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ABSTRACT 

The integrals for  the mean intensity and flux are expressed  a s  the multi- 

plication of the source-function vector by mat r ix  representations of the 

integral  operators.  

equation for the source function and to an efficient calculation of the mean 

intensity and flux. 

This method leads to a rapid solution of the integral  

' I .  INTRODUCTION 

In a model-atmosphere calculation the source function S ( T  ), the mean v v  
intensity J ( T  ), and the flux H (T  ) must  be evaluated for  each i teration 

at each  frequency v and at each monochromatic optical depth T . The 

mean  intensity and flux a r e  given by the integrals 
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where En(x) = J e-xz/zn dz is  the exponential integral  of o r d e r  n. The 

1 
source function is given by the integral  equation 

where a ( T  ) i s  the fraction of opacity due to scattering and B (T  ) is  the 

Planck function. 

the moment integrals J 

exponential integrals must  be evaluated for every value of I T  
will show below that these integrations can be expressed a s  the multiplication 

of the source-function vector by a matrix representation of the integral  

operator  and that this  approach leads to procedures that considerably reduce 

the integration time. 

v v  v v  
The computations involved in the evaluation of S and of 

V 
and H a r e  extremely t ime consuming i f  the 

V V 

- tl . We 
V 

11. DERIVATION O F  THE INTEGRATION MATRIX 

The moment integrals of the specific intensity can be expressed (dropping 

the v subscript)  as 

n- 1 
Mn(T) = 2 sign (t - T) S(t)  E n l t  - T I  dt . ' I  

0 

Then, 

J(T) = M 1 ( ~ )  and H ( T )  = M 2 ( ~ )  . 

We divide the integration range into N subintervals, 

j =  1 T 

j 
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We now assume that S can be represented by a parabola in  the interval  

( T j ,  j t l  ). 

3 N 
S(t)  = c tk- Cjki si , 

k =  1 i =  1 

can be, for  example, 
The 'jki 

where the C 

the average of the forward-parabolic and the backward-parabolic interpolation 

coefficients. 

we find that 

a r e  interpolation coefficients. 
jki 

Inserting the expression for  S(t)  into the j th t e r m  of the sum, 

3 N 
T j t l  

Mnl = z 1 sign ( T - dt E It - ~~1 c t k - ' c  CjkiSi . 
j n 

t k =  1 i =  1 j 

This expression can be simplified to  

3 N 

n l  j n l j k  
k =  1 i =  1 

where 
.r 

is a n  integral  that  can be evaluated analytically. To evaluate qnl jk we use 

the indefinite integral  

dx = - E  n t l  (x) 
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and integrate by par ts ,  obtaining 

We now collect t e r m s  to  achieve the fo rm of a ma t r ix  operator  on S, 

N 3  N 

Mnl = ‘nljk ‘jki ’i -~ 
j = 1  k = l  i=  1 

N 3 N  =c c ‘nljk c s  jki i 

N 

j = 1  
where 

3 N  

3 “ n l  j =c ’nlik C ikj ’ 
k =  1 i =  1 

The matrix= is the desired matr ix  operator n 

M n = Z  S . n 
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111. APPLICATIONS 

We define the ma t r i ces  

and 

q j p s c ; '  
-2 

so that 

J = A S  

and 

H = @ S  . 

The integral  equation for S becomes 

S = (I - a) B + a n S  
o r  

(I - a n )  S = (I - a) B , 

where I is the identity matrix and a is now a diagonal matrix. 

solution is 

The formal 

s = (I - a ~ 1 - l  (I - a) B . 

The solufion of the integral  equation is  obtained by d i rec t  inversion, by 

Gauss-  Jordan elimination, o r  by Gauss-Seidel iteration. The timings for 
these methods a r e  approximately proportional, respectively, to  2N , N /2,  

3 
and the number of i terations times N-, where N is the dimension of the 

3 3  
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matrix. 

f o r  evaluating S for  the wide range of conditions encountered in model- 

atmosphere calculations. 

W e  have found the Gauss-Seidel method to be the fas tes t  procedure 

The integration mat r ices  A and Q can be pretabulated for  some fixed 

T set ,  where the values of T a r e  chosen to  give accurate  integrations. 

can then evaluate S v ,  J v ,  and H 
s e t  onto the fixed T set ,  integrating, and then interpolating the result ing 

values back onto the T 

fixed T set  must  be t reated separately. However, for  la rge  depths this  

problem is straightforward, since the asymptotic behavior of J 
par t iculary simple; namely, 

We 

by interpolating a and Bv f r o m  the T 
V V V 

se t .  Optical depths l a rge r  than the last value of the 
V 

and HY is 
V 

We i l lustrate  this procedure in  the following manner.  Let the superscr ip t  

in denote the internal fixed T set  and the superscr ipt  ex denote the external  

T set .  Furthermore,  let P be the interpolation operator f r o m  the T se t  

onto the fixed T set and Q be the operator  f rom the fixed T set  back onto the 
T 

can be expressed symbolically as follows: 

V V 

set .  The case where S is prescr ibed and where we wish to  find J and H 
V 

First we interpolate in  

then we integrate 
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and finally we interpolate out 

or 

jex = Q A P S ~ ~  

The case where a and B a r e  prescr ibed and where we wish to find S, J, and 

H can be symbolized as follows: 

We interpolate in 

in  ex a = P a  

integrate 

Sin = (I - ain A)-' (I - sin) Bin 

and interpolate out 

Sex = QSin 
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If the interpolation operators  are  mat r ices ,  then QAP and Q@P can be con- 

s idered the integration operators Aex and aex on the T ex set, so that 

Jex = flex Sex 

and 

Hex= Qex Sex . 

However, the calculation of these external  opera tors  is slower than if we 

simply interpolate in and out, because two additional mat r ix  multiplications 

are needed. 

The author 's  model-atmosphere program ATLAS uses  the matrix 

methods described above to  calculate S J , and H . These calculations 

a r e  made with 40 values of T~~ and 40 values of T 

routine uses  a weighted average of forward- and backward-parabolic inter-  

polation coefficients. 

by use of a modified Gauss-Seidel i teration that is terminated when the 

maximum relative change i s  less  than 10 This accuracy is sufficient for  
sin , since the accuracy of the parabolic interpolation i s  somewhat l e s s  than 
this  when only 40  points a r e  used. 

V in  . V I  v 
The interpolation 

The integral equation for  the source function is solved 

-5 . 

Figures  1 and 2 show the convergence propert ies  of this method for  two 

calculations of Sv  in  a model atmosphere with effective temperature  10000" K 

and log g of 2 .  Figures  3 and 4 show the corresponding values of 1 - a 

B V ,  Sva J v ,  and H v .  
method because scattering i s  a large fraction of the opacity a t  this low gravity, 

where hydrogen is mostly ionized. 

exceeded 99 .99  per  cent at the surface were  m o r e  than four Gauss-Seidel 

i terat ions required.  

V' 
This model provides a good test of the Gauss-Seidel 

Only at frequency points where scattering 
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F i g .  1. - Relative change for each subiteration of the source-function 

calculation at the long-wavelength side of the Lyman discontinuity. 

the scattering fraction is 0. 9999 near the surface and > O .  5 at l a r g e  depths.  

Here 
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Fig. 2. - The input scattering fraction, Planck function, and the resulting 

source  function, mean intensity, and flux corresponding to  the source-function 

calculation shown in Figure 1. 
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Fig. 3. - Same a s  Figure 1, for the short-wavelength side of the Balmer 

discontinuity where there  is considerably l e s s  scattering, i. e . ,  0. 0 3  at large 

depths. 
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Fig. 4. -Same a s  Figure 2, for the short-wavelength side of the Balmer 

discontinuity where there  is considerably l e s s  scattering, i. e. .. 0. 03 at la rge  

depths. 


