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ABSTRACT

This document summarizes work accomplished over the period

December 1967 to May 1968 in a continuing study of strapdown gyroscope

design. Three common pulse torquing techniques for strapdown gyro.-^*re

described. The important considerations in choosing a rebalance scheme are

reviewed and t`le relative advantages of the three approaches are discussed.

Compensation of limit cycling binary torqued gyros is treated with the goal

of providing a better closed loop response. A discussion of the dithered binary

gyro ft presented, illustrating limit cycle determination and closed loop

characteristics.

The ternary pulse rebalanced gyro is analyzed usul g describing;
functions. Closed loop sinusoidal transfer characteristics are obtained and the
effect of random signals at the logic input are investigated. A brief discussion
of the proposed gyro and system error simulation is presented and attention
is given to gimbal misaiignments resulting frem angular rates about the
output axis.
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1 .	INTRODUCTION

The single-degree-of-freedom gyro perfected for platform inertial
guidance systems can exhibit large errors when adapted to the strapdown
application. The major new error sources are angular motion of the sensor
and the rebalance torque loop required to null the gimbal output angle. This
report documents s  , aspects of work performed in a continuing study of
strapdown gyroscope design.

Prior work is reported in Refs. 1 and 2. These two documents
provide a comprehensive review of important error sources in strapdown
single-degree-of-freedom gyros. Different rebalance loop configurations were
discussed and their contributions to gyro errors were treated. Particular
emphasis was placed on analysis of the limit cycling binary gyro using
describing functions. A system level figure-of-merit was established relating
gyro errors to system attitude error growth. The optimum set of gyro
parameters, those which minimize system error at some point in time, were
determined by analytic means. In the references it was concluded that, under
the assumptions used in the analysis, gyro parameter manipulation alone
cannot reduce strapdown gyro induced errors to a satisfactory level. Several
schemes for additional compensation of st-rapdown gyro errors were proposed
and analyzed. Most cf ihem involve the use of additional motion sensors and
application of corrections to the gyro. The work presented in these two
documents introduced seldom used techniques for analysis, of strapdown gyros.

The effort discussed in this report continues that analysis. Three,
basic pulse rebalance techniques are described. Important considerations
in selecting a torquing scheme are dibcL sled and fine relative nierits of the

1
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three approaches are reviewed. The ternary torqued gyro is treated using

describing function theory and time modulated two level. torquing is analyzed.

Motivation is presented for the construction of a comprehensive strapdown

gyro simulaiiuii w :ic:: evaluateG system attitude errors. In addition ; arimbal

suspension design is discussed. The appendices pr.ov"de some details of

describing function analysis. It Is shown that the ternary gyro loop response

is very sensitive to input amplitude and frequency. On the other hand, , time

modulated torquing permits analysis of the gyro loop using teehniqueF developed

for linear systems. This technique may 	 satisfactory closed loop

performance without requiring loop compensation. One conclusion is that the

time modulation pulse torquing scheme deserves serious consideration for use

in strapdown gyros.

i	 i
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2.	 DESCRIPTION OF PULSE TORQUING SCHEMES

2. 1 r u.LJOS E REBALANCED GYROS

The single- degree- of-freeaom pulse rebalanced gyro shown in

Figure 2. 1-1 generates an angular rotation about its output axis (output angle)

which, for small angles, is proportional tj the time integral of angular rate

about the case-fixed input ax16. In platfonn inertial navigation systems the

sensor package is kept at a fixed attitude with respect to a non- rotating set of

coordinates by gimbal rotations which null the gyro output angle. ;When the

gyros are mounted on the vehicle structure, as in a strapdown system, it

becomes necessary to provide some other means to keep the output angle s;nall.

Powerful torque generators are added to counter the gyroscopic moment

created about the output axis when angular rates take place about the gyro input

,Ws. The time integral of applied torque then becomes an indication of the net

rotation about the input axis. Consequently, the accuracy of the strapdown

gyro is limited by our ability to measure torque generator output.

The appropriate indication_ of torquer output is current flow

through the device. An indirect measurement, torquer current is subject to

the nonlinearities and uncertainties which relate it to the true object of the

measurement --- torque applied -bout the gyro output axis. In order to -nsure

accuracy and reduce calibration complexity it has become common practice

in strapdown gyro., to provide current to she torquer at two or three accurately

determined levels. Current duration is also carefully specified in advan-re and

the result is an output which is a digital representation of tht current-time

integral, i. e. , of rotation rather than angular rate.

4	 3
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Spin R.eferet ce Axis

Figure 2. 1-1 Single-Degree-of-Freedom Gyro	 A 
4IW_

Binary Delta l.Iodulation -- The binary delt 'l modulation pulse torquing

scheme provides a torquer current level of fixed n.agnitude with the same sign
as the output angle. Figure 2. 1-2 illustrates the binary detection logic used to

determine torquer current. The output of this logic is interrogated periodically.

Current ievcl may be applied over the entire period or may be dropped to zero

after a fixed percent of the interrogation period has passed. The gyro output

consists of a single positive or necative count at each interrogation. The net

gyro output over any period is computed from the net output count and knowledge

4
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Output (TorgLjer Current)

Figure 2. 1--2 Two Level Logic

Input (Output Angle)

of the incremental angle represented by each accurately metered current pulse.

Figure 2. 1-3 shows a representative train of torque pulses applied to the gyro.

Th e torque pulse shape differs from that of the current rectangular pulse

described above because of torque generator dyn4omics.

Figuire 2. 1- 3 R.epreserta.tive Torque Output From belt
iod^_zlate Pu l se Rebalance Technique

i er nar v	 M&ju-'ation -- T Ile ternary delta modulation scherne

i^ermits	 apse nce <i _ Lorque pulse, This can be viewed as an additional

srr: r:±	 Gl.'isre 2 1--4 illustrates the ternar;7 detection logic. The

5



Input
s

THE ANALYTIC SCIENCES CORPORATION

diadzone 26, or region of input which provides no output, ;A symmetric about

zero. For low frequency inputs, s can be rhlated to anpui rotation which

will not be detected by the gyro. However, for inpitt frequencies al y ^ %; 'he-

float bandwidth, the relation is more complex. The operation of the tertiary

delta modulation scheme is otherwise identical to the binary technique just

discussed.

Output

Figure 2. 1-4 Three Level Logic

Time Modulation — A third pulse torquing technique, time modulated

torquing, adds the gyro output angle to a periodic waveform: and employs binary

logic on the sum. Figure 2. 1-5 illustrates this approach. The net signal is

interrogated at a higher frequency than that of the added waveform, in the figure,

torquer current changes sign when the sawtooth resets and at the first interro-

gation point at which the net signal becomes negative. The result is one positive

and one negative current pulse each period of the sawtooth, the relative le-m-0-

of the two pulses being determined by the gyro output angle (See Figure 2.: 1-5).

Since the periodic waveform is divided into a finite nunA) r of e Leal -Intervals,

6
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Figure 2. 1-5 Time Modulated Torquing

Figure 2. 1- 6 Torquer Wavefor,n For Time Modulated Torquing
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the number of interrogations taking, place before the current level switches

provides a digital meal-=ure of incremental rotation about the gyro Input axis.

All three approaches provide digital sensor outputs which represent

increments of angular rotation about the sensor hiput axis. The angular rotation

is implied from a carefully calibrated torque pulse applied to the gyro gimbals.

Anv deviation of the actual time integr—a l of torque from that reprFsei-ited by

each output quantum will cause an error n the gyro output which is not

recoverable. i. e.. differs from gyro output errors caused by storage e

information by the float. Constant deviation of the iurque pulse: can cause

constant gyro drift rates while random variations provide random out put errors.

Differences between the net torque pulses generated and those implied by the

rebalanced gyro output are a major source of error in this kind of strapdown

sensor.

When system accuract considered. factol s such as quantization

and the information rate of pulse rebalanced gyros are important. The presence

of unforced oscillations in the gyro output is also considered when comparing

strapdown gyro torquing schemes. In addition, frequency response

characteristics and energy dissipation in the gyro loops are important. The

major causes and effects of pulse rebalancing errors are described below,

followed by a discussion of the weaknesses and strengths of each torquing

scheme.

2.2 ASPECT'S OF PULSE TOF.Qi,T G GYRO ERRORS

Torgt_e Pulse Variations -- Deviations of the torque pulse size are

caused primarily by variations in torquer cairrent level and timing errors in

starting and stopping the current flow. Of ':he two effects. current level errors

8
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are basically independent of the torquing scheme while the system error

cau-ed by imperfect switching is related to the frequency with which torque is
changed from one level to another. If either current level or switching delay
exhibit consistent variations between torque pulses of different signs,
Figure 2. 4-10 of Ref. 1 can be used to determine the drift rates which

result. Random deviations in the switching circuit delay will generate random
gyro output errors. Consequently, the rms system attitude error (as reflected
in the figure-of-merit described in Ref. 2) will grow as the square root
of time. If the timing errors are uncorrelated, rms gyro output error over
any period of time is related to the square root of the number of changes ip
current level which took p: n ce, Therefore, gyros that can change current level
more frequently have the potential to generate larger system errors by this
means. In delta modulated pulse torquing techniques the pulse frequ--ncv is
directly related to output quantization level and a definite tradeoff exists.

Quantization — The output of pulse rebalanced strapdown gyros is a
sei ies of digital pulses each of which represents an incremental rotation about
the input axis. This form is hot well suited for drift free calculation of the
di: ection cosine matrix because information regazding the order in which
rotations take place about the system axes is lost. The commutativity errors
which can result are largely related to the gyro output quantization level and
the manner and speed with which the outputs are processed. As a general rule,
fine quantization is to be preferred. Delta modulated pulse torquing schemes
achieve fine quantization by changing the torque level rapidly, thereby allowing
very small torque pulses. A practical limitation on the torque pulse size is
provided by the torquer time constant. If the desired torque level is changed
too frequently the actual torque will not build up to its peak value before
changing and torquing efficiency is sacrificed. In the time modulation torquing
scheme, quantization is not tied directly to pulse width. The torque switching

9
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frequency is strictly limited and quantization is achieved by specifying the

number of points in each cycle at which the torque can make an irreversible

sign change. In the absence of switching delays, infinitisimal quantization is

possibie. The practical limit is imposed by the ability to switch the torque

levels accurately in time. Torquer time constant problems are eliminated by

restricting the minimum positive or negative pulse lengths in a well designed

instrument.

Information Rate — Information rate, &.4ined as the frequency with

which new indications of system motion reach the direction cosine computer,

varies between the different pulse torquing techniques. Generally, both delta

modulation schemes can provide the same maximum information rate,

determined by the frequeacy with which the torque levels can change. The tirre

modulated torquing scheme usually gives new gyro outputs much less frequently

(this may also be viewed as a larger delay in transferring information) though

with as good or better quantization than the other torquing techniques. The

desirability of a.high information. rate depends on the computer which is used

to update the direction cosine matrix. if a Digital Differential Analyzer is

used, Wjro outputs can be processed as received and the single output level

of delta modulated instruments is desirable. On the other hand, if a whole

word computer is provided any of the three torquing schemes can generate

outpl!ts fast enough to make best use of the computer and the finer quantization

available from the time modulated technique is desirable.

Unforced Oscillations —All three pulse torquing schemes produce

unforced oscillations in the gyro loop at one time or another. The limit cycle

behavior of a control loop containing a binary noni -inearity is well known

(see Ref. 1) . In the presence of many inputs, the three level pulse torquee

gyro will also exhibit wrong way pulses and the time -modulation scheme can

give an incorrect net out put averaged over each torque cycle. The unwanted

10
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oscillations all result from quantization of the torque-time integral. Limit
cycles in pulse reualanced gyros can result in pseudo-coning system errors if
they occur with proper phase and at the same frequency. The binary delta
modulation scheme is usually thought to be the least satisfactory from this
point of view. However, it cap. be shown that slight differences between limit
cycle poriods of the different gyros in a strapdown triad will prevent large
system errors cf this type (see Ref. 1).

Oscillations of the gyro float can also provide rectified cross-
coupling errors. The binary delta modulation technique, with its ever-present
limit cycle, and binary tirr -modulation with its :orced float oscillation appear
most likely to generate rectified crosscoupling errors.

Gyro Frequency Response Characteristics — One representation of
the gyro loop transfer characteristics is the closed loop gain to oscillatory
input angular rates at different frequencies. The approximate determination of
this characteristic is discussed for the ternary delta modulation and time
modulation schemes in this report while analysis of the binary delta modula-
tion technique is presented in Ref. 1. The ternary approach contains one
serious disadvantage in this respect; its gain to input signals is very much
amplitude dependent. Also, the other two schemes lend themselves much
better to manipulation of the frequency response through loop compensation.

Energy Dissipation —Temperature gradients within the gyro
,tructure are a major cause of single -degree -of -freedom gyro drift. If the
gradients can be held constant, proper testing will enable accurate co-npen-
sation of these effects. While it consumes less total power in most motion
environments, the ternary delta modulation tor quing scheme does not usually
provide a uniform energy flow into the torquer. To avoid this obvious cause of
varying temperature gradients, a constant current source can be switched into

11
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a dummy load when no torque is called for. However, in this case a considerably

larger torquer results.

2.3 COMPARISON OF PULSE TORQUING TECHNIQUES

Binary Delta Modulated Torquing — This approach provides a high

information rate, a gyro loon response which is line; x with respect to input

amplitude and constant temperature gradients in the instrament. Its quanti-

zation level in a given application is limited by torquer dynamics. A gyro

with this rebalance scheme always limit cycles, thereby consuming electrical

power in even the most benign environment, and generating potential cross-

coupling rectification and pseudo-coning system errors. The uncompensated

gyro loop containing this pulse torquing scheme may not exhibit a satisfactory

closed loop frequency response. Section 3. 1 of this report explores the use of

loop compensation to correct this defect.

Ternary Delta Modulated Torquing — This pulse rebalance scheme

can cons-orve electrical power in a benign environment and has less tendency to

limit cycle. The gyro usually has a lower drift rate in the absence of an input.

It gives a high information rate suitable for DDA calculations but does not have

a linear dynamic input-output relationship. To avoid varying temperature

gradients within the sensor, a larger torque producing mechanism is required

and potential low power consumption must be sacrificed. The quantization

level is limited by the torquer time constant. Section 4 of this report deals

with the information transfer characteristics of the ternary delta modulated

pulse torqued gyro. The closed loop gain to sinusoidal inputs is shown to be

input amplitude sensitive and can assume several possible values in certain

input frequency ranges.

12
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Tirie Modulated Torquing	 Time modulated torquing gives potential',
better quantization than is currently possible with the other two schemes but
has a necessarily lower information rate. The limit cycle appearing at the
output is small but the gimbals will always oscillate and sizeable rectified
cross-coupling errors can result. For the same quantization this technique is
less sensitive to tim.'ng errors in switching. An essentially linear response
results. Power cons imption is high but temperature gradients are constant.
The time modulated torquing scheme is treated in Section 3. 2 of this report.
It is demonstrated that the uncompensated loop for this gyro can be made to
exhibit a more satisfactory closed loop frequency response than an instrument
using either delta modulation torquing technique.

None of the pulse torquing techniques discussed offers a clear
advantage over the others. If constant energy dissipation and linear response
are required at the outset, the three level approach seems to forfeit its greatest
advantages. Since the trend appears to be toward whole word computers,
adequate output rate and finer quantization appear to give the time -modulation

scheme considerable promise for future use.

13
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3.	 BINARY PULSE REBALANCED GYRO

3.1 COMPENSATION OF THE LIMIT CYCLING LOOP

Introduction — The binary gyro loop limit cycles whether ur not a rate

signal is present at the input (unless the signal is of high enough amplitude to

saturate the loop or suitably shaped to quench the limit cycle). As a consequence

of this limit cycling property, the closed loop frequency response to an input

signal is largely determined by gyro and torquer time constants and not by

easily manipulated electrical gains (see Ref. 1, Section 2. 4. 3). Specifically,

if the loop is linearized using describing function techniques, a response

characteristic similar to that of a second-order system results, with natural

frequency and damping ratio given by

T + T

W	 T T 
Cg	 rad/sec

f	 t 

and

C+gT f	 tg)

respectively. These frequency response characteristics cannot be changed

without making hardware modifications to change T  and Ttg . In addition, no

reasonable choice of Tf and Ttg can make the damping ratio greater than 1/2.

Thus, the frequency response is forced to have a peak near w n. Clearly,

some frequency sensitive compensation may be desired to remove this peak

and, mere generally, to permit ccntr of of the frequency response characteristics

without changing Tf and Ttg.

14
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Following the analysis used in Ref. 1, we represent the effective

gain of the binary nonlinearity to a sinusoidal signal by the Dual Input Describing

Function (DIDF), written N B(A, B). THs describing function is the ratio of the

amplitude of the signal frequency Harmonic at the nonlinearity output to the

amplitude, B, of the signal at the nonlinearity input when a sinusoid (limit

cycle) of amplitude A is also present at the input. If B is considered small

compared to A, a sim plified form for NB(A, B) results:

N B (A, B) = N B(A,0)	 B << A

2D
rr A (3.1-2)

where D is the drive level of the nonlinearity. Appendix A examines in greater

detail the conditions under which this approximation holds.

In attempting to compensate the limit cycling binary loop, we must

consider the effect the limit cycle has on the total open loop gain and phase

performance as seen by the signal sinusoid. The binary nonlinearity DIDF

gain to the limit cycle, written  NA (A), is given by

NA(A) ;A	 B << A
	

(3.1-3)

The complex open loop transfer function of the linear part o'. the loop is

written H(jw). The definition of the limit cycle requires that, at the limit

cycle frequency, w 

H(jwf) NA (A) = 1 /-1800	(3.1-4)

15
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The limit cycle amplitude A and frequency w  adapt to maintain this equality

regardless of the compensation introduced. From Eqs. (3. 1-2) and (3.1-3), it

can be seen that

NA(A), = 2 N B(A , B)	 B << A	 (3. 1-5)

Substituting for NA (A) in Eq. (3. 1-4) yields

H(jwf ) N B(A, B) 2 //-180, 	 (3. 1-6)

Here, H(jwf ) NB(.A, B) is the expression for the complex open loop gain as seen

by the signal sinusoid. We conclude that, due to the adaptive properties of the

limit cycle amplitude and frequency, the open loop gain and phase shift as seen

by the signal sinusoid will always be 1/2 /-1800 at wf . This constraint

resuits in a closed loop signal gain of unity and phase shift of -1800 at the

limit cycle frequency.

Linear Analysis — The 'Linear analysis technique used to investigate

in-loop cc-npensation of binary pulse torqued gyros makes use of the rect-

angular gain-phase plot (Nichols chart). The open loop gain are:'. phase

characteristics are plotted as a function of frequency. On the same plot, lines

of constant M(closFd loop amplitude ratio) are constructed. The closed loop

amplitude ratio for any sinusoidal input is the value of M intersected by the

open loop gain-phase curve at the same frequency. The M=1 line represents

the desired unity closed loop gain. Figure 3. 1-1 shows the, M=1 line and the

gain-phase curve of the uncompensated gyro loop with the following parameters:

14

tg 7- 10 -4 sec

Tf = 2. 5x10
-3

 sec

C = 10 5 dyne-cm-sec

Ksg = 2x10 4 mv; rad

Ktg = 1200 dyne-cm/'ma

16
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H(jw)

w

M=1.2	 =1
5	 M=1. 5

M=2.5

^— w£ = 2000 rad:`sec.

E!
I

10

5

2
C pen
Loop
vain	 1

0.5

--1801	 Open Loup Phase Angle (deg.)
	 -900

Figcr^ 3. 1-1 Open Loup Gain-Phase plot for Jnccnirensated
Binary Gyro
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Note that the gain-phase curve cuts through high closed loop gain lines at
frequencies lower than w f , producing a peaked frequency response. In order

to obtain unity closed loop gain at all frequencies below the limit cycle, we
must make gain and prase changes to the open loop which cause the compen-
sated gain-phase curctto coincide with the M = 1 line. As discussed in trhe

previous paragraph, the complex open loop gaiii must always be 1/2 / - 1800

at the limit cycle frequency, w f ; the gain-phase curve must cross the -1800
phase shift line with a gain of 1/2 at w  whether or not compensation is used.
It can be seen from Fig. 3. 1-1 that the M = 1 line also intersects the -1800
line at 1/2. Since sinusoidal signals at frequencies beyond W  are not of
major interest, we will devote our consideration to the frequency range up to
and including that of the limit cycle. Four sets of linear dynamic compensa-
tion are discussed. In each case the compensation is assumed to be placed in
the forward signal path as illustrated in Fig. 3.1-2. The presence of the

Signal	 I	 Binary	 iH	 Float	 Compensation	
Ncal nearity+	 G° aerator I

Torquer

Figure 3. 1-2 Position of Binary Gyro Loop Co:npensatioi-i

torque generator and zero order hold in the feedback path do riot afe,t the
closed loop frequency response characteristics computed.

18
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Lead-Lag Compensation — Consider linpar compeasation with

transfer function

sa- + 1
C

+	
o, 1

^^ I	

>
+ 1

C

Figure 3.1-3 is an asymptotic plot of the open loop gain as a function of frequency.

10
	 Frequency (rad/sec)

1
Open
Loop
Gain

i f	 1: cx • c	
1 rtg	

1 -c

100	
400 1000	 10000 20000 500001

10-1

10-2

10-3

Compensated

Uncompensated

Compensation Parameters:

= 20

C
0.00005

Figure 3.1-3 Open Loop Gain With Lead-Lag Compensation
(Lest Parameter Values)
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The peak closed loop gain can be reduced, although not forced to unity, by
choosing the compensation titre constant to be about half that of the torquer

For this value of ;(, increasing a to a value of 20 reduces the peak closed
loop grain to a minimum of about 2 5. Haiding a constant at 20 and increasing
Tc to four times the float time constant raises the peak closed loop gain to

a value almost as high as that of the uncompensated loop (= 5). At this value

of ^, the effect of a variz tions is reversed: increasing a increases the peak
gain. Lead-lag compensation does not produce a satisfactory binary gyro
f; e,luency response.

Lead-Lag-Lag-Lead Compensation — A form of compensation with
the transfer function

¢SCV TC +	 i I s	 TC + i)

• ^ ^1

(s TC + 1)

was investigation. Figure 4. 1-4 illustrates the gyro open loop gain-frequency
characteristic with this compensation. As with lead-lag compensation, this
scheme can reduce but not eliminate the closed loop peak. Large values of 

T 
(between Tf and 4T,) result in peak gains nearly as high (= 5) as in the

1
uncompensated case. Small values of Tc (=Ttg) also result in poor compensation.
The lowest peak vain is achieved by choosing a mid-range value for
TC (` U. 0005 = 11wf where w  is the uncompensated loop limit cycle frequency).
With this value of Tc , increasing a lowers the peak gain to a minimum value
of about 2. 2 for cY = 20. Lead-lag-lag-lead compensation offers only a slight
improvement over the lead-lag compensation scheme.

A
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1 :Y sc 	1 -f	 -

1 -c	 1 I ' tg	 `Y c
100	 400 1000	 2000	 1A00	 40.00
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uncompensate

Compensation Parameters:

a = 20
0.0005

C

10

1

Open 10-1
Loop
Gain 10

10-3

10-4

10-5

10-6

10-7

10-8

Figure 3.1-4 Open Loop Gain With Lead-Lag-Lag-Lead Compensation
(Best Parameter Values)

Damped Second Order and Lag — From Fig. 3.1-1 it can be seen
that the linear compensation necessary to provide an open loop gain-phase
characteristic which coincides with the unity closed loop gain curve must
provide rapidly increasing phase lag with little change in amplitude ratio at
frequencies immediately below u)V A resonant second order system proviies
rapid changes in phase shift but gives a sharp amplitude ratio peak. By
cascading such a system with a first order lag to reduce the gain peak, it was
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hoped that the desired gyro open loop characteristics could be ach-ieved.

Figure 3.1-5 shows the resulting open loop gain characteristic. The first two

Frequency (radj sec)
10

1 T	 ^ 	 1," TC	 If	 I Tt

100	 400 1000	 3000	 10600	 100000

Uncompensated

Compensated

Compensation Parameters:

7	 r = 0.03

Wn 
= 1000 rad sec

-c = 0.00033

1

open 10-1
Loop
Gain	 -2

10

10

10-4

10-5

10 
6

10

10-8

10-9

Figure 3-1 -5 Open Loop Gain With Damped Second Order and Lag
Compensation (Best parameter values)

compensation schemes discussed share a common characteristic; both produce
closed loop amplification over the entire frequency range up to the limit cycle
frequency. For the gyro parameters postulated, the damped second order plus
lag compensation can also produce .ciosed loop amplification for all frequencie
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below w  but only if one or more of the following conditions is satisfied:

wn > 720 Hz, TC > 1/wn or r > 0. ? . Otherwise, attenuation results over some

portion of the range w < w f . This behavior is seen in Fig. 3.1-6.

Neither large amplification nor large attenuation is desirable at any

frequency. In view of the fact that this compensation scheme cannot produce

a perfectly flat response, the best course of action is to choose a set of com-

pensation parameters which will minimize the maximum deviation of any part

of the closed loop response from unity gain. For this example they are:

r=0.03

W = 159 IIzn

T = 0.00033 sec.c

The resulting closed loop response has a maximum gain of approximately 1. 27

at 48 Hz and a minimum gain of about 0. 84 at 104 Hz with a limit cycle

frequency of 126 Hz. The uncompensated response has a peak of about 5 at
207 Hz and w, = 318 Hz. The decrease in the limit cycle frequency as a

result of compensation is unavoidable. Since damped second order and lag

compensation only adds open loop phase lag, w, is lowered and the usable

bandwidth is always decreased when the binary limit cycling loop is comnen-

sated in this way. Because of the nature of pulsed gyro loops, the limit cycle

amplitude increases when w  becomes smaller.

. Integral-Bypass Compensation — A fourth type of compensation was

tried. The motivation here was not to flatten the closed loop response but to

reduce the average low frequency float angle (taken over one or more limit

cycle periods). Specifically, it was desired to use compensation at the non-

linearity input which approximates a pure integrator for low frequencies, thus

giving the open loop a double integration characteristic for constant inputs.
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w	 w	 a
f 3	 f2	 fl

Frequency

Response Number	 Parameter Values

1^	 w	
c

	

n 
>720Hz,	 > -1 	 >.1

wn

wn < 720 Hz, T c <	 .01 < C < .1
n

wn < 720 Hz, Tc <<	 < .01
n

Note: The above figure is for illustrative purposes only.

Figure 3. 1-6 The Effect of Parameter Variations in Second Order
Resoslant Plus Lag Compensation
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When the additional integration is inserted in the loop the average float angle

is zero for a constant input. This compensation also reduces the float angles

caused by low frequency inputs.

Figure 3. 1-7 Block Diagrafm. for Integral Bypass Compensation

Integral-bypass compensation (see Fig. 3.1-7) has the transfer

function

s + K
s

The open loop gain characteristic for a gyro having this compensation is shown

in Fig. 3. 1--8. At low frequencies the transfer function is approximately K/s,

while at high frequencies the compensation has unity gain, no phase shift and

doe- not influence the loop response. The effect of integral bypass compensa-

tion is seen in Fig. 3.1-9 as a bending of the open loop response towards b.-,e

-1800 phase line at low frequencies. Increasing K broadens the frequency

range over which float motion is suppressed by enlarging the frequency range

over which the compensation behaves like an integrator. Note that a value of

K as high as 10 has little effect on the limit cycle frequency or the dosed loop
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Frequency (rad/sec)

1	 10	 100	 4001000	 101,00

Figure 3.1-8 Open Loop Gain With Integral Bypass Compensation
(Best Parameter Value)

response near wf . Because integral bypass compensation with K < 10 has its

major effect on the low frequency part of the open loop response curve where

the closed loop gain is near unity, the change in overall closed loop performance,,

is negligible. For this range of K, integral bypass compensation reduces the

average float hangoff from low frequency input rates and leaves the overall

closed loop response and limit cycle essentially uncharged.

Conclusion - Of the compensation schemes tried, the on,: composed

of a damped second order and lag is most effective in reducing the peak closed
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Figure 3. 1-9 Nichols Chart Showing the Effect of Integral-Bypass
Compensation on Open Loop Response
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loop gain. Of course, the results described above are determined for a

particular set of gyro parameters. Any conipensa llion which can ,provide a

unity closed loop response over a wide range of frequencies must contain

strong lag terms in its transfer function. The most effective compensation to

force the open loop gain-phase curve to lie along the M = 1 line seems to be a

resonant network which causes an abrupt increase in phase la.g. Because of

the strong lag used in this compensation, the limit cycle frequency i'7 lowered

considerably. The result is a higher amplitude limit cycle and decreasea

closed loop bandwidth. Some reduction of the bandwidth may be desirable,

but increasing the limit cycle amplitude ^s not. Larger limit cycle float 	 It

motions result, and cross-coupling errors increase.

The integral bypass scheme seems of icient ,n eliminating low

frequency float hango ff while leaving the closed loop response at the output

essentially unchanged. Of particular note is the fact that the limit cycle

frequency is unchanged, and the compensated fain-phase curve is identical

to the uncompensated one except at low frequencies. Since integral bypass

compensation modifies the signal open loop gain-phase curve primarily at low

frequencies (if K < 10) and second order and simple lag compensation effects

the curve at frequencies at least a decade higher, the two compensation

schemes will not interfere with each other if both networks are usEd `n cascade.

In that case the closed loop gain will be near unity out to w f and the gyro will

have small gimbal angles for low frequency inputs.

The problem of forcing the gyro open: loop gain-phase characteristics

to approximate the M - 1 line lends itself to more sophisticated analytic

techniques than were used in this investigation. Having postulated a form for

the forward path compensation, any number of compensation parameters can

be chosen to provide a best fit to the desired curve. For example, the a:ea

enclosed by the M = 1 line and the compensated open loop characteristic can be

28
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minimized. However, it is not clear that the effort involved in such an approach

will be justified by the :t..iprovement and practicality of the results compared

with those obtained in this section.

Table 3. 1-1 summarizes the compensation forms investigated and

the results obtained. Figure 3. 1-10 illustrates the best closed loop

characteristics i ,)r different compensation networks.

1G r 

ULLZ- Vtnpensated Loop
	 Lead-Lag

Compensation

5

Closed
Loop
	 Damped Second Order —	 Lead-Lag-Lag-Lead

Gain	 j Plus Lao Compensation
	 Compensation

1

'P ,ip re 3. 1-10 Best Closed Loop Fain Characteristics for Differentgi_
Compensation Networks

z
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3.2 LINEAR ANALYSIS OF THE DI'T'HERED BINARY TORQUED
GYRO

The addition of a dither signal to the nonlinearity input of a binary

torqued gyro can be used to create an approximately linear relation between

the gimbal angle, a . , and the gyre output (see Ref. 1). Also, if attenuation

of the dither oscillation by float dynamics is large enough, the dither non-

linearity can be represented as a limiter as shown in Fig. 3. 2-1. Linear

feedback analysis techniques can be used to investigate the transfer

4haracteristics o,: the loop illustrated over a wide range of amplitudes and

frequencies. However, the limiting nature of the new representation

for the dithered binary nonlinearity raises the possibility of a no-imput

limit cycle in the rebalance loop. Careful consideration reveals that the

potential limit cycle in the dithered gyro is essentially the same unforced

oscillation that occurs in any simple binary loop. Using the block diagram

of Fig. 3.2-1, it can be seen that any limit cycle must have a frequency

which., provides r, radians of phase lag in the linear part of the loop= the

nonlinear ity shown provides no phase change. The sinusoidal describing

function for the limiter; NA' is iLu-strated in Fig. 3. 2-2. Peak gain

occurs when the input sinusoid has an amplitude smaller than the dither

magnitude, Ad. In that case the describing function is a constant, D/Ad.

For a limit cycle to exist, the following relation must be sa^.isfied:
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D

^Ad
K sg.

'^'o.rque Generator

.A

Float Dynamics

wl	
ti y - i ,C,-- S—( Tf s + 1)

Figure 3.2-1

Kttr
rtg ^ ^ 1

Dit.►-ered Binary Gyro

NA

U

Figure 3.2-2	 Describing Function for the Limiter
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For the gyro model illustrated

K s K	 Tf TttgH(iWp) 1= 	 r	 T+ g	 (3. 2-2)
f tg

Consequently, to prevent a lima cycle the dither amplitude must be chosen so

that

KSgKtgD T  tg
Ad ---C	 Tf + Ttg (3.2-3)

If the dither frequency attenuation by the float is sufficient (validating the
representation of the nonlinearity shown in Fig. 3.2-1) and Eq. (3.2-3) is
satisfied, the application of dither at the input to the binary nonlinearity will
prevent the occurrence of a limit cycle. A,ialysis of the dithered gyro loop for
a wide range of inputs can then prccaed using techniques developed for linear
Feedback systems.

Example — Consider a single-degree-of-freedom gyro with the
fallowing parameters

loo 7- 	 gm-cm2

01	 Ktg = 1 1 200 dyne-cm/ma

H = 2x105 gm -cm 2/sec

C = 1 x 10 5 dyne-cm-sec

Ksg = 20 my/m rad

W,	 = 1 rad/;ec
imax

Using Eq. (3.2-3), the minhram dither amplitude to preclude a limit cycle is
3.84 my and the slope of the linear portion of the ncnlinearity, K. ^ D/Ad, is
43. 2 ma/mv. The natural frequency and damping r?tio of the linearized gyro
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loop are

KsgKtgK1
wn =	 ---- = 325 Hz

00

=	 1	 = 0.098	 (3-2-4)
rf wn

Figure 3 . 2 - `s illustrates the resultant frequency response for the linearized

loop. For purposes of comparison the frequency response of a limit cy^ling

binary gyro with the same parameters is shown. In interpreting the curve

shown it should be remembered that for the dithered binary gyro no oscillation

faster than half the dither frequency can be detected at the gyro output. This

is a consequence of averaging over each dither cycle. As the dither amplitude

is increased above the minimum value required to prevent a limit cycle, K1

decreases. From Eq. (3.2-4) it can be seen that the natural frequency of the

linearized gyro decreases and its damping ratio increases when Ad is made

larger. The amplitude ratio frequency response for the dithered gyro is also

shown in Fig. 3.2-3 for the case where di+-her amplitude is twenty-five times

the minimum value computed above. Note the improvement over that for the

uncompensated gyro.

When the dithered binary gyro is represented as illustrated in Fig.

3. 2-1. the frequency response c^aracteristics of the second order linearized

rebalance loop can be controlled by ^iarying dither amplitude. However,

damping ratio and natural frequency cannot be controlled independently. Any

increase in damping ratio (increase in dither amplitude) necessarily implies a

decrease in natural frequency. In the example, the entire range of desirable

loop transfer characteristics (wn and C) can be generated using dither signals
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large enough to pr_^vcnt a. linlit cycle. Considerably more design flexibility

is availat le with the dithered binary gyro. In addition, the interdependence

of peak closed loot) ga-i n 4.n ,.O bandwidth can be eliminated through insertion of

linear compensation in : ,t loop. The entire range of linear systems techniques

is available for avaly ir;g he compensated loop.

The use of a dither signal with a ternary nonlinearity offers no

relative advantage.

5

Pinar Loop with Minimum Dither to Prevent
Limit Cycle (con - 325 Hz, C = 0.048)

2

1

0.5	 Limit Cycliatg Binary
Closed-Loop	 Torqued Loop

Amplitude	 (X1 = 240 Hz, = 0. 135)
Gain

0.2

Binary Loop with 25 Times Minimum Dither
0.1	 (Wn = 65 Hz, ( 0. 5,

0.05

0 '12

!	 I	 I	 I	 1	 1	 !	 .
0.71 ` '	 1	 2	 5	 10	 20	 50	 100	 200	 500	 1000

Frequency, (Hz)

Figure 3. 2-3 Frequency Response Characteristics for Binary Rebslai.ce Loop
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4.	 TERNARY PULSE REBALANCED GYRO LOOP

Describing function analysis was of considerable value for treating

the binary gyro in Ref. 1. Similar technques are applied below to the ternary

gyro of Fig. 4. 1-1. Though the approach is basically the same, the effort

involved is greater.

b = dead-zone threshold in mv.

D =drive level in ma.

Figure 4. 1-1 Gyro Pulse Rebalance Loop With a Ternary Nonlinearity

4. 1 SINUSOIDAL FREQUENCY RESPONSE CALCULATIONS
USING DESCRIBING FUNCTIONS

As in Sect. 3, we desire to make approximations which will permit

application of linear analysis techniques for determining the closed loop response
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to sinusoidal inputs. With the binary gyro, the presence of a limit cycle

allowed us to approximate the describing function gain to a signal sinusoid by

a quantity which depends only on the limit cycle amplitude (Ref. 1, 2). The

closed loop frequency response to the signal was then determined by replacing

the nonlinearity with the appropriate gain and applying conventional linear

analysis techniques. Unfortunately, the ternary gyro does not exhibit a

clearly defined limit cycle and the describing function gain of the three level

nonlinearity must be treated as a function of the amplitude of the signal

sinusoid entering it. Also, because the float provides frequency dependent

attenuation, the amplitude of a si-suoid entering the nonlinearity is a function

of both the magnitude and frequency of the gyro loop input. Consequently, a

different size signal sinusoid appears at the input of the nonlinearity for each

signal frequency and amplitude ,-juibination applied at the loop input. For

each input combination explore, in the course of a frequency response analysis,

a different_ Aonlinearity equivalent gain must be ca l culated and a separate

determination of system output amplitude made - all to obtain one value of

closed-loop gain. To simplify matters in 
OF 

example, the input amplitude

is held constant and only the frequency varied to obtain a plot of closed--loop

gain vs frequency. However, it should be emphasized that a different plot

wili result from each value of input amplitude assumed.

Linearization of the Ternary Ionlinearity - The gain approximation

used to describe the ternary nonlinearity is the Sinusoidal Input Describing

Function (SIDF), written N A(A) and defined as the ratio between the amplitude

of the fundamental sinusoid at the nonlinearity output and the amplitude A of

`he pure sinusoidal input to the nonlinearity. N A (A) is evaluated from:

NA SA) _	 1 (A ) 2	(4. 1-1)
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It should be noted that the SIDF gain relates only to the first harmonic of the

waveform at the nondinearity output. All higher harmonics are ignored. They

are assumed to be attenuated when passed through torquer and float dynamics.

The assumption that the higher harmonics are removed by low pass elements

in the to-)p is generally correct when treating that portion of the output signal

reaching the nonlinearity input Consequently, the closed loop analysis is

not invalidated by ignoring higher harmonics at the output. However, the

high frequency signals do exist at the gyro output and will enter direction

cosine calculations. The frequency response curves obtained in this section

account only for the first harmonic of the gyro loop output. The signal

entering the nonlinearity is essentialiy the sum of the output fundamental and

the loop input signal, both filtered by float dynamics. The sampling

nature of the nonlinearity is ignored in the analysis which follows.

Describing Function Analysis: An Example - The gyro loop is

divided into two parts (see Fig. 4. 1-2) each of which will be treated separately

to obtain certain characteristics. Then the two similar sets of relations are

compared to obtain a simultaneous solution for the system. The technique is

analogous Lo load line solutions in electrical engineering. Linear analysis is

applied to the portion of the system shown in Fig. 4.1-2-a). If W. is a sinusoid

of known magnitude, an amplitude relation car. be  obtained between two sinu-

soids of the same frequency as the input, one at point a and the other at point

b. This ratio results fron. linear theory and does not depend on the specifica-

tion of an open loop gain relation between the signals e a and e  (see Appendix B).

When plotted for a particular gyro, the relation defines an ellipse for each

different amplitude and frequency o: the input sinusoid. If the input magnitude

is assumed constant, a set of ellipses, illustrated in Fig. 4. 1-3, results.

Each ellipse r presents a different input frequency.
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:	 (a)	 Linear Part of the Loop
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Figure 4. 1-2 Pulse Rebalance Loop Divided into Linear and Nonlinear Parts

A

wi

ea

Fi -ure 4, 1-3 Ellipse s itesulting From Analysis of the Linear
Pertion of the Loop
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The ternary ncnli.near element is treated separately (see Fig. 4. 1-2

(b)). The describing function, Eq. (4. 1-1), is used to obtain a relation

similar to that computed fr3m linear system theory. This characteristic,

illustrated in Fig. 4. 1-4, depends on the quantities D and (^ When the plots

of Figs. 4. 1-3 and 4. 1-4 are superimposed, the points at which the two

figures intersect constitute a set of operating Dints for the system. However,

not all of the intersections represent stable solutions. The su perposition of

the two figures is shown in Fig. 4. 1-5. Since each ellipse rehre,ents a

different loop input frequency, each intersection point on an ellip5 p represents

a loop operating point at that frequency. Every intersection point also supp4 s

a particular value for the nonlinearity output. Since the output of the nonlineari>. ,

is also the loop output, the absolute value of the loop transfer function is

simply e  divided by the input amplitude. The ratios obtained for the ellipse

of a particular frequency, v, represent possible closed loop system gains to a

sinusoid at that requency.

By determining a sufficient number of intersection points it is

possible to construct a closed loop amplitude ratio response curve for the

ternary gyro. Figure 4. 1-6 illustrates such a curve drawn from the intex :.ection

points determined in Fig. 4. 1-5. The peaked portion of the closed loop

response curve'exhibits a "jump resonance' s characteristic Similar to that

given by a softening spring. The effect of the dead zone on the closed loop gain

is seen as an abrupt drop to zero at the frequency vc . If there was no dead

zone, the response gait ► would :all off gradually with increasing frequency.

However, the dead zone causes the relay to block all signals below 6 in

amplitude at the nonlinearity input. As frequency increases, the float

attenuation increases until, at frequency v C , signal amplitude is less than &

at the nonlinearity input. Then the output, and consequently the loop gain, drops

abruptly to zero. Tread zone also causes the overhanging nature of the reFpopise

curve. At high input frequencies, attenuation by float dynamics prevents the
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Frequency

Fic;ure 4. 1-6 Ternary Gyro Closed Loop Gain

input to the noiuinearity from exceecing 6. As frequency is decreased the float

angle eventually becomes larger than the cea: zone, provic4ing a loop output

and generating signaJ at all points in tt ►: loop. T hib point occurs at a frequency

iower than v  because the gyro is essentially an open loop system witil an

output appears at tho nonlinearity.
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Effect of Diput Amplitude Be- "-use the nonlinearity it contains

has an an?plitude dependent output, the ternary gyro lonp exhibits amplitude

dependent characteristics. When plotted for different magnitudes of the input

sinusoid, the frequency response curves have various shapes (see Fig. 4. 1-7).

If the input amplitude is small enough (0.01 rad;`see in the figure) the closet4

loon, response has no peak. As the size of the input increases the jump

resorance characteristics and dual gain cutoffs discussed above become more

pronounced. A look at Fig. 4. 1-5 provides an explanation. The ellipsoidal

curves obtained from linear analysis are changing size and rotating. As

frequency increases, the length «f the major axis first increases, then declines.

However, rotation of the major axis is monotonic For the smallest input

amplitude plotted in Fig, 4. 1-7 no appreciable rotation of the constant

frequency ellipses takes place be-fore the loop (!gitpat drops to zero-. Wh. r, tl.e

ffyro output is raised to 0.03 rad/sec the ellipses rotate and the intersect15ii,.

points occur at nigher values of eb, giving a peaked loop response Wfie:i

largest input is analyzed, the ellipses not oruy rotate but also :-ecome long

enough to provide several intersection points at some frequ e ncies. A jump

resonance characteristic results. The describing function analysis outlined

alx)ve provides a useful tool for analyzin g ternary gyro loops.

4.2 EFFECT OF A IIANDOM SIGNAL AT THE NONLII Ǹ EARIT Y INPUT
ON THE FREQ'.IENCY RESPONSE

In this analysis we demonstrate how to obtain the closed loop

sinusoidal response cif the ternary gyro when a Gaussian random signal is

present at the nonlinearity input aloag with the sinusoid. The rzadoni signal,

descrilwd by its standard dt •. iat i(;li, r r . can be present as a : esu;t of .3

randt,ni ).lput to thi- ^;yrt., iit,isc • w, ui< 11a ► p or deliberate ,njection in the forin

()f a r.'inCl o m diihL-r. The present disc,ishiitn iii"-Us ntl assui:"iption about tht'

()rigiri it tht• ran& ni sivaal.
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The Describing Function - Due to the presence of a random signal in

addition to the sinusoid, the describing function train to the sinusoid is different

from that used in the previous section. It depends not only on the amplitude A

of the sinusoidal input to the non) inearity but also on the magnitude of the

random input. A random signal can be described by its statistical moments.

If it is assumed to be a Gaussian, zero mean variable its distribution is

coniY^letely specified by a standard deviation, ur , and the describing function

for the sinusoid is written as N A (A, vr)'. This function is giver. for the ternary

nonlinearity in Appendix E of Ref. 3. As U approaches zero N
A

 (A., Qr ) becomes
r

the describing function for a pure sinusoidal input. Figure 4. 2-1 illustrates

the effect of the random input on the sinusoid transfer characteristics of the

ternary nonlinearity. It is similar to Fig. 4. 1-4. The output characteristic

shown is the average amplitude of the output harmonic of the same frequency

as the sinusoidal input. ThE' effect of a random input to the ternary nonlinearity

is to make the rise of the sinusoidal input -output carve more gradual. When

v_
c
 '=0 and A < o there is a fin i+ probability that the net input to the nonlinearity

will exceed o and have the same sig n as the sinusoid. 'There is a smaller

R	 probability that it will exceed the dead zone with the opposite sign. When the

mean is taken, a non-zero average value for the appropriate nonlinearity

o ,itnut narmonic results. In this way the sinusoid is boosted through the dead

zone by the random signal. On the other hard, when A exceeds b the fact tl:at

the :yet input-to the nonlinearity can i,ave a sign opposite to that of the sinusoid

produces a describing function gain somewhat lower thati that occurin_ ill the

absence of random signals. It can be seen it :u Fib;. •1. 2-1 iha: tt,t

of adding a randon: signal at the nonlint ,	 .lipul

function Bair for the sinusoid less an:.

Unfortunately, the rresenc t

more than just a chan ge in NA > stric! ..	 t ..	 K - It . , k : _ i t t

5
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A

Figure 4. 2-1 Eff ct of a Random Input or. the Sinusoid
Transr ;ission Characteristics of a

ternary Nonlinearity

through ' rle use of- a descri -)ing function_ gain N r (A, or  and knowledge of the

characteristics of the random signal at the point where it enters L'he gyro

loop. sinc-e NA and N  both depend on A and crr , solution of the closed loop

elate ,ris in the presence of both a sinusoid and a random signal requires a

complicated iterative procedure. Howe ,.er, in order to illustrate the effect

of _'a ndoIi? inputs to the nonlinearity we will assume differ • (.:t values :A '7r
without si)ecifvin- their

T!.--1 la,t r t tat the c	 ; rerrese.it the average response

t	 _:yen t auti_.id	 .t;	 -it-ir :alut-.	 ft -.%-e are irteieL-tera in

o Alt :-i of ~yI o outp:	 n a rt" : ,	 'lt lli„Cja' _ ' h1 Iire( Ion co ;ine matrix

1c.tion or on the system drlil rate gellet • ai-'t.,	 it:	 ,aLue representation

ti ^t: -1 . 1 ,, useful a.: , an exact one.
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Changes in the Frequency Response - F igare 4. 2-2 indicates t'.e

ellipse intersection points for the sinusoid input -out put curve vrhich results

waen a r.indom signal also enters the nonlinearity. Note that the l 'N—L*l;c od

of multiple intersection points occuring on any one ellipse is reduced. I ?

this particular example there are no multiple intersec t ion, ;x:ints. Also,

because there can be an ou`put for n <: b, all ollipse;; nave at least one

intersection point, i l.e effect L a .he s?nuscid fre rpericy re-ponsc is illustrated

in Fig. 4. 2--3, .Since n•- !1li; se has niutl=.t['e ::,;ersections, there is only one

value of closer loop gain at each frequent; the jump ;esonanri^ phenoinenon

is elimina'ed. Also `he cl oy---a loo pain is greater than. zero for all

i
-0 '-Zz/ 

i! 

3

e
a

Figure 4. 2-2 Ellipse intersection Points Caused by random
Non? inearity Input
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frequencies and the sharp cutoff found in Fig. 4. 1-4 is eliminated. Figure 4. 2-4
shows the three frequency responses corresponding to the three nonlinearity
curves of Fig. 4. 2-1. As a ,r increases, the jump resonance disappears, and
bandwidth increases. Gradual gain reduction at high frequencies replaces
the sharp attenuation. In short, when the randoin signal is present, the closed
loop frequency response appears to be. more like that of a linear system.

^

^

^

^

i

i

i

I

I

I

I

^

I

i

I

I

I

i I

i v2 v3

Frequency

Figure 4. 2-3 Closed Loop Response fo* a Ternary Gyro With
Random Nonlinearity Input
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5.	 GYRO AND SYSTEM ERROR SIMULATION

5. 1 MOT'1 'ATION FOR A SIMULATION

The analysis and results reported in Refs. 1 and 2 are based on

several assumptions and simplifications. Before proceeding with further work

based on those results it would be pruc. ,3nt to establish some check on the

va.idity of prior approximations. While simulation is not a perfect substitute

for the construction and testing of hardware it is Ponsiderably less expensive

and far more versatile. As an intermediate step between analysis and prototype

construction, simulation is ideally suited to the present stage of the investi-

gation.

Topics which were treated in an approximate manner during the

prior analysis include crosscoupling errors, gyro structural dynamics, random

vehicle angular motions and closed loop characteristics of pulse torqued gyros.

When crosscoupling errors were computed in the case of oscillatory angular

motion, the gimbal output angle was obtained from a linearized model for the

binary pulse torqued gyro. The linear sensor approximation does not take into

account the pulsed nature of the rebalance Marque or float angles generated by
r

limit cycling. In addition, treatment of crosscoupling errors in the ternary

pulse torqued gyro is vary difficult even with the aid of describing function

techniques. The nonlinear nat-ire of pulse rebalanced gyros does not permit

confidence in the results obtained from analysis of cr ,)sscoupling effects unless

they are substantiated by simulation.

The simple model of wheel and gimbal dynamics used in almost all

the previous investigat.ins ignores the lightly damped structural vibrations

which can occur. Though these vibrations lend themselves to mathematical

Y-
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I	 It	 .,a

description as linear dynami f? effects, their inclusion makes the analysis of the
gyro loop behavior considerably more complex. Even the simple determination

of their effe .,,t on 1 -1: Lt cycles in a binary gyro led to the curious indication that
three limit cycles with the same amp.itude but different frequencies were
mathematically possible. Whether the twu additional limit c ycle modes will in
fact occur is an appropriate 3ubje& for a simulation study. 4- Indeed, through
simulation, it should be possible to determine when and if structural dynamics
z: e of any major importance in strapdown gyros.

In the portion of Ref. 1 dealing with the gyro parameter optimiza-
tion, several approximations-, and simplification., were made to permit easy
calculation of gyro errors caused by random vehicle angular motions. A
simulation which generates realistic analogs of random angular motion about
all major sensor axes is nee , __d to c? ,_eck the assumptions. In addition, non-
linear sif;iulation of the sampled switching logic found in puise rebalanced gyros
will be useful in evaluating sensor closed loop transfer characteristics and to
check the validity of the continuous signal describing function analysis used in
the past.

Several questions which arose and were left generally unanswered in
the preceeding work can be treated easily by a weii designed simulation. In the
discussion of strapdown gyro error compensation, the possibility of using the
three basic gyros to measure angular motion for Their own compensation is
treated. Stability and accuracy analyses of this approach are very difficult to
perform analytically because many closed loops, often containing time-varying
gains, are gener _ted. However, the technique is so attractive in ternis
of cost, power, we'ght and re:iability that it must not be ignored for this reason.
A well designed simulation of three gyros and tb-- compensation calculation will
permit an empirical determination of the feasibilit y of this approach. In addition,
simulation provides an inexpensive way of checking all proposed gyro error

L
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_^-t.

compensation schemes, including their sensitivity to the . ccuracy of various

motion sensors.

In the work reported by Refs. 1 ,l nd 2, a system level figure-of- ^.

merit was developed to indicate the effect of gyro errors on strapdown system
WrE :accuracy. Equations were developed relating the time histories of gyro errors

to system attitude error. These expressions were exercised in the case of

certain easily described gyro output errors (ias, white noise, oscillation-s,

etc. ) to give simple analytic relations between sensor and system drift cates.

When examples were presented and parameter optimization was illustrated the

latter relations were used rather than the original more complex equations

which require complete specification of gyro error and system attitudes histories.

The approximation which results is a fit subject for validation by simulation.

In addition to verifying results from prior analyses, a well designed

flexible simulation will be invaluable in the continuing study of str.•aodown

sensors. Compensation within the gyro loop is easily analyzed and the effects of

various torque generator characteristics on system orrors can be studied. Test

procedures for determining basic sensor error parameters can be evaluated.

Using the simulation, dynainis test inputs can be desipicd and simulated

information will be avai.alie for use in compa_ itic, different test data reduction

techniques. Finally, the versatility- and flexibility of a simulation must be

emphasized. While th ,? ultimate ver y _;ati^	 stir lies ii -. .)ns : ►lotion and

testir4-, of actual hard:..;.e, wi ►en it is still desirable to investigate many

proposed char.fea ;n h,ro rZrameters '_ 	 ^.iulat;, n provides an inexpensive

and expedient means.

Description of the Projected Simulation --'The simulation planned

and under construction is illustrated in Figure 5. 1-1. Investigation indicates

that a purely dig;:.al simulation will be too slow when numerical integration is

19
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used with the complex, high frequency dynamics to be simulated. On the other

hand, the system error is to be computed using the error growth difference

equations described in Ref. 2. This requires a digital computer. The

hybrid simulation shov.-n permits simultaneous determination of high frequency

variables and accurate calculation of s ysteni error growth. Three gyros,

including pulse rebalance torquing, will be simulated on the analog portion along

with random and deterministic motion in three dimensions, gyro motion-induced

error torques and error compensation schemes. The gyro models will include

structural dynamics when desired. Sensor outputs and true angular motion

will be provided to the digital portion for calculation of system attitude errors.

The simulation described remains a flexible tool for analyzing additional

aspects of strapdown sensor errors. The gyro models can be changed to

accommodate studies of exotic sensors as well as accelerometers.

ANALOG COMPUTER

I Measured
I GYROS I Rotational

Error Torques	 I Environment

I Compensation
Detailed Dynamic Models

I I

I

Actual

ENVIRONMENT
Rotational

i Environment

Deterministic I

I Random
I

T

System
Attitude

DIGITAL Error

COMPUTER

T

Figure 5. 1-1 Hybrid Simulation of Gyros and Calculation of
System Attitude Error

53



THE ANALYY1C SCIENCES CORPORATION

5.2 PROGRAM FOR THE DIGITAL PORTION

One function of an inertial navigation system is to provide an

indication of vehicle orientation with respect to a reference coordinate frame.

In strapdown systems this requirement is satisfied by computing a direction

cosine matrix, C, relating vehicle and navigation reference frames. Giver an

initial C matrix, the direction cosines can be computed from the history of

rotations about each body axis. If we compute C at discrete intervals T seconds

apart, the direction cosines at the end of the (n + 1)st interval can be expressed

in terms of those at the end of the prior period and a matrix of incremental

angles, Ad (see Ref. 1). The matrix AO contains the angles through

which the body axes have rotated since the last sample time. The equation

relating the twG direction cosine matrices is:

11 A

Cn+1-Cne
	 n	

(5. 2-1)

when computer considerations such as quantization, word length and truncation

are ignored. AO n  is defined by

(n+1)T 0 -Wz 
co y

AO  = 1	 W  
0 -wx dt	 (5.2-2)

nT
-w w 0Y x

where wx , co y and w  are the angular rates about the body axis. In practice the

elements of 0 0  are measured by the x, y and z axis gyros.

Generally, there is a difference between the actual A 0 n matrix and

that obtained from gyro measurements. The difference between the actual

A 0 n matrix and that given by the gyros is a third matrix, E n, which represents
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the error. The presence of E 11 results in an error, AC, in the C matrix

computed front the gyro measurements. Given E 11 for all values of n, we can

c1 0111pute AC at the end of each interval. A difference equation for AC which

retains second order small matrices is obtained from the series expansion of

Eq. (5.2-1):

AC 11+1 ~ Cn+1^En + 1 (E11)2)+ AC11CTCn+1(I + En)	 (5. 2-3)

The figure-of-merit for gyro performance, p n , can be computer? from AC 11

(see Ref. 1):

!	 pn	
2 trace(ACTAC Il )	 (5.2-4)

a

Description of the Program — At each sample time the digital

computer portion of the simulation receives the simulated gyro outputs (pulse

counts) and true body rotations (actual a 9 n matrix) as inputs. The program

then proceeds to comt,uLC L n' Cn+1' ACn+1 and pn. The matrices C11+1 and

AC11+1 are stored for the next cycle and pll is provided as an output. Figure

5. 2-1 is a flow chart for the program. Oil 	 chart, Co and AC o are initial

condition matrices for C and AC, respectively. The number n is the current

number of compute cycles executed. This program has been run oil digital

computer identical to the one to be used in the simulation. The compute cycle

was found to be about 45 cosec in duration. This constitutes a lower limit on

the size of the sample period T if the digital computer is to process data when

received and the analog simulation is not time scaled. The program was also

checked cut on an 1113M QUIK-TRAN time -sharing system. Simulated gyro error

inputs in the form of ramps, sinusoids and coning motion were used. In every

case the computer program output U) n) agreed with the expected result. The

program is considered ready for use.
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STOP

Figure 5. 2-1 Flow Chart for the Digital Part of the Hybrid Simulation
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6.	 GIMBAL MISALIGNMENTS CAUSED BY OUTPUT AXIS

ANGULAR MOTION

A single-degree-of-freedom gyro experiences torques about its

input axis which result from angular rates about its output axis. These torques

misalign the float about the input axis, IA, to a degree which depends or. the

stiffness of the float suspension. Suspension stiffness together with the flotation

fluid determine the time constant of the relative motio p between case and float.

In this section we analyze the time response of the float misaligrunent about IA

to a step angular rate applied about the input axis, OA.

Figure 6. 1-1 shows the model assumed for float dynamics about the

input axis. The suspension stiffness is re presented by linear springs and fluid

damping by a pair of dashpots.

	

a i =	 Float-to-case angular misalignment about IA

	

Cr o =	 Float-to-case angular misalignment about OA

	

wi =	 Case angular rate about IA

w o = Case angular rate about OA

	

I.. =	 Float moment: of inertia about IAii

H = Wheel angular momentum

f	 =	 Distance between float center of mass and each float bearing

	

D =	 Equivalent linear damping constant in. dyne-sec/cm

	

C i =	 Equivalent rotational damping constant in dyne-cm-sec

Df 2

	

K =	 Equivalent linear spring constant in dyne/cm
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Y
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U

Figure 6. 1-1 Modei for Gyro Case and Float Dynamics

The equation for angular motion of the float about IA is derived:

Torque on Float = Gyroscopic Torque -

(Spring + Damper Reaction Torques)

Iii(wi + c;i)

or

	

+ ai) =-H(wo + 6z	 -2Df 2 61 i - 2KQ 2a i	(6. 1-1)

Simplifying, we have

H (w 4. cr ) -	 no	 w. = a + 2(52 a i
.+Q a.	 (6.1-2)

I..	 o	 i	 i	 i

where

	

_ =	 Df	 (6.1-3)
2KIii

C.i

f 2KIii

2K

	

Stn=f	 I..	 (6. 1-4)
ii

and
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If we assume W  and (Y 0 to be zero, Eq. (6. 1-2) reduces to

	

2	 _ H

	

i + 2(52 11 cx i + S2 2 	I.. U)	 (6.1-5)
11 1

11

For most gyros the float motion is heavily damped and the response

to a step of angular rate about CAA can be accurately described by a single

time constant, il.

	

0 H	 (1 - e -t/, )	 (6.1-6)

X11	
11

1	 C1

	

—

	

(6.1-7)

	

^2

	

K 
11 (S	 ^	 )

Equations (6. 1-3), (6. 1-4), (6. 1-6) and (6. 1-7) are used to compute float

misali-m-ment behavior for different values of C. and K. The fixed gyro

parameters chosen are

H = 2. 5 x 10 5 dyne -cn-, -sec

f = 3. 6 cnl

I ii = 300 gm-cm2

Three plots are presented to assist the gyro designer in picking the appropriate

suspension stiffness and damping coefficient to constrain misalignment about IA.

Figure 6. 1-2 shows the behavior of the float time constant, r, as a

function of K and C.. Given r we can enter Fig. 6. 1-3 and obtain a time
1	 0

history of the normalized float angle, 'It-Ka i /HWO . Note that any time constant
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Figure 6. 1-2 Float Misalignment Time Constant as a Function of
Suspension Stiffness K and Damping Constant Ci.
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Figure 6.1-3 Normalized Misalignment Angle Response to a Stet,
Angular Rate About the Gyro Output Axis
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obtained from Fit;. 6. 1-2 implies f = 3. 6 cm. Figure 6. 1-4 allows us to

obtain the misalignment angle as a function of time directly. The effect of

suspension stiffness on the time response is readily observed.

If the suspension is not stiff enough for the range of expected output

axis rates, the float pivots can strike the bearings. The resulting static friction

bethveen pivot and bearing surfaces provides a static break-out torque, - s , which

masks small torques applied about the output axis by input angular rates.

Accordingly, when the three-level torquer it used input rates smaller than rs/H

are not seen at the sensor loop output, and the gyro has an effective rate dead-

zone.

The force, F, pushing each pivot against its bearing results from

the gyroscopic torque caused by an output axis angular rate and from forces

applied by the gimbal suspension:

Hw

F= 2f ° -Kd

where d is the clearance between bearing and pivot. Knowi"' "static' an

effective measure of static friction at the pivot-bearing interface, we can

evaluate , :
s

s	 2/1 static  F

11static(
!^

 - 2Kd
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w  _ 2Kd )
±	 static	 C	 H

In a binary .5, ro the constant application of torque by the Torque generator

prevents this deadzone.

5 x 10-10

	

1	 300  111 -CIII  -
11	 •

	

!	 3. 6 cm

	

4 x 10-10	 1. 0 sec	 C	 10 acne-cl 1 -sec.i

	

t	 tllllt` trttlll initiatlt,ll t;f it
stele .II1'Ul Ir I'Me 1,1[:Ut

	

3x10 10	 t 0. E sec
the output axis

H 
0

11 dune-cm)

	

2 x 10-10
	 t 0. 5 sec

	

0	 t 0. 3 sec
1x10

t -0. 2 sec

t -0, 1 sec

10 ,	108	 109
K(dcne cm)

Fi,,ure 6. 1-4 Normalized Misalignment for Values of
Suspension Stiffness
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7.	 CONTINUATION OF EFFORT

Development of the gyro syst'm error simulation will be the focus

of future work. For the reasons stated in Sect. 5. 1, the hybrid Finiuiation is

both a useful ar gil necr ;sary design tool. Upon completion of all the program

subsystems presently anticipated, the simulation will first be exercised to

check the validity of assumptions used in previous analysis. Then, the

possibility of compensating environment-induced gyro errors by processing

outputs from the basic sensor triad will be explored. The use of additional

angular motion sensors will also be investigated.

The equations for single-of-degree-of-freedom pendulous accelero-

meter will be developed and compensation for this instruTnent will be treated

by both analysis aad simulation.

In brief, it is expected that the remainder of this study will advance

knowledge of strapdown sensor errors and their reduction to the point where it

can be used as the basis for some hardware construction decisions.
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APPENDIX A

ACCURACY OF THE SMALL SIGNAL APPROXIMATION

TO THE DUAL INPUT DESCRIBING FUNCTION

FOR THE BINARY NONLINEARITY

In Sect. 3. 1 the Dual Input Describing Function (DIDF) gain of the

binary nonlinearity is used. The describing function gain for a small signal

sinusoid in the presence of a large limit cycle sinusoid is expressed by the

approximation:

Z
N	

D
B 
ti 

A

where A is the limit cycle amplitude at the nonlinearity input and D is the relay

drive (output) level. It is desireable to E„ duate the accuracy of this approxi-

mation.

The DIDF is given for two sinusoids in Appendix D of Ref. 3.

Denoting the amplitude of the small signal as B, where B/A 0 p, p < 1:

	

NB	
C

(A, B ) _	 E (p) - ( 1 - p2 ) K(p)]
r Bp

where

	

7T 1/

K(p) _ `	 d	 (Elliptic Integral

	

10	 1 - p sin	 of the First Kin l)

7T/2
E(p) _	 ^1-p sin ^/ d4/	 (Elliptic Integral

	

` 0	 of the Second Kind)
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The percentage error in the DIDF estimate caused by using the approximation

is

1 Approximate Value of N B	I

`o Error = I Exact Value o NB 	 - 1 x 100

25 J r^ P2 - 4 CE (P) -( l -P2)K(P)

I	 E (P) - (1-P2)K(P)

Note that this error is a function of p only. Figure A. 1 shows the percentage

error plotted as a function of p. As expected, the error in the approximation

goes to zero as the amplitude ratio p vanishes.

P

0	 0.2	 0.4
	

0. 6	 0.8	 1.0
0

-2

-4

-6
Percent
Error	 8

-10

-12

-14

P = A where:

B = signal amplitude
entering the
nonlinearity

A = limit cycle
ampl i tude entering
the nonlinearity

Figure A -1 Error in the Approximation to the D1DF
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APPENDIX B

DERIVATION OF THE ELLIPSES USED IN DETERMINING

THE FREQUENCY RESPONSE OF THE

TERNARY GYRO LOOP

In analysis of the ternary pulse rebalanced gyro loop (see Sect. 4),

a graphical solution is used. This is done by using two separate descriptions

for the amplitude ratio for a sinusoid on either side of the nonlinear element.

One description, developed from linear analysis techniques, generates a

family of ellipses. The equation for these ellipses is derived below.

Figure B-1 shows a generalized loop containing a single nonlinearity.

N is an equivalent sinusoidal gain (describing function gain) for the nonlinearity

and is assumed to involve no phase shift, The loop is driven by a sinusoid of

constant amplitude, M, and frequency, w. The amplitude of the transfer

function between the signals A sin(wt + 0) and M sin wt is:

A
M

Using the identity

Eq. (B-1) may be written as:

PlelR l

1 + NP l p 2 el (0 l+0 2)

e jo = cose + jsine

(B-1)

(B-2)
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L	 _̂	 e1el
1	 p1

^	 jo2
L 2 = p 2 e

N	 = equivalent sinusoidal train
of the nonlinearity

Figure B-1 A Loop Containing One Nonlinear Element

Squaring and cross multiplying gives:

A 2 (1+Np i p2 cos(8 1 +^ 2 )) 2 + A 2N 2p2p2 sin 2 (0 +0 2 ) = M 2 p1,

Solving for the loop output amplitude, AN, we obtain

-Acos(6 1 +0 2 ) 	 1	 ^2P2  2 2AN =	 1-A sin ( 8 1 2)
p 1 p2 	 plp2

(B-4)

(B-5)

In this expression M is given and 
0 1 3 p i' 92, p2 are determined from the

frequency w. Thus, for fixed input amplitude and frequency we have a relation

giving the amplitude of the nonlinearity output as a function of A, the amplitude



(-M p2 ) csc(© I + n2)

(M p2 ) cot(B 1 + (?2)

AN

M!p2

0 1 M cot(O1+02)

()1+n2)

THE ANALYT. ,: SCIENCES CORPORATION

of its input. Note that AN is independent of the value of N. Plotting AN for

values of A ,yields the ellipse shown in Fit;. B-2. Critical points in the

construction are illustrated.

Figure B-2 Nonlinearity Input-Output Relation Derived From Analysis
of the Linear Portion of the Loop Shown in Figure B-1
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