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DESIGN OF A THREE-AXIS 
ATTITUDE CONTROL SYSTEM FOR A 

SPACECRAFT ACTED UPON BY RANDOM PERTURBATIONS 

By B. Friedland, F. E. Thau and P.E. Sarachik 

General Precision Systems Inc. 
L i t t le  Falls, New Jersey 

The design of spacecraft attitude control systems to counteract the effects of 

random excitations such as induced by micrometeoroid bombardment i s  an important 

problem in  achieving the high pointing accuracy required for projected advanced missions, 

including a laser beam communication system. The general problem of optimizing the 

design for a nonlinear system with an arbitrary statistical performance criterion has not 

been completely solved. In this investigation, the process t o  be controlled (a hypothetical 

laser communication vehicle) was linearized about a nominal motion and the design 

performance criterion was the steady-state expected value of a quadratic form i n  the vehi- 

c le state-variables. Use of this performance permits use of known results to develop a 

design algorithm for the three-axis attitude control system. This design algorithm i s  em- 

ployed to determine the structure and parameter values of the controller for the vehicle 

and the statistical performance i s  simulated wi th  the aid of a digital computer simulation 

program. 

The results obtained indicate that i t  i s  possible to achieve a 10 pointing 

accuracy of approximately 0.2 ie'c i n  the assumed micrometeoroid environment existing 

i n  the v ic in i ty of Mars. This pointing accuracy can be maintained only for about 20 

minutes ( as measured in  "half-life"). 

This  investigation takes into account only the effect of micrometeoroid 

disturbances. Further investigation of other (random and deterministic) disturbances i s  

recommended. Also recommended i s  further study of the general problem of optimum 

stochastic control. 
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1. INTRODUCTION 

The design of control systems for attitude control of space vehicles acted upon 

by random perturbations has become an important practical problem in  the past few years 

as a consequence of the need to maintain the attitude error appreciably below a level of a 

second of arc. Missions which require such accuracy include the fine-pointing of astro- 

nomical telescopes and the pointing of  a narrow laser beam for the purpose of high data 

rate communication from a space vehicle. 

In the conventional design approach i t  i s  generally assumed either that distur- 

bances are absent and the control system i s  to be designed to return to equilibrium when the 

system i s  perturbed momentarily, or that the disturbances are simple deterministic time 

functions whose effect i s  to be overcome by the feedback action of  the control system. 

This approach yields satisfactory system performance i n  most practical situations, because 

the requirements on performance are usually well within the capabilities of the equipment. 

In the fine-pointing problem, however, the performance requirements are so severe that a l l  

equipment must be used optimally; consequently i t  becomes important to take into account 

the statistical properties of the disturbance sources and the sensor errors i n  the control sys- 

tem design. 

In 1966, the Aerospace Research Center of General Precision Systems Inc. 

ini t iated an investigation of the stability of attitude control systems acted upon by random 

perturbations. 

impulsive disturbance torque which can rapidly cause large attitude errors i f  permitted to 

bui ld up. 

Mariner IV at  an altitude of about 1000 k m  from the earth's surface, would be sufficient to 

cause a pure inertia to deviate from an equilibrium position by 2 degrees i n  not more than 

about 2 hours with a probability of l/2. Since the tolerance required for precise pointing 

i s  several orders of magnitude less than 2 degrees, i t  i s  evident that the random toques due 

to micrometeoroids should be accounted for i n  the system design. 

I t  was found [ 1 ] that micrometeoroid bombardment i s  a significant source of 

In particular, the micrometeoroid bombardment on a vehicle of the size of 
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The first phase of our study (July 1966 to July 1961) of the stability of attitude 

control systems acted upon by random perturbations was concerned with the general theory 

and analytical techniques which are applicable to this problem. A tutorial exposition of 

the applicable results of the theory of Markov processes was given, and the concepts of 

"confinement probability", half-l i fe" and ''mean confinement time" were defined and 

studied by analytical and numerical techniques for a few simple control systems. Our con- 

clusions were that practical analytical techniques for studying stochastic stability were less 

than entirely adequate, and moreover, that the statistical properties of the random distur- 

bance sources which may be present i n  a physical situation were not as well  understood as 

would be needed for meaningful statistical control system design. 

These conclusions, we believe, remain valid; practical exigencies, however, 

w i l l  make i t  necessary to design control systems for precise attitude control i n  the absence 

of a perfected analytical theory and without a good knowledge of the statistical properties 

of the random disturbance and noise sources which may be present. 

of the investigation reported herein represents an endeavor to apply the available theory 

to CY fairly realistic attitude control problem, that of controlling the attitude of a laser 

c omm u n i cation s pace c ra f t . 

Accordingly, the phase 

Modulation of a laser beam appears as an attractive possibility of obtaining an 
5 

bits/second, wh ich  would be required, for example, for transmission of television 

energy density at  the receiver high enough to maintain a data transmission rate of 10 

10 

pictures in  real-time. With the l imited power available i n  space, the attainment of the 

required energy density at  the earth necessitates the use of  an extremely narrow beam, 

such as can be achieved only by use of a laser. The narrow beam width required, however, 

creates a very severe pointing problem, since very small angular errors can cause the beam 

to disappear from view of the receiving telescope. An indication of the pointing accuracy 

required can be inferred from the angle subtented by the earth's diameter at distances of 

the planets Mars and Jupiter, which are currently regarded as destinations for potential 

interplanetary excursions: 

to 
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Planet 

Mars 

Jupiter 

Phase 

Coni u n c t ion 
0 ppos i t i  on 

Con i u n c t ion 
Opposition 

- Subtended Angle 

24 s'ec 
6 Sgc 

4 sec 
3 sec 

Since the laser beam w i l l  probably be designed to illuminate only a fraction of 

the earth's disk, the required pointing accuracy can be expected to be a fraction o f  a 

second of arc. 

In a l l  likelihood, the required pointing accuracy w i l l  be obtained by use of 

two control systems: a vehicle attitude control system to orient the vehicle and mechani- 

cal axis of the transmitting radiator, and an optical vernier control system by which the 

optical axis of the beam can be adjusted to accomplish the precise final adjustment. 

The schematic diagram of a possible control system i s  given i n  Fig. 1 . 1 ,  which 

shows the vehicle attitude control system in heavy-weight lines and the vernier control 

system in  lighter weight lines. The total angular misalignment 50 of the optical axis 

with respect to the desired orientation i s  the sum of  the mechanical misalignment angle 8 

and the angle rl between the mechanical axis and the optical axis. Since the angle 

rl 

formance capability of that loop. I t  i s  observed, however, that the mechanical axis mis- 

alignment i s  the source of excitation to the optical loop. Consequently, i t  i s  desirable to 

keep the mechanical misalignment as small as possible, i n  some appropriately defined 

sense. 

can be adjusted by the vernier loop, the ultimate pointing accuracy i s  governed by per- 

In the present study, attention has been confined to an investigation of the de- 

sign of the attitude control system. A thorough investigation would necessarily entail 

examination of a l l  sources of disturbance and errors which may be present, with particular 

attention being given to those sources which experience would indicate to be major contri- 

butions to attitude errors. For current state-of-the-art equipment, the major error sources 

include such factors as sensor bias, null dr i f t  and misalignment, mechanical misalignments, 
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and disturbance torques due to gravity gradients, gas leaks and outgassing, and solar re- 

f lect ivi ty unbalance. The effect of these "d-c" error and disturbance sources i n  current 

equipment are far more significant than the random torques (due primarily to microme- 

teoroid bombardment) on the attitude error. Nevertheless, in order to concentrate our 

attention on the purely random effect: and the design problems pertaining thereto, we have 

neglected the d-c error sources. Althougi, i t  I s  not immediately apparent, neglecting the 

d-c effects does not obviate the practical significance of the study: by proper design of 

the optical vernier control system, we have found that i t  i s  possible to counteract the d-c 

terms quite effectively; the random effects, on the other hand, pass through the vernier 

control system with very l i t t le  attenuation. As a consequence, the total error at the re- 

ceiver may be primarily due to the random disturbances on the spacecraft. 

Since the purpose of the control system i s  to maintain the orientation of the 

optical axis within the f ield of view of the receiver for as long as possible, and thereby 

provide the longest time of uninterrupted communication, i t  would be desirable to design 

the control system to maximize the expected first passage time of the axis to the limits of 

the region i n  which communication can be maintained, or to maximize the half-l i fe i n  

this region. The theory for the design of an optimum system for these criteria, as noted 

earlier, i s  not yet available. Consequently, the design criterion we selected was the 

minimization of the stationary expectation of a quadratic form in  the system state 

T 

S ~ - + m  T - t  t 
1 '  

V = E ( x 'Qx )=  I im E[- J x'(s) Qx(s) dsl z ( 7 ) ,  7 <  t] 

where z i s  the sensor output vector. 

I t  i s  demonstrated (Sec. 3) that the controller which minimizes V for a 

linear time-invariant process i s  also linear and time-invariant. An expression for the trans- 

fer matrix G(s) for the optimum controller was developed, and a digital computer program 

for the computation of this matrix of transfer functions was developed as a design aid. Al-  

though the performance criterion given by (1. l )  i s  not precisely what should be optimized, 

i t  appears to be a reasonable performance criterion and has the advantage of being rou- 

tinely applicable (with the aid of the computer program) to linear time-invariant systems of 
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arbitrarily high order, and explicit ly accounting for the level of the disturbances and the 

sensor noise. These random quantities were assumed to be representable by Gaussian white 

noise with spectral densities on the basis of assumed (state-of-the-art) static accuracy and 

correlation time, as described in  Section 4. 

A three-axis dynamic model was assumed for the vehicle. In addition to the 

vehicle motion, a set of two solar paddles which move wi th  respect to the vehicle were 

included. 

differential equations were obtained. 

motion, lead to a linear time-invariant system for which the optimum transfer function 

matrix was computed. 

uring angular deviations from nominal motion and tachometers measuring the speeds of a 

set of three orthogonal reaction wheels. 

To describe the motion of the vehicle, a system of 1 1  first-order nonlinear 

. These, when linearized about a typical condition of 

The sensor package studied consisted of a set of star trackers meas- 

To develop insight into the behavior of the closed-loop system without the com- 

plexity of an eleventh-order system,a single axis (third-order) version of the problem was 

considered in a preliminary study. 

design described above, with typical parameter values leads to a steady-state 1-0 error 

of  0.09 ;Pc. While this figure looks excellent, i t  should be remembered, that this accu- 

racy i s  based on micrometeoroid bombardment being the only source of disturbance torque. 

A Monte-Carlo simulation was performed for the closed-loop process (which i s  fifth-order) 

to determine the half-l i fe of the system. 

be maintained with a half-l i fe of 30 minutes i s  in excess of 0.2 sec. On the other hand, the 

1-0 

half-l i fe was observed to increase very rapidly for permissible angular errors greater than 

about 30 , but i s  quite small for pointing accuracy much under 10 . 
small angular position limits, the uncontrolled system i s  superior to the controlled system, 

which indicates that the performance criterion used i s  not very useful in  this region. 

For this simplified model, i t  was found that the optimum 

It was found that the pointing accuracy which can 
n 

pointing accuracy of 0.09;ec. i s  maintained with a half-l i fe of under 4 minutes. The 

In fact for very 

The results of the preliminary investigation were verified wi th the more compli- 

cated dynamic situation, i n  which, for the assumed nominal motion, the yaw-axis dynamics 

(represented by a fifth-order model) were uncoupled from the dynamics for the coupled 
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pitch-roll axes (sixth-order model). 

order and gave a steady-state la pointing accuracy of 0.127 sec. The pointing accu- 

racy of 0.2 sec was maintained for a half- l i fe of  over 10 minutes, but less than 30 minutes;* 

a pointing accuracy of 0.1 sec, however, i s  maintained with a half- l i fe of only about 

1 minute. 

The controller for theyaw-axis turned out to be third- 
/- 

0 

n 

The controller for the roll-pit&$ axes turned out to be sixth-order and gave a 

steady-state 10 pointing accuracy of 0.2 &> which was maintained for approximately 

30 minutes. 

The authors would l ike to acknowledge the contributions of Mr. Maurice F. Hutton 

i n  programming the computer design algorithm and Mr. Sanford Welt i n  conducting the digital 

computer simulation of control system performance. 

+ Insufficient computer time was available to simulate ensembles having a half- l i fe of 
of over 10 minutes. 
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2. REVIEW OF STOCHASTIC CONTROL THEORY 

2.1 BACKWARD EQUATIONS 

If one considers a deterministic system governed by the differential equation 

for which the cost functional can be expressed as 

T 
V(Y I t) = J L(x (7) , u (7) , 7)  dT 

t 

where x(t) = y , 
tem, say 

i t  i s  well-known [2  1 that i f  any feedback law i s  used to control the sys- 

u(7) = O  (x(7)) 

then the cost which results for this feedback law satisfies the first-order partial differential 

equation 

(2.3) 

where ‘J V denotes the gradient of V with respect to y . 
entiating both sides of (2.2) wi th respect to t . 

This i s  easily seen by differ- 

For a system disturbed by additive white noise and characterized by 

(2.4) 

where {53 i s  a zero-mean white noise disturbance process with covariance matrix 

C (t) 6 (t - 7) one might expect that the cost functional defined by 

T 

t 
V(y , t) = E Ed’ L(x ( T ) ,  u ( 7 ) ,  7 )  drIx(t) = y3 (2.5) 

would also be governed by a partial differential equation, when a feedback law 

u(T) = O  (~(7)) i s  used. 

order partial differential equation 

This i s  i n  fact true and V can be shown 13 1 to satisfy the second- 



I 

where the operator V i s  again taken with respect to the components of y . This i s  one 

form of the "backward equation" which i s  so named because i t  involves the earlier time t 

and the state at this time rather than the later time T.  Note that (2.6) i s  merely (2.3) 

with an additional term due to the presence of the noise. This term contains second par- 

tials of V with respect to y and thus stochastic problems require i n  general the solution 

of second order nonlinear partial differential equations. 

taining such solutions analytically. The backward equation i s  actually much more general. 

Whenever a feedback law i s  used i n  (2.4), the equation can be written as 

N o  general methods exist for ob- 

W) = 9047) I 7) + GO) W )  (2.7) 

where g(x, 7) = f(x, 0 (x), 7). It turns out [ 1 1 that the conditional expectation of any 

function defined on the Markov process Cx(7)) generated by (2.7) satisfies a backward 

equation. That i s  the function 

U(7, t ,  y) = ECF(x(r))Ix(t) = y3 

satisfies the partial differential equation (backward equation) 

1 
at 2 
-- a' - v u .  g +  - v .  [GCG'VU]  (2.9) 

Equation (2.6) can actually be obtained by using (2.9), since taking a/at of (2.5) gives 

av T a  
at t 
- = ECL(x(t) , o(X(t)), t)l x(t) = YI - J ECLl x(t) = YI d7 (2. 10) 

Then, substituting the right-hand side of (2.9) for the expression inside the integral and 

noting that for any linear operation defined i n  terms of the space variable y 
V 

(2.11) 

we get (2.6) directly. It should be noted that V as defined in  (2.5) i s  the conditional 

expectation of a functional defined on lx(7)) over an interval rather than an ordinary 

function. Other important functionals on the process are also known to satisfy a back- 

ward equation. Some, which have been found useful i n  the study of stability of randomly 

perturbed systems are discussed i n  the next section. 
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2.2 STABILITY MEASURES 

Just as in  the study of deterministic systems, i t  i s  important to have a measure of 

system stability when studying randomly perturbed system. 

i n  probabilistic terms in  such a way that the definition i s  applicable to deterministic systems. 

It i s  possible to define stability 

Consider the function q(t , y) called the "confinement probability", defined as 

q(t , y) = Prob cx ( 7 )  E N  for a l l  0 j T '; t l  x(0) = y3 (2.12) 

where N i s  a f ini te region containing the origin. For a deterministic system the usual 

definition of stability of the origin corresponds to the following: 

Definition - The origin of a deterministic system i s  stable i f  and only i f  for 

every neighborhood N of the origin, there exists a neighborhood M of the origin such 

that q (m , y ) =  1 for any y i n  M. 

For random systems i t  i s  too much to ask for such a strong type of stability; 

however, the behavior of the confinement probability i s  s t i l l  a good indicator of the sta- 

b i l i ty  of the system. 

the system. 

Roughly speaking, the longer q(t , y) stays near one, the more stable 

I t  turns out 141 that q(t , y) i s  one of those functionals defined on the process 

i x  ( T ) ]  which satisfies the backward equation (2.9). Thus, the evolution of q(t , y) can 

be determined by solving (2.9) subject to the obvious boundary conditions q(0, y) E 1 for 

a l l  y inside the region N and q(t , y) -- 0 for a l l  y on the boundary of N . Hence, 

for random systems, stability i s  no longer a property which i s  either present or absent, but 

there are degrees of system stability. In this regard we can measure stabil ity by a quan- 

t i ty  t h  called the "half l i fe" of the system defined as the largest time such that 

q(t,  0). 7 for a l l  t '2 t 

this i s  the time i t  takes for the confinement probability to diminish to one-half when 

the system starts at the origin. 

h . Since q(t, y) usually decreases monotonically wi th  time, 
1 

Another measure of system stability i s  the "average first passage time" to the 

boundary of the set N. 

the boundary of N when x(0) starts at the state y . 
Let the random variable T(y) denote the first t ime x(T) reaches 



Let the density function of T(y) be r ( 7 ) .  Then since T(y) i s  non-negative, the average 

first passage time i s  

Y 

I 
T(y) = Jw T r (7)  dT 

o y  
(2.13) 

It has been shown 1 1  1 that T(yj i s  related to the confinement probability by 

and i t  satisfies a modified form of the backward equation, namely 

(2.14) 

(2.15) 

We see from (2.14) that Tb) i s  a weighted area under the time response of q(t, y), 

and thus a number with physical meaning can replace the loose notion of keeping q(t, y) 

as large as possible as long as possible. 

2.3 STOCHASTIC OPTIMUM CONTROL 

Perfect Sensor Observations - Consider the problem of designing a system with random 

disturbances such as that of (2.4) so that the cost given in (2.5) i s  minimized subject to the 

constraint that U(T) be i n  a given set ha for a l l  T C  [ t ,  TI  . We assume here that the 

sensors used to measure the system state are perfect so that x(T) can be determined exactly 

for 7 € [ t, T I  . 
cost V (y , t) satisfies the Hamilton-Jacobi equation. 

I t  i s  well-known [ 2 1 that when no disturbances are present the minimum 
0 

- -  min [L(y, u ,  t ) + v V *  f(y, u, t)] 
at U(t)€ u 

(2.16) 

0 The optimal feedback law i s  that u < U which minimizes the bracketed ex- 

This i s  of course a function of y and t and i s  expressed as u (t) = k(y ,V V , T) = 
0 0 

0 
pression. 

0 O(y, t) . satisfies 

an equation of type (2.3) in which the right-side i s  minimized over the allowable controls. 

I t  turns out 13 1 that when disturbances are present the same i s  true but with respect to (2.6). 

More expl ici t ly, V satisfies the stochastic Hamilton-Jacobi equation 

Note that for the optimum deterministic system, the minimum cost V 

0 

1 1  
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min [L(y, u, t ) + o V .  f(y, u, t ) +  1 ' 7  (GCGVV)] (2.17) av" - 

at u (t) € u 
- - -  

2 

and the boundary condition V(y, T) = 0 .  

back law i s  that u 

uo(t) = k(y , V Vo, t) = C J  (y , t) . Thus, in order to solve the stochastic optimal control prob- 

lem i t  i s  necessary to first solve the nonlinear second-order partial differential equation 

which results when u 

cannot be done in general. 

As in the deterministic case the optimal feed- 
0 U which minimizes the bracketed expression and i s  expressed as 

0 

0 
above i s  inserted for u in  (2. 17). This i s  a formidable task and i t  

In the special case of  a system with linear dynamics, a quadratic cost functional 

and no input constraints, a solution i s  readily obtained. That i s  to say for the system 

;<(T) A(7)  x ( T )  + B(T) u(7) + G(7) k ( 7 )  

with x(t) = y and 
1 
2 

one finds [ 31 that the solution to (2.17) i s  

L ( x ( ~ ) ,  ~ ( 7 )  7 )  == - [ x '  (7) Q ( T )  ~ ( 7 )  + U' (7) R(7)  ~(711 

V " ( Y  , t) = Y W t )  y 

where M(t) i s  a symmetric matrix which satisfies the matrix Riccati 

- M = A'M + MA + Q - MBR-~  B'M 

with M(T) = 0 .  The optimal control law i s  

uo(t) = -R-l (t) B' (t) M(t) y 

(2.18) 

(2.19) 

ratio 

(2.21) 

(2.22) 

where we have been using y = x(t) . 
which results when no disturbances are present. 

I t  i s  noted that this i s  exactly the same control law 

Noisy Sensor Observations - The problem becomes even more di f f icul t  when observations 

of the system state are mixed with noise and a satisfactory general theory of  optimal control 

case of system (2.18), in this case i s  not yet available. 

wi th noisy observations of the form 

However, as before in the specia 

z(t) = H(t) x(t> + V(t)  (2.23) 



where {q (t)] 

and which i s  not correlated with the disturbance process f5 (t)) , to minimize the 

quadratic cost functional 

i s  a zero-mean white noise process with covariance matrix I7 (t) 6 (t - 7 )  

1 T  E I T  1 [x’(T) Q ( T )  x(T) + ~ ( 7 ) ‘  R(T) u(T)] dT I z ( h )  for a l l  [o, t]] 

(2.24) t 

i t  has been shown [3, 51 that the optimal control i s  that given i n  (2.22) with y equal 

to the conditional mean ^x (t) of the true state x (t) I given the data z (7) for 7 ‘C t; 

2 (t) i s  obtained from the optimum Kalman filter [ 61 

^x(t) = A(t) k(t) + B(t) u(t) + P(t) H ’ ( t ) r - ’ ( t ) [ z ( t )  - H(t) 2(t)] 

and where P(t) satisfies the matrix Riccati equation 

(2.25) 

with x^ (0) = 0 

b = AP + PA‘ + G C  G‘ - PH‘r- ’  HP (2.26) 

with P(0) = ECx(0) ~ ’ ( 0 ) )  which must be known. 

In the more general case where [((t)] are correlated such that 

Cov 56 (t) , V ( T ) )  = S(t) 0 (t - 7 )  

then x^ (t) i s  obtained from 

G(t) = A(t) k(t) + B(t) u(t) + K(t)[z(t) - H(t) k(t)] 

with G(0) = 0 where 

K(t) = [ P(t) H’(t) + G(t) S(t)] r - ’ ( t )  (2.29) 

and P(t) satisfies the matrix Riccati equation 

b = A P - k  PA’ + GCG‘ - [PH’ + GS] r-’[ HP+ S‘G’] (2.30) 

with P(0) = ECx(0) ~ ’ ( 0 ) )  . 

(2.27) 

(2.28) 

Thus again in the special case of a linear system, quadratic cost and no con- 

straints, a general solution to the optimization problem i s  available even when the state 

sensor i s  noisy, provided i t  i s  linear i n  the state and the noise i s  additive. If the noise i s  

not white then some additional complexities are introduced but a solution i s  available even 

then 171. 

13 



3. DESIGN FOR MINIMUM STEADY-STATE VARIANCE 

Because the performance requirements for the fine-pointing attitude control 

problem are so stringent, i t  i s  essential that the controller be designed to optimize the per- 

formance of the closed-loop system. 

which maximizes the mean first-passage-time to the boundary of the angular region outside 

of which i t  i s  impossible to maintain communication. This would insure that the average 

length of the period of uninterrupted communication would be longest. The region within 

which i t  i s  possible to maintain communication, however, i s  not sharply defined, because 

the cross-sectional energy density profile of the beam does not drop sharply to zero, but 

rather decays gradually i n  a pattern approximating a Gaussian distribution. Thus as the 

beam deviates from the center of the receiver, the number of errors per unit time gradually 

increases. 

sarily entail instantaneous interruption of communication. 

feasible to design the control system to minimize the steady-state variance of the beam 

position from zero. This criterion would permit incursions into the forbidden region but 

would impose a heavy penalty for such incursions. Another reason for use of steady-state 

variance as the performance criterion i s  that i t  i s  the only performance criterion for which 

i t  i s  known how to perform the calculations required to accomplish the design. 

Ideally, i t  would be most desirable to use a design 

In other words a slight penetration into the "forbidden region" w i l l  not neces- 

For this reason, i t  would seem 

In Section 2 we reviewed the result that the control system which minimizes the 

expected value of the integral of a quadratic form X'QX + u'Ru for a linear process 

given noisy measurements z = Hx + r) , comprises the optimum = Ax + &r -1- G€, 

controller for the deterministic process operating on the conditional mean i . 
diagram for the combined f i l ter which gives i and controller i s  shown in  Figure 3.1 . 
Wonham I 3 1 has shown that the controller which minimizes 

The block 
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where Q R and A t B I G , H are canstant matrices, has the same form as 

shown i n  Figure 3.1 , but K and M assume their asymptotic values, i.e. , M i s  the sol- 

ution to (2.21) with M = 0 and K i s  given by (2.29) in which P i s  the solution to 

(2.30j with P - 0 .  (If the process i s  controllable (observable) then a unique positive 

definite matrix M (P) exists 16 ] . ) The minimum "asymptotic cost rate" i n  this case i s  

given by (2.31) i n  which the asymptotic values of P and M are used. 

The optimum controller for this problem i s  thus linear and time-invariant; i t  can 

be represented by the transfer-matrix C(s) defined by 

U(s) =- - C(s)Z(s) (3.2) 

From Figure 3.1 i t  i s  seen that 

qS) :- R - ~  B'M I s~ - i; + BR-' B~MI- '  K 

where 

(3.3) 

A 

A - A - K H  (3.4) 

The term u'Ru i n  the performance index (3.1) represents a penalty incurred 

for using large values of control, and i s  useful for l imiting the total energy to be supplied 

by the actuator. 

tor, the use of a fairly large matrix as the control weighting matrix R would be appropriate. 

If ultimate performance i s  desired and one i s  wi l l ing to pay the price of the energy required, 

the matrix R should be made vanishingly small. 

In processes where the size of the power supply i s  a cr i t ical  l imiting fac- 

In a deterministic process (G = x) however, omission of control weighting re- 

sults in  infinite gains from the state to  the control and leads t o  the interpretation that the 

input i s  a series of impulses with inf in i te energy which reduces x to zero in  an infinitesimal 

time (provided that the process i s  controllable). 

In the stochastic case, on the other hand, i t  would appear, intuit ively, that 

inf ini te control gains are not optimum even i n  the absence of control weighting, owing to  

the presence of noise i n  the observations. This intui t ion i s  reinforced by the configuration 



- 1  
of the optimum controller of Figure 3.1: as R 4  0, R tends to inf ini ty; however, 

because of the feedback through B, i s  i s  anticipated that the transfer function matrix 

C(s) tends to a meaningful l imiting form. 

To investigate the nature of C(s) as R -+ 0, let 

2 
R = k I  

2 
then, for k 3 0, the asymptotic form of (2 

M A + A ' M -  - MBB'M 
k2 

(3.5) 

21 ) becomes 

Q = O  (3.6) 

the solution of which i s  expressed as a power series in  k : 

2 
M = M o + k M  1 + k  M 2 +... (3.7) 

On substituting (3.7) into (3.6) and equating (matrix) coefficients of l ike powers of k ,  

i t  i s  found that (3.7) i s  a solution to (3.6) i f  

MOB = 0 

and 

MOA + A'MO + Q  - MIBB'M1 = 0 

MIA + AIMl  - M2BB'M1 - M1 BB'M2 = 0 

M2A + AIM2 - M1BB'M3 - M3BB'M1 - M BB'M2 = 0 2 

Pre-multiplying (3.9) by B' , post-multiplying by B I and using (3.8) yields 

B'MIB = (B'QB) 1/2 

Thus, from (3.9) we have 

(3.8) 

(3.9) 

(3.10) 
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where 
A 

0 
Q = Q + A ’ M  

Hence M i s  the solution to 0 

0 = MOA [L - B(B’QB)-l B’Q] + [I - QB(B‘QB)-l B‘IA‘M, 

(3.11) 
+ Q - QB(B’QB)-’ BQ - M~AB(B’QB)- ’  B ’A ’M~ 

The gain of the deterministic control law i s  thus given by 

B‘ 

k2 
R - l  B’M 7- -(Mo + kM1 + . . . ) 

(3.12) 

= -[(B’QB) 1 - ’12B’Q + kB’M2 + k 2 B’M3 + . . . ] k 

- 1  
which, as expected, tends to inf in i ty as k 

(3.3), however, becomes 

with k + 0 .  The transfer matrix C(s) of 

C(S) = [B’M1 + O(k ) ]  [k (s I -  A) + BB’M + o&)F IK  (3.13) 
1 

The inverse of the second matrix on the right hand side of (3.13) can be written 

h A 

(3.14) A - 1  k ( d  - A) + BB’G = I k l -  4- BB’M ( s /  - A) ](SI - A) 

where 

f i  = M1 +O(k)  

Hence 

where 

(3.16) 
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Let 

F = ( k l  + BB'L)- l  

Then 

kF + B B ' L F  = I 
or 

(kf + B ' L B ) B ' L F  = B'L 

Hence 

B' LF = ( k l  + B' LB)-' B' L 
Thus 

A - 1  - 1  * - 1  c(s) = [ k l +  B ' M ( s 1 -  A) B] B ' M ( s 1 -  A) K + Oh2) 

Now, passing to the l i m i t  as k + 0, we obtain 

*. - 1  - 1  C(s) = [ B ' M , ( s l  - A) B] B ' M 1 ( s l -  i ) K  

where 

W(s) = B ' Q ( s 1 -  A)-' 

( 3 . 1 7 )  

( 3 . 1 8 )  

This  i s  the required l imit ing form of C(s) . 
- 1  - 1  - 1  If B i s  a nonsingular matrix, then (WB) W = B and C(s) = B K I inde- 

pendent o f  s I (where K i s  the estimator gain.) Hence, i f  i t  i s  possible to influence 

each state derivative directly, the optimum closed-loop system has the same dynamics as 

the optimum estimator; i n  other words, the optimum feedback network converts the original 

dynamic system into the optimum estimator of x i f  i t  i s  possible to do so. 

Formula ( 3 . 1 7 )  for the transfer function C(s) i s  not suitable for mechanical 
- I  -- _-.. c..c:,- L -  AI- - --I  -..I- .A:-- -r r\A//-inl 

L .V I I I~UIUI IUI I r  UCLUUSt: I I l e :  LUILUIUIIUII VI l V V \ S J U J  efi:ei!j the ifiVersirfi of t i?ia:riA of 

rational functions i n  s , and hence cannot readily be performed using only arithmetic 

operations. An effective algorithm for computing C(s) i s  based on the relation of 
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[W(s)B]-’W(s) to the following (n + k ) x  (n+k) matrix 

n d k  
/ 

where 

L I 

E =  

It i s  readily established that 

-1 
A (s) V(s) -= 

l I  ‘ 0  
- - t - -  

1 
0 1 0  

v1 1 ‘ 1  I v12 

- 1  
In other words, the lower left hand submatrix of V(s) = A 

[W(s)B]-’W(s) , which when postmultiplied by K yields C(s) . 
(s) i s  the required term 

By inspection of (3.19) i t  i s  seen that 

n n-1 
N ( s )  __ N o s  -1 N1s + .  . . + Nn- l~  + N n 

V(s) = - -- n-2 
dlsn-’ t d 2 s  + .  . . + d s + d  n n- 1 

d (4 

(3.19) 

(3.20) 

(3.21) 



where N(s) = adi(sE- Z) and d(s) = I s E -  Z I .  The matrices N 

numeric. The objective of the algorithm i s  the determination of N and d by use of 

only arithmetic operations. If (3.19) contained I instead of E, N and d could be 

found by the well-known algorithm of Souriau [ 8 J . 
i s  needed because E I not I ,  appears in  (3.21). First, i t  i s  observed that 

and the scalars d are 
j J 

j J 
J 3 

A modification of Souriau’s algorithm 

I s E - Z I I  = (sE-Z)adi (sf-Z) 

or 

n- 1 
(d,s + . . . d )I = (sE- Z)(No + N1sn-’ + . . . + N ) 

n n 

J or, upon equating coefficients of s ( J  = 0 I . . . , n) 

Moreover 

ZN n 1 - d  n I 

ZN =EN - d  1 
n- 1 n n-1 

ZN2= EN 3 - d 2 1  

ZN1 EN 2 - d 1 2  

ZNo = EN 1 

0 0 = EN 

(3.22) 

(3.23) 

(3.24) 
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-1 
provided that Z exists. It thus follows that 

N = adi ( -Z )  
n 

d = I - Z l  
n 

and these quantities can be determined algebraical 

grams. It i s  noted that 

y by readi I y ava 

(3.25) 

lable computer pro- I 

h 

(See I 9 ] pp. 45 - 46). But A = A - KH i s  the matrix corresponding to  the minimum 

variance estimator, which i s  known to be asymptotically stable i f  the process i s  observable 

6 1 . Since asymptotic stability implies that A have eigenvalue with strictly negative 
A 

A - 1  
real parts, exists for an observable process. 

The existence of Z-l N and d permits rewrit ing (3.23) as 
n ’  n 

d = O  
0 

j = 1 ,  . . . n (3.26) 

i n  terms of N and dJ- Equ a t i on 
N j -  1 j 

as the recursive formula for computation of 

(3.25) serves as a check. 

A similar recursive relation for the coefficients of d(s) = I s E  - Z I i s  obtained 

with the aid of the well-known relation 

(3.27) 



I 

for any matrix M(s). Applying this relation to V(s) = sE - Z results i n  

n-2 k-3 + n- 1 
(n- l )d ls  + (n-2)d2s . . . + d  = trace[ E(NOsn -t N 1 s  + .  . . + N n )I 

n- 1 

or, equating coefficients of like powers of s 

0 = trace (EHG) 

0 = trace (ENl) 

trace (EN2) 1 d = -  
1 n-1 

d = trace (EN ) 
n-1 n 

(3.28) 

Thus (3.26), (3.28) together with the starting condition (3.25) provide the required algor- 

ithm.* 

n 
Since the numerator of V(s) given by (3.21) contains the term N s i t  might 0 

-1  
seem that the numerator of [ W(s)B] W(s) i s  of higher degree than the denominator; 

this would imply that the controller, represented by C(s), would be required to differentiate 

the sensor output, which would be an unacceptable design. Fortunately, however the lower 

left hand submatrix of N i n  fact a l l  terms except those i n  the lower right hand submatrix 

of N are also zero, since the n-th degree cofactors of A(s) al l  appear i n  the lower 

right hand positions of V(s) . Thus the numerator of [ W(s)B] W(s) is of no higher degree 
- 1  

than the denominator. In general, terms of degree n-1 wi l l  be present i n  [W(s)B] W(s), 

and hence there wi l l  be a direct path from the sensors to the control input. 

0’ 

-1 
0 

It should also 

* A digi ta l  computer program for performing the calculation of the algorithm has been 
prepared. 
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be noted that the denominator of a l l  terms of C(s) wi l l  be of degree n-1 (or less**), and 

hence C(s) can be realized by use of a system of at most (n-1) s t  order, instead of requiring 

the n-th order system which i s  needed when control weighting i s  used. Since the required 

transfer function 

evident that conditional mean & i s  not generated explicit ly i n  the controller. 

C(s) i s  of lower degree than the order of the process controlled, i t  i s  

Several problems with the above method merit further attention. First, because 

no weighting i s  placed on u in  the performance criterion, E (u'u) i s  inf ini te i n  general 

because the numerator and the denominator of C(s) are the same degree. Hence the 

"white" noise present in  y gets through to  u. 

d i f f icul ty:  i f  i t  were, i t  would be necessary to dispose of a l l  feedback systems with a dir- 

ect path from the output to the input which are i n  common use. 

ent presence of "white" noise on u i s  no diff iculty i s  that white noise i s  only a mathemati- 

cal abstraction which i s  useful for design purposes but does not exist physically. A more 

accurate description of the physical situation would reveal that the noise has a spectrum 

which decays to zero for sufficiently high frequencies but i s  substantially f lat at the fre- 

quencies of interest for the control system operation. With this representation, € (u'u) 

remains finite. A more accurate noise model could probably be accomodated by use of 

well-known techniques, but the results should not differ materially from those obtained 

here and would entail more computational effort. 

S 

This  cannot be regarded as a practical 

The reason why the appar- 

S 

Another problem, which W.M. Wonham has pointed out i n  discussion and cor- 

respondence wi th  the authors, i s  due to the formal derivation employed. 

control law obtained with arbitrarily small (but nonzero) control weighting i s  known to 

exist and result in  a closed-loop control system which i s  asymptotically stable when the 

process i s  observable and controllable, the same facts remain to  be rigorously established 

when the control weighting vanishes . 

Although the 

The intuitive appeal of this design approach, however, has motivated i t s  use 

in  the current study. 

I t  can be shown, in  fact, that the numerators and denominator of 
n - k  , where k i s  the rank of B .  

C(s) are of degree * *  
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4. CONTROL SYSTEM DESCRIPTION 

4.1 VEHICLE DESCRIPTION 

Based on information supplied by NASA/ERC and several discussions with NASA 

personnel , we arrived at a "concepfual 'I spacecraft having the appearance shown in  Figure 

4.1 . The vehicle comprises a heavy ( 1 X O  k g )  central core, 2m long and 1 m i n  radius, 

which contains the electronic equipment, sensors, power conditioning equipment, etc. The 

power for the entire system, including the laser transmitter, i s  derived from solar paddles 

which (by means of a separate control system) are kept oriented to the sun. Based on solar 

2 cells of improved efficiency* we calculated that a total area (in 2 panels) of about 24m , 
and weighing about 100 kg , would be required to provide the total power demand of about 

2000 watts, which i s  a rough estimate of the total power requirement. 

Extending from the vehicle body i s  a lightweight sunshield and optical structure 

weighing 100 Ibs., 4 m i n  length and 0.5 m in radius. 

This spacecraft orbits the planet under examination, which i n  this study was 

assumed to be Mars. 

with the solar ecliptic plane and that the Earth and Mars also move i n  this plane. 

assumption i s  not necessary i n  practice, but without i t  the derivation of the linearized model 

would be more tedious.) It was also assumed that the spacecraft orbit around Mars i s  circular 

at an altitude of 400 km. The corresponding orbital period i s  2.05 hours. Since Mars occludes 

the earth for nearly half the orbital period, one hour i s  a l l  the time available for uninterrupted 

communication. 

For simplicity, i t  was assumed that the vehicle orbital plane coincides 

(This 

It would be desirable to maintain communication for as large a fraction of this 

time as possible by proper control system design. 

2 * Current state-of-the-art [ 101 indicates an efficiency of about 50 m /kw . Hence an 
irriproverrieni in  efficiency by a factor of h i i t  4 i s  ~ s ~ ~ i j m e d .  
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The present study i s  concerned with the design and performance evaluation of the 

spacecraft attitude control system, the function of which i s  to maintain the mechanical axis 

pointed at the receiving telescope as closely as possible. The control system for the mech- 

anical loop i s  shown by heavy lines i n  Figure 1.1. The system comprises the vehicle, the 

sensors (star-tracker and rate-sensors), the actuators, and the controller. 

To derive the differential equotions governing the spacecraft motion, the com- 

plete nonlinear equations of motion were derived. The state variables employed were the 

Euler angles of the body axes with respect to an inertially-fixed reference frame, the com- 

ponents of the vehicle angular velocity vector along the reference frame, the speeds of the 

reaction wheels, (see description below) and the speeds of the paddles. This results i n  an 

11 th order nonlinear system. These equations were then linearized about the assumed nom- 

inal motion described above to obtain an 1 l t h  order I near system. The details of the cal- 

culation are given in  the Appendix and the resulting inear equations are given i n  Section 6 

4.2 ACTUATORS 

A typical actuation system which could be used for the fine-pointing problem 

would comprise a momentum interchange device (in which angular momentum of the vehicle, 

i n  excess of that required to maintain the desired motion i s  transferred to another rotating 

device such as a reaction wheel or a control moment gyro) and a momentum discharge de- 

vice such as reaction jets. 

the complete system, i t  i s  not possible to remove vehicle momentum indefinitely without 

causing the reaction wheel or control moment gyro to saturate. 

discharge device must be provided. 

discharge device alone. This would be undesirable for two practical reasons. 

order to remove system momentum i t  i s  necessary to discharge mass which must necessarily 

be carried i n  thevehicle in  place of useful payload. Second, a reaction iet system which 

i s  operated frequently wi l l  invariably develop leaks which would have the effect of distur- 

bance torques, the magnitude of which, i n  current state-of-the-art equipment could exceed 

the level of the disturbance torques due to other sources. The case in  favor of using a dual 

system, however, i s  not entirely clear cut: the momentum interchange device must, of 

In the absence of any mechanism for removal of momentum from 

Consequently a momentum 

In principle, i t  would be possible to use a momentum 

First, i n  
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course, have some weight in order to be effective. Moreover, wi th  ion engines, i t  might 

be possible to obtain very precisely controlled torque levels at very high specific impulse. 

Such actuators could compare favorably or even be superior to the dual system. 

the relative novelty of ion-engines, we have elected to consider the more conventional 

approach. 

cise control, only the momentum interchange device i s  operative. We have further assumed 

that reaction wheels, rather than control moment gyros are used. 

wheels, with axis coincident with the corresponding body axis was assumed, and each wheel 

of the pair was taken to have a mass of 5 kg, a radius of  gyration of  10.61 cm, a thickness 

of 3 cm. 

which would appear to be a reasonable size for the spacecraft considered here. 

In view of 

Specifically, we have assumed that during the relatively short periods o f  pre- 

For each axis a pair of 

2 This results i n  a moment of inertia of 0.1125 kg-m about the axis of rotation, 

The wheels were assumed to be driven by ideal d-c torquers (no damping or other 

losses) having the dynamic relation 

where 

L =a!v+/?o 
W 

L = delivered torque 

V = applied control voltage 

w = reaction wheel speed, relative to body 
W 

The no-load speed 

of the torquer driving the wheel was taken as 30 sec. The stall torque was taken as 

NL 
T =- /?w 

of 25v. As a consequence of these assumptions i t  i s  found that 

was taken as 100 rad/sec (2: 1000 rpm) and the time constant 
N L  

= 0.375 newton - m which was assumed to be developed wi th  a control voltage 
S 

-2 
CL = 1.5 x IO newton - m/v 

-3 
= - 3.75 x 10 newton - m - sec/rad 

(See Appendix for calculation details) 
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4 .3  SENSORS 

Star-Tracker - The primary sensor of spacecraft motion i s  a 3-axis star tracker which can 

determine the vehicle attitude by determining the location of the images of fixed stars on 

a calibrated detecting surface, or by maintaining these fixed stars in  the exact center of a 

movable optical f ield and then reading the position of the f ield with respect to the vehicle 

body axes. There are numerous methods for constructing such a sensor. Moreover, new 

mechanical configuarations are l ikely to  be evolved during the next decade. For this 

reason , we did not consider any specific form of star tracker. 

In every realization of the device, however, there wi l l  always be a number of 

errors inherent i n  the measurement of spacecraft attitude. As discussed in  the Introduction, 

these errors may be grouped into two categories: static or d-c errors resulting from such 

factors as null uncertainty misalignment of sensor axes from vehicle body axis (i.e. , 
uncertainty i n  the position of the sensor axes w i t h  respect to the body axes) and random 

errors due to  noise. While, i n  present-day sensors the d-c errors are the principal sources 

of closed-loop system error, they have not been considered i n  the present study i n  order to 

focus attention on the effects of random errors, 

sence of the optical vernier loop, the omission of d-c error sources i s  not entirely unrealistic. 

As previously noted, because of the pre- 

The random errors i n  each star-tracker were modeled by "equivalent white noise". 

To obtain the spectral density of the equivalent white noise i t  was assumed that the actual 

noise consists of white noise passed through a first-order f i l ter with a very short time con- 

stant equal to the tracker "correlation time", (the time required to process the data to 

achieve the specified static accuracy) and that the steady-state standard deviation u of 

the output of this fi l ter i s  equal to the nominal sensor accuracy. This has the effect of 

approximating the correlation of the output o exp (- 17 I /T)/2 by an impulse correlation 2 

function 0 2 T 6 ( 7 )  of the same amplitude. The spectral density of the star-tracker noise 

2 i s  thus 0 T . 
A 

A typical star tracker would have a static accuracy of about 10 sec and a 

correlation time of about 1 ms. 

was calculated to be 

Thus the spectral density of the equivalent white noise 
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2 2 -3 n 2  
CJ T = (10) x10  sec sec 

2 2 
= ( 3 6 ~ ~ ~ ~ 1 8 0 )  60 rad - min 

-14 2 
-- 3 . 9 ~ 1 0  rad -min 

This i s  the numerical value used for the spectral density of the star-tracker equivalent 

white noise. 

Tachometer - Since a reaction wheel actuator i s  normally equipped with a tachometer to  

measure its speed relative to the spacecraft, i t  was felt that the tachometer would serve as 

a useful sensor of the vehicle motion for control purposes. As i n  the case of the star-tracker, 

a l l  the sources of error were represented as a single equivalent white noise source. The 

standard deviation CJ was conservatively estimated at 30 rpm which i s  several percent of 

the highest anticipated operating speed. The correlation time was taken as 10 ms, corres- 

ponding to about one revolution of the tachometer at maximum speed. The use of this fig- 

ure as a correlation time was verified with several engineers acquainted with tachometer 

error sources. 

The resulting spectral density of the tachometer equivalent white noise i s  thus 

given by 

2 2 1 o-2 
CJ T = (30x217)  x ~ 

60 

Rate - Gyro - In addition to  tachometers, we considered using rate-gyros to measure 

spacecraft body rates. As for the other sensors, the errors were modeled by equivalent 

white noise. The steady-state accuracy was taken as a = 3 millivolts, where the sensitivity 

i s  260 miIIivoIts/(degree/sec). The correlation time was taken as .01 sec. These figures 

are typical of the C70 2021 Series of  Rate Gyros manufactured by General Precision. The 

resulting spectral density used i s  thus 

2 
) x 60 x 2 . 4 ~  10 

2 377 
" = (  260x  180 



4.4 DISTURBANCE TORQUES 

There are two types of disturbance toques on the vehicle. The first type i s  due 

to purely random natural phenomena. The principal disturbance i n  this class results from 

the bombardment of the vehicle by micrometeoroids; the effect of this bombardment on the 

vehicle motion i s  not negligible, ar;d hence the design of a control system to counteract 

the effects of this disturbance i s  not merely an academic exercise. Gas leaks are another 

source of random torques. 

The second type of disturbance torques i s  that caused by non random phenomena, 

such as thermal distortion, gravity gradient, etc. 

completely counteracted i n  the control system design by programming equal and opposite 

control torques. For practical reasons, however, the feedback mechanism of the control 

system would be relied upon to provide the appropriate counter-torques. Although these 

disturbance torques are estimated below for the sake of completeness, i t  i s  emphasized that 

the effects of these torques i s  not the main concern of this investigation. 

In principle, such torques could be 

Random Process Torques 

Micrometeoroid Bombardment - According to an analysis of Mariner IV data [ 111 the flux 

of particles i n  the vicinity of Mars can be expressed as 

fl  2 
@ = a m  particles/m sec (7 steradian) 

where and B are constants and m i s  the particle mass. The zodiacal dust experiment 
-3 

on board Mariner IV counted particles whose momenta were larger than m = 1.96 x 10 
5 

dyne-sec. Assuming that al l  particles have the same velocity v = 10 cm/sec., we find 

that the lower l i m i t  on particle mass i s  m, = 1.96 x gm. We also assume an upper l i m i t  

on particle mass of 1 gm, 4 = 1.8 x particles/m 2 sec. (n steradian), and 6 = -0.6. 
5 

Thus the upper l i m i t  on particle momentum i s  = 10 dyne-sec. 
m2 

Using the same approach as that of Section 2 of [ 121 we find that the value of CY 

does not affect the micrometeoroid momentum probability distribution which has a mean ‘Al , 
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and a variance 

,8+1 ,B+l 

- ml = .397 dyne-sec 
i p T = -  B m2 

B +  1 f i b  
m2 -1 

8+2 B+2 
2 B m2 - ml - 2  5 2 - m = 1 x 10 (dyne-sec) 8 = -  

8 + 2  B B  
m2 

Thus, the momentum bombardment process striking the symmetric vehicle i s  assumed to be 

zero-mean white noise with variuce 0 6(t) where [12] 2 

2 2 -3 2 2  
U = 4 @ 0  = 7.2 x 10 (dyne-sec) /cm - sec 

To convert this momentum process to an angular-acceleration white noise dis- 
2 2 

turbance process with variance c 6(t) we use (5.24) i n  [ 1 1 with A = 12 m , 
J = 100 n - m- min and obtain 

r = 3.8 m ,  
2 

c2 = r 2 AU 2 2  /J 

= 1.8 x (rad/min) 2 - min 

and normal ly-distributea trans 

A crude estimate of 

obtained from Mariner IV  data 

Gas Leaks - It would appear reasonable to model the random torques due to gas leaks by 

a Poisson step process, i.e. a random step process with Poisson-distributed transition times 

tion levels. 

he magnitude of the parameters of the gas leak process was 

1 1 : i t  was estimated that the average transition rate was 

0.02/hr and the standard deviation of the amplitude of torque was 4 dyne-cm. 

I f  reaction wheel control i s  used for the laser vehicle, we can expect similar 

torques from this source, allowing for the less frequent use of the gas jets (for removing 

momenta from reaction wheels)and the larger size of the vehicle. 

I t  i s  noted that gas leaks are not a natural phenomenon; their magnitude depends 

on the quality of the valves and other hardware used i n  the system. Hence, the numerical 

values of the parameters describing the gas leak process can be made arbitrari ly small de- 
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pending on care exercised i n  the fabrication of the system. It would be of interest to de- 

termine the quality of equipment actually needed either to accomplish the desired obiec- 

t ive or to make the effects of the gas leaks insignificant relative to micrometeoroids which 

physically cannot be eliminated. 

De termini s t i c Torques 

Gravity Gradient - A significant deterministic disturbance torque i s  that caused by the 

gradient of the gravitational f ield of Mars. The magnitude of this torque can be estimated by 

assuming that the vehicle i n  orbit about Mars can be represented by two equal point masses 

connected by a massless rod. 

gradient torque i s  approximated by 

Based on this assumption we find that the maximum gravity 

where g i s  the local Martian gravitational acceleration, R i s  the radius of Mars and I 

i s  the moment of inertia of the obiect. 

munication vehicle: weight (Earth) = 3000 Ib,, radius of gyration = 1 meter, we find that 

Using data which i s  representative of the laser com- 

4 T = 1 . 5 ~  10 dyne-cm 
mg 

-6 2 
rad/sec . which corresponds to an angular acceleration of about 10 

Aerodynamic - Another significant determinist 

torque due to l i f t  and drag forces acting on the 

of Mars. Although this toque i s  a function of 

mum value can be approximated by 

c disturbance torque i s  the aerodynamic 

vehicle as i t  moves through the atmosphere 

he angle of attack of the vehicle, its maxi- 

where 6 i s  the density of the Martian atmosphere, 

tance between the center of mass and center of pressure of the vehicle, 

v i s  the orbital velocity, s i s  the dis- 

S i s  reference 

area, CD i s  the drag coefficient, and C, i s  related to the l i f t  coefficient of the ve- 
I C  -- - 13 

hicle. 

gms/cm . Using this figure and the following representative values: 

From 1131 we find that at a height of 200 km, 
3 

6 i s  approximately 0.5 x 10 
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Weight = 3000 Ib 

Radius of = 1 m 
gyration 

2 S = lOOV/4 m 

s = 5 m  

v = 24 x 10 m/sec 
3 

we find that 
9 

T = 0.8 x lo3 dyne-cm 
ma 

Because of the exponential variation of density with altitude, the aerodynamic torque i s  a 

very sensitive function of the vehicle orbit. 

Thermal Distortion - As the communication vehicle orbits Mars maintaining an approxi- 

mately constant orientation towards the sun, thermal distortion of materials w i l l  cause a 

change i n  the vehicle shape which can be interpreted as the effect of additional disturb- 

ance toques which will, of course, depend on the type of materials used i n  the vehicle. 

Three techniques might be applicable to Compensate for these thermal distortions: 1) I f  the 

thermal distortion can be predicted to sufficient accuracy, the vehicle might be designed 

to have an inherent shift of center of gravity which w i l l  be essentially "equalized" natu- 

ral ly as the vehicle reaches the Martian orbital environment; 2) Compensating elements 

with inverse thermal characteristics to those of the principal components might be added to 

the vehicle to counteract the thermal expansion of the principal parts; 3) Any biases 

caused by thermal distortion could possibly be estimated by an appropriate f i l ter  i n  the 

attitude control system. 

Magnetic Induction - Interaction of the moving vehicle with the magnetic f ie ld of Mars i s  

another source of disturbance torque which i s  essentially deterministic. 

results i n  eddy current torques as well  as torques caused by the interaction of Mars' mag- 

netic f ield with magnetic fields internal to the vehicle. 

a sensitive function of the type and configuration of materials used i n  the vehicle. 

This interaction 

Clearly these torques w i l l  also be 

However, 
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i t  has been found from Mariner IV data I 1  11 that the magnetic f ield of Mars i s  not more 

than 0,001 that of Earth. Thus, i t  would appear that electromagnetic torques wi l l  not be 

a major source of disturbance torques. 

Internal Moving Parts - The normal functioning of the communication vehicle wi l l  involve 

the motion of parts of the vehicle: solar panels, antennas, or the beam shifter. The motion 

of these objects i s  another source of disturbance torques. The effect of this motion i s  incor- 

porated directly into the dynamic equations of the vehicle as discussed i n  the Appendix. 

Reflectivity Unbalance - A numerical estimate of the disturbance torque due to solar 

reflectivity unbalance can be obtained from our analysis of a segment of Mariner IV 

telemetry data [ 1 1 . It was found that a bias of 20 dyne-cm could be attributed to reflect- 

iv i ty  unbalance. Since the laser communication vehicle may have a surface area an order 

of magnitude or two greater than that of Mariner IV, the same care as was exercised i n  the 

design of Mariner IV could result i n  torques as large as 2000 dyne-cm from this source. 
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5. SINGLE-AXIS STUDY 

To gain insight into the structure of the fine-pointing attitude control system we 

have considered the control of a single-axis under the assumption that the solar panels do 

not deviate from their nominal motion. We have assumed that the momentum interchange 

device for the single axis i s  a reaction wheel driven by a d-c torquer. Three different 

sensor configurations were examined : star tracker and tachometer, star tracker and rate 

gyro, and a combination of star tracker, tachometer, and rate gyro. The characteristics of 

these components are given i n  Sections 4.2 and 4.3 . 
The equations of motion of the vehicle and reaction wheel are 

.I (c ;  + e ) = - L  
w w  

where the center of mass of the wheel coincides with the center of mass of the vehicle, J 

i s  the moment of inertia of the vehicle, I i s  the moment of inertia of the wheel, 8 i s  

the angular position of the vehicle, o i s  the angular velocity of the wheel with respect 

to the vehicle, 

by micrometeoroid bombardment. We assume that the control torque i s  provided by an 

electric motor, 

W 

W 

L i s  the control torque, and 6 i s  an external distrubance torque caused 

L = Qu +paw (5.3) 

where and p are constants and u i s  the applied voltage. 

If we define the state vector x as 

x == i:] 



where u i s  the angular velocity of the vehicle, then (5.1) - (5.3) become 

; = + &r + ~6 
where 

- 
a/J 

(*/J)(1 + J / I  ) , G = 
W 

0 

(5.4) 

(5.5) 

Note that (5.4) and (5.5) could also be obtained from the complete 3-axis 

dynamics of Section 6 by assuming that the solar panels do not deviate from their nominal 

motion (i.e., X = X E 0), and that no reaction iet  control i s  used. To correspond to 

the numerical values of the previous section we have 
4 5  

- 2 x , [ I  + J/I  1 = 2 lo4 , 11-1 = 2 (5.6) ,B/J = I O - ~  , - -  CY 
W 

2 2 -12 
where the disturbance 6 i s  zero-mean white noise with variance o S(t)  , o = 1.8 x 10 

2 2  
(rad/min ) - min. , as computed i n  Section 4.4 .  

A controller for system (5.4) was designed using the performance criterion of 
- 

Section 3, W = E [x’Qx] , where 
S 

Q =  

2 
42 

0 i 0 2 
91 :1 (5.7) 

Note that the performance criterion serves to minimize the expected vehicle position and 

velocity deviations, without regard to the velocity attained by the reaction wheel. The 

performance of the single axis was determined for each of the above sensor configurations. 

5.1 STAR TRACKER AND TACHOMETER 

We assume that the measurements available to the controller are angular position, 
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provided by a star tracker, and angular velocity of the reaction wheel , provided by a tach- 

ometer. Thus, the measurement vector z = [z , z ] i s  given by 1 2 

0 1  O I  

1 

and {q] i s  zero-mean w..ite noise w.:h covariance matrix 

z = Hx + q  

where 
H = [  0 

0 

2 rad 2 
(3 = 5.915 (-) - min. 

W m in  

2 -14 2 
0 

6 0) I 

u = 3 . 9 ~  10 (rad) - min. 
(5.10) 

Using the nomenclature of Section 3 we find that 

[-.0955 x 10 -12 6.7 

K = 1 .0653x -2.56 

3.66 
1 - . 0 1 6 9 ~  i o  -12 

A 

, A =  

A 

0 1 o - ~  -6.7 

0 -2 2.56 

1 .0169x -3.66 

O 4192 1 
O !  2 

0 

O 91 

(5.11) 

where the off-diagonal term in Q i s  the contribution of A 'M and where 0 
2 1.961 x 10-l2(rad/min) -. 565 x (rad/min) .262 x 10-l2(rad /min) 

2 
.386 x 10-12(rad/minn)2 -.Os97 x 1O-l2(rad /min) 

-12 2 P = -.565 x 10 (rad/min) I 
-12 2 2 -12 2 

1.262 x 10 (rad /min) - . O W  x 10-I2(rad /min) .1429x 10 (rad) 

(5.12) 

i s  the asymptotic solution to the variance equation Q.21), obtained by numerical integration. 

The elements of the weighting matrix Q were obtained as follows: because the 

angular position accuracy i s  of crit ical importance to the fine pointing system a significant 

weighting was assigned to deviations in  angular position: a ratio q /q = 10 was selected. 
1 2  



A number of other weighting ratios were also examined, and the influence of the weighting 

ratio on the performance of the resulting control system wi l l  be discussed below. 

From (3.17) we find that, for q /q = 10 , we have 1 2  

where 

(5.13) 

( - 5 0 ~  lO-l2)(0.3? + 1.7s + 2 . 8 )  
G1 (5) = s(s + 14) 

(5.14) 
2 43s + 154s + 233 

s(s + 14) G2(s) = 50 

If we represent the controller by the dynamic system 

4 = F q + T ; z  

where 

then 

u = Kq + c z  

where 

- - 
K 1 1  , 1 1  , L = 115 x , -21501 

The closed-loop system shown i n  Figure 5.1,  i s  given by 

I GH 
e 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 
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cy 

0 
9 I x 

- 

0 0 

0 
N 

9 7 

N I 

n 

2 > 
0 

N 
9 

T 

40 
I 



where 

I 
and 

N 

A =  

N 

B =  

0 1 o - ~  -43 2 x  

-4 x 0 -2 86 x 10 

1 0 0 0 

4 

0 10-1 -832.143 0 

0 - 1 . 3 5 ~  10-l' 23232.143 0 

r 
1 30 1 0 - l ~  -43 

4 - 1  -60 x 10-l' 86 x 10 

0 0 0 

0 10 x lo-'* -832.143 

-10 0 -1.35 x 10 23232.143 
- 

o-2 2 x lo-* 

o4 - 4 x  10 2 

0 

0 

-14 

(5.20) 

(5.21) 

It i s  of interest to compare the response to random distrubances of the uncontrolled 

vehicle w i th  the response of the closed-loop system designed above. Since the Ct, 77) 
process i s  white noise, the output of the closed-loop system i s  a Markov process with co- 

variance matrix M (t) which satisfies 
C 

N N  
N 

M = A M  + M P + B C B ~  , M ( o ) = o  
C C C C 

where 

c =  
0 

a 2  
W 

0 

O l  0 

OF3 2 l  

(5.22) 

(5.23) 
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Sinilarly, the open-loop 

5 

10 

Mo (uncontrolled) system has the covariance matrix 

.282 x .299 x 

. la7 10-l~ .363 x 10-l' 

(5.24) 2 Mo = AMO + M 0 A' -t BB'u I MOP) = 0 

50 

100 

Figure 5.2 contains a comparison of the 1 - 1  components of Mc and Mo . The 

figure indicates that during a 30 minute interval the closed-loop system maintains the angular 

position of the vehicle to an accuracy which represents an improvement of several orders of 

magnitude compared with that of the uncontrolled system. 

state whereas M (t) i s  monotonically increasing. At the end of the 30 minute interval the 

angular position standard deviation of the open-loop system i s  26.8 src whereas that of the 

controlled system i s  .089 c. Thus the linear closed-loop system using a star tracker and 

tachometer achieves a significant improvement i n  steady-state angular position accuracy for 

the single-axis subject to micrometeoroid bombardment. 

that as indicated in  Figure 5.3, for small values of time the angular position variance of the 

uncontrolled system i s  lower than that of the closed-loop system. 

Note that Mc(t) reaches a steady- 

0 

It i s  interesting to note , however, 

Using a digital computer simulation we investigated the performance of the single- 

axis controller for various values of the parameter 

variation with X of steady-state vehicle angular position variance P and steady-state 

vehicle angular velocity variance P . 

X .: q /q Table 5.1 indicates the 1 2 .  

0 

0 

TABLE 5.1 

STEADY - STATE PERFORMANCE 

. 1 4 9 x  10-l2 .141 x 10-l' 

.146 x .271 x 10-l' 
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Since larger values of X indicate a larger weighting assigned to position errors compared 

to velocity errors, one would expect that this would be reflected i n  lower steady-state 

position variance and higher steady-state velocity variance for large values of X .  Thus 

the monotonic variation of P and P with X shown i n  Table 5.1 i s  to be expected. 

Table 5.2 indicates the variation of the steady-state vehicle angular position 

0 0 

variance P and steady-state vehicle angular velocity variance P with changes i n  sen- 

sor accuracies: a 6 (t), the variance of the star tracker and a26 (t) , the variance of ihe 

tachometer. 

0 e 2  2 
1 

TABLE 5.2 

STEADY-STATE PERFORMANCE 
i t 

2 2  2 2  
p u  
2 2  

i n  rad /min 
cJ ilu IO 72'a20 p€l 2 

i n  rad 

.1 . 1  ,105 x .77l x - 

1 1 .187 x .363 x lo-'' 

10 10 .925x  .913x 10-l' 

- 
o2 10 = 3.9 x 10'14(radf - min. 

u~~ = 5.915 (7) - min. 
min 

2 rad 2 

Table 5.1 and 5.2 indicate that the closed-loop steady-state performance i s  relatively in- 

sensitive to variations i n  performance weighting and to variations i n  sensor accuracy. 

1 
! 

I A series of Monte-Carlo simulation runs for X = 10 was made to determine the 

dependence of half-l i fe on angular position l imits.  The results obtained are given in  

Figure 5.4 . Note that for a position l i m i t  of l a  = d- = .432 x 

the hal f - l i fe i s  only about 2.5 minutes. 

maintain the steady-state la error for a very long time. The curve marked "Closed-Loop 

rad , 
It i s  thus quite evident that i t  i s  not possible to 

Upper Bound 'I i n  Figure 5.4 was determined by using the probability 

(5.25) 
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as an upper bound on the confinement probability 

Thus since the output process i s  Gaussian we find that 

2 
where a (T) i s  the angular position variance for the closed-loop system. The ''upper 

bound" curve i s  drawn by using (5.27) and thedata of Figures 5.2 and 5.3 . The fact that 

the "upper bound'' falls below the half-l i fe curve given by the Monte-Carlo simulation, 

indicates that the random number generator used i n  the Monte-Carlo simulation program 

generates random numbers whose properties do not conform with those required to  properly 

simulate the white- noise acting on the closed-loop system. After an investigation of this 

problem i t  was found that the random number generator does indeed provide a poor approxi- 

mation to  white noise. 

e 

The curve labeled "Open-Loop Upper Bound" was obtained by treating the open- 

loop system as a double-integrator and using Figure 7-8 of [ 1 ] .  

position l im i t s  the open-loop upper bound indicates a larger half-l i fe than does the closed- 

loop upper bound. This i s  similar to the situation described above i n  reference to Figure 5.3. 

Note that for small angular 

5.2 STAR TRACKER AND RATE GYRO 

We assume that the measurements available to the controller are angular position, 

provided by a star tracker, and angular velocity of the body provided by a rate gyro. Thus, 

the measurement vector z = [ z , z ] i s  given by (5.8) where 1 2  

(5.28) 
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and i n  (5.8) i s  zero-mean white noise with covariance matrix 

K = 

- 
- min. 

2 -8 rad 2 
CJ = 2.41 x 10 (7) w min 

w> I 2 -14 2 
a a e  = 3 . 9 ~  10 (rad) - min. 

2 
U u c =  

q o  

c 

.2278 x 2.1482 

-.1656x -1.1958 

.3476 .655 - 

Using the nomenclature of Section 3 we find that 

-.2278 x -2.1482 

. 1 6 5 6 ~  -2 1.1958 

0 - .6555 1 1 
14 O 9192 

0 ; j o  0 0 

L 

(5.29) 

I 

(5.30) 

h 

0 '  where, again, the off diagonal term i n  Q i s  the contribution of AIM 

To compare the performance of the closed-loop system using star tracker and rate 

gyro with that of the system using star tracker and tachometer, the performance weighting 

X = q ,/q2 = 10 was chosen. From (3.17) we f ind that U(s) i s  given by (5.14) where 

s + 10.655 1535 I 22 1 +287 +- - 
S 

20 1 2896 
s + 10.655 

G2(s) = + 435 + - - 
S 

If we represent the controller by the dynamic system (5.15) where 

1535 x 

- 

. 10 -10.655 

o - ~  -201 

0-5 2896 

(5.31) 

(5.32) 
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then the control u i s  given by (5.17) where 

The closed-loop system employing the star tracker and 

shown i n  Figure 5.5 and i s  given by (5.19) where 

and 

-576 -8.7 

5 1.151 -2 1.74 x 10 

1 0 0 

-221 0 -201 

1535 x 0 2896 

1 -576 10-7 -8.7 

5 -1 1.151 1.74 x 10 

0 0 0 

-221 l o  -201 

1 0  1535x 2896 

(5.33) 

rate gyro as sensors i s  

.02 

- 400 

0 

0 

0 

.02 

- 400 

0 

0 

-10.65 

(5.34) 

(5.35) 

The closed-loop variance shown in  Figures 5.2 and 5.3 was obtained by using 

(5.34) and (5.35) and nurrerically integrating (5.22). 

approximately 10 minutes, the tracker-rate gyro system provides a 4-  fold improvement i n  

steady state angular position variance compared with the tracker-tachometer system. 

the t ime interval from 0 to 1 minute the tracker-rate gyro system also provides an improve- 

ment i n  closed-loop angular position variance. 

From Figure 5.2 i t  i s  seen that after 

In 
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w 
2 

0 c rl = lo W 

0 O = e -  

5.3 STAR TRACKER, TACHOMETER, AND RATE GYRO 

We assume that three sensors are used to measure the three state variables of the 

2 -8 2 

2 2 6(t) , u =5.915 (rad/min) - min. 

2 -14 

Qu ~ 2 . 4 1  x 10 (rad/min) - m i n .  

(5.37) 

W 2 a e  = 3 . 9 x  10 (rad) - min. 

I z ] again i s  given by (5.8) where 
I 1' =2, 3 
I single axis. The measurement vector z = [z 

- 
.405 -.095 x 6.8 

K = -.mX .065 x -2.54 

3.7 -13 
.109x  -. 168 x 10 i I 

I 

- 

(5.36) 

, 

Again using the nomenclature of Section 3 we find that 
I 

(5.38) 

To facilitate comparison with the two previous cases the performance weighting 

A = q l / q 2  = 10 was chosen and from (3.17) i t  was found that 
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where 
35 1 670 

s + 13.71  74.8 + - - 
S 

s + lo3  13.7 1 8 65 G (s) = [-13.15 - - + 2 S 

497 22,700 G3(s)= 2190 + - - 
S s + 13.7 

If we represent the controller by the dynamic system (5.15) where 

] , = [ -35.1x 
0 0 

0 -13.7 670 x 

then the control u i s  given by (5.17) where 

0-4 8 . 6 5 ~  -497 1 
0-4 -103x 22,7001 

- - 
K - I 1  , 1 1  , L - 1-74.8 x , + 13.15 x 10 -12 , -2190 1 

(5.40) 

(5.41) 

(5.42) 

The closed- loop system employing the three sensors i s  shown in  Figure 5.6 and 

i s  given by (5.19) where 

r" 

A =  1 

-35.1 x 

670 x 

-149.6 x 1 o - ~  -43.8 .02 .02 

5 -400 -400 
2.99 -2 8.76 x 10 

0 0 0 0 

0-4 8.65 x -497 0 0 

o - ~  - 1 0 3 ~  22,700 0 -13.7 

(5.43) 



8 
c 
cv 

t 
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-149.6 x 26.3 10-l~ -43.8 1 
(5.44) 

l o  -35.1 -497 1 
22700 I -12 670 -103x 10 

4 

Again the closed-loop variance shown in  Figures 5.2 and 5.3 was obtained by 

using (5.43) and (5.44) and numerically integrating (5.22). From Figure 5.3 i t  i s  seen that 

in  the time interval from 0 to 1 minute the tachometer controls the performance and the 

closed-loop variance resulting from the use of the three sensors i s  quite close to the closed- 

loop variance that results from the use of the star-tracker and tachometer alone. 

Figure 5.2 i t  i s  seen that i n  the steady-state the rate gyro controls the performance and the 

closed-loop variance resulting from the use of the three sensors i s  quite close to the closed- 

loop variance that results from the use of the star-tracker and rate gyro alone. 

From 
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6. MULTIPLE AXIS STUDY 

6.1 ASSUMPTIONS FOR SPACECRAFT DYNAMICS 

The state variables employed IC? describe the vehicle motion i n  3 dimensions are 

the following: 

wa I Ob I OC : vehicle body rates 

01 I 0 2  I 0 3  : speeds of reaction wheels 1 , 2, 3, respectively, 
relative to body. 

e l  I e 2  I e 3  : Euler angles of spacecraft body axes, relative to  
a fixed inertial coordinate system. 

: Angular rates of solar paddles relative to body. 
O4 I w5 

The control variables employed are 

v ,  I v2 I v3 : voltages on reaction wheels 1 ,  2 ,  3 respectively. 

The only disturbance torques considered were those due to  micrometeoroid bombardment. 

Since satisfactory operation of the control system implies that the state variables 

can differ only by very small amounts from the values they should have under ideal (nominal) 

conditions, i t  i s  reasonable to linearize the equations about this nominal motion and thus 

obtain a set of linear perturbation equations for which the control system i s  to be designed. 

The reaction wheel control voltages V i  thus are the sum of the voltages V; 

maintain the nominal motion, and the additional correction voltages ui 

the perturbations of the state variables from their nominal conditions. 

requited to "N 
which depend on 

To simplify the linearization, i t  was assumed that a l l  planets move i n  a single 

(ecliptic) plane which coincides w i th  the plane of the spacecraft orbit around Mars. 

nominal motion of the spacecraft i s  assumed to be that in  which the axis a through he 

telescope i s  maintained i n  the ecl ipt ic plane pointed to the Earth's center; the axis b 

about which the paddles rotate i s  maintained normal to the ecl ipt ic plane, and the t i ird 

axis c maintained normal to the first two. 

The 
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For this assumed nominal motion i t  i s  found* that perturbations i n  rotation about 

the axis normal to the ecliptic plane i s  independent of perturbations in rotations about the 

nominally in-plane axes. As a consequence, i t  was possible to separate the design for the 

former from that of the latter. 

A z. 

6.2 DESIGN FOR AXIS NORMAL TO ORBITAL PLANE 

0 -2.000 0 -0.4365 

1 0 0 0 

0 -1.091 x 0 -27.71 

0 1.091 x 0 0.4365 
L 

Dynamics - x = [ x1 , . . . , x 2  

describe the motion about the axis normal to the orbital (ecliptic) plane. 

iables are defined as follows: 

The f ive component state vector i s  used to 

The state var- 

0.4365 

0 

0.4365 

-27.71 

- deviation in body rate from nominal 
'1 = - O b N  

x 2  2 2 N '  = o - o - deviation in wheel speed from nominal 

(6.3) 

= 91  - QIN : angular error 
x3  

= w  - w  
x4 4 4 N j  

x5 5 5 N  
: deviation of paddle speeds from nominal = w  - w  1 

In terms of these state variables, and using the physical parameter (size, mass, etc.) of 

Section 4 i t  i s  found that the motion about the axis normal to the orbital plane i s  given by 

where u i s  the voltage input to the reaction wheel, and 5 
of the micrometeoroid bombardment process. 

length, and kilograms for mass, i t  i s  found that the matrices i n  (6.2) are: 

1.091 x 0 0.4365 -0.43651 

i s  the white noise equivalent* 

Using minutes as the unit of time, meters for 

* For details of calculation, see Appendix. Deviations from nominal values of state var- 
iables are designated by A .  (i = 1, 2, . . ., 11). 

* k  See Section 4. 
L 

I 56 



6’ = [0.0262, 

G =  

-479.9, 

1.746 

-1.746 

0 

-1.746 

1.746 

0 

0 

0 

109 

-109 

-0.0 262, 0.02621 (6.4) 

O n  the basis of the preliminary investigation described i n  the previous section, 

i t  was felt  that the sensors combination of a star-tracker and a reaction wheel tachometer 

provide nearly as good performance as obtained by addition of a rate gyro, and this was the 

sensor package studied for this application. 

this set of sensors i s  

The observation equation corresponding to 

z = H x + r ]  

where z and r) are each two-component vectors with 

z = tachometer output 
1 

z = star-tracker output 

7 

77 

2 

1 

2 

= tachometer equivalent white noise 

= star-tracker equivalent white noise 

The matrix H i s  

To 1 0 0 07 

L J 

(For convenience, the scale factors of the star-tracker and tachometer were taken as unity - 
voIts/rad and voIts/rad/min, respectively). 
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Control System Design - The technique described in  Section 3 was used to design the con- 

troller. The performance criterion, was the same as used i n  the preliminary design study, 

name I y 

3 

E (x'Qx) = E (x' + 100 x ' )  
S s 1  3 

consequently the weighting matrix Q was taken as 

1 0 0 

0 0 0 

0 0 100 

0 0 0 

0 0 0 

o-; 
1 

O l  
0 0 ;  

0 

O O 1  0 

1 

OI 
0 

The controller was designed with the aid of digital computer programs developed 

for this purpose. Since the controller has two inputs: from the star-tracker and from the 

tachometer and one putput: the reaction wheel control voltage, the controller i s  repre- 

sented by two transfer functions G (s) = -U(s)/Z (5) and G (s) - -U(s)/%(s). These 

transfer functions have been determined to be 
1 1 2 

3 2 -10 .695s + 18.135s + 188s+ 277 
2 G1(s) 2 -10 

s3 + 44.4 s +- 467 s + .765 

3 2 
4 .369 s + 12.13 s + 50.37 s + 55.17 

3 2 G2(s) =I 10 
s i- 44.4 s 1- 467 s + ,765 

The resulting third-order transfer function matrix i s  synthesized by the use of 

three integrators. 

in  Fig. 6.1. 

The closed-loop block diagram (plant, sensors, and controller) i s  shown 

Performance Evaluation - The performance of the closed-loop system of Fig. 6.1 was simu- 

lated using the MARKOV simulation program to determine the dependence of hal f - l i fe upon 

the angular position limits. The results, shown in  Fig. 6.2, indicate that for an angular 



1 ICROMETEOROI DS 

-0.695 x lo-'' 

0 

";\ 
/l 

3.692 x 

? 
67.32 x 

YAW AXIS CLOSED-LOOP CONTROL SYSTEM 

FIGURE 6.1 
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position l imit of 10 = .618 x 10 -6 rad = . 124 arc seconds the half-l i fe i s  only about 2 1 
I 

minutes. Thus, i t  i s  di f f icult  to stay within the steady-state la error for more than 2 

minutes. The curve marked "upper bound" i n  Fig. 6.2 was obtained by using the closed- I 
I 

loop variance shown i n  Fig. 6.3 and the expression (5.27). The crossing of the two curves i 

i n  Fig. 6.2 i s  again caused by the imperfect random number generator used i n  the MARKOV I 
simulation program. I 

I t  i s  interesting to note that these results agree closely with those shown in  

Fig. 5.4 for the single-axis approximation. 

lower than that indicated i n  Fig. 5.4; this can be attributed to the presence of the solar 

paddles which were not included i n  the design of Section 5.1. 

The half-l i fe indicated i n  Fig. 6.2 i s  slightly 

6.3 DESIGN FOR AXES IN ORBITAL PLANE 

60 

Dynamics - The six component state vector x = f x 1 , * * * I Xb 1 
the motion about the two axes which are nominally i n  the orbital plane of spacecraft 

motion. 

i s  used to describe 

The state variables i n  this case are defined as follows: 

= w  - w = deviation of rate about body axis nominally 
a N  x1 a 

?2 =", c N  

oriented toward earth 

- 0  = deviation of  rate about third body axis 

= deviation from nominal of axis a reaction 
wheel speed 

1N 
- w  5 = Y  

= deviation from nominal of axis c reaction 
wheel speed 

"4 =w3 - 3N 

= angular error about axis nominally earth oriented x5 - '2 - '2N 

angular error about third axis - '3N x6 =- e3  

In terms of  these state variables, the linearized dynamic equations take the form 

i = Ax + Bu + G5 (6.9) 

where 

u. t = control voltage on reaction wheel i (t = 1, 3) 
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MON TE-CAR LO 

\ SI MU LATlO N 

0 SIMULATION POINT 

e 

e 
0.1 

II 
r 
- 

\ 1  

ANGULAR POSITION LIMIT (MICRORADIANS) 

i 

HALF-LIFE OF YAW AXIS 
FIGURE 6.2 

61 



62 

) 

TI ME (MI NIJ TES) 

CLOSED-LOOP ANGULAR POSITION VARIANCE FOR 
YAW AXIS 

.6 

.2 

3.06 

? 

FIGURE 6.3 



and the matrices A ,  B ,  and G are given by: 

- l o  .3838 x loe4 0 0 

, .1235 x lo-” -4.552 x -2 -1.639 x 1 6 ”  0 0 

-__- - - 
- 1 . 5 0 2 ~ 1 0 - ~  -0.73 ~ 1 0 - l ~  .093 x10 

1.1235 x lo-’’ 4.552 x loe6 4992 --.-_ x 1.639 x 1 6 ”  

-$ .012 1 . 8 ~  10 

1.8 x ,0092 -_ 
-8 -597.96 - 1 . 8 ~  10 

- 1 . 8 ~  10 -8 -479.9 -- -_ 

0 0 

0 

I 

O i  

.122 ,614 

-. 0799 -. 122 

-. 122 I O +  -.614 
I 

- A =  
-10 1 1.502x10-7 0.73 x 1 6 ”  -.093 x !O -2 0 0 

B =  

G =  

0 

1 i 
L .- 

0 

0 

0 

0 

0 

0 

0 
..I 

- 

-.35 x 10 
0 -4 

.35 IO+ 

(6.10) 

(6.11) 

7 

-12, 1 . 8 ~  10 i 

0 -12 
= =  i””” 0 l o  
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where T i s  the torque about the a axis, T i s  the torque about the c axis, and 

CY = C Y = 1 . 8 ~  10 . 
C 

2 2 O  -12 
a c  

The underlined terms i n  the above matrices represent the principal paths and 

correspond to the dynamics of the simplified model studied in  the previous section. The 

remaining terms represent the effects of cross-axis coupling. These cross-coupling terms 

are quite small, but since we don't know whether they are negligible, we have included 

them in the design study. 

- 
0 0 

0 0 

1 0 

0 1 
-I 

The sensors for this pair of axes again were assumed to consist o f  star-trackers 

and reaction wheel tachometers. Accordingly, the observation equation i s  

where 

the H matrix i s  

and 

z == Hx -t 

1 z = measurement of LU 1 

z = measurement of LIJ 
2 3 

2 

3 

z3 = measurement of 0 

z = measurement of 0 4 

(6.13) 

0 1 0 

0 0 1 

0 0 0 

0 0 0 

v ,  tachometer noise 

v 2  = tachometer noise 

q3 = star-tracker noise 

v4 = star-tracker noise 

(6.14) 



r =  

e - 
1 0 0 0 0  

0 1 0 0 0  

0 0 0 0 0  

Q = O O O O  0 

0 0 0 100 0 

0 0 0 0 100 - - 

5.915 

0 

0 

0 

0 0 0 

5.915 0 0 

0 - 14 0 3.9 x 10 

0 0 3 . 9 x  10 
-14 

(6. 15) 

Control System Design - It was found that (3. 11) did not have a unique solution for the two- 

axis design. This may be caused by the fact that the system (6.9) with A and B matrices 

given by (6.10) and (6.11) i s  not completely controllable. Thus the theory of Section 3 may 

not be directly applicable to the design of the two-axis controller. Another cause of the 

problem may have been the ill-conditioning of the coefficient matrices of (3.11) which may 

have caused numerical errors. 

For this reason values of k = . 1 ,  .01, and .001 in  (3.5) were chosen and 

solutions M(k) to (3.6) were obtained with 

(6.16) 

These solutions were substituted into (3.7), truncated after the third term, and the 
N 

resulting 3 equations were solved for M = M 0 0  which was taken as an init ial  approximation 
N 

to the actual value of M 

replaced by M ) was integrated unti l  a "steady-state" was reached. 

although some terms in  the resulting M 0 0 '  
Because of this discrepancy i t  was decided to choose the value of k = .001 and to proceed 

with the design using performance index (2.19) with Q given by (6.16) and 

Using Mo as an init ial  condition, (3.11) (with the left side 0 '  
I t  was found that, 

others were not. 
- 0 

were close to those of M 

(6.17) 
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Hence, i n  agreement with the design philosophy of Section 3, very l i t t le  penalty was assigned 

to the use of control. 

The controller was again designed with the aid of digital computer programs devel- 

Since the controller has four inputs, from the two star trackers and the oped for this purpose. 

two reaction wheel tachometers, and two outputs, the two reaction wheel control voltages, 

the controller i s  represented by the dynamic system 

7 

3 .91ox 10 

.693 x 1 f2 

.183x 16’ 

.167x lo6 
-.454~ 

3 .427xlO 
- 

- B‘M 
u - - -  

k2 

where M i s  the solution of (2.21) with M = 0, 

.154x 16’ .405x lo6 .369x lo6 -.985x IO3 
1 .309x lo6 .303x .114x 10 
-7 .309x lo6 .814x lo6 .742 x 16” -. 198~ 10 

.369x lo6 .303x164 .742x1611 .573~ IC9 .967x1o6 
2 

r 
’ .201x10 
I 1 . 154x10-1 .178x 10 I , .405xlO-l 

M =  

- .985 1 c3 .114x101 -.198x10 .967 x 1 0-6 .179x 10 -7 

.693x lo-’ .183x lo-’ .167x 1 8  -.45dX lo3 I 
I .91ox10 
i 

K i s  given by (2.29) i n  which P i s  the solution of (2.30) with P = 0, 

-. 13Ox 1618 .204 1 .543 -15 

-18 
-.892xlO 

-. 179~ 10 -.402x 10 -13 .417x10 .161x1f4 

.482x 1615 .9O7x I6l9 -.931 x -.445x lo-’ 
-5 .907x .261 x -.125x101 -.341 x10 

-.823x d4 .289x lo1 .109x If4 -19 

-15 -19 
-.614x 10 

- . 2 9 3 x  10 -.225~ 10 1 .109x .104x 10 

I 
=I 

and A, B, and H are given by (6.10), (6.11), and (6.14), respectively. 
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The resulting sixth-order controller i s  synthesized by the use of six integrators. 

The closed-loop block diagram (plant, sensors, and controller) i s  shown in  Figure 6.4 . It 

i s  interesting to note that i n  comparing the characteristic equation of this sixth-order con- 

troller with that of the fourth-order controller which was obtained by using a design based 

on M 

the latter and that the remaining two roots of the former appeared to be close to a pair of the 

latter. I t  thus seems that the controller with k = 0 has a fourth-order characteristic poly- 

nomial but requires six integrators for its realization. 

i t  was found that four of the six roots of the former were close to the four roots of 0' 

Performance Evaluation - The performance of the closed-loop system of Figure 6.4 was 

simulated using the MARKOV simulation program to determine the dependence of half- l i fe 

upon the angular position limits. The curve marked "Monte-Carlo Simulation" i n  Figure 6.5 

was obtained by determining the first time that each member of an ensemble of trajectories 

escaped from the region 

(6.22) 

-6 
The curve indicates that for an angular position l imi t  

the half- l i fe i s  about 5.5 minutes. 

of the ciosed-loop system wi l l  remain inside the region R (with B = .12 arc seconds) for 

more than 5.5 minutes. 

the closed-loop variance shown in  Figure 6.6 and the expression (5.27). 

upper bound curve i s  caused by using the variance labeled "Pitch Axis" for 0 5 t c; 2.4 

minutes and then using the variance labeled "Roll Axis'' for 2.4 t i n  the expression (5.27). 

It i s  interesting to note that, as in  the case of the single-axis controller of Section 6.2, these 

results agree closely with those shown i n  Figure 5.4 for the single-axis approximation. 

B = . 6 x  10 rad. = .12 arc seconds 

Thus there isa probability of only 1/2 that the trajectory 

The curve marked "upper bound'' i n  Figure 6.5 was obtained by using 

The "hump" i n  the 
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7. CONCLUSIONS AND RECOMMENDATIONS 

On the basis of the results achieved i n  Sections 5 and 6 above i t  i s  our conclusion 

that minimization of the steady-state variance i s  an effective technique for the design of an 

accurate fine-pointing control system. From the computer simulations of control system per- 

formance i t  was found that the llminimum steaaysiate variance" criterion yielded results 

which would be consistent with a "maximum confinement probability'' criterion. 

The fact that for the single-axis approximation the uncontrolled system has a lower 

angular position variance for small values of t ime than did the closed-loop system indicates 

that a combination of passive and active control might be considered for future fine-pointing 

control systems. 

A number of problems regarding the design of control systems in  the presence of 

random perturbations require further study. A more complete study of the fine pointing prob- 

lem for a spacecraft should take into account a more detailed treatment of the system dynamics, 

for example, the f lexibi l i ty of the telescope sunshield which was neglected i n  our investigation. 

A significant source of random disturbances which was neglected i n  the present study 

i s  the random bias torque caused by the difference between the actual and nominal values of 

deterministic torques and the imperfections in the vehicle or control system construction. 

principal random bias torques are those caused by misalignment of actuators and by solar re- 

f lect ivi ty unbalance. 

magnitude appearing i n  the equations of motion of the vehicle. 

the vehicle may be written as 

The 

These disturbances result i n  forcing terms of known form but of unknown 

For example, the dynamics of 

= f(x) + k 

where k i s  an unknown constant. The attitude control system can be designed to take these 

bias torques into account by treating k as an additional state variable. We may thus aug- 

ment  the sysiem dynamics as ioiiows 

; = f(x) + y 

= 0, y(0) = k 
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and estimate the state variable y as well as x. 

Although our study was based on a fixed vehicle configuration i t  might be possible 

at an early stage i n  the design of a future communication vehicle to optimize the spacecraft 

configuration according to a suitable design criterion. This parameter optimization problem 

i s  essentially nonlinear and would probably require an iterative numerical solution on a digital 

computer. 

As mentioned in  Section 6 the question of existence and uniqueness of solutions to  

(3.11) i s  of crit ical importance for the application of the design technique of Section 3 based 

on minimizing the steady-state variance i n  the absence of control weighting. 

requires further study. 

This problem 

Another problem requiring further attention i s  that of maximizing the expected 

It first passage time to the boundary of a set given that the in i t ia l  state i s  inside the set. 

would be of interest to determine the relation between the control law based on this criterion 

and that which i s  obtained by minimizing the steady-state variance. 

As mentioned in  Section 5.1, i t  i s  essential that the algorithm used to provide the 

simulation of a random excitation properly model the characteristics of the noise used i n  the 

theoretical study. Thus the improvement of noise generation algorithms also deserves further 

study. 



APPENDIX 

VEHICLE DYNAMICS 

In order to design the attitude control system and subsequently simulate its perfor- 

mance, i t  i s  necessary to have a fairly accurate model of the vehicle dynamics, including 

possible cross axis coupling terms. 

i n  the vehicle are the following: 

For this purpose we assume that the principal moving parts 

1) The vehicle body and telescope rigidly mounted thereon. 

2 )  Three double reaction wheels (nominally aligned with the vehicle principal 

axes and centered at the center of mass) torqued by d.c. torquers with "ideal" characteristics. 

3) Two solar panels (nominally aligned with one of the principal axes orthogonal 

to the mechanical axis of the telescope). Additional panels or other moving parts can be 

treated i n  a similar manner. 

The mechanical axis of the telescope i s  taken as one of the vehicle principal axes. 

The vehicle state i s  defined by the following vector 

body rates reaction wheel Euler angles Solar paddle 
speeds (relative with respect to rates relative 
to body) inertial reference to body 

system 

The control variables are assumed to be the quantities i n  the control vector 

= f v ,  I v2 I vg I Tra I Trb I Trcl 
voltages reaction iet 
applied to torques 
react ion 
wheel torquers 

Nonlinear Eqiiotions of r"J2otion 

The nonlinear differential equations of motion relating the state variables to the 

control variables are derived i n  this section. 
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Consider a vehicle with N moving parts and let the first N parts have relative 

motions with respect to the main body which are completely known as functions of time. The 

remaining No + 1 , . . . N parts are connected to the main body (but not to any other part) 

via some constraint. We wi l l  use the following notation: 

0 

1 = inertia tensor of the main body relative to a set of axes (6 5 5 ) passing through 
0 +I -b -C 

the center of mass of the main body and fixed i n  the main body (i .e. , origin of body 

axis system i s  at c.m. of main body) 
th II = inertia tensor of t- part relative to axes passing through the center of mass of the t 

th t- part and aligned with ( 5  5 5 ) 

= vector from origin of body axes to c.m. of t- part. 
th --Q -b -C 

r -t 
w = angular velocity t- part relative to body axes. --t 

- w 
- R * = vector from the origin of the inertial system to the origin of the body axes system. 

th 

= angular velocity of main body relative to some fixed inertial axes. 

= mass of main body 

mt = mass of t -  part 

M = t g o m t  =; mass of composite body 

th mO 

N 

1 N  
R = -  C m r .- vector from origin of body axes to c.m. of the composite body. - M 1 = 1  t-i 

th CI 

- T t  = the external torque applied to the t- body (for t = 0 this refers to main body) 

T = interaction torque of 5- body due to 3- body (note T 
th th 

= -TI&) 
--t J tj 

We can write the equation of motion of each body separately as* 

d N N 
- ~ I w ] - T  + C lot 
dt 0- -0 i =  1 

.' Roberson, R. E. "Attitude Control of Satellites and Space Vehicles", 
"Advances i n  Space Science'' pp. 351 -436. Academic Press. 

Chapter of book 
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th 
for the i- body with t = 1 , .. . N 

Note T = 0 for i 2 N + 1 

Sum eq. (2) for i = 1 , ... N 

--iJ - 0 

and add to ( i )  to give 0 

NO 
L [ X  o + c EI,(~ + w ) + mt j i x i t 3 ]  
dt 0- - -t i = l  

NO d 2 E  
= T  + C T . + C  L o t +  C T  - C m r x -  

N NO N No No 

4 i = 1  -Z i = N  + 1  t = l  j = l  -5j’ + 1  
i-i 2 

dt 
0 

No No 
but C C T = 0 since T = -T so the equations governing the unknown 

motions are 

t = l  j = l  - t j  - i j  jt 

d NO 
- [ J  o + C Eni(u + o ) + m . r . x ; .  3 1  - -5 z-L -2 i = l  dt 0- 

N 0, 0 d 2 P  - C m r x -  i-t 2 
i = l  dt -0 

N N 
= T  -t E T . +  C 

N 

t=l hi -Z 
i = N  + 1  0 

and 
n 

d N dLk* -[n.  ( w  + o ) + mir-ixii,] = T - lot - m.r .  x-  
dt2 dt L - -5 -t l - c  (4) 

the equations governing rectilinear motion would have to be solved i n  
dL&* 

To determine - 
d? 

general. i .e. 

( R * + R ) = F +  G F  - -i - 
d2 

dt  [, = 1 M T  - 
N 

and 
d2 

dt 
m - [ R *  + ri] = F. - F t 2 -  - -2 -06 
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However, i f  the composite body i s  moving i n  a uniform force field so that the forces acting 

at the origin and at each body mt are the same then by defining 

- A  R*  = R + R*  = the vector from the origin of.the inertial system to - - -  
the c.m. of the composite body 

we can replace - R* i n  (3) and (4) by 

d2 - 
dt 

and the quantities 7 E*) may be eliminated provided the torques due to the uniform 

force f ie ld  are eliminated from the T and T .  terms. -0 -L 
(i.e. , the rotational effect of a 

uniform force field cancels out so i t  may be neglected from the start). 

We w i l l  assume that motion i s  i n  a uniform force f ield so (3) and (4) become 

NO dL 
t-i 2 

N 
N N O  + C m r x - - - ( R )  = T  + E T . +  C 

i = l  i = l  dt 
bt -0 -1. i - N  + 1  

0 
and 

m 

- [ [ n . ( ~ t ~ . ) + m  d r x i ]  =Ii N - T + m  r x - ( R )  dL 
dt L - -7, Gt -1 -0i irt d+2 - 

for t = N + 1 ,  ... N 0 

Rotational Motion Only 

When a l l  the centers of mass are r igidly fixed i n  the main body, then the motion 

of each part with respect to the main body can only be a rotation about its individual mass 

center. Since a l l  time derivatives i n  equations (5) and (6) are time rate of changes as 

viewed from the inertial reference frame from I14 1 



and R = ccc x R so eq. (5) becomes we have i = W X L L  - - -  -t - 

NO 

dt 0 -  i = l  
- 1 , ~  d o? + c Cn. ( w  + 0.) + rniiixWxLiII 7, - -L - 

(8 ) 

NO d 
t-t dt 

NO N 
m r x - ( W x E )  = y  + C T  + C 

t=l -1, i = N  + 1  
0 

-0 

(9) 
T T 

Using - - -  a x b x c = ( a b c ) b - ( a *  - - -  - -  b ) c = l a  - -  c I - c a ] b  -- - 

T T h  
we get 

Again applying (7) gives 

m t (r -I x u x r )  - -1, = m t I ~ t $ - ~ t ~ t ] ~  = J J ~ E  

d -(a x R )  = GxR + w x ( W X  R )  
dt - - - -  - - -  

and thus from (9), 

Inserting (lo), ( 1 1 )  and (12) into (8) gives 

N NO NO 
+ c A + c m . r .  ~ ICLIX(CC\XR) I  

NO 
---?: + c 7 + c - - -  t - 7 - 1  hi -t i = N  + 1  i = 1  i = 1  

0 
t = 1 -0 
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and upon using Q) this becomes 

NO N NO NO 

i = l  i = N o + l  t = l  i = l  
3 +  C Y +  c loL + C A L L  - + C mi,rix[c.c!x(wxR)l - - -  -t -0 

Now from (9) we write 

T T 
m t-t r x I w x ( ~ x R ) ]  - - - =mi[' -I, ( w x R ) - Z -  - - ( u x R ) r . ] w  - - -7/ - 

but note that 
T T 

w x  h i , w  = m. [ W X  ( r .  R 1  - _- Rri) E] - L - -is- - 

T T 
= mi[(r. R )  (0 x O )  - (r O )  ( e  x!)] -t - 

-I/- I 
0 

A .  
also let L i = I  t + J  i - A i 

and 
A N O  

1 =I- + C ILL 
i = l  0 

N O  N 
c T, - -1- 

so (13) becomes 

lor n ;  ,+ Wx l lW - 7 -t 
i 2 1  t = N  + 1  - - - 4  

0 

N O  
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I_ Note: When No = N, then C m. [ r .  . (w_xR)] = MR . w X R  = 0 z -L - - -  
i = 1  

I For rotational motion only (4) becomes similarly , 

d + m.  r .  x -  [ O  xR1 
N d -[I ( w  + CL‘ ) + m .  r .  x w xrf,] = T .  - T 

dt i, - -I L-L - - -L -0i L-Z dt - - 

so 

I thus 
I 

, N 

= T. - T + C L I X ~  w + m i [ c i  (wxR) ]  - -  o - -L -0i - t- 

so 

IL A + O X I L . W  + - E & .  + ( w + w . ) x l l j g t ’ 7  - T  + m . [ r  * ( ~ x R ) ] w  - -  - t- - 5 -  t -1, - -2 -t -0i L -I 

f o r t Z N  + 1 ,  . . .  N 0 

In order to complete the description of the vehicle attitude motion we must 

describe the orientation with respect to the fixed inertial reference axes. 

It has been found most convenient to define the Euler angles 8 1 f 8 2  , 8 3 as the 

angles shown i n  Figure A1 . 
by x’ I y ’  I z f  i s  originally aligned with a set of inertial axes indicated by x ,  y I z .  

The body i s  first rotated about the z direction through an angle 8 

next rotated about the resulting x’ axis (denoted by 6 )  thus specifying 0 

f inally i t  i s  rotated about the resulting z’ axis thus specifying 0 

z denotes the direction of the z’ axis after the first rotation and ‘ denotes the direc- 

t ion of y f  after the second rotation. 

Here the body having a set of body axis directions indicated 

as shown. It i s  1 ’  
as shown and 2 

as shown. Note that 3 

We wi l l  consider the case in which the vehicle body axes --cI 5 I &b and 5 are 
-C 
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With the correspondence of (16) we find that 

so that 

2 sin 8 0 1 

0 

0 

3 sin 8 

3 cos e 
3 

3 

cos e cos e 2 

-COS 8 sin 8 2 

3 sin 8 3 cos e 
-- 

2 cos e 2 cos e 

3 cos e 3 sin 8 

tan 8 sin e, 3 2 - tan 8 COS 8 2 

wa 

Wb 

0 
C 

Let us now apply equations (14), (15) and (18) to give the dynamic equations 

governing the motion of a space vehicle having three independent reaction wheels used to 

control vehicle attitude and two banks of solar batteries i n  the shape of paddles which can 

rotate independently about a fixed axis through their respective mass centers (Fig. A1 ) i n  

order to track the Sun. 

-.. 

We note that a l l  these parts are of the second type since their motions with re- 

spect to the main body are not completely known time functions so No = 0 and iZ- = IT 
Let a .  for i = 1 , . . . 5 be the unit vector in  the direction of the rotational axis of 

each moving part so et = LL' a the moment of inertia of each 
i-t ' a t  

part about i t s  axis a 

handed orthonormal set for each i = 1 , . . . 5 and letting I 
of inertia of the i- body about b. and C~ respectively we can write 

0 '  

-L 

If we denote by I 
and choose kt and ct such that ai , kt , ci forms a right- -t 

th 
and I b i, c i. be the moments 

-2 

T T T 
t a7,L-L-z b i - t - t  ci--t--t 

2. = I  . a . a :  + I  b . b .  + I  c c .  for i = i  , . . .  5 (i 3j  

Note - For the reaction wheels (i.e. , 5 1 , 2 , 3) ibi = lei. 
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The interaction torques can be resolved i n  the directions a b and c .  as -t ' -5 -24 

T 
- 0 5  oi--7, o t  -z = Ta a .  -t Tb b.  + T i t z t  . Also when an electric motor provides the torques to 

rotate the wheels or the battery panels then 

where V (t) are applied voltages. 1 

We finally note that since the reaction wheels are mounted inside the main body 
N 

they have no externally applied torques. Thus, T = 0 for t = 1 , 2 , 3 .  The battery 

panels may have external torques applied. 
-6 - 

Under these conditions eq. (14) becomes 

T 
-t and premultiplying (15) by b gives 

T 
-t - -L 

= b y5 - b . [ I L t&  + oxILiw +I.; + ( w  +gt)xXtg t  - m g i  ( g x E ) ~ _ l  . 
(22 ) 

b 
- L -  - -  - 

T 
-5 Similarly, premultiplying (15) by c gives 

N C 
Tot = c * T -t -t 

T (2 3) 
- c . 1 I L . A  + w x l L . o  +I A. + ( w  + w . ) x l Z . o  - m d i  ( w x R ) g l  - -  -7.. 1,- t  -2 L - - L -  t - L  - 



When (19), (20), (22) and (23) are inserted into (21) and the orthogonality of a 

c i s  used, we find -i 

b. and -5 -z 

5 T [Io + C (b bT + C .  c . ) L i ]  b = - U X X  w + 7 -t-t -z-z - - 0 -  -0 i=l 

T T -  5 5 
C (aiVi + @ . w . ) a .  + 

i = l  t = 4  
+ C (b,. --v--7/ b .  + -I-& c c ) -L T .  z z -L 

5 T T - C (bibi + c i c i ) [ ~ X U . . w  + w X a . l  .a. - m r ( u X R ) ~ ]  - -  - 2 -  - -Z aZ -Z i-i t = l  

Note that for each i (15) gives a vector equation. 

constrained to  be about the axis a -i 
-I I not three. We can reduce (15) to a scalar equation by premultiplying by a .  . 
(19) and the orthogonality of -5' a -5' b -5 c we get 

However, the motion of each part i s  

so there i s  really only one degree of freedom for each 
T 

Using 
-1, 

in order io obrain ihe compieie stare ciiiiereniiai equaiions (24) musi be s o i v d  

for A - which i s  then inserted into (25). The expression for h ,  - the resulting equations 

(25), and (18) are then the state equations. 

In order to proceed further we must be more specific about the physical structure 

of the system. Let us define the body axes 5 5 5 as the three principle axes of the 

main body then 1 becomes a diagonal matrix with diagonal elements 7 

We wi l t  assume that the three reaction wheels aie essentially aligned with these body axes 

so a = c  + e  

-a I -b -C 

0 ^a0 'bo 'c0 * 

-1 -a -1 

where c L  are error vectors with small components. - 
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I 

We wi I1 make the following additional assumptions regarding the construction of the vehicle. 

1) The c.m. of the composite vehicle i s  located very near the body axis origin 

(i.e. I R i s  a small vector representing the error i n  centering the system). 
I - 

2) The c.m.’s of the reaction wheels l ie  essentially on the coordinate axes so 1 
that I 

1 , 
r =  

I -1 r15 ,  -t 54 

. th 
where ft are small error vectors and r 

to the origin. 

i s  the distance from the c.m. of the L -  wheel t 

3) Let 6 denote the rol l  axis of the vehicle we w i l l  assume that r and r 
-a -4 -5 

l ie  essentially along the 5 or yaw axis (i.e., perpendicular to the rol l  axis) so that -b 

- 
L4 - ‘4% + 57 

L5 = r5E+ + fs 
4) The pivot axes of the solar panels are essentially aligned with 6 axis (see -b 

Fig. A2 ) so that 

where the angle 6 i s  indicated i n  Fig. A-2 and c terms are small. Similarly - 

Note that when 6 = 0 I b i s  essentially aligned with 6 and c with -5 
-4 -a -4 -C 
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FIGURE A-2 NOMINAL ALIGNMENT OF SOLAR PANELS 
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Using these  assumptions a n d  n e g l e c t i n g  t h e  small e r ro r  t e rms  w e  f i n d  that Ai = 0 SO I 
1 

h 
- 

'13 

0 

0 

h 

=22 
h 

'33 - 0 

T T 5 

i=l 
LL. = 1 + J i  a n d  i f  w e  d e f i n e  the m a t r i x  E-' A J b  + C ( b  b + ~ ~ 5 ~ )  LLi -Gi t t  

1 
^ 2  

E = , ,  h 

'11'33 - '13 

w e  o b t a i n  

0 

h 

so 

w h e r e  
A 5 c) 

L 

' l b3  "c2 Cll - - lao + ' m p - i  if 1 

0 

c 2 2  

0 
A 

1 

2 2 + Ib5)  COS 6 + ( I c4  + IC5) sin  6 
+ ( I b 4  

2 L 
+ m r  + m r  - 

'22 - 'bo + 'b1 i- 'c3 1 1  3 3  
h 2 2 

i-1 ) s in  6 + ( I a4  + Lc5) COS 6 = I  + I + I  + C m i r i  + ( l b 4  b5 5 2  
'33 c0 b2 c l  lf3 
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When the assumptions and the expression for C are used in  (24) we obtain 

- 
a 

w 

b w 

wC- 

= c  
2 - I  + m r  

2 
-waoc (l,o - 'CO + Ic,l - mlrl c l  3 3 + I b 3  - 'a3) wa"8a3 

-w 0 f a b  

where 

2 
f = I  - 1  - I  - - (.I + 1- ) COS 6 b4 b5 1 bO a0 + Lbl a1 ''a2 'c2 + 'a4 6 5  

2 2 2 2 2 
- m4r4 - m5r5 +I ) sin 6 + mlr, - m2r2 -%4 c5 

2 + 1 ) cos 6 f 2 = I  c0 - 'bo + Ib2 - 'a2 + 'a3 - IC3 - 'a4 - 'a5 + ('c4 c5 

2 2 2 2 2 
+ m r  + m r  m3r3 4 4 5 5 + (Ib4 + I )sin 6 + m y 2  - 

b5 

f3 = W2l'a2 + w d a 4  - w51a5 

while from (25) we obtain 

1 

a1 

- 'bl) 81 01 

W ,  - l '-vl -I 
a1 

- wbwc I a 
= -w 

a1 
1 
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L4 - - -Lib - OaOc 'b4 -'c4 2 2 -  2 2 'b4 - I c 4  sin 6 cos 6 (cos 6 - sin b )  + (u - wC) 
ic4 a 

'a 4 
N 

T4b v +-  4 

a4 a4 

Q 
- -  p4 -- 

'a4 
I 4 1  

Ib5 -'c5 2 2 2 2 Ib5 - 'c5 sin 6 cos 6 
0 = w  + w w  -- (COS 6 - sin 6) - (aa - &jc) 

'a5 
5 b a b la5 

N 

5 T4b 

a5 

cy 

v5 +I - -  85 -- 
"4 1Ta5 

'a 5 

When the expressions for i 
the resulting equations together with (28) and (18) ar4 the complete state differential 

equations of the system. They are 

hb and ic from (28) are inserted into the equations (29), 
a '  

3 

2 

sin 0 

c cos 8 - w  
3 

2 

cos 0 

1 b cos 8 
8 " 0  

3 8 = w sin e -t  cos^ 
2 b 3 C 

3 
b 3  = w - w tan F) cos0  + w t a n 0  sin e 

a b  2 3 C 2 

88 



N 

T4b - '4@4 - '4'4 
sin 6 cos6 + 2 2 I b 4  - Ic4 

+ (Wa - LL'J 
'a 4 Ia4 

2 
1 - '  I 

b5 c5 i5 = c*2r2 (Y I v / T )  + wawc I (L0s26 - sin 6 )  
a5 

N 

-1 T5b + P5"5 "5'5 lb5 c5 sin6 cos6 - 2 - (wa - w c )  
lc15 'a5 

where 
n 

+ wc(021a2 + w la4 - ol I ) r ( Y I ~ I ~ ) = - w o f  - 0 O c  1 b c 2  a b 13 4 5 a5 

. ,  
+ 02 LL' 1 - ucwlial + p*w* I- p4w4 - r;, U) a 3 a3 5 5 -2"2 

N 

+ a V  - C X V  +Tab 4 4  5 5  

h 

r 3 ( Y I v , ~ ) = - w w f  + w O c  + ~ [ - O I  - 0 1  + W I  I a b l  b c 1 3  a 2 a 2  4 a4 5 a5 
N N 

+ o b o 1 I a1 + P3a3 -t a3V3 + (Tot + T4c + T5c)  

and 

C 1 3  = (Ib4 +Ib5 - Ic4 - Ic5) sin6 cos6 

b l  + 'c3 
-~ + I c mi':] + 1  

5 2 
= 1 + I G mi,rLl +Ib2 +-Ic, + b5 

' 2 2  -'bo i - l 1 3  
h 

+.I ) sin 2 6 + (Ic4 + I  ) COS 2 6 c5 =33 co i # 3  
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h 

- '33 
'11 - * A & 2  

'11'33 - '13 

1 c22 = - 
4 2  

h 

- 51 
n h  '33 - 
'11'33 - '1'3 

h 

P 

N 

It should be noted that the torques 7 for j = a , b , c consist of ex- 

's include both reaction ie t  torques T r j  and 
N 4 j '  T 5 j  

ternal disturbance torques only, but the T 

the disturbance torques. This w i l l  be denoted as 
Oj 

and 
N T 4 j  - - T4J 

N 

5 3  
T = T  

5 j  

for 3 = a ,  b ,  c 

Note also that voltages V and V5 appear i n  the equations. These are the 4 
voltages which must be applied to the motors connected to the solar panels i n  order to keep 

the panels facing the Sun. They are not control variables, but are presumed known time 

functions. 



Linearized Equations about Nominal Motion 

In a well-designed control system, the state y i s  expected t o  be very close to 

the desired nominal motion represented by the state y 

are derived by the application of the nominal controls V 

the deviations from the nominal motion by means of linear ''error equations". 

the control torques for which N '  
Consequently, we can study N '  

Let us represent the angular velocities as 

0; ( t )  = w (t) + x i  ( t )  tN 

X i  for -L = a, b, c,  1 , . . . 5 where LLY i s  the precalculated nominal motion and 

denotes the deviation from nominal behavior. Similarly we write 
iN 

and 

% = a ,  b ,  c 

i = l , .  . . 5  

where y ( t )  and u . (t)  are again deviations and V are the voltages required to 

produce the nominal behavior. 

to control small deviations from nominal motion. 

only the reaction wheel voltages. 

the solar panels. That i s  we well not attempt to generate u and u Since these 

controls w i l l  be generated by an independent control loop, wherever they appear they w i l l  

be included (to first order) in  error terms. 

known, we need only consider the deviations which are governed by linear differential 

equations obtained by inserting the above expressions for ut , et and Vi  into the com- 

plete state equations (30) and equating the Xi and yt terms to the terms linear i n  Xi , 
7 .  and u t  plus any disturbance torques. This gives 

t L iN 
We assume further that the reaction jets wi l l  not be used 

Such deviations w i l l  be controlled using 

Furthermore,we wi l l  not be concerned with control of 

4 5 '  

Then, since the nominal motion i s  assumed 

L 

91 



where A i s  a 3 x 3  matrix with elements 

A 

A l l  = " l lC13 -' ' 1 3 1  1 b N  ' '13 I W2N'a2 ' "4N 'a4 - WsN'a51 

- 1  ct' 1 2 +' - 'a3- m l r l ) ( L I ~ N  a3 3 N  A21 '22' "a0 -'cO a1 c l  b3 
+I - . I  

h 

+ c  f l u  + o  1 - 0  I ]  A31 = ['13c13 33 1 b N  G33''L12N-1a2 4 N  a4 5N a5 
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A ,. 
* 1 2 =  ['11f2 - 13 13 c N  + "1 1'13 C13fl WaN '1 lw3N1a3 - '13? N'al 

A22 = 0 

A n 

+ r  CL? I - c  0 I -' 33 13 lee, c N  +'C13z13+Z33f11WaN 13 3 N  a3 33 1N a1 

A 

- 2  c 10 +Cl1[-" 1 - 0  I + w  I 1 
A13 = " l l f 2  13 13 b N  2 N  a2 4 N  a4 5 N  a5 

2 c [(I - I  + I  - I  + I  -1 - m  r ) a a N + I  0 1 
A23 = 22 a0 c0 a1 c l  b3 a3 1 1 a1 1N 

A 

- c  c 10 - 
A33 - [c13f2 33 13 b N  +z13[-W2N1a2 - W4N'a4 +"5N1a5] 

- 
+e w ] I  

'-'ll''cN 13 a N  a5 -r w 1 ['ll"cN 13 a N  

'22'4 -'22 ' 5  

'-'l 3wcN + C33waN 'a5 - - c  w ]I ['13"cN 33 ON a4 

B =  

L =  

R =  

1 '1 1'1 + z13WbNIa1 c 11 w c N  I a2 - c  13 L l j  ON I a2 

=22 p2 '221a3uaN 

'1 3"cN1a2 - '33"bda2 

-'1lk'bN'a3 +'13@3 

-c I w 
22 a1 c N  

LC13'1 +C33WbN1al 1 3"bN1a3 + '33 '3 1 

0 

'1 3O" 1 

z a  22 2 

0 

O I  

c33a 3 1 
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T = C T  
1 I 22 Ob 

D = B +  

4 
T- 
a l  

0 

0 

0 

8, 
I 
a2 

0 

0 

0 

0 
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'a 3 
- 

0 

0 

0 

IC 1 1  - I b  
"bN 

'c2 - *b2 
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P =  

Q =  

Y =  

0 

0 

1 

3 N  

2 N  

cos 0 

cos 0 

3 N  cos e 3 N  sin 0 

tan e s i n  e3N 1 3N 2 N  
- tan 0 cos 0 2 N  

1 3 N  +WcNcos '3N1 
cos t;l 

[ WbN sin 0 

2N 
(ubNcos 0 - w sin e ) - 2 N  sin 0 

cos 0 2 3 N  c N  3 N  
2N 

0 

3 N  - 0 b N  cos 8 3 N  w sin 8 
c N  

2 
2 N  cos e 

2 2 I %, + [ - W ~ ~ ( C O S  6 -  sin 6) + 
I 

3 N  ubNcos 0 - wcNsin 0 3 N  

tanf$N(WbNsinO 3 N  - w c N  cos0 3 N  

I 2 2 
I A23 + [ w (cos 6 -  s i n  6) - 
I aN 
I 

" 1 - 1  
b4 c4 

I I 
I I 

I I 

I I 2w s i n  6 cos 61 
I I c N  -54 

2waNsin 6cos 61 'b4 - I c 4  

IC14 I I 
I 
I 

I 
I 

I I 
I I 
I I 

............................. t----'--',-"--'---'"-"----'----" 

I I 2 2 I (cos 6 - s in  6 ) -  I - A23 + [ W  (cos 6 - sin 6) -t 2 2 
a N  - A 2 ,  +[a 

I I 
I I 

c N  
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w = l  

1 '22'4 

z = [  0 

0 

-' 01 22 2 

C22 cw2 

'22 ' 5 

O I  0 

Thus the deviation from the nominal motion i s  governed by the linear differential equations 

(31) which are of the form 

where 

VN u = v -  

w i s  a vector due to  disturbances to the nominal motion 

resulting from sources such as listed i n  section 4. 

Since we assumed that deviations from the nominal w i l l  be corrected by applying correction 

voltages to the reaction wheels and not by activation of the reaction jets, u w i l l  be a 

3-vector. 



I 

1176 matrices t- and CI are 

It 3 3rt 3 3 -+ 2 

, and w =  

Nominal Motion 

To illustrate how the nominal motion may be determined, we wi l l  use the fol- 

lowing simplifying assumptions. 

1.  The Earth and Mars are traveling i n  the solar ecliptic plane i n  known 

circular orbits about the Sun and the vehicle i s  in  a known circular orbit about Mars. 

i s  pointed to the center of the Earth. 2. The vehicle mechanical axis 6 
-a  

3. The solar panel faces (i.e., b and b ) are pointing toward the center -4 -5 
of the Sun. 

Thus, in  terms of the geometry of Figure (A.3) we can define nominal motion by 

'1 N(t) pq(t) I F)2N(t) I e3N(t) := 0 
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. .-_ 5 '\. 

Mars 

FIGURE A-3 ORIENTATION OF PLANETS 



and from (17) we have o E 0, w = i,, acN 5 0 which results i n  
a N  bN 

We have found that 

3 p1 sin p1  - p 2  sin p2 - p sin p 3 
tan p (t) = 4 P 1  C 0 S P 1  - P 2 c 0 s $  - P 3 C O S l . 5  

and that to  first-order 

277 
G,(t) = ko + k sin (-At + po) 

1 T 3  

o, kl , and p where the constants k 

bodies and T 

the surface), 

depend on the in i t ia l  orientation of the three 
0 

i s  the period of the vehicle's orbit (2.05 hours for an orbit 400 km above 
3 

20 cosp + tan  p p cos %o + tan p40 sin p 
l o  40 sin 50) - -  2 

T 1  p1 T2 

10 P ,  

2n ( 
1 

1 + t a n  p 
30 cos p p2 p3 2 

k =  0 

cos $0 - p1 40 cos p -- 

1 3  k -  = 
I 

30 cos p cos p - - cos p - - p3 
10 P1 20 P1 

p2 
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IT - 
'0 -2 - p40 

where T 1 

T 2 

LO 

= 365.26 days i s  the period of the Earth orbit 

= 686.98 days i s  the period of the Mars orbit 

and denote the init ial  orientation. 

From the diagram we find that 

3 

3 

p we get tan ( p  - 6)  = tan p and as shown i n  Figure (A.3) but since p >:>> 

p sin p + p sin p 2 2 3 
tan (1, - 6 )  = 

P 2  cos F 2  + P 3  cos ' 
4 2 2 

- 6 )  and p differ by almost IT so ( p 4  2 

To determine the nominal values o 2N , V2N , V4N , V5N , note that for the 

assumed nominal motion, i n  the absence of disturbances, we have 

&J = & J  > L O ,  VIN - - V3N + 0 
1N 3 N  

since the solar panels track the sun we have w = so that 4N 

Using the nominal values determined thus far i n  the state equa- 2N ' We s t i l l  must find w 

tions (28) and (29), for GbN , i4N and A 5N I we get 



These are three equations in  the four unknowns w 2N I '2N ' "4N I '5N . An 

additional equation i s  obtained from the law of conservation of momentum. Let I b  be the 

total moment of inertia of the composite body about the 6 axis. Then b 
A - 1 w = K = const. 5WbN + 'a2W2N + 'a4@4N a5 5N 

From this and the known expressions for w and w 
4N 5N 

and 

A 

In order to obtain some numerical values for the nominal motion let us assume K = 0 

(i.e. no in i t ia l  angular momentum) and the specific in i t ia l  orientation of the planets 

This gives 

i 4 =  -.484 X - .25 X 

wi th  At i n  minutes or 

i4= A06 x - .417 X 

with AT i n  seconds. For AT = 0 we get 

-5 '7 rad 
min 

0 sin(.05At - 7 )  

-4 17 rad AT - -) - 2 sec 
0-7 sin(8.5 X 10 

-7 rad 
- se c /i4(0) = - .3953 x IO 

6 (0) = 0 rad. 
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At A7 = 1800 secs. (i.e. A t  = 30 min) we find 

-5 rad 
sec 

G4(a~) = - .777 x 1 0  - 

Since the linearized equations need the nominal values of 6 N ’  w b N ‘  0 4N’ W5N which 

change only slightly over a thirty minute t ime interval we w i l l  use constant values chosen 

from the middle of the range of variation. Thus choose = -.583 X 10 -7 - rad 
4N bN se c 

= w 

= - 15 X rad 6N 
-7 rad 

4N 5N sec 
-2 rad w = .112 x 10 - 

2N sec 

-1.642 X 10 - = -0 

sin 6 N 

cos6 = 1 . N 

- - bN = -15 x 

Typical Vehicle Parameters 

A vehicle configuration was chosen to conform to the general specifications 

supplied by ERC that the vehicle have a total weight of about 3100 Ibs. (-1550 kg.) with 

a 12 ft. (-4m.) telescope sunshield weighing 100 Ibs (-50 kg.). 

diameter i s  about 30 in. the sunshield diameter was taken as 1 m. 

angular components were assumed to facil i tate the evaluation of moments of inertia. 

Since the telescope 

Cylindrical and rect- 



TABLE A.1 

MOMENTS OF INERTIA 

For the body with sunshield as shown i n  Figure (4.1) 

2 Iao = .1125 kg-rn 

'bo c0 
2 = I  = 2062 kg-m 

For double wheels each of mass 5 kg., radius 10.61 cm and thickness 3 cm on a 

30 cm. shaft centered at the body center of mass. 

2 I = .1125 kg-m 
a i  

I .  1 \  

For soiar paneis as sinown i n  Figure 1 1  

1 = Ias = 33 kg-m 2 
a4 

2 
= 330 kg-m Ib4  = Ib5 

1 I = I = 330 kg-m 
c4 c5 

b 
For composite body about 5 

i = l , 2 , 3  

2 I = 2128 kg-m b 
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The power requirement i s  approximately 2000 watts. The information given in  

Report AFF DL-TR-64-168, Pt  111 of Wright-Patterson-Flight Dynamics Laboratory prepared 

by GE-Missiles and Space Division would indicate that 500 watts of power from a V-ridge 
2 2 

concentrating array requires 56.8 ft. of  active cel l  area, a paddle area of 133 ft. , and 
2 

an array weight of 298 Ibs/kw. Scaling up to 2 kw. indicates a paddle area of 533 ft. 

and weight 596 Ibs. 

pectation of improved efficiencies 

paddle area to active cel l  area. 

2 
The values chosen were 440 lbs. and 253 ft. and are based on the ex- 

i n  conversion of solar energy and reduction of the 

The reaction wheels were chosen to give a moment of inertia of approximately 
2 2 

. 1  kg-m . This number was obtained by scaling up from a value of .01 kg-m given in  
2 

[ 151 for a vehicle with moment 200 kg-m . 
so that the center of mass of each wheel combination could be placed close to the center 

of mass of the body. 

Double wheels on a single shaft were chosen 

This produces a better balanced vehicle. 

Table A. 1 contains the values of moments of inertia of  the vehicle which were 

calculated using the dimensions indicated i n  Figure 4.1 . 
The parameters Q and fit of the motors driving the reaction wheels were de- t 

termined as follows: the motor time constant was assumed to be 30 sec. Thus, wi th 

1 = .1125 kgm-m 
2 

we have 

-3 newton-meters - p .  = - =  - - , t = 1, 2, 3 
r ad/se c 

I *1125  - 3 . 7 5 x  10 
L 7 30 

The no load speed o 

que T i s  found to be 

was assumed to be 100 rad/sec (about 1000 rpm.). The stall tor- 
N L  

S 

TS = +aNL = .375 newton-meters 

Now, assuming this torque i s  produced by a voltage of  25 volts we obtain 

- 2 new ton -meters - 3 . 7 5 X  10-’/25- 1 . 5 X  10 , i = l , 2 , 3  
volt  
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The time constant of motors used to control the solar panels was assumed to be 

about 2 seconds, resulting in  the following motor constants 

4 
Q = Q = 3 x IO- newton-meters/voIt 4 5  

fi  = fi  = -15- newton-meters 
4 5  rad/sec 

Using these numbers we find 
h 

2 E l  = 4508 kg-m 
h h 2 C13 = c31 = -.009 kg-m 
h 2 CZ2 = 2062 kg-m 
A 2 C33 = 5863 kg-m 

h h h 

and since 2 i s  so small compared to C and c33 we get 13 1 1  

= 2.219X 
= 1 1  
- - A  

= 4.d4Y7 x IU L22 

= 1.706 x '33 
-10 

= 3 . 4 x  10 '13 = '31 

and 

1 .2058 X 

1 . 2 5 X  lo-* 

- .7586 X 1 0-7 1 I 0 

.1214 X 
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.832 X 0 .273 x 

0 ~ 8 1 8  x 0 I .155 x 10-l2 0 .64 X 

B =  

D =  

.- 
.033 

0 

- .155 x 

0 

.033 

0 

0 "1 0 0 

0 0 

1 .7275 X 

1 I 0 0 

R = [  0 7.274 X 0 

T = [  0 -. 1333 0 

0 0 

L = .7275 X -.7275 X 

= [ 0 -.1818 X 

0 ~ 8 1 8  x .7275 X -.4618 

3.328 X 0 5.1 X 

5.1 X 0 2.558 X 

-. 1333 0 -5.1 X 

-5.1 x 10-l2 0 -. 1333 
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-7.274 X 

Z = [ O  0 7.274 X 

w =  

- 
T 1  

1 

0 

-T 

- T2 - 

so 

) x 3.4 x 10-l0 
-5 2.2185 X 10 ( T h  + Th + T5a) + (Tot + T4c + T5c 

4.8497 x I O - ~ T ~ ~  

+ T5c)  

(TOc + T4c + T5c)  

3.4 X 10-l’ (Too + Th + T5a ) + 1.7056 X 
(Ti, + T4c 

-5 10 
(To, + Tb + TSa) - 3.4 X 10- -2.2185 X 10 

w =  

-4.8497 X 

4.8497 X 

-4.8497 x 1 o - ~ T ~ ~  

.- 

-3.4 X 10-’”(Th + Th + T5a) - 1.7056 X (Tot + T4c + T5c 

-4 0 TOb + .0303 T4b 

-4 0 TOb - .0303 T5b 

Note The independent noise quantities are T Ob‘ T& I T5b I + Th + T5a) I 
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Since i t  i s  more convenient to use minutes rather than seconds as the basic time 
2 

unit, accelerations and velocities are converted to radians/min and radians/min, respec- 

tively. 

ations are converted by 

If t denotes time in  seconds and 7 denotes time in  minutes, then angular acceler- 

d wi 2 
= (60) - 

d Gt 
d7 d t  

where &. i s  an angular velocity in  rad/min and ai i s  an angular velocity i n  rad/sec. 

In our equations each 
7, 

5 3 
- -  - c  F h + C G t j u j i + w i  
dht 
d t  j = a ,  b, tj j j=l 

c, 1 

thus 

So we see that the matrices which multiply X 

by 60. The matrices multiplying the control voltage and disturbance torques must be mul- 

t ipl ied by 3600. 

state variable i n  (31) must be multiplied 
j 

Further each term 

dy. 3 
U j j=l 

- -  - E P h + E Q t j y j  7, 

3% d t  

gives 

C 3 

n h 

P. X 
2.j j 
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so we see that i n  (31) the P matrix remains the same but the Q matrix must be multiplied 

by 60. 

This gives 

i 

-479.9 

0 

0 

0 

0 

0 - 

h 

G =  

0 

.!I262 

0 

0 

-479.9 

0 

0 

0 

0 

- .0262 

.0262 

1.8 X 

0 

.0092 

-1.8 X 

0 
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0 

0 

0 

0 

0 

0 

I 
- 
0 - 
X 
0. 
m 
9 
c 

0 

0 

0 

0 

0 

0 

Tt 
I 
0 - 
X 
03 
m co 
m 

0 

0 

0 

0 

0 

0 

0 

I 
c 

0 - 
X 
0. 
m 
9 

I 
- 

0 

* 
I 
0 - 
X 

s? 
0. 
Tt 

Y 
0 
c 

X 
cv 
u) 
u) 

4 
0 

0 
I 
- 
0 - 
X 
u) 
m 
N - 

0 

0 

0 

0 

cv 
I 

9 
I 
0 - 
X 
cv 
u) 
u) 

I 

0 

4 

0 

I 
- 
0 - 
X 
u) m 
cv - 

~ 

u) 
9 
c3 

u) 
9 m 
-I- 
I 

0 

0 

0 

0 

c*l 
I 

0 

0 

0 

0 

0 

cv 
I 

0 

0 

0 

0 

0 

0 

0 

0 

Ir) 
I 
0 
c 

X 
u) m 
I 

0 

0 

0 

0 

0 

0 

u) 
I 
0 
c 

X 
In m 

0 

0 

u) 
9 m * 
0. 
0 
h 
n cv 
I 

0 

0 

0 

0 

0.‘ 
0 n 
n cu 
I 

u) 
9 m * 

0 

0 

0 

0 

7 
0 - 7 

0 - 
0 0 0 x x  

0 

0 

0 

0 

0 

I 
- 
0 - 
X 
m 
0. 
0 
I 

0 
I 
- 
0 - 
X 
m n 
0 

0 

’;. 
0 - 
X 

8 
u) - 

0 

0 

- 

0 

0 

c 

0 

0 

0 

0 

0 - 

0 

0 

0 

0 

0 

0 

0 

0 

110 



where 

h 

w =  

C 
.0799T + .122 X lom5 T a 

1.746 TOb 

C 
. i22 i( T + . ~ M T  

Q 

C 
-.0799T - .122’X T a 

-1.746 TOb 

C 
-.122 x T - .614 T 

a 

0 

0 

0 

-1.746 TOb + 109 T4,, 

1.746 TOb - 109 T4,, 

T = T  
a ~a +T4a + T 5 a  

Tc = TOc + T4c + T5c 
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