{1}{2} \mathrm{P}_{1}-\frac{1}{2}\left(\mathrm{P}_{1}^{2}-4 \mathrm{f}_{1}{ }^{2} \mathrm{f}_{2}^{2} \mathrm{P}_{2}^{2}\right)^{1 / 2}\right]^{1 / 2}
\end{aligned}
$$

For details, the reader is referred to Section IB. The calculated values of $\nu_{\mathrm{n} 1}$ and $\nu_{\mathrm{n} 2}$ fall far beyond the operating speed range, imposing no problems directly related to the design. The other two natural frequencies, ν_{1} and ν_{2}, result from the behavior of the entire system in terms of rigid body vibrations. As previously discussed, ν_{1} and ν_{2} can be closely approximated using the following relationships:

$$
\begin{aligned}
& \nu_{1}=\left[\frac{K_{3}}{m_{2}}\right]^{1 / 2} \\
& \nu_{2}=\left[\frac{K_{2}}{m_{1}}\right]^{1 / 2}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{K}_{3}=\text { gas film stiffness }(\mathrm{lb} / \mathrm{in}) \\
& \mathrm{K}_{2}=\text { spring diaphragm stiffness }(\mathrm{lb} / \mathrm{in}) \\
& \mathrm{m}_{2}=\text { seal ring mass }\left(\mathrm{lb}-\sec ^{2} / \mathrm{in}\right) \\
& \mathrm{m}_{1}=\text { carrier mass }\left(\mathrm{lb}-\sec ^{2} / \mathrm{in}\right)
\end{aligned}
$$

As has been shown in Section IB, ν_{1} is far beyond the operating speed range and thus also imposes no particular problem on the design: ν_{2}, however, depends upon the selected OC spring geometry and carrier mass. Consequently, the ratio of K_{2} / m_{1}, due to practical design limitations, had to be carefully selected so that the resulting critical speed (ν_{2}) fell above the operating speed of 8000 rpm .

The final values of natural frequencies for all operating points under consideration are listed in Table VII with the corresponding operating frequencies (ν_{o}).

TABLE VII

NATURAL FREQUENCIES OF THE OC DIAPHRAGM END SEAL IN RAD/SEC

	Mode Number	$\underline{\nu_{\mathrm{n} 1}}$	$\underline{\nu_{\mathrm{n} 2}}$	$\underline{\nu_{1}}$	$\underline{\nu_{2}}$	$\underline{\nu_{0}}$
Cruise	0		46,789	11,337	13,123	1,273
	1	47,069	11,370	13,123	1,273	760
	2	47,899	11,466	13,123	1,273	760
Idle	0	46,728	8,220	7,983	1,240	1,273
	1	47,145	8,223	7,983	1,240	1,273
	2	48,372	8,232	7,983	1,240	1,273
Takeoff	1	54,152	13,746	16,319	1,280	1,280
	2	55,393	13,925	16,319	1,280	1,280

Examining the values of the lowest natural frequency $\left(\nu_{2}\right)$ and comparing these to the approximate operating frequencies (ν_{0}) at each condition, the conclusion may be drawn that the lowest natural frequencies of the system fall safely above the operating frequencies.

(3) Carrier and Seal Ring Rigid Body Response

In the analysis of rigid body vibrations discussed in Section IB, the dynamic rigid body responses of the carrier and the seal ring with respect to the unit runner input, are expressed by $\mathrm{C}_{1} / \mathrm{C}_{3}, \mathrm{C}_{2} / \mathrm{C}_{3}$ respectively. From Table VIII, the relative motions of seal diaphragm and carrier can be found. The carrier response $\mathrm{C}_{1} / \mathrm{C}_{3}$ indicates that the carrier motion at cruise will be highest and approximately equal to 1.5 times the runner input displacement. Due to the damping action of the torque pins, a good percentage of the indicated gain will probably be damped out. The seal diaphragm follows the input motion almost perfectly as indicated by the $\mathrm{C}_{2} / \mathrm{C}_{3}$ ratios of close to 1.0 .

TABLE VIII

CARRIER AND SEAL RING RIGID-BODY RESPONSE RATIOS

	$\underline{C_{1} / C_{3}}$	$\underline{C_{2} / C_{3}}$
	1.57	1.02
Cruise	1.12	1.01
Idle	1.42	1.01

i. COMBINED STATIC AND DYNAMIC SEAL PERFORMANCE

The results of the tracking analysis discussed above show that the gas film possesses sufficient restoring moment capabilities to counteract initial seal ring deformation within reasonable limits of seal ring tilt angle when the deformations are not produced by residual moments.

When residual moments are present, the seal ring (neglecting its internal resistance to tilt) will tilt to the point where a restoring moment of equal and opposite magnitude is developed by the gas film. The effects of seal ring tilt due to residual moments are not considered in the tracking analysis aside from the fact that the gas film characteristics are calculated at expected tilt angles.

To take into account the residual moment contribution to the minimum film thickness during operation, the difference between parallel film thickness h (listed in Table V) for all running condition's, and minimum film thickness $h_{\text {Rmin }}$ (listed in Table III) resulting from the residual bending moment, is subtracted from the minimum film thickness $\mathrm{h}_{\text {Tmin }}$ (listed in Table V) obtained in the tracking analysis, or

$$
\mathrm{h}_{\mathrm{T} \text { min }}-\left(\mathrm{h}_{\mathrm{m}}-\mathrm{h}_{\mathrm{R} \text { min }}\right)=\mathrm{h}_{\mathrm{F} \text { min }}
$$

where $h_{\text {Fmin }}$ is the final combined minimum film thickness. This approach is conservative, since it assumes that all deformations act in phase and are thus directly additive. It also assumes no internal resistance of the ring and a worst-tolerance stackup. The values calculated using this procedure are shown in Table IX.

TABLE IX

FINAL MINIMUM FILM THICKNESS OF THE OC DIAPHRAGM END SEAL DURING OPERATION

Conditions	$\begin{gathered} h_{m} \\ \text { (in } \times 10^{3} \text {) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{h}_{\mathrm{R} \text { min }} \\ \text { (in } \times 10^{3} \text {) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{h}_{\mathrm{T} \text { min }} \\ \left(\text { (in } \times 10^{3}\right. \text {) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{h}_{\mathrm{F} \text { min }} \\ \left(\mathrm{in} \times 10^{3}\right) \\ \hline \end{gathered}$
Cruise	1.00	0.84	0.84	0.68
Idle	0.85	0.68	0.63	0.46
Takeoff	0.85	0.55	0.74	0.44

The addition of the residual moment effects obviously lowers the operational film thickness. The final values, with the exception of one condition, indicate less than 50 percent film loss for the worst cases considered. OC diaphragm end seal performance should thus be satisfactory over almost the entire range of conditions.

4. OC DIAPHRAGM SEAL THERMAL ANALYSIS

Thermal maps showing the temperature distribution of the seal's cross section and the immediate surrounding areas have been computed at cruise conditions. The detailed analytical procedure and results are given in Appendix C.

The results for the end seal are slightly different from those reported in Reference 7. The differences are mainly due to the assumption of reduced air temperature at the-low pressure side. According to the latest thermal analysis, this temperature is expected to be 1136 degrees Fahrenheit instead of the originally assumed 1200 degrees Fahrenheit.

In summary, the end seal temperature distribution yields reasonably low temperature gradients. Although the thermal gradients in the seal section will produce a seal face deformation with a slope of $-0.0027 \mathrm{in} / \mathrm{in}$, this will be entirely offset by counteracting pressure forces.

5. OC DIAPHRAGM END SEAL ORIFICE PRESSURE DROP CALCULATIONS

The analysis of the OC diaphragm end seal assumes that no pressure drop occurs at the lower pad orifices which admit pressurized air to the Rayleigh shrouded pads and that no pressure drop occurs at the vent holes incorporated in the seal ring and carrier. To ensure that these pressure drops are minimized in the actual design, the number of orifices and orifice diameters must be kept as large as physically possible within the design limits.

a. PRESSURE DROP THROUGH RAYLEIGH PAD FEED HOLES

The maximum possible Rayleigh shrouded step feed orifice diameter is 0.062 inch. Since there are 77 pads in the end seal, there are also 77 feed orifices present. The air flow through the lower pad at cruise is $0.084 \mathrm{lb} / \mathrm{sec}$.

$$
\begin{equation*}
G=\frac{m \sqrt{R T}}{p_{2} \pi a^{2} C_{d} n g} \tag{69}
\end{equation*}
$$

where

$$
\begin{aligned}
& G=\text { dimensionless flow } \\
& \mathrm{p}_{2}=\text { supply pressure }=100 \text { psia } \\
& \mathrm{R}=\text { gas constant }=2.47\left(10^{5}\right) \mathrm{in}^{2} / \mathrm{sec}^{2}-{ }^{\mathrm{O}} \mathrm{R} \\
& \mathrm{~T}=\text { supply temperature }=1660^{\circ} \mathrm{F} \\
& \mathrm{a}=\text { orifice radius }=0.01325 \mathrm{in} \\
& C_{d}=\text { coefficient of discharge }=0.8 \\
& \mathrm{n}=\text { number of orifices }=77 \\
& \mathrm{~g}=\text { gravitational constant }=386 \mathrm{in} / \mathrm{sec}^{2} \\
& \mathrm{~m}=\text { flow }=0.084 \mathrm{lb} / \mathrm{sec}
\end{aligned}
$$

Therefore, for the end seal cruise condition, $G=0.233$.
From Figure 12, Reference 8, for $\mathrm{G}=0.233,\left(\frac{p_{1}}{p_{2}}\right)^{2}=0.92$

$$
\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=0.96
$$

The pressure drop across the Rayleigh pad feed holes is thus only 4 percent of the supply pressure and should not appreciably affect seal performance. At take-off, the lower pad flow is increased, but due to an increase in supply pressure and a decrease in temperature, the pressure ratio across the orifice will remain essentially the same as at cruise.

b. PRESSURE DROP THROUGH VENT HOLES

The pressure drop through the vent holes is calculated in a similar manner. The following specific values apply:

$$
\begin{array}{ll}
\mathrm{p}_{2}=20 \mathrm{psia} & \mathrm{n}=154 \\
\mathrm{a}=0.0625 \text { inch } & \mathrm{m}=0.017 \mathrm{lb} / \mathrm{sec}
\end{array}
$$

All other values are the same as those used in the Rayleigh pad feeder hole calculations. Substituting in Equation $69, G=0.123$ and $\mathrm{P}_{2} / \mathrm{P}_{1}=0.98$, which is low enough to be considered negligible. Again, at take-off, in spite of the increased flow, no appreciable increase in pressure ratio is expected due to compensating temperature effects. Nevertheless, in the final detailed layouts the vent hole sizes should be increased to the maximum possible to avoid pressure buildups.

6. PRELOAD HELICAL COIL SPRINGS

To save on design and manufacturing expense, the helical coil springs used in the OC diaphragm can be exactly the same as those used in the one-side floated-shoe design.

The spring specifications are as follows:

Wire size (inches)
Coil outside diameter (inches)
Spring rate at $70^{\circ} \mathrm{F}$
Solid height (inches)
Free heights (inches)
Total number of coils
First load
Second load
End Condition
0.035 ± 0.008 dia
0.445 Reference
$1.942 \mathrm{lb} /$ in Reference
0.601 to 0.671
1.870 Reference

18 Reference
$0 \mathrm{lb}, 7 \mathrm{oz}$ to 0 lb 9 oz at 1.612 inches length
1 lb 12 ox to 2 lb 0 oz at 0.904 inches length
Close ends and grind square to within 2°

The spring rate variations according to the above specifications are plotted in Figure 26.
For the end seal, the nominal spring length is 1.130 inches. At this length the load can vary

Figure 26 Helical Coil Spring Rate
between 1.54 and 1.32 pounds. For 24 springs, the total spring load variation is thus 37.0 to 31.7 pounds. Using a mean seal diameter of 27.050 inches, the variation in terms of spring load per inch of circumference is $0.437 \mathrm{lb} / \mathrm{in}$ to $0.373 \mathrm{lb} / \mathrm{in}$. Similarly, at the minimum working length (nominal length less 0.2 inches) the load variation in pounds per inch of circumference is 0.553 to $0.482 \mathrm{lb} / \mathrm{in}$, and at the maximum working length (nominal length plus 0.2 inches) the load can vary between 0.333 and $0.277 \mathrm{lb} / \mathrm{in}$. The over-all spring load variation (taking into account the change in the spring's working length because of differential thermal expansion of test parts and spring tolerances) is 0.277 to $0.553 \mathrm{lb} / \mathrm{in}$. In the original seal balance calculations, a constant spring load of $0.5 \mathrm{lb} / \mathrm{in}$. was assumed to be acting on the seal at all conditions. Due to the fact that the spring load is not constant, what remains now to be established is the effect of spring load variation on film thickness and residual moments, and the minimum spring load sufficient to overcome friction at the antirotation pins.

a. EFFECTS OF SPRING LOAD VARIATION ON FILM THICKNESS AND RESIDUAL MOMENTS

To be conservative, let us assume that the entire spring load variation can occur at end idle conditions (the worst conditions), where the over-all pressure loading is lowest. The change from $0.5 \mathrm{lb} / \mathrm{in}$ assumed load to $0.553 \mathrm{lb} /$ in maximum possible load will have negligible effects. Considering now the minimum possible spring load, the loss in seal face loading is $0.5-0.227=0.223 \mathrm{lb} / \mathrm{in}$. The total load at the interstage seal is $20.0 \mathrm{lb} / \mathrm{in}$, (Table V , Ref. 7) thus the load loss of $0.223 \mathrm{lb} / \mathrm{in}$ represents a decrease of about 1 percent which is still within the over-all design accuracy and should not appreciably effect the operating seal clearance.

To determine residual moment effects, the simplified OC diaphragm seal model shown in Figure 27 can be used.

Figure 27 Simplified Diagram of the OC Diaphragm Seal

Summing up the spring moments about the centroid

$$
-0.148(-0.494)+0.0743(0.175)=0.060 \text { in.lb. } / \mathrm{in} .
$$

This moment is extremely low, and in any event will subtract from the original residual moment in all cases (with exception of end seal take-off) thus actually reducing the tilt angle (a). Based upon the above calculations, it can be concluded that the effects of spring length and spring gradient variations on seal performance are negligible.

b. MINIMUM SPRING LOAD REQUIREMENTS TO OVERCOME FRICTION

Let us assume conservatively that only the spring load acts on the seal in the axial direction at cruise. From Reference 7, the power loss generated by the OC diaphragm end seal at cruise is 6.3 horsepower. At $\omega=757 \mathrm{rad} / \mathrm{sec}$,

$$
\text { Torque }=\frac{(550)(6.3)(12)}{(757)}=55 \mathrm{in} / \mathrm{lb}
$$

The frictional force to be overcome by the spring is

$$
F_{f}=\text { coefficient of friction } \times \frac{\text { Torque }}{\text { Radius }}
$$

Assuming a coefficient of friction of 0.5 and a radius of 14.5 inches,

$$
F_{f}=0.5 \frac{55}{14.5} \approx 2.0 \text { pounds }
$$

The minimum available spring force from Figure 26 is $0.98 \mathrm{lb} / \mathrm{in}$, so that for 24 springs the total spring force is approximately 23.5 pounds, which is an order of magnitude higher than the frictional force to be overcome. The helical coil springs as specified can thus be used safely in the seal designs.

7. CARRIER BALANCE

The force and moment diagram for the OC diaphragm carrier cross section is shown in Figure 28 . The carrier is designed so that the net resultant moment about the centroid of the cross section is small and bending stiffness high, thus minimizing carrier rotation. Furthermore, to make sure that the OC diaphragm springs remain slightly compressed during operation, the carrier is balanced to yield an additional $0.5 \mathrm{lb} / \mathrm{in}$ of pressure loading at cruise. This load acts in the same direction as the spring load. The forces acting on the carrier are:
$\mathrm{F}_{\mathrm{s}} \quad$ Helical coil spring load $=0.5 \mathrm{lb} / \mathrm{in}$
$\mathrm{F}_{\mathrm{s} 1} \quad$ C-diaphragm spring reaction

$$
\begin{array}{ll}
\mathrm{F}_{\mathrm{s} 2} & \text { O-diaphragm spring reaction } \\
\mathrm{F}_{2} & \text { C-diaphragm radial pressure load }=.2 \Delta \mathrm{p} \\
\mathrm{~F}_{3} & \text { O-diaphragm pressure load }=0.25 \Delta \mathrm{p} \\
\mathrm{~F}_{0} & \text { Carrier axial pressure load }=\mathrm{y}_{1} \Delta \mathrm{p} \\
\mathrm{~F}_{\mathrm{y}} & \text { Carrier radial pressure load }=1.255 \Delta \mathrm{p}
\end{array}
$$

Furthermore,

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{s} 1}=0.167+2.09\left(10^{-3}\right) \Delta \mathrm{p} \\
& \mathrm{~F}_{\mathrm{s} 2}=0.333+4.18\left(10^{-3}\right) \Delta \mathrm{p}
\end{aligned}
$$

Figure 28 Force and Moment Diagram for the OC Diaphragm Seal Carrier

The left-hand terms of $\mathrm{F}_{\mathrm{s} 1}$ and $\mathrm{F}_{\mathrm{s} 2}$ are the reactions to the helical coil spring load and the right-hand terms are reactions to the carrier imbalance of $0.5 \mathrm{lb} / \mathrm{in}$ at cruise.

For balance, $\Sigma \mathrm{F}=0$

$$
F_{s 1}+F_{s 2}+F_{3}-F_{o}-F_{s}=0
$$

Substituting the given values in the above equation

$$
0.167+2.09\left(10^{-3}\right) \Delta p+0.333+4.18\left(10^{-3}\right) \Delta p+0.25 \Delta p-y_{1} \Delta p-0.5=0
$$

or

$$
\begin{aligned}
0.256 \Delta \mathrm{p}-\mathrm{y}_{1} \Delta \mathrm{p} & =0 \\
\mathrm{y}_{1} & =0.256 \text { inch }
\end{aligned}
$$

For $\Sigma F_{y}=0$, the only loads acting on the carrier is F_{y} and F_{2}. The internal ring reaction to these loads will, assuming no ring distortion, pass through the centroid of the ring's cross section, and thus is of little interest in the moment balance when moments are taken around the centroid. The centroid coordinates x^{*} and y^{*} for the given cross section are calculated using the moment area method to be $x^{*}=.449$ inch and $\mathrm{y}^{*}=.302$ inch.

Note that $M_{x} \neq 0$, but equals M_{R}, the residual carrier moment. Referring to Figure 28,

$$
\begin{aligned}
\mathrm{M}_{\mathrm{R}} & =.513 \mathrm{~F}_{\mathrm{s} 1}-1.273 \mathrm{~F}_{\mathrm{s}}+.178 \mathrm{~F}_{\mathrm{y}}-.385 \mathrm{~F}_{\mathrm{o}}-.156 \mathrm{~F}_{3}-.156 \mathrm{~F}_{\mathrm{s} 2}-.449 \mathrm{~F}_{2} \\
& =-.0035 \Delta \mathrm{p}-.6027
\end{aligned}
$$

Pressure differentials corresponding to the end seal design conditions can now be easily substituted and carrier residual moments obtained. These moments are given in Table X.

TABLE X

BALANCE RESULTS FOR THE OC DIAPHRAGM END SEAL

$$
\begin{aligned}
& \mathrm{I}=.165 \mathrm{in}^{2} \\
& \mathrm{R}=13.0 \mathrm{in}
\end{aligned}
$$

	$\begin{gathered} \Delta \mathrm{P} \\ (\mathrm{psi}) \end{gathered}$	Residual Carrier Moment M_{R} (in-lb/in)	Modulus of Elasticity E (psi)	Angle of Carrier Rotation θ $\left(\mathrm{rad} \times 10^{3}\right)$
Cruise	80	-. 883	24	. 038
Idle	13	-. . 648	30	. 022
Take-Off	150	-1.128	28	. 041

The moment of inertia around the centroidal " y " axis is calculated to be $0.1251 \mathrm{in}^{4}$, from Reference 1.

$$
\theta=\frac{M_{R} R^{2}}{E I}
$$

Where θ is the angle of carrier rotation, E is the modulus of elasticity, I is the moment of inertia around the centroidal " y " axis, R is the mean carrier ring radius, and M_{R} is the residual carrier moment. Assuming a carrier radius of 13 inches, the values of θ listed in Table X were obtained for all design conditions. The angular carrier rotation, in all cases, is of small magnitude.

D. SEMIRIGID INTERSTAGE SEAL DESIGN

The final Task I design for the semirigid interstage seal is shown in Figure 2. Because the semirigid end seal will not be evaluated in Task II, the following discussion will be concentrated on the semirigid interstage seal. As was the case with the OC diaphragm seal, there are only minor differences between the end and interstage configurations of the semirigid seal design.

1. PRINCIPLE OF OPERATION

The semirigid seal, although differing in other major respects, operates on the same basic principle as the OC diaphragm seal, inasmuch as in this case too, the principle of clearance controlled leakage is applied.

Primary sealing is accomplished at the seal face, which consists of a single land. This land has a spiral-groove inherently compensated orifice profile, and acts as a bearing and seal combination. The angular stiffness of a single land bearing is very low. As a result, the seal ring must be rigid enough to absorb residual bending moments without appreciable deformation of the seal face. To accomplish this, substantial seal-ring length is required. Moreover, the seal ring must also serve as a housing for the piston ring required for secondary sealing, one of the secondary seals being formed by contact between the side of the piston ring and the seal ring. It should be noted that the combination of seal length and piston ring contact is conducive to the generation of high thermal gradients. Thermal gradients in turn cause the seal surface to deform and through this deformation may seriously affect seal performance. In order to minimize the extent of thermal gradients and seal deformations the following steps have been taken:

- The seal material was selected to provide high thermal conductivity in combination with a low coefficient of thermal expansion.
- The piston ring was insulated through the inclusion of a thermal barrier in the form of a radially annular slot.
- The seal's cross section was designed to minimize thermal distortions through the addition of a relatively constant temperature ring on the seal's outer edge close to the seal face.
- The seal's tracking performance characteristics indicate tolerance to some degree of distortion. Since slight distortion may be beneficial, the seal is designed so that sufficient distortion occurs, the net result of which is an increase in film clearance at high pressure ratios, reduction in heat generation at the seal face, and an increase in leakage flow. The increased air flow also carries more heat away from the seal face, leaving less heat to be dissipated by the seal, and therefore lower thermal gradients.

The seal ring is preloaded with 24 helical coil springs to ensure contact at start and permit development of separating air films at relatively low speeds. The seal face and runner coating materials were also selected with regard to compatibility at high temperature and resistance to wear. They are identical to the ones used in the OC diaphragm seal.

2. SEAL CONSTRUCTION

The semirigid seal is a one-piece design. The seal basically consists of a ring composed of front and rear sections welded together to form a thermal barrier. The rear section of the ring includes 24 tabs for piston-ring retention and for spring-guide mounting. This same section includes also four protruding slotted tabs for engagement of the antirotation pins. The antirotation pins are the same as those used in the OC diaphragm seal. The front portion of the seal includes the primary seal face and 360 orifices feeding in directly from the high pressure cavity.

Calculations of force and moment balancing for the piston ring are not discussed in this volume, since they were previously described in Reference 6, page 23. The piston ring is of the same cross-sectional design as the OC diaphragm piston ring, but in this case the ring rides on the seal's inner edge. This change required a modification of the piston-ring spring design. The piston ring rides on the seal support which connects through the support case to the test housing.

The seal ring is made of Duranickel 301, a material of substantial high-temperature strength combined with good thermal conductivity and relatively low thermal expansion. The seal face is coated with aluminum oxide or chrome carbide, for the same considerations of profile manufacturability mentioned in the OC diaphragm seal description. The seal supports are made of Inconel X750.

3. MODIFICATION OF CROSS-SECTION

The semirigid seal cross section arrived at in Reference 7 and shown in Figure 29 exhibits one basic drawback: the axial thermal gradients at cruise are high enough to cause end seal distortions of 0.003 radians in the end seal application and higher in the interstage seal. (See page 49, Ref. 7) The axial thermal gradients result from heat flow originating at the seal interface and from heat flow due to radial temperature differences between the highand low-pressure test-rig areas.

The axial heat flow is enhanced by the fact that the seal and piston ring are in intimate metal-to-metal contact, providing an excellent conductive path down to the seal support, which extends through the low-temperature area to the housing walls. Thus, in order to reduce the effectiveness of this built-in heat sink, the piston ring has to be isolated from the seal ring. Since contact between piston ring and seal walls is absolutely necessary to maintain good sealing, it becomes advisable to introduce a thermal barrier in the seal proper, close to the piston ring, leaving the back of the ring against which the piston ring rests unaltered. This can be accomplished through the introduction of a radial cut out.

Figure 29 Cross Section of the Semirigid One-Piece Seal

The air in this cut out is relatively stagnant and thus acts as a fairly good insulator. In order to maintain seal rigidity and to prevent the gas loading applied by the piston ring onto the seal wall from deflecting it excessively, the ring is welded at 180 points around the inside circumference.

The introduction of the thermal barrier cut out necessitates rebalancing the cross section through minor dimensional adjustments so that the location of the centroid is not appreciably altered. This is important since the magnitude of the residual bending moments is dependent upon the force moment arm to the centroid. The final adjusted, configuration is shown in Figure 30. It forms the basis for the final seal design.

$$
\begin{aligned}
& x^{*}=0.1056 \text { IN. = CENTROIDAL " } x \text { " COORDINATE } \\
& y^{*}=0.403 \text { IN. = CENTROIDAL " } Y \text { " COORDINATE } \\
& \otimes=\text { LOCATION OF CENTROID }
\end{aligned}
$$

Figure 30 Cross Section of the Semirigid One-Piece Seal with Insulating Cut Out

4. SEAL BENDING STIFFNESS

The bending stiffness of the seal can now be calculated from:

$$
\mathrm{K}_{\mathrm{r}}^{*}=\frac{\mathrm{M}}{\theta}=\frac{\mathrm{EI}}{\mathrm{R}^{2}}
$$

where $\mathrm{E}=23 \times 10^{6} \mathrm{psi}, \mathrm{I}=0.0255 \mathrm{in}^{4}, \mathrm{R}=13.5 \mathrm{in}$.
then,

$$
\mathrm{K}_{\mathrm{r}}^{*}=3218 \frac{\mathrm{in}-\mathrm{lb}}{\mathrm{rad}}
$$

This represents only a slight reduction in stiffness over the $3820 \mathrm{in}-\mathrm{lb} / \mathrm{rad}$. of the original "E" configuration discussed in Reference 7.

5. STATIC SEAL PERFORMANCE

a. RESIDUAL MOMENTS

The seal modifications described in the previous section have slightly altered the seal shape, but the air-pressure forces acting on the modified seal remain essentially the same as on the original cross-section. Consequently, neither the seal's air-film forces nor centers of pressure have been changed. The change in seal shape, however, brings about a slight change in centroid location and bending stiffness of the seal ring, resulting in a change in residual moments and tilt angle. These changes are tabulated in Table XI together with the magnitudes of all forces, centers of pressure and minimum film thickness. Examining the new results, the seal ring's tilt at all operating conditions still remains negligible. In all cases the small tilt angles are negative and acting in the direction of tilt opposite to that imposed by thermal gradients. This will slightly alleviate the negative effects of thermal seal rotation.

b. GENERAL PERFORMANCE CHARACTERISTICS

The static seal performance characteristics at cruise conditions for the end and interstage seals are discussed in detail in Reference 7. The basic performance curves at cruise are here supplemented with the performance characteristics at idle and take-off conditions. These curves are presented in Figures 31 through 36.

In general terms the comments made in the discussion of the end seal in Reference 7 also apply to the interstage seal. Due, however, to the lower pressure differentials existing at the interstage seal the latter's characteristics are more sensitive to tilt.

(1) Minimum Film Thickness

At take-off conditions (Figure 35), the pressure differentials are still sufficiently high to produce a slight increase in minimum film thickness at positive tilt angles. At cruise conditions (Figure 31), the minimum film thickness begins to decrease with positive tilt. The rate of decrease, however, is still low in comparison to that at negative tilt. At idle conditions (Figure 33), where the pressure differential is down to 2 psi, the rate of decrease in minimum film thickness at positive tilt angles exceeds the rate at negative tilt. Obviously, tilt angles of 0.002 radians cannot be tolerated at these conditions. Neither, however, are such high tilt angles to be expected to be present merely due to the fact that at idle the over-all ambient temperature and heat generation at the seal interface drastically decrease.

(2) Air-Film Stiffness

The film stiffnesses, K_{ss}, of the interstage seal are generally lower than the stiffness of the end seal at corresponding conditions, mainly due to the reduced hydrostatic effects. As will be shown in the tracking analyses, the stiffnesses are still sufficient to maintain sufficiently large air films during operation.
TABLE XI
FILM THICKNESS AND RESIDUAL MOMENT TABULATION FOR THE SEMIRIGID INTERSTAGE SEAL

Condition	Dimensionless Load $\overline{\mathrm{W}}$	Dimensionless Center of Pressure \bar{x}_{c}	$\begin{gathered} \mathrm{F}_{1}{ }^{*} \\ \left(\mathrm{lb} / \mathrm{in}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{F}_{2}^{\dagger} \\ \left(\mathrm{lb} / \mathrm{in}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{F}_{3}^{\ddagger} \\ \left(\mathrm{lb} / \mathrm{in}^{3}\right) \end{gathered}$	Mean Film Thickness h_{m} $\left(\times 10^{3}\right.$ inch $)$	Residual Moments $\mathrm{M}_{\text {res }}{ }^{\text {事 }}$ (in.lb/in)	$\begin{aligned} & \text { Bending } \\ & \text { Stiffness } \\ & \mathrm{K}_{\mathrm{r}}^{*} \\ & \text { in. } 1 \mathrm{~b} \times 10^{-3} \\ & \text { in. rad } \end{aligned}$	$\begin{gathered} \text { Seal } \\ \text { Tilt } \\ \text { Angle } \\ \alpha \\ \left(\operatorname{rad} \times 10^{3}\right) \end{gathered}$
Cruise	0.8695	0.422	10.87	10.37	20.0	1.02	-. 15	3.22	-. 045
Idle	1.3295	0.437	1.329	0.829	1.6	0.80	-. 07	3.22	-. 022
Take-Off	0.8495	0.418	21.237	20.737	40.0	0.79	-. 21	3.22	-. 065

* $\quad F_{1}$ is the resultant force of the gas film pressure on the semi-rigid seal
$\dagger \quad F_{2}$ is the axial pressure differential force in the semi-rigid seal
$\ddagger \quad F_{3}$ is the radial pressure differential force on the semi-rigid seal
$\neq \quad \mathrm{M}_{\text {res }}$ is given by Equation (8) of Reference 7

Figure 31 Minimum Film Thickness and Center of Pressure for the Semirigid Interstage Seal at Cruise

Figure 32 Leakage and Stiffness of the Semirigid Interstage Seal at Cruise

Figure 34 Leakage and Stiffness of the Semirigid Interstage Seal at Idle

Figure 36 Leakage and Stiffness of the Semirigid Interstage Seal at Take-Off

(3) Leakage Flow

As shown in Figure 32, the leakage flow at cruise actually decreases at positive tilt angles. At take-off (Figure 36), the flow slightly increases as a function of tilt angle, but the over-all leakage magnitude is still of the order of $0.07 \mathrm{lb} / \mathrm{sec}$. at 0.003 radians. At idle (Figure 34), the decrease in leakage at positive tilt is very pronounced, although at these conditions the over-all leakage magnitude is extremely low and has no bearing upon the seal-design requirements.

(4) Static Performance

Summarizing, the static seal performance of the semirigid configuration is quite satisfactory over a range of positive tilt angles of 0 to 0.003 radians at cruise and take-off conditions. At idle (in particular for the interstage seal) the tilt angle tolerance is severely affected, but tilt due to thermal gradients at these conditions is expected to be low during actual operation due to low speed and low ambient temperature levels.

6. TEMPERATURE DISTRIBUTION AND DISTORTIONS IN THE SEMIRIGID INTERSTAGE SEAL

a. THERMAL GRADIENTS

The interstage seal is more prone to the development of axial thermal gradients than the end stage seal because of lower film thickness and larger seal diameters, which contribute to higher heat generation; and lower pressure differentials, resulting in low leakage flow, and hence less heat carried away by the air. Because of these reasons, the thermal analysis performed on the interstage seal was formulated with more attention to detail than that for the end seal. Thus, the number of nodes was increased, and the effect of orifice air supply passages, and turbulence in the outer diameter 0.060 inch recess region at the entrance to the seal face, normally neglected in the end stage analysis, were included in the analysis of the interstage seal.

The nodal point distribution with adjacent subvolumes is shown in Figure 40 together with the surface coefficient values at the seal boundaries. The final temperature distribution obtained is shown in Figure 38. All thermal calculations are summarized in Appendix D.

Although, as expected, the over-all temperature levels are higher than those obtained on the end seal, the actual thermal gradients contributing to seal ring tilt are not appreciably different.

b. THERMAL DISTORTIONS

As previously indicated, the semirigid seal is sensitive to distortion-producing thermal gradients. This sensitivity is vividly demonstrated by the differences in the thermal distortions obtained on the end and interstage seals.

Figure 37 Diagram of Nodal Points and Subvolumes for Thermal Analysis of the Semirigid Interstage Seal

Figure 38 Temperature Distribution (in ${ }^{\circ}$ F) in the Semirigid Interstage Seal

The end seal thermal analysis was based upon laminar conditions existing in the originally assumed 0.020 -inch clearance between the upper portion of the seal ring and the runner. In the interstage thermal analysis, the calculated turbulent heat generation in the increased (0.060 -inch) gap was included. The effect of this turbulence is important, inasmuch as it raises the temperature difference between the average upper seal ring addition and the lower main ring. This fact negates some of the restraining action of the upper seal ring on over-all ring tilt resulting from the axial thermal gradients.

The calculations of thermal deformation of the semirigid interstage seal are given in Appendix F. The results indicate a seal face tilt of 0.00343 radian for the interstage seal. The increase in deformation in the interstage seal can be attributed to the additional heat input in the 0.060 -inch gap, as well as to the difference in operating conditions. Further substantial increases in the 0.060 -inch gap to reduce the heat generation are subject to physical limitations, and increases of a smaller order of magnitude, such as doubling the original clearance value of 0.060 -inch does not offer any appreciable decrease in heat generation.

7. TRACKING ANALYSIS

The general approach to the semirigid seal tracking analysis is the same as that for the OC diaphragm seal. Thus, for symbol definition and analytical details the reader referred back to Section IB of this report. The analysis of the semirigid seal was performed using the inputs shown in Table XII.

TABLE XII
INPUT DISTORTIONS USED IN THE TRACKING ANALYSIS OF THE SEMIRIGID END AND INTERSTAGE SEALS

	Mode Number n	$\begin{gathered} \delta \\ \text { (inches) } \end{gathered}$	$\begin{gathered} \epsilon_{\mathrm{n}} \\ \text { (radians) } \end{gathered}$	$\begin{gathered} \zeta \\ \text { (radians) } \end{gathered}$
Cruise	0	0	0	0.003
	1	0.0015	-0.00011	-
	2	0.0005	-0.000037	-
Idle	0	0	0	0.0004
	1	0.0015	-0.00011	-
	2	0.0005	-0.000037	-
Take-Off	0	0	0	0.003
	1	0.0015	-0.00011	-
	2	0.0005	-0.000037	-

Note that, in line with the conclusions arrived at in the thermal distortion analysis, a tilt angle (α) of 0.003 radian was assumed at both cruise and take-off conditions in the calculations of air-film thicknesses. At idle, where the likelihood of severe thermal gradients is greatly reduced, the air film characteristics were taken at a tilt angle of 0.0004 radian.

The influence coefficients are listed in Table XIII, and final tracking results are given in Table XIV. As in the OC diaphragm seal tracking analysis, separate values of minimum film thickness are given for the $\mathrm{n}=0, \mathrm{n}=1$, and $\mathrm{n}=2$ conditions. The minimum film thickness values for $\mathrm{n}=0$ were obtained from Figures 31,33 , and 35 . It is then assumed that all minimum film thickness losses are in phase and thus directly additive, yielding the combined worst-case minimum film thickness shown.

Due to the positive tilt, at high pressure differentials such as the ones encountered at take-off conditions, the minimum film thickness actually increases over the original parallel film thickness. For lower pressure differentials, appreciable film losses can be noted. The idle condition in particular, where the pressure differential across the seal is only 2 psi indicates a 58 percent loss in film thickness in the minimum film thickness area. In general, however, considering the conservative assumptions used, the tracking characteristics of the semirigid seal are quite satisfactory.
TABLE XIII

INFLUENCE COEFFICIENTS FOR THE TRACKING ANALYSIS OF THE SEMIRIGID INTERSTAGE SEAL									
Condition	n	$\mathrm{Ca}_{\mathrm{A} 1}$	$\mathrm{C}_{\mathrm{A} 2}$	$\mathrm{C}_{\mathrm{B} 1}$	$\mathrm{C}_{\mathrm{B} 2}$	$\mathrm{C}_{\mathrm{u} 1}$	Cu^{2}	$\mathrm{C}_{\mathrm{v} 1}$	$\mathrm{C}_{\mathrm{v} 2}$
Cruise	0	0.0052	0.0	0.9948	0.0	0.4434	1.0000	-0.4434	0.0
	1	-9,0164	-0.0458	1.0126	0.0372	0.4987	1.1267	-0.4499	-0.0166
	2	-0.0603	-0.1417	1.0325	0.0785	0.7012	1.5881	-0.4333	0.0186
Idle	0	0.0019	0.0	0.9980	0.0	-0.0784	1.0000	0.0784	0.0
	1	0.0045	-0.0385	0.9956	0.0366	-0.0815	1.0307	0.0789	0.0029
	2	0.0078	-0.0872	0.9932	0.0752	-0.0850	1.0630	0.0745	0.0683
Take Off	0	0.4756	0.0	0.5244	0.0	0.2996	1.0000	-0.2996	0.0
	1	0.3958	-0.0253	0.6034	0.0222	0.2954	1.0457	-0.2854	-0.0105
	2	0.2576	-0.0738	0.7384	0.0579	0.2911	1.1153	-0.2522	0.0016

TABLE XIV

SEMIRIGID INTERSTAGE SEAL TRACKING RESULTS

	Mode Number n	α, radians	$\begin{gathered} \text { Mean } \\ \text { Film Thickness } \\ \mathrm{h}_{\mathrm{m}} \end{gathered}$	$\begin{gathered} \text { Minimum } \\ \text { Film Thickness } \\ \mathrm{h}_{\mathrm{m} \text { in }} \end{gathered}$	Total Minimum Film Thickness $\mathrm{h}_{\text {Tmin }}$
Cruise	0	0.003	0.00102	0.000850	0.00041
	1			0.000851	
	2			0.000713	
Idle	0	0.0004	0.00080	0.000700	0.00049
	1			0.00075	
	2			0.00064	
Take Off	0	0.003	0.00079	0.001400	0.00126
	1			0.000736	
	2			0.000708	

II. TASK II

COMPRESSOR END SEAL AND STATOR INTERSTAGE SEAL EXPERIMENTAL evaluation

A. INTRODUCTION

This phase of the program provides for final design and procurement of compressor end seals and stator interstage seals, design and fabrication of a test rig, and experimental evaluation of the compressor seals.

The final design of the four compressor seal concepts selected for experimental evaluation includes all calculations, material determinations, analyses, and drawings necessary for seal optimization, procurement and experimental evaluation. A test rig will be designed and fabricated to evaluate the selected compressor end seals and stator interstage seals under simulated compressor operating conditions. The test apparatus will simulate the last stages of a full-scale compressor including supporting members and bearing system in order to faithfully duplicate structural flexibility and thermal gradients.

The compressor end seals and stator interstage seals will be calibrated in incremental steps at room-temperature static conditions, room-temperature dynamic conditions, and subsequently over the full speed, pressure, and temperature operating ranges. The seals will then be subjected to endurance testing and finally will undergo a take-off and cruise cyclic test.

Final design layouts and detailed drawings have been completed for the one-side floated-shoe end and interstage seals and for the full-scale test rig in which the seals will undergo experimental evaluation. Hardware procurement is progressing for each of the above items.

B. ONE-SIDE FLOATED-SHOE SEAL

The fourth semi-annual progress report (Reference 7) contained a general review of the progress made in the design and manufacture of the floated-shoe seal configuration. The results of the primary gas film calculations using the triple-pad version of the shrouded Rayleigh Step Bearing computer program were presented in Tables XX and XXI of Reference 7. During the past month these calculations have been expanded, and the results are plotted in Figures 39 and 40 for end and interstage seals. The figures illustrate the effect of spring load on the design point dimensionless load capacity and film thickness. A final tabulation of end and interstage seal design point gas film characteristics is presented in Table XV. The values represent the ideal parallel film situation and the effects of thermal distortion or seal plate runout on the gas film characteristics have not been considered.

Figure 39 One-Side Floated-Shoe End Seal Gas Film Calculation

1. ONE-SIDE FLOATED-SHOE END SEAL

Most of the recent work on the end seal has consisted of procurement and fabrication of parts and instrumentation. At the end of December, 1967, all small parts, such as pins, springs, cups, etc. were completed and ready for assembly. The seal ring, seal-ring support, and piston rings were ready for finish machining, and the sealing shoes were ready for final machining.

TABLE XV

DESIGN POINT GAS FILM CHARACTERISTICS

End Seal, One Side Floated Shoe

	Idle	Cruise	Take Off
	33	100	170
Applied Pressure (psia)	20	20	20
Back Pressure (psia)	200	1200	680
Air Temperature (psia)	13.620	13.725	13.669
Mean Radius* (Inches)	0.75	1.03	0.92
Primary Film Thickness (Mils)	0.36	0.5	0.55
Secondary Film Thickness (Mils)			
Seal Leakage (lb/sec)	0.003	0.020	0.083
\quad Primary	0.011	0.047	0.335
\quad Secondary (4 Seals)	0.010	0.039	0.080
\quad Shoe Gap	0.024	0.106	0.498
\quad Total	209663	457054	566839

*The Room Temperature Mean Radius is 13.6 Inches

Interstage Seal, One Side Floated Shoe

	Idle	Cruise	Take Off	
Applied Pressure (psia)	33		75	170
Back Pressure (psia)	31		1200	680
Air Temperature $\left({ }^{\circ}\right.$ F)	200		14.419	14.360
Mean Radius* (Inches)	0.99	1.03	0.725	
Primary Film Thickness (Mils)	0.36	0.40	0.42	
Secondary Film Thickness (Mils)				
Seal Leakage (lb/sec)	0.006	0.009	0.020	
\quad Primary	0.007	0.015	0.099	
\quad Secondary (4 Seals)	0.002	0.016	0.031	
\quad Shoe Gap	0.015	0.040	0.149	
\quad Total	107887	358764	645119	
Primary Film Stiffness (lb/in)				

Figure 40 One-Side Floated-Shoe Interstage Seal Gas Film Calculation

The contractor has decided to use capacitance proximity probes for measuring film thickness. These probes will be embedded in two shoes 90 degrees apart. Six probes are now on order. A shoulder on the probe will be electron-beam welded to the rear of the floated seal shoe. The rear side of the shoe will have a counterbore to accept the shoulder on the probe. A high-temperature ceramic cement will fill the 0.030 -inch radial clearance between the body of the probe and the cavity in the shoe. The utility of the probe will, however, be limited by the temperature limits on the electrical insulation of the probe's coaxial cable.

Pressure probes will consist of coiled stainless steel tubing fastened to the sealing shoe by a suitable connecting element, which will be electron-beam welded to the shoe. Sample parts are now being made up to test the feasibility of this connection and to test the effects of thermal growth and thermal cycling on the very small welds. This type of probe will provide almost pin-point pressure data, an advantage not provided by the relatively large area of the dynamic pressure transducers.

2. ONE-SIDE FLOATED-SHOE/INTERSTAGE SEAL

Pratt \& Whitney Aircraft has completed a detailed thermal analysis of the one-side floatedshoe interstage seal. This analysis includes the heat-transfer effects of the primary and secondary leakage air and a more accurate determination of the convection and conduction paths within the seal parts, than had been available for the preliminary analysis. The results of this analysis are presented in the thermal map shown in Figure 41. It appears from the map that the temperature gradient across the seal carrier will be on the order of 100
degrees Fahrenheit, which is considered excessive. To reduce this gradient, the contractor is considering the use of a heat shield. The shield would provide a more nearly uniform seal temperature by keeping the 800 -degree Fahrenheit cooling air for the disk from coming in contact with the interstage seal parts.

The more sophisticated methods to be used in the final thermal analysis are being incorporated in the TOSS computer program. These changes include a more accurate method of determining the thermal effects of leakage air and an improved method of determining conduction paths.

Fabrication of parts and instrumentation has started. At the end of December, 1967, the vendor was preparing to rough machine the large rings for the seal ring, seal-ring support, and piston rings. Instrumentation will be the same as that for the one-side floated-shoe end seal, although modifications may be made when the contractor has gained more experience with the end seal.

Figure 41 Thermal Map of the One-Side Floated-Shoe Interstage Seal at Cruise Conditions

C. OC DIAPHRAGM END SEAL AND SEMIRIGID INTERSTAGE SEAL

NASA approved both the OC diaphragm end seal and the semi-rigid interstage seal for investigation under Task II in November, 1967. Detailing of the OC diaphragm end seal has been completed, and the drawings are being checked before release. Detailing of the semirigid interstage seal is still in process. However, the results of the tracking analyses of these seals are still preliminary in nature.

1. MODIFICATION OF THE CROSS SECTION

The semi-rigid seal cross-section is shown in Figure 42 in its final configuration. The changes included further widening of the thermal barrier to reduce the axial temperature gradient of the seal and the redistributing of the mass to keep the centroid at the original position. The position of the centroid is important because it could affect the mechanically induced distortions.

Figure 42 Semirigid Interstage Seal

2. THERMOELASTIC ANALYSIS OF SEMI-RIGID INTERSTAGE SEAL

Thermally induced distortions on the semi-rigid interstage seal were formulated with a thermoelastic finite element computer program (Reference 10). The temperature distribution is basically the same as the one shown in Figure 38 but it was redistributed to account for the new geometry. Figure 43 shows the results of the analysis and gives axial and radial displacement for certain selected points. The rotation of the seal face is 0.00337 radians in the direction that creates a converging flow passage with the runner, which agrees with the results (0.00343 radians) discussed in Appendix F. The numbers inside the crosssection indicate the subdivision as it was used in the finite element computer deck. The table lists the temperature for each element.

Figure 43 Semirigid Interstage Seal Thermal Deflection

TEMPERATURE DISTRIBUTION (SEMI-RIGID INTERSTAGE)

SUBSYSTEMS

	I		II		III	
ELEM	TEMP $^{\circ} \mathrm{F}$	ELEM	TEMP $^{\circ} \mathrm{F}$	ELEM	TEMP ${ }^{\mathrm{O}_{\mathrm{F}}}$	
1	1311	1	1316	1	1300	
2	1318	2	1316	2	1301	
3	1320	3	1315	3	1300	
4	1322	4	1315	4	1300	
5	1311	5	1313	5	1300	
6	1318	6	1314	6	1301	
7	1320	7	1314	7	1300	
8	1321	8	1314	8	1290	
9	1319	9	1312	9	1291	
10	1317	10	1312	10	1293	
11	1317	11	1311	11	1295	
12	1318	12	1309	12	1300	
13	1319	13	1305	13	1300	
14	1319	14	1301	14	1300	
15	1317				15	

3. SEMI-RIGID SEAL SUPPORT

Seal support is the name given the structure that serves as the span between the seal ring and the rig case. It functions as a surface on which the secondary seal piston ring rides, and also an attachment for the torque pins and coil springs.

It is imperative that this sealing surface remain parallel (less than 1 milliradian slope) with the centerline. This is complicated by the fact that the pressure forces that act on the structure are large and cause slopes as high as 20 milliradians in some sections of the structure. To keep this large angular distortion from being transmitted to the sealing surface, a thin cylinder was placed in the structure to damp out the angular distortions and allow the sealing surface to remain a true cylinder.

In Figure 44, a sketch of the structure is presented along with curves that describe how the structure behaves when subjected to the pressure loads. It also shows the radial deflections and slopes when the piston ring carrier assembly and runner are in the extended position (no dashed arrows), and shows the deflections and slopes with these parts in the retracted position (with dashed arrows).

Figure 44 Pressure-Induced Deflections in the Semirigid Interstage Seal. Runner in Retracted and Extended Position.

D. TEST RIG AND TEST STAND

During the past six months, the contractor has been procuring and fabricating the required parts for the test rig and the test stand. All of the parts required to assemble the rotor of the test rig have been received and are being inspected. Three parts will receive some reworking in order to achieve a satisfactory surface finish. Detailed plans for the rotor instrumentation have been completed.

All required instruments and hardware for the test stand are either on order or in-house. The required time for building up the stand has been reduced, since a better stand has become available. The new stand already has many of the service lines for air, water, and electricity in place. A high-capacity fan is installed at one end of the stand, and a vent is installed at the other. An instrument panel is in place, and partially instrumented. The new stand already has double doors, so that phase of the build-up is now unnecessary. The rails for the drive and rig support have been installed in the stand. A remotely controlled hatch has been installed so that outside air can be drawn into the stand for rig cooling. The drive support system, consisting of the stand, engine, transmission, and gearbox has been assembled and is ready for installation in the stand. The ceiling monorails and chainfalls have been installed.

III. TASK III

COMPRESSOR STATOR PIVOT BUSHING AND SEAL CONCEPT FEASIBILITY ANALYSIS

Work performed under Task III was completed in the first year of the project. It is discussed in the first two semiannual reports (PWA-2752 and PWA-2875).

IV. TASK IV
 PIVOT BUSHING AND SEAL EXPERIMENTAL EVALUATION

A. INTRODUCTION

This phase of the program provides for final design and procurement of bushings and seals, design and fabrication of a test rig, and experimental evaluation of bushing and seal assemblies.

The final design of the two selected concepts for experimental evaluation includes all calculations, material determinations, analyses, and drawings necessary for pivot bushing and seal optimization, procurement, and experimental evaluation.

A single-vane test rig has been designed and fabricated to evaluate two selected pivot bushing and seal designs under simulated operating conditions for the last compressor stage. The vane and actuating mechanism are applicable to current advanced engine practice.

The pivot bushing and seal assemblies will be calibrated in incremental steps over the full pressure and temperature range, with a maximum pressure of 135 psi and a maximum temperature of 1200 degrees Fahrenheit.

The seals will be subjected to a cyclic endurance run of at least 40 hours duration following a test program which provides for simulation of take-off (20 hours) and cruise (20 hours) conditions typical of advanced engine designs through duplication of:

Compressor stage air temperatures
Supporting structure geometry
Supporting structure temperatures
Pivot movements as required for the vanes
Pivot loading (mechanical loading to simulate air loading is acceptable)
Compressor stage pressure drop
The pivot movement will be a minimum of 13 degrees at 10 cycles per minute. The pivot loading will include a vibratory load at a convenient frequency super-imposed on the steady load and equal to approximately ± 15 percent of the steady load.

Final design layouts and detailed drawings have been completed for the single bellows and spherical seat vane pivot seals and for the test rig in which the seals will undergo experimental evaluation. Hardware procurement is complete.

B. DESCRIPTION OF SEALS AND TEST RIG

During the six-month period covered by this report, the Task IV work has largely consisted of hardware procurement and instrumentation. Most of this work has now been completed, and the first test run has been initiated.

Testing to date has been conducted with a single-bellows vane pivot seal in the test rig. A schematic of the seal assembly is shown in Figure 45 , and the seal is shown assembled on a simulated vane (rod) in Figure 46. As shown in the photograph, thermocouples were installed to measure the temperature of the seal seat, the base of the simulated vane, and the seal bushing. The seal seat and seal bellows are shown before assembly in Figure 47, and the seal installed in its housing is shown in Figure 48.

The push rod used to transmit the static vane-bending moment and the superimposed vibratory load is shown in Figure 49 with a close-up view of the strain gauge. The strain gauges are installed in a four-arm bridge mounted on a tube 0.042 OD x 0.038 ID to measure the bending load applied to the simulated vane. The gauges are made from Constantan foil with grid size of $0.015 \times 0.020 \mathrm{inch}$. They are accurate within a temperature range of -100 to +400 degrees Fahrenheit. In installation, the push-rod support arm was misaligned so that the rod did not follow the cam properly. This problem was remedied by increasing the inside diameter of the carbon bearing. The vane cycling motor and linkage operated smoothly.

Figures 50 and 51 show the vane actuation link and its strain gauge. Like the gauge on the push rod, this strain gauge is made by the Budd Company, and is accurate within a temperature range of -100 to +400 degrees Fahrenheit. Unlike the other, this gauge is made of nichrome base alloy, and has a grid size of 0.062×0.067 inch.

Some difficulties have been encountered in procuring the seal parts. In the case of the spherical-seat seals, some of the test pieces did not conform to specified dimensions for spherical radii. The divergence was significant, and rework was required. In the case of the bellows seals, inspection revealed that the free lengths of some bellows were below the minimum required operating length. In some instances, the squareness of the sealing face also required rework in order to provide a more nearly uniform face loading against the seat. In order to solve these problems and to prevent the recurrence of similar problems, Pratt \& Whitney Aircraft has set up a continuing program with both seal vendors to assist them in reoperating the parts to the required tolerances.

As previously mentioned, the first assembly of the test rig included a single-bellows vane pivot seal test configuration. Photographs of the assembly installed in the test stand are shown in Figures 52,53, and 54. Instruments used include a Brown indicator for temperature readout, two pressure gages to monitor "air-in" pressures to the rig, a capillary flowmeter, and a water monometer to measure the pressure differential across the flowmeter. All of the instruments are standard except the flowmeter, which is a steel "hypodermic" tube, 0.008 inches ID by 20 inches long, brazed into end fittings and supported by an external shell. The laminar air flow through the tube is linear to the pressure drop across the length. The flowmeter was designed and calibrated for the operating pressure range and the anticipated air loss through the test seals.

Figure 45 Single-Bellows Vane Pivot Seal

Figure 47 Seal (Left) for Single-Bellows Vane Pivot Seal, and Bellows (Right) (XP-79777)

Figure 48 Seal Housing with Bellows Seal Installed (XP-80136)

Figure 49 Push Rod and 25X View of Strain Gauge (XP-78644, XP-80223)

Figure $50 \quad$ Vane Actuation Link (XP-80487)

Figure 52 Test Rig and Instrumentation (XP-80959)

(XP-80960)

On the first test run, readings from the strain gauges and thermocouples indicated that the rig was working properly. However, pressurization revealed some air losses past the holes for the thermocouple leads (shown in the foreground of Figure 54). The loss of air through these holes invalidated the seal loss indications because they are determined by measuring flow upstream of the rig. To eliminate the leakage, the contractor has decided to braze small-bore stainless steel tubing into the existing thermocouple holes. Instrumentation leads will be passed through the tubing and sealed with epoxy cement or low-temperature solder at the end of the tubing, some distance away from the hot rig. The testing which has been accomplished so far has successfully demonstrated the mechanical design concepts employed in the rig, and has demonstrated the ability of the instrumentation to provide the required data.
PRECEDING PAGE BLANK NOT FILMED.

APPENDIX A

FLEXIBLE SEAL TRACKING ANALYSIS CONPUTER PROGRAM

The computer program is comprised of an executive program and a subroutine KCAL. The executive program performs all the calculations necessary for the solution of natural frequency and dynamic response. The subroutine KCAL is used when the gas film stiffnesses are not known.

1. EXECUTIVE PROGRAM

Seven major input cards are required for each set of input for the main program.
Card 1. Title Card (80 H)
Card 2. Format (8 (E10.3))
Item Number (8 items)

1. A Dummy thickness of seal ring (inches)
2. G Modulus of rigidity ($\mathrm{lb} / \mathrm{in}^{2}$)
3. $\mathrm{E} \quad$ Modulus of elasticity $\left(\mathrm{lb} / \mathrm{in}^{2}\right)$
4. OMEGA Rotational frequency ($\mathrm{rad} / \mathrm{sec}$)
5. R Mean radius of the seal ring (inches)
6. AM1 Mass of the carrier (lb- $\sec ^{2} / \mathrm{in}$)
7. CK1 Spring rate of the carrier spring (lb/in)
8. RHO Mass density of the seal ring material ($\mathrm{lb} \mathrm{sec}^{2} / \mathrm{in}^{4}$)

Card 3. Format (1015)
Item Number (6 items)

1. IND $\quad 1$ for more cases, O for last case.
2. NGASTF Number of sets gas film stiffness values
3. NKSSS Number of sets of flexible support stiffness
4. NAIP Number of sets of polar moment of inertia
5. NEN Number of modes of distortion present in the runner
6. NSW 1 for use of KCAL subroutine and 0 for direct input of gas-film characteristics
7. NOPAD Number of pads (0 for double pad, 1 for single pad)

Card 4. Format (5 (E 12.5))
Item Number (5 items)
Note: One Card 4 needed for each NGASTF value used.

1. HMN Nominal film thickness (inches)
2. CKSS Axial stiffness of the gas film (lb/in/in)
3. CKSA Axial change of load on the gas film due to angular displacement of the rotor ($\mathrm{lb} / \mathrm{rad} / \mathrm{in}$)
4. CKAS Change of moment load on the gas film due to axial displacement of the rotor (in-lb/in/in)
5. CKAA Angular stiffness of the gas film (in-lb/rad/in)

Card 5. Format (5 (E12.5))
Item Number (5 items)
Note: One Card 5 needed for each NKASS value used.

1. KSSS Axial stiffness of the flexible support (lb/in/in)
2. KSAS Change of axial load on the flexible support due to angular displacement ($\mathrm{lb} / \mathrm{rad} / \mathrm{in}$)
3. KASS Change of moment load on the flexible support due to axial displacement (in-lb/in/in)
4. KAAS Angular stiffness of the flexible support (in-lb/rad/in)
5. AM2 Mass of the seal ring ($\mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in}$)

Card 6. Format (5 (E12.5))
Item Number (5 items)
Note: One Card 6 needed for each NAIP value used.

1. B Radial dimension of active seal width (inches)
2. AI Section moment of inertia (in ${ }^{4}$)
3. AIP Section polar moment of inertia (in ${ }^{4}$)
4. AITT Section mass moment of inertia ($\mathrm{lb}-\mathrm{in}-\mathrm{sec}^{2}$)
5. AREA Cross sectional area of the seal ring (in^{2})

Card 7. Format (5 (E12.5))

Item Number (5 items)
Note: One Card 8 needed for each NEN value used.

1. EN Mode of seal ring and rotor distortion present ($0=$ conical,
$1=$ out of plane, 2 saddle shape)
2. SDELM Transverse displacement of the rotor δ (inches)
3. ETAM Transverse displacement of the seal ring η (inches)
4. EPSN Angular displacement of the rotor ϵ_{n} (radians)
5. ZETAN Angular distortion of seal ring ζ_{n} (radians)

2. SUBROUTINE KCAL

This subroutine is required only if NSW $=1$ (see instructions for Card 4). The angular and cross-coupling stiffnesses of a seal, as shown in Figure 23, are computed from the basic performance data of the gas film. The subroutine KCAL will compute these stiffnesses at a given nominal film thickness.

a. DOUBLE-PAD INPUT INSTRUCTIONS

For a double-pad seal (Figure 23), the gas film's performance characteristics needed for KCAL are the load capacity and the center of pressure for each pad at different film thicknesses and tilted positions. It should be noted that the load capacities and centers of pressure are dimensionless quantities, while film thickness is in inches. Five cards are required for each double-pad KCAL computation.

For a parallel film, three sets of data are required. Each set consists of the film thickness and the load capacities and centers of pressure of both pads at that thickness. HOP $=h_{o}+$ Δh. At HOP, the load capacities of the lower and upper pads are represented by W20P and W10P respectively, and their centers of pressure are represented by X20P and X10P respectively. $\mathrm{H} 0=\mathrm{h}_{0}$. At H0, the load capacities of the lower and upper pads are represented by W20 and W10 respectively and their centers of pressure are represented by X20 and X10 respectively. $\mathrm{HOM}=\mathrm{h}_{\mathrm{o}}-\Delta \mathrm{h}$. At HOM, the load capacities of the lower and upper pads are represented by W20M and W10M respectively, and their centers of pressure are represented by X20M and X10M respectively.

For a tilted film, two sets of data are required. Each set consists of the tilt angle and film thicknesses for both pads, load capacities of both pads, and centers of pressure for both pads. $\mathrm{ANGM}=-\Delta a$, where Δa is a positive small angle in radians. At a tilt angle ANGM, the film thicknesses at the middles of the lower and upper pads are given by $\mathrm{H} 2 \mathrm{M}=$ $\mathrm{h}_{\mathrm{o}}+(\Delta a / 2)\left(\mathrm{b}_{3}+\mathrm{b}_{2}\right)$ and $\mathrm{H} 1 \mathrm{M}=\mathrm{h}_{\mathrm{o}}-(\Delta a / 2)\left(\mathrm{b}_{3}+\mathrm{b}_{1}\right)$ respectively, the load capacities are given by W2M at $(-\Delta a, H 2 \mathrm{M})$ and W 1 M at $(-\Delta a, \mathrm{H} 1 \mathrm{M})$ respectively, and the centers of pressure are given by X 2 CM at $(-\Delta a, \mathrm{H} 2 \mathrm{M})$ and X 1 CM at $(-\Delta a, \mathrm{H} 1 \mathrm{M})$ respectively. $\mathrm{ANGP}=\Delta a$. At a tilt angle ANGP the film thicknesses are given by H2P $=h_{o}-(\Delta a / 2)\left(b_{3}+b_{2}\right)$ and
$\mathrm{H} 1 \mathrm{P}=\mathrm{h}_{\mathrm{o}}+(\Delta a / 2)\left(\mathrm{b}_{3}+\mathrm{b}_{1}\right)$, the load capacities by W2P at $(\Delta a, \mathrm{H} 2 \mathrm{P})$ and W1P at $(\Delta a, H 1 P)$, and the centers of pressure by X2CP at ($\Delta a, \mathrm{H} 2 \mathrm{P}$) and X1CP at ($\Delta a, \mathrm{H} 1 \mathrm{P}$).

Five data items are required to describe the pads' geometry and pressure difference. The centroid of the section from the high-pressure side is denoted by XSTAR (in inches). The widths of the lower and upper pads are given by B2 and B1 respectively (in inches). The pressure difference between the pads is represented by DELTP (in psi). DELTP $=P_{2}-P_{1}$. The width of the pad recess is given by SDST (in inches). SDST $=\mathrm{b}-\left(\mathrm{b}_{1}+\mathrm{b}_{2}\right)$.

The above data should be arranged in FORMAT ($8(\mathrm{~F} 10.5)$) in the following order:
Card 1.
Item Number (8 items)

1. HOP Film thickness $\mathrm{h}_{\mathrm{o}}^{+}$(inches)
2. X20P Center of pressure of the lower pad at $\left(a=0, \mathrm{~h}_{\mathrm{o}}^{+}\right)$
3. W20P Load capacity of the lower pad at ($a=0, \mathrm{~h}_{\mathrm{o}}^{+}$)
4. X10P Center of pressure of the upper pad at $\left(a=0, \mathrm{~h}_{\mathrm{o}}^{+}\right)$
5. W10P Load capacity of the upper pad at ($a=0, \mathrm{~h}_{0}^{+}$)
6. H0 Film thickness h_{o} (inches)
7. X20 Center of pressure of the lower pad at $\left(a=0, h_{o}\right)$
8. W20 Load capacity of the lower pad at ($a=0, \mathrm{~h}_{\mathrm{o}}$)

Card 2.
Item Number (8 items)

1. X10 Center of pressure of the upper pad at $\left(a=0, h_{o}\right)$
2. W10 Load capacity of the upper pad at $\left(a=0, h_{0}\right)$
3. HOM Film thickness $\mathrm{h}_{\mathrm{o}}^{-}$(inches)
4. $\mathrm{X} 20 \mathrm{M} \quad$ Center of pressure of the lower pad at $\left(a=0, \mathrm{~h}_{\mathrm{o}}^{-}\right)$
5. W20M Load capacity of the lower pad at ($a=0, \mathrm{~h}_{\mathrm{o}}^{-}$)
6. X10M Center of pressure of the upper pad at ($a=0, \mathrm{~h}_{0}^{-}$)
7. W10M Load capacity of the upper pad at ($a=0, \mathrm{~h}_{\mathrm{o}}^{-}$)
8. ANGM $-\Delta a$ small angle of seal tilt (radians)

Card 3.
Item Number (8 items)

1. H2M Film thickness at the middle of the lower pad at $a=-\Delta a$
2. X2CM Center of pressure of the lower pad at ($a=-\Delta a, \mathrm{H} 2 \mathrm{M}$)
3. W2M Load capacity of the lower pad at ($a=-\Delta a, \mathrm{H} 2 \mathrm{M}$)
4. HIM Film thickness at the middle of the upper pad at $(a=-\Delta a)$
5. X1CM Center of pressure of the upper pad at ($a=-\Delta a$, HIM)
6. WIM Load capacity of the upper pad at ($a=-\Delta a$, HIM)
7. ANGP Δa small angle of tilt (radians)
8. H2P

Film thickness at the middle of the lower pad at $(a=\Delta a)$
Card 4.
Item Number (8 items)

1. X2CP Center of pressure of the lower pad at $(a=\Delta a, \mathrm{H} 2 \mathrm{P})$
2. W2P Load capacity of the lower pad at ($a=\Delta a$, H2P)
3. H1P Film thickness at the middle of the upper pad at $(a=\Delta a)$
4. X1CP Center of pressure of the upper pad at $(a=\Delta a, \mathrm{H} 1 \mathrm{P})$
5. WIP Load capacity of the upper pad at $(a=\Delta a$, HIP $)$
6. XSTAR Section centroid (inches)
7. B2 Width of the lower pad (inches)
8. B1 Width of the upper pad (inches)

Card 5.
Item Number (2 items)

1. DELTP
Pressure differential (psi)
2. SDST
Pad recess (inches)

An example will indicate the method used to determine the input numbers. The seal under consideration is the end seal, which consists of the spiral-grooved, orifice-compensated upper pad and Rayleigh-step lower pad at cruise conditions.

Card 1.
Card 2.
$\mathrm{H} 0 \mathrm{P}=.00105$ inches
$\mathrm{X} 20 \mathrm{P}=.5$
$\mathrm{~W} 20 \mathrm{P}=.62$
$\mathrm{X} 10 \mathrm{P}=.4296$
$\mathrm{~W} 10 \mathrm{P}=.833$
$\mathrm{H} 0=.001$
$\mathrm{X} 20=.5$
$\mathrm{~W} 20=.635$

Card 3.
$\mathrm{H} 2 \mathrm{M}=.0014$
$\mathrm{X} 2 \mathrm{CM}=.512$
$\mathrm{W} 2 \mathrm{M}=.55$
$\mathrm{H} 1 \mathrm{M}=.0006$
$\mathrm{X} 1 \mathrm{CM}=.4326$
$\mathrm{W} 1 \mathrm{M}=.915$
ANGP $=.001$
$\mathrm{H} 2 \mathrm{P}=.0006$
$\mathrm{X} 10=.4315$
$\mathrm{W} 10=.842$
HOM $=.00095$
$\mathrm{X} 20 \mathrm{M}=.5$
$\mathrm{W} 20 \mathrm{M}=.648$
$\mathrm{X} 10 \mathrm{M}=.4332$
$\mathrm{W} 10 \mathrm{M}=.852$
ANGM $=.001$
Card 4.
$\mathrm{X} 2 \mathrm{CP}=.488$
$\mathrm{W} 2 \mathrm{P}=.808$
$\mathrm{HIP}=.0014$
$\mathrm{X} 1 \mathrm{CP}=.4315$
$\mathrm{W} 1 \mathrm{P}=.825$
XSTAR $=.65$
$\mathrm{B} 2=.5$
B1 =. 5

Card 5.

> DELTP $=80$.
> SDST $=.3$

b. SINGLE PAD INPUT INSTRUCTIONS

The angular and cross-coupling stiffnesses of a single-pad seal, as shown in Figure 20, are computed in the same manner as for the double-pad seal. The subroutine KCAL will compute these stiffnesses at specific film conditions. The gas-film performance characteristics needed for the input of KCAL are the load capacity and center of pressure at the perturbed film thicknesses and tilted positions of the nominal film thickness. To compute the single-pad stiffnesses the gas film-data described below is needed.

For a parallel film, at $h=h_{0}=H 0$, the load capacity and center of pressure are represented by W0 and XCO respectively. At $h=h_{o}+\Delta h=h_{o}^{+}=H O P$, the load capacity and center of pressure are represented by WOP and SCOP respectively. At $h=h_{o}-\Delta h=h_{o}^{-}=H 0 M$, the load capacity and center of pressure are represented by WOM and XCOM respectively.

For a tilted film at $a=-\Delta a=$ ANGM (where Δa is a small positive angle in radians), the load capacity and center of pressure are given by WM and XCM respectively at $h=H 0$ At $a=\Delta a=$ ANGP, the load capacity and center of pressure are given by WP and XCP respectively at $h=H 0$.

Three items of data concerning geometry and pressure-differences are required. The centroid of the section from the high-pressure side is given by XSTAR (in inches). The width of the seal pad is denoted by B (in inches). The pressure difference $\Delta P=P_{2}-P_{1}$ is represented by DELTP (in psi).

A total of three cards is required for each single pad KCAL computation. The above data should be arranged in FORMAT ($8(\mathrm{~F} 10.5$)) in the following order:

Card 1.
Item Number (8 items)

1. H0 Film thickness ho (inches)
2. XC0 Center of pressure at ($a=0$, ho)
3. W0 Load capacity at ($a=0$, ho)
4. HOP Film thickness h_{o}^{+}(inches)
5. XCOP Center of pressure at $\left(a=0, h_{o}^{+}\right)$
6. WOP Load capacity at $\left(a=0, \mathrm{~h}_{\mathrm{o}}^{+}\right)$
7. HOM Film thickness h_{o}^{-}(inches)
8. XCOM Center of pressure at $\left(a=0, \mathrm{~h}_{\mathrm{o}}^{+}\right)$

Card 2.

Item Number (8 items)

1. WOM Load capacity at ($a=0, \mathrm{~h}_{\mathrm{o}}^{-}$)
2. ANGP Δa small angle of tilt (radians)
3. ANGM $\quad-\Delta a$ small angle of seal tilt (radians)
4. XCP Center of pressure at ($a=\Delta a, \mathrm{~h}_{\mathrm{o}}$)
5. WP Load capacity at ($a=\Delta a, \mathrm{~h}_{\mathrm{o}}$)
6. XCM Center of pressure at $\left(a=-\Delta a, h_{o}\right)$
7. WM Load capacity at ($a=-\Delta a, h_{o}$)
8. XSTAR Section centroid (inches)

Card 3.
Item Number (2 items)

1. B Width of the pad (inches)
2. DELTP Pressure differential (psi)

The gas film values are determined from the upper pad data in Appendix B. The output from the subroutine is $K_{s s}, K_{s a}, K_{a s}$, and $K_{a a}$.

The output from the main program using the values determined in the subroutine KCAL is essentially the same as the output of the double pad program.

3. EXPLANATION OF OUTPUT

a. TRACKING PARAMETERS

GAM	1	Defined by Equation 27
GAM	2	Defined by Equation 27
GAM	3	Defined by Equation 27
GAM	4	Defined by Equation 27
GAM	5	Defined by Equation 27
GAM	6	Defined by Equation 27
GAM	7	Defined by Equation 27
GAM	8	Defined by Equation 27
GAM	9	Defined by Equation 27
GAM	10	Defined by Equation 27
GAM	11	Defined by Equation 27
F1		Defined by Equation 28
F2		Defined by Equation 28
A1		Defined by Equation 53
A2		Defined by Equation 53
$\mathrm{C}_{1} / \mathrm{C}_{2}=\left(\mathrm{C}_{1} / \mathrm{C}_{3}\right)\left(1 / \mathrm{C}_{2} / \mathrm{C}_{3}\right)=$		K_{2}
		$=\overline{K_{1}+K_{2}-M_{1} \omega^{2}}$

b. NATURAL FREQUENCY ELASTIC VIBRATIONS

NUN	1	Defined by Equation 41
NUN	2	Defined by Equation 42

c. DYNAMIC RESPONSE ELASTIC VIBRATIONS

CDELN	Defined by Equation 47
ALFAN	Defined by Equation 50
BETAN	Defined by Equation 50
UN	Defined by Equation 50
VN	Defined by Equation 50
CA1	Defined by Equation 51
CA2	Defined by Equation 51
CB1	Defined by Equation 51
CB2	Defined by Equation 51
CU1	Defined by Equation 51
CU2	Defined by Equation 51
CV1	Defined by Equation 51
CV2	Defined by Equation 51

d. NATURAL FREQUENCIES RIGID BODY VIBRATION

NU	1	Defined by Equation 54
NU	2	Defined by Equation 54

e. DYNAMIC RESPONSE RIGID BODY VIBRATION
$\mathrm{C}_{1} / \mathrm{C}_{3}$
$\mathrm{C}_{2} / \mathrm{C}_{3}$
f. DIMENSIONAL RESULTS

PHI

DELTA H
DELTA
ETA
HMIN

Defined by Equation 67
Defined by Equation 68
$\phi=\epsilon_{\mathrm{n}} \cdot\left(a_{\mathrm{n}}+\beta_{\mathrm{n}}\right)$
$\delta_{n}=b\left\{\left[\left(u_{n}+v_{n}\right)-\delta_{n}\right]+0.5|\phi|\right\}$
$\delta=b \delta_{n}$
$\eta=\mathrm{b} \eta_{\mathrm{n}}$
$h_{m \text { in }}=h_{m}-\delta_{h}$
55 FORMAT ($5 \times, 3$ HCA $1,11 \times, 3$ HCA2, $11 \times, 3$ HCB $1,11 \times, 3$ HCB2) 56 FORMAT ($5 \times, 3 \mathrm{HCU} 1,11 \times, 3 \mathrm{HCUZ}, 11 \times, 3 \mathrm{HCV} 1,11 \times, 3 \mathrm{HCV} 2)$ FORMAT BOH

(J

58 FORMAT (5x.3HNU1) 99 FORMAT (1H1) READ(5.25) $\triangle, G, C, O M E G A, P, A M 1, C K 1, R H O$ WRITE (6, 31)
Mロ1 (6,
RCUS $=$ R $2 * R S Q$
READ (5,22) IND,NGASTF,NKSSS,NAIP,NEN,NSW,NOFAD DO $81 \quad 1=1$.NGASTF
READ(5,21) ZP1 (I), ZP2 (I), ZF3(I), ZP4 (I), ZPS (I) 81 CONTINUE
DO $85 \mathrm{I}=1, \mathrm{NKSSS}$
READ $(5,21) \mathrm{ZO1}(\mathrm{I}), 202(1), 203(1), 204(1), Z 05(1)$
85 CONTINUF
$\operatorname{READ}(5,21) \mathrm{ZT} 1(1), Z T 2(1), Z T 3(1), \angle T 4(1), Z T 5(1)$ 88 CONTINUE
DO $91 \mathrm{I}=1, \mathrm{NEN}$ (I),ZL2(I), ZL3(I), <L4(1), ZL5(1) READIS.
DO $100 \quad \mathrm{I}=1$. NGASTF
CKAA=ZP. 92.92 .93
93 CALL KCAL (CKSS, CKAS, CK $£ \triangle, C K A A, N O P A D)$
$92 C K マ=C K S S * C O N S T$
DO $100 J=1$. NKSSS
$C K S S=Z P 2(1$
CKSA $=2$ O3(I)
$C K \Delta S=Z P 4$ (I)
$C K A A=Z P 5(1)$
CKSSS=ZO1(J) CKZ=CKCSS*CONST

2
2
0
0
0
n
1
4
4
0
0
0
0
CKAAS $=204(\mathrm{~J})$
$A M P=705(\mathrm{~J})$
กの $1 \cap 0 K=1$, NAID
$P=Z T I(K)$
$A I=Z T Z(K)$
$A I P=Z T 3(K)$
$A I T T=Z T 4(K)$
$A R E A=Z T 5(K)$
$D O 100 L=1, N F N$
DO $100 \mathrm{~L}=1$,NFN
$E N=Z L 1(L)$
$S D F L M=Z L$
SDELM $=$ ZLZ (L)
SDELN $=$ SDELM
ETAM=ZL3(L)
ETAN=ETAM/B
FPSN=ZL4(L)
ZETAN=ZL5(L)
START OF CALCULATIONS
EI=E*AI
GIP=G*AIP
$\operatorname{TEMP} 1=G I P^{*}(1 \bullet+\times I)$
GAM1 $=$ RCUB $^{*}(C K S A+C K S A S) / T E M P 1$
GAM2 $=$ B*RCUB* (CKSS $+C K S G S$)/TEMP1

 GAM6 = (EKAS +CKASS) *B*RCQ/GIF GAMT $=$ CK $A \Delta * D S O / C$ IP GAMR $=$ CKAS*F*RS $(1 / G I P$ GAMO $=B * \times 1 /(R *(1 \cdot+\times 1))$
GAM $10=B /\left(R *\left(1 \cdot+X_{1}\right)\right.$
FS $1=$ TEMP $1 /(R H O * A R E A * S * R C U B)$ $F_{1}=\operatorname{SQRT}(F S:)$上
a
à
a
II
N
un
u F2 $=\operatorname{SQRT}(F S 2)$
EN2=EN*EN
EN4=EN2*EN2
EN6=EN2*EN4
OMEGAZ = OMEGA *OMEGA
OMEGA4 = OMEGA 2 *OMEGA2
P1 =FS2*(EN2+GAM5) +FS 1*(GAM2+GAM10*EN2+GAM9*EN4) \quad-GMG P2=GAMI*ENG + GAM1 O +GAMS*GAMF-GAM11) 1GAM1*GAM11)*EN2+GAM2*GAM5-GAM1 *GAMG
TEMP2=P1*P1-4**FS1*FS2*P2
TEMP $3=S Q R T(T E M P 2)$
TEMP4 $=.5 *\left(P_{1}+\right.$ TEMP3)
TEMP5 $=.5 *\left(P_{1}-\right.$ TEMP3 $)$
ZNUN1 $=$ SQRT (TEMP4)
ZNUN2 $=$ SQRT (TEMPS)
CDELNAM1
G1=GAM11*EN2 GAMG1U*EN2-GAM2
Q2 $=020+E N 2 * O M E G A 2 / F S 1$
$C A 1=(G A M 3 * Q 1+G A M 7 * Q 2) /$ CDELL
$C B 1=(E N 2 * Q 1+(E N 2+\times 1) * Q 2 U) /(-$ P2 $)$
$C B 2=((G A M Q * E N 4+G A M 1) * E N C) * U 1+E N 2 * G A+111 * Q 2 \cup) /(-$ P2 $)$
$C B 2=($ GAM9*EN4 +GAM1~ENC $) *$ UI +EN2*GAM111*Q2U)/(-P2)
$Q 3=E N 2+G A M 1$
$Q 3=E N 2+G A M 1$
$Q 4=Q 40+E N 2 * O M E G A 2 / F S 2$
$C U 1=(G A M 7 * Q 3+G A M 3 * Q 4) /$ CDELN
$C U 2=(G A M 3 * Q 3+G A M 4 * Q 4) / C D E L N$
$C V 1=((E N 2+X I) * Q 3+E N 2 * Q 4 \cup) /(-F 2)$
$C V 2=(G A M 11 * E N Z * U 3+(G A M G * E N 4+G A M$
$A L F A N=C A 1 * E P S N+C A 2 * S D E L N$
$B E T A N=C B 1 * \angle E T A N+C B 2 * E T A N$
$U N=C U 1 * E P S N+C U 2 * S D E L N$
$C V 2=($ GAM1 $1 * E N E * W 3+($ GAMS*EN4 +GAM1 U*EN2 $) *(14 U) /(-P 2)$

$A 2=(C K 1 * C K 2+C K 2 * C K 3+C K 3 * C K 1) /(A M 1 * A M 2)$
GO TO 182
GO $A=(C K 2+C K$
GO TO 182
$A 1=(C K 2+C K 3) / A M 2$
TEMPG $=A 1 * A 1-4 * A 2$
TEMP1U=CK2/(-AM1*OMEGA2+CK1+CK2)
$C 2=C K 3 /(-A M 2 * O M E G A 2+C K 2+C K 3-C K 2 * T E M P 1 U)$
C1 = C 2*TEMP1O
$P H E E=E P S N-(A L$
$P H 4=A B S$ (PHEE)
PPPV=UN+VN-SDELN
1F(NOPAD) 196.196.197
IF (EN) 199.199.196
198 DELTA $=(.5 * P H 4+D U V) * B$
CKSSS,CKSAゝ,CKAゝS.CKAAS.UMEGA GO TO 198
DUV=PPPV
END OF CALCULATIONS
$A \cdot B \cdot R \cdot G \cdot E$
CKSS•CKSA,CKAS•CKAA,RHO
RITE $(6,40)$ WRITE(6.41) WRITE $(6,20)$ WRITE (6,42) WRITE $(6,20)$

| 0 | $-N$ |
| :--- | :--- | :--- |
| ∞ | ∞ |
| $-\infty$ | - |

m	
∞	
∞	

197

AI，AIP．EN．E．PSN．SDELN
ZETAN•ETAN，AREA，AITT，HMN AM1，AM2，CK1，CK2，CK3
ZNUN1,ZNUNZ

WRITE $(6,43)$ | 45） |
| :--- |
| 32） |
| 20） |
| 21） |
| 20） |
| 52） |
| 20） |
| 201 |

 90 WRITE $(6,32)$ WRITE (6.51) WRITE 6,51$)$
WRITE (6.20) WRITE (6.52) $\stackrel{+}{6}$

 （0？•9）ヨ1IとM $\stackrel{\rightharpoonup}{N}$
\vdots
0
u
\vdots
\vdots
$\frac{\alpha}{3}$ （02•9）ヨ1I 8M $02 \cdot 9) \exists 118 m$
$55 \cdot 9) \exists 118 M$
 WRITE $(6,20)$ WRITE $(6,36)$

IF（NOPAD） 19 192 CONTINUE WRITE（6．47）

 0
0
\vdots
\vdots
\vdots
$\stackrel{\alpha}{3}$ GO TO 195
 m
$\underset{\sim}{2}$
CDELN, ALFAN•BETAN•UN•VN

$$
\begin{aligned}
& C A 1 \cdot C A Z \cdot C B 1 \cdot C B 2 \\
& \text { CU1•CU2•CV1,CV2 }
\end{aligned}
$$

$$
.192 \cdot 193
$$

ZNU1．ZNUZ
$\mathrm{Cl} \cdot \mathrm{C} 2$
ZNUI

$$
\begin{aligned}
& \begin{array}{l}
\text { GAM1, GAM2, GAM3, GAM4, GAMS } \\
\text { GAM6, GAMT •GAME, GAMY, GAMI U }
\end{array} \\
& \text { GAM11•F1•F2 } \\
& \text { A1,A2,TEMP10 }
\end{aligned}
$$

195 WRITE $(6,39)$
WRITE $(6,49)$

WRITE $(6,20)$

WRITE $(6,99)$
100
CONTINUE

IF (IND) 24,
24
STOP
END
IF(IND) $24 \cdot 24 \cdot 23$
24 STOP
END
WRITE (6,20) PHEE, DELTA,SDELM,ETAM,HMIN
SUBROUTINE USED TO CALCULATE GAS FILM STIFFNESS FOR SINGLE AND DOUBLE PADS

U
WRITE (6.22)
HUP, XZUP,WZUP, X IUP, N1 UP, HO, XZ̃U,wてO

H2M. $\times 2$ Cin. W2M. H1M. $\times 1$ CM.W1M. ANGP. H2P
×2CP.W2P.H1P, XICP,W1P. XSTAR,BL•B1
DELTP.SDST
 $W 2 O P=W 2 O P * A K 2$
$W 2 O M=W 2 O M * A K 2$
$W 20=W 20 * A K 2$ $W 1 M=W 1 M * A K 1$
$W 1 P=W 1 P * A K 1$ $W 2 M=W 2 M * A K 2$ $W 2 P=W 2 P * A K 2$ $\times 10 P=\times 10 P * B 1$
$\times 10=\times 10 * B 1$ $\times 10 M=\times 10 M * B 1$ $\times 1 C M=\times 1 C M * B 1$ $\times 1 C P=\times 1 C P * B 1$ $\times 20 P=\times 20 P * B 2$
$\times 20=\times 20 * \mathrm{E}_{2}$ $\times 2 O M=\times 2 O M * B 2$
$\times 2 C M=\times 2 C M * B 2$
$\times 2 C P=\times 2 C P * B 2$
DWDH $=(W 1 U M-W 1 O P)+(W 2 U M-W 2 O P)$ HDIFR=HOP-HOM
DWDH=DWDH $/ H D I F R$
$C K S S=D W D H$
(WCTO = (W2**(B12-x2u) +W10*×10)/W12
$X C T M=(W 2 U M *(B 12-\times 2 U M)+W 1 \cup M * \times 1 O M) /(W 1 O M+W 2 O M)$ $X C T P=(W 2 \cup P *(B 12-\times 2 \cup P)+W 1 \cup P * \times 1 \cup P) /(W 1 \cup P+W 2 \cup P)$ $D \times C D H=(\times C T P-X C T M) / H D I F R$
XCTOR=XCTO-XSTAR
AALFA ANGP-ANGM
DALFA ANGP-ANGM2P-W2M)/DALFA
$D W D A=(W 1 P-W 1 M+W 2 P-W 2 M) / D A L F A$
$C K S A=D W D A$
$X C P=(W 2 P *(B 12-\times 2 C P)+W 1 P * \times 1 C P) /(W 1 P+W 2 P)$
$X C M=(W 2 M *(B 12-X 2 C M)+W 1 M * \times 1 C M) /(W 1 M+W 2 M)$
$D \times C D A=(X C P-X C M) / D A L F A$
$C K A A=D W D A * \times C T O R+W 12 * D \times C D A$
WRITE (6.28)
WRITE $(6,21) \times C T U, \times C T M, \times C T P, \times C P, \times C M$
WRITE $(6,29)$
WRITE(6,21) CKSS,CKAS.CKSA.CKAA
251 READ (5.27) HU, XCU,WU,HUP, XCUP,WUP,HOM, XCOM, WOM, ANGP, ANGM, XCP,WP, XCM,WM, XSTAR,B,DELTP
HU, XCU,WU,HUP, XCOP, WUP, HUM, XCUM
WLIM, ANGP, ANGM, XCP, WP, XCM, WM, XUTAR
B,DELTP
WRITE $(6,40)$
WRITE $(6,21)$ WRITE (6.41)
WRITE $(6,41)$ 2
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots

$W O=W O * A K$
$W O P=W O P * A K$
WOM = WOM $* A K$
$W P=W P * A K$
$\frac{v}{4}{ }_{3}^{*} \sum_{3}^{11}$
$X \subset O P=X C O P * B$
$251 \operatorname{ROTO} 200$

$X C O M=X C O M * B$

 $\times C P=X C P * B$$\times C M=X C M * B$
DWDH $=($ WOM - WOP $) /(H O P-H O M)$ CKSS = DWDH
DWDA $=(W P-W M) /(A N G P-A N G M)$ CKSA = DWDA
(CTO = XCO-XSTAR $/$ (HUP-HUM)
CKAS=DWDH* \times CTU-DXCDH*WU
$D \times C D A=(\times C P-\times C M) /(A N G P-A N G M)$
$C K A A=D W D A * \times C T O+D \times C D A * W \cup$
WRITE(6.21) CKSS.CKAS.CKSA,CKAA
continue
RETURN
\circ
웅

APPENDIX B

THERMAL ANALYSIS

The methods of thermal analysis presented in this Appendix were used to determine the temperature distributions in the OC diaphragm seal and the semirigid seal. For the sake of clarity the analysis is discussed under the three headings:

1. The Temperature Distribution by Numerical Methods
2. Heat Generation
3. Surface Coefficients for Convective Heat Transfer

For all calculations, steady-state cruise conditions were assumed.

1. THE TEMPERATURE DISTRIBUTION BY NUMERICAL METHODS

The circumferential symmetry of the seal assemblies made a corresponding symmetry assumption for the temperature distribution possible. Consequently, the thermal analysis was simplified to that for a two-dimensional system.

The seal assemblies were broken down into a number of contiguous orthogonal subvolumes each of a shape suited to the requirements of local temperature information and the over-all geometry. The accuracy of the thermal maps computed depends on the small size of these subvolumes. As, however, the time taken to compute one thermal map for a particular configuration depends also on the number of subvolumes, a compromise had to be reached during the design stage to limit their number. Each subvolume contains one nodal point at which the temperature is determined. Details of nodal point numbers and locations are given in the appropriate sections for the seals.

The determination of the temperatures at the nodal points in the seal assemblies was carried out by conventional methods of thermal network theory. The physical basis of these methods is the analogy to Kirchhoff's first law for electrical circuits. This states that under steady-state conditions, the algebraic sum of heat flows into a junction point (nodal point) of the network is zero. As steady state conditions were postulated, the heat flow for each internal or surface nodal point by conduction and by convection is given by

$$
\sum_{i} q_{i}=0^{*}
$$

Because no very large temperature differences existed across gaps between working elements of the seal assembly, heat exchange by radiation was considered to be negligible. The heat flows between adjacent nodal points is given by

$$
\mathrm{q}_{\ell}=\frac{\Delta_{\mathrm{T}}}{\sum_{\mathrm{m}}^{\Sigma \mathrm{R}_{\mathrm{m}}}}
$$

[^0]where the local conductive resistances have the form
$$
\mathrm{R}=\frac{\mathrm{L}}{\mathrm{kA}}
$$
and the convective resistances
$$
\mathrm{R}=\frac{1}{\overline{\mathrm{~h}} \mathrm{~A}}
$$

The scheme used for setting up the equations describing heat flow to the nodal points by convection and conduction only is illustrated by specific examples.

If the nodal point (i, j) is an interior point and heat transfer is by conduction only through the material which has a uniform thermal conductivity k , the thermal network is represented by the diagram shown in Figure 55.

Figure 55 Thermal Network for Internal and Surface Nodal Points
The basic equation for heat flow in Figure 55 is

$$
\frac{T_{i, j+1}-T_{i, j}}{R_{i, j+1} \rightarrow i, j}+\frac{T_{i+1, j}-T_{i, j}}{R_{i+1, j \rightarrow i, j}}+\frac{T_{i, j-1}-T_{i, j}}{R_{i, j-1} \rightarrow i, j}+\frac{T_{i-1, j}-T_{i, j}}{R_{i-1, j} \rightarrow i, j}=0
$$

and each R is equal to the appropriate $\frac{\mathrm{L}}{\mathrm{kA}}$.
If two nodal points, say ($\mathrm{i}-1, \mathrm{j}$) and (i, j), are located in two adjacent materials with thermal conductivities k_{1} and k_{2} then

$$
R_{i-1, j \rightarrow i, j}=\frac{L_{1}}{k_{1} A}+\frac{L_{2}}{k_{2} A}
$$

where $L_{1}+L_{2}$ is equal to the total length of the pad between (i-1, j) and (i, j).
If the nodal point (i, j) is a surface point, then heat exchange with the adjacent air is by convection. Thus, if (i, j) lies on the surface and $(i, j+1)$ lies in the air, then

$$
R_{i, j+1 \rightarrow i, j}=\frac{1}{\overline{\mathrm{~h} A}}
$$

If nodal point (i, j) is an interior point but the subvolume bounds on a surface with air adjacent to it, then for example

$$
R_{i, j+1 \rightarrow i, j}=\frac{1}{\bar{h} A}+\frac{L}{k A}
$$

Nodal points in subvolumes in the air film are treated similarly, except that there is lieat transfer by mass flow and by heat generation due to shearing. Heat transferred by mass flow is calculated from

$$
q_{n}=m_{n} c_{p} \Delta T
$$

The heat generated in each subvolume is denoted by $\dddot{q}_{(i, j)}$. Details of its determination are discussed below. Nodal points in the air film are located midway between the adjacent working surfaces.

Determination of the gap Reynolds number indicated that flow was laminar. Consequently the heat transfer across the gap was calculated as by pure conduction. The thermal network for each nodal point in the film is shown in Figure 56.

Figure 56 Thermal Network for Nodal Points in the Gap between Seal and Seal Plate

The mass flow rates of air through the gap are calculated in Section IB of this report. The basic equation for heat flow is

$$
\frac{T_{i+1, j}-T_{i, j}}{R_{i+1, j \rightarrow i, j}}+\frac{T_{i-1, j}-T_{i, j}}{R_{i-1, j \rightarrow i, j}}+\dddot{q}_{i, j}+m_{i, j+1} c_{p} T_{i, j+1}+m_{a} c_{p} T_{a}-m_{i, j} c_{p} T_{i, j}=0
$$

where

$$
m_{i, j}=m_{i, j+1}+m_{a}
$$

The term $m_{a} c_{p} T_{a}$ represents heat transferred to (i, j) by air flow from an external supply such as through an air port.

The physical properties of air at $1200^{\circ} \mathrm{F}$ used in the thermal analysis are

$$
\begin{array}{ll}
\text { Thermal conductivity } & \mathrm{k}=0.037 \mathrm{BTU} / \mathrm{hr}-\mathrm{ft}^{2}{ }^{\circ} \mathrm{F} / \mathrm{ft} \\
\text { Absolute viscosity } & \mu=0.0955 \mathrm{lb} / \mathrm{hr} / \mathrm{ft} \\
\text { Specific heat at constant pressure } & \mathrm{c}_{\mathrm{p}}=0.269 \mathrm{BTU} / \mathrm{lb}-{ }^{\circ} \mathrm{F} \\
\text { Prandtl number } & \mathrm{P}_{\mathrm{r}}=0.6975
\end{array}
$$

2. HEAT GENERATION

If the velocity profile in the gap between seal and seal plate in the axial direction is linear

$$
\partial \mathrm{U} / \partial \mathrm{h}=\mathrm{U} / \mathrm{h}
$$

The shear force is consequently $\mathrm{F}=\mu \mathrm{AU} / \mathrm{h}$, and the heat generated is $\mathrm{q}=\mathrm{FU} / \mathrm{J}$. Thus, for an air-film subvolume with an area of $7.75 \mathrm{in}^{2}$ on the seal and seal plate surfaces, the heat generation is

$$
\begin{aligned}
\dddot{\mathrm{q}}_{\mathrm{i}, \mathrm{j}} & =\frac{0.0955 \times 7.75 \times 850 \times 850}{12 \times 32.2 \times 0.001 \times 778} \\
& \approx 1780 \mathrm{BTU} / \mathrm{hr}
\end{aligned}
$$

if the gap is 0.001 inch, the surface velocity is $850 \mathrm{ft} / \mathrm{sec}$ and the air viscosity is 0.0955 $\mathrm{lb} / \mathrm{hr}-\mathrm{ft}$.

In the spiral-groove orifice configuration, the groove depths are deemed to be so small that for purposes of these calculations they can be neglected. The heat generation in the subvolumes adjacent to the grooved surfaces of the seal are therefore also calculated as outlined above. The heat generation for the shrouded Rayleigh pad design is calculated taking into account the area covered by recesses and the recess depth.

3. SURFACE COEFFICIENTS FOR CONVECTIVE HEAT TRANSFER

For a number of the surfaces, the geometrics were similar enough to older seals that the coefficients for convective heat transfer could be based on experience. Thus, for example, on the back of the runner the values of $\overline{\mathrm{h}}=52 \mathrm{BTU} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}$ at the larger diameters and $\overline{\mathrm{h}}=$ $42 \mathrm{BTU} / \mathrm{hr}-\mathrm{ft}^{2}{ }^{\circ} \mathrm{F}$ were used. Over other surfaces, this experience factor was not available, and coefficients for those surfaces were therefore calculated from dimensionless expressions available in the heat-transfer literature. It is realized that these expressions apply more directly to the simpler geometries for which they were obtained, but in the absence of more precise information they were accepted as at least reasonably realistic for the seal geometries analyzed. The details of the expressions used are given below.

a. HORIZONTAL ROTATING CYLINDER WITH NO CLOSE OBSTRUCTIONS

For turbulent flow (i.e. for $\operatorname{Re}>15000$) the dimensionless equation is

$$
\mathrm{Nu}=0.073 \mathrm{Re}^{0.7}
$$

The Nusselt number is

$$
\mathrm{Nu}=\overline{\mathrm{h}} \mathrm{D} / \mathrm{k}
$$

and the rotational Reynolds number is

$$
\operatorname{Re}=\omega \mathrm{D}^{2} \rho / 2 \mu
$$

Thus, for the end seal at cruise conditions, the Reynolds Number is 1.172×10^{7} and the surface coefficient is $\overline{\mathrm{h}}=100 \mathrm{BTU} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}$ if the runner is unobstructed over its perimeter.

b. CYLINDER ROTATING WITH A CONCENTRIC TUBE WITH SMALL AXIAL FLOW

For conditions above critical flow (i.e. for $\mathrm{Ta}>90$) the dimensionless equation is

$$
\mathrm{Nu}=0.350 \mathrm{Nu}_{\mathrm{c}} \mathrm{Ta}^{0.5}
$$

The Nusseit number is

$$
\mathrm{Nu}=\overline{\mathrm{h}} \mathrm{~d} / \mathrm{k}
$$

The Nusselt number for pure conduction is

$$
N u_{c}=\frac{\frac{d}{r_{i}}}{\ln \left(1+\frac{d}{r_{i}}\right)}
$$

The Reynolds number is

$$
\operatorname{Re}=\mathrm{r}_{\mathrm{i}} \omega \mathrm{~d} \rho / \mu
$$

and the Taylor number is

$$
\mathrm{Ta}=\operatorname{Re}\left(\frac{\mathrm{d}}{\mathrm{r}_{\mathrm{i}}}\right)^{0.5}
$$

For small radial clearances between the cylinder and the tube, the Nusselt number for pure conduction approaches unity. Thus, if it is assumed that the runner-to-compressor casing clearance is 0.25 inch, the Reynolds number is

$$
\operatorname{Re}=1.15 \times 10^{5}
$$

the corresponding Taylor Number is

$$
\mathrm{Ta}=1.52 \times 10^{4},
$$

the Nusselt number for pure condition is

$$
N u_{c} \approx 1
$$

and the surface coefficient of convective heat transfer is

$$
\overline{\mathrm{h}}=75 \mathrm{BTU} / \mathrm{hr}^{-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F} .}
$$

c. ROTATING DISC WITH A CENTRAL HOLE WHICH ROTATES NEAR A STATIONARY WALL

For turbulent flow (i.e. $\operatorname{Re}>3.1 \times 10^{5}$) the dimensionless equation is

$$
\mathrm{Nu}=0.0149 \operatorname{Pr}^{1 / 3} \operatorname{Re}^{0.8}\left[1+\left(\frac{r_{i}}{r_{0}}\right)^{0.5}\right]\left(\frac{\mathrm{s}}{r_{0}}\right)^{0.1}
$$

The Nusselt number is

$$
\mathrm{Nu}=\overline{\mathrm{h}} \mathrm{r}_{\mathrm{o}} / \mathrm{k}
$$

The Prandtl number is

$$
\operatorname{Pr}=c_{p} \mu / k
$$

and the Reynolds number is

$$
\operatorname{Re}=\omega \rho \mathrm{r}_{\mathrm{o}}^{2} / \mu
$$

As an example, the low-pressure face of the runner adjacent to the seal is considered. Here $\operatorname{Re}=6.87 \times 10^{4}$, so the flow is turbulent, and $\mathrm{Nu}=1238$. The surface coefficient $\overline{\mathrm{h}}=41$ $\mathrm{BTU} / \mathrm{hr}^{\mathrm{ftt}}{ }^{2}{ }^{\circ} \mathrm{F}$. Flow is greatly restricted, however, by the drum-like flange of the runner and the surface coefficient of convective heat transfer was therefore estimated as $\overline{\mathrm{h}}=24$ $\mathrm{BTU} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}$.

d. CHANNEL FLOW

For laminar flow the dimensionless expression is

$$
\mathrm{Nu}=\overline{\mathrm{h}} \mathrm{t} / \mathrm{k}=3.75
$$

The Reynolds number of flow over the convex surface of the C-spring, for example, is 1200 and the surface coefficient is

e. SURFACES ON THE SEALS EXPOSED TO LITTLE OR NO FLOW

Surface coefficients for convective heat transfer over seal surfaces which are sheltered from windage effects of the runner could not be calculated, and estimates based on the expected circulation were made. Thus, for the back surfaces of the seals, essentially stagnant conditions were assumed, the surface coefficient $\overline{\mathrm{h}}=2 \mathrm{BTU} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}$. For surfaces closer to the runner, larger coefficients were assumed, for example $\overline{\mathrm{h}}=4 \mathrm{BTU} / \mathrm{hr}-\mathrm{ft}^{2}{ }^{\circ} \mathrm{F}$ over the recessed portion of the outer diameter of the semirigid seal.

The estimates of circulation and surface coefficients were more difficult, for example, in the space bounded by the semirigid seal, the piston ring and the compressor casing. The values of the surface coefficient were assumed here to vary from $\overline{\mathrm{h}}=10 \mathrm{BTU} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}$ to $\overline{\mathrm{h}}=2$ $\mathrm{BTU} / \mathrm{hr}-\mathrm{ft}^{2}-^{\circ} \mathrm{F}$ depending on how much the circulation had been attenuated over the surface considered.

4. NOMENCLATURE

A
area $\left(\mathrm{in}^{2}\right)$
D
diameter (in.)
F force (to shear air film) (lb)

J mechanical equivalent of heat (ft-lb/BTU)

L length dimension, total distance between nodal points, (in.)
$\mathrm{R} \quad$ thermal resistance $\left(\mathrm{hr}^{\mathrm{O}} \mathrm{F} / \mathrm{BTU}\right)$
$\mathrm{T} \quad$ temperature $\left({ }^{\circ} \mathrm{F}\right)$
$\mathrm{U} \quad$ runner surface velocity ($\mathrm{ft} / \mathrm{sec}$)
$\mathrm{a}, \mathrm{i}, \mathrm{j}, \ell, \mathrm{m}, \mathrm{n} \quad$ indices
b thickness (inches)
$\mathrm{c}_{\mathrm{p}} \quad$ specific heat $\left(\mathrm{BTU} / \mathrm{lb}{ }^{\circ} \mathrm{F}\right)$
d
radial clearance (inches)
$\mathrm{h}_{\mathrm{m}} \quad$ gap between seal and runner (inches)
$\overline{\mathrm{h}} \quad$ mean surface coefficient of convective heat transfer ($\mathrm{BTU} / \mathrm{hr} \mathrm{ft}^{2}{ }^{\circ} \mathrm{F}$)
$\mathrm{k} \quad$ thermal conductivity ($\mathrm{BTU} / \mathrm{hr} \mathrm{ft}{ }^{\circ} \mathrm{F}$)
$\dot{\mathrm{m}} \quad$ mass flow rate $(\mathrm{lb} / \mathrm{hr})$
$\mathrm{q} \quad$ heat flux ($\mathrm{BTU} / \mathrm{hr}$)
$\dddot{q} \quad$ volumetric heat generation ($\mathrm{BTU} / \mathrm{hr} /$ subvolume)
$r \quad$ radius (in)
$r_{i} \quad$ inner radius (in)
$r_{0} \quad$ outer radius (in)
s mean axial gap between rotor and stationary part (in)
t channel depth (distance between bounding walls) (in)

APPENDIX C

OC DIAPHRAGM END SEAL

TASK I THERMAL CALCULATIONS

1. INTRODUCTION

The design which is analyzed in this Appendix is shown in Figure 1. Other conditions which define the design are listed below.

Core ambient temperature	$1136^{\circ} \mathrm{F}$
Outer ambient temperature	$1200^{\circ} \mathrm{F}$
Supply flow	$10 \times 10^{-4} \mathrm{lb} / \mathrm{sec}-\mathrm{in}$
Vent flow	$8.4 \times 10^{-4} \mathrm{lb} / \mathrm{sec}-\mathrm{in}$
Conductivity of rotating element (inco 901)	$11.2 \mathrm{BTU} / \mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}$
Conductivity of stationary element (Inco 750)	$11.9 \mathrm{BTU} / \mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}$
Rotational speed	$4.4 \times 10^{5} \mathrm{rev} / \mathrm{hr}$
Average seal radius	13.5 inches

For the temperature calculations, all surface heat-transfer coefficients were derived from the calculations discussed in Appendix B. The seal clearances which are used for the heat generation and admittance calculations take into account the relative areas of the land and recess regions. Also, the effect of flow through the piston ring seal is included.

The results of the calculations are shown in Figure 57 in the form of a steady-state temperature map of the OC diaphragm end seal.

2. ANALYSIS

a. HEAT GENERATION

Heat generation in the seal clearance is calculated using the equation for a rotating disk and stationary wall, and a linear velocity profile due to rotation.

$$
\mathrm{q}=0.318\left(\frac{\mathrm{R}^{3} \ell}{\mathrm{~b}}\right) \mathrm{N}^{2} \mu
$$

```
where q = heat generation(BTU/hr)
    R = mean radius of the element (ft)
    \ell = radial length of the element (ft)
    b = axial clearance (ft)
    N = rotational speed (rev/hr)
    \mu = dynamic viscosity ( }\mp@subsup{\textrm{b}}{\textrm{f}}{}-\textrm{hr}/\mp@subsup{\textrm{ft}}{}{2}
```

For gas nodes 73 and 77 in the seal clearance, the value of the axial clearance " b " is obtained by taking the area-weighted average of the clearances of the land and recess. The

1136
AT 10 "radms
\downarrow
Figure 57 Temperature Distribution (in Degrees Fahrenheit) in the OC Diaphragm End Seal at Cruise Conditions
nodal network used is shown in Figure 58. The area loss due to the presence of supply and vent holes is neglected.

In all cases

$$
\mathrm{N}=4.4 \times 10^{5}(\mathrm{rev} / \mathrm{hr})
$$

and

$$
\mu=2.29 \times 10^{-10}\left(\mathrm{lb}_{\mathrm{f}}-\mathrm{hr} / \mathrm{ft}^{2}\right)
$$

so that

$$
\mathrm{N}^{2} \mu=44.4
$$

and

$$
\begin{equation*}
\mathrm{q}=14.1\left(\frac{\mathrm{R}^{3} \ell}{\mathrm{~b}}\right) \tag{70}
\end{equation*}
$$

For nodes 73 and 77, Equation 70 is rewritten

$$
Q=14.1 R^{3} \ell\left(\frac{A_{\ell}}{A_{t}} \quad \frac{1}{b_{\ell}}+\frac{A_{r}}{A_{t}} \frac{1}{b_{r}}\right)
$$

where the subscripts ℓ, r, and t refer to the land, recess and added properties. The heat generation for nodes 73 through 78 is tabulated in Table XVI.

TABLE XVI

HEAT GENERATION

Node	Radius Mean R (ft)	Radial Length $\ell(\mathrm{ft})$	Axial Clearance b_{ℓ} (ft)	Axial Clearance b_{r} (ft)	Area Ratio $\frac{\mathrm{A}_{\ell}}{\mathrm{A}_{\mathrm{t}}}$	Area Ratio $\frac{A_{r}}{A_{i}}$	Heat Generation q (Btu/hr)
73	1.17	0.0208	8.35×10^{-5}	2.71×10^{-4}	0.62	0.38	4170
74	1.15	0.0208	8.35×10^{-5}	0.0	1.0	0.0	5350
75	1.13	0.0250	1.46×10^{-3}	0.0	1.0	0.0	340
76	1.11	0.0067	8.35×10^{-5}	0.0	1.0	0.0	1510
77	1.09	0.0278	8.34×10^{-5}	1.875×10^{-4}	0.47	0.53	1390
78	1.07	0.0067	8.35×10^{-5}	0.0	1.0	0.0	4300
						TOTAL	17060

Figure 58 Nodal Network for the OC Diaphragm End Seal

b. HEAT TRANSFER COEFFICIENTS

(1) Seal Clearances

Pure conduction ($\mathrm{k}=0.037 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}$) is assumed across the seal clearances at nodes 73 to 78 inclusive. The width of the clearance used in these calculations is the area-weighted average of the clearances at the land and recess. The quantity " b " is tabulated in Table XVII.

$$
\mathrm{b}=\frac{\mathrm{A}_{\ell} \mathrm{b}_{\ell}+\mathrm{A}_{\mathrm{r}} \mathrm{~b}_{\mathrm{r}}}{\mathrm{~A}_{\mathrm{t}}}
$$

TABLE XVII

WEIGHTED AXIAL CLEARANCE

Node	Area Ratio $\frac{A_{\ell}}{A_{t}}$	Area Ratio $\frac{A_{r}}{A_{t}}$	Land Axial Clearance b_{ℓ} (in)	Recess Axial Clearance b_{r} (in)	Weighted Axial Clearance b (in)
73	0.62	0.38	0.0010	0.00325	0.0018
74	1.0	0.0	0.0010	0.0	0.0010
75	1.0	0.0	0.0175	0.0	0.0175
76	1.0	0.0	0.0010	0.0	0.0010
77	0.47	0.53	0.0010	0.00225	0.0017
78	1.0	0.0	0.0010	0.0	0.0010

(2) Piston Ring Clearance

The average clearance at the piston ring (between metal nodes 7 and 6) is calculated using the same method which is used at the seal clearances. In this case

$$
\mathrm{b}=0.125(0.0005)+0.875(0.001)=0.00098 \text { inch }
$$

(3) Vent and Supply Holes

The total vent flow is

$$
\mathrm{w}=8.4 \times 10^{-4} \mathrm{lb} / \mathrm{sec}-\mathrm{in}
$$

so that using an average radius of 13.5 inches, and assuming 154 vent holes, the amount of flow per hole is

$$
w_{v}=\frac{8.4 \times 10^{-4}(13.5)}{154}=4.63 \times 10^{-4} \mathrm{lb} / \mathrm{sec}
$$

The Reynold's number for pipe flow in any one hole is

$$
\operatorname{Re}=\frac{\rho \mathrm{VD}}{\mu}=\frac{\rho \mathrm{w}_{\mathrm{v}}}{\rho \mathrm{~A}} \mathrm{D}=\frac{4 \mathrm{w}_{\mathrm{v}} \mathrm{D}}{\pi \mathrm{D}^{2} \mu}=\frac{4 \mathrm{w}_{\mathrm{v}}}{\pi \mu \mathrm{D}}
$$

where

$$
\begin{aligned}
& \mathrm{D}=0.125 / 12=1.04 \times 10^{-2} \mathrm{ft} \\
& \rho=2.4 \times 10^{-2} \mathrm{lb} / \mathrm{ft}^{3} \\
& \mu=2.65 \times 10^{-5} \mathrm{lb} / \mathrm{sec} . \mathrm{ft}
\end{aligned}
$$

so that

$$
\operatorname{Re}=2140 \text { (low transition range) }
$$

For laminar conditions, the Graetz chart (which includes entrance effects for a sharp-edged sudden contraction) yields a mean film coefficient of $h=60 \mathrm{BTU} / \mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}$).

For the supply flow of

$$
\mathrm{w}=10 \times 10^{-4} \mathrm{lb} / \mathrm{sec}-\mathrm{in}
$$

at 13.5 (in) and 77 holes, the flow per hole yields a Reynolds number of 5100 (midtransition). Using a Latzko connection factor for entrance effects and the Colburn-Reynolds type equation for turbulent pipe flow, the mean film coefficient is $\mathrm{h}=110 \mathrm{BTU} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}$).

c. ADMITTANCE MATRIX

The heat transfer areas between the vent and supply holes and the metal (nodes $13,14,15$) are summarized in the following tabulation.

Node	A_{o} (Area/hole node) (ft^{2})	Area/Node (ft^{2})	
		$\mathrm{A}_{\mathrm{v}}=154 \mathrm{~A}_{\text {o }}$	$\mathrm{A}_{\mathrm{s}}=77 \mathrm{~A}_{1}$
13	4.85×10^{-4}	7.47×10^{-2}	3.74×10^{-2}
14	6.23×10^{-4}	9.60×10^{-2}	4.80×10^{-2}
15	6.92×10^{-4}	10.65×10^{-2}	5.33×10^{-2}
TOTAL	17.97×10^{-4}		

Using the film coefficients of 60 and 110 for the vent and supply holes respectively, the admittances for nodes $13,14,15$ are summarized in the following tabulation.

Node	$\underline{A_{v}\left(f t^{2}\right)}$	$\underline{h_{a}(\mathrm{Btu} / \mathrm{hr}-\mathrm{f}}$	$\mathrm{Y}_{\mathrm{v}}\left(\mathrm{Btu} / \mathrm{hr} \mathrm{-}^{\circ} \mathrm{F}\right)$	$\mathrm{A}_{\text {s }}$	$\mathrm{h}_{\text {s }}$	Y_{s}
13	7.47×10^{-2}	60	4.48	3.74×10^{-2}	110	4.12
14	9.6×10^{-2}	60	5.76	4.8×10^{-2}	110	5.28
15	10.65×10^{-2}	60	6.38	5.33×10^{-2}	110	5.87

Thus,
Nodes
Admittance $\mathrm{Y}\left(\mathrm{Btu} / \mathrm{hr}^{\circ} \mathrm{F}\right)$

	$13 / 82$	4.5
Vent	$14 / 82$	5.8
	$15 / 82$	6.4
	$13 / 83$	4.1
Supply	$14 / 83$	5.3
	$15 / 83$	5.9

All other admittances are computed using MTI Program PN0317. The pertinent input and output data are included as Tables XVIII and XIX.

d. HEAT BALANCE EQUATIONS

(1) Heat Exchanger

The region which is represented by metal nodes $13,14,15$ is a complex heat transfer network. In this region, the 77 supply holes exchange heat with the 154 vent holes by forced convection, and by conduction through the metal. This is shown in the model given in Figure 59. The way in which the nodes of the model are connected to construct the heat balance equations is shown in the flow chart at the bottom of the same figure. Figure 60 shows the connection between this flow chart and the over-all fluid network for the end seal heat-balance calculation.
TABLE XVIII

$\underset{\sim}{ \pm}$	$\stackrel{n}{\sim}$	0	$\underset{\sim}{N}$	$\underset{\sim}{a}$	$\begin{gathered} a \\ \sim \\ \sim 1 \end{gathered}$
\cdots	\pm	\xrightarrow{n}	$\stackrel{0}{\square}$	$\stackrel{\infty}{-}$	$\cdots{ }_{\text {c }}^{\infty} \times \infty$
\rightarrow	\cdots	\checkmark	-	-	

$\left.\begin{array}{llll} & & 13.65 & 13.96 \\ 16 & 17 & 13.65 & 13.9\end{array}\right]$
$14.01 \quad 14.15$

$\begin{array}{cc}0 & 0 \\ \cdots & 0 \\ m & \\ 0 & 0 \\ m & m\end{array}$

$\begin{array}{ll}0 & 0 \\ \dot{N} & \dot{N}\end{array}$

n		m	
∞	∞		
0	0		
0	0	0	0
0	\sim	0	0
0	0	0	0

13.43	13.575
13.273	13.43

$12.9 \quad 13.03$

-1.3)		12.86	12.94				0.	2.0	11.9
				12.86	12.9	: $:$	-1 1	2	11.9
		12.86	12.94				- 2		11.9
37	40								
39	40								
				12.86	12:9	12.86	-1	17.0	11.9
		12.86	$12 \cdot 9$:		. 0005		. 037
39	41								
		12.76	12.86				. 003	2.0	11.9
		12.76	12.766	-			. 314		11.9
		12.76	12.86				. 003	17.0	11.9
41	42								
				13.76	13.763	13.763	- 3	$2 \cdot 0$	11.9
41	42								
				13.757	13.76	13.757	- 3	17.0	11.9
42	43								
41	85								
				12.9	13.189		-125		11.9
41	80								
13	43								
		12.9	13.03				-125	2.0	11.9
43	44								
13	44						-		
44	13								
18	79								
44	85		-						
18	19								
44	45								
19	79								
45	46								
45	84								
45	46								
44	85								
35	46								
	84								

$\begin{array}{ll}0 & 0 \\ \bullet & 0 \\ \pm & \pm\end{array}$
$\infty \omega \infty \infty$ in
 $\because \because \Vdash O O \because$

TABLE XIX
OUTPUT DATA FROM ADMITTANCE CALCULATION
NODES 1\% TO $7 \% *$
ENGINEER RL THORKILDSEN

*This calculation is used to determine the effect of conduction and connection which takes place between nodes 1 and 2 which are indicated on Figure 58.
title

0．2082E－01	0．1714E－02	$0.7433 \mathrm{E} 01$	$0.2036 E 01$	$0.1341 E 00$	0．4907E 00
0．2082E－01		0.7433 E 01		0.1341 E 00	
	0．1738E－02		0．2487E 01		$0.4017 E 00$
	$0.1045 \mathrm{E}-01$				0.9569 E 02
0.6185 E 00				0.1616 El	
$0.3162 \mathrm{E}-03$		0.7526 El		0.1328 E 00	
0．3162E－03		0.5017 El		$0.1992 E 00$	
0．6185E 00				0.1616 E 01	
	0．1187E－03		0.2828 E 01		0.3534 E 00
	0．1188E－03		0.1886 E 01		$0.5299 \mathrm{E}^{0}$
0.6185 E 00				0.1616 E 01	
0.6185 E 00				0.1616 E 01	
0．3162E－03		$0.7526 E 01$		0.1328 E 00	
0．3162E－03		0.5017 El		0.1992 E 00	
	$0.1463 \mathrm{E}-01$				0.6835 E 02
$0.2419 \mathrm{E}-01$				0.4132 E 02	
	$0.1273 \mathrm{E}-01$		$0.1727 E 01$		0.5745 E 00
1017E－01	0．2842E－01			．9825E 02	$0.3517 E 02$
$0.1017 E-01$				0.9825 E 02	
	$0.1273 \mathrm{E}-01$		$0.1727 E 01$		0.5745 E 00
		0.2906 E 01		$0.3440 E 00$	
	$0.2842 \mathrm{E}-01$				$0.3517 E 02$
	$0.2842 \mathrm{E}-01$	0.3732 E 01		0.2679 E 00	$0.3517 E 02$
	0．1562E－01				0.6400 E 02
$\begin{aligned} & 0.1306 \mathrm{E}-01 \\ & 0.1306 \mathrm{E}-01 \end{aligned}$				0.7651 E 02	
				0.7651 E 02	
	0．2842E－01				0．3517E 02
0．3107E－01				0.3218 E 02	
	$\begin{gathered} 0.2499 E-01 \\ 0.2499 E-01 \end{gathered}$				$\begin{aligned} & 0.4000 \mathrm{E} \quad 02 \\ & \hline 0.4000 \mathrm{E} \end{aligned}$
$0.1948 \mathrm{E}-01$				0.5132 E 02	
$0.1492 \mathrm{E}-01$	0．1050E－01			0.6701 E 02	0.9522 E 02

 －Nードート

 ○○○

 -

$0.8431 \mathrm{E}-02$
$0.8431 \mathrm{E}-02$
$0.2518 \mathrm{E}-01$
$0.1992 \mathrm{E}-01$
$0.1209 \mathrm{E}-01$
$0.1934 \mathrm{E}-01$
$0.1209 \mathrm{E}-01$
$0.1209 \mathrm{E}-01$
 OO.
 N N N NiN N

Figure 59 Model and Heat Flow Path for Heat Transfer in the Region of Metal Nodes 13,14 , and 15

Figure 60 Flow Chart of the Entire Fluid Heat Transfer Path for the OC Diaphragm End Seal

(2) Flow Terms

A summary of the flow terms which are required in the heat balance equations are tabulated below.

Nodes	Flow $\left(\mathrm{lb} / \mathrm{sec}-\mathrm{in} \times 10^{4}\right)$	Flow w $(\mathrm{lb} / \mathrm{hr})^{*}$	wc_{p} $79 / 73$
$73 / 74$	1.7	51	$\binom{\mathrm{BTU} / \mathrm{hr}}{{ }^{\circ} \mathrm{F}}^{* *}$
$79 / 74$	1.7	51	13.8
$74 / 75$	1.7	51	13.8
	3.4	102	13.8
$79 / 83$	10.0		27.6
$83 / 85$	10.0	300	81.0
$85 / 77$	10.0	300	81.0
		300	81.0

[^1]| $77 / 78$ | 5.0 | 150 | 40.5 |
| :--- | :--- | :--- | :--- |
| $78 / 80$ | 5.0 | 150 | 40.5 |
| | | | |
| $77 / 76$ | 5.0 | 150 | 40.5 |
| $76 / 75$ | 5.0 | 150 | 40.5 |
| | | | |
| $75 / 84$ | 8.4 | 252 | 68.0 |
| $84 / 82$ | 8.4 | 252 | 68.0 |
| $82 / 80$ | 8.4 | 252 | 68.0 |
| | | | |
| $79 / 81$ | | 28.6 | 7.7 |
| $81 / 80$ | | 28.6 | 7.7 |

(3) Heat Balance Matrix

The over-all heat balance is obtained using MTI program PN0060 (READ 1). The defined temperatures in the 86×86 matrix inversion are:

$$
\begin{aligned}
\mathrm{T}_{1} & =1120^{\circ} \mathrm{F} \\
\mathrm{~T}_{72} & =1136^{\circ} \mathrm{F} \\
\mathrm{~T}_{79} & =1200^{\circ} \mathrm{F} \\
\mathrm{~T}_{80} & =1136^{\circ} \mathrm{F}
\end{aligned}
$$

APPENDIX D

TEMPERATURE ANALYSIS OF THE SEMIRIGID

INTERSTAGE SEAL

1. INTRODUCTION

The semirigid interstage seal design which is used in the temperature calculations is shown in Figure 2. Pertinent design parameters for this configuration are listed below.

Orifice supply flow	$8.68 \times 10^{-5} \mathrm{lb} / \mathrm{sec}-\mathrm{in}$
Main supply flow	$9.02 \times 10^{-5} \mathrm{lb} / \mathrm{sec}-\mathrm{in}$
Seal conductivity (Duranickle)	$25.0 \mathrm{BTU} / \mathrm{hr}-\mathrm{ft}^{\circ} \mathrm{F}$
Runner conductivity (Inco 901)	$11.2 \mathrm{BTU} / \mathrm{hr}{ }^{\circ} \mathrm{F}$
Carrier conductivity (Inco 750)	$11.8 \mathrm{BTU} / \mathrm{hr}-\mathrm{ft}{ }^{\circ} \mathrm{F}$
Rotational speed	$4.4 \times 10^{5} \mathrm{rev} / \mathrm{hr}$
Mean radius of the seal	14.3 inches

The results of the calculations are shown in Figure 41 in the form of a steady-state temperature map of the semirigid interstage seal.

2. ANALYSIS

a. HEAT GENERATION

Heat is generated in the seal clearance by both Couette and turbulent action according to Reference 9. In the calculations which follow, it is initially assumed that the seal has undergone a 3 -milliradian counterclockwise tilt with respect to the runner. This is the free-body tilt which would result if the seal were subjected to a linear axial temperature gradient of about 23 degrees Fahrenheit along its axial dimension. The mean operating film thickness which corresponds to this amount of tilt is 1.6 mils. The reason for making the assumption of an initial tilt is to compute realistic values of heat generation, thermal resistance across the seal clearance, and seal flow. The table below gives the dimensions used for Nodes 58-61.

Node	$\begin{aligned} & \mathrm{b}_{\mathrm{m}} \\ & \text { (mils) } \end{aligned}$	$\begin{gathered} \mathrm{R} \\ \text { (in) } \end{gathered}$	$\underset{\text { (mils) }}{\ell}$	$\begin{gathered} \mathrm{b} \\ \text { (mils) } \end{gathered}$	$\begin{aligned} & \mathrm{b}_{\mathbf{r}} \\ & \text { (mils) } \end{aligned}$	$\frac{\mathrm{A}_{\ell}}{\mathrm{A}_{\mathrm{t}}}$	$\frac{A_{r}}{A_{t}}$	$\begin{gathered} \mathrm{Q} \\ \left(\frac{\mathrm{Btu}}{\mathrm{hr}}\right) \end{gathered}$
58	1.60	14.49	100	2.16	4.41	. 62	. 38	2220
59	1.60	14.37	140	1.79	4.04	. 62	. 38	3131
60	1.60	14.23	130	1.37	0.0	1.00	0.0	2974
61	1.60	14.10	130	1.00	0.0	1.00	0.0	3094
							OTAL	11419

Here nodes 58 and 59 are for the land and groove and nodes 60 and 61 are for the orifice regions. Also, it is assumed that the average recess depth is 2.25 mils.

Heat generation for the turbulent region (Node 57) is computed using Reference 9 for merged turbulent boundary layers. A value of $2144 \mathrm{BTU} / \mathrm{hr}$ was obtained, raising the total amount of heat generation to $13,503 \mathrm{BTU} / \mathrm{hr}$.

b. HEAT-TRANSFER COEFFICIENTS

(1) Seal Clearances

Equivalent heat-transfer coefficients, which correspond to pure conduction across Nodes $58-61$ are calculated using a gas conductivity of $0.037 \mathrm{BTU} / \mathrm{hr}-\mathrm{ft}-{ }^{-} \mathrm{F}$. The total seal clearance at each node is computed assuming the 2 milliradian tilt discussed above, and is modified according to the relative amounts of land and recess areas present. The results are tabulated below based on the equation of the weighted clearance.

$$
b=\left(A_{l} b_{\ell}+A_{r} b_{r}\right) / A_{t}
$$

	b_{ℓ} (mils)	b_{r} (mils)	A_{ℓ} A_{t}	A_{r} $\mathrm{A}_{\mathbf{t}}$	b (mils)	$\mathrm{h}_{\text {equiv }}$ $\left(\mathrm{BTU} / \mathrm{hr}-\mathrm{ft}^{2}{ }^{\circ} \mathrm{F}\right.$)
Node				.62	.38	2.58
58	1.73	3.98	.62	340		
59	1.49	3.74	.62	.38	2.34	380
60	1.21	0.0	1.00	0.0	1.21	730
61	0.95	0.0	1.00	0.0	0.95	930

For Node 57, a forced convection value of $\mathrm{h}=130 \mathrm{BTU} / \mathrm{hr}-\mathrm{ft}{ }^{2}-{ }^{\circ} \mathrm{F}$ was obtained from Reference 9, assuming a clearance of 60 mils.

(2) Supply Holes

There are 360 supply holes which pass through the seal. These carry the total supply flow of $9.02 \times 10^{-5} \mathrm{lb} / \mathrm{sec}-\mathrm{in}$ to the orifice region. Using a mean radius of 14.3 inches, this gives a flow of $4.64 \mathrm{lb} / \mathrm{hr}$ and a value, for each hole, of

$$
\mathrm{w}=1.29 \times 10^{-2} \mathrm{lb} / \mathrm{hr}
$$

Using a gas viscosity of $\mu=9.7 \times 10^{-2} \mathrm{lb} / \mathrm{hr}-\mathrm{ft}$, the approximate Reynold's numbers for this flow, as it passes through the seal are

Nodes

$$
\operatorname{Re}=\frac{4 \mathrm{w}}{\pi \mu \mathrm{D}}=\frac{0.169}{\mathrm{D}}
$$

9, 6, 16
22
24

25
51
82

The corresponding surface heat-transfer coefficients for these low laminar conditions are calculated from $\mathrm{Nu}=4$, or

$$
\overline{\mathrm{h}}=4 \frac{\mathrm{k}}{\mathrm{D}}
$$

Nodes	$\frac{\overline{\mathrm{h}}\left(\mathrm{BTU} / \mathrm{hr} \mathrm{ft}^{\circ}{ }^{\circ} \mathrm{F}\right)}{9,6,16}$
22	22
24	45
21	

Because these $\overline{\mathrm{h}}$ values are quite low (equivalent to about 4 to 12 inches of metal), the film resistance is large, compared to the resistance due to conduction between holes. The metal conduction resistance between holes is therefore neglected in all further calculations.

c. ADMITTANCE MATRIX

The admittance between the flow in the supply holes and the seal is calculated below. In the tabulation below, the values of hole diameter D, length ℓ, area A, and coefficient \bar{h} are the values for a single hole. The value of admittance Y is for the combination of 360 holes.

Node	$\begin{gathered} \mathrm{D} \\ (\mathrm{ft}) \end{gathered}$	l (ft)	$\begin{gathered} \mathrm{A} \\ \left(\mathrm{ft}^{2}\right) \end{gathered}$		$\begin{aligned} & \mathrm{Y}=360 \overline{\mathrm{~h}} \mathrm{~A} \\ & \mathrm{BTU} / \mathrm{hr}-^{\circ} \mathrm{F} \end{aligned}$
9, 16, 16	6.83×10^{-3}	0.12	2.14×10^{-4}	22	1.8
22	3.33×10^{-3}	0.18	1.57×10^{-4}	45	2.5
24	2.08×10^{-3}	0.06	3.27×10^{-5}	71	0.7

For the heat-balance calculations, Nodes 9, 16, 16 are connected to gas node 63. Nodes 22, 24 are connected to gas node 64. All other admittances are calculated using MTI computer program PN0317. Input and output data are shown in Tables XX and XXI, respectively.

d. HEAT BALANCE EQUATIONS

(1) Defined Temperatures

Temperatures are defined at Nodes $52,53,54,55,56$, and 62 as follows:

$$
\begin{gathered}
\mathrm{T}_{52}=1100^{\circ} \mathrm{F} \\
\mathrm{~T}_{53}=1180^{\circ} \mathrm{F} \\
\mathrm{~T}_{54}=\mathrm{T}_{55}=\mathrm{T}_{56}=\mathrm{T}_{62}=1200^{\circ} \mathrm{F}
\end{gathered}
$$

The value for Node 52 is believed to be a reasonable estimate based on previous calculations.

(2) Flow Terms

A summary of flow terms which are used in the heat balance equations are tabulated below.

Nodes	$10^{5} \times$ Flow (lb/sec-in)	$\begin{gathered} \text { Flow* w } \\ (\mathrm{lb} / \mathrm{hr}) \end{gathered}$	$\begin{gathered} \mathrm{c}_{\mathrm{p}}{ }^{* *} \\ \left(\mathrm{BTU} / \mathrm{hr}{ }^{\circ} \mathrm{F}\right) \end{gathered}$
62/57	8.68	28.1	7.58
57/58	8.68	28.1	7.58
58/59	8.68	28.1	7.58
59/60	8.68	28.1	7.58
60/61	8.68	28.1	7.58
62/63	9.02	29.2	7.88
63/64	9.02	29.2	7.88
64/61	9.02	29.2	7.88
61/53	17.7	57.3	15.46

[^2]TABLE XX
InPuT Data For admittance calculation on the

$6-7.14 \cdot 44 \ldots 14 \cdot 54$ $0123-$
25.0

-16

464144

13.814 .04 ．．055 42．0 11.2

$13.3413 .47 \quad .313 \ldots$

ヶ个け个

donnが

2125155		13.34	13.6	. 156	42.0	11.2
2135153		13.34	13.6	. 156	17.0	11.2
21457323	3257					
215571010	1057					
2165835	3558					
$\underline{217538}$	858					
21859383	3859					
219 59171	1759					
22060414	4160					
2216 J 23	2360					
2226144	4461					
_2236124	2461					

TABLE XXI
OUTPUT DATA FROM ADMITTANCE CALCULATION ON THE SEMIRIGID INTERSTAGE SEAL

TITLE PW SR INTER FINAL

ENGINEER RL THORKILDSEN

 NNNNNNNNNNNNNNNNNNNNNNNNNNNNMMmmmmmm

 inmminmmmmminmmmminmmmmmynnmymintytmmyinm

 かo o

APPENDIX E

STIFFNESS AND DISPLACEMENT CALCULATIONS
 FOR COMPOSITE THIN RINGS

1. INTRODUCTION

The analyses which follow apply to small rotations of thin rings which do not change crosssectional shape during rotation. These conditions are reasonably satisfied if the sine of the rotation angle is approximately equal to the rotation angle (in radians), the over-all radial length of the cross section is less than 10 percent of the radius of the centroid, and the cross section is compact. The analysis is in three parts: rotation stiffness of a ring for a prescribed center of rotation, rotation of a two-section ring for prescribed values of initial radial and angular mismatch, and thermal distortion of a two-section ring.

2. ANALYSIS

a. ROTATIONAL STIFFNESS FOR A PRESCRIBED CENTER OF ROTATION

(1) Hoop Stress and Force

Referring to Figure 61, the prescribed center of rotation is at C_{r} and the rotation is θ. As point A moves to point B, a hoop strain ϵ is developed.

$$
\epsilon=\frac{x}{r} \approx \frac{x}{a}
$$

Figure 61 Rotation of the Cross Section of a Ring Around a Prescribed Center of Rotation
where, from geometry

$$
\frac{\mathrm{x}}{\mathrm{R} \theta}=\frac{\mathrm{y}}{\mathrm{R}}
$$

or

$$
x=y \theta
$$

so that

$$
\epsilon=\frac{y \theta}{a}
$$

The corresponding hoop stress at any point in the cross section is therefore

$$
\begin{equation*}
\sigma=\mathrm{E} \epsilon=\frac{\mathrm{Ey}}{\mathrm{a}} \theta \tag{71}
\end{equation*}
$$

The corresponding net hoop force over the cross section A is

$$
\mathrm{F}=\int_{\mathrm{A}} \sigma \mathrm{dA}=\frac{\mathrm{E} \theta}{\mathrm{a}} \int_{\mathrm{A}} \mathrm{ydA}=\frac{\mathrm{E} \overline{\mathrm{y}} \mathrm{~A} \theta}{\mathrm{a}}(\mathrm{lb})
$$

where y is the distance measured from a line $X^{\prime} X^{\prime}$. Line $X^{\prime} X^{\prime}$ is defined to be in a plane parallel to the plane of the ring and to pass through the center of rotation C_{r}.

Also, $\bar{y} A$ is the first moment of area of cross section A with respect to line $X^{\prime} X^{\prime}$, and a line XX which passes through the centroid C of the cross section.

(2) Moment Due to Hoop Stress

The moment around line $X^{\prime} X^{\prime}$ of the forces due to the hoop stress σ is (from Figure 61)

$$
\begin{equation*}
\mathrm{M}=\int_{\mathrm{A}}(\sigma \mathrm{dA}) \mathrm{y} \text { (in-lb) } \tag{72}
\end{equation*}
$$

combining Equations 71 and 72,

$$
\begin{equation*}
M=\int_{A} \frac{E y \theta}{a}(d A) y=\frac{E \theta}{a} \int_{A} y^{2} d A=\frac{E I \theta}{a} \tag{73}
\end{equation*}
$$

where I is the second moment of area of A with respect to line $X^{\prime} X^{\prime}$.
(3) Equilibrium

Suppose that the prescribed rotation is caused by a uniformly distributed moment M_{b} (in-lb/ in) only. Consider half of the ring (as shown in Figure 62) as a free body. Then for equilibrium

$$
\begin{equation*}
2 M=2 \int_{0}^{\frac{\pi}{2}} M_{b}(b \sin \phi) d \phi \tag{74}
\end{equation*}
$$

Substituting M from Equation 73 into 74,
or

$$
\begin{gather*}
2 \frac{E I}{a} \theta=2 \mathrm{bM}_{\mathrm{b}} \int_{0}^{\frac{\pi}{2}} \sin \phi \mathrm{~d} \phi \\
M_{b}=\frac{E I}{a b} \theta \tag{75}
\end{gather*}
$$

Next, suppose that from geometry, the motion of the cross section is written in terms of an outward radial motion x_{c} of the centroid plus a rotation θ_{c} around the centroid

$$
\begin{align*}
& \theta_{\mathrm{c}}=\theta \tag{76}\\
& \mathrm{x}_{\mathrm{c}}=\overline{\mathrm{y}} \theta \tag{77}
\end{align*}
$$

Consider first the moment M_{θ} required only to produce θ_{c} around the centroid.
From Equation 75 and 76

$$
\begin{equation*}
M_{\theta}=\frac{E I}{a b} \theta_{c}=\frac{E I}{a b} \theta \tag{78}
\end{equation*}
$$

Figure 62 Free-Body Diagram of One Half of a Ring
but, because the rotation is defined to be around the centroid (which has the radius a),

$$
\begin{equation*}
b=a \tag{79}
\end{equation*}
$$

Also, the line $\mathrm{X}^{\prime} \mathrm{X}^{\prime}$ coincides with line XX , so that $\overline{\mathrm{y}}=0$.
But

$$
\begin{equation*}
\mathrm{I}=\overline{\mathrm{I}}+\mathrm{A} \overline{\mathrm{y}}^{2} \tag{80}
\end{equation*}
$$

where \bar{I} is the second moment of area of A with respect to line XX
so that combining Equations 78,79 , and 80 with $\bar{y}=0$,

$$
\begin{equation*}
\mathrm{M}_{\theta}=\frac{\mathrm{E} \overline{\mathrm{I}}}{\mathrm{a}^{2}} \theta \tag{81}
\end{equation*}
$$

Note that this moment could be applied anywhere in the plane of the cross section as long as its radius is equal to a.

Next, from geometry
but

$$
\begin{gathered}
\mathrm{x}_{\mathrm{c}}=\epsilon \mathrm{a} \\
\epsilon=\frac{\sigma}{\mathrm{E}} \simeq \frac{\mathrm{~F}}{\mathrm{AE}}
\end{gathered}
$$

Figure 63 Free-Body Diagram of One Half of a Ring with a Uniform Radial Force (Q_{o}) Applied Outward through the Centroid
where F (net hoop force over the cross section) is the force required to produce the outward motion of the centroid, i.e.

$$
\begin{equation*}
F=\frac{A E}{a} x_{c} \tag{82}
\end{equation*}
$$

For equilibrium (see Figure 63),

$$
\begin{equation*}
2 F=2 \int_{0}^{\frac{\pi}{2}} Q_{0}(a \sin \phi) d \phi \tag{83}
\end{equation*}
$$

so that combining Equations 82 and 83

$$
\begin{equation*}
Q_{o}=\frac{F}{a} \tag{84}
\end{equation*}
$$

Note that the combined moment (of M_{θ} and Q_{o}) around any other point of rotation, say $\mathrm{C}_{\mathrm{r}}=\mathrm{C}$, would be

$$
\begin{equation*}
M_{o}=M_{\theta}+Q_{o} \bar{y} \tag{85}
\end{equation*}
$$

where \bar{y} is the perpendicular distance from the line of action of Q_{0} to a parallel line through C_{r}. Using Equations 77, 82 and 84 , Equation 85 can be rewritten
or

$$
\begin{gathered}
M_{o}=\frac{E \bar{I}}{a^{2}} \theta+\bar{y}\left(\frac{A E}{a}\right) \bar{y} \theta=\frac{E \theta}{a^{2}}\left(\overline{\mathrm{I}}+A \bar{y}^{2}\right) \\
M_{o}=\frac{E \theta}{a^{2}} I
\end{gathered}
$$

which checks with Equation 75.
Finally, suppose that a pure moment is applied to the ring, i.e.

$$
\begin{aligned}
M_{o} & =M_{o} \\
Q_{0} & =0
\end{aligned}
$$

The last eqution indicates that the net hoop force over the cross section is zero, so that from Equation $8!$, the radial displacement of the centroid must be zero. This can be true if and only if the center of rotation coincides with the centroid.

b. TWO-SECTION THIN RING WITH PRESCRIBED INITIAL RADIAL AND ANGULAR MISMATCH

The composite ring shown in Figure 64 is assumed to consist of two sections (1 and 2) which are mismatched due to thermal distortion by the radial displacement x and rotation θ. (See Section c). It is desired to find the equilibrium angle θ_{o} of the composite ring.

For compatibility of displacement and rotation,

$$
\begin{align*}
& \mathrm{x}=\mathrm{x}_{1}-\mathrm{x}_{2} \tag{86}\\
& \theta=\theta_{1}-\theta_{2} \tag{87}
\end{align*}
$$

$$
\begin{aligned}
\text { YY }= & \text { LINE THROUGH THE AXIAL CENTER OF THE CYLINDRICAL SURFACE OF } \\
& \text { INTERACTION OF THE TWO SECTIONS. }
\end{aligned}
$$

Figure 64 Mismatch Conditions for a Two-Section Ring

From Equations 82 and 84 , the radial forces required to displace the centroids of sections 1 and 2 by the amounts x_{1} and x_{2} are:

$$
\begin{align*}
& Q_{1}=\frac{A_{1} E}{a_{1}^{2}} x_{1} \tag{88}\\
& Q_{2}=\frac{A_{2} E}{a_{2}^{2}} x_{2} \tag{89}
\end{align*}
$$

For equilibrium

$$
\Sigma Q=0=Q_{1}+Q_{2}
$$

so that from Equations 88 and 89 ,

$$
\begin{equation*}
\frac{A_{1}}{a_{1}^{2}} x_{1}+\frac{A_{2}}{a_{2}^{2}} x_{2}=0 \tag{90}
\end{equation*}
$$

Solving Equations 86 and 90 simultaneously,

$$
\begin{aligned}
& x_{1}=\left[\frac{a_{1}{ }^{2} A_{2}}{a_{2}^{2} A_{1}+a_{1}^{2} A_{2}}\right] x \\
& x_{2}=\left[\frac{-a_{2}^{2} A_{1}}{a_{2}^{2} A_{1}+a_{1}^{2} A_{2}}\right] x
\end{aligned}
$$

so that, substituting x_{1} and x_{2} back into Equations 88 and 89

$$
\begin{align*}
& Q_{1}=\left[\frac{E A_{1} A_{2}}{a_{2}^{2} A_{1}+a_{1}^{2} A_{2}}\right] x \\
& Q_{2}=-\left[\frac{E A_{1} A_{2}}{a_{2}^{2} A_{1}+a_{1}^{2} A_{2}}\right] x \tag{91}
\end{align*}
$$

These are the forces which are required, if applied at the centroids of sections 1 and 2 , to close the initial mismatch x .

The elastic forces which oppose the forces Q_{1} and Q_{2} form a couple M_{x} which causes a rotation θ_{x}.

$$
\begin{equation*}
M_{x}=Q_{1} y_{0} \tag{92}
\end{equation*}
$$

where $y_{0} \equiv \pm\left(y_{1}+y_{2}\right)$. The value of y_{0} is taken to be positive if the centroids of sections 1 and 2 are to the left and right, respectively, of the interaction line YY in Figure 64.

Thus, combining Equations 91 and 92,

$$
M_{x}=\left(\frac{E y_{0} A_{1} A_{2}}{a_{2}^{2} A_{1}+a_{1}^{2} A_{2}}\right) x
$$

so that from Equations 80 and 81,

$$
\begin{equation*}
\theta_{x}=\frac{a^{2}}{E \bar{I}} M_{x}=\frac{a^{2} y_{0} A_{1} A_{2}}{\bar{l}\left(a_{2}^{2} A_{1}+a_{1}^{2} A_{2}\right)} x \tag{93}
\end{equation*}
$$

The moments required to close the mismatch rotation θ between sections 1 and 2 are (from Equation 75)

$$
\begin{align*}
& M_{1}=\frac{E I_{1}}{a_{1}{ }^{2}} \theta_{1} \tag{94}\\
& M_{2}=\frac{E I_{2}}{a_{2}{ }^{2}} \theta_{2} \tag{95}
\end{align*}
$$

For equilibrium

$$
\Sigma M=0=M_{1}+M_{2}
$$

so that from Equations 94 and 95

$$
\begin{equation*}
\frac{I_{1}}{a_{1}^{2}} \theta_{1}+\frac{I_{2}}{a_{2}^{2}} \theta_{2}=0 \tag{96}
\end{equation*}
$$

Solving Equations 87 and 96 simultaneously,

$$
\begin{align*}
& \theta_{1}=\left(\frac{a_{1}^{2} I_{2}}{a_{2}^{2} I_{1}+a_{1}^{2} I_{2}}\right) \theta \tag{97}\\
& \theta_{2}=-\left(\frac{a_{2}^{2} I_{1}}{a_{2}^{2} I_{1}+a_{1}^{2} I_{2}}\right) \theta \tag{98}
\end{align*}
$$

If $\theta_{1}{ }^{*}$ is the initial angle of section 1 , the final angle caused by the moments M_{1} and M_{2} is

$$
\begin{equation*}
\theta_{\mathrm{M}}=\left(\theta_{1}^{*}+\theta_{1}\right)=\left(\theta_{2}^{*}+\theta_{2}\right) \tag{99}
\end{equation*}
$$

so that, combining Equations 99 and 97 or 98,

$$
\begin{equation*}
\theta_{\mathrm{M}}=\left[\theta_{1}^{*}+\left(\frac{a_{1}^{2} I_{2}}{a_{2}^{2} I_{1}+a_{1}^{2} I_{2}}\right) \theta\right]=\left[\theta_{2}^{*}-\left(\frac{a_{2}^{2} I_{1}}{a_{2}^{2} I_{1}+a_{1}^{2} I_{2}}\right) \theta\right] \tag{100}
\end{equation*}
$$

With respect to a perpendicular to the plane of the ring, the final angle θ_{o} due to the initial mismatch (x, θ) is obtained by adding Equations 93 and 100 .

$$
\theta_{0}=\theta_{x}+\theta_{M}=\frac{a^{2} y_{0} A_{1} A_{2}}{\bar{I}\left(a_{2}^{2} A_{1}+a_{1}^{2} A_{2}\right)} x+\frac{a_{1}{ }^{2} I_{2}}{a_{2}^{2} I_{1}+a_{1}^{2} I_{2}} \theta+\theta_{1} *
$$

or if

$$
\mathrm{a}_{1}^{2} \simeq \mathrm{a}_{2}^{2} \simeq \mathrm{a}^{2}
$$

$$
\begin{equation*}
\theta_{0}=\frac{y_{0} A_{1} A_{2}}{\overline{\mathrm{I}}\left(\mathrm{~A}_{1}+\mathrm{A}_{2}\right)} \mathrm{x}+\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}+\mathrm{I}_{2}} \theta+\theta_{1}^{*} \tag{101}
\end{equation*}
$$

or

$$
\begin{equation*}
\theta_{0}=\frac{y_{0} A_{1} A_{2}}{\bar{T}\left(A_{1}+A_{2}\right)} \times-\frac{I_{1}}{I_{1}+I_{2}} \theta+\theta_{2}^{*} \tag{102}
\end{equation*}
$$

But

$$
\begin{aligned}
& I_{1}+I_{2}=\bar{I} \\
& A_{1}+A_{2}=A
\end{aligned}
$$

so that Equations 101 and 102 can be rewritten

$$
\theta_{0}=\theta_{1,2}^{*}+\left[\frac{\frac{\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{y}_{0}}{\mathrm{~A}} \mathrm{x} \pm \mathrm{I}_{2,1} \theta}{\overline{\mathrm{I}}}\right]
$$

NOMENCLATURE

A	Defined by ($\mathrm{A}_{1}+\mathrm{A}_{2}$)
$\mathrm{A}_{1,2}$	Cross-Section areas of sections 1 and $2\left(\mathrm{in}^{2}\right)$
C	Combined centroid of the two-section ring
$\mathrm{C}_{1,2}$	Centroids of $\mathrm{A}_{1,2}$
E	Elastic Modulus (psi)
I	Second moment of A with respect to a line which both passes through C and the ring center line, and is parallel to the plane of the ring (in ${ }^{4}$). Defined by $\left(I_{1}+I_{2}\right)$
$\mathrm{I}_{1,2}$	Second moments of $\mathrm{A}_{1,2}$ with respect to a line which both passes through C and the ring center line, and is parrallel to the plane of the ring (in ${ }^{4}$).
$\mathrm{M}_{1,2}$	Uniformly distributed moments which are required on sections 1 and 2 to close the mismatch rotation (in $\mathrm{lb} / \mathrm{in}$)
M_{x}	Uniformly distributed moment which is produced by radial forces $\mathrm{Q}_{1,2}$ and the lever arm y_{0} (in lb/in)
$\mathrm{Q}_{1,2}$	Uniformly distributed radially outward forces required to produce centroid displacements $\mathrm{x}_{1,2}(\mathrm{lb} / \mathrm{in})$
YY	Interaction line (Figure 4). A line, perpendicular to the ring center line, which defines the axial center of the cylindrical surface of interaction between sections 1 and 2 .
${ }^{\text {a }}{ }_{1,2}$	Radii of the centroids $\mathrm{C}_{1}, \mathrm{C}_{2}$, of sections 1 and 2 (in)
$\mathrm{h}_{1,2}$	Radial heights of sections 1 and 2 (in)
$\ell_{1,2}$	Axial lengths of sections 1 and 2 (in)
x	Total radial mismatch of free body sections 1 and 2 defined by ($\mathrm{x}_{\mathrm{r}}-\mathrm{x}_{\boldsymbol{\theta}}$)
$\mathrm{x}_{1,2}$	Radial displacements of $\mathrm{C}_{1,2}$ from their initial (free body) positions to their positions at final equilibrium. Positive radially outward (in)
y_{o}	Defined by $\pm\left(y_{1}+y_{2}\right)$. Use $(+)$ if C_{1}, C_{2} are to the left and right, respectively, of the interaction line $Y Y$ (in). Use (-) for the reversed positions. See Figure 4.

NOMENCLATURE (Cont'd)

$\mathrm{y}_{1,2} \quad$ Distance measured axially from $\mathrm{C}_{1,2}$ to the interaction line YY (in).
$\theta \quad$ Initial angular mismatch between free body sections 1 and 2. Defined by $\left(\theta_{2}{ }^{*}-\theta_{1}{ }^{*}\right)$
$\theta_{1,2}$
θ_{x}
θ_{M}
$\theta_{\text {o }}$

Rotations from their initial (free body) positions ($\theta_{1}{ }^{*}, \theta_{2}{ }^{*}$) to their positions at final equilibrium. Positive counterclockwise (radians)

The portion of θ_{0} which is caused by the moment M_{x} (radians)
The portion of θ_{0} which is caused by moments $M_{1,2}$ (radians)
Final equilibrium angle which the complete ring makes with the ring center line (radians). Defined by ($\theta_{\mathrm{x}}+\theta_{\mathrm{M}}$), positive counterclockwise.

c. THERMAL DISTORTION OF A TWO-SECTION RING

Suppose that a two-section ring as shown in Figure 65 has linear axial temperature gradients G_{1}, G_{2} in the two sections. For a uniform coefficient of thermal expansion in the ring, the free-body angular positions of the two sections are

$$
\begin{align*}
& \theta_{1}{ }^{*}=\mathrm{a} a \mathrm{G}_{1} \tag{103}\\
& \theta_{2}{ }^{*}=\mathrm{a} a \mathrm{G}_{2} \tag{104}
\end{align*}
$$

so that the initial angular mismatch is

$$
\theta \equiv \theta_{2}^{*}-\theta_{1}^{*}=\text { a } a\left(\mathrm{G}_{2}-\mathrm{G}_{1}\right)
$$

where $\mathrm{a}=$ radius of the combined centroid C (in)
Next, the values of initial radial position of section 1 and 2 are expressed by $x_{1}{ }^{*}$ and $x_{2}{ }^{*}$ below

$$
\begin{aligned}
& \mathrm{x}_{1}^{*}=\mathrm{a} a\left(\overline{\mathrm{~T}}_{1}-\overline{\mathrm{T}}_{\mathrm{o}}\right) \\
& \mathrm{x}_{2}^{*}=\mathrm{a} a\left(\overline{\mathrm{~T}}_{2}-\mathrm{T}_{\mathrm{o}}\right)
\end{aligned}
$$

where $T_{0}=$ initial uniform temperature of the ring, ${ }^{\circ} \mathrm{F}$

$$
\overline{\mathrm{T}}_{1,2}=\text { average temperatures of the two sections, }{ }^{\circ} \mathrm{F}
$$

so that

$$
\mathrm{x}_{\mathrm{r}} \equiv \mathrm{x}_{2}^{*}-\mathrm{x}_{1}^{*}=\mathrm{a} a \Delta \overline{\mathrm{~T}}
$$

where

$$
\Delta \overline{\mathrm{T}} \equiv\left(\overline{\mathrm{~T}}_{2}-\overline{\mathrm{T}}_{1}\right)
$$

and the value of x_{r} is taken to be positive if $\Delta \overline{\mathrm{T}}$ tends to cause a clearance. The value of $\mathrm{x}_{\boldsymbol{\theta}}$ is

$$
x_{\theta}=x_{\theta_{1}}+x_{\theta_{2}} \equiv\left[\theta_{1} *\left(y_{1}-\frac{h_{1}}{4} \theta_{1}^{*}\right)+\theta_{2}^{*}\left(y_{2}-\frac{h_{2}}{4} \theta_{2}^{*}\right)\right]
$$

where values of $\theta_{1}{ }^{*}, \theta_{2}{ }^{*}$ are given by Equations 103 and 104. The value of x is positive if the centroids C_{1} and C_{2} are to the left and right, respectively, of the interaction line YY.

The initial radial mismatch x is

$$
x=x_{r}-x_{\theta}
$$

$$
\begin{aligned}
& \text { Radial Growths } \quad \delta_{\mathrm{B}} \cong \mathrm{a} a\left(\mathrm{~T}_{\mathrm{B}}-\mathrm{T}_{\mathrm{o}}\right) \\
& \delta_{\mathrm{A}} \cong \mathrm{a} a\left(\mathrm{~T}_{\mathrm{A}}-\mathrm{T}_{\mathrm{o}}\right) \\
& \text { Angle of Rotation } \quad \theta=\tan ^{-1}\left(\frac{\delta_{\mathrm{B}}-\delta_{\mathrm{A}}}{\ell}\right) \cong \frac{\delta_{\mathrm{B}}-\delta_{\mathrm{A}}}{\ell} \\
& \text { so that } \quad \theta=\frac{\mathrm{a} a}{\ell}\left(\mathrm{~T}_{\mathrm{B}}-\mathrm{T}_{\mathrm{A}}\right) \\
& \text { or } \quad \theta=\mathrm{a} a \mathrm{G}
\end{aligned}
$$

Figure 65 Rotation of a Thin Ring with a Linear Axial Temperature Gradient

APPENDIX F
 THERMAL ROTATION CALCULATIONS FOR
 SEMIRIGID INTERSTAGE SEAL

1. INTRODUCTION

The final Task I semirigid interstage seal design is shown in Figure 2. The steady-state temperature distribution used in these calculations is given in Figure 41. For the rotation calculation, the cross section is divided into four sections with the temperatures that are indicated in Figure 66. Finally, the calculation of thermal rotation is done using equations from Appendix E. Because of the temperature gradients predicted in Reference 9, the thermal rotation of the interstage seal should not exceed 2.8 millradians.

2. ANALYSIS

The semirigid seal is divided into four sections as indicated in Figure 66. In the analysis which follows, sections 1 and 2 are matched and the resulting rotation and radial motion calculated. This is also done for sections 3 and 4. Finally, sections 1 and 2 are matched to sections 3 and 4 and the final rotation of the entire seal is computed.

a. SECTIONS 1 AND 2

The following dimensions are used in conjunction with the ring analysis given in Appendix E.
$\mathrm{a} \quad=14.0$ inches
$\mathrm{A}_{1}=0.0464\left(\mathrm{in}^{2}\right)$
$\mathrm{A}_{2}=0.0525\left(\mathrm{in}^{2}\right)$
$\overline{\mathrm{T}}_{2}=1300\left({ }^{\circ} \mathrm{F}\right)$
$\mathrm{A}=0.0989\left(\mathrm{in}^{2}\right)$
$\overline{\mathrm{T}}_{1}=1294\left({ }^{\circ} \mathrm{F}\right)$
$\Delta \overline{\mathrm{T}}=\overline{\mathrm{T}}_{2}-\overline{\mathrm{T}}_{1}=6\left({ }^{\circ} \mathrm{F}\right)$
$\overline{\mathrm{I}} \quad=7.79 \times 10^{-4}\left(\mathrm{in}^{4}\right)$
$\theta_{1}{ }^{*}=\theta_{2}{ }^{*}=0($ radian $)$
$a \quad=8.5 \times 10^{-6}($ radian $)$
$\theta=0$ (radian)
$y_{0} \quad=-0.072(\mathrm{in})$
$\mathrm{x}=\mathrm{a} a \Delta \overline{\mathrm{~T}}=14\left(8.5 \times 10^{-6}\right)(6)=6.7 \times 10^{-4}$
$\theta_{12}^{*}=\frac{\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{y}_{0} \mathrm{x}}{\mathrm{A} \overline{\mathrm{I}}}=-1.61\left(10^{-3}\right)$ radians (clockwise)
The amount of outward relative radial motion of the section 2 with respect to section 1 is given by

$$
\mathrm{x}_{12}^{*}=\frac{\mathrm{A}_{2}}{\mathrm{~A}} \mathrm{x}=3.74\left(10^{-4}\right)
$$

Figure 66 Thermal Rotation Model of the Semirigid Interstage Seal

b. SECTIONS 3 AND 4

For this calculation,

$\theta_{34}^{*}=\theta_{4}^{*}+\frac{\frac{\mathrm{A}_{3} \mathrm{~A}_{4} \mathrm{y}_{0}}{\mathrm{~A}} \times-\mathrm{I}_{3} \theta}{\mathrm{I}}=1.53 \times 10^{-3}$ (radian, counterclockwise)
The corresponding outward relative radial motion of the section 4 with respect to section 3 is given by
$\mathrm{x}_{34}^{*}=\frac{\mathrm{A}_{4}}{\mathrm{~A}} \mathrm{x}=-2.75 \times 10^{-5}($ inch $)$

c. COMPLETE SEAL RING

The conditions used to compute rotation of the complete seal are:
a $\quad=14.0$ (inch)
$\mathrm{A}_{34}=0.269\left(\mathrm{in}^{2}\right)$
$\mathrm{A}_{12}=0.0989\left(\mathrm{in}^{2}\right)$
A $\quad=0.367\left(\mathrm{in}^{2}\right)$

$$
\begin{array}{ll}
\mathrm{I}_{12}=0.01328\left(\mathrm{in}^{4}\right) & \overline{\mathrm{T}}_{34}=1316.5\left({ }^{\circ} \mathrm{F}\right) \\
\mathrm{I}_{34}=0.012\left(\mathrm{in}^{4}\right) & \overline{\mathrm{T}}_{12}=1294\left({ }^{\mathrm{O}} \mathrm{~F}\right) \\
\overline{\mathrm{I}} & =0.0253\left(\mathrm{in}^{4}\right) \\
\mathrm{y}_{0}=0.488 \text { (in) } & \mathrm{x}_{12}{ }^{*}=3.74 \times 10^{-4} \text { (inch) } \\
\mathrm{y}_{12}=0.356 \text { (in) } & \mathrm{x}_{34}{ }^{*}=2.55 \times 10^{-5} \text { (inch) } \\
\mathrm{y}_{34}=0.132 \text { (in) } & \mathrm{x}_{\mathrm{r}}=\mathrm{x}_{34}^{*}-\mathrm{x}_{12}^{*}+\mathrm{a} a\left(\overline{\mathrm{~T}}_{34}-\overline{\mathrm{T}}_{12}\right)=22.75 \times 10^{-4} \text { (inch) } \\
\theta_{12}^{*}=-1.61 \times 10^{-3} \text { (radian) } & \mathrm{x}_{\theta_{12}}=-0.58 \times 10^{-3} \text { (inch) } \\
\theta_{34}^{*}=1.18 \times 10^{-3} \text { (radian) } & \mathrm{x}_{\theta_{34}}=1.58 \times 10^{-4} \text { (inch) } \\
\theta=(1.18+1.61) \times 10^{-3}=2.79 \times 10^{-3} \text { (radian) } & \mathrm{x}=2.7 \times 10^{-3} \text { (inch) }
\end{array}
$$

Thus,

$$
\theta_{0}=\theta_{34} *+\left\{\frac{\frac{\mathrm{A}_{12} \mathrm{~A}_{34} \mathrm{y}_{0}}{\mathrm{~A}} \times-\mathrm{I}_{12} \theta}{\overline{\mathrm{I}}}\right\}=3.43 \times 10^{-3}(\text { radian })
$$

REFERENCES

1. R. J. Roark, Formular for Stress and Strain, Third Edition, McGraw-Hill Book Co., Inc., N.Y., N.Y., 1954
2. Sokolnickoff, I.S., Mathematical Theory of Elasticity, Second Edition, McGraw-Hill Book Co., Inc., N.Y., N.Y., 1956
3. Love, A.E.H., The Mathematical Theory of Elasticity, Fourth Edition, Dover Press, 1944
4. Den Hartog, J.P., Advanced Strength of Materials, McGraw-Hill Book Co., Inc., N.Y., N.Y., 1952
5. H. Cheng, C. Chow, and F.S. Murray, The Hydrodynamic Gas Journal Bearing and the Hydrodynamic Gas Thrust Bearing, Vol. I, MTI-65TR5-II, Mechanical Technology Inc., Latham, N.Y., 1965.
6. R.M. Hawkins, et. al., Development of Compressor End Seals, Stator Interstage Seals, and Stator Pivot Seals in Advanced Air Breathing Engines, PWA-2995, Pratt \& Whitney Aircraft, E. Hartford, Conn., 1967
7. R.M. Hawkins, et. al., Development of Compressor End Seals, Stator Interstage Seals, and Stator Pivot Seals in Advanced Air Breathing Engines, PWA-3147, Pratt \& Whitney Aircraft, E. Hartford, Conn., 1967
8. R.M. Hawkins, et. al., Development of Compressor End Seals, Stator Interstage Seals, and Stator Pivot Seals in Advanced Air Breathing Engines, PWA-2875, Pratt \& Whitney Aircraft, E. Hartford, Conn., 1966
9. J.W. Daily and R.W. Nece, "Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks," Journal of Basic Engineering, March, 1960
10. M. Van Duyn and W. B. Large, Rotor Stress Analysis, United Aircraft of Canada Limited, July 1966

Semiannual Reports Distribution List
 NAS 3-7605

1. NASA-Lewis Research Center Air-Breathing Engine Procurement Section Attn: John H. DeFord
2. NASA-Lewis Research Center Air Breathing Engine Division Attn. J. Howard Childs MS 60-4 W. H. Roudebush MS 60-6 D. P. Townsend MS 60-6 L. E. Macioce MS 60-6
3. NASA-Lewis Research Center Technical Utilization Office Attn. John Weber
4. NASA-Lewis Research Center Reports Control Office
5. NASA-Lewis Research Center Attn. Library

Norman T. Musial
6. NASA-Scientific and Technical Information Facility Box 5700
Bethesda, Maryland
Attn. NASA Representative
7. NASA-Lewis Research Center Fluid System Components Division Attn. I. I. Pinkel
E. E. Disson
R. L. Johnson
W. R. Loomis
L. P. Ludwig
R. A. Swikert
M. J. Hartmann
8. Air Force Materials Laboratory Wright-Patterson Air Force Base, Ohio

$$
\begin{array}{cc}
\text { Attn. NAML, R. Adamczak } & 1 \\
\text { NANE, R. Headrick \& } & \\
\text { J. M. Keible } & 1 \\
\text { NAAE, P. Rouse } & 1
\end{array}
$$

9. Air Force Systems Engineering Group Wright-Patterson Air Force Base, Ohio
Attn. SESWS, J. L. Wilkins
SEJPF, S. Proto
10. Air Force Aero Propulsion Lab.

Wright-Patterson Air Force Base, Ohio
Attn. AFAPL (APFL), K. L. Berkey \& L. DeBrohum 1 AFAPL (APTC), C. Simpson 1 APTP, I. J. Gershon
11. FAA Headquarters 800 Indepéndence Avenue, S.W. Washington, D.C.
Attn. If. Chavkin SS/120 1
M. Lott FS/141
12. NASA Headquarters

Wforsington, D. C. 20546
Aftn. N. F. Rekos (RAP)
A. J. Evans (RAD) 1
J. Maltz (RRM)

NASA-Langley Research Center Langley Station
Hampton, Virginia 23365
Atty. Mark R. Nichols
14. Mechanibel Technology, Inc. 968 Albany Shaker Road Latham, New York Attn. D. Wilcock
15. Clevite Corporation

Cleveland Graphite Bronze Div. 17000 St. Clair Ave. Cleveland, Ohio 44110
Attn. T. H. Koenig
16. Koppers Company, Inc. Metal Products Div.
Piston Ring and Seal Department Baltimore 3, Maryland
Attn. T. C. Kuchler
17. Stein Seal Company

20th Street and Indiana Ave. Philadelphia 32, Pennsylvania Attn. Dr. P. C. Stein
18. Wright Aeronautical Div.

Curtiss-Wright Corporation
333 West 1st Street
Dayton 2, Ohio
Attn. S. Lombardo
19. General Electric Company Advanced Engine and Technology
Department
Cincinnati, Ohio 45215
Attn. L. B. Venable

> G. J. Wilo C. . C. Moore H-25
20. Huyck Metals Company
P.O. Box 30

45 Woodmont Road
Milford, Connecticut
Attn. J. I. Fisher
21. Aerojet-General Corporation 20545 Center Ridge Road Cleveland, Ohio 44116
Attn. W. L. Snapp
22. Lycoming Division Avco Corporation Stratford, Connecticut Attn. R. Cuny
23. Battelle Memorial Institute 505 King Avenue Columbus 1, Ohio Attn. C. M. Allen
24. Bendix Corporation Fisher Building Detroit 2, Michigan Attn. R. W. Isaacs
25. Boeing Aircraft Company

224 W. Wilkinson Dayton, Ohio 45402 Attn. H. W. Walker
26. Douglas Aircraft Company

Holiday Office Center 16501 Brookpark Road Cleveland, Ohio 44135 Attn. J. J. Pakiz z
27. General Dynamics Corporation 16501 Brookpark Road Cleveland, Ohio 44135 Attn. George Vila
28. General Motors Corporation Allison Division
Plant \#8
Indianapolis, Indiana
Attn. E. M. Deckman
1
29. Lochheed Airciaft Company

16501 Brookpark Road
Cleveland, Ohio 44135
Attn. Mr. L. Kelly
30. Martin Company 16501 Brookpark Road Cleveland, Ohio 44135 ,
Attn. Z. G. Horvath
31. North American Rockwell

16901 Brookpark Road Cleveland, Ohio 44135 Attn. George Bremer "
32. Fairchild-Hiller Corporation

Repüblic Aviation Division Farmingdale, Long Island New York 11735
Attn. D. Schroeder
33. Westinghouse Electric Corporation 55 Public Square Cleveland, Ohio 44113 Attn. Lynn Powers
34. I.I.T. Research Foundation 10 West 35 Street Chicago, Illinois 60616 Attn. Dr. Strohmeler
35. Pesco Products Division Borg-Warner Corporation 24700 N. Miles Bedford, Ohio
36. Stanford Research Institute Mehlo Park, California Attn. R. C. Fey
37. Franklih Institute Lab. 20th and Parkway Philadelphia 3, Pennsylvania Attn. J. V. Carlson
38. Industrail Tectonics Box 401 Hicksville, New York 11801 Attn. J. Cherubin
39. Sealol Incorporated P.O. Box 2158 Providence 5, Rhode Island Attn. Justus Stevens
40. Continental Aviation \& Engineering 12700 Kercheval Detroit 15, Michigan Attn. A. J. Fallman
41. Northrop Corporation 1730 K. Street, N.W. Suite 903-5 Washington, D. C. Attn. S. W. Fowler, Jr.
42. Chicago Rawhide Manufacturing Co.

1311 Elston Ave. Chicago, Ilinois Attn. R. Blair

$$
1
$$

43. Midwest Research Institute 425 Volker Blvd. Kansas City 10, Missouri Attn. V. Hopkins

1
44. Southwest Research Institute San Antonio, Texas Attn. P. H. Ku
45. E. I. DuPont de Nemours \& Co. 1007 Market Street Wilmington 98, Delaware Attn. A. J. Cheney R. J. Laux
46. Fairchild Engine \& Airplane Corp. Stratos Division Bay Shore, New York
47. Borg-Warner Corporation Roy C. Ingersoll Research Center Wolf and Algonguin Roads Des Plaines, Illinois

58. Rocketdyne

6633 Canoga Ave. Canoga Park, California Attn. M. Butner
59. Ca (bon Products Div. of Union Carbide Corporation 270 Park Avenue New York 27 . New York Attn. J. Curien
60. Garlock, Incorporated Palmyra, New York 14522 Attn. E. W. Fisher
61. Chemicals Div. of Union Carbite Corporation
Technical Service Lab. P.O. Box 65 Tarrytown, New York Attn. J. E. Haaga
62. Durametallic Corporation Kalamazoo, Michigan Attn. H. Hummer
63. Morganite, Incorporated 33-02 48th Avenue L.I.C. 1, New York Attn. S. A. Rokaw
64. United States Graphite Company 1621 Holland Saginaw, Michigan Attn. F. F. Ruhl
65. Cartiseal Corporation 3515 West Touhy Lincolnwood, Illinois Attn. R. Voltik

1
66. Department of the Army
U.S. Army Aviation Material Labs.

Fort Eustis, Virginia 23604
Attn. John W. White, Chief 1
Propulsion Division 1
67. Prof. George A. Brown

Dept. of Mechanical Engineering
University of Rhode Island
Kingston, R.I. 02881
68. AVCOM

AMSAVEGTT
Mart Building
405 South 12 th Street
St. Louis, Mo. 63100
Attn. E. England
1
69. Commanding Officer
U.S. Naval Underwater Weapons

Research and Engineering Section
Newport, R.I. 02840
Attn. Technical Library, CS12 (B-566) 1
70. Stevens Institute of Technology

Machanical Engineering Department Hobdken, N. J. 07030
Attn. Rrof. E. Bales
71. Small Stearh \& Gas Turbine

Engineering B
Léter Branch
A:O. Box 9175
Philadelphia, Penn. $\$ 2113$
"Attn. S. M. DeCorso
1
72. George B. Manning
U.S.A.E.R.G.

Research \& Technology Dept. Ft. Belvoir, Virginia 22060

[^0]: *The symbols are identified in the Nomenclature

[^1]: * $\mathrm{w}(\mathrm{lb} / \mathrm{hr})=3.10^{5} \mathrm{w}(\mathrm{lb} / \mathrm{sec}-\mathrm{in})$ at a radius of 13.5 inches
 ** $\mathrm{c}_{\mathrm{p}}=0.27\left(\mathrm{BTU} / \mathrm{lb}-{ }^{\circ} \mathrm{F}\right)$ at $1200^{\circ} \mathrm{F}$

[^2]: * Mean radius assumed to be 14.3 inches
 ** $\mathrm{c}_{\mathrm{p}}=0.27 \mathrm{BTU} / \mathrm{lb}-{ }^{\circ} \mathrm{F}$ at $1200^{\circ} \mathrm{F}$

