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Abstract 

vi 

A pathfinding algorithm has been developed for an autonomous myopic roving 
vehicle. With the assumption that a path exists between two points, two proposi- 
tions are proved. Proposition 1 is concerned with no obstacles and proposition 2 
is concerned with at least one obstacle. Various conditions are established and 
terms defined. Three algorithms, necessary to direct the robot, are main, left scan, 
and right scan. The decisions for the navigation, control, and obstacle avoidance 
of the rover are based mainly on myopic (local) information of the terrain. The 
use of Gaussian density functions to simulate topography is considered to be 
novel. A FORTRAN IV computer program was written to implement the path- 
finding algorithm, and the results of the computer-program runs were satisfactory. 
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A Pathfinding Algorithm for a Myopic Robot 

1. Introduction 

It has been more than ten years since E. F. Moore 
published his article on pathfinding algorithms (Ref. 1). 
In 1961, C. Y. Lee published his paper on an algorithm 
for path connections (Ref. 2). The algorithms discussed 
in the two references have three basic assumptions in 
common: (1) the map is completely known, (2) each path 
can be retraced, and (3) an optimum path can be deter- 
mined. The question arises as to what degree of a priori 
information about the map must be known in order to 
determine a path from one point to another point such 
that it will satisfy a given set of constraints. Here, one 
may not be interested in obtaining the shortest path, but 
rather a safe path from one point to another point (i.e., if 
such a path exists). The impetus for the above question 
stems from the application of pathfinding algorithms to 
unmanned planetary exploration, such as the navigation 
and control of an autonomous roving vehicle on the sur- 
face of Mars to explore its topography. It is assumed that 
various orbital reconnaissances, similar to that of the 
Lunar Orbiter, have been performed and a gross knowl- 
edge of the topography of the planet is available. Conse- 

quently, the landing site and the various interesting 
target areas to be visited can be determined. 

The transmission of the orbital reconnaissance infor- 
mation from a distant planet may take many weeks to 
accomplish because of limited transmitter power. Be- 
cause of this limitation, if one is to land a roving vehicle 
on a distant planet, the continuous direct control of the 
vehicle from earth, as in the case of the Surueyor, will 
be extremely time-consuming and will probably prove 
to be infeasible. Consider the case of the Mariner Mars 
1964 mission. Each television picture consisted of a 
200- X 200-element matrix in which each element con- 
sisted of six bits. Since the transmission data rate was 
8-1/3 bits/s, it took eight hours to assemble one tele- 
vision picture. Furthermore, direct control from earth of 
the vehicles’ motion on distant planets will be extremely 
difficult because of transport lag in the control loop 
(Ref. 3). This makes the use of direct control of the 
vehicle from earth prohibitive. Therefore, the roving ve- 
hicle should be autonomous, with minimal command 
requirements for control of motion from earth. 
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It is the purpose of this report to discuss the results of 
a study involving a pathfinding algorithm for an autono- 
mous roving vehicle. The algorithm requires only infor- 
mation that is within the field-of-view of the vehicle 
(Le., local information). Essentially, the study involves 
designing a pathfinding algorithm for a myopic robot, 
the requirements of which are as follows: 

The robot shall see the terrain that is within its 
scanning range. 

Any obstacles within the robot’s scanning range 
may be sensed. 

The initial starting coordinates (the landing point) 
shall be given. 

The target coordinates to be visited shall be given. 

If a path exists, the algorithm shall find the path. 

The algorithm shall avoid hazardous obstacles and 
be able to crawl on and over safe obstacles. 

The algorithm shall use a minimal number of 
memory locations for the navigational path. 

II .  Mathematical Development 

are based upon two propositions: 
The pathfinding algorithms developed in this report 

(1) If a path exists from the point Po, (Xo, Yo), to the 
point P,, (Xn, Y,), and there are no obstacles be- 
tween the two points, then the path connecting 
these two points can be found. 

(2) If a path exists from the Point Po, (Xo, Yo), to the 
point P,, (X,, Y,), and at least one obstacle exists 
between the two points, then following either the 
right or left contour of the obstacle and always 
heading toward the target point P ,  will result in 
determining a path between Po and P,. 

The above propositions assume that the obstacles have 
contour lines and that each obstacle has finite dimension 
(i.e., no infinitely thin obstacles). The proof of the above 
two propositions is based on whether a target distance 
sequence contains an element that can be made arbi- 
trarily small or not. If such an element exists, then the 
target point is reached. Otherwise, the algorithm, which 
makes use of the above propositions, will result in limit- 
cycle oscillation. 

Definition 1. An acceptable point is defined as a point 
(X,Y) such that IF(X,Y) I 5 E,  where F(X,Y) is a contin- 

uous function that describes the terrain and E is the 
elevation limit. 

Definition 2. A path is defined as a route that connects 
two points (Xi,Yi) and (Xj,Yj) such that the elevation of 
each point of the route is I F(X,Y) I 5 E .  

Definition 3. An obstacle is defined as a finite bounded 
region of a function whose amplitude or values are 
greater than E,  where I F(X,Y) I > E .  (r 

A. Proposition 1 

point P,, (X,,Y,), and there are no obstacles between 
the points Po and P,, then the path can be found by the 
algorithm. 

If there exists a path from the point Po, (Xo,Yo), to the S, 

Proof: 

Let the first intermediate point of travel be (X,,Y,) 
such that 

x, = x, + T*COSel 

Y, = Yo + r*sinO, 

where T is a fixed distance increment (scanning range) 
and 

In general, 

where 

Xi+l = xi + T*COSOi+1 
Yi+l = Yi + T*sinOi+1 

Since there are no obstacles between Po and P,, then 
every point on the line POP, is an acceptable point 
and 6i = 6, for all i. 

Let the target distance sequence be { d ,  d2, , d,} 

arc = [(X, - XL1)2 + (Y, - Y?c-1)2]1’2 

By proper choice of T, the final dk can be made as 
small as one quantized T (i.e., d ~ ,  5 T). Hence, the tar- 
get is reached. 
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Proposition 1 essentially states that, if the starting 
point (Xo,Yo) and the target point (X,,Y,) have the prop- 
erty that IF(X,,Yo) I < E and I F(X,,Y,) \ < E,  and there 
are no obstacles between these two points 1 F(X,Y) [ 5 E 
for all (x,y) between these two points, then we can de- 
termine a path that connects these points. The idea of 
proposition 1 is rather obvious. However, the introduc- 
tion and use of the target distance sequence in proving 
proposition 1 is the main reason for the detailed proof. 
Proposition 2 will also make use of the target distance 
sequence argument. 

'B. Proposition 2 

If a path exists from the point Po, (Xo,Yo), to the point 
P,, (X,,Y,), and at least one obstacle exists between the 
two points, then following either the right or left con- 
tour of the obstacle and always heading toward the tar- 
get, P,, will result in determining a path POP,. 

Proof: 

This proposition will be proven by the use of mathe- 
matical induction. It will be shown that the proposi- 
tion is true for one obstacle between Po and P,. If it 
is assumed to be true for m obstacles, then it can be 
shown to be true for m + 1 obstacles between Po and 
P,. Let the one obstacle between Po and P ,  have the 
contour represented by F(X,Y). Let the first point of 
travel from (X,,Y,) to (X,,Y,) be P,, such that 

x, = x, + T*cOSel 

determined. Also, determine the distance from (Xl,Yl) 
to (X,,Yn) Le., 

d: = (X, - Xl)z + (Y, - Y1)' 

The angular increment and decrement in AB is 1 deg. 

The scanning process is continued until a first ac- 
ceptable point is found. This point also determines 
whether the right or left contour is to be followed. 
% crawling process is repeated and a target dis- 
tance sequence {d,, d2, , A}, is generated until 
an acceptable point (X&,Yk) such that 

is satisfied. Term di was the minimal distance from 
the target to (Xj,Yj), the point where the obstacle was 
first encountered and k > i. From the point (Xk,Yk) 
to (X,,Y,), we can apply proposition 1. If the target 
has not been reached after the use of proposition 1, 
the above scanning is repeated until the target is 
reached. Therefore, proposition 2 is true for one 
obstacle. 

Assume that proposition 2 is true for m obstacles. 
We will have to prove that the proposition is also true 
for m + 1 obstacles. Let the intermediate point of 
travel from (Xi,Yi) to (Xi+,,Yi+,) be Pi+,, such that 

xi+, = xi + T*cosei+l 
Y, = Y, + r*sine, 

Y++, = Yi + ~*sinBi+, 
where T (the scanning range) is the distance increment, 

and 6, = tan-' ( ym - "> 
Xn - Xo 

The point (X,,Y,) has a neighborhood that contains 
some acceptable points, because the assumption of a 
path exists between the points Po and P,. Let the 
acceptable contour elevation limits be given as E. 
Evaluate F(X,,Y,). If 1 F(X,,Y,) I 5 E,  then (X,,Y,) is 
an acceptable point. Now replace (Xo,Yo) by (Xl7Yl), 
then proceed to evaluate (X,,Y,) for i = 2,3, * , etc. 
However, if IF(X,,Y,) 1 > E, replace 8, by 6, +A8. If 
B1 + AB is used in determining (Xl,Yl), the left con- 
tour is being followed. If 8, - AB is used, then the 
right contour is being followed. Evaluate the new 
F(X,,Y,) by varying AB, until an acceptable point is 

The expression X5,Yi is the point where it departed 
from obstacle rn and encountered the m + ltb obstacle. 
Term di is the minimal distance from the target to 
(X%,Y%). Let the acceptable contour elevation limit be 
the same as before, E. Evaluate F(Xi+,,Yi+,). If 
IF(Xi+,,Yi+,)l 5 E, then (Xi+l,Yi+l) is an acceptable 
point. Now replace (Xi,Yi) by (Xi+l,Yi+l). Then, pro- 
ceed to evaluate (Xi+z,Yi+a), etc. However, if 
~F(Xi+,,Y~+,)~ > E,  replace Biil by Bi+, _t AB. Eval- 
uate the new IF(Xi+,,Yi+,) I until an acceptable p i n t  
is determined. Also, determine whether di+, < di, ie., 
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If after some P iterations, d, < di, and there are no 
obstacles between P ,  and P,, we can apply propo- 
sition 1. In general, there is a monotonic decreasing 
subsequence of {d1,d2,* .,dn}, say {&1?&29 *)&n}, 

where each &$ is a local minimum distance to the 
target such that Li+, < &i for all i. Hence, the tar- 
get is reached. Therefore, proposition 2 is true for 
m + 1 obstacles. 

The proof of proposition 2 can be simplified by use of 
inductive argument on each obstacle grossly, rather than 
point by point. Any obstacles that merge together can be 
considered as a single obstacle. The value of the target 
distance sequence element controls the use of either 
proposition 1 or proposition 2. Consider the case of a 
box canyon. Let d k  be the distance from the end of 
the box canyon (Fig. 1) to the target. Assume that the 
right contour is being followed. Then all target distance 
sequence elements dk,,, dk,,, 0 ,  generated wiI1 be 
greater than dk. Thus, the right contour is being followed 
until a d, < dk is found and proposition 1 is applied. 
Then, & is replaced by &. This iteration process is con- 
tinued until the target is reached. 

dmin = d , ,  -= d ,  = dk 

Fig. 1. Box canyon problem 

Ill. The Pathfinding Algorithm 
The pathfinding algorithm consists of three algorithms, 

which are called main algorithm, left scan algorithm, and 
right scan algorithm. The main algorithm directs the 
robot to move either straight ahead, in the right direc- 
tion, or in the left direction. The left scan algorithm 
directs the robot to move in the left direction only. The 
right scan algorithm can only direct the robot to go to 
the right. The right and left scan algorithms enable the 
robot to navigate out of box canyons. 

A. Main Algorithm 

The main algorithm can be described by the following 

(1) Construct a vector, called target vector, by using 
the starting point (Xo,Y,) and the target point 

(2) Determine the azimuth of the target vector and 
call it 8. c 

(3) Let the next point of travel be (x,y) such that 

steps: 

(Xt,Yt). 

x = X, + r*cosO * 

y = Yo + r*sin6 

where r is the maximum scanning range of the 
robot and 8 is defined the same as step (2). 

(4) Evaluate the contour map F(x,y)  at the next point 
of travel (x,y). If I F(x,y)  I is within a prescribed 
contour limit, i.e., 1 F(x,y)  I 5 E is defined as the 
elevation limit (Definition l), go to step (6); if not, 
go to step (5). 

(5) Start scanning by varying the azimuth 8 in incre- 
ments of 1 deg (i.e., 6 k 1 deg) until an acceptable 
contour limit is reached. The scanning process 
scans 1 deg to the left of the azimuth, then 1 deg 
to the right; 2 deg to the left, then 2 deg to the 
right, etc. If at (x,y), F(r,y) has an acceptable con- 
tour limit, go to step (6). If no such point exists, 
go to step (8). 

(6) Determine whether the target has been reached or 
not. If the target has not been reached, replace 
(Xb,Yb) with (Xo,Yo), where (Xb,Y,) is the previous 
point. Also replace (Xo,Yo) with (x,y). If 

y = Yo + r*sinO 

is an acceptable point, set the right counter, 
CTR = 0.0, and the left counter CTL = 0.0. If 
the point 

x = Xo + T*COS (8  + AO) 
y = Yo + r*sin ( 8  + A@) 

is an acceptable point, set CTR = 1.0 and compute 

Dt = [ (xn - X>Z + (yn - y)211’2 
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If the point 

x = X ,  + r*cos (6 - A8) 

is an acceptable point, set  CTL = 1.0 and compute 

Dt = [ ( X t  - x)* + (yt - y)2]1’2 

Go to step (7). If the target has been reached, the 
job is finished. If both right and left counters are 
not 1.0, go to step (1). 
If both counters are 1.0, the robot is trapped. If 
the distance from the right point to the target is 
shorter than the distance of the Ieft point to the 
target, go to the right scan algorithm. Otherwise, 
go to the left scan algorithm. 
The robot is trapped. In this case, there exists no 
path from point Po to Pt. Hence, there exist no ac- 
ceptable points in the neighborhood of Po. The 
robot may have landed on the peak of a mountain. 

B. Right Scan Algorithm 

Because the left scan algorithm is similar to the right 
scan algorithm, it is sufficient to describe the right scan 
algorithm. In order to force the algorithm to crawl along 
the contour edge, a crawling vector is defined. The right 
scan algorithm can be described by the following steps: 

Construct a target vector using (X,,Y,) and (Xt,Yt). 
Also construct a crawling vector using (Xb,Yb) and 
(Xo,Yo). The minimal distance from (x,y) to (Xt,Yt) 
at the time of encountering the obstacle is 
Dmin = Dt.  
Determine the azimuth of both the target vector 
and the crawling vector. Call the crawling vec- 
tor azimuth 61. 

Let the next point of travel be (~,y)  such that 

x = X, + r*cos (61 + 90’) 

y = Yo + r*sin (61 + 90.) 

where r is the maximum scanning range and 81 is 
defined the same as step (2). 

Evaluate the contour map F(x ,y )  at (x,y). If 
I F(x,y) I at (x,y) is within the prescribed contour 
limit, go to step (6); if not, decrement 61  by one 
angular degree until an acceptable contour value 

of F(x,y) is obtained. The maximum decrement is 
270 deg. Once an acceptable (x,y) has been ob- 
tained, go to step (5). 

(5) Determine the distance from (X,Y) ta (Xt,Yt) and 
call it Dt. Replace (Xt,,Yi,) with (Xo,Yo); and, (Xo,Yo) 
with (qy). Then go to step (6). 

(6) If Dmin _< Dt, go back to step (1). However, if 
Dmin > Dt, go to step (7). 

(7) Evaluate F(x,y). If I F(x,y) I > E, go back to step (1). 
However, if I F(x,y)  I 5 E, reset the left and right 
counter to zero and return to the main algorithm. 
The point (x,y) is 

y = k’, + r*sin8. 

C. Simulation of Topography 

In the course of developing an algorithm for the 
myopic robot, the problem encountered of inputting data 
to the algorithm (for computer simulation) was difficult 
because the data had to meet requirement (2) stated 
in Section I. Since the input data was to be topography, 
the data should have various levels of contours. A novel 
solution for simulation of terrain was made by using 
Gaussian density functions. Using the Gaussian density 
functions, one can simulate almost all terrain simply by 
summing a series of “Gaussian hills.” The locations of 
these Gaussian hills can be fixed by assigning the means, 
pdz and pv, the desired coordinates. The shapes of the 
Gaussian hills can be controlled by varying the value of 
the standard deviations, u2 and a,. The height of the 
Gaussian hills can be varied by using an appropriate con- 
stant (positive and negative) multiplier of the Gaussian 
density function. 

Since the use of a set of Gaussian hills to simulate 
topography will result in a very smooth surface, the 
approximated terrain will not represent aa exact topog- 
raphy. However, this technique is so simple to use, all 
terrain considered in this report is made of Gaussian 
hills. The Gaussian hill technique can also be used to 
classify and sense obstacles by covering each obstacle 
with a Gaussian hill. Figure 2 shows a contour config- 
uration that can be constructed by using Gaussian hills. 
Figure 3 is a perspective drawing of the contour config- 
uration of Fig. 2. Figure 4 shows a maze constructed by 
use of Gaussian density functions. Figure 5 enables one 
to calculate and construct any configuration required for 
the simulation of topography. 

JPL TECHNICAL REPORT 32-1288 5 



D. Computer Program for the Pathfinding Algorithm and 

A computer program was coded in FORTRAN IV 
language as implemented in the IBM 7090/94 IBJOB 
System. The flow charts for the pathfinding algorithms 
are shown in Figs. 6-8. The computer program, which 
plots the contour lines of the obstacle, was developed 
by Dr. Charles L. Lawson (Ref. 4) of the Computation 
and Analysis Section at Jet Propulsion Laboratory. The 
pathfinding computer program was organized so that 
the contour lines of the obstacle were plotted first, and 
then the path from the starting point to the target was 
plotted. Various configurations of obstacle courses were 
made and the robot satisfactorily navigated through 
each course. 

Results 

Figure 9 shows a simple obstacle course of five 
Gaussian hills. The path, which connects the starting 
and target points, satisfies the contour elevation con- 
straint of E = 1 (i.e., IF(x,y)j < 1.0). The scanning 
range T is set at 0.1 unit. This means that the robot will 
see no further than 0.1 unit ahead. 

Figure 10 shows a simple “box canyon” configuration. 
In this case, there are two paths to the target point. The 
path determined by the algorithm is certainly not the 
shortest path. The shortest path was not chosen, because 
the decision to go to the right scan program was based 
on the minimum azimuth scanning angle to the right. 
Also, the distance from the right scanned point to the 
target point was shorter than the distance to the left 
scanned point. Using local information only, there are 
no methods by which one can determine the shortest 
path between two points. 

Figure 11 shows a maze in which the starting point is 
outside of the maze and the target point is inside of the 
maze. Figure 12 shows the same maze as Fig. 11; how- 
ever, the starting point is inside the maze and the target 
point is outside of the maze. In all cases which were run 
on the computer, paths were found for each case. 

IV. Conclusion 

a path connecting two points on a continuous contour 
map, using only local information. The algorithm used 
to find a path is based on two propositions. In turn, these ”, 

propositions were based on intuitive ideas that are used 
in unknown areas. One of the assumptions used in prov- 
ing the propositions was that there exists at least one 
path from the starting point to the target point. This is 
not an unreasonable assumption. If one were to land a 
spacecraft inside a crater and the wall of the crater was 
very steep, such that the vehicle could not extricate itself 
from the crater, one would have to terminate the mission. 

This report has demonstrated that it is possible to find - 

The algorithm developed in this report might be im- 
proved by incorporating certain local terrain informa- 
tion, such as the hidden lines of obstacles (Ref. 5). The 
slopes of local areas can also be incorporated so that 
the vehicle will have minimal tilt angles while it travels 
from one point to another point. Furthermore, if we de- 
fine a subpath as Jf(xi,yi) - f ( x ~ - l , ~ ~ - J  J _< E for all i’s 
and for a distance of r, then the algorithm will allow 
the robot to crawl on and over hills. Figure 13 shows the 
result of the robot crawling on and over hills. 

The present scanning portion of the computer program 
is based on simple strategy. Future work will incorporate 
the scanning strategy of ranging radar. 
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Fig. 2. Contour configuration constructed by use of Gaussian hills 
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Fig. 3. Perspective drawing of contour configuration 
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Fig. 4. A maze constructed by use of Gaussian density functions 
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Fig. 5. Graph for calculating and construcfing any 
configuration required for the simulation of terrains 
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RE 

CRAWLING VECTOR 

(Yb-Y;) 
81 = TAN-' xb-x 

x = X + R*COS (el + 9 0  - A 8 )  
y = Yo + R*SIN (81 +90 -A8)  

Xb BY Xo AND Xo BY x 

NO 

# 
I 

REPLACE 
DMlN BY D+ 

NO 4 

Fig. 7. Flow chart of computer program, left scan algorithm 
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RIGHT SCAN 

I COMPUTE I I CRAWLINGVECTOR I 
81 AND = T A N  ~ yo)  1- 

x = X + R*COS (81 - 90 +A8) 

y = Yo + R * S l N  (81 - 90 +AQ) 

YES NO + 
SET A 8  = A 8  +lo - + + - 

COMPUTE 
FINISHED l/m 

t 
REPLACE 

Xb by Xo AND Xo BY x 

Yb BY Yo AND Yo BY y 

YES NO 

+ 
COMPUTE 

t 
REPLACE 

Xb by Xo AND Xo BY x 

Yb BY Yo AND Yo BY y 

NO + I 

REPLACE: 
DMlN BY D+ 

I 

14 

Fig. 8. Flow chart of computer program, right scan algorithm 
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Fig. 9. A simple obstacle course of five Gaussian hills 
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Fig. 10. A simple box canyon configuration 
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Fig. 11, A maze in which the starting point is outside of the maze and the target point is inside 
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Fig. 12. Same maze in which the starting point is  inside the maze and the target point is outside 

JPL TECHNICAL REPORT 32- 1288 



Fig. 13. Result of the robot crawling on and over hills 
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