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ABSTRACT

The integrals for the mean intensity and flux are expressed as the multi-
plication of the source-function vector by matrix representations of the
integral operators. This method leads to a rapid solution of the integral
equation for the source function and to an efficient calculation of the mean

intensity and flux.

I. INTRODUCTION

In a model-atmosphere calculation the source function Sv (Tv), the mean
intensity Jv ('rv), and the flux Hv('rv) must be evaluated for each iteration
at each frequency v and at each monochromatic optical depth U The

mean intensity and flux are given by the integrals
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where En(x) = f e —xz/zn dz is the exponential integral of order n. The
1

source function is given by the integral equation
SV(TV) - [1 - aV(TV)] BV (TV) + 0,V(TV) JV (TV) !

where o,v(Tv) is the fraction of opacity due to scattering and Bv(‘rv) is the
Planck function. The computations involved in the evaluation of Sv and of
the moment integrals Jv and Hv are extremely time consuming if the
exponential integrals must be evaluated for every value of ,Tv - t, . We
will show below that these integrations can be expressed as the multiplication
of the source-function vector by a matrix representation of the integral
operator and that this approach leads to procedures that considerably reduce

the integration time.
II. DERIVATION OF THE INTEGRATION MATRIX

The moment integrals of the specific intensity can be expressed (dropping

the v subscript) as
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Then,
J(T) = Ml(-r) and H(t) = MZ(T)

We divide the integration range into N subintervals,
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We now assume that S can be represented by a parabola in the interval

( Tj’ ‘Tj+1). Thus,
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where the Cjki are interpolation coefficients. The C'ki can be, for example,
the average of the forward-parabolic and the backward-parabolic interpolation
coefficients. Inserting the expression for S(t) into the jth term of the sum,

we find that
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This expression can be simplified to
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is an integral that can be evaluated analytically. To evaluate Mg ik we use

the indefinite integral

fEn(x) dx=-E__ (x)



and integrate by parts, obtaining
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We now collect terms to achieve the form of a matrix operator on S,
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The matrixE,‘n is the desired matrix operator
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III. APPLICATIONS

We define the matrices

A'=‘;a1
and

fPE.:',Z
so that

J=AS
and

H= &S

The integral equation for S becomes

S=(I-a)B+aAS
or

I-aA)S=(I-a)B ,

where I is the identity matrix and a is now a diagonal matrix. The formal

solution is

S=(I-aM)t(@-a)B

The solution of the integral equation is obtained by direct inversion, by
Gauss-Jordan elimination, or by Gauss-Seidel iteration. The timings for
3 3

, N7/2,

and the number of iterations times N , where N is the dimension of the

these methods are approximately proportional, respectively, to 2N



matrix. We have found the Gauss-Seidel method to be the fastest procedure
for evaluating S for the wide range of conditions encountered in model-

atmosphere calculations.

The integration matrices A and ® can be pretabulated for some fixed
T set, where the values of T are chosen to give accurate integrations. We
can then evaluate Sv’ JV , and Hv by interpolating a, and Bv from the T,
set onto the fixed T set, integrating, and then interpolating the resulting
values back onto the T, set. Optical depths larger than the last value of the
fixed T set must be treated separately. However, for large depths this
problem is straightforward, since the asymptotic behavior of J'v and Hv is

particulary simple; namely,

2
1 dSv 1dSv
Jv_Sv-I-g_—Z_ and Hv=§d'r
d'rv v

We illustrate this procedure in the following manner. Let the superscript
in denote the internal fixed T set and the superscript ex denote the external
T, set. Furthermore, let P be the interpolation operator from the 4 set
onto the fixed T set and Q be the operator from the fixed T set back onto the
T, set. The case where S is prescribed and where we wish to find J and H

can be expressed symbolically as follows:
First we interpolate in
in ex

S =PS ;

then we integrate



and finally we interpolate out

in

=QJ

J.ex

ex in

H™=QH

or

J.ex = QAPSeX

Hex = Q @Psex

The case where a and B are prescribed and where we wish to find S, J, and

H can be symbolized as follows:

We interpolate in

Jin P 1 &%
B1n _ PBex )
integrate
Sln = (- aln A)-1 (I - 0‘1n) Bln
J1n - ASln
H1n - q)sln

and interpolate out

Sex = Qsln
Jex = QJ.ln
Hex = QHln



If the interpolation operators are matrices, then QAP and Q®P can be con-

sidered the integration operators A®* and 2°® on the 7% set, so that

ex _,ex .ex

and

¥z goX goX
However, the calculation of these external operators is slower than if we
simply interpolate in and out, because two additional matrix multiplications

are needed.

The author's model-atmosphere program ATLAS uses the matrix
methods described above to calculate Sv , Jv, an@ Hv . These calculations
are made with 40 values of T and 40 values of 7. The interpolation
routine uses a weighted average of forward- and backward-parabolic inter-
polation coefficients. The integral equation for the source function is solved
by use of a modified Gauss-Seidel iteration that is terminated when the
maximum relative change is less than 10—5. This accuracy is sufficient for
Sm, since the accuracy of the parabolic interpolation is somewhat less than

this when only 40 points are used.

Figures 1 and 2 show the convérgence properties of this method for two
calculations of Sv in a model atmosphere with effective temperature 10000° K
and log g of 2. Figures 3 and 4 show the corresponding values of 1 - a, .

Bv s Sv . .]'v, and Hv . This model provides a good test of the Gauss-Seidel
method because scattering is a large fraction of the opacity at this low gravity,
where hydrogen is mostly ionized. Only at frequency points where scattering
exceeded 99. 99 per cent at the surface were more than four Gauss-Seidel

iterations required.
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Fig. 1. — Relative change for each subiteration of the source-function

calculation at the long-wavelength side of the Lyman discontinuity. Here

o~ o 3 n
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the scattering fraction is 0. 9999 near the surface and >0. 6
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Fig. 2. — The input scattering fraction, Planck function, and the resulting

source function, mean intensity, and flux corresponding to the source-function

calculation shown in Figure 1.
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Fig. 3. — Same as Figure 1, for the short-wavelength side of the Balmer

discontinuity where there is considerably less scattering, i.e., 0.03 at large
depths.



Sy Jy
s —4 B, \ ﬁ o
O S —eommm :
[7p]
&
w 3 T = 10000° H, q
LOG g=2
A= 3647.02 A
_6 — —
-7 | | | | | ] |
-6 -5 -4 -3 -2 —1 0 | 2
LOG T,

Fig. 4. — Same as Figure 2, for the short-wavelength side of the Balmer

discontinuity where there is considerably less scattering, i.e.., 0.03 at large
depths.




