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ABSTRACT

In a digital communication system, it is necessary to properly
synchronize the receiver time base so that the digital time symbols can be
properly detected. This research is concerned with optimum and suboptimum.
ways of providing self synchronization for binary anticorrelated signaling.

‘Expected absolute error, as determined from the probability density
function of synchronizing error, is used as the performance measure when no
detector is specified. Degradation of effective signal to noise ratio is_
used as the performance measure for operation with a correlation detector.

A maximum likelihood synchronilzer i; derived and its performance
evaluated by Monte Carlo techniques. The structure of the optimum
synchronizer is complex but it leads to a suboptimum system composed of
a cascade of a low pass filter, square law nonlinearity, and a band pass
filter centered at the symbol rate. This system is analyzed and its
performance as function of its parameters is presented and compared with
the optimum synchroniger. Finally, a system for testing prototype
synchronizers is described and experimental results for the suboptimum
synchronizer and several other prototype systems is presented.

The following are the most significant results. Both the optimum
and suboptimum systems perform better when the signaling symbol waveform

is a half sine pulse or a raised cosine pulse rather than the commonly
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used square pulse. Using the amount of memory time necessary to achieve
a fixed level of degradation of signal to noise ratio as a measure of
comparison, the suboptimum system with the half sine or raised cosine
pulses requires only twice as much memory time as the optimum system.
Signaling with square pulses réquires 15 times more memory time with the
suboptimum system.

If square pulses are not used, the degradation in performance with
a suboptimum system is not great enough to warrant potential use of the
optimum system. The results also show that the reduction of signal to
noise ratio below .05 - .1 db requires excessive increases in mémory

time and should not be attempted.



J

G

I. INTRODUCTION

.1  Synehronization

A digital communication system may be described as a process in which
a set of symbols of predetermined duration and predetermined form, repre-
senting some form of message are conveyed from one point in space to a
second. In this process, the form of the symbols may be altered, the time
base may be lengthened or shortened, and the character of the process
further changed by various additive and multiplicative disturbances. It
is the function of the receiver to process these distorted symbols in
such a manner that the original set of symbols may be recovered or detected.

The problem of optimally detecting these digital symbols has been
investigated under many various conditions of disturbances. The problem
of additive gaussian noise gives rise to the so-called matched filter or
correlation detector. Fading, multipath, and intersymbol interference
effects have also been considered and optimum receivers have been derived.
for certain cases of such disturbances. In all of these studies it is
assumed that the receiver has a proper time base, il.e., it knows the epoch
and duration of each symbol.

In a great many of the applications of digital communication systems
the information to be transmitted appears serially in a time multiplexed
form. The information content is arranged in groupings of individual
symbols which may be called words; groupings of words which might be called

frames; and further groupings of frames which might be called sequences.



The actual naming of these groupings is not particularly important and
great variation of names exists in the literature. For the receiver to
properly process this received information it is necessary that the
receiver be able to identify the beginning and duration of each symbol,
word, frame, and sequence. This on-going identification is generally
called synchronization of the receiver.

Synchronization techniques can roughly be divided into two types:

(1) stable clocks, and (2) correlation. Often, both are used in the same
receiver, depending on the level of synchronization (bit, frames, etc.).
Briefly, clock techniques employ, both at the receiver and at the trans—
mitter, oscillators that operate at the same frequency.:. The receiver
oscillator provides the timing signals for the detection of the individual
symbols. Periodically in the sequence of symbols a speclal symbol is
ingerted. The receiver recognigzes this symbol and compares the phase of
the local clock and the epoch of this special symbol and resets the clock
phase to agree with the epoch of the special symbol.

Correlation techniques rely primarily on the choice of a code symbol
which has high correlation with a stored replica at the receiver when the
two are "in-phase" and very low correlation when the two are "out-of-
phase". The "in~phase"” indication is used to provide timing to a receiver
clock which is usually coupled back to the correlator in a closed loop
systen,

Consider the constraints placed on the designer of a digital system.
He has power, bandwidth, and total transmission time as independent parameters.
He has a given quantity of information (bits) to be transmitted at a given
error rate or probability of error. After assigning values to the cost

factors associated with the parameters of power, bandwidth and time, the




designer who wishes to design an "optimum" system mpst in some way minimige
the volume of the power-bandwidth-time space. One obvious undesirable
component of the available space is due to synchronization. It conveys
no message information, yet it takes up either time, power, or bandwidth,
or some of each. Any technique which economically reduces the space

required for synchronigzation is obviously desirable.

1.2 The Problem

This research investigates the process of self bit synchronization
as it applies to anticorrelated digital low pass signals. Self
synchronization is defined as the process by which the necessary timing
for the detection of the binary data is extracted directly from the
information bearing signals. No separate channels for synchronization
are used and the information bearing signals are constrained to have no
added energy solely for synchronization purposes. The signal bandwidth
is kept to the same order of magnitude as it would have if extermal
synchronization methods were used. As a result, litile or none of the
time~-power-bandwidth space is used for bit synchronization.

Little attention has been given to this problem in the literature.
Since the problem reduces to estimating epoch of a received signal, there
is a conceptual similarity to the problem of detecting the epoch of a
radar echo., The vast store of techniqgues available for the solution of
the radar problem does not carry over to the digital data problem, however,
because symbols occur immediately before and after the symbol for which an
estimate is being made. Another area in which the estimation of the phase
of an incoming signal is carried out is in pulse systems on telephone and

telegraph. Here, however, the signal to noise ratio is high and the



techniques are based on detecting the zero crossings of the signal. The
problem as treated in this work considers the low signal to noise ratio
case where zero crossings are of no value in detecting epoch,

Wintz and Hancock(l) consider the problem of determining the perform-—
ance of an epoch estimator-correlation detector system for an M-ary
alphabet. The phase of the carrier is assumed known and no specific form
is given for the epoch estimator. Probability of detection error is
computed for binary signalling with a prescribed signal autocorrelation

function. Van Horn(z) presents a correlation strategy for self bit

synchronization which uses a bank of correlators similar to the detection

system used in some radars. No claims are made sbout the optimality of
this system or about its practicality. Finally, Stiffler(B) proposes a
maximum likelihood procedure for estimation of synchronigation position
which requires the knowledge of the infinite past or at least enough of
the past so that truncation errors are negligible.

The problem is closely related to the problem of obtaining the
required reference signal for coherent detection of PSK signals. Van

(%)

Trees proposed a "synchronizer" which consisted of transmitted
reference carrier and a squaring loop for the self generation of a
reference signal. He showed that optimum performance occurred when the
carrier power was decreased to zero and only the self synchronizer was

(5)

used. Lindsey has evaluated the error probability for such a system
with the assumption that the necessary bit timing was available for the

correlation detector.

)
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1.3 Content and Contributions

A synchronizer which is optimum in the maximum likelihood sense is
derived in Chapter II. Unlike that of Stiffler, this likelihood procedure
is good for any meméfy time which is a finite integral number of symbol
periods. Its only lack of generality lies in the fact that the period of
the received symbol sequence is assumed to be known or accurately estimated.

The form of the optimum synchronizer does not lend itself to easy
implementation. There are a number of possible suboptimum solutiens which
can easily and economically be built. Chapter III presents one such system
which is composed of a lowpass filter followed by a square law device and
a bandpass filter. The solution for the periodic signal power and noise
spectral density at the input to the bandpass filter is derived for low-
pass signalling waveforms over a wide range of input filter cutoff
frequencies.

In order to compare synchronizers, some common performance measure
must be used. In Chapter IV, measures are proposed for comparing
synchronizers vﬁthout reference to the detector which they are driving,
and for comparing the overall system performance when the synchronizer is
driving a correlation detector. These measures clearly show the role of
symbol waveshape on system performance.

The description of the experimental system which was used to test
the performance of several suboptimum synchronizers is presented in
Chapter V. Experimental work was desirable in order to verify the results
predicted by the analytical solution, to verify the assumptions made
concerning the probability density function of the phase of the output of
the bandpass filter, and, most importantly, to obtain and compare the

performance of other suboptimum systems which are not readily analyzed



by the methods of Chapter IV.

Chapter VI presents the results of the Monte Carlo simulation of the
optimnm.synchfonizer and of the analytical and experimental performance |
of the suboptimum systems. Assumptions made in the analytical solution
are verified and an overall model is completed. The optimum and suboptimum
performances are compared for the case of the synchronigzer driving a
correlation detector.

A resumé of the conclusions that are drawn from this work is

presented in Chapter VII.
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II. OPTIMUM SCLUTION

The basic problem in obtaining self bit synchronization is that of
finding, at the receiver, the epoch of each symbol. Although it may not

always be easily put into a mathematical formulation of the receilved signals,

this epoch is one of the several parameters which describe the received
f% random process. As such, it is possible to use the techniques of maximum

likelihood parameter estimetion to derive en optimum self bit synchronizer.

e

This chapter presents such a derivation and the resulting structure of the

self synchronizer.

2.1 Basic Assumptions

The signal that is available at the synchronizer is a binary

i sequence of anticorrelated symbols. The basic symbol has a duration of T
| seconds and is defined by S(t) during this duration. It is assumed that
both the functional form of S(t) and its duration T are known at the
synchronlizer. This exact knowledge of T may not be a realistic assumption
for the typical situation. However, T is usually known to within a

narrow range of values and good estimates can be made by relatively simple
methods. The joint estimation of T and epoch is a considerably more

difficult problem than that of estimating epoch alone.

It is further assumed that exactly KT seconds of received signal
are available to the self synchronizer for processing. This record, even
though it 1s exactly K symbol durations long, contains parts of K + 1
symbols since the last €T seconds of one symbol are included at the start of the
record and the first (1 ~ €)T seconds of a symbol are included at the end

of the record. Fig. 2.1 summarizes the assumed form of the received signal.




s(t)
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€T T (k-1+€)T KT t

Fig. 2.1 Assumed Form of Typical Received Signal

Here, the notatign Sj is used to indicate the symbol received during the

jth interval and does not implicitly specify the functional form of the Lg

symbol. 'l
The received signal is perturbed by an additive noise, n(t), that

is assumed to be a sample function from & zero-meen gaussisan rahdom xg

process of known autocorrelation function. The total input to the

synchronizer is the sum of the signal and noise and is given by «j
x(t) = s(t) + n(t) 0<t <KT 2.1 =

Now, it is assumed that a set of weighted orthonormal basis -
functions can be chosen to represent the time functions s(t) and n(t)
during eacﬁ of the K+l intervals. If this is done, it is pbssible tb

represent the time functions in each of the K+1 intervals by a column

vector made up of the weighting coefficients. Hence, during each interval

X, =8, + I, Jj=0,1, ... K 2.2
J d 3

where §j and'ﬁj are the column vectors representing the received signal
and noise during the j-th interval. o

Some comment concerning the structure of the noise vectors is
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necessary. If the sammle function of noise during the j-th interval is
gaussian, then the linear operatipns defined by the orthonormal expansion
insure that each of the components of Nj is & gaussian random variable.
For the two cases of general interest, these components can be made to be
uncorrelated. If the noise 1s white, any choice of basis functions
produces uncorrelated components. It will be aséumed}that the noise is
vwhite so that ﬁ;—ﬁgT = c? I, where T is the identity matrix. Because the
components areigaussian and uncorrelated, they are also independent.
Finally, it is apparent that, beéause the components of each vector are
statistically independent, the vectors ﬁi and Ej are also‘independent.
Finglly, it is necessary to assume that each binary symbol has an

8 priori probability of occurance of 1/2, Since anticorrelated signaling

is assumed, this means that

Prob {s‘j = + As(t)} = Prob {sj = - 8(t)} =1/2 2.3

-~

2.2 Derivation of Optimum Synchronizer

As seen in Fig. 2.1, € is that fractional part of one symbol
duration before the first complete symbol is processed by the synchronizer.
This parameter will be used as the measure of the epoch of the receivéd
symbols. The received data during the entire interval KT 1s given by the
partitioned vector X = (ig, fi - ik)v

In order to obtain the maximum likelihood solution, the a
posteriori probability density function p(E/i) is required. It can be
found by applying Bayes' rule to the joint density function p(f,e).
However, care mustvﬁe taken in the formulation of p(i;z) since there

is, in reality, a third random variable that is operating in this probler.
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This random variable is the sequence of symbols that is transmitted
during the observation interval KT. Let Q = (Q,O, Q, Qy ---- QK)

be a vector whose components Qj are the random variasbles which
determine which of the two symbols are transmitted during each interval

J. When a positive symbol 1s transmitted, Qj = + 1 and when & negative

symbol is transmittted, Qj = - 1. The joint density function of i, €,
and Q is
P(X, € Q) = P(X /¢ Q) P(€,Q) 2.4
But,
[ 2&, ¢ @ @ =2 =2@E/ e P(e) 2.5
Q

Now, the epoch and the symbol sequence are statistically

independent, so that

P(e, Q) = P(€) P(Q) 2.6
and
P(X/€) P(e) = jQ P(X /€ @) P(€) P() aQ 2.7
Finally,
| P(e/ X) B(X) = P(X/€) P(e) 2.8

so that the desired & posteriori density function 1is
p(e /%) = P——-léf) [ 2@/e, 2@ a8 2.9
' PX Q

This may be considerably simplified because of the following conditions:
(1) The transmitted symbols are assumed to be independent so that the

random variables Qj(j=0,l,...K) are independent; (2) The noise vectors

f%
)
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ﬁj(j:O,l,...K) are independent (See Sec. 2.1); (3) The signal and the
noise random processes are also independent. These conditions insure

that the observations Xj are conditionally independent so that

K X
P® /6, D 2@ ={ = p® /¢, oY x 2@}
1Ot = —

§=0

X
nO P(X /e, Q ) P(Q ) 2,10

It

;q v The conditional density function in 2.10 is k variate gaussian

u} with covariance matrix §j = 02 T and mean ngﬁ(E) and 1s written as

= P(Xj /€, QJ.) = -(-g—,t_)%‘ﬁ—? (GXP{- ‘i"é‘ (XJ'QJSJ(G)) (XJ“QJSJ(E))})

) 2

, 1

) expl- — B2 sz".+s (&)8,(€)

P >}Xm{(_mw)
(ex )/

2.11

For simplicity, the argument of Sj will be'dropped in the following
f% equations.
Returning now to 2.9, because of independence, summing over all Q

}% is reduced to summing over the two values of Qj for each symbol so that

K
| r@eve@ @@= « jQ P,/ €9;) P(Qg) a(a))

Q J=0 74,
=L (%% .aTx
« ool (8F 5 5,)) 15,
S G (Z 72 - J{‘(exp[c? )
e - 10 { . } { cosh ( )}

. |
i i’;
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y K ' K-1 _
ew [- =5 x T Jew [- =5 2 55
_{ 2g  Jj=0 o J‘l } {
- k(K+l)
(21{) 2 O'(k+l)
v = T ,
X X.”S,
exp[—, -:-L-é- (-SJI@' + STS )]}{ n cosh (—-l—-J—-)} 2.12
00 Xk . 2
2¢ j=0 6] :

The factoring in the last line is done this way because the products
§E§ for all "interior" symbols are independent of € but those products
produced by fhe first and last symbols depend on &€ However, if it is
remembered that §; represents the "tail' of a symbol and §£ represepts
the corresponding “head", then it is seen that §§ §O + §g §£ is always
equal-to the energy of one coﬁplete symbol and hence is a constant.

The first two bracketed terms may now be replaced by a constant C
since they are not functiocns of € and will not enter into the maximizing

process. 2.9 now becomes

X X
.;L_ql. .
2 cosh ( 0 ) 2.13

0

P(c /%) = (P(x)

J
It is reasonable to assume that all values of € between O and T

are equally likely so that p(€) = 1/T. Since p(X) does not depend on

€, the maximum likelihood estimator of € is the value that maximizes

cosh (

The € has been reinserted here to emphasize the dependence of gj on €.

(e)

g’(e) =

f ) 2.1k

Since L) = log g'(€) has extrema at the same values of ¢ as g’ (&)

does, L(€) can also be used for the maximum likelihood estimator.

J

it

R
J
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Lt
W

T » = T
. 8.(e) K X."s.(€)
L(€) = log [J“O cosh —Q——%-~)] = ’E log  cosh —ﬂ—~%—-— >
c J=0 g .
2,15

2.3 Bynchronizer Structure

The following interpretation can be given tc = .35. To obtain the
statistic for a given value of € in order to find the maximum, the
following procedure is used. Correlate the first €T seconds of the
recéived record of KT seconds duration with the last €T seconds of the

basic symbol waveform. Compute the log hyperbolic cosine of this and

store the result. Next, take the portion of the received record from
Wi t=¢T to t=(e*L)T and correlate this with the symbol waveform. Again,

take the log hyperbolic cosine of the correlator output and add this
u@j result to the one for the first €T seconds.

Continue in this manner except that the last (lme)T seconds of the
record is correlated with the first (1-€)T seconds of the basic symbol.
At the end of KT seconds, the output statistics in each accumulator
are tesiéd and the value of ¢ associated with the largest statistic

s is announced as the estimate of correct synchronizing position.

& :
S
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III. SUBOPTIMUM SYNCHRONIZER

The optimum synchronizer that was derived in Chapter IIis dif-
ficult to implement without the aid of a special purpose digital com-

puter. Its essential features, however, are included in a suboptimum

synchronizer that is extremely simple. This chapter presents,'in de-

tail, the analysis of the performance of the system shown in Pig. 3-1.

x(t)=s(t )n(t) Low Square Band r(t)
Pass Law ' Pass —
Filter Device Filter

Fig. 3.1 Block Diagram of Suboptimum Synchronizer

3.1 Introduction

The input to the system, x(t), is the sum of a random signal pro-
cess s(t) and additive white gaussian noise, n(t). As in Chapter II, )
s(t) is a first order Markov process of anticorrelated symbols +S(t) |
and -S(t) which have duration T. The output, r(t), is a sine wave at Wg
the symbol rate frequency which is perturbed by additive narrowband
noise. The positive =zero crossing of this sine wave, properly phase o

shifted to account for the phase shift in the low pass filter, is taken

as the estimate of the epoch of each symbol.

Two different approaches can be used as a guide to why this par-

ticular suboptimum system is chosen. As one possible approach, con-
sider the optimum synchronizer derived in Chapter II. The first opera-

tion there is one of correlating the received wave form with a stored
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replica of the basic symbol waveform. As used in the optimum synchronizer,
the output of the correlator is identical to that of a matched filter

and such a matched filter could be substituted for the correlator. For
most low pass symbol waveshapes, the low pass filter acts as a reason-
able approximation to the matched filter for these waveshapes. Hence,

in a general way, the low pass filter is a suboptimum approximationkto

the correlator in the optimum solution. The square law nonlinearity
‘g in the suboptimum solution is a reasonable approximation to the log-cosh
operation. At low input levéls, the log-cosh function is essentially
-J square law. Fig. 3.2 compares the log-cosh and square law functions.
N Finally, the band pass filter performs the memory or summing function.
In the optimum synchronizer, all previous symbol periods are weighted
i equally. However, the band pass filter performs an exponential wéight—
ing into the past.
e A second gpproach to the choice of the'suboptimum synchronizer
appeals to an ad hoc solution. The thinking is as follows: The re-
ceived signal is a series of positive and negative symbol pulses oébur-

ing in a random sequence. If these pulses are filtered by an even

function nonlinear filter, the output will be a periodic function with
period T. The square law device which has been chosen yields analytic
simplifications. An absolute value nonlinearity would probably be

easier to implement in practice. With no filtering at the input, the

output of the square law device is a periodic function that has as its
basic waveshape the square of the waveform of the input symbols. A
il bandpass filter, tuned to the symbol rate, will extract the fundamental

component of this periodic function. The phase of this fundamental
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Fig. 3.2 Graph of Log Cosh(X) and 1/2 X°




component is the required estimate of the start of each symbol. Be-
cause the. input signal included wideband noise, it seems ressonsble

to provide some low pass filtering at the input.

3.2 Qutline of Analysis

The analysis of the suboptimum synchronizer performance is some-
what complex. In this section, an overview is given of the general
problems involved in the analysis and the particular section of the
chapter in which their solution is presented.

The input to the system is the sum of two random processes, which
after low pass filtering, are passed through a square law device and
then band pass filtered.. The statistics of phase at the output of the
bandpass filter cannot generally be found in an analytic form, since
the noise input to the filter is non-gaussian. Furthermore, the phase

and gain characteristics of the filter contribufe to the random phase

17

process in an unknown way. For the same given noise squivalent-bandwidth

two filters with different gain-vhase characteristics will have dif—
fererit random phase density functions. However, it is reasonable to
expect that the probability density function will be similar to tﬁat
which applies when narrow band Saussian noise is added to a sine wave.
In thisvdensity function the only parameter is a sine wave signal power
to noise ratio. For the suboptimum system, such a :atio can be com-
puted. Experimental reéultsugiven in‘Appendix B and Chapter VI show
that such a density function does fit the bbserved random phase pro-
cess.

Hence, it is necessary to compute this signal to noise ratio. It

is evaluated by findihg the discrete component of the power spectrum
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at the symbol repetition frequency and by assuming that the contin-
uous portion in the range of the bandwidth of the bandpass filter is
flat so that its value at the symbol :repetition frequency may’be used
to calculate the noise power. The final form of this signal to noise
ratio, in terms of the input‘signal to noise rgtio, is presented in
Sec., 3-7.

To compute the power spectrum at the output of the square law
device, the direct method for the solution of non-linear devices is
used. If the spectral densities of the input processes to the square
law device are known, then the contribution due to the signal-crbss-
noise and the noise-crogs-noise are computed by the direct convolution
of the input spectral densities. The contribution due to the signal-
cross-signal, however, must be computed by a special technique. These
calculations are presented in Sec. 3.6.

Finally, in order to cémplete these calculations, the spectrum of
the signal process must be ﬁnown. The derivation necessary to compute
the spectrum of the anticorfelated symbols used in the system is pre-

sented in Sec. 3.3.

3.3 Spectrum of Pulse Trains

In this section, the basic spectral relationships for digital
signals are reviewed and the results for the special case of anti-
correlated signaling are derived. It is assumed that the digital
process, i.e. the Markov process of advancing from one digital symbol
to the next, is first order Markov. This assumption may not be good
enough for some classes of coded signals with error correction re-

dundancy. However, to treat such a problem is very difficult, and
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it is doubtful that such a solution would be very different from that
obtained with a first order assumption. On the other hand, it could
be argued that the first order assumption is too strong for a very
simple digital systém, However, there is a useful .set of theory
that has been developed for this case and it is easy to specialize
these results to the case where each symbol is independent of the

last.

(6) (1) (8)

The work of Huggins , Zadeh' ’, and Barnard is drawn upon
heavily in the derivations that follow. The results given are due
initially to Huggins. Using the formulation due to Barnard, the power

spectral density of a Markov pulse train is

_ Fij(s) - - Fji('é;')
Sx() = Lim £ % GJS)%(S){PJEGE Syl P;;Lﬁ;;@]}
J (3.1)
where S=g+Jjw is complex frequency, S=0~jw, Gi(s) is the Laplace trans-
form of the i~th pulse waveform, pi is the steady stabe expectation
of the i-th pulse waveform, and Fij(s) is the Laplace transformation
of the probability of the first occurance of state j when state i oc-
curred at time = O, Fii(s) is the Laplace transformation of the pro-
bability of the first return to state 1i. 6ij is the Kroneker Delta.

Huggins defines the factors like

F..(s) .
F (5] " % (3.2)
3d

as the expectation of the occurence of state j following the known oc-
curenze of state i.
Signal flow graph methods for the calculation of the terms Fij(s)

are presented by Huggins. Following his methods, the signal random

19
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process is described by the flow graph of Fig. 3.3.
:X ix (2)

(1) X X

Fig. 3.3 Signal Flow Graph for Assumed Signal Random Process

State (1) is the occurence of a positive symbol and state (2) is the
negative symbol. For equiprobable symbols, the conditional probability }
density function of a transition form (1) to (2) is P12=l/2 5(t-T). |
This shows the fact that until time T no transition can take place. :J

In a similar manner, 1281 The Laplace transformation of

“Poz"21 7Py
pij(t) is

£{1/2 8(£-1)} = -lz-e'ST = % X 3.3 s

These functions are shown in Pig. 3.3. “]

To compute Flg(s), state (2) becomes a sink and the signal flow

graph that results is shown in Fig. 3.k,

EAB—

1) (2)
Fig. 3.4 Signal Flow Graph for Computation of FlZ(S)

By signal flow methods, the sverage transmission from node (1) to ;J
(2) is

T €.V} 3.4

For the first return to state (1) the graph is shown in Fig. 3.5.

1
{
{
i
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(1)

Fig. 3.5 Signal Flow Graph for Computation of Fll(S)

and
- (l/z)x + _/2) (X) (1/2) Q() yZ)X 3.5
1- (1/9) x 1-{/2)x

By symmetry, F21=F12 and F22=Fll,

tuted into 3.1. For anticorrelated signaling, there are only two dif-

These expressions must now be substi-

ferent symbols Gl(s) and Gz(s), Gz(sb is equal to the negative of Gl(s).

Returning to 3.1 and performing the indicated suwmmation results in
(e )

s (£) = llm{G (s)a (S)[Pl(“fiié;zj * l) Pl( - )]

+ G (3)6,(s) [p ( 12(8) ) * pz(l 21(S )]

( ) F 057 ‘

+ G (S)G (S)[PZ( i ) * pl(f:%25657>]

_ 2<s) F oo (F)
' Gz<S>Ge(S>[Pz(1 r1)+ Pz(i‘:f;ga)]}
3.6
At this point the assumption that each symbol is equiprobable is
made. This means that pl=p2=1/2° Furthermore, it is noted that Fll(s)=
Fzz(s) and that F

)=F Meking these substitutions in 3.6 yields

12(8)=F 5, (s).

F (s) (s)
s, (£) = 11m{2[§ (8)6, (s)+c,(s) Gg(s)] MORE® %11(5) l]

N _ _ FlZ(S) Flz(s)
+ 5[91(S)Gz(s)+ez(S)Gl(s)' ~Fp; (5) * 1-Fll(§)]}

3.7
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Now, the first term in the first set of braces is

F,.(s)
11 2) (1=x/2 x/2 _
1-F,(s) 1'1'(17)"1—17%_}2{ 2) f.cx 5y = ex (1/2) [exp(-sT)/l-eXP(-sT)] 3.8

As o approaches O, s goes to -s and the full quantity in the first set

of braces becomes

+ST

o T s o) = e

J

=y

Similarly, the term in the second set of braces is =(1/2). The final

result is

5, (f) =zl:{s (f)+S J0)=5,,(0)-8,, (£)} 3.10
where

54(£) = G;(32nt) 0, (~32nt) 3;11

For the special case of anticorrelated signaling,

(i’) =s, (f) and S, (£) = =8, (£) = =8 (£). Hence,
S (£) = 84, (£) 3.12

This interesting result shows that the spectrum of an equiprobable
anticorrelated pulse train is identical to the spectrum of the basic

symbol pulse.

¢

Csiniis
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3.4 Discrete Components of the Spectrum

The results, due to Barnard, for the discrete spectrum are

. -
s _(£) = (zz piiji(jZHf)Gj(—jZHf)> s §(£-n/T) 3.13
13 n=—e

o For the special case being considered, this reduces to

’ +® o
s (£) = (o0, 5,,(£)) T s(en/D) 3.1k

N .

Note that when each symbol is equiprobable, there is no power in

the discrete frequency components of the pulse train. Some symbol

shapes, such as the square pulse, have nulls in their spectrum
at those frequencies for which discrete components are possible.
- For such pulses, there is no power in the discrete components for

) any probability of occurence of symbols.

3.5 low Pass Filter Response

It is assumed in the derivations that follow that the input
signal to the synchronizer is an anticorrelated binary signal

train composed of a basic symbol waveform s(t) of duration T as

ol in Fig. 3.6.

!
3
&
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S(t) |

N

ey
to - : tO+T t

Fig. 3.6 Typical Symbol Waveform ~.~
Using the procedure of Sec. 3.3, the Laplace transform of s{t) is G(s)

and the corresponding continuous spectral density is

Sss(f) =e(j2enf)a(-3 2xn¢f) (3,15’

At the output of the single pole low pass filter the new power

spectrum is

e
s (£) =8 (£) H(j 2 x £) H(-j 2 x £) = 5 (£)/[1+(£/£,) ]

. 3.16,

where H(j2xnf) is the impulse response of the filter and fc is the half
power cutoff frequency of the low pass filter.
The noise component is computed with the assumption that the

noise spectral density at the output of the filter is

2
5o (£) = (n /2)/[1 + (£/5,) ] 13.17
In the time domain, the effect of low pass filtering the signal random
procéss is to produce a new random process in which the pulse that is
transmitted in one period is stretched out into the subsequent
period. This stretching is usually called intersymbol interference.
For low pass filter cutoff frequencies greater than l/h of the symbol

rate, it can be assumed with negligible error that the intersymbol

F

1
J
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interference lasts for only one symbol duration. This assumption
corresponds to the condition of the impulse response of the filter decay-

ing to exp(-n) of its original value in two symbol periods. This

assumption leads to the formulation of the problem which is

summarized in Fig. 3.7.

r(t)

R, (t)—> l¢«—R, (t)—>
] 1

|

!

i
et l -
- . ]
3 0 T 21t

@ﬁ Fig. 3.7 ‘Typical Low Pass Filter Response

i

Bt it

Here, the response of the low pass filter to the input pulse has

been divided into the '"head" response and the "tail" response. When

&
SR

the input to the low pass filter is a pulse btrain of positive

&
Rl

and negative pulses, the response duripg any interval is composed
o of four possible wave shapes., Let the response of the filter to a
positive éymbol be Rh(t) + Rt(t) where Rh(t) describes the output
J during 0 €t < T and is O for t>T. Rt(t) is the output during

T <t <27 and is O for t<¥. The four resulting possible pulses

during the intervel O <t < T are

(1) +R, (t) + R (+FT) (3) -R,(t) + R (£3T)
(2) +B, (%) - R, (£41) (%) - B (6) - R (£T)

oo
itk

i é




3.6 Square Law Device Response

In order to cdlculate the signal to noise ratio at the input
to the bandpass filter, it is necessary to calculate both the
"signal" power and the noise power spectrums at the output of the
square law devicé in the frequency baﬁd of the narrow band bandpass
filter. To do this, we make use of the direct method for the
computation of the output spectrum of a square law device with
random signal and noise input process. For reference, see for
instance, Davenport and Root (9). A brief resume’ of the results
is presented here.

Let x(t) = s(t) + n(t) where both s(t) and n(t) are sample
functions from independent random processes with zero means and
variances 02 and ohz, The square law device is described by

y = a(x)z. The autocorrelation function of the random process is
R (1) = aZ[R' (1) + 4R (1) R (r) +R2(r) +20° g 2] 3.19)
v sz 8 n DR : S8 n ‘

After making the assumption that the noise process is gaussian,
the power spectral density, which is the inverse Fourier transform

of Ry(t), can be reduced to

+o

5.(2) - aa{ﬂ;-l(RSZ(r) vk j s,(0) 8_(£-1) @

-0

+

+ 2 j s_(A) 8 (£-1) an + {?(Oézchz) + oh”] B(f)} (3.20"

where Sn(x) and Ss(x) are the spectral densities of the input signal
and input noise processes. The gaussian noise assumption is
necessary in order to reduce the inverse Fourier transform of the

squared noise process to a convolution of spectral densities.

H %
[
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The term ?’l(RSZ(T) ) represents the spectral density of the square of the
signal random process. Because the input signal is not gaussian, the
result of the squaring cannot be reduced to a convolution of the input

process.

At this point it is useful to psuse to consider the steps which

must be taken to achieve a solution. First, the spectral density of

the signal random process at the input to the square law device must be -

X computed and convolved with the noise spectrum. Next, the nolse spectrum
w; must be convolved with itself. Last of all, the discrete and continuous
portions of the square of the signal process must be computed.

Using the results from Sec. 3.5, the convolution integrals

§ to be evaluated are

1 +e 2) s__(£-A

| 8o () = | (ch’/) so (£ . ax 3.2

- ceo B-(0/£)7] I-L(£-2)/£,17]

%é and

] = (0 /2)?

i O ‘ .
g (f) = 3.22
e ‘l-w D--(k/fc)z] [l—[&?-k)“/fclzl

3

In general, these integrals are not easily evaluated. But becsause
only the value at one particular frequency, the symbol repetition

frequency, is really needed, these integrals can be evaluated by simple

numerical integration.

The discrete and continuous portions of the spectrum due to the

signal~-cross~signal component are computed by squaring the random

signal process at the oubtput of the low pass filter and using the results

of Sec. 3.3 and 3.4. On squaring the random symbol sequence made up of the
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four pulses in 3.18 only two symbols will result. These are

(@) @D+ ®R(T)F| ¢ |2 R (6) R (6eT) |

g
(&) |®GEN%+ (R&1)?| - |2 R(8) R (e+T) | o
Now, let
H (s) = 5 {(R ()% + (R (t+7))%) S
HZ(S) =g {2 Rh(t) Rt(t+T)}
Using the results of 3.10 the power spectrum is
8.c(f) = 1/4{2 H, (jent) H (-jonf) + 2 Hy(j2nf) Hy(-j2nr) .
-2 Hl(jZﬂf) Hl(—jEKf) + 2 Hz(jZﬁf) Hz(—jZﬁf)}
= HZ(jan) HZ(-jan) 3.25

This result indicates that the continuous component of the
spectral density is given by the spectrum of a pulse which is

determined by the product of the 'head" waveshape and the "tail"

waveshape. Note how the continuous spectral density goes to zero

as the tail is reduced to zero. This happens when the input filter

Lo

is removed and is to be expected, since squaring the input signal, with
‘no filtering, gives a completely periodic output. Wj
The discrete component of the output of the filter is now 4

easily handled using the results of 3.13.

d o ..
s (£) - 1/A{LHl(jan)+H2(32ﬁf)J LHl(—jan)+H2(—j2ﬁf)J

+Lgl(j2nf)+H2(jan)J Lﬂl(-jZKf)-Hz(-JZ“f>J

Lﬁl(jzuf)-ﬂz(jan)J Lﬁl(-jZﬂf‘+H2(~JZ“f)J

LHl(jZﬂf)—HZ(jzﬂf)j LHl(—ijf)—HZ(—jZﬁf)J} +; 5(£-n/T)
. Nz

3.26 |
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This reduces, after much manipulation, to
4 R
s(f) = {Hl(gzjrf) Hl(-JZaf)} nf.m 8(£-n/T)

Inspection of the form of this solution as the input filter is

removed shows that Hl(s) reduces to

H(s) = £ | (8, (£))?]

(Rh(t))z is identical to the square of the basic symbol waveshape.
This result is seen to be equivalent to the well known result in
linear system theory that the Fourier coefficients of a periodic
pulse train are equal to the values of the Fourier transform of

the pulse evaluated at the frequencies n/T,(lO)

3.7 Signal to Noise Ratio at the Bandpass Filter

The derivation of the preceding sections have been carried
out in order that the signal to noise ratio, RM’ in the pass band
of the bandpass filter may be calculated. This discrete component
of the spectrum at the symbol rate is taken as the signal. The
nolse power is computed by taking the product of the sum of the
continuous components<xfthe spectrum with the noise equivalent
bandwidth of the filter.

The assumed density function for the phase at the filter

output is

-E/Rdcose]2

-R_.
p(0) = ¢ d{}+@¢;§; cos 8)(e )(l+eer/Rdcose))}

3.27

3.28

3.29



This density results when narrowband gaussian noise is added to a
sine wave. It 1s assumed that the signal to noise ratio, RM’
that is computed is linearly related to the parameter Rd in the
density function.

In order to bring together the work in this and previous
section into one expression useful for the calculation of RM’
the following definitions are made. Let s(t) be the elementary
functional form defining the symbol pulse. The received symbol

has amplitude A.
s(t) = as(t)

The spectral density of the symbol pulse is TSS(f). The spectral
density of the received symbol sequence is
) _ a8 :
Sss(f) = A Tss(f)
The energy in the received pulse is
2

T 2
E = J [as(t)] at = A° B
o]

s
The noise equivalent bandwidth of the filter, normalized to the
symbol rate, is A f.

By letting f=1/T (n=1) in 3.26, the signal power in the
pass band is computed. If the low pass filtered symbol wave-
form is used to calculate S:s(l/T), the resultant power at
the bandpass filter is

2 az ALP Sis(l/T)

The contribution to the noise due to the signal-cross-signal term

is found by evaluating 3.25 at f=l/T° Using the low pass filtered

3.30 "3

3.31

3.32

3.33
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waveform again for the calculation results in

8.4 (1/T) = Hy(3len/T]) Hy(-i(2w/T)) = 8’ 3.34

The received single sided spectral density at the center of the bandpass

is then

2 L .,
2a A SSXS 3.35

For computation purposes, 3.2l is written as

jg Seup = N /2 f+m ) = (N /2) s, 3.36
R e -Gy ) I-[(e0)/e, P10 T ’
wl Similarly, 3.22 becomes

E +oo

- S = Noz/u J. 1 4\ - (sz/u) S psn 3.37

s [1-(0/£)%] [1-(2-0)]

The signal to noise ratio at the bandpass filter is then

N 2 & At st (1/7)
@ = 88 8
RM 5 5 3.3
o, (2)(&) AN | (2)(2w "
i 2o s * S * T Spm) OF

At this point, the result can be written in terms of an input signal to
o noise ratio (S/N) = 2E/Nb where A2=E/ES.

s:s (1/1)
Ry = VE, 2E S 3:39

7 7
[Ssxs T T8/m) Sexn ¥ (S/N)z Spynd OF

The factor ES and the spectral densities must be evaluated for each symbol

waveshape and degree of low pass filtering.
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IV. MEASURES OF PERFORMANCE

There are no commonly accepted performance measures for bit
synchronizing systems. Designers have tended to build systems which are
relatively precise and hence they have avoided asking the question "How
well does it work?" This chapter first presents a useful measure of bit
synchronizer performance for the general case where no detector has been
specified. It then concludes with a solution for the probability of
detection error for a correlation detector that operates with non-perfect

synchronization,

L.l Performance Without Detector Specified

The situation that exists in a bit synchronigzer that has been
perturbed by noise is indicated in Fig. 4.1. Here, correct synchronizing
pulses should occur every T seconds but noise in the synchronizing system
causes the pulses to be displaced ahead and behind the correct position.
This displacement 1s often calledljitteriy”Tpg_jitter.is indicated here

by the times €T~ﬁhefe € is the fractional synchronization error.

=

Fig. 4.1 Typical Sequence of Synchronizing Pulses
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There are two types of detection errors which are caused'by these
jittery timing pulses. If |€| < 1/2, detection errors are caused by
"looking' at the detector'output at ﬁhe wrong instant of time. For o
example, in a PAM system, "looking" at the wrong time results in obtaining
a lower sampled value than the correct one. In a correlation detector,
the output is sampled at some time other than the time that the signal
component of the output is a maximum and hence the equivalent signal to
noise ratio is reduced. The second type of error occurs when |€] > 1/2.
Here the number of decisions made by the detector is more or less than
the number of syﬁbols that has been transmitted. These insertions or
deletions have a tendency to cause a whole word or frame in a telemetry
format to be incorrectly interpreted. This type of error is commonly
referred to as bit slippage. Only errors of the first type are
considered in this chapter. The probability of bit slippage is assumed
to be negligible.

Ify for the case of lEl < 1/2, the mechanism that is causing the
timing errors is random, then there exists a corresponding probability
density function on € which is defined over the interval -1/2 < € < +1/2,
If no particular detector is specified, this density function becomes the
basis for the most reasonable way to describe and specify the synchronizer
performance. Generally, it is desirable to be able to describe perform-
ance in terms of the fewest possible numbers--preferably one. At first
glance, the variance or RMS error seems to be a good choice. However,
in the work which follows, a less common parameter, the mean absolute
error IE[, has been chosen. This has been done because of the ease with
which it can be measured in a prototype system. In Chapter 5, the details

of how this is easily done are given.
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For unimodal density functions this moment is closely related to the
RMS error or standard deviation. For the density function that was assumed
for the suboptimum system analyzed in Chapter 3, [€] is about .8 of the
value of ¢ over a very wide range of the input signal to noise ratio
parameter. See Appendix B for a more complete comparison of these two

moments for typical density functions.

4.2 Synchronizing a Correlation Detector

The most meaningful measure of performance of a symbol synchronizer
is the degradation which it causes in the probability of detection error.
To determine this performance, hawevér, it is necessary to specify a
particular detector. Since correlation detection is optimum for known
signals, the performance of such a detector with jittery synchronization
is derived in this and the following sections.

The situation that is assumed at the correlation detector is as
follows. The input to the correlator is a signal Ss(t) and additive
white gaussian noise n(t). Ss(t) represents a sequence of anticorrelated
symbols of duration T and basic waveform S(t). S(t) = f(t) for 0 <t <T
and is zero elsewhere. Ss(t) may be written as |

e .
Sg(t) = = (-1)7 S(t-mT) bel
N =0
where j 1s a random variable that takes on values of 11 during each
symbol interval.

Ideally, during each interval nT <t < (nt+l)T, the received signal
is correlated with a stored replica, Sr(t-nT), of 3(t). Because of non-
ideal synchronizer operation, an error é exists duriné the desired

detection interval and the correlation operation begins at t = nT + €T

¢
|
wadd

!
|
1
;
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instead of nT. The output of the detector at (n+1)T + €T is made up of two
components. M is the result of the correlation of the signal with the
reference and A results from the correlation of the input noise with the

reference. This is summarigzed in Fig. 4.2

M (€mi1)T (t) S_(t=[n+€IT)dt lpo2
= - S_(t) S_(t-[nte .
j}€+n)T st x 1 .
(emn+1)T
A= n(t) S_(t-[n+e]T)dt L.3

(emn)T X

s_(t)m(t) g(t) (emt1)T| x = m+p
" £ 1 [ elt)at >
| (em)T

S,.(t-[nte]T)

i

Fig. 4.2 Block Diagram of Correlation Detector

If the noise is gaussian, X is a gaussian random variable whose
variance depends on the spectrum of the input noise and the waveshape of
S(t) but not on € or the received signal sequence. The mean of X is a
function of € and the signal sequence.

Let Q represent the particular sequence of symbols that occurs
during the detection interval [(n=1)T, (nt2)T]. This interval is three
symbols long and must be chosen because € may be positive or negative

and hence correlation may begin during the (n-1)th symbol or carry into
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the (ntl)the symbol. The joint density function for the three random

variables X, €, and Q is .
p(X/€Q) = p(X/€,Q) p(€,Q) = p(X/€,Q) p(€) P(Q) | A

The last statement in 4.4 is possible since € and Q are independent. The

conditional density function for X is

p(¥/€,Q) = —2— exp[-=L (x - m(€,0))?] s
2o 20

where 0:2 = A2 and m(€,Q) is the value computed by 4.2 for a given €
and Q.

The detection rule that is assumed for the detector is the one that
would be used if synchronization were perfect. This rule is: choose 3
if X 20 and =S if X € 0, The events

x <0/ +5s}
and
x>0/ - s}
are errors and the probability of these events determines the resulting

probability of detection error. This probability of detection error

Pie = PX <0/ +s}P{+s}+P{X 20/ ~ 5} P{=s}
o€o L.6
0 e
=P(+5) [ p(X/*+ S)ax + P(=5) j‘o p(X/- 8)dx

where p(X/+ S) is the probability density function for the condition that
+5 was transmitted during the intended detection interval and p(X/- S)
applies when =S was transmitted.

The evaluation of the two integrals proceeds as follows. When +S

is transmitted during the intended detection interval [nT,(n+1)T]

& L
s

st

i
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there are four possible sequences that can be involved in the correlation.
Using the notation of Fig. 4.3, these are tabulated in Fig. 4.4. Similarly
when =S is transmitted, four other sequences are involved and these are

also tabulated in Fig. 4.4

5,(8)

n+i

< 3 >§<—s
i
]
|
i
]

§ a

8 %‘h (n=1 ) T nT (n+1)T (n+2)T %

Fig. 4.3 Notation for Received Symbol Sequence

£ Y
i

mj Sn-=1 Sn Sn+'1 Q
+3 +3 +5 Ql
\ -5 +3 +5 Q,
+5 +3 -5 o
; -3 +5 -3 Q,
+5 =S +5 Q
‘ -3 -3 +5 Qg
+S -5 -5 Q,
-3 -3 -3 Qg

Fig. 4.4 Eight Possible Symbol Sequemces

G
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For these events when S is transmitted

p(X/+5) = j’e IQ p(X/€,Q) p(€) p(Q)dedQ Lo

where the summation over Q is for those sequences where Sn is positive.
For p(X/;S) the summation is over those @ that have negative symbols
for Sno Let mi(e) be the mean that is computed for a given value of €

and sequence Qi. Using this notation.

L
px/+s) = [ ple) ( z —= =L(¥-m, (€)) |Jae
J‘E ?(® (:’L=1 NEL exp[zf\ & ))Dd

4.8
P(i/-5) = [ _»(8 ( —L— cxp[-=L(xm, (€)) | )ae
i=5 ,/2n o 20
If it is assumed that each symbol is equally likely, then P(+8) =
P(~S) = 1/2 and P(Qi) = 1/4. It is now possible to write 4.6 as
1 Ao
Pye =;j1MJ‘Ma T —L— exp(3(%m, (€) Jaeax
doe. i=1 J/2n o e
L9

+1/aj j p(€) z - exp( “?(Xnm,(e))>d6dx
3=5 A/_z:f-()‘ 202 1 :

After interchanging the order of integration and using the definition

X 4

= /27 ©

exp(~X*/2)dX

’(x) =

L .9 becomes

( (€)
Poe, "1/ [ p(e)[ z i i L)1 e

i=5
) e

mca g +m@> 4210

AP K 1
i=5

ll

/sjpw{z 8

e

|

PSS
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In order to continue further, the particula.r values of mi(’g) need
to be calculated so that further simplification can be obtained. It

is recalled from 4.2 that

T
m,(t) = [ 8g4(t) 8.(t = [ntelT)dt

(em)T
where Ssi(t) is used to indicate a reeeived’ signaly that has the sequence

Qi during the detection interval, What this integral involves is shown

in Fig. L.5.
Ssi(t)
(n-'l)'l‘ |/.i./"‘\\/_//\ |
\\,\/ntr (nH1)T (nt+2)T t
5,(t);
L ! /%'/T\ i
(n=1)T nT (nt+€)T (nt1)T (nt2)T ¢

Fig. 4.5 Waveshapes Involved in Correlator Detector

¥

For € > 0, as shown in Fig. 4.5

(n+1)T
m, (€) = fnT+€T 8, (t-nT) S, (t=[nt€]T)dt

(nH+e) o o
o snﬁi(tw(nﬁi)T) 5, (t=(n€)T )t b1l

| c :
= j‘b S, (yre)s (v)ay + j‘o Sn+1(y)5r(y+[T~E]?dy
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Now, if
+ee T-€

R (€) = fm”S(X)S(Xw“e)dX = jo S(X)s(x+€)dX ho12
since S(X) =0 for X > T and X < 0, then the two integrals are recognized
as *+ RSS(E) and + RSS(Tae) with the sign being determined by the sign of
the symbols n and ntl. Due to the fact that Rss(t) is an even function,
it can be seen that, by symmetry, the same results apply for € < 0.
Referring now to Fig. 4.4, the correct sign can be placed on each of the

Rss(x) terms to obtain Fig. 4.6

m m (e >0) m, _ (e <0)

m, =R(T€) - R(T[1=€]) ~R(T€) - R(T[1-€])
m, =R(T€) + R(T[1~€]) =R(T€) = R(T[1~-€])
m, ~R(T€) = R(T[1~€]) ~R(T€) + R(T[1~€])
m, -R(T€) + R(T[1-€]) -R(T€) + R(T[1~€])
mg +R(T€) = R(T[1-€]) +R(T€) - R(T[1-€])
my +R(T€) + R{T[i=€]) +R(T€) - R(T[1=€])
m, +R(T€) = R(T[1-€]) +R(T€) + R(T[1~€])
mgy +R(T€) + R(T[1~€]) +R(T€) + R(T[1~€])

Fig. 4.6 Mean Values for Eight Symbol Sequences

It is apparent that mi( €) depends on whether € is greater or less
than zero. Therefore, 4.10 can be written as two integrals, one ranging
over =1/2 € € < 0 and the other over 0 < € < 1/2. The corresponding

values of mi( €) for each range are m,  and m; From Fig. 4.6 the

2.4®
R
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following equalities are noted.

ml+ =z ml‘_ o= mz— = m3+ =z _m6+ = _n-l'?- == _,ma+ == _,ma-
413
Using these equalities, 4.10 can be written as
Pd'e =1/8 j p(e) [u( =) + h@(-ﬁ-)]dﬁ
* -’1 A 40114’

+1/8 IO p(e) [hs—L) + pa—2t )]de

Observe now that m,_ = m1+.and m, =m,, 80 that if p(€) is
symmetrical about O, then these two integrals are equal andvthe probability

of detection error becomes, for this special case

d.e.

1/2
Pao. = I (O[S + 82 Jae
0
-'-4-:»15
= [ p(e)[s(-Lr(reyalr-er]) + (-LR(Te)-R(T-€1)]) Jae

To put this into terms of one of the standard signal to noise ratios,

2E/No, refer to 4.3 and note that for the white gaussian noise case,

5 5 T .
F =K = (jo n(x-[em]r) S(X)ax

T T No N,
= Io Io S(y) S(X) 3 8(X-y)dddy = & k16

which, since R(0) = E, becomes
, N
o ==-:2 R(0)
If now, R(O) is factored from R(Te) + R(T—ET) to obtain

R(O)[r(TE) £ r(T-TE)], Le17
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then
R(T€) * R(T-Te€ 4/ 2
) R iz (0) {r(Te) + r(T»TE)} 4.18
6)
—~R(o)
may be written as
«/ZE/NO fr(re) # r(1-1€) } 419

Also, to put the result in terms of erf(x) the identity

3(X) = 1/2(1 + erf(x//2)) 4,20
is used to obtain

oot

=:Ji/zp(€)[lw1/2 erfC/ iﬁ? {?(T@) + r(T”TE)}>

J3
- 1/2 ert (3[-% {r(TE) - r(T»TE)}) d€ Jo2L

As a verification of this equation, the timing becomes more precise

p(€) => 1/2 8(€) and B 7
2?7

al )] | lpo 22

J2

This is the well-known expressioh for the probability of error for a

Pio = 1/2[1 - erf(

correlation detector.

4.3 Signal to Noise Ratio Degradation

The results of the previous section give the new (higher) probability

of detection error when the detector has noisy synchronization. While

this number is fundamental, the result may be put in a slightly more

instructive form if the probability of error degradation is converted into

its equivalent signal to noise ratio degradation. If it is assumed that

i
4
i
1
#
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a digital system is to perform with a fixed probability of error, then
any increase of this error probability due to synchronization inaccuracy

must be made up by a corresponding increase in the received signal to

noise ratio. In this section an approximate solution is obtained for the

‘necessary increase in the signal to noise ratio.

For binary anticorrelated signaling, the probability of error is

given as

Pie. = 1/2(1 «-erf(ﬁ??'é)) L.23
where R = 2E/Noo Since the performance degradation that is of primary
interest is of necessity limited to small increments around the operating
signal to noise ratio Ro’ it is reasonable to find the straight line

approximation to 4.23. To do this, the Taylor series about the operating

value of Ro is found., The first two terms of the series for Pd o (R) are

SR =P, (R +EIP, (R )IE-R] o2l

Imperfect synchronization causes an increase in probability of
error'to P1 which is the probability of detection error that would be
obtained with a lower signal to noise ratio Rl and perfect synchronization.

The fractional degradation in signal to noise ratio is computed as

Ra.;R [Pd . (RP) <R )][ Py o (B) ] 25
o] doeo O(dR d. 8. (R ))
Define
- Pdaeo(g;z_' Pdoga(Ro)
AP=—"% TR
d.e. " 0
and
R, =R
— 1 0
AR= 5




and observe that
%ﬁ(Pd.e.(R)) = ~(exp[-R/2])// 8

L .25 is now written as

- = @l = (PQLfL(R°)NE§; )
VR, exp(-R/2)

where Aeris seen to be the resulting fractional increase that is required

in R in order to bring the probability of detection error back to Po°

4ok Performance with Typical Symbol Waveshapes
Inspection of Aozlyshows that the degradation in probability of Co
detection error is effected by the shape of the density function for €
and the shape of the autocorrelation function of the symbol pulse, It is
apparent that the broader the density function becomes, the more signifi-

cant the degradation will be. The role of R(x) in the degradation is

most easily explained in terms of the "ideal" shape for R(x). Consider
an R(x) which is defined as j
R(x) =R(0) 0<x<T/2 e

R(x) = 0 elsewhere

G

For such an autocorrelation function, the terms

N
=
J

r(€T)+ r(T - €T)
in 4.21 would effectively reduce to r(€T) since 0 < € € 1/2 in the

integral. Thus 4.21 reduces to

. 2K
P = j’l/z p(e){i - erf(l—l&’--—) de L.27
0

e

N

which after integrating over € becomes
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1/2(1 - erf{"/ 2B/, —--}) 428
W2

This result is the probability of detection error for perfect synchroniza-

tion. The departure of R(x) from the ideal shape has the effect of

reducing the size of the arguments in the terms erf(y) and hence increasing

the magnitude of

s ——

1=-1/2 erf(JE/No {r(T €)+r(T-T€E) })» 1/2 erf(ﬁE{r(Te)%r(%Te) l)

for a given value of €.

In order to find out what kind of performance can be expected with
noisy synchronization, 4.21 has been evaluated for the conditions of the
suboptimum synchronizer of Chapter III. The probability density function
for € that was assumed there was given'by 3.29 with the change of variable
@ = 2nm€., The cholce of autocorrelation functions was made by considering
specific symbol waveshapes that are either used or could be easlily used.

These pulses, all defined over the interval [0,T] are:

1. Square Pulse s(t) =4
2. Half Sine Pulse s(t) = A sin((n/T)t)
3. Raised Cosine Pulse S(t) = A (1 = ecos((2n/T)t))

It is possible to place a lower limit on degradation as a function of wave-

shape by calculating the degradation for a special autocorrelation function.

According to Boas and Kac (11)

the best upper bound on R(€T)under the
constraints that R(ET)==O for € » 1 and that the pulse is physically

realizable is

R(€T) < R(0O) GOS(;[ +ﬁ[17E]>

where [1/6] denotes the greatest integer not exceeding 1/€. The results
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using this function are identified as the "optimum" waveshape results.

The results presented in Fig. 4.7 to Fig, 4.12 have been computed by
numerically integrating 4.21 for each of the agbove waveshapes using a
range of values of |€| for various values of 2E/N .

Fig. 4.7 shows the degradation in 2E/N0 for various qualities of
synchronizer performance as measured by |€| for the case of the "optimum"
pulse waveform. For each performance measure, the results for ail
practical pulses will lie to the left of these curves. One of the more
interesting results as shown by these curves is the rather pronounced
threshold that occurs. Below the threshold the detection errors are
caused primarily by the noise abt the detector. Above the threshold, the
performance is badly degraded by synchronizing inaccuracies. Fig. 4.8
and 4.9 show the performance for the three waveshapes compared to the
"optimum" for two values of iz’o The significant results here are that the
square pulse seriously degrades performance but both the half sine and
the raised cosine cause performance to be near optimum.

Fig. 4.10 presents the same data as the previous figures, but in a
slightly different form. The effect of synchronizer performance is
plotted for fixed wvalues of QE/No for the optimum pulse shape. Here it
is easy to see the threshold effect beginning to take effect in the
range .04 < fEi < ,06, This indicétes that the worst case performance
should be set in this range. Fig. L4.11 and 4.12 compare the waveshapes
with the "optimum". These curves can be used to compare the results in
the following way. |

It is typical for paramster estimators to have measures of

performance such as,fzf that vary inversely with the square root of the

e

i
|
i
d
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effective measurement time., For all but the lowest signal to noise ratios,
this is true for the suboptimum system derived in Chapter III. The ratio
of measurement times required to provide the same amount of degradation is
thus equal to the inverse square of the respective values of [€|. 1In
Fig. 4.12 for example, for 0.1 db degradation the value of [€| for the
square wave is 0,009 and for the half sine it is 0.036. The ratio of
required measurement times to provide the same degradation is thus 16.

The ratio is typical of the difference in performance between these two
waveshapes. This result, it should be noticed, assumes that each wave-
shape will cause equivalent synchronizer performance~-a situation that

the results in Chapter VI will show is not the case.
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V. PROTOTYPE SYSTEM

The solution presented in Chapter III for the suboptimum synchronizer
carried the problem to the point of computing a signal to noise ratio at
the narrowband filter. It was hypothesized there that the probability
density function of synchronizing error could be modeled by a single
parameter fgnction like that obtained with a sine wave and additive
narrowband gaussian noise. The prototype system described in this chapter
was designed to verify this assumption and to find the relationship
between the computed signal to noise ratio and the desired density
function parameter. In addition, the prototype is used to verify the
correctness of the model as far as it describes the other aspects of
the synchronizer. Finally, the model describes performance with a
square law nonlinearity. The prototype system allows a comparison to
be made between this and other possible synchronizers, including the

infinite clipper--~differentiator, or hard limiter, system commonly in use.

5.1 Obtaining an Error Signal

To be able to measure the performance of a prototype synchroniser,
it is necessary to have an error signal which is in a convenient form for
processing. This section describes a simple method for generating one
such useful error signal.

If fractional error, €, is considered to be limited to the range

~1/2 < € € +1/2, then the timing error can be given a magnitude such that

!
|
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0« (GT] < T/2, and an algebraic sign. A system which generates a

pulse of duration |€T| with algebraic sign determined by the lead or
lag of the synchronizing error is shown in Fig. 5.1. The correct
synchronizing time is represehted by the leading edge of a short
pulse. The noisy sinusoidal output of the suboptimum synchronizere

described in Chapter III, can be passed through a hard limiter, such

as a Schmitt trigger, then differentiated, and finally half-wave
™ rectified to give a sequence of positive pulses whose leading edges
represent the synchronizer's estimate of the correct synchronizing
8 time., The time difference between the occurrence of these two
pulses is the synchronization error.
In order to generate a new signal which has this time difference

X as its chief defining parameter, these two pulses are applied to
- identical bistable circuits. The output of one bistable is then
subtracted from the other. This difference signal is a sequence
of pulses whose duration is the same as the synchronigzing error.
Fig. 5.2a~f shows the various waveshapes for cases where the synchronizer
time both leads and lags the correct time.
o In the difference waveshape of 5.2e, where the noisy square wave
is subtracted from the refefence, the polarity gives no indication of
lead or lag. To get a pulse train where polarity can represent the
lead or lag of the error, a simple switching system is used. The

pulse of Fig. 5.Z2e is switched off during every other cycle; for

example, during the times 1/2T <t < 3/2T, 5/2T <€t < 7/2T,
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Fig. 5.1 Block Diagram of Error Signal Generator
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9/2T <t < 11/2T, etec. At the same time, the negative of the pulse
train is formed and switched off during the times -1/2T <t < 1/2T,
3/2T <t < 5/2T, etc. The two resulting pulse trains are added to
produce the result in Fig. 5.2f. The lagging errors are now represented

by positive pulses and the leading errors by negative pulses.

5,2 Method of Measuring the Desired Statistical Moments

The timing errors that result from jittery synchronizing signals are
a sample function of a stationary time series. The fractional error, €,
at the beginning of each symbol period defines a set of random variables

Etl, Etz’ coay Etn at the times tl = KT, t, = (K+1)T, ooay b, = (Ktn)T

which have a joint probability density function. Because the time series

is stationary, Etl = 'ét2 = ... —étn = h. Now the mean M = %(etl -

€ t ... Et ) is an unbiased estimator of u since M =‘l(E +-E% +

. n't .

2 n 1 2

coo E% ) = %(nu) = u. Consider the time average of the error signal
n .

that is generated by the process described in Sec. 5.1. If a record
of NT seconds is avallable, the average value of that signal is

N N
v

1 .
== ¥ e, T = T €. where €, is the error at the i-th symbol
AVG NT 4= 1 j= 1 i

=t o

period. Thus, the average value of the error signal is an unbiased
estimate of the mean p of the fractional timing error.
In order to measure the expected value of the absolute error, the

error signal is full-wave rectified. This new signal is a sequence of
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positive pulses whose‘durations are the period-by-period measure of the
absolute timing error. These absolute values of timing error define a
time series of random variables Xt = |€t|o In a way exactly analagous
to the case of measuring the mean of €, the estimate of the average
value of |€| is obtained by measuring the average value of the full-wave
rectified error signal.

For both measurements, the variance of this estimate is quite
large because of the high correlation from one symbol period to the next.
From measurements of the timing error of the suboptimum synchroniger, it
was found that measurement times of 10-20, 000 time periods were necessary

to reduce the fluctuations about the mean value to + 5%.

5,3 The Test System

The block diagram of the test set-up which was used to evaluate the
performance of the self synchronizers is shown in Fig. 5.3. Briefly, the

operation of the system is as follows: The master clock, which is driven

by an external variable frequency oscillator, provides the necessary timing

pulses for the entire system. The pseudo-random word generator produces
a sequence of positive and negative square pulses which are used to drive
a switch., The switch chooses either the positive or negative symbol that
has been generated by the periodic waveform synthesizer. The resulting
pseudo-random symbol sequence is combined with additive gaussian noise
from the Random Noise Generator and the sum is applied to the self
synchronizer that is being tested. The output of the synchronizer is
applied to the phase meter and moment estimator system. The components

of each of the blocks are described below.
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N

il
{
|
o



PN
G
?:s‘:&gai

External
Oscillator

59

Psuedo- Random
Word Generator
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Fig. 5.3 Block Diagram of Test Set Up
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5.3.1 External Oscillator ’

The external oscillator was a General Radio 1210-C unit oscillator.

5.3.2 Pseudo-Random Word Generator
Constructed by the Purdue University Communication Sciences
Laboratory, this generator produces a 127 bit pseudo~random word by means
of a binary shift register. The output is square and has a separate

timing pulse at the start of the word.

5.3.3 Periodic Waveform Synthesizer
The Exact Electronics, Model 1200~-B produces any periodic waveform
desired by a series of straight line approximations with up to 50
segments. For the waveshapes generated for tests, 20 segments were

found to be sufficient.

5.3.4 Noise Generator
The noise generator used was a General Radio Model 1390-B Random

Noise Generator.

5.3.5 Master Clock

Thé master clock was designed specifically for these experiments.
It supplies the timing signals to operate the other units and is<
designed to supply a variable time-~delayed pulse to the phase meter.
This is done so that the reference phase, or time, will be in phase with
the output of the self synchronizer. The phase of the self synchronizer
is varieble with the design parameters of the system. In the block
diagram of Fig, 5.4, the output of thé signal generator is shaped by a
Schmitt trigger which drives the master clock bistable device. The

output is at the frequency 2f where f is the frequency of symbol

Rasasen s
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transmission. This output is delivered to a bistable whose output drives
@he Pseud9—Random Word Generator and the Waveform Synthesizer. In order

to develop a phase shifter with good resolution and fine control, the o° -

180o output at 2f drives a monostable delay which delays the input pulse
over the range (1/8)f < ty < (3/8)f. This delayed pulse is applied to

the bistable which is used to opefate the phase meter. By selectively

1

choosing the 0° or 180° outputs at this point, a full (1/f) seconds of
delay, or 360° phase shift, is possible. The output opposite to the one
chosen for the phase meter drive is chosen to drive a bistable whose

" outputs operate the switches in the phase meter, Fig. 5.1.

9 5.3.6 Phase Meter

The basic principle of the phase meter is described in Sec. 5.3.

R To measure ]EI, the timing error is full wave rectified. In order to
make an accurate measurement, the rectifier output is applied to a
Schmitt trigger which generates pulses of fixed amplitude. The dec .

o level is brought to the zero base line and the resulting signal measured
o by a HP Model 410-C., Since the effective measurement time of the volt-
g meter is only about 1 second, the longer time needed is obtained by

using the one milliamp full scale output of the meter amplifier to drive

2 a microammeter circuit that has a long time constant filter. TFor good

measurements, the time constant is set to a value near 30 seconds. The
microammeter is calibrated against the de¢ voltmeter and has a shorting

switch for quick return to zero.

5.3.7 Prototype Synchronizer

The block diagram of the prototype synchronigzer is shown in Fig. 5.5.

The nonlinear devices are simulated by a plecewise linear approximation
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i72f

To Phase Meter

Switch
Fig. 5.4 Block Diagram of Master Clock System
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Fig. 5.5 Block Diagram of Details of the Prototype Synchronizer
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produced by biased diode~resistor networks. The bandpass filter is a two
stage filter with a wide bandwidth, single pole, first stage and a narrow

bandwidth final stage.

5.4 Calibrabtion and Operation of the System

This section contains brief discussions of the methods used to
calibrate and operate the‘various parts of the measurement system. It
also contains comments on how the system, as constructed, did not measure
up to the ideal as conceived in\the block diagrams.

The first order of necessity in operating the system is that of
measuring the input signal to noise ratio 2E/NO° To do this, the
spectral density of the noise source, No,is needed. The manufacturer of
the noise generator specifies that the spectrum level is + 1 db flat
over a 20 Hz to 20 kHz frequency range and has a typical value of
25 ¢ 10“6 VZ/Hz for a 1 volt RMS noise output. This was checked by low .
pass filtering the output with cutoff frequencies well within the cut-
off of the generator. The resulting volts-square noise output with this
filter was used in conjunction with the noise equivalent bandwidth to
calcuiate the spectral density. The average value obtained by this
method was 19.2 ° 1070 v/Hz. To compute 2E/N,, the signal power and
noise power were measured at the input to the mixer using an HP 3400A
BMS voltmeter. Signal energy per period is VSQTo Noise spectral
density is directly proportional to the input noise power so that _
N = (19.2 - 1070 v3/z) v 2. Hence, ZE/MN_ = (21/19.2 ° 10""6)(vs/vn)2°
Thus, only RMS inputs need be measured. The greatest source of error
in the final measured value of the signal to noise ratio is in the

initial measurement of Noo
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The setup of the Waveform Synthesizer was accomplished by drawing the
desired waveform on the face of an oscilléscope and then adjusting the
synthesizer controls until the trace of the waveform that is generated
was coincident with the one that was drawn. Exact coincidence was not
possible and some variations occurred at points of abrupt change in the
waveform. These are not really a problem though, since the deviations
are the source of high harmonics and at no point were these deviations
more than 5% of full scale.

The setup and alignment of the self synchronizer required establishing
the nonlinear transfer function and the bandpass filter bandwidth. The
half wave nonlinear devices were set up by a process of initially compubt-
ing the desired settings and then making fine adjustments by statically
testing the input-output characteristics. It was possible to match at
least 5 points on the nonlinear input-~output characteristics, but the
progess wag slow and was complicated by the tendency of the settings to
have a long term drift.

The adjustment of the bandpass filter was done in the following
manner. The desired symbol rate, and hence, the fundamental component
of the signal at the bandpass filter, was 2000 Hz. Instead of trying
to fine tune the filter to exactly this value, it was brought to a
value as close as was easily possible and the total system drive
frequency was then adjusted so that the input to the bandpass was at
its center frequency. This turned out to be near 2005 Hz., The minimum
bandwidth that was obtained with the filter was 36 Hz., Wider band-
widths were obtained by loading the second stage of the filter to

broaden its response bandwidth. The bandwidths of each stage in the
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filter were measured by observing the frequency of the 3 db points with
a digital frequency meter. The resulting noise equivalent bandwidth of
the cascaded parallel RIC bandpass filters was then computed.

The alignment of the phase meter and calibration of the measuring

system are important to the proper operation of the system. To obtain

the correct error signal, the noise source to the self synchronizer was

disconnected and the phase shift system in the master clock was adjusted

,
e T |

until there was no error signal. This was easily observed as a null on
the indicating instrument. Afteﬁ the null was achieved, the zero level
adjustment was made in the moment estimator circuit.

To calibrate the meter to measure the desired moment, the phase
shift circuits in the master clock were switched to provide a 180°
,; phase shift. The resulting meter indication was used to calculate the

volts/degree conversion factor for the meter.

[

As in any practical problem, several compromises were necessary in

the design of the test system. One very fundamental one was in the choice

loiicsd

of 2000 symbols per second as the symbol rate for the pseudo-random

sequence. The realization of the bandpass filter for the self synchronizer

s

ig easier as the rate is increased. This is true because it is less
A difficult to realize the necessary high Q inductor as frequency is

increased. However, as the rate is increased, more stringent demands are

made on the switching times of the various measurement circuits. For

example, to produce a fair quality error signal pulse for a 1% fractional

error at 500 microseconds symbol duration (2000 Hz) requires overall

i |
& é

system rise time of 2-3 microseconds. To achieve circuits with an

overall time less than this requires a significant increase in circuit
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complexity. Hence, 2000 Hz is near the upper limit for simple circuit
design,

Another factor in circuit design that makes 2000 Hz near the lower
limit is the low frequency response that is necessary to reasonably pass _
the pseudo-random symbol sequence. Ideally, the amplifiers should be D.C.
coupled, but practically the distortion due to low frequency cutoff can
be held to a minimum with good ac¢ coupling. To prevent a sag of more
than 10% over a run of 5 consecutive positive or negative pulses, an
equivalent lower cutoff frequency of 20 Hz is required. For the number
of stages of amplification and isolation that are necessary, this is a
relatively difficult lower 1limit to exceed. Thus, to lower the 2000 Hz
rate would require all dc amplification.

Dynamic range is a problem in any system in which precise noise
measurements are to be made. At low signal to nolse ratios, the
amplitude of the noise peaks is easily 10-20 times the amplitude of the
signal. It is difficult to maintain linearity over such a wide range.
This was especially difficult in the drive stages to the full wave
nonlinear filters. Here the signal level must be maintained at a level
great enough to minimize the effect of reverse conduction in the
rectifier and the null zone in the forward direction. A peak signal
‘level of 1 volt, for instance, means that peak signal plus noise
voltages of 10-20 volts are common. A device to produce a square law
output over such an input range is very difficult to obtain and in

these experiments some peak clipping was unavoidable,

.
|
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VI. RESULTS

This chapter presents the results obtained using the optimum and
subpptimnm synchronizers that were derived in the previous chapters.
~ Sec. 6.1 gives the results of a computer simulation of the optimum
synchronizer. Sec. 6.2 through 6.7 present the experimental completion

and verification of the suboptimum model and the conclusions that can be

drawn éoncerning its performance. Sec. 6.8 compares the optimum and

suboptimum results.

j 6.1 Performance of the Optimum Synchronigzer

A Monte Carlo computer simulation was used to evaluate the performance

of the optimum synchronizer. The complete computer program is included

[

as Appendix A. The basic concept of the procedure is to use a discrete

i time analog of the continuous time problem. The input signal is sampled

= at 50 equal time increments for each symbol duration. The sign of
successive symbols is randomly chosen with each sign equiprobable. To

:ﬁ each "time sample" of the input, a random, gaussianly distributed number

is added to simulate the additive white gaussian noise assumption. It

is relatively easy to relate the variance of each of these random numbers

and the amplitude of the signal to the required signal to noise ratio

2 E/Noc

In Chapter II it was shown that the optimum receiver tested each

5

possible synchronizing position (measured with respect to the receiver

g
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rgference) by finding the sum of the log hyperbolic cosines of the
correlation of the properly shifted reference with the received signal.
That shift which produced the maximum was judged to be the proper
synchronizing position. In the derivation it was assuﬁed that the input
record started uniformly over the duration of one symbol., This means
that the input record will contain only a fractional part of the first
symbol, To simulate this condition, the sequence of received symbols
was started at each of 10 equal fractions of the first symbol. In
other words, the first input symbol ranged from a full symbol to the
last 1/10 of a symbol.

A histogram of the probability of position error, p(€), is built
up by testing synchronizing positions around the known (to the program)
position. To save computation time only 20 out of the SO possible
positions were tested with the majority of these being near the corréct
synchronizing position.

For each signal to noise ratio and wave shape, 500 complete runs
of one through eight symbols of memory were made. From the histograms
that were obtained, the performance measure |€| was computed and by
means of the appropriate application of the theory of Chapter IV, the
probability of detection error with noisy synchronization was obtained.

Fig. 6.1, 6.2, and 6.3 show |€| plotted against 2 E/N_ for each of
the eight memory durations. For the case of the half sine and raised
cosine pulses the results clearly show that for 2 E/N > 2, [€]
decreases with the inverse of V7§_§7ﬁ:° For values less than 2, 12:
asymptotically approaches .5 and hence cannot continue to obey the

inverse square root law. The results for the square pulse case are

|
{
o)

i



E

lel

.30

.20
A5

o4
05
.03

.02
0I5

Ol
007

005

003
.002

Optimurh Synchronizer
I/2 Sine Pulses

IS
NN
B SN
NN
- \:§§ 2
i N
: \§
g- Symbol Periods jf Memory
e
Fig. 6.1 [€| vs. 2E/N_ for Half Sine Symbols

69



[el

04

0.2

0.0

007
0.05

0.0l

0.005

IIIIIII

Optimum Synchronizer
Raised Cosine Pulses

Symbol Periods of M_emory

i Lol ) L1l

2 4 810 20 40
2E/N,

Fig. 6.2 [€| va. 2E/N_ for Raised Cosine Symbols

70




lel

Optimum Synchronizer
Square Pulses
30}
.20
!§§-\ . el
10— \z\"\.
- '\.\ Te— 2
otk \:\.\ .
05} :X.\.__‘-o 3
o2} \.\.5
oI5} \
.010|— : \:6
oo7f | 4
005} ‘?
003 : Symbol Periods of Mémory
002 l g v 1l L 1o v el
! 2 4 8 10 20 40

2E/Ng
Fig. 6.3 [€]| vs. 2E/N  for Square Symbols

71



72

not so clear cut, but they appear to follow the same trend. The
unexpected effects at the high values of 2 E/No are due to the
approximations in the computer model.

It can also be seen from these figures that |€| varies inversely
with the square root of memory time as measured in symbol periods.
Again, for the square pulse case, the results are not as conclusive over
the complete range of signal to noise ratios, but they do fit well in the
range L < 2 E/No < 16, Let T, = memory time and R, =2 E/NO. The
results can be summarized by the relationship IE] ~ 1/Q7§;§;. Such a
relationship seems to be typical for adaptive systems (12>.

Fig. 6.4 shows the comparison of the three wave shapes used with
the optimum synchronizer. They show that the optimum solution is
relatively insensitive to pulse waveform. The synchronizer makes
about the same degree of error for each case.

Fig. 6.5, 6.6, and 6.7 show the results for the optimum synchronizer
when it is used to drive a correlation detector. The Monte Carlo
simulation results are obtained in terms of the probability of detection
error. As pointed out in Chapter IV, the degradation in effective
signal to noise ratio is a more meaningful measure of the synchronizer
performance than is |€|. For small increases in probability of error,
the results of Seec. 4.3 are used to calculate the degradation., For
large increases in error, degradation is computed in the following way.
For each value of detection error, there is a corresponding value of
signal to noise ratio under the condition of perfect synchronization.
The difference in the ratio corresponding to the detection error with

no synchronization error and that error with non-perfect synchronization

S

Lo
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was taken as the degradation of signal to noise ratio. This definition
is a somewhat arbitrary one which reduces the computational difficulties.
The curves show that, for the range of memory times which were used,
the degradation is very sensitive to the amount of memory up until a
transition péint is reached. Past this point, large increases in memory
are necessary to achieve even small improvements in performance.
Comparison of the cﬁrves for the three different pulse wave shapes shows
that the square pulse performance for a fixed degradation is poorer by

a factor of 3 in memory time.

6.2 Completion of Suboptimum Model

The suboptimum synchronizer was analyzed in Chapter III. Its

block diagram is repeated here as Fig. 6.8, The analysis presented

x(t)=s(t)m(t)] Low Square Band r(t)
Pass Law Pass -
Filter Device Filter

Fig., 6.8 Block Diagram of Suboptimum Synchronizer

there carried the problem to ﬁhe point of computing the signal to

noise ratio RM at the output of the bandpass filter. It was conjectured
there that this ratio was linearly related to the parameter Rd in the
assumed density function for phase. One of the primary objectives of
the experimental work was to determine if such a relationship could be
verified and, as a result; a complete model of the system obtained.

In order to compute the signal to noise ratio RM, 3.39 in



Chapter III must be evaluated. This equation was

Sés(l/T)

By =
| [Séxs+ (2?@5 S NA e n2 nxn1 af
. X (s/N)

Here, the S . are the spectral densities which are computed from the unit

hxj

amplitude signals as given in 3.27, 3.34, 3.36, and 3.37. The analytical

form of 3.27 and 3.3L4 is derived in Appendix C. 3.36 and 3.37 do not lend

themselves to analytical integration for the types of signals thatAare
used. They were evaluated at the frequency 1/T by means of numerical
integration. A tabulation of the results of these integrations at
selected filter cutoff freéuencies is inclﬁdéd in Appendix C. Finally,

in the same Appendix, RM is tabulated for unit values of Af. In order

to determine the value of RM for a given noise equivalent bandwidth, the

tabulated value is divided by this noise equivalent bandwidth.

The formulation of the model for the suboptimum system is completed

by determining the relationship between RM and Rd' To do this, define a

constant K = Rd/RM. For a given set of data of [€]| vs. 2 E/NO for the
desired prototype synchronizer, determine the value of Rd that corres-
ponds to a measured value of lE]. The curves in Appendix B are con-
venient to use. Using the proper model of the synchronizer, compute
the value of R, that corresponds to the value of 2 E/’No for the
measured ‘E" Use these to compute K.

Because the values of R, are computed from experimental data and

d
because it cannot be assumed that the density function for [E} is the
one that precisely applies, the values of K are not necessarily the

same for all #alues of 2 E/No' In order to achieve a simple model, the
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average value of K for the range of values of 2 E/NO that are of interest
is computed. For the three wave shapes that were studied, these averages

are:

Half Sine — K = .36

Raised Cosine == K = .38

Square - K = ,67
L Fig. 6.9 and 6,10 show the experimental results, plotted as points,
o and the curve predicted by the model using the average value of K as
given above. The results indicate that the model for the half sine and

raised cosine symbols fit the experimental data very well. The results

for the square pulse are not as good. For the square pulse the data

,j for 2 E/No greater than 210 was not used in computing a value for K.

" In this region, the differences between the theoretical and experimental

curves become increasingly greater. This is because the low power level
of the discrete signal component at the bandpass filter makes the phase

error measurements very difficult to make accurately.

= 6.3 Verification of the Model

It was shown in the last section that it was possible to compute

a single signal to noise ratio parameter, Rd’ which will predict the

performance of the suboptimum synchronizer. Two aspects of the model
remain to be experimentally verified.

First, it is assumed in the model that the noise power is directly
proportional to the noise equivalent bandwidth of the bandpass filter.
This means that the value ofARM is inversely proportional to the band=
wiqth of the bandpass filter. The three normalized bandwidths that

were used were Af = .028, Af = .039, and Af = .056. Under the

g
E ;%
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assumption that [€| = 009/Q7§§ (see Appendix B) so that{lgl is directly
proportional to VEEE, the experimentally determined values of IE' for '
Af = .028 and Af = .056 were adjusted to the values that they would have
at Af=.039. Fig. 6.11, 6.12, and 6.13 show the results of this. The
s0lid lines indicate the upper and lower limits of the accuracy of the
mean of the three values. These limits were determined from the experi-
menter's observations of the repeatability attained in the measurement
system. If the bandwidth assumption is true, all three points for a
given value of 2 E/N0 will be coincident. These results, as shown in
the figures, indicate that the prototype system signal to noise ratio

at the bandpass filter cutput is inversely proportional to the bandwidth
of the filter as assumed in the theoretical model.

Second, the model as completed in 6.3 was for only one low pass
filter cutoff frequency. Whether or not the model predicts the response
for other cutoff frequencies remains to be shown. That the model does
do this is shown in the following way. Fig. 6.14, 6.15, and 6.16 show
the graph of IEI Vs, 2 E/No for various values of filter cutoff
frequency for thg half sine, raised cosine, and square pulses. The
performance is plotted over a greater range of 2 E/N0 than was attain-
able by experiment in order to show the asymptotic limits of performance.
In Fig. 6.17, 6.18, 6.19, and 6.20, the experimental curves of the
performance as a function of 2 E/No are presented. A close comparison
of these two selts of curves indicates that, within the limits of the
experimental accuraéy, there is nothing to indicate a disagreement
between the measured results and the results predicted by the model,

Some question might be raised concerning the results with the square
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pulse, since the model shows all bandwidths producing the same performange
at high values of 2 E/NO, while the experimental data does not show this,
Again, it is pointed out that there was extreme difficulty in measuring
the performance with the square pulse at high value of 2 E/No so that the
data in this range is somewhat suspect,

Two of the sets of curves are for an absolute value instead of
square law nonlinearity. It is shown in the next section that there is

no significant difference in performance with these two nonlinearities.

6., Effect of Nonlinearity

The nonlinear operation that is assumed in the analytical solution
is a square law operation. This is necessary if a direct solution for
the noise power spectrum at the output of the nonlinearity is to be made.
The question remains, however, whether the square law is the best non-
linearity. Obvi?usly any even function characteristic, e, = (ei)a is
useable. Values of a = 1/2 and 1 as well as the square law, a = 2, were
used and the results are presented in Fig. 6.21 - 6.25. While it appears
that there were slight differences with different wave shapes, the best
conclusion that can be made is that the type of nonlinearity does not
make a significant difference. The model of Eq. 3.29 can be used with
equal success with an absolute value of square root nonlinearity. This
result is useful since the absolute value nonlinearity is much more
easily implemented in practice. Remember also that the optimum solution
called for a log cosh operation which is square law abt low signal to
noise ratios and absolute value at high ratios.

Many self synchronizers now in use are built with a nonlinearity

which is constructed of a hard limiter, or infinite clipper, followed

%
4
i
]
i
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by a differentiator and a full wave rectifier. Under zero noise conditions
the output of the differentiator will be a series of spikes which occur

when symbol transitions take place. With additive noise, extraneous spikes

are added. Such a nonlinearity was used in the experimental setup in

place of the even function type nonlinearity. The results for two of the

three wave shapes are plotted in Fig. 6.26 and compared with the results

for an absolute value nonlinearity. As can be seen from the curves, for

square pulses the infinite clipper or hard limiter performs somewhat

better than the absolute value circuit. However, for all but the very
low signal to noise ratios the absolute value circuit performs better ”?
than the hard limiter for the other wave shapes. It appears that by -
extrapolating the curves to very low values of signal to noise ratio, ;}
the performance for the two nonlinearities is about the same. The most s
significant conclusion that can be drawn is that even with this com- MJ
pletely different nonlinearity the performance is more heavily dependent f}

on wave shape than on nonlinearity.

605 Input Filter Bandwidth

The roll of the input filter in the performance of the suboptimum

synchronizer is graphically presented in Fig. 6.14, 6.15, and 6.16. In

.

i?
o
e

these graphs, IE] V8. 2 E/No is plotted as function of cutoff frequency.

Consider first Fig. 6.14 and 6.15 which show the results for the

half sine and raised cosine pulses. Two significant observations can be

made. First, at the low values of 2 E/NO the filter cutoff frequency

is not a large factor in the operation., For the half sine symbol, the

optimum value of cutoff frequency is between .5 and 1.0. Other choices A
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around these values cause only a few percent degradation in !E‘. For
the raised cosine, it appears that a cutoff frequency qf .2_is best fo;_
very low values of 2 E/No. However, as 2_E/No is raised, the performance
with fc = ,2 and .5 is badly degraded compared to operation at higher
cutoff frequencies. For a system that may operate over a raﬁge of
values of 2 E/No, a compromise value of fc = 1.0 appears 1o be more
desirable.

The second observation is that these curves show a minimum value
for [€] as 2 E/No approaches infinity. This is due to the noise
generated by the filtering of the random signal process. As the value
of fc is reduced, this noise increases. Hence low cutoff frequencies
are not desirable for systems that operate with high values of 2 E/No°

The results for the square pulse case, Fig. 6.16, are somewhat
different. Here performance at low values of 2 E/I\Io is progressively
improved by reducing the cutoff frequency. For all values of fc, the
model predicts the same performance at high values of 2 E/No. There
is, however, a practical problem in reducing fc to a very low value.
As f0 is reduced, the amplitude of the filtered signal component that
is to be applied to the nonlinear filter is reduced to a very small
value and it becomes very hard to maintain a workable D.C. system at
these very low levels. It may be very difficult to design a
synchronizer to take advantage of the improvement offered by very

hard filtering.

;
!
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6.6 The Function of Wave Shape

The suboptimum model was solved for three pulse wave shapes; the
half sine, raised cosine, and square. In addition to these three, the
prototype synchronizer was also tested with a sawtooth pulse. The
results for comparing pulse wave shapes using an absolute value for the
nonlinearity and a low pass cutoff of 1.0 are shown in Fig. 6.27 and
6.28. The obvious conclusion is that raised cosine pulses offer the
best performance. The preference for the raised cosine pulse is even
better if, in the light of the discussion of Sec. 6.5, the cutoff
frequency of the input filter is reduced to .5. For the square pulse,
even the improvement in [€| for f, = .2 to .5 is not sufficient to put
square pulses on a competitive level with either half sine or raised
cosine pulses.

Fig. 6.29 presents the data comparing pulse shapes with the
infinite clipper nonlinearity. Here again, the raised cosine and half
sine perform about equally well and the square pulse somewhat worse at
low values of 2 E/NOo At higher values of 2 E/N0 all three wave shapes
result in about the same performance.

In summary, it can be concluded that, using IE[ as a measure of
performance, the best pulse shape to use is the raised cosine. The
half sine produces a slight degradation, and depending on the input
filter cutoff frequency and nonlinearity, the square pulse results in

a more serious degradation--up to a factor of 3 in [€].

97
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6.7 Suboptimum Synchronizer Used with a Correlation Detector

The performance of a correlation detector when it is synchronized
with the suboptimum system is shown in Fig. 6.30 and 6.31. In order to
qompute these curves, the results of Chapter IV were used. There, ,
curves were derived for the degradation of 2 E/NO VS, l_él for given
values of 2 E/N o For a given minimum value of degradation, these
curves supply the corresponding maximum value of I-él for each of the
wave shapes at several different values of 2 E/No‘ Either the model or
the results of the experiments may be used to compute the required value
of bandwidth of the bandpass filter necessary to produce this value of
[€].

The equivalent memory time is defined in the following way. A
single pole bandpass filter has an impulse response which decays
exponentially with a time constant 1/o = 2/Aw= 1/24fneb where Afneb
has been normalized to a center frequency of 1. Hence, each successive
cycle, i, of the response is weighted by the factor Ci = exp(—i2Afneb).
For cases of varied weighting into the past, a commonly used equivalent

memory or measurement time, in symbol periods, is

(] 2 -]
2
y={(Z c,)/ T C, 6.1
(i=1 1> j=

Using this for a bandpass filter results in

y = (rexp[-20f 4 1)/(1-exp[-24f 1) 6.2

If 24f o < .5, this can be approximated by 1/Afneb with less than 1%

error. Hence, memory time is inversely proportional to bandwidth for
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all but the shortest memory times. The curves of Fig. 6.30 and 6.31 were
computed on the basis that this relationship holds for all the bandwidths.

Fig. 6.30 shows the results for the suboptimum system using the even
function nonlinearity. Here, it is seen that the degradation using this
measure of performance for square pulses is much more severe than using
'EI as the performance measure. This is due to the fact, as shown in
Chapter IV, that correlation detectorslare more sensitive to errors when
signaling is with square pulses. Also, it is seen that the apparent
superiority of the raised cosine pulse over the half sine is reduced and
even reversed at low value of 2 E/No. Again, the reason is that the half
sine pulse is less sensitive to synchronizer error at the correlator.

Fig. 6.31 shows the results for the infinite clipper nonlinearity. They
are very similar to those of Fig. 6.30.

Perhaps the most interesting conclusion that can be drawn from these
curves is that the price paid in eqpivalent memory time becomes exceed-
ingly high as degradation is reduced toward zero. A "knee" exists in all
of the curves in the region of .05 to .1 db degradation. Increases in
memory time in the range of 0 to .05 db buy very little in improved per-
formance. On the other hand, for degradation greater than .05, small

increases in memory time bring great improvement in performance.

6.8 Comparison of Optimum and Suboptimum Synchronizers

How good are the suboptimum synchronizers? Fig. 6.32 and 6.33
compare the optimum and even function nonlinearity suboptimum synchronizer
on the basis of memory time vs. degradation of 2 E/No. The low pass cut-

off for all the suboptimum systems is fc = 1. For half sine and raised
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cosine pulses, the suboptimum system is worse than the optimum by a
factor of 2.5 in memory time. For the square pulse, the degradation is

a factor of 15. The optimum and suboptimum are farther apart for the
square pulse because the optimum synchronizer mskes timing errors, as
measured by lEI, about the same as for other pulses, while the suboptimum
performance, as measured by !El, is considerably worse for square pulses.

Considering the simplicity of the suboptimum synchronizers, perform-
ance as compared to the optimum is quite favorable and no effort is
warranted in trying to find a better self synchronizer.

The series of curves Fig. 6.34 - 6.39 compare the performance of the
three synchronizers for wvalues of 2 E/No of 4 and 16. For half sine and
raised cosine pulses, the even function nonlinearity is always equal to,
or superior to, the infinite clipper nonlinearity. For the square pulse,

there is a slight advantage to the infinite clipper.
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VII. CONCLUSIONS

Most of the conclusions that can be made from this research hgve‘
been reported in Chapter VI, They are repeated here in the interest of

clarity and emphasis.

7.1 Review of Results

This study is concerned with the performance of an optimum and a
suboptimum synchronizer. The significant variables for either case are
the input signal to noise ratio, the amount of memory time used in the
estimation of synchronization position, and the waveshape used for the
signaling pulse. Two measures of performance are used to measure the
role of these variables. One is-expected absolute error, ]E[, in
synchronization time and the other is related to the probability of
detection error for a correlation detector that is driven by the
synchronizers that were studied. This second measure points up one
conclusion which is not directly related to the form of the synchronizer.
For the three waveshapes that were studied, it was observed that a
correlation detector is significantly more sensitive to the synchroni-
zation error when the symbol is a square pulse than when it is either
the raised cosine or half sine symbol. In fact, the half sine performance
is nearly equal to that of the optimum physically realizable pulse.

The results for the optimum synchronizer indicate the following.

Using IEI as a measure, performance is inversely proportional to the
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square root of the product of signal to noise ratio and duration of
memory time for all three waveshapes. The type of pulse shape makes
only marginal differences and is of no real significance. Using
degradation of probability of detection error as a measure, two
significant results are observed. First, performance for the square
pulse is significantly degraded from that of the other two pulses by
about a factor of 4 in memory time. The second, and probably more
interesting, result is that there is a knee in the performance curves
for memory time vs. degradation. Above the kneé, increases in memory
time bring improvements in equivalent signal to noise ratio of only a
few hundredths of a dB. This knee occurs in the vicinity of 6 to 8
symbol periods of memory for the range of input signal to noise ratios
of interest.

From the results for the optimum case, some conclusions concerning
correlation techniques can be inferred. One proposed approach to self
synchronizers suggests that a bank of correlators be used to search for
the correct position. This method i1s somewhat similar to the case of
one symbol period of memory for the optimum solution. For low signal
to noise ratios, the results there indicate that such a correlator
solution will not yield acceptable operation. The degradation in
performance is too severe. More than one period of measurement time
is necessary for such techniques.

Two different suboptimum synchronizers were tested. These differed
in the type of nonlinear operation which was used. One used an even
function nonlinearity and the other a hard limiter—-differentiator--

full wave rectifier (HL~D-FWR) combination. Concerning the role of the
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ngn;inearity, the following conclusions are made. The form of the even )
function nonlinearity is not important. Square root, absolute value, and
square nonlinearities were tested and it was found that the performance

for all three with all other parameters held constant was not significantly
different. Apparently the nonlinearity makes no difference in performance.
The results for the second type of nonlinear operation show that for half
sine and raised cosine pulses, the even function system is better than

the HL-D-FWR system. For square pulses the advantage goes to the HL-D-FWR
by a slight amount.

The results from the suboptimum system show that, as in the optimum
case, the performance is inversely proportional to the square root of the
product of the signal to noise ratio and the memory time. However,
contrary to the optimum situation, waveshape does effect the performance.
Using |é] as the measure, performance for half sine or raised cosine
pulses is about a factor of 8 better in the product of signal to noise
ratio and memory than for the case of square pulses. Using degradation
of signal to noise ratio as the measure, the results indicate even more
the superiority of either the half sine or the raised cosine over the
square pulse, At signal to noise ratios of 4 and 16, the amount of
memory required to achieve a fixed degradation of signal to noise ratio

is 15 times greater for the square pulse. The knee effect also applies

to the suboptimum results.
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7.2 Conclusions

The conclusions that can be drawn from these resulbts are as follcwsT

Comparing the suboptimum to the optimum system shows that performance

for the suboptimum case is only a factor of 2 worse in memory time. This

factor is small enough so that there is no real merit in trying to imple-

ment and operate the optimum system.

For a practical suboptimum sysbtem, there is a significant gain in
synchronizer-detector performance when raised cosine or half sine pulses

are used instead of square pulses.

If a degradation of .05 db in effective signal to noise ratio can .
be tolerated, then a relatively short memory or measurement time can be
used. This time may be typically as small as 10 or 15 symbol durations.
This indicates that a system which uses a phase lock loop for the narrow-

band output filter can operate in a nearly asynchronous mode. Certainly

no great precautions are necessary for maintaining a stable rate of
symbol transmission. Furthermore, in channels with fading character-
istics, the fading rate will always be very slow compared to the required -
measurement time for all but the very slowest symbol rates. In summary, B
the short required measurement time allows for considerable variability

in the phase characteristics in the system. L

7.3  Recommendations for Further Study

The results of this research indicate that self synchronization is

feasible and can be implemented in a relatively simple way for anti-
correlated signaling. The performance for orthogonal system and M-ary .

alphabets has not been solved. These systems could be attacked using
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some of the same techniques. The results will probably be much the same.,
The most interesting area for further study lies in the phase response of
the bandpass filter to random inputs. The model of the suboptimum
synchronizer could be carried only to the point of computing the signal to
noise ratio at the filter. Exactly how the filter affects the phase
distribution at the output of the narrowband filter and what phase

characteristic for the filter is desirable is not known.
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On the following pages is the digital computer program that
was used for the simulation of the performance of the optimum
synchronizer using square pulse symbols. The programs for half

sine and raised cosine symbols differ only in the equations for

the waveshape.
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41

43
44

45

18

10
11

14

13
98

99

DC 98 KC = 1,LS5Y

DN 42 I = 1,JIN

XN{T) = GAURN(X)

X(I) = XN{I} + SGN#*5S(I)
XXX = GAURM(X). C

IF ( XXX Te Ne ) G TO 43

SG‘\J = "10
GN TO 44
SGN = #1,

DO 45 I = JINY , LS
XN{T) = GAURNA(X)

X{T) = XN(I) + SOGN*SS{I)
DO 15 1 = 1,18

J = NB(D)

M = J-]

SM = 0.

DN R N= 1,M

NN = LS + N - M

SM = SM + X{NIXS{NN)
PLL) = SH

T(IY = PLI) + Q(1)
SM = Q.

IF(J.6T. 1S) GO TO 18
D09 N = JeLS

NN = LS + N - M

SM = SM 4+ X(N)*ES{NN)

A1) = M

IF( T(I) LGT. 5.) GO TO 10

CLX = EXPAT(I)N)

YUI} = ALOG(CLX +1./CLX) +Y(I)
50 10 11 '
Y{I) = ABSIT{I)) +Y (1) ,
TFIN(I) GTe S.) GO TO 12

CLX = EXP(O(I))

7{0) = ALDG{CLX #1./CLX) + Y{(I)
GO 70 15 ‘
7{41) = ABS{Q(I)} + Y(I)
CONTINUE

Ixr = 1(1)

I =1

NN 13 J = 2,18

[F(Z(J) L. ZXZ) GO TO 13

X2 = 11J)

[ =J

CONTINUE

MM KBV,KC } = 1T

WHRITE(6,200) (MM(KBV,J) , J=1,LSY)
CONTINUE

CONTINUE

N 35 1T = 1,LSY
DN 20 K = 1,LR
NA{I,K) = C.

NN 33 J = 1,K8Y

IF(MMS,T) JNF. K) GY TO 30
NA(T,K) = NACL,K) + 1
CONTINUE



$ 18208
$ IBFTC

1
2

SQUAR

DIMENSTION NBU20 ), SO1D1) 4SRIS51)40(20),Y(20)yX(51)4XN(51),
PL20)yTL20)4Z(20)MMI5C0520)yNALL10420)4NAB(10+21),

EQINYF(10),5S(51)4NNBL20)
READ(S,10C) LS,LB

READ(5,121) LSY » LR

1001.

READ {(5,160) LSH , NPT
NG 1001 T = 1,NPT

READ(5,104) E(I)

nn o2 I = 1,18
READ(5,102) NNB(I)

ALS = LS ,
nop 3 1 = 1,LS
AT = I-1

S(1y = 1.

1032

1%

171 = 1 +15S
SCIII) = S(1)
READ(5, 104) SNR

 WRITE(6,204) SNR

R = SQRT{SNR/ALS)

A = SQRT(SNR/2.)

PE = 45-.5%FERFC{A)

DO 1002 T = 1,NPT

AGE = A

AFF A¥{1e=2.%F(1})
YY = ls = J5%ERFC(AFE)
FII) = YY - JS*ERFC(AGE)
DO 5 I = 1,LS

SRLT) = R*S(1)

DO 97 KA.= 1,LSH

JIN = KAX{LS/LSH)

KAV = (50%KA) - 50

]

DO 79 1 = 14JIN

79

80
66

TA = LS - JIN ¢ 1
SS{I) = SR(IA)

-« JINY = JIN + 1

TE ( JIN .GE. LS ) GO TO 66
DO 8D I = JINY,LS :
IA =1~ JIN

SS{I) = SR(TA)
DR 81 I = 1,L8
CNB(I) = NNB(I) + JIN

81

40

If ( NB{I) .LE. LS ) GO TO 81
NB(TI) = NR(I) - LS

CONTINUE

NN 99 KB = 1,LR

KBV = KAV + KR

DO 61 = 1,L8B

on 0.

Y1) Ne

XXX = GAURN(X})

IF ( XXX «GTe N } GO TO 40
SGN = -].. .
GO 10 41

SGN = +1.

Hon




Lo

oy
4
1
i

50

4000..

WRITE(4,201)

no sL I = 1,LSY

WRITE(A,203) 1

NAB{E, 1} = NA{L,L8)
WRITE(A,202) NB(Y1)y, NAR(I,1)
DRosSN K = 2,L°

KK = K-1

NABLT,K} = NA(T,KK)
WRITELA,202) NB(K}, NABLI,K)
LBR = LB + 1

SumMl Ne

SuUM2 = 2,

sSu43

Honn

Ql
NAB{T,LB8) = N
XK3V KRV
COEF Lo/(2.%XKBV)
DO 4000 KM = 1,NPT
KMN = LRB + 1 - KM
MRD = NABL{I,XM) + NAG{I,KMN)
XMRP = MRP
G = COEF®XMRP
SUML = SUML1 + G%F{KM)
GG = GEFIKM)
SuM42 = SUM?2 + GG .
SUM3. = SUM2 + GG*E(KM)
WPITE(6,1068) SuM}
QRATID = SUMIL/PE

Il -

. WRITE(G6.1C6) RATIOD

51
109
191
102 .
104
105
104
107
109
202
201
202

.2013

204

ABVM = 2.%SUM?
WRTTF(6,107) ABVYM

JSIGMA = SQRT[2.*SUM3)

WRITE(6,100) SIGMA

WRITE(6,201)

G T2 4

FORMAT([5,1%)

FORMAT(15,15)

FOOMATLIG)

FORMAT(F10.0)

FORMAT( 32H PROBABILITY OF DETFCTINN ERROR=, E15.5)
FORMAT(24H RATIO TO PERFECT SYMCH=, E15.5)
FORMAT(23H ABSOLUTE VALUE MOMENT=, E15.5)
FORMAT(20H STANDARD DEVIATION=, F15.5,//)
FORMAT(1X, 2014) ;
FORMAT( /)

FORMAT(1X, 215)

FORMAT(19H NUM. OF SYMBOLS = , [4)
FORMAT(5H SNR=y F5.1, /)

END

$IBLDR ERF
$IBLDR RANDPK

$DATA

.ERF 000
RANDPKO
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APPENDIX B

The probability density function for syrichronizing error that is
used in this work is the one derived by R:'Lce(l3 ) for the case of additive
narrowband gaussian noise and a sine wave. This appendix presénts some
of the pertinent information about this density function and experimental
evidence that it may be used to represent the random synchronizing error
process that is observed in the suboptimum synchronizer.

This density function is

2.
(R cos 21'1'6)} B.1

p(€) = e—R{l“"(,ﬁr-Ii)(coséﬂé)(l*i;erf[,\/ﬁ cos2m€])e

where € is the fractional error defined over the interval
-1/2 < € € +1/2 and R is the signal to noise ratio. The low order
moments of this function are obviously not easily evaluated in closed
form. They have been evaluated by numerical integration, and the
results for E] and ? are presented in Fig. B.1l.

These results for |€| can be compared with an asymptotic result
for large R. TFor large R, B.1 reduces to

2'
p(€) = 267 KB cos 2me e 08 <T€ B.2

Let x = 27€ s0 that

_ — R T 2
le| = % | x(os x)e R eos™ X g
(2m) 0

§ H
Qi

!
{
.
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Expanding cos(x) in a power series results in

= &R 2 2
'El =:5?ﬂﬁ)§ { JF x e R cos™ x ax - JF‘ET e B cOS” x dx + .'.}
2n 0 o~

For large R, only the first integral need be retained. Because the
value of exp(R eosz(x)) drops off very quickly with x, the majority
of the contribution to the integral occurs when x is small. Hence,
cosz(x) can be replaced by (1 - x.2/2)2 =1 -xF.... Making these
substitutions result in

€] = WfE jﬂ B g = T (1-e‘R"2) =20

(2m* “o (zm)%2.R JE

This line is also drawn on Fig. B.1 to show the range over which this
approximation is valid. It is virtually exact for R > 10 and is
never more than 10% in error for values of R down to .5.

The relationship of the sine wave plus additive gaussian noise
density function to the function that results from the analysis of
the first order phase lock loop is interesting. For the first order

10010(11;)

p(e) = (e(&’ cos 2'”6))/10(0')

where ¢ is a signal to noise ratio parameter. For the case of large «

this reduces to

p(€) = J2Tw o(1=cos 2m€)

In the range of relatively small values of €,

: —a§2ﬂ€22
p(€) =, /2no e 2
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Making the same assumptions on €, B.2 reduces to

p(€) = AR ¢ 2T

Thus, if R = &/2, the functions are identical. To compare the two{
functions over their entire range, the moments |El and ¥ € were also
numerically computed and are plotted in Fig. B.1. Observe that over
the complete range of signal to noise ratios, the value of « for a
particular value of [€| is twice the value of R. The same result is
true for ;5.. It can be concluded that as far as the lower order
moments are concerned, the two density functions are equivalent.

A second observation that can be made from these graphs is that
[€] and €% , the RMS error, are related by an approximate constant of
1.25. Since the error, €, has zero mean, RMS error and g are the same.
Hence iE[ can be directly related to the more commonly used variance
measure.

The results presented in Chapter VI show that the shapes of the
curves as computed using the assumed density function matched very well
with those of the observed data. Further experimental evidence that
the sine wave plus narrowband gaussian noise distribution is a reason-
able approximation to the actual distribution function was obtained by
megsuring the distribution function of the synchronigzer error made
under several different sets of operating conditions.

The measurements were made in bthe following way. TFor positive
errors, the output of the error detector is a positive pulse of

duration equal to the error. This pdlse is applied to an AND circuit

along with a short pulse that is delayed by a chosen amount from

PSR e




”%
et

PR

the correct synchronizing time. An output occurs at the AND circuit only
for errors greater than, or equal to, the chosen delay. By counting’the
number of output pulses for a fixed number of synchronizing pulses, an
estimate F(€) can be obtained. This estimate was obtaiﬁed by making 10
runs with 10,000 synchronizing pulses in each run for each delay. The
mean of these 10 runs was used as the estimate of F(€).

Fig. B.2 and B.3 present the results of such;measufements for two
representative cases. The first graph is for the synchronizer using
a half sine pulse and the second for a square pulse. In order to compare
the results with the distribution function fof tﬁe assumed density two
curves of the assumed F(€) are plotted. One is for a signal to noise
ratio which produces an ‘E’ of .023 and the o£her for ]E] = ,031.

The measured points are represented by the circlés and the dashed lines
indicate the range of tl¢ for the measured points.

It is seen in these graphs that the measured distribution has the
same general shape és the assumed one., Furthermore, comparing the
measured value of IEI with the location of the measured points shows
that the measured moment is consistent with the moment that is pre-
dicted by the assumed density function. It is concluded that the
assumed density function is a realistic approximation to the actual

function.
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APPENDIX C

In this Appendix, the calculation for the discrete and qontinuous
components of the low pass filtered random anticorrelated digital pulse
train is presented. A detailed outline of the calculations for the square
pulse case is given and the results for the half sine and raised cosine
are presented. Following this, a tabulation is made of the terms necessary
for the calculation of 3.39.

In order to compute the discrete and continuous components of the

spectrum of the pulse train, as given in 3.25 and 3.27, it is necessary

to compute
Hy(8) = s{(R,(£))° + (B, (8+1))%) c.1

and

HQ(S) = I{2r, (t) Rt(t.+’1‘)} c.2

Rh(t) is the '"head" response of the low pass filter and Rt(t+T) is the
"tail" response. The following derivation is for the square pulse. The

derivations for the raised cosine or half sine are similar but considerably

more involved.
Let w, = 1/RC = 1/7 be the radian cutoff frequency of the single

pole low pass filter. The "head response to the square pulse is

R (£) =1 - ot/ c.3
The "tail" response is, after normalizing the period to T = 1,

R, (t41) = (1 - o1/ Tyt /7 C.ly
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Now,

H,(t) = 2R, ()R, (t41) = 2(1—e'1/ T)(l—-e-t/ "'-)e"t/ Tla(t)=u(t-1)}  C.5

Let
6= e_l/T
80 that
-5 -
- 1-8 1-87e
H, (S) 2(1—9){ S+1 - —3127;—} | C.6

Since only the value of the continuous spectral density is of interest

only at the fundamental frequency, f = 1, 3.25 becomes

Scxs(l) H, (JZﬂ) H, (-Jéﬂ) = 4(1 o) 2,2 ﬂl"gl

z z C.?
+ (1-6)7(119) z(l—e)(l—e )(1+7)
3+72 z(3+2)
where Z = 1 + (2nm)° = 1 + (1/;£‘c)2
For the discrete components, it 1is necessary to evaluate
H (8) = £{(r, (£))* + (B, (+41))) c.8
From C.3 and C.4
R, () = 11 - 26”7+ &M (u(t) - u(e-1) .
R, (t+1)T° = (1~e)2e'2/ %) (a(t) - u(t-1))
Taking the Laplace transform and summing yields
-5 -3 2 -3 '
- [1=e 2(1-6e ~) . (1+(1-6) )(1-9 e ) :
i (S) [ s st 1/r * s +2/7 ] €.10
Evaluating this at 8 = j2m gives
2 2
d = A |2a-e7)(+1-e17) 2(1-8)
Sexs(1) = 7 ( 3 +7 Tz )
C.11

o ((1=62)(1+(1-0)%)  2(1-0)\|?
'V’”( 3+ 7 -7z )

5
{
|

£
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The corresponding results for the half sine case are

6 L 2 : '
_ Lrtreb ()t r(1:0) —6(1-0 ,
(D) > [ + & ] C.12

and

’Sd (1) =+ (..l- + (rr'r)z P (1-67) (1+(146)%) _ 1607 (14 EIJ
%8 Yl"' b 2Y R

C.13
‘373(1-9 J(1H10)Y)  2rrd(110) (1-3mrd)
4 + gmr(d - - = =)
. ) ) ) )
j where Y = 1+(nr)” and W = 1(3m7)
For the raised cosine pulses
6 (1) = Lozun 8210(1_9Y* [342- 4_(1+9)+x(1+e)4] 614
SXS 7%(3+2)
and
€ (1) =L|(1- 8n2¢3g1-ez[1 _ wrfrt(10)(1+(1-6)°) _ 121121'2])
i - Tsxs ZZ Z 3+ Z X
2 2 2
] + somn(1 + 20 ;3(1-»9)[1 'rz(;‘i)éﬁ(l‘—@) ) 4 1 81'r 7 D
‘g where x = ].‘i"(ln'r‘l')2 ' C.15

It is also necessary to evaluate the signal-cross-noise and noise-
cross-noise components of the continuous spectral density. Since the

value of these spectral densities is desired at only one frequency, f = 1,

the quantity S’mm in 3.37 is computed by

J

“+eoo
“I [1'-‘(-'-)4] = [Ll-:ﬁﬂ =] _oa C.16

i

S
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The S'sxn in 3.36 for each of the three waveshapes evaluated at f =1

is
SQUARE PULSE
- sin|m(l-
() = [ SBIERT 60y
HALF SINE

1 (1) = _Q.%M zG(K)d?\
o [ﬂ(l ~4(1-1)% 2]

RAISED COSINE

I [ﬁ(l A [1-(1~ A) ]

These integrals were evaluated by numerical integration with the infinite
interval being approximated by stopping the integration when the argument
of the integral dropped to .001 of its maximum value. The results of
these integrations and the evaluation of the equations C.7 and C.11
through C.15 are tabulated below for selected values of low pass cutoff

frequencies.

it




oo
S )
; ,;j;
£

Table C.1

Spectral Densities at Selected Low Pass Cutoffs

For Square Symbol
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fc Sdsxs Sosxs S‘st S‘NXN
.1 3.312:107% 1.310+1073 2.825°1072 5.979+107
.2 1.856°107 2.232°107 1.941°107% 43201072
.5 9.292.107 7.836+107 1.604-1070  3.924.1071
) 1.0 1.009+1072 1,002-1072 4.365-107" 1.256
: 2.0 4.768.1073 476801073 7.2,2410™ % 2.850
5.0 9.646107% 9.646°107% 9.169-107% 6.849
20.0 6.313-107° 6.313+107° 9.822+10"1 1.610-10%
o 0 0 9.900+107% 2.000°10%
“3 | Table C.2
- RM at Selected Low Pass Cutoffs for Square Symbol
é RE/N_ £, =.2 £, =.5 £, =1.0 £, =2.0 £, = 10.0
z 1| 1.16°107% 6471073 2,36°107> 5. 50-107% 9.31'10“"6
“g 2 | 2.96°107% 1774107 6.68°107  1.65°107°  3.26°107
5 5 | 8.75.107°  5.5,.107°  2.20-107°  5.87:10  1.47-107%
- 10 | 1.71-1070  1.16.1070  4.81.107%  1.35-107°  4.06-107%
J 20 | 2.93-107F  2.22:107Y  9.74107%  2.914107°  9.97-107%
50 | 4.86-1071  4.3.1070 22001070 70340107 2.87-1070
100 | 6.15.107F  6.48°1070  3.a-107 1.39-1071 6.08+107
200 | 7.07-107%  8.40-1071  5.37.107%  2.46.1071  1.24.1072
500 | 7.75-107Y  1.02 746107 4.51-107  3,10-1072
1000 | 8.03-1071 1,09 8.58:107F  6.220107F  6.05-107°
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Spectral Densities at Selected Low Pass Cutoffs for Raised Cosine Symbol

£ Sdsxs ° sxs st sxN 5 ‘NXN
1 | 3.81.1072 47274107 3.792:1072  5.979+1070
2 | 1.085.107% 1.202107% 27204107 4.320+107%
5 | 351101070 5.766+107 2.346°1071  3.92+107"
1.0 | 5.857-1071 5.038-10"% 6.48,°107%  1.256
2.0 | 8.280°107% 5.960+107° 1.098 2,850
5.0 | 9.655-107" 1.968:1077 1.409 6.849
20.0 | 9.976.107% 2.429.100%  1.494 1.610-10"
® 1.0 0 1.5 2.000-10"
Table C.h

RM at Selected Low Pass Cutoffs for Ralsed Cosine Symbol

ZE/N_ | £, = .2 £,=.5 £, =1.0 £, =2.0 £, = 10.0
1 15461070 1.17°1070 6.294107°  4.29°107%  1.63°107%
2 |12 3.23°1000  1.79:1071  1.28:1071  5.70°107°
5 |3.85 1.04 5.97-1070  4.55-107%  2,58-107
© 10 | 6.67 2,26 1.35 1.05 7.06+107%
2 |9.77 4.61 2,87 2.30 1.73
50 |1.31-10%  1.07-10%  7.45 6.08 5.00
100 |1.48.10%  1.86.100  1.50.100  1.z,.101  1.06-10
200 |1.57-100  z.89.100  2.99.101  2.50-10'  2.17-10%
500 |1.64:10%  4.33.100  7.23-101  6.29-100  5.53-10
1000 | 1.65-10%  5.18.100  1.36.10°  1.26-10°  1.11.10°
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Table C.5

Spectral Densities at Selected Low Pass Cuboffs for Half Sine Symbols

fc sdsxs s¢ sxN S'NXN
1 1.951-107%  5.519.107%
.2 1.432°1072  1,292-1073 9.638:107 4032071072
5| 14250207 8.218-207™% 8.246°107% 3.924,°107
1.0 3.706-107°  2,009-107% 2,257-1071 1,256
2,0 5.4,05¢10™% 1.242-107° 3.757107 2.850
5,0 6.113°107%  8.933-10°° . 728°107 6,849
20,0 6.242:107% 2,454,107 4.980-1077 1,61010"
® 6.250.107° 0 5,000,101 2.,000.10%
Table C.b6
RM at Selected Low Pass Cutoffs for Half Sine Symbol
2E/NO | £,= .2 £,=.5 £, =1.0 £,=2.0 f =10.0
1 [ 5.64:1072 2.98.107°  3.57.107°  2,60.107°  1.24.107°
2 |1.45-10%  8.12:10%  9.98:107%  7.65:107°  4.16-1077
5 |3,92.10%  2.56.101  3.28.1071  2.66.1071  1.74-107"
10 |6.85:107%  5.5,:1071  7.31-1070  6.13 lhol8o107F
20 | 1.02.107F 1,12 1.55 1.33 1.04
50 |1.39°107  2.57 3.96 3.49 2,92
100 | 1.58.107F  n.27 7.86 7.09 6.06
200 | 1.69-10°1 6,45 1.52:101  1.43e101  1.2-10
500 | 1.76-1071 9,24 3.39.101  3.57-100  3.13-10
1000 | 1.79-107%  1.08.100  5.75-201  7.09-201  6.28-100
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