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ABSTRACT

To find out how to minimize radiation sensitivity in MOS transistors,

a study was made on the interrelation between sensitivity to space rad-

iation in MOS devices and the method of fabricating the gate oxide film

of these devices. Both MOS _spacitors and transistors were studied using

automatic plotting of capacitance-voltage and channel current-gate volt-

age characteristics. For both types of device, the oxides studied were

fabricated under varied but closely controlled conditions. Both special

laboratory furnaces and production types of furnace were used for oxide

growth. A key item in the work was a controlled experiment in which the

addition of phosphorus to the MOS insulator layer led to a true "radiation

hardening". Radiation sensitivity is manifested as a negative shift in

C-V and I-V characteristics. The main conclusions of the project were
as follows:

(1) The gate oxide process technique used can change the

sensitivity of MOS structures to high-energy radiation

by an order of magnitude.

(2) The reproducibility of the degree of sensitivity to

radiation is greater when steam-growth of oxides is
used, rather than dry-oxygen growth.

(3) In general, the nearer the pre-irradiation C-V character-

istic of an MIS insulator is to the ideal (charge-free)

characteristic, the less sensitive is the MIS device to
radiation.

(4) The coating of thermal oxides with a phosphosilicate

layer appears to affect favo ab y the sensitivity of the

resultant MOS device to radiation. This result can be

described as a true "radiation-hardening".

(5) Several other process parameters can be ruled out as to
their influence on radiation sensitivity.

(6) The present levels of radiation sensitivity in mass-

produced devices can be improved by changes in process

technique.
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A. GENERAL

With increasing use of metal-oxide-semiconductor (MOS) tran-
sistors in satellite electronics, concern has arisen over the fact
that virtually all the available varieties of MOS devices show a strong
sensitivity to radiation arising from radiation-induced charges in the
thin gate oxide layer[1]. In attempting to minimize this effect of
radiation, it is clearly necessary to study first the basic character
of the effect and, secondly, whether it can be minimized by some change
in the oxide fabrication procedure or In the conditions under which
the device is operated in satellite electronics.

The effect which is invariably observed in MOS devices when
subjected to ionizing radiation is a shift in the capacitance-voltage
(C Vg)characteristic and/or the channel current-gate voltage (ld-Vg)
characteristic, along the voltage axis in the negative direction
(Figure 1). This effect can be interpreted in terms of the trapping
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Figure 1. Changes in operating region of MOS device which
are produced by ionizing radiation in the 10 4 to
106 rad absorbed dose region.
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of holes (loss of electrons) in the insulator layer[2-4]. Thus, the

degree of sensitivity of MOS devices to radiation should depend very

strongly upon the defect structure of the oxide. The defect structure,

in turn, should be strongly affected by the conditions under which the

oxide is fabricated. For example, in the case of conventional MOS

insulator layers, which are grow- ► directly from the silicon by oxida-
tion, it is to be expected that such variables as oxide growth rate,

growth temperature, water-vapor concentration in the growth atmosphere,
post-oxidation annealing temperatures, and annealing atmosphere should

all be important in establishing the defect structure of the oxide.

The authors have thus undertaken a systematic investigation of

the character of the radiation effect in MOS insulators and its varia-

tion throughout a wide range of fabrication conditions. At the same
time, these condi:ions have been carefully characterized and have

embraced the conditions likely to b:- found in practical high-performance

NO`' tranc.Astors used in space missi,,: 1 s. Thus, the investigation has

:n • luied not ,n1v test:= of laboratory-grown oxides, where growth and
c-ntan:natien conditions can be v.ried at will, but also tests of
oxides grown under device-development laboratory conditions and under

MOE t-ansistor productio^- ` ine !onditions.

B. BRItF CHRONOLOGY 0 1' RADIATION EFFECTS IN MOS AND MIS DEVICES

The effect of radiation on MOS devices was first noted by Hughes

and Giroux[5]. This observation removed the earlier impression that,

because surface-channel devices would not be affected by the produc-
tion of minority-carrier recombination centers in the bulk silicon,

they would be radiation resistant. Even though radiation-induced
charge-trapping had long been recognized as the source of "color

center" formation[6] in bulk silica and other insulators, it was not

appreciated that similar effects would strongly influence the perfor-
mance of MIS devices.

In early 1964, at about the same time that the MOS device data
were obtained, unusual degradation effects were also observed in

planar bipolar transistors under irradiation. Factual reports of this
effect were made by P,.^den[7] and Peck and Schmid[8] in 1964. Clari-

fying experiments on the effect were made in late 1964 by Green et al.[9]

and by Brucker, Dennehy, and llolmeE-Siedle[10,11], which indicated that
charge-trapping effects in the oxide were almost certainly the cause

of the phenomena observed. These phenomena were strong changes in

do current gain and collector-base leakage current under ionizing
radiation. It could be shown that the effect was a surface effect be-

cause it was produced by x-rays and by electrons of energy below the

minimum needed for bulk silicon damage and because of the strong reg,:lar
dependence of the gain degradation on injection level[11].

I
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During 1965, Szedon and Sandor[12], Spcth and Fang[13],

Messenger et al.[14], Kooi[15], and Hughes[16] produced data on

MOS devices which indicated that oxide charge buildup was clearly

involved in radiation effects in grown oxides and that fields in

the oxide during irradiation were vitally important in determining

the amount of charge trapped. Zaininger's publication[17] of capaci-

tor measurements gave the first evidence that a well-defined hole-

trapping effect was involved and was accompanied by variable amounts

of interface state production[l.81.

In 1966, Snow and coworkers[19] and Kooi[20] published confir-
matory capacitor data; evidence was produced for strong interface

state production in transistors by Dennehy and coworkers[21]; and

studies of the practical aspects of the use of MIS devices under
radiaticn were made by Gordon and Wannemacher[22] and Barry and

Page[23]. New aspects of bias dependence of radiation-induced shifts

on MOS and MIS devices were reported by Stanley[24]. At present,

several mcfe profound studies of mechanisms and process effects are

in progress, with new techniques such as measurement of oxide charging
currents[25,26], probing with fine electron }seams of varied energy[27],

and preparation and irradiation of high-purity sampl--s of MOS struc-

tures, as in the project to be reported here.

The overall conclusion is that the Droduction of significant

amounts of trapped charge in the oxide is universal, while other

effects, such as interface-state production, instability, and leakage,

may or may not occur, depending on oxide structure.

C. RELATION OF OXIDE (,r. ?GE AND VOLTAGE SHIFT

A relation which is used very extensively in this report will be

explained briefly here. In an MOS device, either capacitor or tran-

sistor, the trapping of fixed charge in the oxide leads to a parallel

shift in the drain-current vs. gate voltage o: capacitance vs. gate

voltage characteristic which is proportional to the amount of charge

deposited. Thick oxides give larger shifts than thin oxides, the

effect being inversely proportional to oxide thickness di. The follow-

ing relation may be used to calculate charge density ANss from voltage
shift (AV) :

ANss = 2.11 x 10
100V)	 (1)

i /I

where d i is in microns. It is thus seen that, for d = 0.211 micron or

2110 X, a fairly common thickness, a negative 1-V shift corresponds tc

3



a positive charge density of 10 11/cm2 , 10 V correspond to 1012/cm2,

etc. Two factors may modify this simple relation of fixed charge to

shift; (1) If the charge is not within a few hundred angstroms of

the silicon; (2) if the charge can exchange with the silicon, i.e., lies

in interface states.

D. SPACE RADIATION LEVELS

The radiation conditions under which active semiconductors usually
have to operate in space is very low-rate particle and Bremsstrahlung

irradiation. For most orbits of importance, integrated dose levels are

usually less than a megarad in magnitude. The only exceptions would

be circular orbits matched precisely with the heart of the inner

Van Allen belts, i.e., 1500 to 2500 miles altitude at low inclination

to the plane of the geomagnetic equator. These orbits are not of strong
operational interest.

A typical heavily used orbit with fairly high radiation fluxes is

that being used by operational weather satellites, e.g., ESSA II and

TIROS M (a 750 naut. mile altitude circular orbit of inclination 82° to
the geographic equator).

Electronic devices such as transistors will usually be enclosed by
the equivalent of 0.1 in. of aluminum or more. Estimates for ESSA II

in the 1968-75 era are that, with the anticipated thicknesses of

structural elements and packages, annual particle fluxes inside elec-
tronic packages will not impart ionization doses of more than 3 x 105

rads in the more exposed locations. A repetition of the enhancements
in trapped electron flux experienced after the "Starfish" hydrogen

bomb explosion could, of course, increase these ionization doses by a

large factor and require extra shielding thicknesses (say 0.2 in.

aluminum) to keep ionization doses in the ranges now anticipated.

It is thus assumed that the important radiation levels which
should be considered in a studv of the usefulness of MOS devices in
space are 103 to 10 6 rads. It seems certain from all work to date that

atom displacement damage does not play a major part in degrading MOS
devices at the particle flux-levels anticipated; and, hence, all parti-

cles can be equated by normalizing factors which convert particle
fluence to absorbed dose (e.g. 3 x 10 7 1-MeV electrons/cm2 = 1 rad
(Si02) = 106 10-MeV protons/cm-).

Some assumptions are made in this report about the signific?nce

of dose rate when attempting to simulate space radiation effects in

the laboratory. Several workers have determined that, for a wide

variety of MOS device types, most of the positive charge deposited

i
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remains firmly trapped in the oxide for months or years. Although no

definitive experiments have been performed at a typical operational

sp.--e dose rate, (usually less 10 rads per hour), no strong dose-rate

dependence of the radiation effect has yet been observed in the labora-

tory. On the other hand, in a few types of device, a partial recovery

of radiation-induced shifts is observed within a few weeks of the

irradiation of an MOS transistor. In these latter cases, measurement

of the device immediately after irradiation at a dose rate several

thousand times that encountered in space would give a somewhat pessi-

mistic answer as to the performance of that device in orbit after the
same total dosage level had been reached. It still appears, however,

that the major hazard to MOS devices in space radiation is the perma-

nently induced, firmly "frozen" charge buildup which would not be

subject to dose rate effects. Thus, in a study such as the present

one, which has the main purposes of placing various process variables

in order of merit in producing radiation resistance it is considered

valid to perform irradiations at the usual laboratory rates (10 4 rad/sec

or higher) which are, in any case, demanded by the time constraints of

the project. An experiment which had the objective of accurate pre-

diction of shifts to be encountered for a given device in a given

orbit might, on the other hand, requires slower irradiation rates.

-1
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II. PHYSICS OF THE MIS SYSTEM AND MEASUREMENT CONSIDERATIONS

A. GENERAL COMMENTS ON SOLID-SOLID INTERFACES

An MIS structure consists of a semiconductor substrate covered by

an insulator layer (between 50 X and 5000 X thick) upon which a metal
electrode (gate) is deposited. Early work on semiconductor surfaces was

mainly concerned with the semiconductor-vacuum and semiconductor-gas

systems[28]. In the latter, fortuitous room-temperature air oxidation

normally produced a 30 to 50-X-thick oxide film that was considered part
of the surface region. This could thus be regarded as a narrow region

of discontinuity between the two media. The physics of such surfaces

was reasonably well understood, and the localized electronic states

associated with the surface region were called surface states. A

distinction was made between fast and slow surface states, i.e., between

states that could exchange charge with the semiconductor space-charge

region rapidly or slowly, respectively. The slow states were generally
thought to be at the outside of the oxide film, and the fast ones right

at the boundary between the semiconductor and the oxide layer.

MIS physics is a natural extension of semiconductor surface physics

into a system of two solid-solid interfaces separated by an insulating

film whose thickness is no longer negligible. Because of the presence

of this film and its two surface space-charge regions, MIS physics is

more complicated than semiconductor surface physics[29]. Depending on
the ratio of the insulator thickness to the extent of the space-charge

regions, three different situations may arise.

(1) If this ratio is very large, then there is no interaction be-

tween the metal-insulator and insulator-semiconductor interface regions,

and the vcltage drops linearly across the oxide except in the two

(relatively small) surface space-charge regions. This is the condition

usually assumed but rarely justified in device calculations.

(2) If the ratio is in the order of unity, then the two surface

regions in the oxide begin to interact. In this case the two interfaces

cannot be separated, and the voltage profile is a complicated function

of all the parameters involved.

(3) For a ratio much smaller than unity, the integrated space charge

in the oxide can be neglected with respect to the surface charge in the

metal, resulting in a linear voltage variation through the oxide film.

The silicon surface potential in this case is essentially determined by

the interaction between the metal and the silicon, and by the density of
states at the interface.
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The concepts and terminology used are mostly inherited from semi-

conductor surface physics dealing with a semiconductor-gas system. Thus,

for example, the simple distinction between fast and slow surface states

is not applicable in an MIS system. However, because of the widespread

use of the term "surface states" we have retained this expression, but

use it in an operational manner. In this usage, the term "effective sur-

face states" lumps together the effect of work-function difference and

both the charge configurations that can be defined for the MIS system,

namely, interface states and oxide charge.

B. CHARGE RELATIONS IN THE MIS SYSTEM

The charge neutrality of an MIS system is frequently expressed as

Qss + Qsc + QM = 0,
	 (2)

when Qss+ Qsc, and QM indicate charges in the effective surface states,
semiconductor space-charge region, and metal electrode, respectively. In
reality these quantities represent effective charges with considerable
complexity as regards their distribution and energetics of formationf301.
Charge-exchange equilibria exist between each region, and several different
types of charge can be distinguished within the insulator phase itself. A
clear experimental separation of the charge in the effective surface states
into its components, including their polarity, is difficult. Each mea-
surement method can only distinguish between certain kinds of charge and,
thus, classifications depend to a large extent on the method of measure-
ment employed. Since high-frequency ( q, 1 MHz) C-V measurements are
re?atively easily and rapidly carried out[31], and since it has been
shown[32-33] that they can yield interesting, meaningful results if the
proper experimental conditions are established and if care is taken in
their interpretation, it is advantageous to classify the surface states
in the MIS system on the basis of this measurement method. Thus, we have
the following two categories.

(1) Interface states are stationary electronic states located right
at the (Gibbsian) plane separating the semiconductor from the insulator.
Interface states are analogous to the fast surface states mentioned above.
Because the insulator has a wide forbidden gap, the energy levels of inter-
face states can lie either within or outside the forbidden gap of the
semiconductor. This will determine whether or not they change their
charge state when a field is applied between metal and semiconductor.

(2) Oxide charge is charge that is trapped in the space-charge
region of the insulator film and cannot communicate with the semiconductor
surface. There are two forms of this charge, namely, mobile and immobile.

7
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The immobile species is mainly held in traps that are part of the intrinsic

defect structure of the insulator; the mobile charge is mostly due to ions

that are capable of migrating through the insulator, especially during

conditions of high field and elevated temperature.

C. MEASUREMENT METHODS

Several measurement methods are available that give certain distinctions

between the various types of charge in the MIS system.

The High-Frequency MIS Capacitance (C-V) Method

The small-signal differential admittance of an ideal MIS capacitor with

no surface states consists of the insulator capacitance, Ci, in series with

the surface space-charge layer capacitance, C sc [34-38]. C i is independent of

frequency. C sc also is independent of frequency in the accumulation and

depletion regimes (up to 10 11 Hz), but in the inversion regime, C sc takes on

different forms depending on whether or not the minority carriers can follow

the applied ac signal and/or bias. The dependence of this ideal MIS capac-

itance on effective bias is shown in Figure 2(a) for the case of a metal -

Si0 2 - Si structure. In all cases, this capacitance is uniquely determined

by the semiconductor surface potential, Sy s . Fcr an actual MIS diode in

which surface states are present but in which loss mechanisms are neglected,

the above equivalent circuit is modified by adding the surface state capac-
itance, C ss , in parallel with C sc . The dependence of Css on frequency and
surface potential is a function of the density of surface states and their

spatial and energy distribution[39]. Since this is, in general, not known,
little information about the physical properties of the interface can be

obtained from an analysis of the MIS C-V characteristics obtained at an

arbitrary frequency. However, if the measurement frequency is suFficientIN

high so that surface states cannot follow, then the surface-state capac-

itance becomes zero and the MIS capacitance reduces to its high-frequency
form, i.e., the series combination of C i and C sc . When this condition is
satisfied, the MIS capacitance is unambiguously related to the semiconductor

surface potential. However, there is a difference between an experimentally

determined high-frequency C-V characteristic and one computed for an identical

structure without surface states, and this is the voltage due to the total

charge in surface states. By finding the difference, AV, between the

measured voltage for a given capacitance value, say the "flat-band" capac-

itance, and its "ideal" value, one can determine the total charge that is
trapped in surface states as a function of surface potential. The density

of effective surface states for any particular value of capacitance, as
reflected to the insulator-semiconductor interface, N ss , is then given by

	

C	 E K,
ANss = 

ox 
AV = ° d l AV	 (3)

	

q	 q i
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where Cox is tht insulator capacitance per unit area, q is the elementary

electronic charge, %V is the shift in the C-V characteristic along the

voltage axis, Eo is the free space permittivity, and K i and d i are the

dielectric constant ant.; thickness of the insulator, respectively. For

grown silicon dioxide layers, this equation has constants as follows

GNss (states/cm2 ) = 2.11 x 1010 6V/d i (micrometers)

If the experimental C-V curve is to the left of the ideal curve, the charge

in surface states is positive; if it is to the right, the charge is negative.

2. The MIS Conductance (G-V) Method

The small-signal differential ac conductance, G, of an MIS diode is

essentially due to the exchange of charge between interface states and the

bulk semiconductor. If this conductance is measured as a function of bias

and frequency, information concerning the density distribution, time-

constants, and capture cross section of the interface states present can

be obtained[40].

3. The Channel Conductivity (I d -
 
V g ) Method

The property of MIS devices most commonly made use of in electronics

is the modulation of channel conductivity g by gate bias V g . Drain-to-

source current I d is, of course, controlled by g,

Id	
WuC	

V - V - V
ds	 (4)

g=	 _
Vds	 L	 g	

T	
2

where Vds is the drain-to-source voltage, Vg is gate voltage, V T is "pinch-

off" or threshold voltage (here taken as a negative quantity as in n-channel

depletion devices), u is the carrier mobility, C is the gate-to-substrate

capacitance per unit area, L is the channel length (i.e., source-drain

separation), and W is the channel width. As "pinch-off" is a gradual

phenomenon, the definition of V T must include a statement as to the channel

current or conductivity value chosen to represent the threshold between

the turned-on and pinched-off conditions.

Under certain conditions, measurements of the shift in threshold volt-

age (AVT ) induced in an MIS transistor by radiation can be used to determine

the density of charge LQ newly introduced into the oxide. The introduction

of positive charge into oxide states and interface states induces a balancing

increase of negative conduction electrons in the channel. The product of C

10



and AVT represents the amount of electronic charge that must be suppressed

in the channel in order to bring the conductivity back to the defined

threshold level.

Particular care is needed, however, in interpreting such data. Gate-

source capacitance must be eliminated from C; it must be assumed that semi-

conductor doping is not changed by the irradiation; and V ds must be small

enough to be insignificant in Eq. (4). If new interface states are gen-

erated by the irradiation (and several experiments discussed later suggest

that they frequently are), the shape of the I d-Vg characteristic will be

affected, since changing the bias may now cause emptying or filling of

these states. Thus, the calculated value of fixed oxide charge density

from Id-Vg characteristics will contain an uncertainty equal to the density

of interface states created. Despite these limitations, the I d-Vg character-

istic is of use for studying the inversion regime, while the C-V character-
istic gives more unambiguous data concerning the accumulation and depletion

regime.

D. MECHANISMS OF RADIATION-INDUCED CHARGE PRODUCTION

I .	 "Fixed" Oxide Clia rge

The parallel shift in electrical characteristics that occurs in MIS

devices under radiation appears to be the most significant effect as well

as the most amenable to analysis by virtue of the static nature of the

charge configuration. The degree of parallel shift observed in MIS

devices varies very widely with the nature of the insulator film. Indeed,

for the normal-grown silicon dioxide layers, it will be seen that there

is a striking dependence on the conditions used for the growth process.

The degree of parallel shift is also very strongly dependent on the field

applied across the oxide during the particle irradiation. In this report,

the applied field is usually given in terms of the bias applied to the

metallic gate of the device during irradiation, and is called the irradiation
bias, VI . Figure 3 is a generalized farm of the behavior of those MIS de-

vices that undergo virtually parallel shifts. The form shown is common to

most of the data published and encourages the view that a common process

occurs in most MIS devices.

Several features are worth noting. There is a strong dependence of

the threshold-voltage shift (V T ) on irradiation bias, negative bias having
a smaller effect than positive bias. At certain dose levels, saturation

occurs, and this saturation level is higher under high bias. These features

indicate that bias must have a strong effect on the permanent space-charge
region produced in the oxide. The variability of this bias effect is

indicated in Figure 4, which shows the dependence of voltage shift (con-

=

	

	 vented to radiation-induced oxide charge density) on irradiation bias for

four samples of oxide, which were grown at different times and in different
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atmospheres; and irradiated to 10 13 1-MeV electrons/cm 2 . While the shape!

of both quadrants are, in all cases, roughly parabolic, it appears that.

strong individual differences exist in the profile of space-charge per A
vs. depth in these oxides. In other ,ords, the charge-trapping capabilities

of the regions near each interface in which charge is trapped by radiation

are, in some way, different in each oxide.

The fact that, at zero bias, positive charge is built up in the oxide

despite the absence of field is of considerable interest. If the features
of this radiation-sensitivity vs. dose characteristic can be interpreted

correctly and are found to bear a predictable relation to the sensitivity

of the same oxide irradiated under bias, then a very simple sensitivity

test of oxides .vill be possible. It will be possible to test oxide layers

for radiation-sensitivity without the previous deposition of a metal elec-

trode (which brings with it possibilities of contamination and other oxide
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stresses), while the need for the arrangement of biasing contact during
irradiation, always inconvenient, will be removed.

i	 Etching studies have thrown some light on the form of zero-irradiation
-- bias characteristic. After zero-bias irradiation, almost all the positive

charge is found within 100 X of the Si-SiO2 interface. This probably cor-
responds to the region from which radiation-excited electrons can diffuse
from the oxide even in the absence of an applied bias.

The above observations have led to the physical model for fixed oxide
charge production shown in Figure 5[1]. Radiation generates electron-hole
pairs in the insulator which subsequently interact with trapping sites
within the insulating film. The radiation-generated electrons either re-
combine with the holes or move out of the insulator. The radiation-generated
holes may diffuse in the insulator, but are less mobile than the electrons;
many stationary hole traps are also present. The result is the net positive
charge profile •;hown on this model. The influence of irradiation bias on
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the amount and location of the radiation-induced space charge is clear.

If there is no electric field present in the insulator during irradiation,

the major effect will be electron-hole recombination; only a relatively

small number of holes will be trapped. If there is an electric field

present, the electrons will readily move out of the insulator film, and

the trapping of holes becomes significantly enhanced. Thus, a significant

positive space-charge layer is built up at the insulator-semiconductor

interface and moves into the insulator with continued irradiation. Most

of this charge will be imaged in the semiconductor surface, and MIS mea-

surements will show a large voltage shift.

If the gate is negative during irradiation, then in the simplest
approximation one would expect the positive space-charge layer to be formed

at the metal-insulator interface and to move into the insulator with con-

tinued irradiation. Most of the charge is imaged in the gate, and MIS

14



measurements will not show an effect until the width of the space-charge

layer is a significant portion of the insulator film. This may account

for the flat minimum seen in Figure 4 at low negative irradiation biases.

If, in addition to the capture of holes, a significant trapping of

electrons takes place, or if the insulator is somewhat conductive (as is

most probably the case for certain silicon nitride films), then no signif-

icant net space charge will be built up.

2.	 Interface States

The change in shape due to interface states shown in Figure 2(d) can

be important in its effect on transistor operation, since a similar change

in shape in the I d-Vg characteristic corresponds to a reduction in gain.

The generation of interface states by radiation is not well understood

and varies from sample to sample less predictably than for fixed oxide

charge.

The usual fotm, as shown in Figure 2(d), is the generation of a wide

distribution of energy states throughout the silicon bandgap. This pro-

duces a smooth change in shape of the C-V or I d-Vg characteristic. Oc-

casionally, however, cases have been observed in which a defect is present

that gives rise to a predominance of states concentrated around a single
energy level. The states at this level appear to be enhanced by irradiation

over and above the general background of other interface states at other

energ• levels. This leads to an unusual "stepped" characteristic which

could cause unusual transistor characteristics[3].

In the early work on MOS capacitors, -'_t was observed that the state

of the silicon oxide interface before bombardment has a strong influence

on the number of interface states produced by irradiation. A result like

that of Figure 2(c) is produced if the degree of perfection of the inter-

face is high. If, on the other hand, the original interface already has

a high density of interface states, these states are usually enhanced.

Most irradiations of mass-produced transistors involve some generation of

distributed interface states, which are manifested as a change in the
shape of the I d-V curve and an increase in surface recombination velocity.
In one experimentf2l], a very strong generation of interface states actually

reversed the direction of shift of the transfer characteristic of an n-

cl,annel transistor. In the experiment, the room-temperature transfer

characteristic also became unstable under gate bias. The direction of

the instability is such that if positive voltage is applied to the gate,

the characteristic shifts toward more positive voltage; if negative volt-

age is applied, the shift is toward negative voltage. These shifts are

opposite in direction to the temperature-bias instabilities observed in

some devices, which are attributed to the motion of ionic species in the
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oxide and occur only at elevated temperatures. The effect has, however,

also been observed in unirradiated devices with large densities of inter-

face states, such as many metal-silicon-nitride-silicon (MNS) devices.

Kooi[15] also reported, but did not discuss, a slight instability of this

kind in wet-oxygen-grown oxides irradiated by x-rays.
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III. APPROACH IN PRESENT PROJECT

A. GENERAL APPROACH

The objective of the present work was to elucidate, by investigation

of well-characterized metal-oxide-semiconductor (MOS) or other metal-

characterized metal-insulator-semiconductor (MIS) devi '-es, the reason for

the degradation of MOS transistors tinder high-energy radiation such as

that found in space; and to determine, in particular, how changes in the

fabrication techniques used could affect this degradation. It was already

well appreciated that another factor played an important role in the degree

of degradation of MOS devices under radiation, namely the electric field
strength and field direction in the oxide during irradiation. Since a

satellite would be operating for all of its lifetime under low-rate
radiation, the mode of operation of the device (enhancement vs. depletion,

n- vs. p-channel, high vs. low logic voltages) during that time was also

important in determining the best type of MIS device to use in satellite

electronics.

It was realized that mass-produced MOS transistors were not ideal

test vehicles for two reasons:

(1) Such devices are usually not well-defin--d as material

systems; in mass-production semiconductor processing,

little attention is paid to exact material compositions,

especially with regard to trace impurities, so long as

satisfactory device per:ormance is achieved; in addition,

the crucial gate insulator is frequently a layered

structure.

(2) The presence of souLc q and drain contacts, usually in

geometrically complex configurations (see Figure 6,

for example), introduces complexity in analyzing any

electric-field effects observed and may also intro6ace
extra impurities into the gate oxide region.

With this in mind, it was decided that, while it was important to

evaluate the present state of the art in mass-production oxide technology
and device geometry, detailed conclusions on the physics of radiation

effects on MIS devices could only be obtained in cases where tLe investi-
gators had full control over every step in the fabrication of the device.

This is not a new situation in radiation effects research but the con-
dition probably holds more strongly in the present case than in any

known case to date. A close and truly analogous case is that of glasses,

where small changes in composition and processing can affect the colorations

produced by irradiation. There is, indeed, some likelihood that the

effect of radiation on glasses and MOS insulators arises from the same
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cause, namely frcm positive charges (holes) trapped at interband defect

levels between the valence and conduction banr' of the oxide structure.

It was thus accepted that there was a considerable gulf between the

devices actually used in satellites and the ideal test device for physical

studies, and it was decided that both classes 3f device would be studied

and special efforts be made to bridge the gap between them. The basic

list of devices given below was decided upon.

It should again be emphasized here th,,11 the data on oxide condition,

which can be derived from C-V g and Id-Vg characteristics, are complementary.

C-V data can be used to calculate interface state densities in the
accumulation and depletion regions. In these regions, the channel is

pinched off, and hence no information can be obtained from I d-V character-

istics. Conversely, the C-V technique is not useful in the inversion

region because the frequency response of the inverted semiconductor space

charge layer[41] is not simply determined; in this region, the MIS tran-

sistor is conducting and the variation of this channel conductance with

bias can now be used to study interface states in the inversion region.

Hence, the two methods can be combined to give information on the inter-

face states throughout the bandgap. A particular example of this is

discussed in the experimental section.

4
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B. DEVICES STUDIED

1. Simple oxide films produced in steam and dry-oxygen furnaces
used by RCA Laboratories' Electronic Research Laboratory or in other
apparatus producing special insulating films, such as chemical vapor
deposition reactors and anodizing chambers.

2. RCA "Pattern 7" transistors, a semi-integrated device of bar
geometry suitable for the development of logic circuit designs, including
complementary designs (see, for example, the recently released RCA
TA 5361 complementary NOR gate and inverter combination). In this
device, ga'.e-substrate capacitance is small to allow for fast switching.
The device is produced in a variety of forms as a part of the develop-
mental work by RCA Electronic Components*. Complete details were
available on small batches produced by this activity in very well-
controlled furnaces.

3. Simple oxide films produced in the same furnaces as the above-
mentioned two devices under the same processing conditions and passed on
to the experimenters without further treatment for evaluation by the
C-V technique.

4. Commercially available RCA TA 2578 transistors, which are de-
signed for use in low-frequency amplification circuits. This device has
a large gate-substrate capacitance and channel area and, hence, is suit-
able for comparative C-V and I d-V measurements. Also, the gate is an
enclosed structure and, hence, leakage effects should be minimized.

5. Other MOS transistors and arrays which had special properties
likely to add information to the study (e.g., complementary MOS logic
arrays and large-geometry transistors). The ability to evaluate un-
modified films by the C-V technique and to obtain these from several
different facilities was regarded as very important in the attempt to
discover the important processing steps in determining radiation resis-
tance.

C. MIS CAPACITOR SELECTION

One of the ways in which MOS capacitor study is particularly con-
venient is iii the ability to study samples with known initial interface-
state density. Oxides are grown on silicon wafers in conditions which
give rise to very low interface-state density. Since the oxide thickness
may he measured accurately by ellipsometry, the "ideal" C-V characteristic
can be calculated and the interface-state density estimated by noting the
deviation of shape from the ideal. In the present study, samples with
high interface-state density were usually rejected.

* Located at Somerville, N. J.
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Preliminary observations[3] showed that samples with low interface-

state density developed fewer additional interface-states under radiation.

Thus, it was possible to find many samples in which interface-state pro-

duction under irradiation could be neglected by comparison with the

number of bulk oxide charges produced. This situation made it possible

effectively to isolate, and to concentrate upon, the problem of bulk

oxide charge in the present study.

The main processing parameters of the capacitor gate insulators to

be varied were: crystallographic orientation of substrate, oxide growth

atmosphere, growth temperature, post oxidation annealing temperature and

atmosphere, and oxide thickness. As well as varying the above parameters

for simple thermal silicon dioxide layers, some deposited insulators
containing large amounts of dopant impurity were also to be studied for

gross impurity effects.

D. MIS TRANSISTOR TEST VEHICLE CONSIDERATIONS

The MIS transistor is essentially an MIS capacitor in which contact

to the semiconductor surface channel has been effected. "Active" operation

of the device consists of control of the electric field at the surface of
the semiconductor and consequent control of the density of charged carriers

(electrons or hales) at this surface. It is, of course, still possible to

measure capacitances, although with less accuracy than in a large-area

capacitor. Figure 6 shows the construction of a typical high-performance

device. For the device shown (n-channel) the starting material is a slab
of p-type semiconductor into which n+ regions are diffused (source and
drain regions) forming two p-n+ junctions with the substrate. An insulator
is then placed between the two junctions and a ; petal electrode (the gate)
is placed on top of the insulator. In operation the source and substrate

are grounded and a voltage is applied to the gate in such a manner as to

have the two p-n junctions back-biased. For the case shown in Figure 6,

a positive voltage applied to the gate causes the semiconductor surface
to become electron-rich. Consequently, the two n + regions are connected
by a surface channel and conduction occurs. The exact value of the gate

voltage at which conduction begins is determined by such factors as the
insulator thickness, the doping density of the substrate and the density

of oxide charge and interface states. Since the dependence of device

parameters on insulator thickness and substrate doping density can be

calculated, the gate voltage at which conductio._ begins in an MIS tran-

sistor can be used to characterize the surface states. Hence, an analysis

of the transfer characteristic, drain current vs. gate voltage (Id-Vg),

of an MIS transistor is a convenient way to characterize the effects of
space radiation.
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Figure 1 shows a plot of the C-V and transfer characteristics of an

MOS transistor with no surface states (solid line) and the shift one sees

in these characteristics when a fixed positive charge is introduced in

the insulator (dashed line). The introduction of this fixed positive

charge is typical of what happens in a radiation environment. As can

be seen in the illustration, both characteristics shift by the same

voltage, and either can be used to characterize the surface states.

The density of interface states can be calculated by measuring the

widening of the C-V characteristic. This is accomplished by taking the

difference between she shift in flat band voltage and the shift in the

gate voltage for, say, I d = 1 x 10- 5 ti, and making appropriate normalizing
corrections.

E. RELEVANCY OF MOS CAPACITOR DATA TO TRANSISTOR PROBLEM

It has been stated earlier that the MOS transistor is not an ideal

vehicle for determining the basic principles of charge buildup in the

gate oxide of the MOS structure. It must likewise be stated that the

simple MOS capacitor cannot simulate all the conditions present in an

MOS transistor. The most important of these is probably the asymmetry

of the electric fields in the gate oxide of an operating MOS transistor.

If the device is "off," then different fields exist between the gate and
the source and drain electrodes. Also, the source and drain diffusions

in the oxide may cause an unintentional doping of the gate oxide (which

is usually grown after source-drain diffusion).

Summarizing, the gate oxide of a practical MOS transistor device

may contain several complexities, in lateral fields, lateral doping

profiles, and stratification of the insulator which complicate the

analysis of radiation effects in the gate oxide. However, the basic
oxide structure is the same in MOS capacitors and transistors, and many

conclusions on capacitors can be transferred to the transistor case.

F. SPECIAL EXPERIMENTS

In addition to varying materials and processes to determine the

influence of fabrication parameters on radiation sensitivity there are

some special, but important experiments that will help in confirming and

extending the existing physical model for the effect of ionizing radiation
on MIS structures.

Experiments of type 1, below, formed a part of the present project.

Experiments of types 2 and 3 were not performed but data from earlier

tests[3] provided general guidance in analyzing the data produced during

1
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this project. It is suggested that experiments of the latter types

should also form a part of future work and they are cited below to

indicate their relation and importance to the present study.

(1) The spatial location of the charge induced by the radiation

in the insulator is of particular interest and can be ascertained by a

so-called dissolution experiment. This can be achieved by a stepwise

removal of an insulator layer, subsequent thickness determination by
ellipsometry, and measurement of the remaining charge by the C-V

technique.

(2) Temperature annealing of the radiation-induced damage can

provide additional information concerning the physics of the mechanism

of degradation. The annealing of radiation damage is usually complicated
and not well understood, and in many cases it does not appear that

annealing is the reverse of irradiation. Nevertheless, in a basic
study of the radiation physics, annealing experiments cannot be neglected.

;3) Energy-level spectroscopy is the study, by means of optical

absorption, of the energy distribution of the radiation. induced defect

levels within the forbidden gap of the insulator. Again, this type of

investigation can shed considerable light on the nature of the defects
and thus on the process of radiation damage.
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IV. EXPERIMENTAL DETAILS

A. IRRADIATION SOURCES

I.	 I-MeV Van de Graaff Generator

The most frequently used source of radiation in this study was

the RCA Laboratories' Van de Graaff generator. Bare MOS devices were

irradiated in air at the exit window of the accelerator beam tube.

The devices were removed at various intervals in the exposure and their

characteristics were recorded. The beam current was checked it the

beginning of the exposure and at various intervals during the exposure

with a vacuum Faraday cup. In almost all exposures the electron beam

energy was kept at 1 MeV. It has previously been shown[2,3,10] that
such conditions produced essentially the same results as irradiation to

the same ionizing dose under vacuum or in typical transistor encapsu-

lant atmospheres (dry nitrogen, etc.). The electron beam current was
measured with a vacuum Faraday cup. The irradiation was interrupted

at various fluence levels, and the characteristics of the MOS device

were measured.

2. Cobalt-60 Gamma Ray Source

Experiments requiring low dose rates were performed in a 3000-curie

Cobalt-60 chamber located at Evans Signal Corp. Laboratories, Belmar,

New Jerse}. Various dose rates were obtained by placing the sample at

diffe--ent distances from the source. Calibration of the source was
accomplished by means of a Victoreen chamber. As in the case of the

Van de Graaff experiments, the exposure was interrupted at various

intervals and the characteristics of the device were recorded.

B. TEST EQUIPMENT

I. Automatic C-V Plotter

C-V measurements are normally carried out on a point-by-point

basis using a capacitance bridge. Then the data have to be plotted.

Such a procedure is extremely cumbersome, time-consuming, and subject

to frequent error. To eliminate this problem an experimental arrange-
ment has been developed* which allows the automatic and rapid measure-

ment of C-V characteristics of MIS structures at 1 MHz over a wide

*Funded by RCA.
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range of bias and sweep speed and under a variety of experimental

conditions. The apparatus consists of standard laboratory equipment,

provides a graphical output, and makes possible the rapid study of
certain problems in MIS physics. For the comparison between experi-

mental and theoretical C-V curves a computer program in FORTRAN has

been developed. A detailed description of the measuring circuit and
a discussion of the various applications have been published elsewhere[31].

We shall outline here only the principle of operation of this apparatus

and its main applications. s

In this circuit, the actual quantity measured is an impedance.
Hence, the need for a phase-sensitive detector is eliminated. A saw-

tooth voltage is applied to the MIS capacitor t- p rovide a smoothly

varying bias, and a 1-MHz oscillator is used as the signal source. The
basic measuring circuit is shown in Figure 7. If the conditions

R
T'[	 x	 b	 x

« 1/wC and C >> C	 (5)

are satisfied, the magnitude of the ac voltage appearing across the

measuring resistor RM is

IVM I = Iii w RMC x•

Here, Cx is the MIS capacitance, Cb a blocking capacitor, and w the fre-

quency of operation. The magnitude of the ac signal from the oscillator
is M, and it is adjusted so that the signal across C x is never larger

than 20 mV. If the reactance of the capacitor is much larger than

50 ohms, then M is essentially constant and IVMI is proportional to

Cx and can be used as a measure of Cx . Bias is applied tc the MIS ca-

pacitor through a parallel branch which is ac-shorted by the series

combination of C b and RM . If vM is displayed as a function of the
applied bias, then the envelope of the resulting curve is the C-V char-

acteristic. Since vM I is only about 0.2 mV, amplification is necessary.
This is achieved by the amplifier indicated, which has a gain of about

100 dB. The amplified signal is detected and the do voltage, which is

proportional to capacitance, can then be exhibited as a function of the
applied bias on either an x-y recorder or x-y oscilloscope, depending
on the rate of change of bias.

This apparatus allows the so-called three-terminal measurement

of a capacitor. In this circuit. neither terminal of the test capacitor,
kC xt is at ground potential. Shunting to ground by lead capacitance and
other stray capacitances that may exist to other parts of the diode

structure is thereby eliminated. The losses associated with the MOS
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device may introduce an error in the measured capacitance. However,

these can be kept below 5 percent if the Q of the device is somewhat

better than 3. Using present-day silicon dioxide technology, such low

loss levels are easily obtained. The range of measurable capacitance

is 100 pF/inch to 0.1 pF/inch and the maximum accuracy is 2 percent.

The excellent agreement with bridge measuremen z_s is shown in Figure 8.

Cx	 Cb

A B Rb

OSCi 
MHZOR 

Rj 
V BIAS	

RM ^M AMPLIFIER

C a
	ZERO

X	 CA ADJUSTJ^^T'ETECTOR

V

Figure 7. Simplified schematic of the C-V measuring apparatus.
R1 = 50 ohms, R  = 10 kilohms and C  = 0.01 4F.

12

10

LL
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W 8U
Z
Q

a
F-

U 6 
_ • BRIDGE MEASUREMENT

—PLOTTERaa
U

4

2

0
	 1

0	 I	 2
BIAS-V

Figure 8. MIS capacitance vs. bias u6 obtained by measurement
with the automatic plotting equipment and with a
Boonton Electronics 75 A Capa citance Bridge.
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2. Automatic I d - V Characteristic Plotter
9

A schematic diagram of the basic circuit used for the measurement

of the transfer characteristic is shown in Figure 9. The gate bias sweep
circuit consists of the positive sweep from an oscilloscope being driven

LINEAR	 DRAINVOLTAGE	 SUPPLY
SWEEP

DEVICE
UNDER
TEST

(- -- — —	
KEITHLEY

X-AXIS (VOLTAGE) r" 	 610 A
I	 I	 ELECTROMETER
I	 I
I	 I	 _
L _ _ _ _ J	 Y- AXIS (CURRENT) 	 -

Figure 9. Simplified schematic of MOS transistor transfer
characteristic measuring apparatus. 	

ji

against a battery supply and associated potentiometer so that the voltage

could be trimmed to the proper magnitude. The ammeter was a Keithley
610 A electrometer which has an output suitable for driving an x-y re-
corder. The electrometer was operated in a mode so that the voltage drop

across the instrument never exceeded 0.1 V. The drain supply was fixed
at 10 V.
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V. EXPERIMENTAL RESULTS

A. CRITERIA OF RADIATION SENSITIVITY

It has been stated ecrlier (see Section II) that AFss , the change

in number of "surface states" produced in the cxide by a given process

is, as defined here, a quantity in which fixed bulk oxide charge and

bias-dependent interface charge may both be included. This is so be-

cause it is derived simply from LV fb , the change in flat-band voltage of

the C-V characteristic. If a large number of interface states are

present in the oxide, V fb is thus not a good measure of the fixed oxide

charge produced by radiation, although it may still serve as a gross

characterization of the sensitivity of an oxide to radiation.

In this report it can be assumed that. unless otherwise indicated,

the shifts i n flat-band voltage (AVfb) were taken for samples which ex-

hibited a near-parallel shift of the whole C-V or I-V characteristic.

Hence, the 4Ns s values consist largely of fixed oxide charge and not

bias-dependent interface charge. The error in i^Nss introduced by this

assumption will not be greater than 10% and frequently less, since the

preparation or the oxides was carried out by methods which allowed only

very small quantities of interface states to form; and samples for which

the C-V characteristic indicated an appreciable concentration of bias-

dependent interface states after fabrication and before irradiat4on were

rejected for most analyses made here. V fb was calculated from C-V plots

as follows: The flat-band voltage (V fb ) of an MOS capacitor is that

gate vol t age for which

C =	 1	 (6)

Co	 1 + ruk--T^-_ 1/2
E sq N

where C = measured capacitance

Co = oxide capacitance

E s = dielectric constant of semiconductor

q = elementary electronic charge

N = semiconductor doping density

k = Boltzmann constant

T == temperature in degrees Kelvin.

This fraction is sometimes called normalized flat-band capacitance value

C fb /Co. If the experimenter is analyzing a C-V curve without the benefit

of data on doping density, N, this can be calculated from the ratio of the
minimum capacitance to the oxide caps '.tance, Cmin/Co. Curves for rapid
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calculation of this quantity are presented in a series of graphs in
reference 31. Cfb /Co can then be read conveniently from another curve
in this reference. For example, for a p-type semiconductor with a
1000 A-thick oxide, if the measured ( Cmin/ Co) = 0.2i^ then the doping
density can be found from the ;turves to be Na = 10 /cm (about 13 ohm-cm).
Using this as input data for another curve the normalized flat-band
capacitance can be four_d; in this example, C fb /C o = 0.7.

Irradiation conditions used were determined by several consider-
ations. Firstly, although the importance of irradiation bias (bias during
irradiation) on radiation effects in MOS devices was realized, it was
decided to survey first a wide range of oxides without irradiation bias,
since as wide a survey as possible in the time available was thought pre-
ferable to more information on bias effects over a narrower range of
devices*. Bias effect studies were li,Aited to a few series of oxides.
Secondly, "saturation" of the radiation effect was not sought, as in some
other studies[19,42], since the effects of radiation levels likely to be
reached in operating satellites will not eve_ approach saturation. (105
in space vs. 10 9 rads for good saturation). The radiation levels of most
interest in space applications were considered to be 10 11 to 10 15 ejCM2
(approximately equivalent to 3 x 10 3 - 3 x 106 rads). Thirdly, other
studies[10,18] indicated that any source of ionizing radiation could be
used for the work and that bulk displacement damage in the silicon did
not have to be considered when studying oxide effects. Thus, results
obtained using 0.1- to 1-MeV electrons, x-rays, Cobalt-60 or reactor
gamma-rays co>>ld be regarded as interchangeable, so long as the amount
of ionization in the oxide (expressed as ergs/gm or rads absorbed) was
used as the criterion of comparison.

* Note added after submission. Recent rapid 1-MeV electron irradiations
by P. Newman (private communication) indicate that significant differences
exist between AVT shifts observed when gates are grounded to substrate
as opposed to when gates are left floating. The probable reason is a
buildup of negative charge on the gate and hence a buildup of oxide field
during irradiation. The resu3.t is a difference in the PVT vs, flux curves
which do not saturate as early in the "floating" case as in the "grounded"
case. Above fluences of about 1012 e/cm 2 , the curves thus separate. At
the reference fluence of 10 13 e/cm 2 , separation is of the order of 1 volt.
Early in the experiments recorded in this report, MOS capacitors were
irradiated without any form of contact to the meta' islands which were
thus floating. Later, spring-loaded tungsten probes were used to contact
at least three islands per chip irradiated. In all experiments with
MOS transistors the chips were *mounted and wire-bonded and gates were
routinely grounded. Throughout the tabulations given here, the electrical
state of the gate is noted. It is not thought that Cie possible buildup
of charge during the above survey experiments invalidates the comparison
of different oxide processes since the irradiation rates and other con-
ditions were the same in most cases.
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B. DEPENDENCE OF RAD I 1TION SENSITIVITY ON OXIDE GROWTH CONDITIONS

I.	 General

Since the silicon dioxide layer of MOS devices is usually formed

by diffusion-limited inward growth, it is to be expected that the defect

structure of the oxide (hence, its radiation sensitivity) will be

strongly affected by variations in growth rate and the components of

the oxidation atmosphere. Thus, it is not surprising that some signifi-

cant differences in sensitivity appear to exist between films grown in

dry oxygen and in steam, when irradiated either with or without an

applied field during the bombardment. The results of these experiments

on very pure laboratory-grown dry oxides and steam-grown oxides will now

be discussed.

2. Oxides Grown in Dry Oxygen

a. oPreparation - 1— 0 ator films of thicknesses ranging from 800

to 2000 A were prepared by diffusion-limited oxidation or "growth" in an

rf (radio-frequency-heated) furnace. The furnace consisted of a vertical

vitreous silica tube which was cooled by a stream of forced air passing

through an outer jacket. The silicon specimens to be treated were sup-

ported by a graphite pedestal on a silica holder coated with silicon car-

bide. The pedestal acted as a susceptor, or energy-absorber, for .he rf

energy that was provided by an inductively coupled generator wound around

the outside of the tube. Very pure inert or reactive gases could to

passed up the silica tube and over the pedestal. By this arrangement,

evaporated impurities were carred away by the flowing gas or trapped on

the cold g ibe wall.

Temperature was controlled allLomatically be means of the signal from

an infrared detector which viewed the silicon sample through an optically

flat silica plate in the top of the furnace. Most oxidations were carried

out by passing pure dry oxygen over the samples at temperatures varying

from 900 to 1200%. Post-oxidation annealing was conducted in helium,

nitrogen, or hydrogen.

After oxidation, the samples were provided with a large-area back
nickel contact to the silicon and with nickel dots ("gates") on top of

the oxide. The contacts were evaporated in a vacuum system operating in

the 10- 6 Torr range. The thickness of the evaporated nickel gates was

0.1 u as estimated from a previous calibration of the evaporator. The
gates were formed either by evaporation through a mask or by conventional

photoresist etching from a continuous metal film. The size of the dots

was usually 0.012 in. in diameter. No difference in the radiation-

sensitivity was observed for the two methods of gate deposition.
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PRE—IRRADIATION

FLATBAND
CAPACITANCE

The wafers were then divided into about ten chips, each of which

contained about six gales, separated by about three gate diameters. The

chips were normally mounted on a holder with silver paste and the holder

bolted to a standard irradiation wheel used regularly on the RCA Labora-

tories' Van de Graaff generator. If bias was to be applied, spring-
loaded tungsten probes could be lowered to contact the gates, and the

desired bias could be applied during irradiation. Irradiations were

usually carried out at a rate approaching 10 15 electrons/cm2/hr.

b. Effect of Radiation - A typical shift in the C-V characteristic
caused by bombarding one of these "dry oxides" with a fluence of 10 13 1-MeV

electrons/cm 2 is shown in Figure 10. As can be seen from the figure, the

IDEAL CURVE
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!
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Figure 10. TypicaZ effect of zero-bias irradiation of MOS

capacitors with 10 13 1-MeV electrons/cm2.
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shift is parallel along the voltage axis, indicating that negligible inter-

face states (i.e., less than 2 x 10 10 states eV- 1 em- 2 ) are being intro-

duced by the radiation. An analysis of the pre-irradiation C-V character-

istic of the sample shown indicates that the initial interface state

density was also near-ideal (density less than 2 x 1G' O states) and

tended to correlate with low amounts of radiation-induced interface state

density.

Table I lists the oxidation conditions for the MOS capacitors studied

during the present project. The table also indicates the initial surface-

state density and the changes produced by an irradiation with 10 13 1-MeV

electrons/cm2.

c. Dependence of Vfb Shift on FZuence - Figure 11 summarizes the
data obtained on the dependence on fluence of the radiation-induced shift

in dry-grown MOS capacitors irradiated without bias on the gate. In all

cases, the curves of the radiation-induced shift vs. fluence were similar

in their general shape having high values of slope in the early decades

of fluence (1011 to 1013 electrons/cm2 ), with slope value then, gradually

falling off in later decades, although no true saturation m ould be said

to occur in most of the samples observed. Over some part of the range

(usually in the charge density range 10 11 to 1012 states/cm 2 ), the fluence

dependence approximates a power law similar to that )bserved for oxide

effects in bipolar transistors[Ill:

AN	 n K (D0.4
	 (^)

ss —

The very wide range of sensitivities possible under zero irradiation-

bias extending over one and a half orders of magnitude is worthy of note.

d. Dependence of Sensitivity on, Initial Characteristic - All avail-
able results on 6V fb at 3 x 10 5 rads at V I = 0, for capacitors grown in

this laboratory were collected in an attempt to establish whether there

was a close correlation between pre- and post-irradiation charge density.

They are plotted in Figure 12. Important preparative details are included

where available.

The results shown in Figure 12 indicate a grouping which shows that

the low initial oxide charge density leads to a low increase in oxide

charge density under electron bombardment. The few examples which do not
follow this trend can perhaps be e::plained when one considers the in-

accuracies in the measurements -nade:
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Figure 11. Collected data on 1-MeV electron irradiation of MGS

capacitors made from steam-groan and dry-groan oxides.
Measured voltage shifts are normalized for oxide
thickness to charges per cm 2, and (in brackets) the
corresp(,nding voltage shift in a 0.211-um oxide.
Electron fluence is normalized to equivalent
absorbed dose in rads. Gates in this experiment
were floating during bombarcIment.

(1) The electron fluence measurement is accurate to only + 10%.

(2) The thickness from jample to sample of the gate electrode

is only accurate to approximately + 30%. Thicker gates

would produce more secondary electrons and hence an in-
creased dose.

(3) When making our comparison of fluence levels, small dif-

ferences in the trap distributions of different oxides
could have a comparatively large effect, since the traps

are not yet saturated.
(4) The grounding conditions for the gate differed among the

experiments and this could conceivably have an effect on
the results.

A controlled experiment, specifically designed to throw light on this

connection between initial oxide charge density and radiation-induced oxide
charge density, would be very profitable.
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e. Dependence of Shift on Irradiation Bias - The effect of gate
1- 4_as during irradiation is shown in Figure 4 as the density of induced

.)xide charge vs. the gate bias applied during irradiation. The electron

fluence in this case was 10 13 1-MeV electrons/cm 2 . Unfortunately, since

the induced oxide charge density is not saturated, these data cannot be

analyzed in terms of the models given by Grove et al.[19] and Stanley[42].

However, one important issue can be examined using these data, namely,

the relation of shift under irradiation bias vs. s ► .ift without bias. In
both conditions, sample C3A is considerably more sensitive to radiation

than the other dry oxide, sample M-14. If this trend is found to be
universal, it may be possible to -redict the radiation sensitivity of

an oxide at all irradiation bias conditions by irradiating a sample
without bias at a few radiation levels. This would greatly simplify

routine evaluations of MOS transistors for radiation sensitivity.

The data in Table II again show the gross relationship between the

pre-irradiation oxide charge density and the radiation-induced oxide

charge density which was illustrated in Figure 12. The table lists the

dry oxides studied in the order of increasing initial oxide charge den-
sity. Also shown in this table is the radiation-induced oxide charge

density for a fluence of 1013 1-MeV electrons/cm 2 . Although there are

several exceptions, notably samples with high initial oxide charge den-

sities, there is a definite tendency for an increase in the radiation-

induced oxide charge density with increasing initial oxide charge.

f. Influence of Cleaning Method - In all cases, the silicon wafers
were cleaned in a combination of organic and inorganic solvents and

reagents prior to being placed in the oxidation furnace. In three cases

(samples M-13RA and M-14R and 7a) the samples were given, in addition to

the standard chemical cleaning, a pre-oxidation firing in hydrogen at

1250% for ; min in the rf-heated furnace. This firing removed several

hundred angstroms of the silicon surface by the reaction,

Si + H 2 -►SiH4

and rendered the surface very clean. After oxidation and annealing, the

samples had low oxide charge densities (see Table I). When irradiated

with 1-MeV electrons, these samples proved to be the least radiation-
sensitive thermal oxides observed to date.

g. Variation of Shift Over Wafer - Both small-scale and large-scale
variations of sensitivity across a wafer could be examined since, in most

cases, several adjacent ( ?ts were irradiated uniformly in the Van !e Graaff

beam, while more than one chip from a wafer was irradiated to the same

electron fluence. In general, the variation c: radiation sensitivity

over a wafer was low. Typical figures for variation over several adjacent
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TABLE II

0-

Pre-irradiation and Post-irradiation Surface State
Density of MOS Ca pacitors in Order of Pre-irradiation VaZues

Sample Initial N
ss ss

6N	 for ^ 10	 -• e/cm

C-31(F) 9.4 x 1010 4.7 x 1011

M-14R 1.56 x 1011 1.52 x 1011

M-13RA 1.73 x 1011 1.4 x	 1011

C-40 2.27 x 1011 2.36 x 1011
	 I

M3R(F) 2.85 x 10 11 2 14 x 1011

C3A(F) 4.54 x 1011 1.46 x 1012

C-21(F) 5.0 x 1011 9.67 x 1011

C-22(F) 5.37 x 1011 7.45 x 1011

C-20 5.61 x 1011 3.7 x 1011

C-24(F) 5.75 x 1011 5.14 x 1011

OTE:	 (F)	 indicates floating gate.

gates are 4.4 to 5.3 x 10 11 states/cm 2 at a fluence of 10 i3 1-MeV selec-

tions/cm 2 (VB = 0). For a chip on the opposite side of the same wafer,

the corresponding figures were 4.3 to 5.1 x 10 11 states/cm 2 . Similar

variations were found for the "Pattern 1" developmental transistors from

the same wafer. Here, four units are integrated on one chip. The most

widely divergent values for the shift in threshold voltage after irradiation

}•y a fluence of 10 13 electrons/cm 2 are -2.25 V to -2.65 V on one chip and

•2.5 V to -2.95 V for another transistor cut from the same wafer.

C. OXIDES GROWN IN STEAM

Oxides grown in steam have considerable practical intere-t because

the growth rate is considerably higher than for dry oxygen growth. This

is important in silicon device technology because diffusion p rofiles can

change drastically if the sample has to be left at the higher temperatures

and longer times required for oxidation to the same thickness. Conse-

quently, several steam-grown oxides were prepared to test their sensi-
tivity to radiation.
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All wafers were chemically cleaned prior to being placed in the

oxidation furnace. Lie oxidation furnace was a resistance-heated high-

purity alumina tube. The wafer to be oxidized was passed into the

furnace in a high-purity quartz boat. After oxidation, the wafers were
usually annealed in Hydrogen in a separate furnace. Nickel contacts

were placed on the sample in the same manner as for the dry oxides (see

Section V-B).

As in the case of the dry oxides, parallel shifts in the C-V character-

istic were usually obtained when the steam oxide capacitors were bombar.'9d

with 1-MeV electrons, indicating that no new interface states were being

introduced. Figure 11 shows the dependence of radiation-induced oxide
charge density on fluence for several steam oxide capacitors which were

bombarded with 1-MeV electrons. Tile gates were left floating during the

irradiation. Again, a saturation of the radiation-induced oxide charge

density was not observed, even at the highest fluence levels used. The

pertinent data for these samples are listed iii Table I. The dependence
of the fixed oxide charge density on irradiation bias at a fluence of

1013 electrons/cm 2 is shown in Figure 4 for two samples.

Unlike the dry oxide capacitors, the radiation sensitivity of all
the steam oxide capacitors was quite similar. Sample C-23 was least

sensitive to radiation, both in the floating-gate fluence-dependence

experiment and in the bias-dependence study. However, the differences

between all steam samples was small. This would seem to indicate that
the ability to reproduce trap distributions is much easier in the case

of steam-grown oxides tl.en in dry-grown oxides.

Figure 12 includes some steam-grown samples. It is seen that, as

before, final oxide charge density bears some correlation with initial

charge density.

D. POST-OXIDATION ANNEALING

Annealing in an Inert Atmosphere

Thermal oxidation of silicon results in a nonuniform distribution

of defects in the oxide and in a Si-SiO 2 interface condition which is

disordered. High-temperature post-oxidation annealing treatments,

either in vacuum or in an inert atmosphere, appear to effect a re-

distribution of the oxide defects and a rearrangement of the interface

to a state of higher order[43,44]. In isothermal annealing, it has

been shown that the density of donor type surface states decreases

logarithmically with time. Hence, it might be expected that the post-

oxidation annealing time will have some effect on the radiation sen-

sitivity of the oxide, and experiments to test this hypothesis were made.
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Several pure dry-grown oxides were prepared in the rf furnace (see

Section V-B), followed by an in-situ annealing in helium at the oxidatioi;

temperature for varying lengths of :ime. However, no clear-cut dependence

of the radiation sensitivity on the duration of the post-oxidation anneal-

ing was observed. Rather, two trends were observed for the dry oxide:

(1) The greater the initial density of interface states, the greater the

number of new interface states introduced by the radiation. (2) The

lower in'_tial oxide charge densities usually lead to the lower radiation-

induced oxide charge densities. Hence, we can conclude that post-

oxidation annealing in an inert atmosphere is effective in reducing the

radiation sensitivity of an oxide layer only insofar as it affects the

pre-irradiation character of the oxide and interface.

2. Annealing in Hydrogen

A technique which is often employed to reduce -he flat-band voltage

and to provide a c;iarge-free Si-S10 2 interface is the post-oxidation

annealing of the oxide film in hydrogen at tc::peratures in the 400 to

600°C range. This phenomenon has been discussed by Kooi[20 11 , and he has

suggested that it is due to a reaction of defect centers with hydrogen

so that they are no longer able to capture holes or electrons. Thus,

the effect of hydrogen baking on radiation sensitivity was specially

studied.

The oxides used were grown under pilot production-line conditions.

A silicon wafer was oxidized in dry oxygen in a resistance-heated furnace

to approximately 900 -X thickness. The wafer was then divided, one half
only being further treated in hydrogen at 450°C for 60 min. The C-V

curves were recorded by use of the mercury-gold probe technique*. The

initial oxide charge densities for the unannealed and am aled samples

were 2 x 1011 states/cm 2 and 5 x 1010 states/cm 2 , respectively. Samples

from both halves were then bombarded with 1-MeV electrons to a fluence
of 10 15 electrons/cm 2 with no bias applied. The induced oxide charge

density of the unannealed and annealed samples was 3.0 x 10 12 states/cm2
and 2.5 x 1012 states/cm 2 , respectively. Thus, the sample which had

received the hydrogen treatment was slightly less sensitive than the

untreated sample, probably due to the reduced number of hole trapping

sites. The results of this experiment support the observations which
we have made, cn the pure labuLaiury-grown uxides (see Section ), nawely,
that the lower the initial oxide charge density, the less sensitive is

the oxide to radiation. However, the observed red-_Aion in sensitivity

of the annealed sample is only about 16%, and the effect of hydrogen

baking was thus not as Strong is would be expected iL' hydrogen and
radiation-induced holes indeed reacted at the same type of defect center.

* Since no metal gates were used, the free oxide surface can be regarded
as "floating" durir_g irradiation.
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E. NONTHERMAL OXIDATION PROCEDURES

I. Anodic Oxides

Anodic oxidation of silicon offers the possibility of producing

tl:in, dense, oxide lavers free of pinholes and he-ice might become a

valuable process in MOS device technology. The production of these

layers has been descriut- ,i by Revesz[45] but is reprodt_ced here for

the sake of completeness.

Chemically polished 10 ohm-cm p-type silicon of (111) and (100)

orientations was used. The silicon wafers were cut to a 1 by 1 em

square with a 1-cm long stem that was attached to a holder in the
anodizing apparatus. The specimens were carefully cleaned, and just

before anodization they were submerged in hydrofluoric acid and rinsed

with dist 4_ 1 led water.

Following the work of Schmidt and rlichel[46i the electrolyte chosen

was 0.04 M solution of KNO B in N-methylacetamide (NMA). Since it is

known that this electrolyte is hygroscopic and the oxidation process is

influenced by its water content[46,47] fresh electrolyte was used for

each oxidation. Because the electrolyte has a strong tendency to creep,

the upper part of the stern of the silicon specimen together with the

holder was masked. The temperature during anodization was about 50°C.

The cathode was a platinum sheet. The anodization was performed in the

constant-voltage mode aL 30' V in about 5 hr.

After oxidation the specimens were rinsed iu water. Specimens were

then '-seated in hydrogen at 500°C for 15 min in a vitreous silica tube

f^ridc^. For MOS capacitance measurement:; the specimens were provided

w.Ll,.. ckel back contacts, and aluminum electrodes on the oxide.

r—.3tant-voltage anodization to low f4.ral current densities followed

by anricaling can result in a sur"ace-state density with no states within

the silicon forbidden band. The relatively high perfection of this

interface is shown by the lack of interface instability effects at 300%

under high field.

The result of irradiatin g a typ ical annd;r ^N i ck, w„iuh exhibited

good pre-irradiation interface characteristics, with 1013 1-MeV electrons/cm2

is shown in Figure 13. -he gate was "floating" e.ring irradiation. As can

be seen from the figurF, the C-V curve under goes a parallel shift along the

voltage axis. This indicates that few new interface states are being intro-

duced by the radiation. From the shift along the voltage axis the density
of oxide charge introduced into the oxide is found to be 1.4 x 1011 states/cm2
for 10 1 ' 1-MeV elect- ns/cm 2 . Th'= is one of the lower values obtained
during the present :,_uject. The radiation-induced oxide charge could be
annealed out by heating the sample in a nitrogen ambient at 300% for 10 min.
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Figure 13. Effect of irradiation on anodic-oxide capacitor
cG a 1 -14eV fZuenee of 1013 e/em2 and with gate
f Zoa ti ng .

2. Pyrolytically Deposited Oxides

Low-temperature (400 to 600%) tyrolytic deposition of glasses is
receiving increasing interest in many semiconductor research laboratories.

The need for this technology is especially important in lerge-scale

integrated-circuit development where good insulation is needed for cross-

over conne:ticn. The low-temperature processes are needed. because metal-

lization can be destroyed at high temperatures. Sev-ral forms of these

insulators are presently being developed by RCA Laboratories[48].

25

20

LLCL 

15
w
V
Z
a

V
Q

Q 10

V

41



Since the radiation response of an MIS device is determined by the

trap distribution in the insulator, it was reasoned that if one could

produce an insulator which exhibited electron-trapping rather than hole-

trapping under electron bombardment (i.e., a shift in the C-V character-

istic in the unconventional, positive direction along the voltage axis)
then, by compensation., a radiation-resistant MIS device could possibly

be produced. Facilities for the low-temperature chemical vapor deposition

of various insulators were available at RCA Laboratories, by courtesy of

the Process Development Laboratory.

Chemically polished silicon wafers, of <111> orientation, and 10-ohm-cm

resistivity were chemically cleaned using a combination of organic and in-

organic reagents. Insulating films of silicon dioxide, borosilicate,

phosphosilicate, and alumino borosilicate were then formed on the silicon

by chemical vapor deposition. The pertinent chemical reactions are:

SiH 4 + 2 02	 - Si02 + 2 1120

B2H6 + 3 02	 B203 + 3 H2O

2 PH 3 + 4 0 2	P205 + 3 H2O

2 A1(CH 3 ) 3 + 12 02 Al 20 3 + 6 CO2 + 9 H2O

By varying the amounts of the reactant gases, various compositions of glass

could be obtained.*

The particular compositions studied were nominally 15% B203, 15% P205,

and i5% Al203. The samples :-ere irradiated without gates and capacitance-
voltage measurements were performed using the mercury probe technique.

Several samples from each wafer were irradiated with 1-MeV electrons

and the C-V curves were recorded both before and after irradiation. The

samples, both before and after irradiation, exhibited large amounts of

interface instability (e.g., 2 to 3 V shift in the C-V characteristic for

application of 10-V bias at room temperature). In addition, there was
some shape change in the C-V characteristic after irradiation to the higher

fluence level-, indicating that new interface states are being introduced.

However, as is shown in Figure 14, the C-V curve shifted in all cases

toward more negative voltage with increasing fluence. Thus, although

minor amounts of electron trapping could conceivably have been masked by

the interface effects described, no indications of strong electron crap-

ping were found in the deposited layers described above.

develOprneut of this technique was carried out on RCA Funds.
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Figure 14. Radiation-induced shifts for pyrolytically deposited
layers derived from mixtures of oxygen, silane, and
hydrYcdes of silicon, pho.-phorus, boron, and aluminum.
"Silicon dioxide" indicates use of unmixed silane
with oxygen. Other legends indicate the other
hydrides which were added to silane in about 15%
concentrations. The capacitors had no metal gate
and hence, were irradiated in the floating condition.
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3. Composite Insulator Layers

As is well known contamination of silicon dioxide layers with sodium
ions leads to large-scale ion drift instabilities in MOS devices when sub-

jected to temperatures bias stress. It is also well known that S102

layers can be stabilized against this ion drift by incorporation of a

P205 layer on top of the Si02 gate insulator[49]. Since many commercially

available MOS devices employ this technique, it is important co study the

influence of such layers in device sensitivity to radiation. The effect

of s ,ich layers on device sensitivity to radiation is also of interest

for several other reasons: 	 1

(1) It is to be expected that the presence of phosphorus in a silicon

dioxide network should profoundly affect the defect structure and, hence,

the effective charge-trap concentration.

(2) The presence of a new interface within the MIS insulator film
presents new possibilities of trapping or transfer of charge. Several

experiments by the authors have indeed indicated a possible influence of

phosphorus on the radiation sensitivity of MIS devices[21,50]*. Figure 15

shows the shift in threshold voltage, AV T (where VT is the gate voltage at

which the drain current I d is 2 x 10-5 A), as a function of 1-MeV electron

fluence, for semi-integrated "Pattern 7" (see Section IV-F-2) MOS tran-

sistors irradiated with the gates grounded. Series A-13 contains phosphorus

while series A-41 transistors are entirely similar samples which do not

contain phosphorus. Table III gives the fabrication procedure for both
of these lots.

Figure 16 shows a typica l pattern of change of transfer character-

istic for a "Pattern 7" device. There is only a slight change in shape
of the characteristic, indicating small generation of interface states.

At low radiation doses, a small positive shift is seen, probably caused

by interface states[50] but soon cvercome by positive oxide charge buildup.

* In a late news paper at the recent IEEE Nuclear and Space Radiation

Effects Conference (Columbus, Ohio, July 10-14, 1967), D. Long reported

the fortuitous discovery of six p articularly radiation-resistant tran-
sistors among a batch of devices made by Sprague, Inc. The treatments

which were thought to have c=used this unexpected "hardening" included

heat-treatment and phosphorus glass deposition followed by etch-back.
No controlled experiments had yet been carried out.

44



Cn Z)U	 o
o ^'	 3
co	 o i

44 " y
U to	 II Q

a to F c

a to co

•^ co	 to

o co

4^ to

NZ

to co I

o

tJ O O ^ i^

^I4u`'
U O	 CS
01	 U

N co • ^J • n1 • SJ
N ^ ^ 'C3 Sy

V ^ N 'tJ

H
Q1

w

n „
N
O

0
m 0
O O

t

n a
O
^Q
U

V

O

w
0

W

O
00

W

a cn0D
OLr

cn Z
CL

00=z
CL sU^
^0
CL Z

—0 i	 .^	 O_

G >~	 0 0
a

40 0 >
V	

` `	 N

w

a'r

22

U.

a

x

	

^^	 S	 0

	

^\ 	
Q
ut

> 0	 w H0 0 c0	 _ Cy
0M i`	 0	 ^' W
a :::4 O	 ^^	 I J

^► 	 w

U

0 O 
c0

	

M	 ^

Q > V
1 if: 1 1 1 I I` I____j 0

	

0	 --0
aiOHS38H1 NI 1:1IHS

I	 I

I	 I

0

(S110A)('A0) 39VI-10A

45



TABLE. III

Fabrication Conditions for Gate Insulator
of "Pattern 7" SwTles A-13 and A-41

r

A-13 A-41

(1) Grow thermal oxide in (1)	 Same.

dry 0 2 @ 1200°C.

(2) Deposit pyrolytic layer (2)	 Deposit pyrolytic S102

containing phosphorus layer at 675°C substrate

at 675% substrate temperature	 (no phos-

temperature. phorus included).

(3)	 Deposit	 thin p, • rolytic (3)	 (Step not	 required).

Si0 2 layer at 675°C
(for metallization

adhesion only).

(4) Heat treat in dry 0 2 (4)	 Same.

@ 1200% for 15 min

("densification").

(5) Anneal in H 2 @ 450°C i	 Same.

for 15 min.

Details of deposition of phosphosi.licate glass: Reacted Base;

are	 (1) mired oxygen and nitrogen and	 (2) argon, bubbled

through separate vessels containing liquid tetraethyl ortho-

silicate	 (TEOS) and trimethyl phosphate (TMP) at room temper-

ature.	 Floc , rates fcr phosphosilicate glass are normally

RateTMP/RateTEOS - 2.	 Total argon flow rate is normally about

2 liters/min.	 tThese details are similar to those reported by

RCA Electronic Components to the U.S. Army Electronics Command,

Fort Monmouth, New Jersey, on Contract No. DA-28-043-AMC-

00314(E)J.

Figure 15 compares the phosphorus vs. nonphosphorus containing samples.
An exact comparison between radiation-induced charge densities was not

possible, using the "Pattern 7" transistors, since an accurate deter-

mination of the insulator thickness was not possible. Thus, model ex-

periments were done using MIS capacitors made by a similar series of

steps and in the same furnaces in which the above transistors were made.
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SOURCE 2 /DRAIN I SOURCE 3 /DRAIN 2
SOURCE I	 SOURCE 4/DRAIN 3

GATE GATE GATE GATE

1.0
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I	 Si

0.8	 I	 RCA PATTERN 7

0.7 0=1013 —^► 	 I1

0.', 	 10 14	 ____	 I	 VDS =IOV
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Figure 16. Typical changes in transfer characteristics
of a "Pattern 7" transistor under zero
irradiation bias (gate grounded during born-
bardinent) .

Insulator films were prepared by oxidizing several silicon wa`ers in

day oxygen in a resistance-heated furnace at 1200°C. This was fo - wed

by annealing in hydrogen at 450°C for 15 minutes. On one of the i_ ors
only, prior to annealing, approximately 600 A of phosphosilicate glass

were deposited on top of the thermal oxide using the same techniques and

experimental condition- as for the "Pattern 7" transistors above (see

Table III). The overall thickness of the layers was then determined by
ellipsometry. Metallic gates were not evaporated on the wafer and C-V

measurements were made before irradiation and at several 1-MeV electron

fluences, using the mercury-gold probe technique. While a detectable

amount of interface states was introduced by the radiation, it was

possible to extract reasonable data on the radiation-induced fi).ed oxide

charge density. These results are shown plotted in Figure 17. The cal-

culation normalizes the different thicknesses of the two films. Clearly,

the oxide containing the additional pihosphosi_.Lcate layer is considerably
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o- SAMPLE CH-14

o- SAMPLE CH-12

Q^ ^II
NO PHOSPHORUS
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10j	104	 105

FLUENCE-ELECTRONS/CM2

Figure 17. Comparison of radiation sensitivities of MOS
capacitors containing composite insulator
layers, using 1-MeV electron irradiation.
Voltoge shifts are normalized for thickness
and expressed in charged states per cm2.
1'hese samples had no gates and hence were
floating during bombardment.

less sensitive than the simple thermal oxid!, and the relative and ab-

solute magnitude of the radiation effects agree with the resultE for

the semi-integrated transistors shown in Figure 15.

The exact me=chanism by which P 20 5 lavers reduce the radiation sen-
sitivity or the optimum combination of variables by which the maximum in

reduced radiation sensitivity can be obtained is still not known, and

many more experiments will have to be done to answer these questions.

F. PRODUCTION-LINE TRANSISTORS

I. TA 2578 Transistors

The TA 2578 transistor is a commercially av-ilable developmental

type MOS transistor used for chopper and low-frequency amplifier applica-

tions. The device is particularly suited to radiation effects work

1
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because of its relatively large gate capacitance (2 to 3 pF), thus

allowing C-V measurements to be made as well as transfer characteristic.

The fabrication procedure for the device was as follows. The starting

material was 20 ohm-cm p-type silicon. The n-type source and drain

regions were dopee to a surface concentration of approximately 10 19 cm-3.

The channel width was approximately 10 3 microns and its length 10 microns.

It was arranged in a closed rectangular type geometry to eliminate leak-

age effects. The thickness of the ^ •.te oxide was approximately 2000 X

and contained layers of thermally grown ("wet-grown") oxide and a layer
of chemically deposited, phosphorus-doped oxide. Contacts to the device

wera made by evaporation of :.,uminum. After the contacts were evaporated,

the device was treated in forming gas at an elevated temperature for

several minutes.

Some preliminary measurements of this device under radiation were

previously reported[21]. Two peculiar properties of the device were

noted:

(1) Under bombardment by electrons or cobalt-60 gamma rays with the

gate grounded, there is a s:tift in the transfer --haracteristic toward

more positive gate voltage.

(2) The pest-irradiation transfer characteristic is bias-unstable

in a direct4_on opposite to T'-i icni -drift instability. A slow interface

trapping model was postulate to extlain this effect.

In light of the positive shift in transfer characteristic under

electron irradiation, further study of this device was carried out. Le-

vices were bombarded with 1-MeV electrons, and the Id--Vg and C-V character-

istics were recorded (the C-V characteristic was measured with the drain

shorted to the substrate and the source floating). Figure 18 shows the

effect of electron irradiation on these characteristics. The solid curves

are the pre-irradiation characteristics, and the dotted curve shows the

characteristics after the devices have received a fluence of 2 x 1012

1-MeV electrons/cm 2 . Several interesting results are indicated in these

curves. First, although the transfer characteristic shifts toward more
positive gate voltage, the shift in f=t-band voltage is negative. Hence,

the positive shift in transfer characteristic can be assigned, in this

case, to the generation of interface states and not tc the trapping of

fixed negative charge in traps deep in the oxida. Secondly, it can be

deduced fror,. the C-V curve that the states introduced by the radiation

are distributed throughout the forbidden gap of the semiconductor. An

estimate of the density of interface states that are being introduced by

the radiation can be made by taking the difference between the shift in

flat-band voltage and the shift in the threshold voltage (gate voltage
for I d = 2 x 10-5 A). Essen'--ally we are looking at the broadening of

the C-V characteristic. This has been done for several samples which were
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Figure 18. Correlated C-V and Id-V characteristics of TA 2578
transistor before and a'ter irradiation at zero
irradiation-bias (gate grounded during bombardment).

irradiated with the gates grounded. The results are shown in Figure 19.

As can be seen from the figure, the spr-ad in the data was quite large.

It was not possible, in this case, to make wafer identifications. The

large spread in data indicates that this effect may be a very sensitive
function of one of the proceLsing steps. Th• large spread in the data

also precludes, at the present time, a determination whether this effect

depends on the gate bias during irradiation. In experiments on this

device in which gate bias was applied during irradiation, it was not
ossible to discern any difference in the introduction rate of the inter-

face states with or without irradiation bias. However, when the device

is irradiated to medium dose levels with gate bias applied, Lhe threshold

voltage now shifts in the negative direction (i.e., the broadening of

the C-V characteristic is the same for a giveci fluen.:e but all the

characteristics shift toward more negative voltage). Figure 20 shows

the threshold voltage as a function of fluence for gate biases of 0 V*

and + 10 V applied during the irradiation. There are several Doi-ts of

interest in this curve. First, the application of gate bias during the

irradiation caused the oxide-charge build-up with the net effect that the

threshcld voltage shifted in the negative direction. Secondly, under
negative bias; the shift in threshold voltage with increasing fluence

revers ,2d direction at a fluence value of approximate-15 ':0 13 e/cm2 . Under

* Gates were grounded during bombardment.
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positive bias, some reversal of the PV T also occurred, although irradiations

have not yet been carried to a high enough fluence level to see if the
th-eshold voltage decreases monotonically as for negative bias. A similar

peaking effect has been observed by Newman and Wannemacher in certain

p-channel transistors(591. These authors have observed this peaking

effect only in open-geometry transistors when irradiated with greater

than -20 volts negative bivs applied to the gate. Also, no broadening

of the C-V curve was observed.* Since the particular device studied
here has an almost completely closed geometry and since the peaking effect

is observed at considerably lower voltages it is probable that the effect

observed here is different from that observed by Newman and Wannemacher.

Cne possible Explanation of the effect described in this report mi;ht be

that the introduction of new interface states, which we can info, from
the broadening of the C-V characte-istic, might tend to compensate the

oxide charge and Bence cause the reversal. This hyFothesis, of course,

requires more verification.

2. Semi-Integrated "Pattern 7" Transistors

The RCA "Pattern 7" transistor has been used as a test vehicle for

the development of fabrication techniques for several logic circuits.
Four MOS transistors are available, the source of one serving as the

drain for the next, and so on.

Through the c:	 ` f-he Advanced Development Group, RCA Elec-

tronic Components and Devices, many samples from 5 different batches of
these transistors have been made available, with wafer identifications

and detailed processing data for each batch. Samples of whole silicon

wafers oxidized in the ovens used for gate-oxide growth on these tran-

sistors were also supplied. It was thus possible to assess the variations

in radiation sensitivity to be expected in transistors grown in pilot-
line conditions and with several important b r it well-controlled variations
in oxide process.

Figure 15 compares the data obtained for all batches of "Pattern 7"
devices.

As indicated in Figure 16 (inset), the "Pattern 7" transistor is a

"semi-integrated device, with bar geometry of source and drain diffusions.
Channel length is about 0.010 in. and channel width is variable, but

normally about 0.0003 in. In the samples employed in the present pro-

ject, the gate insulator was composed of several layers, as indicated in

Table III. Growth of thermal oxide was followed by one or two coatings

of pyrolytically deposited oxides. These layers then require a high-

temperature treatment to increase density and film integrity ("densifi-
cation").

* P. Newman, private communication.

53



The perforr.ance data and irradiation results for the "Pattern 7"

devices were given as a comparison with capacitors containing composite

oxide layers in Section V-E.

3. Complementary Integrated Circuits

Some early-development samples of complementary inverter units,

containing two p-channel and two n-channel transistors on the same chip,

were also made available by the same stoup that supplied the "Pattern 7"

devices. Each tra nsistor could be tested individually or as a logic.

circuit. In this way, it was possible to investigate the effect of

extra diffusion steps and impurities on the gate oxides grown on the same
chip. Gate oxides are grown simultaneously for n- and p-channel units.

The transistors employed geometry similar to that used in the "Pattern 7"
transistor. The substrate was r.-type silicon, into which was diffused a
p-type "well" which acted as the substrate for the n-channel transistors.

On irradiation to 1-MeV electron fluences greater than 10 13 a/em2

these devices tended to break down. Data up to this point, however, in-
dicated that the shifts induced at zero irradiation bias were of the same

order of magnitude for n- and p-channel devices on the same chip and of

values similar to the better "Pattern 7" devices, namely about 1 volt

shift at 1013 a/cm2.

G. SPECIAL EXPERIMENTS

I. Crystallographic Oriertation

Samples 7a and 7b were both oxidized in an rf-heated furnace in dry

oxygen at 1100% and then annealed in-situ in helium at the same tempera-

ture. Sample 7a was (111) orientation and 7b was (100) orientation. C-V
characteristics of both samples had :tear zero values of V fb . Irradiatio,

to a fluence of 10 13 1-MeV electrons/cm 2 with no applied oxide field re-

sulted in parallel shifts along the voltage axis. The fixed oxide charge

induced by the radiation was the same in both samples, indicating that

the crystallographic orientation of the substrate does not affect rad-

iation sensitivity, provided that the interface is already low in inter-

face state concentration, i.e., in a state of high order.

2. Oxide Thickness Effects

As a study of the effect of oxide thickness on radiation sensitivity,

several samples of uxide were prepared in an identical manner except for

the duration of the oxidation. The oxidations were carried out in steam

at 1100% followed by annealing in hydrogen at 500% for 30 minutes. The
resulting sample thicknesses were 1200 X, 2430 X, and 6190 R. The pre-
irradiation character of the interface was not as good as was observed in
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other samples, and when the samples were bombarded under negative bias

to a fluence of 10 13 electrons/cm 2 some interface states were introduced.

Nowever, iL appeared that, as in previous experiments, the thickness of
the oxide had no major effect on the charge density produced in tie oxide

by radiation when no electrical field was applied across the oxide. How-

ever, when the field exceeded approximately 2 . 10 5 volts/cm, the thicker

oxides were more strongly affected. One interpretation of tnis effect

might be the increased number of secondary el qctrans produced in the

thicker oxides. Tile interpretation of the data was somewhat obscured

by the radiation-induced generation of interface states as well as by

the slightly different initial oxide charge densities for the three

samples studied.

3. Stepwise Etch Dissolution Experiments

For an experimental verification of the proposed general nodel for

the radiation-induced positive oxide charge in M05 structures, and

particularly for a quantitative description of the oxide space charge

build-up, i , is important to know the profile of this radiation-induced

fixed oxide charge density over the depth of the oxide. Von Hippel's

theory predicts that, for any irradiation-bias value, a steady-state

thickness of space charge will be achieved when all the hole traps within

this thickness have been saturated with holes, and that the density of
the space charge in the oxide would decrease with distance from the oxide-

silicon interface, if the irradiation were carried out with positive volt-

age on the gate electrode. For different spatial distributions of hole

traps, the extent of the space charge and the saturati:n value for volume

density of charge in the oxide (Qsat) will have a different functional

dependence on the irradiation bias. Von Hippel's theory assumed a uni-

form spats distribution. Thi;- results in a dependence of the form

AQsat a V

The assumption of hole traps at a single energy _level -nd uniformly

distributed throughout the insulator is somewhat over-simplified and can

only serve as a first approximation in gaining understanding of the rad-
iation process. Actually, there is ample evidence that insulators have

a wide distribution of defect states throughout the forbidden gap, even	 r

though the density of certain levels may be large as compared with that

of the quasi-continuum of states.

Furthermore, it is reasonable to assume that, depending on the

method of formation of the insulator film, gradients exist in the spatial

distribution of the traps. A thorough treatment of the bias dependence
of the radiation damage has to take into account all the levels, and

their spatial distribution. It is quite possible, however, that there

will always be a discrepancy in different authors' experimental results

because of the different defect structure of insulator films prepared
in various ways.
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The general features of this oxide charge distribution, for zero-bias

irradiation, have been confirmed in earlier experiments by one of the

authors[31 and by Grove and Snow[4]. This was achieved by stepwise re-

movel of layers of silicon dioxide with a buffered etch, thickness de-

termination by ellipsometry and measurements of the oxide charge by the

mercury-gold probe technique. The results of this study are shown in

Fig u re 21. The fluence level used was 1015 1-MeV electrons/cm 2 . Because

`4  
;CORRECTED CURVE

o1

UJ 31 I 	 ^ • `^ -WEIGHING FACTOR

0 2^_	 i
x ► 	 I /. _ UNCORRECTED CURVE

w

o	 I/	 _
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Figure 21. Spatial location of fixed oxide charge within dry-oxygen
grown oxide irradiated with 10 13 1-h1eV electrons/cm 1)
under Zero irradiation bias. Successive oxide lzyere
were removed by etching. Weigh-Ing factor is a correction
for the imaging of some of the charges in the metal at
oxide thicknesses below 1000A (as explained in the text).
Gates were grounded during bomb-arcbnent.

the "gate electrode" moves closer and closer to the oxide charge with each

removal of an oxide layer, some of this charge is imaged in the metal, and
to find the actual oxide charge, a simple electrostatic correction has to

be applied, i.e., a weighing factor. If we assume that the positive oxide

charge builds up from the silicon--silicon dioxide interface, then this
correction has the form

(N )
	 _ (Nss^measured	

(8)
ss actual	 x

1 - 2
ox

►TION^ i.EVE ,,Z//Z/_f/^/,}
1000	 1500

OXIDE THICKNESS-A
0

is
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where t ox is the oxide thickness and xo is the distance, from the Si-SiO2
interface, to which the traps are filled. Clearly, since x o is the param-
eter we wish to determine, we must use some form of self-consistent analysis
of the data whereby we choose some value for x o and then see if it gives

a reasonable result. 0 This was done for the data shown in Figure 21 with
a value of xo = 100 A. For this corrected curve we can see that almost
all the positive charge is indeed within 100 X of the Si-SiO2 interface.
This is presumably the region from which radiation-excited electrons can
escape from the oxide in the absence of an applied bias. However, in the

presence of applied bias, the charge profiles are likely to extend to

greater depths in the oxide.

In the present project it was of interest to determine the form of
these deeper charge profiles induced by bias. Such tests wou'i lay the
ground work for analyzing the effect to be expected from cyclic or con-
tinuous bias such as might be expected during the operation of MOS de-
vices in satellite circuits.

Accordingly, several capacitors were bombarded while positive or
negative bias was applied to the gate. Large-area gates were used so
that the area which was subjected to bias-irradiation could easily be
indexed and found again after removal of the gate electrode and etching
of the oxide. Successive oxide layers were then etched off and C-V mea-
surements were made between etches.

The results of such as experiment, in which +5.0 V bias and a fluence
of 1 x 10 13 a/cm 2 were used, are shown in Figure 22. It can be seen that,
if it is assumed that most of the radiation-induced charge is within
200 X of the Si surface, and if the proper electrostatic correction for
this condition is then applied, the results are reasonably self-consistent.
Tlie rounded shape of the corrected curve, however, indicates that some
charge has alse been trapped still deeper in the oxide.

The results of a seccnd experiment, in which a -10.0 V bias and a
fluence of 1 x 10 15 e/cm 2 were used, are shown in Figure 23. Here the
analysis becomes more difficult since one now has to be concerned with
space-charge buildup from both interfaces. The electrostatic correction
factor for space-charge buildup from the metal-silicon dioxide interface
is:

2t
_	 ox(N	 (N

 ^Nss^.neasured (t	 - 
x ^2
	

(9)

ox	 2
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F,.gure 22. Spatial location of fixed oxide chare within
steam-grown oxide irradiated with 10 q,' 1-MeV
electronslm2 at an irradiation bias of +5
volts. Correction factors as for Figure 21.

where x 2 is the distance from the silicon-silicon dioxide interface at

which the boundary of the space-charge occurs. At present, we can make

no reasonable assumption about x 2 , and hence the data shown in Figure 23

have been left in raw form. However, it is of considerable interest to
find that a large amount of charge remains in the oxide, even when etchc

to a thickness of 200 R (probably over 5 x 1012 states/cm 2 after electro-

static correction). 'Thus, not all of the radiation-induced positive charge

in the sample resides near the metal-oxide interface, as would be expected
in the simplest m gdel[1]. A reasonable picture would be that of two space-

charge regions, one near the silicon-oxide interface and one near the metal-

oxide interface. Actually, for all bias conditions, a certain amount of

charge build-up occurs at both the semiconductor-oxide interface and the
metal-oxide interface. However, the charge build-up from the metal-oxide

interface would be expected to be the strongest in the negative-bias case
and weakest in the positive-bias case. This situation is evident in the

data shown in Figures 21, 22, and 23,if these data are considered in the
light of the following analysis.

Suppose that two space-charge regions are formed in the oxide as a

result of irradiation, one in the region of the semiconductor-oxide
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Figure 23. Spatial Zocation of fixed oxide charge within
steam-grown oxide irradiated to a fZuence of
10 1 ' 1-MeV eZectrons/cm2 at an irradiation
bias of -10 volts.

interface, the other in the region of the metal-oxide interface. In our

model, the semiconductor-oxide interface is located at position x = 0 and

the metal-oxide interface at position x = t o so that the thickness of _he

oxide is to. We also assume that the density of trapped charge near the

semiconductor face is qNl coulombs/cm 2 , this region extending a distance
x o into the oxide; the density of trapped charge near the metal-oxide face

is qN2 coulombs/cm 2 , this region extending from the metal-oxide interface
ou*_ to x = x 2 . The image of these charges in the silicon, QS1, is then
given by

tQSi	 f o 1 - tX_ o(x) dx	 (10)
0

0

where, p(x) is the oxide charge distribution described above. Hence, this
becomes
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What we measure in a step dissolution experiment is the change in QSi

as the oxide thickness, to is decreased. With this measurement, how-

ever, the fact that etching removes part of the space charge must not be

neglected. Therefore, the above expression r:ast be rewritten:

xl

	

gNlx l	1	 2t
0

_ x

QSi	 gNlxl	 1	 2t
0

q N1 to

	

2	
to < xl

[(tox2 2
+ qN 2	 2t	 to — K2

0

x1 < to < x 2 (12)

From this expression, then, the rate of change of the silicon im^ge charge

as the oxide is etched away can be obtained:

	

qN x,	 2	 qN	
X2

2 1	tl	 + 2 2	1	 t2	
to	

x
2 ( 0	 0

dQSi	
qNl	 r.l- 2

dt	 L	 t	
xl	 t° < x 2	(13)

0	 0

gIN
12 to < xl

It can be seen that the initial rate of change of QSi will be larger as

the extent of the space charge region at the metal-oxide interface is

made larger (i.e., as x 2 fir, made smaller).

"figure 24 shows the "states imaged in the silicon, (Qs /q)", normalized
to the initial number of imaged states, (i.e., the number of imaged states

before any oxide is etched away) as a function of the oxide thickness.

The three curves are for positive, zero, and negative irradiation bias.
As can be seen, the initial rate of change of the charge imaged in the

silicon is greatest in the negative--bias case, indicating that charge

build-up from the metal-oxide interface is more important in negative-bias
irradiations.
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VI. DISCUSSIC,-+

A. VARIATION I N SENSITIVITY

In this section we will discuss further tie factors which affect

sensitivit y of oxides to radiation. The reference radiation level chosen

will be 3 x lJ5 rads (equivalent to about 10 13 1-Mel` electrons/cm 2 ), both

because this is well match t to the typical space mission dose and be-

cause the most data exist for this dose range, both in the present project

and in other workers' reports. In this respect, the study made here will
differ from that made by Snow et al.[251, in which the authors irradiated

until the radiation-induced C-V shifts no longer changed. This requires

doses well in excess of 10 7 rads. Such doses are too high to be of

direct interest in determining the behavior of MOS sy stems in typical

space environments. It appears from the present work that the shape of

the rise of `V with fluence (see, e.g., Figure 25) varies s_gnificantly

from oxide to oxide. Moreover, as again notable in Figure 25 the curve

shape of -V vs. dose is also radically different for different bias

conditions.

Thus, it will probably not be possible tc derive simple general

.model fluence-dependence curves for `OS transistors (as was possible,

for example, with solar-cell radiation degradation) and to extrapolate,

from -V data at one dose level, to '.V values at higher or lower dose

levels.

For this reason it is necessary to study the relative radiation

se_.sitivities of MOS devices at dose levels quite close to those of

ultimate interest.

The objective of the present discussion is to compare the radiation-

sensitivity of the various MOS s ystems tested. As has been seen earlier,
the most valid criterion of sensitivit y is probably the charge density

induced in the oxide laver by a given radiation dose.

However, this quantity cannot be calculated from AV T in transis-

tors if the oxide thickness is not known. Thus, to compare commercial
transistors ..e will cite -.V T as measured. We will compare the relative
merits of capacitors and intercompare the capacitor and transistor group

by following arbitrary conversion. Given an observed AV fb shift in a

capacitor of oxide thickness d (micrometer) at an absorbed dose of
3 x 10 5 rads, we will multiply `.Vf b by 0.211/d. The result is the ^Vfb

value which would have been obtained from the same radiation-induced
charge density in anv MOS device with an oxide layer of thick.. 2ss
0.211 um. We can, thus, at once validly compare various capacitors and

also conveniently intercompare capacitors and transistors on the practical
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and intuitively sensible scale of volts. Tile thickness of 0.211 um is

chosen for convenience, being that thickness of silicon dioxide at which

a positive charge densit y of 10 11 positive charges/cm 2 leads to negative

shift in pinchoff voltage of 1 volt, and 10 12 charges/cm2 leads to 10

volts and so en. The sensitivit y data emanating from the present project
can be summarized as follows: Zero bias sensitivities of MOS capacitors

at an absorbeu dose of 3 x 10 5 rads have been distributed: two with shifts

of less than 1 volt in the negative direction, nine with shifts between I

and 3 volts, twelve with shifts between 3 and 10 volts, and three between

10 and 20 volts. The corresponding results for transistors are (for RCA

units batch-tested) four batches with shifts below 1 volt, one with shift

between 1 and 3 volts; (these data no not include the special case of the

TA 2578, in which all five batches exhibited a pgsitiL^e shift of I to 2

volts). Combining data on commercial types of MOS transistor from several

authors[22,52,53] and the present project, the distribution is as follows:
none below 1 volt, five makes with shifts between 1 and 3 volts (FI-100,

RN-1030, SC-1129, MEM 511, and ME'`1 2009) , and one above 3 volts (M-2103),
The apparent first conclusion, that commercial processes appear to be able
to achieve a level of shift lower than the average for laboratory capac-

itors, may simply be due to the choice of a normalization factor for the

capacitors based on oxide thickness of 0.211 um. In a commercial tran-

sistor with an oxide thickness of 0.16 um (a common oxide thickness),
the same density of charge near the interface would p roduce 253 less

voltage shift in the electrical characteristics* (th- ).211-um thickness
is chosen for reasons of convenience in conversion). Thus, the --apacitor

and transistor curves should not be compared on a competitive basis.

A trend of some interest seen in these charts is that, within the

accuracy of this type of plot, there appears to be a constant relation,
extending through laborator y_ capacitors and commercial devices, between
the voltage shifts obtained under zero, negative and positive irradiation

bias, the factor in each case being about three. This could be of some

practical importance in developing testing techniques if, from a measure-

ment of an unstressed device, one could make a statement concerning the

behavior of that device when irradiated under bias stress.

This is a possibilit y which should be tested carefully in future
work. There is a reasonable probability of success since, on the simplest

model of the mechanisms of radiation effect in MOS systems, it is assumed

that there is effectively a constant relationship between the hole-trap

density near the interface (the region which is filled with charge during

zero-bias irradiation) and the hole-trap density at points further into

the oxide, which would only be filled with charge when under bias stress.
In other words, this rule would follow if the shape of the hole-trap con-
centration profile were constant from sample to sample, even if the

*I.e., reduce the voltage shift scale for capacitors in Figure 23 by a
factor of 0.75.
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absolute densities changed. On the other hand, it is also quite possible

that, in fact, considerable deviations in shape of the hole-trap profile

occur from sample to sample. Onl y detailed bias dependence data over a
carefully selected set of oxides could establish whether the bias-

e..ependency of '.%'f b can be kept constant over a group ok' oxides. From
such data it will then be possible to determine whether zero--bits irra-

diation will ever be valid as an indicator of radiation-sensitivity for

all bias stress conditions.

Figure 26 shows a histogram of the distribution of voltage shifts

for capacitors under zero-bias irradiation on a finer scale. The spread

in data when it was attempted to repeat preparation in exactl y the same
way was considerably less than that seen in the lower peak. The concen-
tration of data in the 2 to 4 volt regicn is, in fact, partly due to the

establishment of routine methods of oxidation in an rf-induction. furnace

and steam oven, including routine annealing procedures. However, it is
not yet perfectly clear what facto_s !Ed to the improvements observed in
certain samples. Further siatistical data should contribute to the solu-

tion of this problem. The most likely process causing improvement is a
cleaning procedure. In samples M13R, M14R, and 7a, a special cleaning

procedure was used, involving vapor-etching of a laver of silicon by

heating in :hydrogen above the temperature at which silicon and hydrogen
react; oxygen was then admitted without anv further op ortunity for sur-
face contamination; the result would have been an unusually uncontaminated,
and hence particularl y reactive, surface.

EACH SAMPLE IS FROM
A DIFFERENT WAFER

10 L 	 (TOTAL 26 PREPARATIONS)
4	 V, a 0

No. OF 6^
SAMPLES 4

2-
0	 ^^	 1	 f—I
0 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20

AN SS (CHARGES/CM 2 X 10 11)

Figure 26. Histogram of voltage shifts observed in MOS capacitor
samples irradiated to 1-d1eV electron fZuence of 1013
eZectrons/cm2 at zero irradiation. bias.

Two possible models would fit the effect of silicon surface purity

on radiation sensitivity.

(1) Lack of contamination could have allowed the growth of oxide

configurations which are normally blocked by impurity atoms. Ali example
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of such impurit—sensitive growth process is described b y Revesz[54[.

Thr_ growth of certain couiigurattons of Si-O-Si-O chain termed "micro-

hcterogeneities" can he blocked b y several tvpc-^ of impurity and defect.

The existence of long, straight Si-O-Si-O chains can produce higher
levels of electronic conduction than otherwise possible. It has been in-

dicated by Snow and others[25] that the conductivity level in nitrides

correlate well with their lower radiation-sensitivity (i.e., that Higher

conductivity allows the trapped charge to leak awav).

(2) Certain impurities actually act as hole-trapping sites (an ex--
-ample known to act in this way is the lower valencv state of cerium[561);
it is possible for such impurities to travel with the interface. On the

other hand, there is no reason to think that samples exhibiting fairly

high sensitivit y were subject to anv extra gross metallic contamination.

The extra-sensitive group seen in Figure 26 ma y constitute a group

in which insufficient annealing was perfotmed. Although, after oxidation.

most of this group was heated at the oxidation temperature in an inert gas

for over 15 minutes, subsequent hydrogen haking was short and at low tem-

perature or not performed. While, according to Revesz, the action of

hydrogen should be to reduce electronic conduction, the beneficial action

of hydrogen in improving inter f ace-state density in thermal oxides appears

to be connected with the reaction of the hydrogen with undesirable impu-

rities, and with unsatisfied or strained chemical bonds at the interface.
Since the species thought to produce the hole-trap in silicon dioxide is
a nonbridging oxygen atom, it would not be surprising; that reaction with

hydrogen would change the properties of this center. Arguing against the
role of hydrogen are several experiments in which hydrogen treatment was

varied on samples of the same waver, and little sample-to-sample differ-

ence was noted. The conclusion seems to be that hydrogen annealing is
one factor, but not the only factor in controlling; radiation sensitivity,

and that, if other factors are to be determined, all samples should be
ver y thoroughly hydrogen-annealed first.

A comment which should be made concerning data on commercial tran-

sistors is that, when data from several different workers have been com-

pared, the same transistor type has alwa y s behaved in fairly similar fash-

ion. This indicates that the radiation sensitivity produced by a given
production-line process remained fairl y constant from batch to batch in
the few cases tested. This is not to sa y that a miner change in a pro-

duction process could not have radically affected sensitivity in either
direction.

I

66



H. DOSE DEPENDENCE OF RADIATION SENSITIVITY

For all the `IOS systems surve yed, there has been a striking simi-

larit y in the shape of the plots of radiation-induced shift (or charge

buildup) versus dose. In Figure 25, data on RCA transistors examined

in this project are compared with data on commercial transistors made

b y other manufacturers. Shown are data on the Ra y theon RN-1030 and

Fairchild FI-100, Irradiated by Mitchell[52] using cobalt-60 radiation
and measured by the C-V technique. It will be noted that the zero-bias

dependence is most nearlv monotonic, certain sections approximating a
power-law curve ;'.VT _ ;0.4), The negative-bias curve rises steeply and

saturates early, while the positive-bias curve rises more slowly to satu-

ration, exhibiting a curve resembling Mitchell's model.* Ir. some pro-
duction transistors, both positively and negatively biased samples have

shown saturation followed b y a reversal.

In the 12 examples of data on fluence dependence of shift in capac-

itors, under zero-bias conditions, produced during the present project,

it is notable that the slopes of log -V T vs. log D do not vary greatly

from high-sensitivity samples to low-sensitivity ones, indicating that

the same processes are probably taking place in both cases.

The phenomenon of saturation of shift followed by reversal observed

in several batches of the RCA TA 2578 and also by Long[57] is, of course,
of great practical interest since it provides a limit to the tolerance

which a designer may have to provide, in his circuit, for the shift. It

is not clear what process is causing the reversal. Some permanent in-
crease in conductivity of the oxide ma y be produced by the radiation. On
the other hand, the effect ma y be a product of interface changes which
are manifested in the channel conductivit y characteristics as reversals
of the threshold voltages and are not true measures of fixed oxide charge.

C.	 IdFT!- r C , -F ^-^_JCI'IG PAD !AT ION SEN D! i"IVITY

The main outcome of the present project is the indication that ther-

mal oxides which have coi.siderably lower radiation sensitivity than those
found commonl y in commercial use can be fabricated. Such thermal oxide
films have been found while surveying a fairly wide range of laboratory-

grown oxides available from several different furnaces. Experiments

aimed at pin-pointing the exact process step which affects sensitivity

most strongly in these simple oxides have not given clearcut solutions

to the problem. One of the more likely candidates, post-oxidation

*Mitchel, Ref. 52: 'PV T = - aV I (1 - e -PD 1 where a and 3 are constants,
V1 is irradiation bias, and D is dose.
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annealing procedures, has been tested in a controlled manner but the ef-

fect of vary ing the annealing procedures (hydrogen and inert gas) has

been so small that it is tempting to eliminate annealing as an important

variable. However, the groupings observed on analyzing differences be-

tween oxides with randomly different fabrication procedures suggest that

post-oxidation hydrogen annealing may indeed be a key factor.

While the picture in simple thermal oxide films is still unclear,

one oxide treatment used widely in mass production has been found to be
beneficial. In controlled experiments, the addition of a phosphorus-

containing coating to a thermal oxide was found to decrease its sensi-

tivity by a factor of 2 to 3. With study to determine the ideal concen-

tration and distribution of dopant, this effect, which can be termed the

first clearl y demonstrated "radiation-hardening" of an MIS insulator film,

may produce a higher factor of improvement. Developmental transistors

incorporating phosphorus-containing layers of the type described show the
lowest radiation sensitivitv observed in anv known transistor structure

(less than 10-V shift at 3 x 10 5 rads at +10-V irradiation bias); thus,

it is clear that the process is well adapted to mass-production use.

It is thought likely that other extraneous treatments, such as in-

tentional doping of the insulator film during growth, should also produce
improvements in sensitivity. These improvements could come about either

by modification of the conductivit y of the oxide or modification of the

charge-trap concentration (Lite minor increases in conductivity needed

should not degrade transistor properties). Charge-trap modification

could occur by two separate modes: (1) decrease of the hole-trap density

by reaction of the dopant with a trapping site, and (2) increase in

electron-trap densit y using atomic species with an affinity for electrons

(e.g., higher valences of cerium ion).

J. RECOMMENDATIONS vOR HARDENIN F, OF i,10S DEVICES

It is r_ot yet possible to give a recipe for producing high-perfor-

mance MOS transistors which are insensitive to radiation. However, sev-
eral ground-rules for improving radiation sensitivity are made clear by

the present work:

(1) Reject oxidation processes which yield high interface-state

and fixed charge densities after oxidation and annealing.

(2) Incorporate pyrolytically deposited, phosphorus-doped layers

in the gate oxide structure.

(3) if the greatest possible insersitivitv is required, pre-irradiate

all samples to be used to the expected integrated dose and at

the bias stress levels expected. Select the least affected

T1
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sample for use. The radiation effect may thee. be annealed
out without any residual damage, and the devices, when re-

irradiated, can be expected to follow closel y the course
which the y followed on the first irradiation.
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VII. CONCLUSIONS

The work described here has uncovered several important features in

the relationship of MOS device fabrication procedures to the final radia-
tion sensitivit y of the device. It is possible to vary radiation sensi-

tivity in oxides (as manifested in their electrical characteristics) over

more than an order of magnitude, the best samples being much less sensi-

tive than those now available on the commercial market, sensitivity being
measured in terms of charge concentration buildup in the oxide. While

some clues are emerging as to the ideal techniques for repeatably pro-
ducing low-sensitivity oxides, no recipe is yet possible. However, it is

concluded that only a moderate amount of further statistical study of a

few candidate processes should reveal the correct set of oxide growth and

annealing conditions for low radiation sensitivity. To produce the ulti-

mate in insensitivity to radiation, extra processes can be added to the

above conventional steps. One is phosphorus-glass coating, already widely

adapted to commercial use. Another is stringent vapor-etch cleaning of
samples in site in the oxidation furnace.

It is estimated that, using these measures, supported b y selection,

the shifts obtained in a typical space mission (e. k ., 3 x 10 5 rads in 1
year from all particles) could be made as low as 0.5 V if the device is

at zero gate bias throughout the mission, 2.5 V if under positive gate

bias, and 2 V if under negative bias.

Preparative factors for MOS transistors which can be ruled out with

fair certainty as to their effect on radiation sensitivity are:

(1) source-drain spacing or length,
(2) gate metallization,
(3) crystal orientation of original silicon (experiments by the

authors[50] and Snow et al.[25] have established this),
(4) oxide thickness, and
(5) mobile metal ion (indicated by several experiments by

K. Zaininger[58] not reported here).

Preparative factors which cannot be ruled out are:

(1) oxidation temperature,
(2) uncontrolled impurities other than mobile metal (indicated by

the hydrogen-etch experiment, Section V-B.)
(3) phosphorus content of oxide (indicated by phosphorus-coating

experiment, Section V-E.),

(4) hydrogen annealing (indicated by the distribution of sensi-
tivities vs. processing procedures shown in Section V-B.),

(5) inert-gas annealing procedure, and
(6) oxidation atmosphere and temperature.

V]
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The question of relative superiority of oxide growth in steam or dry

oxygen has not been settled. Figure 27 indicates the situation. While

steam-growth leads to greater reproducibilit y of radiation sensitivity,

dry-oxygen growth has produced a few samples with the lowest sensitivity_

ever observed.

An important effect as yet little characterized in radiation effects

on MOS transistors is the formation of a new interface state under ion-
izing radiation. Production of new states must imply bond rearrangements.

These are not e'tsy to identif y . However, the serious effect that these

states have on transistor characteristics makes it important to study

t:iem further.

Future work should thus consist of:

(1) Statistical studies of the sensitivity of very clean steam-grown
oxides, varying annealing times and temperatures in helium, fol-

lowed by variable times of hydrogen bake, to be carried out on

simple MOS capacitor structures.
(2) Statistical studies of the effect on radiation sensitivity of pre-

oxidation gaseous etching procedures on samples oxidized in an

rf-heated pedestal furnace, again using capacitor structures.
(3) Studies of the influence of hole-trap profiles by studying the

variation of dependence of radiation sensitivit y on irradiation

bias for several different oxide growth-rate schedules.
(4) Studies of the effect of radiation on the production of bias-

dependent interface states in MOS capacitors with guard-rings,
and in transistors located on the same wafer.

(5) Studies to determine the effect on radiation sensitivity of dif-

ferent phosphorus distributions in MIS insulators and also the
related effect of an insulator-insulator interface near the cen-

ter of the insulator film, as in two-laver MOS gate oxides (again

using integrated capacitors and transistors).
(6) Studies on other insulators which are suitable for MIS devices

and now show promise of low radiation sensitivity, such as alu-
minum oxide and hafnium dioxide.

'Techniques which will be of particular itse in determining factors
affecting radiation sensitivit y , over and above those used at present
are (a) stuL:y of the electrical and optical phenomena observed during

thermal annealing of the oxide charge (including thermolumineseence)

(b) study of photo-excited changes in oxide charge distribution (see

Section III-F.), (c) fast sweeping and sampling of C-V characteristics,

accompanied by time-lapse photography (to displav, e.g., the shift of
flat-band voltage of a device during irradiation, biasing or heating on

the millisecond scale). Such circuits have recently been developed under
RCA funds.

n
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