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Abstract 

The theory of laminar flames sustained in a burner where combustibles are 
injected through two parallel, opposed porous walls is considered. For steady 
flow at low Mach numbers, similar solutions of the type found applicable to 
stagnation flow permit the reduction of the general equations of change to a set 
of one-dimensional equations. The classic one-dimensional flame equations of 
Hirschfelder are obtained in a limiting case where the rate of injection from one 
surface is just equal to the rate of suction at the other surface. 

Several examples of combustion experiments done in an apparatus which seems 
to approximate the ideal configuration have been previously reported. The flat 
flame diffusion burner of Pandya and Weinberg was the prototype burner on 
which the analysis was based. However, several other burners not previously 
recognized to exhibit similar solutions are pointed out. One example is the pre-
mixed flat flame burner in which there is flow divergence because of a screen 
or flat plate placed in the burnt gas flow. The experiments of Schultz where solid 
pellets are vaporized by pressing against a hot plate can be analyzed by this 
technique. 
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	 Theory of Laminar Flames in Stagnation Flows 

I. Introduction 
The steady laminar one-dimensional flame has a spe-

cial importance in basic combustion research because of 
the relative ease with which rigorous investigations, both 
theoretical and experimental, can be carried out (see, for 
example, Ref. 1). The usual configuration of the ideal one-
dimensional burner, whose experimental prototypes were 
developed by Powling (Ref. 2) and by Botha and Spalding 
(Ref. 3), has the velocity vector always parallel to one of 
the spatial axes, and properties are uniform in the planes 
normal to that axis. This classic configuration is limited 
in utility in that only slow burning or highly cooled flames 
of premixed combustible gases can be stabilized, and also 
because the most significant combustion parameter mea-
surable with it is the flame speed. In view of these limi-
tations, it seems worthwhile to explore the possibilities of 
another class of burner configuration which retains the 
advantage of a rigorous theory in one dimension, includes 
diffusion flames as well as premixed flames, and can be 
reasonably well approximated in laboratory apparatus. 

The configuration which has these properties is the 
parallel porous wall burner. The experimental prototype 
on which the present theory is based is the flat counter-
flow diffusion flame of Pandya and Weinberg (Ref. 4). 
The rigorous molecular theory of dilute gases of Hirsch-
felder (Ref. 5), specialized to the case of steady axisym- 
metric laminar flow at vanishingly small Mach number, 
is used as the starting point for the present theory. When

the hypothesis of similar solutions of a type familiar in 
stagnation flow analysis is invoked (Ref. 6), we find the 
applicable partial differential equations of momentum, 
mass, energy, and species conservation are reduced to 
ordinary differential equations. 

The partial differential equations applicable to laminar 
flame propagation are so complex that substantial simpli-
fications are required even for numerical analysis. The 
reduction of the problem to that of solving a set of ordi-
nary differential equations is almost essential if any real-
istic set of chemical parameters are to be considered. 
It is then possible to utilize some powerful modern nu-
merical techniques to obtain solutions. 

The introduction of a second surface, parallel to the 
injecting surface, differentiates this type of stagnation 
flow from the one familiar to aerodynamicists. The length 
scale is now fixed by the distance between the surfaces; 
this, in turn, enables us to define a Reynolds number inde-
pendent of boundary-layer considerations. As pointed out 
by Proudman (Ref. 7), the flow configuration is possibly 
unique in that the position and structure of all viscous 
layers, internal as well as boundary, can be determined 
by classic methods of hydrodynamics and boundary-
layer theory. This determinacy of both the position and 
structure of dissipative layers is now extended to laminar 
flames. 

JPL TECHNICAL REPORT 32-1261



The essential contribution of this investigation is to 
show the existence of a class of one-dimensional flames 
which include premixed as well as diffusion flames. The 
theory is restricted to flows at small Mach numbers, but 
this is not an important limitation in most laminar flame 
studies. With this configuration, the interaction of gas-
phase combustion reaction with flow can, in principle, 
be analyzed in an exact manner. 

Search of the literature of combustion research reveals 
several types of experimental apparatus which approxi-
mate the theoretical configuration. Experiments at JPL 
also confirm some of the qualitative conclusions.

III. Basic Equations 

The partial differential equations for the conservation 
of mass, momentum, species, and energy are writteii for 
steady, laminar, axisymmetric flow. The equations are 
(Ref. 8): 

(1) For mass

a(pvr) +a(ptv) =0	 (1) 
rar	 az 

(2) For r-wise momentum 

avav 
PV - + pW - + z	 ar 

II. Burner Description 
Two porous disks are situated with the facing surfaces 

parallel and the centers of the disks on a common axis 
perpendicular to these surfaces (Fig. 1). The diameter of 
the disks is taken to be large compared to the gap width. 
The disks are uniformly permeable so that the mass rate 
of injection is uniform over each surface. Different re-
actants can be injected from each surface so that a diffu-
sion flame forms between the disk surfaces. Alternatively, 
premixed gases can be injected so that laminar flames are 
established in the gap. The coordinate and velocity con-
ventions are illustrated in Fig. 1. The coordinate parallel 
to the axis is the z axis with the velocity component w; 
the radial coordinate is denoted by r, and the velocity 
component by v. 

A 
T1 ,p	 H1 , Y.1, 

SETTLING CHAMBER

IDEAL ONE— 
DIMENSIONAL 

f- POROUS PLUG  --
FLAME HOLDERS

4-

SETTLING CHAMBER 

TO,	 H0, V10 

Fig. 1. Schematic diagram of the parallel porous plate 

burner, illustrating the convention regarding 


coordinates and velocity components

(2) 

(3) For z-wise momentum 

aw	 aw ap a7rZ+	 +	 + PV + pW - + - = 
ar	 az	 z	 ar	 az	 r

(3)

 where we define the viscous stress components as 

rrr[2_(7V)]	 (4) 

Trz[+]	 (5) 

r atv
(6) 

and the divergence of the velocity vector is

(7) ar	 az	 r 

The body forces in the r and z directions are denoted 
by Xr and X, respectively. The equation for the conser-
vation of the ith chemical species is: 

a [pY (V + V) r] + a [plY1 (w + Wi)] = M
1 K,	 (8) rar	 az 

The diffusion velocities Vi and Wi of the ith chemical 
species, in the r and z directions, respectively, are defined 
with respect to the mass average flow velocities. The 
term L is the mass fraction of the ith species, Mi the 
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molecular weight, and K i is the net moles of i created	 are only N - 1 independent x i 's, the remaining equations 
per unit volume per unit time due to chemical reactions. 	 are 

Lagerstrom (Ref. 6) shows that the kinetic energy and 	 N 

the viscous stress terms can be neglected in gas flows 	 1 = 	 Xi	 (14) 
where the Mach number approaches zero. With this re- 	 = 1 

striction the energy conservation equation is 	 and 

N 

- -[ pr(v!i + V 1iiY /M ) - kr + rq ]ar r Or

aT 
+ -a (i +EWJ7iY i/Mj) - k + q)] = 0az

(9) 

The total enthalpy per unit mass is denoted by H, Hi is 
the partial molal enthalpy of the ith species, and k is the 
thermal conductivity. The energy flux due to radiative 
processes is denoted by q and q. The energy flux 
due to concentration gradients (Dufour effect) is ne-
glected. 

For mixtures of ideal gases, the partial molal enthalpy 
of the ith species is a function of the temperature alone. 
The relation for the total enthalpy is then 

H = 2 HjYjlMi	 (10)

N	 N 

0 = Y i wi	 YV.	 (15) 

To complete the specification, we state the perfect gas 
law:

pM pRT	 (16) 

where the mean molecular weight is defined as 

N 

M	 Mx	 (17) 

and the relation between mass and mole fractions is 

Y i = Mx/M	 (18) 

At the porous surface, it is assumed that the velocity 
vector is always normal to the surface. The radial velocity 
components are therefore zero at the walls. This can be 
expressed as

v (r, 0) = v (r, L) = 0	 (19) 

where	 where the walls are located on the planes z = 0 and 

H,=H(T)	 (11)
	

Z = L. The mass rates of injection at the walls are given by 

The superscript ° indicates that the partial molal enthalpy 
is independent of pressure and is a function of tempera-
ture alone. 

The diffusion velocities are related to the concentration 
gradients and the binary diffusion coefficients, Djj, by 

axi 
=	 L [WI - Wi +	 - -- 1 (12) 

z	 ii L	 z \pY5 pY JJ 

and

=- v, +	 _2 1 (13) 
ar L 	 j5 L	 ar \pY, pY JJ 

5=1 

Here the Xi are the mole fractions of the ith species, 
and DT are the thermal diffusion coefficients. Since there

pw(r, 0) = aG	 (20) 

pw(r,L) = —(1— a)G	 (21) 

Here a is the fraction of the mass flow injected at z 0, 
and G is the net mass flow added per unit area of burner 
surface per unit time. The negative sign in Eq. (21) is 
introduced since the velocity w (r, z) is positive when 
pointed in the positive z direction. We have by addition 
of Eqs. (20) and (21) the relation 

pw(r,0) - pw(r,L) = G	 (22) 

which is an expression for the net mass flow G. 

In order to simplify the specification of the boundary 
conditions for species and energy flux, we shall assume 
that each porous wall is an ideal flameholder of the type 
considered by Hirschfelder (Ref. 9). This flameholder 
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prevents the diffusion of active radicals upstream while 
passing fuel and oxygen freely into the combustion space. 
It is believed that for any real set of reactions for systems 
which can be premixed (e.g., 11 2-02, hydrocarbon—air, 
etc.), this condition is not required in the present burner 
system as long as the porous material is not an active 
catalyst. For a more realistic treatment of the wall bound-
ary condition within the framework of the stagnation flow 
analysis, it will be necessary only that the boundary con-
ditions be steady in time and be uniform over each 
surface.

The net mass flux of the ith species at the surfaces is 
given by the relations 

[p (w + W4 ) YJ (r, 0) = aGY o	 (23) 

and

[p (w + W1 ) Y4 J (r, L) = —(1 - a) GY L 	 (24) 

where Y 0 and YiL are the mass fraction of the ith species 
in the mixing chambers upstream of the porous surface. 
For the energy flux, we have correspondingly 

N 

[

(W^

H 	 - k + q](r,0) = aGH0 	 (25) 

[p(wft+wflYi/M)_ k + q](r,) = —(1— a)Gf1L	 (26) 
i=1 

and

where H. and HL are the effective total enthalpy of the 
gases in the mixing chamber. External heat losses due 
to conduction can be included as part of the effective 
total enthalpy. A more complete specification of surface 
conditions are required to handle radiative energy trans-
fer, but since this is generally only incidental to most 
combustion problems, we shall leave this open. 

'Ihe conditions of radial symmetry are used at the axis 
of the burner. These result in the radial velocity being 
zero, and all first derivatives of state quantities with 
respect to r being zero at the position r = 0. 

It will be convenient in the later analysis to define the 
stream function , (r, z) by. the pair of relations 

pVr	 (27) 
az 

and

pwr	 (28) ar 

The stream functions, as defined by Eqs. (27) and (28), 
satisfy the mass conservation relation, Eq. (1). 

IV. Similarity Transformation 
The presence of a stagnation point in the Pandya and 

Weinberg burner (Ref. 4) suggests that a solution be

sought, using the principle of similar solutions (Ref. 10). 
We pose the following hypotheses: 

(1) The stream function, t' (r, z), is described by a func-
tion of the form 

p (r, z) = Gr- F (z)/2	 (29) 

where G is a constant defined in Eq. (22), and F (z) 
is a function of z alone. 

•(2) The static temperature, T, and mass fraction, Y, 
of the ith chemical species are functions of z alone, 
namely

T=T(z)	 (30) 

and

Yi	 Y1 (z),	 i=1 . . . N	 (31) 

where N is the number of chemical species in the 
mixture. 

We shall test hypotheses (1) and (2) by examining the 
consequences of adopting them. If the partial differential 
equations of conservation and the boundary conditions 
can be satisfied by functions of the form, Eqs. (29), (30), 
and (31), then obtaining the functions F (z), T (z), and 
Y1 (z) is tantamount to a full solution. The question as 
to the uniqueness of the similar solution cannot be an-
swered at this time. We can, however, test the solutions 
by comparison with experiments. 
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In the molecular theory of dilute gases, the viscosity, 
, is a function of T and xi alone; hence, it is a function 

of z alone. The density is not only a function of T and x 
but also of the static pressure. At the limit of zero Mach 
number, the variation of pressure must be included in 
the dynamic terms of Eqs. (1), (2), and (3), but not in 
the thermal terms of Eq. (16), (Ref. 6). Hence we shall 
impose the condition that the Mach numbers in the flow 
field be small compared to unity, which allows us to 
assume that the density, p, is a function of T and x, alone. 

Body forces can be included if the force vector is paral-
lel to the z axis. In the following analysis, we shall con-
sider only gravity as a body force. 

Radiative energy transport is included in the formula-
tion. The radiative properties can be considered a func-
tion only of the identity of the molecular species, the 
temperature, concentration, and static pressure. Again, 
to the approximation that pressure gradients are insignifi-
cant in thermodynamic quantities, we can use a mean 
pressure to specify the effect of pressure on emissivity. 
From these considerations, the radiative transfer can be 
reduced to a problem with a plane-parallel geometry. 

From the equations defining the stream functions, 
Eqs. (27) and (28), and from the formulation of hy-
potheses (1), we get the relations for the velocity com-
ponents v and w as

Gr dF 
v=2__	 (32) - 

and

w = - GF/p (33) 

Using these expressions in Eqs. (2) to (7), the momentum 
equations can be brought into the form 

3pGrjd [ d (1 dF 
3r	 2 dz['dzp dz 

+GFd ldF	 G/dF\21 

	

dz (p dz)() j	
(34) 

and

apGr2 
---1—.1.--GF— 
az	 PL3 dz-	 dz 

+ (GF 2 2 dF) 1 d 1 dF d,fl 
--- -----j+pg 

(35) 
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where g is the acceleration due to gravity. Noting that 
p, ju, F, and g are either constant or at most a function 

of z alone, the partial differentiation of Eq. (35), with 
respect to the independent variable r, leads to the result 

2p (36) araz 

Since the static pressure, p, is a state property, it must 
be expressible as a function p = p (r, z). It follows that 
the mixed second partial derivative of p must be identical 
irrespective of the order of differentiation. The partial 
differentiation of Eq. (34) with respect to z must be 
identically equal to zero (Eq. 36), but this implies the 
condition that the term within the braces of Eq. (34) 
must be a constant. We have, therefore, 

- = constant X 
Gr 

 
ap	 ()	 (37) 

and

d	 df1dF\	 dfldF 
- I pi	 ii + GF—i -- 
dz [ dz \ p dz / j	 dz \ p dz 

G /dF\2 -	
() 

= constant	 (38) 2p dz

where the constants in the last two equations are the 
same. This last equation defines the function for F (z). 

The boundary conditions, Eqs. (19), (20), and (21), are 
transformed by Eqs. (32) and (33) into the corresponding 
conditions 

F(0) =	 a (39) 

F(L)=1—a (40) 

(41) 

dF 
dz (42)

If z and p are known as functions of z, then the third-
order ordinary differential Eq. (38) can be solved, includ-
ing the evaluation of the unknown constant, by using 
conditions, Eqs. (39) to (42). A general analytic solution 
is not possible, but certain limiting solutions will be dis-
cussed later. 

We now proceed to treat the species and energy con-
servation relations using hypothesis (1) and (2). From 
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hypothesis (2), we find that gradients of temperature and 
composition in the radial direction vanish, hence the dif-
fusion velocity in the radial direction, V, must be identi-
cally zero. We need not consider Eq. (13) further. 

It will be convenient to define a symbol for the mass 
flux of the ith species in the z direction as 

ni =pY(w+W)	 (43) 

From consideration of hypothesis (2), Eqs. (13), and (33), 
it is evident that n.i is a function of z alone. Using Eqs. (1), 
(33), and (43), Eq. (8) can be written as 

dni 
= MK — GY	 (44) 
dz 

where the term for the rate of creation of species i, K, is 
a function of p, T, and x i alone. Equation (12) becomes 

dxi 

=XX (• -	

+ k d 
log T	

(45) 

where we have defined the thermal diffusivity ratio k, as

niHi — 
k dT + q	 aGH0

(50) 

dT
—(1—a) GIl

(51) 

It will be noted that Eqs. (38), (44), (45), and (47) are 
a set of ordinary differential equations, which does not 
contain, explicitly or implicitly, any dependence on the 
independent variable r. Likewise, the boundary condi-
tions, Eqs. (39) to (42) and Eqs. (48) to (51), are not 
dependent on r. 

The fact that it has been possible to apply hypotheses 
(1) and (2) in a consistent manner to the original partial 
differential equations and to the boundary conditions 
indicates that at least no contradictory situation has 
arisen. If we can find the functions F (z), T (z), and x (z), 
then these functions will lead to a solution which satis-
fies all the imposed conditions. We are justified in sup-
posing that the hypothesis of similar solutions will lead 
to a full solution. 

N 

k=\ xix, (D - D)	
(46)  

j=1	 V. Hirschfelder's Flame Equations
Yj Paii 

This factor is generally important only where temperature 
gradients are large and the molecular weight of the ith 
species is greatly different from the average molecular 
weight of the mixture. 

In an analogous way, using Eqs. (1), (33), and (43), the 
energy Eq. (9) can be brought into the form 

"dF dnJi3	 dT 
GH	 +q(  

'ç	
(47) 

(N 

+ -
	

- k -

dz dz

3=1 

The boundary conditions at the surface are given by 
Eqs. (23) to (26) for species and energy flux' in the case 
of the ideal flameholder surface. These are 

m• (0) = aGY30 	 (48) 

n3 (L) = —(1 — a)GY 1 L 	 (49)

The classic equations for one-dimensional laminar flame 
propagation were described by Hirschfelder (Ref. 9). He 
considered the velocity vector to be parallel. That case 
corresponds to the condition that F (z) equals a constant 
(see Eq. 33). Reference to the boundary conditions, Eqs. 
(39) and (40), shows this can be obtained only if a, hence 
F (z), is very much larger than unity. Further, reference 
to Eq. (33) shows that G must correspondingly be very 
small, since the velocity, w, must be of the order of the 
laminar flame speeds. Setting dF/dz equal to zero in 
Eq. (44) results in the classic species conservation rela-
tion. If dF/dz is zero, then the first integral for Eq. (47) 
is the usual form of the energy-conservation relation. It is 
evident that the present equations of change for the 
parallel porous plate burner can be viewed as a more 
general version of the one-dimensional flame. Unlike the 
classic one-dimensional case, however, the energy Eq. (47) 
does not have a simple first integral, so that many 
of the approximate techniques developed for solving 
Hirschfelder's equations are not directly applicable. 
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VI. Stream Function 
Comparison of the present formulation of a multidi-

mensional flow in terms of ordinary differential equations 
with Hirschfelder's problem, outlined in the previous sec-
tion, shows that the greater generality is gained at the 
expense of adding a highly nonlinear, essentially fourth-
order differential Eq. (38). Since the flow configuration 
under consideration possesses some unique qualities, we 
will consider this equation in some detail. 

It is convenient to introduce nondimensional param-
eters. We choose a dimensionless length q defined by 

= dz/pL	 (52) 

where L is the gap height and T is a reference density. 
- Choosing q =0 atz=0 and =1 at z = L, the reference 

density T is then defined by 

= (fo' 
j)1

(53) 

The viscosity appears as the product, pj. It has been 
found, for crude analytic treatments, that this product is 
more nearly a constant than p or tt alone. It is convenient 
to combine this term into a nondimensional group which 
is defined as

C = (p )/( )	 (54)

gradient coefficient. We have four boundary conditions, 
which are restated as 

F(0)=—a (58) 

F(1)1—a (59) 

dy (60) 

dF
(61)

Some insight into the behavior of the dimensionless 
stream function, F (Sq), can be obtained by examining the 
case where density and viscosity are constant. We shall 
consider the analytic solutions for very small Reynolds 
number and for infinite Reynolds number (i.e., inviscid 
flow). 

At low Reynolds number, the viscous forces dominate 
over the inertial forces. Equation (57) reduces to 

d3F	 AN
forN<<1	 (62) 

The solution is

F = —2 + 32 - a	 (63) 

and i is a constant chosen to make C near unity. The
	 and 

Reynolds number N is defined as	 A = 241N	 (64) 

N = GLIA	 (55) 

Equations (37) and (38) then obtain the form

(56)
 - 4L2 

and

1 d (c d21'\ +Fd1' 1 fdF\2+A —o 
N d \ d2)	 d2 2 d) 2 p -

(57) 

respectively. Here A is a constant of integration. 

Equation (57) is nearly of the form of the Falkner-
Skan equation, obtained in blunt-body stagnation flow 
and in boundary-layer analysis (Ref. 6). The essential 
distinction is the presence of the undetermined constant, 
A, which is, as seen from Eq. (56), a form of the pressure

where boundary conditions, Eqs. (58) to (61), are used. 
If relation Eq. (64) is used in the radial pressure gradient 
expression, Eq. (56), we see that the pressure gradient is 
inversely proportional to the Reynolds number. The 
radial velocity profile is parabolic, showing that the solu-
tion corresponds to Pouseille flow. 

At very large Reynolds number, Proudman (Ref. 7) has 
shown that the influence of Reynolds number is restricted 
to a very small region in the vicinity of the contact plane 
between the fluids injected from the opposing surfaces. 
If we go to the limit of infinite Reynolds number, then 
Eq. (57) becomes

d2F /dF\2
+A=0	 (65) 

This is a second-order equation, but there are four bound-
ary conditions to be satisfied. Since A is an integration 
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0

constant, three constraints are ordinarily all that can be 
satisfied. Proudman finds that the inviscid solution will 
exhibit a discontinuity in the second and higher deriva-
tions of F(77) at the contact surface. Equation (65) is 
atisfied in each region and the constants evaluated by 

matching the function, F, and its first derivative, F', at 
the contact surface. We then get 

F -	 - a, where 0	 a	 (66'

F = —(1— )2/(l - a)+ 1— a, where a,j1

(67) 

and 

Examination of Eq. (56) shows that in the inviscid case, 
the radial pressure gradient is independent of Reynolds 
number as required.

DIMENSIONLESS NORMAL DISTANCE, 

Figures 2 and 3 present plots of F and dFIdq for vari-
ous Reynolds numbers. F is proportional to w and dF/d 
to v. There are equal injection rates from each wall. It will

Fig. 3. Radial velocity profile; p and fk constant;

equal blowing rates at each surface 

be noted that the maximum value of dF/d1 is 1.5 for low 
0.6
	 Reynolds number and 2.0 for the inviscid case. 

REYNOLDS No.: 

In Figs. 4 and 5, F and dF/d7 are plotted for the case 
when injection is from one wall (at 1.0) and the other 
wall is impermeable. At low Reynolds number, the radial 
velocity profile, as denoted by dF/d, is symmetric about 
the center plane. At higher Reynolds number, the radial 
velocity profile becomes asymmetric, with the maximum 
being pushed toward the impermeable wall. The inviscid 
flow solution is seen to violate the no-slip condition at the 
wall, and the singularity due to the assumption of infinite 
Reynolds number is evident. 

The important aspect of these limiting solutions for the 
very small and the infinite Reynolds number is that for 
values of a greater than zero and less 1, the viscous layer 
is located internal to the flow, away from walls. Proudman 
states explicitly that while the inviscid solution can pos-
sess multiple solutions, the solution with viscosity can 
possess only one zero in F (j), within the range 
F(0) = — a and F(1) = 1—a. This eliminates the possi-
bility that more than one stagnation point can exist in 
this flow field. It indicates that Pandya and Weinberg's 
interpretation of the observation of apparently two stag-
nation planes in the flow field, when the flame location 
coincides with the aerodynamic stagnation plane, is in 
error, as will be discussed later. 

-0.6
0	 0.2	 0.4	 0.6	 0.8	 1.0 

DIMENSIONLESS NORMAL DISTANCE, 

Fig. 2. Velocity normal to plate surfaces; 
p and 1A constant; equal blowing 

rates at each surface
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Fig. 4. Velocity normal to plate surfaces; p and

constant; blowing from surface at 77 = 1 

VII. Thin Flame 
When premixed combustible gases are injected through 

the porous surfaces, at equal velocities, then two sym-
metrically placed flat flames will be observed. If the 
velocity of injection is less than the normal burning ve-
locity, the flame will burn close to the porous surface. 
Heat loss to the surface allows the actual flame speed 
to match the injection rate. On the other hand, if the 
burning velocity is less than the injection velocity at 
the surface, then the flame will be blown back toward the 
stagnation point. 

To show that the flame will be flat in this latter case, 
consider the steady laminar flame at the axis, r = 0. By 
symmetry, the flame will be normal to the axis. Since the 
gas velocity is zero at the stagnation point and higher 
than the burning velocity at the surface, there will be 
some intermediate position, say z = z,, where the gas 
velocity just matches the flame speed. This is the steady 
state flame position. From relation Eq. (33), the axial 
component of velocity, w, is a function of z alone and 
is independent of r. Hence, if the axial velocity, w, is just 
equal to the burning velocity S n, at z = z and r = 0, 
then w (r, z) = S. at all values of r. From the definition 
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BLOWING 
SURFACE—

REYNOLDS No.:

V	 V.f	 U. 14	 U.b	 0.8	 1.0 

DIMENSIONLESS NORMAL DISTANCE, , 

Fig. 5. Radial velocity profile; p and u constant;

blowing from surface at, j = 1 

of normal burning velocity, it follows that the flame will 
be fiat and have a definite steady position. 

The burning velocity is a meaningful parameter only 
if the thickness of the flame is small compared to the 
dimensions of the apparatus. Using an approximate ex- 
pression (Ref. 11) for the flame thickness, A, and normal- 
izing by L the gap height, we have 

k/CpSL 1/NFP	 (69) 

where the second equality follows from the definition of 
Reynolds number, N, and the Prandtl number; we assume 
Prandtl number to be the order of unity. The symbol F 
denotes the ratio pS/G. Thus, the flame will be thin if 
the Fu ratio is not too small and N is large. 

Let us consider a flame of zero thickness. On the un-
burned side the density is constant at Pu and on the 
burned side the density is Pb- Consistent with the thin-
flame requirement where N is large, we shall use the 
inviscid approximation to the flow field. 

In Fig. 6 we show the dimensionless axial velocity, F, 
and radial velocity, dF/d, as functions of z/L. The F
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Fig. 6. Radial and axial velocity profiles 
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Fig. 7. Streamlines in the opposed flow burner; 

burning velocity/ injection velocity = 0.5; 


density ratio	 8.0 

is taken to be 0.5 and the density ratio, pu/pb, is 8. Note 
that the coordinate is the dimensionless distance in the 
physical plane. In Fig. 7, the streamlines are depicted 
in the r—z plane. 

VIII. Experimental Comparison	 Fig. 8. Premixed ethylene-oxygen-nitrogen flame in a 
The analysis for a thin flame in the parallel porous plate 	 parallel porous plate burner; porous plate diameter: 

burner shows two flat flame fronts located parallel to the	 2 in.; total volumetric flow rate: 70 cm3/s; 
surfaces. In Fig. 8, a photograph of a premixed ethylene—	 composition: C 2 H 4 /30 2 /6N 2 ; chamber 
oxygen flame in an experimental burner is shown. The 	 pressure: 100 torr 
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flame is very steady, except for flickering very near the 
blowout limit. 

Pandya and Weinberg (Ref. 4) have made a detailed 
study of the velocity and temperature field for an 
ethylene—air diffusion flame in their counter-flow burner. 
A detailed comparison of their data with the present 
theory will be published later. The results are in quali-
tative agreement since the radial velocity component 
increases linearly with radius and its profile is similar. 
An anomalous observation on their flame is that when 
the flame front is made to coincide in location with the 
aerodynamic stagnation plane, particles do not penetrate 
into the flame. They discuss this result in terms of two 
stagnation points separated by a zone with a weak gas 
source; this interpretation violates the principle of mass 
conservation. The possibility of multiple zeros in the F (z) 
function has been discussed by Proudman (Ref. 7). He 
proves that, in the case of constant density flow, F (z) can 
have at most one zero. The introduction of density and 
viscosity variation in Eq. (38) will not alter this conclu-
sion. The explanation for the particle track observations 
will probably be found in thermomechanical effects due 
to temperature gradients (Ref. 12). 

Beidler and Hoelsher (Ref. 13) report an experiment 
in which a flat flame for premixed propane—air mixture 
was obtained by placing a large flat plate normal to the 
flow of the combustion product. The porous surface was 
a set of screens. This flow is undoubtedly of the stagna-
tion flow type and is an asymmetric version of the flame 
illustrated in Fig. 8. 

Various modifications of the Powling burner (Ref. 2) 
have been widely used in fundamental combustion re-
search because of its close approximation to the classic, 
paraxial-flow, laminar flame of theory. In this burner very 
slow burning mixtures can be made to float stably above 
a porous surface through which the combustibles flow. 
However, it is almost always necessary to insert a screen 
or perforated plate in the burnt gas stream to stabilize 
its position (Ref. 1). This stability is due to the slight flow 
divergence caused by the pressure drop of the combus-
tion products flowing through the obstructing screen. 
Although this type of flow does not have a stagnation 
point, its solution, nevertheless, is contained in the family 
of flows discussed in this paper. In this case, one surface 
injects gas while the other surface sucks gas. Comparison 
of Eqs. (20), (21), and (22) make it clear that this condi-
tion corresponds to the parameter a being larger than 
unity (where injection occurs at z = 0). The degree of 
flow divergence decreases as a becomes larger. As shown

previously in the limit where a approaches infinity, 
Hirschfelder's equations were obtained. However, in this 
limit, the position of the flame is no longer determinate. 
Experimentally, this fact seems to manifest itself by the 
inability to obtain a truly flat flame with paraxial flow 
except by partial quenching (this latter type of flat flame 
has been used first by Botha and Spalding, Ref. 3). 

An experimental study of interest to combustion re-
search, even though combustion reactions are not in-
volved, is that of Schultz (Ref. 14). He measured the 
surface regression velocity for the vaporization of am-
monium salts by pressing pellets against a hot plate with 
a known force and known plate-surface temperature. 
Nachbar and Williams (Ref. 15) have presented a theo-
retical analysis for the gas film formed by the subliming 
solid, which acts as a thermal resistance to the transfer 
of heat from plate to solid. However, they were forced 
to leave undetermined the question of the thickness of 
the gas film. With the aid of the theory of stagnation 
flows, the effect of the applied force, pellet diameter, and 
gas properties can be used to predict the gas film thick-
ness. It will not be necessary to perform modified experi-
ments of the type suggested by Nachbar and Williams 
since Schultz's experimental configuration is already very 
nearly ideally suited to analysis. Chaiken et al. (Ref. 16) 
and Cantrell (Ref. 17) have given simplified treatments 
of the gas film flow, in which some of the essential fea-
tures of the present analysis are utilized. 

IX. Application to Combustion Research 

The development of a rigorous one-dimensional theory 
for the parallel porous plate configuration leads to the 
possibility of many new types of theoretical and experi-
mental investigation of combustion phenomena. The in-
herent advantage of the configuration is due to the 
introduction of a second porous surface, parallel to the 
first. The second surface can be used in suction or in 
injection, as a blank wall or as a plane of symmetry. 
Both diffusion flames and premixed flames, and surface 
interactions of flames can be treated within the frame-
work of the theory. 

It is believed that the boundary conditions are suffi-
ciently unrestrictive so that a number of phenomena 
which have been rather difficult to treat analytically now 
become mathematically somewhat more tractable, espe-
cially in view of the capabilities of modern computers. 
These phenomena can include surface catalysis, surface 
vaporization, and heat loss due to conduction and due 
to radiation. It is felt that with the well-posed boundary 
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conditions inherent in this configuration, new insight into 
problems of flammability limits can be obtained. 

It is well known that flame propagation limits are 
reached at finite burning velocities because of heat losses. 
In our preliminary experiments with the porous plate 
burner, this phenomena is very evident since the two 
symmetrically placed flame fronts (see Fig. 8) approach 
each other but do not quite merge as the flammability 
limit is approached. The comparison of a theoretical 
analysis of the extinction limit and experiment would be 
of interest in combustion research. 

An exact one-dimensional configuration for diffusion 
flames with convection is important since many systems

of practical interest cannot be premixed with safety. It is 
expected the blowout, quenching, and ignition can be 
observed in this configuration. A new experimental study 
of hydrazine—nitrogen tetroxide ignition with an appa-
ratus designed along these principles is being initiated. 
It is expected that quantitative evaluation of the thermal 
reactions leading to ignition will be obtained. 

Substantial contributions from combustion researchers 
to the general fund of knowledge concerning high tem-
perature chemical reactions were rare until Powling or 
the Botha and Spalding burner became widely used. It is 
hoped that with this new type of lanjinar flame burner, 
research into combustion reactions can be extended into 
new areas. 

Nomenclature 

C , p, dimensionless 

C mean specific-heat capacity at constant pressure, 
joules/g/°K 

D thermal diffusion coefficient, g/cm/s 

Gi i binary diffusion coefficient, cm2/s 

F dimensionless stream function 

G net injected mass flux, g/cm2/s 

H total enthalpy, joules/g 

Hi partial molal enthalpy, joule/g-mol 

K, rate of reaction, g-mol/cm3/s 

k thermal conductivity, joule/cm/'K/s -

k,li thermal diffusion ratio, dimensionless 

L gap height, cm 

M, molecular weight, g/g-mol 

M mean molecular weight, g/g-mol 

N Reynolds number, dimensionless 

N total number of chemical species, dimensionless 

ni mass flux of ith species, g/cm2/s 

Pr Prandtl number, dimensionless 

p static pressure, dyn/cm2 

q	 energy flux due to radiation, joule/cm2/s

R gas constant, joule/g-mol/°K 

r radial coordinate, cm 

S. normal burning velocity, cm/s 

T temperature, °K 

Vi r component of diffusion velocity relative to mass 
average velocity, cm/s 

v r component of mass average velocity, cm/s 

W, z component of diffusion velocity relative to mass 
average velocity, cm/s 

w z component of mass average velocity, cm/s 

X body force, cm/s2 

X, mole fraction 

Yi mass fraction 

z length coordinates 

a fraction of mass flow injected 

dimensionless coordinate in the z-wise direction 

A dimensionless constant 

ja viscosity, g/cm/s 

p density, g/cm3 

,rij stress tensor component, dyn/cm2 

stream function 
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