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THE RESTRICTED PROBLEM OF THREE BODIES (III)

Curtis A. Wagner
Dépértment 6f‘Phyéi¢é, Univéréity of Tllinois
Urbana, Illinois

An exhaustive numerical search for symmetric solutions to the
restricted problem of three bodies quickly reveals the dominance of classes
of solutions associated with the so-called 'periodic-asymptotic limiting
orbits" of Stergren.l/ These orbits spiral asymptotically into and out
from the two stable triangular libration points, LA and LS' (We will not
study the other asymptotic limiting orbits which approach the three unstable
libration points'on the line through the two finite masses.) If we wish
to_ﬁnderstand the properties of these periodic-asymptotic limiting orbits
and their associated classes, we must study them over the complete range
of mass ratio values. 1In this paper we shall report some results of this
study.

Although Strbmgren only located a few asymptotic limiting orbits
which were symmetric with respect to the £-axis or the n—axis,‘it is not
difficult to find more equally simple orbits using a digital computer.
For Strbmgren's case of equal finite masses a plot of 14 asymptotic
limiting orbits (symmetric with respect to the g-axis) is shown as
Figure 10 in the paper by Bartlett.g/ Also included in that paper is a
table of initial and final conditions plus a listing of the classes of
periodic solutions associated with each of the limiting orbits. It was
found that ;everal small classes of solutions, for example the (k), (W),
and (B) classes, both began and ended on one of these 14 limiting orbits.

The more extensive (g) class was found to begin at one of the masses and
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terminate on a hybrid combination of asymptotic orbits VII and VIII. This
unexpected’termination seemed to indicate the possibility of an infinite
number of periodic-asymptotic hybrid limiting orbits and their associated
classes of periodic solutions.

In studying the dependence of the simple symmetric classes upon the
ratio of the two finite masses,i/ it was found that many of the classes
changed their topological structure above or below certain values of
vy = (ml—mz)/(m1+m2), the mass ratio parameter. For example the (k), (),
and (B) classes changed from open classes terminating on spiral limiting
orbits into closed classes that eventually shrank to points and vanished.
The (g) class lost its spiral terminations on VII and VIIT and developed
another branch with different final symmetry properties. These behaviors
suggested the need to study the periodic-asymptotic limiting orbits them-
selves as a function of the mass ratio.

The simple asymptotic-periodic limiting orbits which we studied all

spiral out from the libration point L,, located at (E = - m/2,

Z"
. -{f* . , ’ ,
F = + sinh 3 =4 1.316958), and strike either the E or F axes perpendic-

ularly: In the neighborhood of L, (or LS) the equations of motion can be

4
simplified to yield the spiral trajectories when Y, <y < Yo and closed
elliptical motions when 1 > |y| > Y, (where y_ = 023/27 = 0.922958

is a critical or limiting mass ratio). Restricting ourselves to the

spiral motions, it is then easy to calculateé/ thé slope of the trajectory
where it intercepts the r-axis (i.e. the line E = - /2 in the Thiele

coordinates). Since the slope at this intercept is numerically identical

in both coordinate systems, i.e.

dnegy - g o
qEED) = GHE = - w2)

we can carry over these cartesian results immediately.




“3=

The equation for the slope of the outgoing spiral motion at the

3/

a E = - 11/2 intercept is—

'%%(E =-1/2) = p - QﬁRg_i;éLgl
a (67 + 4q7)

where
6= 2p+p

82 = 27v%/16

and p,q are real numbers satisfying the equations

2 2

P -q¢ = -1/2
Knowing the slope dF/dE = (F/E) at Ei = - 11/2 and arbitrarily choosing an

initial Fi coordinate near L,, we can calculate both Ei and F, by using

4’ i
3

the energy integral of the motion. This integral is given by

~—

~

n2 .2 .
E7+F T. 8
> = "3 + D(chF - y cosE)

+'%(ch2F + cos2E) + y chF cosE

where

2D

ch2F - cos2E

I= K'Y2

and K is the Jacobi constant of the motion. It has been convenient to use

the parameter T as the energy integral for the following reason. If we
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evaluate the Jacobi congtant at L4 we obtain K = 11 + y2. Since all

periodic-asymptotic limiting orbits begin at L it would be helpful to

4’

have a constant of the motion which is independent of y at L If we

4"
therefore set T = K-yz we see that this parameter will always have the
constant value of 11 at L4.A Thus, for all values of y our energy-position
profiles (T vs E or T vs F, where E and F refer to the coordinates on the
axis of symmetry) will have all the periodic-asymptotic limiting orbits
located along the T=11 line. Their associated classes will spiral into
them back and forth across this one 1ine.2/ This fixed energy at LA is a
distinct advantage when we begin to vary the mass ratio y.

Having in}tial conditions for the 14 periodic-asymptotic limiting
orbits when y=é% it is then an easy matter to trace out these orbits as
continuous functions of y. With a special compﬁter subroutine to calculate
the initial slope of the spiral at Ei= - 71/2 as a function of y, we can
obtain éi and Fi for any arbitrary Fi value (when T=11). Choosing a fixed
value of y close to zero, we can vary Fi from the original value until
the resulting outgoing trajectory exactly meets the desired final boundary
conditions. This process can then be continued until the full range
Y, <y < Y, has been scanned. Results of this y vs Fi scan for 10 of
the 14 original limiting orbits are plotted in Figure 1. We find a
tightly nested set of curves whose Fi values lie within a band of width
AFi = 0.015 for y=0 but which increase rapidly and asymptotically as
Y =+ Y, The present calculations were not carried much beyond |y| = 0.85
because of the difficulty in obtaining accurate results. It should also

be noted that we have plotted all the limiting orbits with their values

of Fi > 1.316958, whereas some of the original tabulated valuesg/had
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Fi < 1.316958. 1In those cases our plotted values correspond to the next
intercept of the line E = - 11/2 by the outgoing spiral trajectories.

A.key feature of Figure 1 is the smooth coalescence of a number of
pairs of the original limiting orbits which were topologically similar.

For example, at y=0 limiting orbits I and II are both similar and close to
one another everywhere, even up to E = -n.Z/ They merge into one limiting
orbit when y = -0.059. On the same topological basis we would expect
coalescence of limiting orbits III and IV, plus XI and XIV as well. This
merging is indeed what we do~find from our y vs Fi scans shown in Figure 1.
In addition we discover that limiting orbit VIII reaches an absolute
minimum value of y but then continues to exist for‘different Fi values as
y is increased again. At y=0 we find that this new limiting orbit, called
VIII* (the conjugate orbit of VIII), has a slightly larger Fi value than
does the original orbit VIII. Thus VIII* is totally equivalent to orbit
VIII, and as such is involved in the evolution of the (g)'class. The other
orbits (V, VI, and VII) plotted in Figure 1 are not tbpologically equiva-
lent, and do not appear to join any conjugate limiting orbits. However,
the scan has not been rﬁn close enough to Y, to completely preclude

their actual existence.

In order to get a more complete picture of the totality of the
periodic-asymptotic orbits we make use of the eigensurface representation.g/
Since T=11 for all of these limiting orbits we can obtain their complete
representation by plotting mass ratio-position profiles (y vs E or y vs F)
for T=11. These two profiles are shown respectively in Figures 2 and 3
for some of the original limiting orbits. In Figure 2 we observe that

~

orbits III and IV coalesce at E = 0.75 when y = -0.24. This coalescence
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coincides with the closing off of the (B) class, which begins and terminates
@ only on orbits IIT and IV. The mechanism for this closing off is the
touching and merging of the successive spiral loops in the T vs E profile
of the (B) class as orbits III and IV approach one another (along the
T=11 line as y = -0.24). The result is an infinite nested set of small
.closed classes which gradually shrink to points and vanish as y is decreased
further (e.g. the outermost member of the nested set for the (B) class
disappears finally around y = -0.83). 1In a similar fashion orbits I and II
coalesce at y = -0.059. This union coincides with the closing off of the
(k) and (M) classes, which begin and terminate only on orbits I and II.

The other orbits plotted in Figure 2 are the conjugate pair of
limiting orbits VIII and VIII*. These orbits merge at E = ~-2.27 when y = -0.70.
Since the (g) class terminates on a hybrid combination of orbits VII and
VIII, but is not associated with VIII* (the class begins around one of the
masses), we now find that the class still exists below y = -0.70 but with
different termination properties. In fact another branch of the (g) class
appears, joins together, and then breaks apart in another mode with (£f)
class symmetry.é/ The élass associated with VIII* has not been traced out.

In Figure 3 we see the y vs F profiles of orbits V, VI, XI, and X1IV.
Orbits V and VI cover almost the full range of y, but do not join any
conjugate pairs of similar orbits by y = -0.85. However orbits XI and XIV
do coalesce at F = -0.35 when y = -0.582. The associated (0-§) class is
affectéd in a complicated way by this coalescence. But after the breaking
apart, touching and rejoining of portions of the class is accomplished,
the class touches the zero velocity surface and thereby acquires new termi-

3/

nation and symmetry properties.™
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So far we have been studying periodic-asymptotic limiting orbits which
were symmetric with respect to the £-axis (i.e. our E- or F-axis). But
StrBmgren also displayed 6 periodic-asymptotic limiting orbits which were
symmetric with respect to the n-axile (i.e. the line E = + ﬂ/2vin our
coordinates). His second orbit, with Mo~ 1.7008 for y=0, is small and

simple, encircling only the L, libration point before returning to spiral

1
into Lq. The mirror image of this orbit, spiraling into L5 instead of LA’
is plotted in Figure 4 as orbit number 1.
By starting on the line E = - 11/2 just below L5 and choosing a value

of Fi approximately equal to the minimum value of F attained by orbit number
1, we can vary T about 11 until we locate a member of the associated class.
This technique of locating a member of a class from a limiting orbit is
based on the coiling property of the periodic-asymptotic classes.Z/ The
class can be traced in the usual manner, and its T vs F profile is plotted
in Figure 5. Two "extreme orbits" from this profile are also plotted in
Figure 4 as number 2 (T=11.00) and number 3 (T=9.486659, very near the
minimum) . The class eigensurface is thus seen to be compact and éimple.

Because it both begins and ends on the same limiting orbit out of L,, we

4
would predict that the class exists over most of the range Y, <y <'yo.
This prediction has not been checked.

It would be straightforward to trace out similar classes associated
with Strbmgren's other periodic-asymptotic orbits, or indeed locate entirely
new classes and limiting orbits. But the unusual hybrid combinations of
limiting orbits involved in the (g) and (0-8§) classeséfsuggested that we

try to locate-a class associated exclusively with two or more periodic-

asymptotic limiting orbits. 1In particular we tried to locate a class
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agsociated with a hybrid limiting orbit consisting of StrBmgren's first
. . . .1 . ,
two orbits symmetric with respect to the n—ax1s.-/ (His second orbit,

with N~ 1.7008, has already been discussed; his first orbit, with

10

Mo 1.72025, crosses the £-axis outside the masses and then turns around
to strike the m-axis perpendicularly well above L4). Application of the
coiling technique quickly located the desired hybrid class, and its
relatively simple evolution is traced out in Figures 6 and 7.

In Figure 6 we see StrBmgren's second limiting orbit plotted as

orbit number 1 (T=11.0, y=0). The other half of the hybrid limiting orbit,

Str¥mgren's first orbit, is not plotted. It spirals out from L_ to cross

5
the F axis first above F = -1.0 and then above F = -2.0 as it turmns back
to the line E = - 1/2 which it strikes perpendicularly around F = -2.1.

Orbit number 2, for T = 10.7753, has a large loop around both of the

orginal spirals about L As T decreases slightly and then increases, the

5
loop shrinks (orbits 3 and 4, with T = 10.57482 and T = 11.45292), passes
through a cusp, and changes into a smoeoth curve without a loop (orbit 5

with T = 12.45, very near the maximum T value).

In Figure 7 we see the whole process reversing itself as T decreases
again. Orbit 6 at T = 12.373 is similar to orbit number 5, while orbit
number 7 at T = 11.861 shows a cusp forming in the same region as the loop
of orbit number 4. We also notice a small depression appearing where orbit
7 strikes the line E = - 1/2 perpendicularly. By orbit number 8 (at T=11.093)
this depression has passed through a singular cusp (infinite slope), formed
a small loop, and consequently taken on new final boundary conditions. At

the same time the original cusp near (E = -1.2, F = -1.1) has similarly

become a large loop. 1In orbit number 9, at T = 10.77264, this loop has
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continued to swell in the direction of LS’ while the tiny loop at E = - 11/2

W has expanded to encircle L As T continues to decrease and then increase

5

again, the original loop passes and then also encircles L More and more

5
cusps and loops develop within these two encircling loops, and the class
eventually terminates as it began, on the hybrid periodic-asymptotic
limiting orbit.

Two T vs F eigensﬁrface profiles of this hybrid class are shown in
Figure 8; The right-hand branch has T plotted versus ]Fl at E = - /2 and
corresponds to the absolute position of the lower portions of the orbits
well below LS' The spiral coils suggest that this class begins and terminates
on the same periodic-asymptotic limiting orbits. The maximum value of T
is seen to be about 12.5. The left-hand branch is for T vs F and corresponds
to the position of the upper portions of the orbits just below L&' The
profile starts in a spiral around F = 1.0, rises to the maximum T value
around 12.5, and then sharply retraces its earlier profile almost exactly.
The difference is too small to appear in the figure. The dependence of
this two-membered hybrid class on the mass ratio y would probably be similar
to that of the simpler class discussed, that is, this hybrid class would
probably exist over a wide range of y values (since the class again begins
ahd ends on the same hybrid limiting orbit). This prediction also remains
to be checked.

We have not searched for three~ or four-membered hybrid classes,
but it would appear that the sheer number of combinations and permutations
possible for multi-membered periodic-asymptotiec limiting orbits would be

almost limitless. This possibility should apply to hybrid orbits symmetric

with respect to either the mraxis or the €-axis, or combinations of both
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simultaneously and probably to all of the asymmetric limiting orbits as well.
If the associated classes do indeed extend over large ranges of y values,
they would be by far the most abundant and importaﬁt of all the classes of
solutions to the problem. The problem would then be reduced to the study

of the fundamental class generators, which would be the possible hybrid

combinations of periodic-asymptotic limiting orbits.
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FIGURE CAPTIONS

Figure 1: Dependence of initial position Fi on the mass ratio
parameter vy, for 11 periodic-asymptotic limiting
orbits symmetric with respect to the £-axis (T=1l,
E;= - n/2).

Figure 2: Dependence of final position E_ on the mass ratio

f
parameter y, for 4 periodic-asymptotic limiting
orbits symmetric with respect to the g-axis (T=11,
E.= - n/2).

1

Figure 3: Dependence of final position F_ on the mass ratio

£
parameter y, for 4 periodic-asymptotic limiting
orbits symmetric with respect to the £-axis (T=11,
E;= - m/2).

Figure 4: StrBmgren's second limiting orbit symmetric with
respect to the m-axis (no= 1.7008, T=11, y=0),

and two "extreme orbits' of the associated class

of periodic solutions.




Figure 5:

Figure 6:

Figure 7:

Figure 8:
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Energy-position profile of the class associated
with StrBmgren's second limiting orbit symmetric

with respect to the m-axis.

Initial evolution of a hybrid class of periodic
solutions associated with a combination of
StrBmgren's first and second limiting orbits

(symmetric with respect to the r-axis).

Final evolution of a hybrid class of periodic
solutions associated with a combination of
Strbmgren's first and second limiting orbits

(symmetric with respect to the mraxis).

Energy-position profile of a hybrid class
associated with a combination of StrYmgren's
first and second limiting orbits (symmetriec

with respect to the m-axis).
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" FINAL REPORT

NsG 280-63

Research on periodic solutions of the restricted 3—quy problem has
resulted in Technical Reports Nos. 1, 2 and 4. Research on stability of
periodic solutions resulted in Technical Report No. 3, which is a sequel
to other work partially performed under the grant and published in the
Communications of the Danish Academy.

Technical Report No. 1, also published by the Danish Academy (Mat.
Fys. Skr. Dan. Vid. Selsk. 2, 7 (1964)) surveyed most of the important
classes of periodic solutions for the case of equal masses.

Technical Report No. 2, also published by the Danish Academy,
co-author C. A. Wagner, (Mat. Fys. Skr. Dan. Vid. Selsk. 3, 1 (1965))
extended Report No. 1 to the case of unequal masses, generally over most
of the allowed range.

Technical Report No. 4 shows how some limiting asymptotic orbits
vary with mass ratio.

In order to provide a basis for discussion of stability of solu-
tions of the restricted 3-body problem, motion under a periodic cubic
force was studied in detail. The periodic solutions were located (Mat.
Fys. Medd.rDan. vid. Selsk. 36, 11 (1968)) and ‘general comments on
stability were made. This has been followed by work with C. A. Wagner
which is detailed in Technical Report No. 3~ fﬁ is intended to recast

this as a journal article and to submit it for publication.
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The chief assistant with all these computations has been C. A. Wagner.
In addition, numerous others have been employed on a part-time basis as
computers, programmers and draftsmen.

The grant was terminated on August 31, 1967, after two extensions.



