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ABSTRACT

This document summarizes work accomplished over the period
December 1867 to May 1568 in a continuing studyv of strapdown gyroscope
design. Three common pulse torquing techniques for strapdown gyro<ssre
described. The important considerations in choosing a revalance scheme are
reviewed and the relative advantages of the three approaches are discussed.
Compensation of limit cycling binary torqued gyros is treated with the goal
of providing a better closed ioop response. A discussion of the dithered binary

 gyro is presented, illustrating limit cycle determination and closed locp

characteristics.

The ternary pulse rebalanced gyro is analyzed usiig describing
functions. Closed loop sinusoidal transfer characteristics are obtained and the
effect of random signals at the togic input are invesligated. A trief discussion
of the proposed gyro and system error simulation is presented and attention
is given to gimbal misaiignments resulting frecm angular rates about the

output axis.
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1, INTRODUCTION

The single-degree-of -freedom gyro periected for platform inertial
guidance systems can exhibit large errors when adapted to the strapdown
application. The major new error sources are angular motion of the sensor
and the rebalance torque loop required to null the gimbai output angle. This
report documents s~ . aspects of work performed in a continuing study of

strapdown gyroscope design.

Prior work is reporied in Refs. 1 and 2. These two documents
provide a comprehensive review of important error sources in strapdown
single-degree-of-freedom gyros. Different rebalance loop configurations were
discussed and their contributions to gyro errors were treated. Particular
emphasis was placed on analysis of the limit cycling binary gyro using
describing functions. A system level figure-of-merit was established relating
gyro errors to system attitude error growth. The optimum set of gyro
parameters, those which minimizc system error at some point in time, were
determined by analytic means. In the references it was concluded that, under
the assumptions used in the analysis, gyro parameter manipulation alone
cannot reduce strapdewn gyro induced errors to a satisfactory level. Several
schemes for additional compensation of strapdown gyro errors were proposed
and analyzed. Most cf them involve the use of additional moticn sensors and
application of corrections to the gyro. The work presented in these two

documents introduced seldoin used techniques for analycis of strapdown gyros.

The effcrt discussed in this report continues that aunalysis. Three
basic pulse rebalaince techniques are described. Important considerations

in selecting a torquing scheme are discussed and the relative merits of the
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three approaches are reviewed. The ternary torqued gvro is treatad using
describing function theory and time modulated two level torquing is analyzed.
Motivation is presented for the construction of a comprehensive strapdown
gyro simuiaiion which evaluates system attitude errors. inm addition, gimbal
suspension design is discussed. The appendices provide some details of
describing function analysis. It is shown that the ternary gyro iccp response
is very sensitive to input amplitude and frequency. On the cther hand, time
modulated torquing permits analysis of the gyro loop using technique:—jf developed
for linear systems. This technique may provide satisfactory closed lg)op
performance without requiring loop compensation. One conclusion is that the
time modulation pulse torquing scheme deserves serious consideration for use

in strapdown gyros.
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2. DESCRIPTION OF PULSE TORQUING SCHEMES

2.1 PULSE REBALANCED GYROS

The single-degree-of-freeaom pulse rebalanced gyro shown in
Figure 2. 1-1 generates an angular rotation about its output axis (output angle)
which, for small angles, is proportional to the time integral of angular rate
about the case-fixed input axis. In platfcrm inertial navigation systems the
sensor package is kept al a fixed attitude with respect tc a non-rotating set of
coordinates by gimbal rotations which null the gyro output angle. When the
gyros are mounted on the vehicle structure, as in a strapdown system, it
becomes necessary to provide some other means to keep the output angle small.
Powerful torque generators are added to counter the gyroscopic momant
created about the output axis when angular rates take place about the gyro input
axis. The time integral of applied torque then becomes an indication of the net
rotation about the input axis. Consequently, the accuracy of the strapdown

gyro is limited by our ability to measure torque generator output.

The appropriate indication of torquer output is current flow
through the device. An indirect measurement, tcrquer current is subject to
the nonlinearities and uncertainties which relate it to the true ubject of the
measurement — torque applied «woout the gyro output axis. In order to ¢psure
accuracy and reduce calibration complexity it has become common practice
in strapdown gyros to provide current to ihe torquer at two or three accurately

determined levels. Current duration is also carefully specified in advance and

“the result is an output which is a digital representation of the current-time

integral, i.e., of rotation rather than angular rate.
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Figure 2.1-1 Single-Degree-of-Freadom Gyro ) -

Binary Delta Modulation — The binary dells modulation pulse torquing

scheme provides a torgquer current level of fixed ruagnitude with the same sign
as the oufput angle. Figure 2.1-2 illustrates the binary detection logic used to
determine torquer current. The output of this logic is interrogated periodically.
Current ievel may be applied over the entire pericd or may be dicpned to zero
after a fixed percent of the interrogation period has passed., The gyro cutput
consists of a single positive or negative count at each interrogation. The net

gyro output over any period is computed from the net output cown ard knowledge
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Qutput (Torquer Current)

A

—p= Input (Output Angle)

Figure 2.1-2 Two Level Logic

of the incremental angle represented by each accurately metered current pulse.
Figure 2.1-3 shows a representative train of torque pulses applied {c the gyro.
The torgue pulse shape differs from that of the current rectangular pulse

described above because of torque generator dynamics.

Torque
D _

Y -

-D—-

—w -—— Interrogation
Interval

Figure 2. 1- 3 Representative Torque Qutput From Delta
Modulaten Pulse Rebalancz Technique

Ternarv Deita Modwation — The ternary delta modulation scheme

permits ithe absence of 2 torque pulse. This can be viewed as an additional

(zers: current level, Figure 2 1-4 illustrates the ternary detection logic. The

(@]
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deadzone 2§, or rzgion of input which provides no outpui, i« symmetric about
zero. For low frequency inputs, § can be related to an input rutation which
will not be detected by the gyro. However, for input {requencies abve the
float bandwidth, the relation is more complex. The operation of the ternary
delta modulation scheme is otherwise identical to the binary technique just

discussed.

Qutput

A

D 4+

¥ Input

Figure 2.1-4 Three Level Logic

Time Modulation — A third pulse torquing technique, time modulated

torquing, adds the gyro output angle to a periodic waveform and employs binary
logic on the sum. Figure 2. 1-5 illustrates this approach. The net signal is
interrogated at a higher frequency cthan that of the added waveform. In the figure,
torquer current changes sign when the sawtooth resets and at the {irst interro-
gation point at which the net signal becomes negative. The result is one positive
and one negative current pulse each period of the sawtooih, the relative lengthe
of the two pulses being determined by the gyro cutput anglie (3¢e Figure 2.1-8).

Since the periodic waveform is divided into a fiaite number of equal intervals,
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Figure 2.1-5 Time Modulated Torquing
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Figure 2.1-6 Torquer Waveforin For Time Modulated Torquing
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the number of interrogations taking place before the current level switches

provides a digital meacure of incremental rotation about the gyro input axis.

All three approaches provide digital sensor outputs which represent
increments of angular rotaticn about the sensor input axis. The angular rotation
is implied from a carefully calibrated torque pulse appiied to the gyro gimbazis.
Any deviation of the actual time integral of torque from that represented by
each output quantum wiil cause an error in the gyro output which is not
recoverable. i, e.. differs from gyro output errors caused by storage ol
information by the float. Constant deviation of the iurque pulse can cause
constant gvro drift rates while random variations provide randcm output errors.
Differences between the net torque pulses generated and those implied by the
rebalanced gyro output are a major source of error in this kind of strapdown

Sensor.

When system accuracy is considered, factois such as quéantization
and the information rate of pulse rebalanced gyros are important. The presence
of unforced oscillations in the gyro output is also considered when comparing
strapdown gvro torquing schemes. In additicn, irequency response
characteristics and energy dissipation in the gyro loops are important. The
major causes and effects of puise rebalancing errors are described below,
followea by a discussion of the weaknesses and strengths of each torgquing

scheme,

2.2 ASPECTS OF PULSE TORQUING GYRC ERRORS

Torgi.e Pulse Variations — Deviations of the torque pulse size are

caused primarily by variaticns in torquer current ievel anc timing errors in

starting and stopping the current flow. Of “he two eifects. current level errors
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are basically independent of the torquing scheme while the system error
cau-ed by imperfect switching is related to the frequency with which torque is
changed from one level to another. If either current level or switching deiay
exhibit consistent variations between torque pulses of different signs,

Figure 2.4-10 of Ref. 1 can be used to determine the drift rates which

result. Random deviations in the switching circuit delay will generate random
gyro output errors. Consequently, the rms system attitude error (as reflected
in the figure-of-merit described in Ref. 2j will grow as the square root

of time. If the timing errors are uncorrelated, rms gyro output error over
any period of time is related to the square root of the number of changes ir
current level which took pince. Therefore, gyros that can change current level
more frequentiy have the potential to generate larger system errors by this
means. In delta modulated pulse torquing techniques the pulse frequancy is

directly related to output quantization level and a definite tradeofi exists.

Quantization — The output of pulse rebalanced strapdown gyros is a

seiies of digital pulses each of winich represents an incremental rotation about
the input axis. This form is not well suited for drift free calculation of the

~ direction cosine matrix because inforination regarding the order in which
rotations take place about the system axes is lost. The commutativity errors
which can result are largely related to the gyro output quantization level and
the manner and speed with which the outputs are processed. As a general rule,
fine quantization is to be preferred. Delta modulated pulse torquing schemes
achieve fine quantization by changing the torque leve! rapidly, therebv allowing
very small torque pulses. A practical limitation on the torque pulse size is
provided by the torquer time constant. If the desired torque level is changed
too frequently the actual torque will not build up to its peak value before
changing and terquing efficiency is sacrificed. In the time modulation torquing

scheme, quantization is not tied directly to pulse width. The torque switching
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frequency is strictly limited and quart:zation is achieved by specifying the
number of points in each cycle at which the torque can make an irreversible
sign change. In the absence of switching delays, infinitisimal quantization is
possibie. The practical limit is imposed by the ability to switch the torque
levels accurately in time. Torquer time constant problems are eliminated cy
restricting the minimum positive or negative pulse lengths in a well designed

instrument.

Information Rate — Information rate, d&fined as the frequency with

which new indications of system motion reach the direction cosine computer,
varies between the different pulse torquing techniques. Generally, both delta
modulation schemes can provide the same maximum information rate,
determined by the frequeicy with which the torque levels can change. The time
modulated torquing scheme usually gives new gyro outputs much less frcyvently
(this may also be viewed as a larger delay in transferring irformation) though
with as good or better quantization than the other torquing techniques. The
desirability of a high information_ rate depends on the computer which is used
to update the direction cosine matrix. If a Digital Differential Analyzer is
used, gyro outputs can be processed as received and the single output level

of delta modulated instruments is desirable. On the other hand, if a whole
word computer 1s provided any o1 the three torquing schemes can generate
outpuis fast enough to make best use of the computer and the finer quantization

available from the time modulated technique is desirable.

Unforced Oscillations — All three pulse torquing schemes produce

unforced oscillations in the gyro loop at ore time or another. The limit cycle
behavior of a control loop containing a binary noniinearity is well known

(sce Ref. 1). In the presence of many inputs, the three level pulse torqued
gvro will also exhibit wrong way pulses and the time -modulation scheme can

give an incorrect net outrut averaged over each torque cycle. The unwanted

10
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oscillations all result from quantization of the torque-time integral. Limit
cycles in pulse repalanced gyros can result in pseudo-coning system errors if
they occur with proper phase and at the same frequency. The binary delta
modulation scheme is usually thought to be the least satisfactory from this
point of view, However, it can be shown that slight differences between limit
cycle pcriods of the different gyros in a strapdown triad will prevent large

system errors cf this type (see Ref, 1).

Oscillations of the gyro float can alsc provide rectified cross-
coupling errors. The binary delta modulation technique, with its ever -present
limit cycle, and binary tir -modulation with its forced float oscillation appear

most likely to generate rectified crosscoupling errors.

Gyro Frequency Response Characteristics — One representation of

the gyro loop transfer characteristics is the closed loop gain to oscillatory
input angular rates at different frequencies, The approximate determination of
this characteristic is discussed for the ternary delta modulation and timne
modulation schemes in this report while analysis of the binary delta modula-
tion technique is presented in Ref. 1.. The ternary approach contains one
serious disadvantage in this respect; its gain to input signals is very much
amplitude dependent. Alsc, the other two schemes lend themselves much

better to manipulation of the frequency response through loop compensation.

Energy Dissipation — Temperature gradients within the gyro

~tructure are a2 major cause of single-degree-of -freedom gyro drift. If the
gradients can be held constant, proper testing will enable accurate compen-
sation of these effects, While it consumes less total power in most motion
environments, the ternary delta modulation torquing scheme does not usually
provide a uniform energy flow into the torquer. To avoid this obvious cause of

varying temperature gradients, a constant current source can be switched into

11
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a dummy load when no torque is called for. However, in this case a considerably

larger torquer results.

2.3 COMPARISON OF PULSE TORQUING TECHNIQUES

Binary Delta Modulated Torquing — This approach provides a high

information rate, a gyro loop response which is linear with respect to input
amplitude and constant temperature gradients in the instrument. Its quanti-
zation level in a given application is limited by torquer dynamics. A gyro
with this rebalance scheme always limit cycles, thereby consuming electrical
power in even the most benign environment, and generating potential cross-
coupling rectification and pseudo-coning sysiem errors. The uncompensated
gyro loop containing this pulse torquing scheme may not exhibit a satisfactory
closed loop frequency response. Section 3. 1 of this report explores the use of

loop compensation to correct this defect.

Ternary Delta Modulated Torquing — This pulse rebalance scheme

can conserve electrical power in a benign environment and has less tendency to
limit cycle, The gyro usually has a lower drift rate in the absence of an input.
It gives a high information rate suitable for DDA calculations but does not have
a linear dynamic input -output relationship. To avoid varying temperature
gradients within the sensor, a larger torque producing mechanism is required
and potential low power cornsumption must be sacrificed. The quantization
ievel is limited by the torquer time constant. Section 4 of this report deals
with the information transfer characteristics of the ternary delta modulated
pulse torqued gyro. The closed loop gain to sinuscidal inputs is shown to be
input amplitude sensitive and can assume several possible values in certain

input frequency ranges.

12
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Tiric Modulated Torquing -- Time modulated torquing gives potential’v

better quantization than is currently possible with the other two schemes but
has a necessarily lower information rate. The limit cycle appearing at the
output is small but the gimbals will always oscillate and sizeable rectified
crosscounling errors can result, For the same quantization this technique is
less sensitive to timing errors in switching. An essentially linear response
results. Power cons.amption is high but temperature gradients are constant.
The time modulated torquing scheme is treated in Section 3. 2 of this report.
It is demonstrated that the uncompensated loop for this gyro can be made to
exhibit a more satisfactory closed loop frequency response than an instrument

using either delta modulation torquing technique.

None of the pulse torquing techniques discussed offers a clear
advantage over the others. If constant energy dissipation and linear response
are required at the outset, the three level approach seems to forfeit its greatest
advantages. Since the trend appears to be toward whole word computers,
adequate output rate and finer quantization appear to give the time -raodulation

scheme considerable promise for future use.

13
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3. BINARY PULSE REBALANCED GYRO

3.1 CCMPENSATION OF THE LIMIT CYCLING LOOP

~Introduction — The binary gyro loop limit cycles whether or not a rate

signal is present at the input (unless the signal is of high enough amplitude to
saturate the loop or suitably shaped to quench the limit cycle). As a consequence
of this limit cycling property, the closed loop frequency response to an input
signal is largely determined by gyro and torquer time constants and not by
easily manipulated electrical gains (see Ref. 1, Section 2. 4. 3). Specifically,

if the loop is linearized using describing function techniques, a response
characteristic similar to that of a second-order system results, with natural

frequency and damping ratio given by

W = — _.2..7._5. rad/sec

_ l/ g i
€ = m (3.1-1)

respectively. These frequency response characteristics cannot be changed

and

without making hardware modifications to change Ty and Ttg. In addition, no
reasonable choice of T and Ttg can make the damping ratio greater than 1/2.
Thus, the frequency response is forced to have a peak near w, . Clearly,

some frequency sensitive compensation may be desired to remove this peak

and, mcre generally, to permit control of the frequency response characteristics

without changing T and Ttg.

14
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Following the analysis used in Ref. 1, we represent the effective
gain of the binary nonlinearity to a sinusoidal signal by the Dual Input Describing
Function (DIDF), written NB(A, B). Ttris describing function is the ratio ot the
amplitude of the signal frequency harmonic at the nonlinearity output to the
amplitude, B, of the signal at the nonl nearitv input when a sinusoid (limit
cycle) of amplitude A is also present at the irput. If B is considered small
compared to A, a simplified form for NB(A, B) results:

NB(A,B) %NB(A,O) B<< A

2D
= 7A (3.1-2)

where D is the drive level of the nonlinearity. Appendix A examines in greater

detail the conditicns under which this agpproximation holds.

In attempting to compensate the limit cycling binary loop, we must
consider the effect the limit cycle has on the total open loop gain and phase
performance as seen by the signal sinusoid. The binary nonlinearity DIDF
gain to the limit cycle, written N A(A), is given by

4D

NA(A)z? : B<< A (3.1-3)

The complex open loop transfer function of the linear part o the loop is

written H{iw). The definition of the limit cycle requires that, at the limit

cycle frequency, Wp s

H(jw,) N, (A) = 1/-180° (3.1-4)

15
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The limit cycle amplitude A and frequency w, adapt to maintain this equality

[}
regardiess of the compensation introduced. From Egs. (3.1-2) and (3. 1-3), it

can be seen that
v ~ . _n
.’.\A(A) >2 NB(A,B) : B<< A (3.1-5)
Substituting for NA(A) in Eq. (3. 1-4) yields

1 oy
H(jw,) N(a,B) = 3 /-180" (3.1-6)

|

Here, H(jwf) NB(A, B) is the expression for the complex open loop gain as seen
by the signal sinusoid. We conclude that, due to the adaptive properties of the
limit cycle amplitude and frequency, the open loop gain and phase shift as seen
by the signal sinusoid will always be 1/2 /_—1_@92 at wp- This constraint
reswts in a closed loop signal gain of unity and phase shift of -180° at the

limit cycle {requency.

Linear Analysis — The linear analysis technique used to investigate

in-loop ccmpensation of binary pulse torqued gyros makes use of the rect-
angular gain-phase plot (Nichols chart). The open loop gain and nhase
characterictics are plotied as a function of frequency. On the same plot, lines
of constant M(closed loop amplitude ratio) are constructed. The closed loop
amplitude ratio for any sinusoidal input is the value of M intersected by the
open loop gain-phase curve at the same frequency. The M=1 line represents
the desired unity closed loop gain. Figure 3.1-1 shows the 2=1 line and the

gain-phase curve of the uncompensated gyro loop with the following parameters:

-4 4 :
r =10 { =2 ' .
’rtg sec hsg 2x10" mv, rad )
Ty = 2. 5)(10_3 sec th = 1200 dyne-cm/ma #+

c = IOb dyne-cm-sec

16
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10
5
2 »—M:‘4. 5
Cpen ‘
Loop M=2.
Gain 1
0.5

/ N— w, = 2000 rad sec.

-180° , -90%
180 Open Loup Phase Angle (deg.)

Figuré 3.1-1 Open Loop Gain-Phase Plot for Uncompensated
Rinary Gyro

17
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( -
Note that the gain-phase curve cuts through high closed loop gain lines at

frequencies lower than Wy producing a peaked frequency response. In order
to cbtain unity closed loop gain at all frequencies below the limit cycle, we
must make gain and pkase changes to the open loop which cause the compen-
sated gain-phase curve to coincide with the M = 1 line. As discussed in the
previous paragraph, the comglex open loop gain must always be 1/2 _/__ -_LBS_S
at the limit cycle frequency, Wy the gain-phase curve must cross the -180°
phase shift line with a gain of 1/2 at w ¢ whether or not compensation is used.
It can be seen from Fig. 3.1-1 that the M = 1 line also intersects the -180°
line at 1/2. Since sinusoidal signals at frequencies beyond w , are not of
major interest, we will devote our consideration to the frequency range up to
and including that of the limit cycle. Four sets of linear dvhnamic compensa-
tion are discussed. In each case the compensation is assumed to be placed in

the forward signal nath as illustrated in Fig. 3. 1-2. The presence of the

w, | ' o

; Signal . Binary 1
H 1 Compensat > A »
_—l._.h:ﬁ}-— Float Generstor pe on Ncnlinearity

Torquer pe——

Figure 3.1-2 Position of Binary Gyro Loop Compensation

torque generator and zero order hold in the feedback path do not aifect the

closed loop frequency response characteristics computed.

18
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Lead-Lag Compensation — Consider linear compeasation with

transfer function

Figure 3.1-3 is an asymptotic plot of the open loop gain as a function of frequency.

Frequency (rad/sec)

10
\ 1 Tf l,u'rC 1 '—tg 1 TC
1 " + N .
Open 100 400 ) T ! T
Loop \\ 1000 10000 20000 50000
Gain
IO-Iﬁ—
Cominensated
10721
Uncompensated
Compensation Parameters: \
10734- a = 20
7. = 0.00005

Figure 3.1-3 Open Locp Gain With Lead-Lag Compensation
(Best Parameter Values)

19
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The peak closed loop gain can be reduced, although not forced to unity, by
choosing the compensation time constant to be about half that of the torquer.
For this value of T increasing o to a value of 20 reduces the peak closed
loop gain to a minimum of about 2 5. Hoiding o constant at 20 and increasing
T to four times the float time constant raises the peak closed loop gain to

a value almost as high as that of the uncompensated loop (= 5). At this value
of T the effect of @ variations is reversed: increasing a increases the peak
gain. Lead-lag compensation does not produce a satisfactory binary gyro

frequency response.

Lead-Lag-Lag-Lead Compensation - A form of compensation with

the transfer function

7+ 1)

/, J
sax7T + 1) is
HaT, ) c . 1
R .

1
a
1

(STC + 1)

was investigation. Figure . 1-4 illustrates the gyro cpen loop gain-frequency
characteristic with this compensation. As witih lead-lag compensation, this
sc'heme can reduce but not eliminate the closed loop peak. Large values of Te
(between T and 47{) result in peak gains nearly as high (= 5) as in the
uncompensated case. Small values of TC(E Ttg) also result in poor compensation.
The lowest peak gain is achieved by choosing a mid-range value for

'rc(_ﬁ. J. 0005 = l/wll where w, is the uncompensated loop limit cycle frequency).

[l
With this value of T increasing o lowers the peak gain to a minimum value
of about 2.2 for o = 20. Lead-lag-lag-lead compensation offers only a slight

improvement over the lead-lag compensation scheme.

20
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Frequency (rad/sec)

Compeunsation Parameters:

uncompensate

20
0. 6005

compensated

Figure 3.1-4 Open Loop Gain With Lead-Lag-Lag-Lead Compensation

{Best Parameter Values)

Damped Second Order and Lag — From Fig. 3.1-1 it can be seen

that the linear compensation necessary to provide an open loop gain-phase

characteristic which coincides with the unity closed loop gain curve must

provide rapidly increasing phase lag with little change in amplitude ratio at

frequencies immediately below w

0

A resonant second order system proviges

rapid changes in phase shift but gives a sharp amplitude ra:io peak. By

cascading such a system with a first order lag to recuce the gain peak, it was
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hoped that the desired gyro open loop characteristics could i achieved.

Tigure 3.1-5 shows the resulting open loop gain characteristic.

Frequency (rad/sec)

The first two

10
17 w BREL: 17
1 \ % 1'1 4 c , tg .
100 400 1000 3000 10000 100000
Open 10'1_.
Loop .
Gain -2,
10
1073
-4 Uncompensated
10
10'5-
Compensated
1075
Compensation Parameters:
_7 = 0.03
1077 t
wp = 1000 rad sec
1078 r, = 0.00033
107

Figure 3. '-5 Open Loop Gain With Damped Second Order and Lag

Compensation (Best parameter values)

compensation schemes discussed share a common characteristic; both produce

closed loon amplification over the entire frequency range up to the limit cycle

frequency. For the gyro parameiers postulated, the damped second order plus

lag compensation can also produce closed loop amplification for all frequencies
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below w ¢ but only if cne or more of the following conditions is satisfied:
w > 720 Hz, T, > l/wn or ¢ >0.1. Otherwise, attenuation results over some

poriion of the range w < w I This behavior is seen in Fig. 3.1-6.

Neither large amplification nor large attenuation is desirable at any
frequency. In view of the fact that this compensation scheme cannot produce
a perfectly flat response, the best course of action is to choose a set of com-
pensation parameters which will minimize the maximum deviation of any part

of the closed loop response from unity gain. For this example they are:

t=0.03
w, = 159 H=z

7,=0. 00033 sec.

The resulting closed loop response has a maximum gain of approximately 1. 27
at 48 Hz and a minimum gain of about 0. 84 at 104 Hz with a limit cycle
frequency of 126 Hz. The uncompensated response has a peak of about 5 at
207 Hz and w, = 318 Hz. The decrease in the limit cycle frequency as a
result of compensation is unavoidable. Since damped second order and lag

compensation only adds open loop phase lag, w, is lowered and the usable

£
bandwidth is always decreased when the binary limit cvcling loop is comven-
sated in this way. Because of the nature of pulsed gyro loops, the limit cycle

amplitude increases when w, becomes smaller.

. Integral-Bypass Compensation — A fourth type of compensation was

tried. The motivation here was not to flatten the closed loop response but to
reduce the average low frequency float angle (taken over one or more limit
cycle periods). Specifically, it was desired to use compensation at the non-
linearity input which approximates a pure integrator for low frequencies, thus

giving the open loop a double integration characteristic for constant inputs.
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Figure 3.1-6 The Effect of Parameter Variations in Second Order
Resonant Plus Lag Compensation
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When the additional integration is inserted in the loop the average float angle
is zero for a constant input. This compensation also reduces the float angles

caused by low frequency inputs.

o N\

. » ——p €
i + o
+

upR

Figure 3. 1-7 Bleck Diagram for Integral Bypass Compensation

Integral-bypass compensation (see Fig. 3.1-7) has the transfer

function

The open loop gain characteristic for a gyro Lhaving this compensation is shown
in Fig. 3.1-8. At low frequencies the transfer function is approximately K/s,
while at high frequencies the compensation has unity gain, no phase shift and
doer not influence the locp response. The effect of integral bypass compensa-
tion is seen in Fig. 3.1-9 as a hending of the open loop respouse towards ti.e
-1800 phase line at low irequencies. Increasing K broadens the frequency
range over which float motion is suppressed by enlarging the frequency range
over which the compensation behaves like an integrator. Note that a value of

K as high as 1C has little effect on the limit cycle frequency or the closed loop




THE ANALYTIC SCIENCES CORPORATION

compensated K =10

uncoinpeiisate
Frequency (rad/sec)
Open , n
Loop ' T r
Gain -1

309 100 10020

10'4 \\\

Figure 3.1-8 Open Loop Gain With Integral Bypass Compensation
(Best Parameter Value)

response near wﬂ.'
major effect on the low frequency part of the open locp response curve where

Because integral bypass compensation with K <10 has its

the closed loop gain is near unity, the change in overall closed loop performance.
is negligible. For this range of K, integral bypass compensation reduces the
average float hangoff from low frequency input rates and leaves the overall

closed loop response and limit cycle essentially unchanged.

Concliusion - Of the compensation schemes tried, the onc composed

of a damped second order and lag is most effective in reducing the peak closed

[\5)
[»7]
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K=0
K=1
K=10
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10 P
400 rad/sec
5
.
M=1,2 i
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Loop : M:-2,5 /
Gain
1 /
‘//
O. 5 —-_—-_—-/
/ ‘;w( = 2000 rad sec.
-180° -909°

Oper Loop Phase Angle (deg.)

Figure 3.1-9 Nichols Chart Showing the Effect of Integral-Bypass
Compensation on Open Loop Response
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loop gain. Of course, the results described above are deterntined for a
particular set of gyro parameters. Any compensition which can provide a
unity closed loop response over a wide range of frequencies must centain
strong lag terms in its transfer function. The most effective compensation to
force the open loop gain-phase curve to lie along the M = 1 line seems to be a
resonant network which causes an abrupt increase in phase lag. Because of
the strong lag used in this compensation, the limit cycle frequency i= lowered
considerably. The result is é higher amplitude limit cycle and decreasea
closed loop bandwidth. Some reduction of the bandwidth may be desirable,
but increasing the limit cycle amplitude s not. Larger limit cycle float

motions result, and cross-coupling errors increase.

The integral bypass scheme seems eflicient ‘n eliminating low
frequency float hangoff while leaving the closed loop response 2t the output
essentially unchanged. Of particular note is the fact that the limit cycle
frequency is unchanged, and the compensated gain-phase curve is identical
to the uncompensated one except at low frequencies. Since integral bypass
compensation modifies the signal open loop gain-phase curve primarily at low
frequencies (if K < 10) and second order and simple lag compensation effects
the curve at frequencies at least a decade higher, the two compensation
schemes will not interfere with each other if both networks are used in cascade.

In that case the closea loop gain will be near unity onut to w, and the gyro wili

{
have small gimbal angles for low frequency inputs.

The problem of forcing the gyro opei: loop gain-phise characteristics
to apprcximate the M = 1 line lends itself {0 more sophisticated analytic
techniques than were used in this investigation. Having postulated a form for
the forward path compensation, any number of compensation parameters can
be chosen tc provide a best fit to the desired curve. For example, the a:ea

enclosed by the M = 1 line and the compensated open loop characteristic can be
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minimized. However, it is rot clear that the effort involved in such an approach
will be justified by the iaprovement and practicality of the results compared

with those abtained in this section.

Table 3.1-1 summarizes the compensation forms investigated and
i the resulis obtained. Figure 3.1-10 illustrates the best closed loop

characteristics ior difierent compensztion networks.

16
1 £ Uncompensated Loop Lead-Lag
| i Compensaticn
-
5 Prran

Ciosed T .

Loop L Damped Second Order —— . _rLead-Lag—L.ag—Lead

Gain Plus Lag Compensaticn Compensation

/
/
1 /,,/’:&\7

i
- .
.5
L.
0.1 N T B AR S | i [ U P
i0 50 100 500 1008 2500

/
Frequency (Hz) '

wigure 3.1-10 Best Closed Loop Gain Characteristics for Different
Compensation Networks

' Al
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2.2 LINEAR ANALYSIS OF THE DITHERED BINARY TORQUED
GYRO

The addition of a dither signal to the nonlinearity input of a binary
torqued gyro can be used to create an approximately linear relation between
the gimbal angle, a; and the gyrc output (see Ref. 1). Also, if attenuation
of the dither osciilaticn by float dynamics is large enough, the dither non-
linearity can be represented as a limiter as shown in Fig. 3.2-1. Linear
feedback analysis techniques can be used to investigate the transfer
characteristics o’ the loop illustrated over a wide range of amplitudes and
frequencies. However, the limiting nature of the new representation
for the dithered binary nonlinearity raises the possibility of a2 no-imput

limit cycle in the rebalance loop. Careful consideration reveals that the

potential limit cycle in the dithered gyro is essentially the same unforced

oscillation that occurs in any simple binary lcop. Using the block diagram

of Fig. 3.2-1, it can be seen that any limit cycle must have a frequency
whick provides » radians of phase lag in the linear part of the loop; the

nenlinearity shown provides no phase change. The sinusoidal describing

-

function for the limiter, N A’
occurs when the input sinusoid has an amplitude smailer than the dither

is iliustrated in Fig. 3.2-2. Peak gain

magnitude, A d In that case the describing function is a constant, D/A a

For a limit cycle tc exist, the foilowing relation must be salisfied:

I3 31 = -
NA!H(W()! =1 (3.2-1)
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For the gyro model illustrated

;
i) | - S5 Tt
[ C Tet Ttg

(3.2-2)

Consequently, to prevent a limit cycle the dither amplitude must be chosen so
that

K K D T.T
sg t f't
Ad > _qgc g T.+ 'Ti (3.2-3)
f 'tg

If the dither frequency attenuation by the float is sufficient (validating the
representation of the nonlinearity snown in Fig. 3.2-1) and Eq. (3.2-3) is
satisfied, the application of dither at the input to the binary nonlinearity will
prevent the occurrence of a limit cycle. Analysis of the dithered gyro loop for
a wide range of inputs cén then prccaed using techniques developed for linear

ieedback systems.

Example — Consider a single-degree-of-freedom gyre with the

following parameters

1 =250 gm-cm? C = 1x 10° dyne-cm-sec
’ thz 1,200 dyne-cm/ma ng = 20 mv/m rad
r .
H = 2x10° g‘m-cmz/sec w, =1 rad/sec
'max

Using Eg. (3. 2-3), the minimum dither amplitude to preclude a limit cycie is
3.84 mv and the slope of the linear portion of the ncnlinearity, K1 2 D/Ad, is

43.2 ma/mv. The natural frequency and damping r=tio of the linearized gyro
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loop are ) -

‘/ngxthl
wn = -——-T——— = 325 Hz

00
1
¢ = Tia = 0.098 (3.2-49)

Figure 3. 2-3 illustrates the resultant frequency response for the linearized
loop. For purposes of comparison the frequency response of a limit cy~ling
binary gyro with the same parameters is shown. In interpreting the curve
shown it should be remembered that for the dithered binary gyro no oscillation
faster than half the dither frequency can be detected at the gyro output. This
is a consequence of averaging over each dither cycle. As the dither amplitude
is increased above the minimum value required to prevent a limit cycle, K1
decreases. From Eq. {3.2-4) i* can be seen that the natural frequency of the
linearized gyro decreases and its damping ratio increases when A d is made
larger. The amplitude ratio frequency response for the dithered gyro is also
shown in Fig. 3.2-3 for the case where dither amplitude is twenty-five times
the minimum value computed above. Note the improvement over that for the

uncompensated gyro.

When the dithered binary gyro is represented as illustrated in Fig.
3.2-1, the frequency response ¢:aracteristics of the second order linearized
rebalance loop can be controlled by varying dither amplitude. However,
damping ratio and natural frequency cannot be controlled independently. Any
iricrease in damping ratio (increase in dither amplitude) necessarily implies a
decrease in natural frequency. In the example, the entire range of desirable

loop transfer characteristics (wn and ) can be generated using dither signals

K4

34




THE ANALYTIC SCIENCES COKPORATION

large enough to prevert a limit cycle. Considerably more design flexibility

is available with the dithered binary gyro. In addition, the interdependence

of peak closed loop gain .o bandwidth can be eliminated through insertion of
linear compensation in <k lcop. The entire range of linear systems techniques

is available for analy:zing the compensated loop.

The use of a4 dither signal with a ternary nonlinearity offers no
relative advantage.

°T
Rinarr Loop with Minimum Dither to Prevent
Limit Cycie (wn = 325 Hz, { = 0.048)
2
1
0.5 Limit Cycliag Binary
Closed-Loop Torgqued Loop >
Amplitude (;c;l = 240 Hz, £ = 0. 135
Gain
0.2
Binary Loop with 25 Times Minimum Dither
0.1 p— (wn=65 Hz, C=0.3
\
0.05 |-
002 |
0.9] — i 1 | 1 1 | | i N
" 1 2 5 10 20 50 100 200 500 10600

Frequency, (Hz )

Figure 3.2-3 Frequency Response Characteristics for Biniry Rebalaice Loop
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4. TERNARY PULSE REBALANCED GYRC LOOP

Describing function analysis was of considerable value for treating
the ‘binary gyro in Ref. 1. Similar technques are applied below to the ternary
gyro of Fig. 4.1-1. Though the approach is basically the same, the effort

involved is greater.

K 'C D |[—

sg - ,
wj — H __:_?—‘ s(s7;+ 1) I_J]é !

€Y

Y

6 = dead-zone threshold in mv,

D=drive level in ma.

Figure 3& 1-1 Gyro Pulse Rebalance Loop With a Terrary Nonlinearity

4.1 SINUSOIDAL FREQUENCY RESPONSE CALCULATIONS
USING DESCRIBING FUNCTIONS

As in Sect. 3, we desire to make approximations which will permit

application of lirear analysis techniques for determining the closed loop response

[
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to sinusoidal inputs. With the binary gyro, the presence of a limit cycle
allowed us to approximate the describing function gain to a signal sinusoid by
a quantity which depends only on the limit cycle amplitude (Ref. 1, 2). The
closed loop frequency response to the signal was then determined by replacing
the nonlinearity with the appropriate gain and appiying conventional linear
analysis techniques. Unfortunately, the ternary gyro does not exhibit a
clearly defined limit cycle and the describing function gain of the three level
nonlinearity must be treated as a function of the amplitude of the signal
sinusoid entering it. Also, because the float provides frequency dependent
attenuation, the amplitude of a sinsuoid euniering the nonlinearity is a function
of both the magnitude and frequency of the gyro loop inpnt. Conszquently, a
different size signal sinnsoid appea:-s at the input of the nonlinearity for each
signal frequency and amplitude combination applied at the loop input. For
each input combination expiorad in the course of a frequency response analysis,
a differen® aonlinearity equivalent gain must be calculated and a separate
determination of system output amplitude made - all to obtain one value ol
closed-loop gain. To simplify matters in ’ example, the input amplitude

is held constant and only the frequency varied to obtain a plot of closed-loop
gain vs frequency. However, it should be emphasized that a different plot

will result from each value of input amplitude assumed.

Linearization of the Ternary lonlinearity - The gair approximation

used to describe the ternary nonlirearity is the Sinusoidal Input Describing
Function (SIDF), written N A(A) and defined as the ratio between the amplitude
of the fundamental sinusoid at the nonlinearity output and the amplitude A of

*he pure sinusoiaal input to the nonlinearity, N A(A) is evaluated from:

D ) 52
( = e—— - —— -
N, (A) = = 1 () (4.1-1)
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It should be noted that the SIDF gain relates only to the first harmonic of the
waveform at the nonlinearity output. All higher harmonics are igncred. They
are assumed to be attenuated when passed through torquer and float dynamics.
The assumption that the higaer harmonics are removed by low pass elements
in the loup is generally correct when treating that portion of the output signal
reaching the nonlinearity input Consequently, the closed loop analysis is

not invalidated by ignoring higher harmonics at the output. However, the
high frequency signals do exist at the gyro output and will enter direction
cosine calculations. The frequency response curves obtained in this section
account only for the first harmonic of the gyro loop output. The signal
entering the nonlinearity is essentially the sum of the output fundamental and
the loop input signal, both filtered by float dynamics. The sampling

nature of the nonlinearity is ignored in the analysis which follows.

Describing Function Ana'ysis: An Exainple - The gyro loop is

divided into two parts (see Fig. 4.1-2) each of which will be treated separately
to obtain certain characteristics. Then the two similar sets of relations are
compared to obtain a simultaneous solution for the system. The technique is
analogous to load line solutions in electrical engineering. Linear analysis is
applied to the portion of the system shown in Fig. 4.1-2{3), If W, is a sinusoid
of known magnitude, an amplitude relation can be obtained between two sinu-
soids of the same frequency as the input, one at point a and the other at point
b. This ratio results from linear theory and does not depend on the specifica-
tion of an open loop gain relation between the signals. e, and ey (see Appendix B).
When plotted for a particular gyro, the relation defines an ellipse for each
different amplitude and frequency of the input sinusoid. If the input magnitude
is assumed constant, a set of ellipses, illustrated in Fig. 4.1-3, results.

Each ellipse represents a difterent input frequencly.
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(b) Nonlinear Element

Figure 4.1-2 Pulse Rebalance Loop Divided into Linear and Nonlinear Parts
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Firure 4.1-3 Ellipses resulting From Analysis of the Linear
Pcrtion of the Loop
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The ternary ncnlinear element is treated separately (see Fig. 4. 1-2
(b)). The describing function, Eq. (4. 1-1), is used to obtain a relation
similar to that computed from linear system thecry. This characteristic,
illustrated in Fig. 4. 1-4, depends on the quantities D and & When the plots
of Figs. 4,1-3 and 4. 1-4 are superimposed, the pnints at which the two
figures intersect constitute a set of operating points for the system. However,
not all of the intersections represent stabie solutions. The surerposition of
the two figures is shown in Fig, 4.1-5. Since each ellipse represents a
different loop input frequency, each intersection point on an ellipse represé(‘ts
a loop operating point at that frequency. Every intersection point also supplf.gs
a particular value for the nonlinearity output. Since the output of the nonlinear\i‘t‘&
is also the loop output, the absolute value of the loop transfer function is
simply 2 divided by the input amplitude. The ratios obtained for the ellipse
of a particular frequency, v, represent possible closed loop system gains to a

sinusoid at that requency.

By determining a sufficient number of intersection points it is
possible to construct a closed loop amplitude ratio response curve for the
ternary gyro. Figure 4.1-6 illustrates such a curve drawn from the intex .ection
points deter‘m\ined in Fig. 4.1-5 The peaked portion of the closed loop
response curvé“axhibits a ""jump resonance' characteristic similar to that
given by a softening spring. The effect of the dead zone on the closed loop gain
is seen as an abrupt drop to zero at the frequency Vor If there was no dead
zone, the response gain would {all off gradually with increasing frequency.
However, the dead zone causes the relay to block all signals below ¢ in
amplitude at the nonlinearity input. As frequency increases, the float
attenuation increases until, at frequency Ver signal amplitude is iess than &
at the nonlinearity input. Then the output, and consequently the loop gain, drops
abruptly to zero. Dead zone also causes the overhanging nature of the recponse

curve. At high input frequencies, attenuation by tloat dynamics prevenis the

\,‘.
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Figure 4.1-6 Ternary Gyvro Closed Loop Gan

input to the noniinearity from exceecing 6. As frequency is decreased the float
angle eventuaily becomes larger than the cea” zone, provicding a lnop oufput

and generating signal: at all points in thelcop. This point occurs at a {frequency
lower than Ve because the gyro is essentially aun open lcop system until an

output appears at tho nonlinearity,
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Eifect of Input Amplitude - Boouase the nonlinearity it contains

has an amplitude dependent output, the ternary gyro lonp exhibits amplitude
dependent characteristics. When plotted for different magnitudes of the input
sinusoid, the frequency respense curves have various shapes (see Fig. 4. 1-7).
If the input amplitude is small encugh (0. 01 rad/sec in the fiszure) the closed
lcop response has no peak. As the size of the input increcases the jump
resorance characteristics and dual gain cutoffs discussed ahove become more
pronounced. A look at Fig. 4.1-5 provides an explanation. The ellipsoidal

curves obtained {rom linear analysis are changing size and rotating. As

frequency increases, the length of the major axis {first increases, then declines.

However, rotation of the major axis is monctonic For the smailest input
amplitude plotted in Fig. 4. 1-7 ne appreciable rotation of the constant
frequency ellipses takes place beiore the loop cutput drops to zerc. When the
gyro output is raised to 0.03 rad,/sec the ellipses rotate and the interseciisn
points occur at higher values of €y giving a peaked loop respcnse Whea La-
largest inputi is analyzed, the ellipses not only rotate but aiso become long
cnough tn provide several intersection points at scme frequencies. A jump
resonance characteristic results, The describing function analysis outlined

above provides a useful tool for analyzirg ternary gyro loops.

¥

4.2 EFFECT OF A RANDOM SIGNAL AT THE NONLINEARITY INPUT
ON THE FREQUENCY RESPONSE

In this analysis we demonstrate how to obtain the closed loop
sinusoidal response of the ternary gyre when a Gaussian random signal is
present at the nonlinearity input along with the sinusoid, The random signal,
described by its standard de «ation, Jpee Lan be presceat s a resuit of 2
random iapul to the gyre aoise n the loop  or deliberate injection ia the form
of 4 random dither,  The present discassion niakes ne assuimption about the

origin o1 the random signal,
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The Describing Function - Due to the presence of a random signal in

addition to the sinusoid, the describing function gain to the sinusoid is different
from that used in the previous section. It depends not only on the amplitude A
of the sinusoidal input to the nonlinearity but also on the magnitude of the
random input. A random signal can be described by its statistical moments.

If it is assumed to be a Gaussian, zero mean variable its distribution is
completely specified by a standard deviation, U and the describing function
for the sinucoid is written as NA(A, or). This function is giver for the ternary
nonlinearity in Appendix E of Ref. 3. As 7. approaches zero NA(A, Or) becomes
the describing function for a pure sinusoidal input. Figure 4, 2-1 illustrates
the effect of the random input on the sinusoid transfer characteristics of the
ternary nonlinearity. It is similar to Fig. 4.1-4. The output characteristic
shown is the average amplituce of the output harmonic of the same frequency

as the sinusoidal input. The'effect of a random input to the ternary nonlinearity
is to make the rise of the sinusoidal input -output curve more gradual. When

v >0 and A < éthere is a finit probability that the net input to the nonlinearity
will exceed 6 and have the same sign as the sinusoid. There is a smaller
probability that it will exceed the dead zone with the opposite sign. When the
mean is taken, 4 non-zero average value for the appropriate nonlinearity
output narmonic resualts. In this way the sinuscid is boosted through the dead
zone by the random signal. On the other hand, when A exceeds 4 the fact that
the net inpur-to the ncnlinearitv can nave a sign cpposite to that of the sinusoid

produces a describing functicn gain scmewhat lower than that occuring in the

absence of random signals. It can be seen troan Fia, 40 2-1 that the et e
of adding a randon: signal at the nonlinc.- ~ pur - no o IR

function gair for the sinusoid less am, ‘.«

Unfortunately, the presenc. . '

more than just a change in NA’ Strict.. == . : C i cdeter L red
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A

Figure 4. 2-1 Effect df a Random Input on the Sinusoid
Trans{:ission Characteristics of a
Ternary Nonlinearity

through *he use of a descrihing function gain Nr(A, Gr) and knowledge of the
characteristics of the random signal at the point where it enters the gyro
loop. Siiice N, and N both depend on A and o, , solution of the closed locp
relatinns 1 the presence of both a sinusoid and a random signal requires a
complicated iterative procedure. However, in order to illustrate the effect
of rundom inputs to the nonlineariity we will assume differc.:t values of e

without specifving their orior.

The ract that the ¢ o Yreprese.t the average response
o ooiven sinusoid does aor o L avir value. Jtwe are interested in
feeficet of gyro outp: ona resosoni mode D che direc lon cosine matrix
Jeulurion or on the system driti rate generated, .. .2 silue representation

5 often as useful as an exact one.
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Changes in the Frequency Response - Figire 4. 2-2 indicates tle

ellipse intersection points ior the sinuscid input -cutnut curve vhich results
wiien a random signal also enters the nonlinearity. Note that the likelibcod
of multiple intersection points occuring on any vne eliipse is reduced. 1o

this particular exaniple there are no multiple intersection points. Also,
because there can be an ou'put for A <8, all cllipses nave at least one
intersection point. The effect ¢1 the sinuscid {regiency re:ponse is illustrated
in Fig. 4.2-% Since po »llipse has mutlitple luiercections, there is only cne
value of clossd loop gain 1t 2ach frequency- the jump resonanc: vhenomenon

is elimina‘ed. Also ‘he c¢losva les: gain is greater than zero for all

Vo
.
i; -
e /
o /
45: e e 2 .._-___/._.__..__ —_—
; SN, 7 y
Fd
COI’;th?tnt — by > Yy > Ve > vy >y
Amplitude
/ Vl
/
// I

[X)

Figure 4. 2-2 Ellipse Intersection Points Caused by Random
Nonlinearity Input
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frequencies and the sharp cutoff found in Fig. 4.1-4 is eliminated. Figure 4. 2-4
shows the three frequency responses corresponding to the three nonlinearity
curves of Fig. 4.2-1. As o increases, the jump resonance disappears, and
bandwidth increases. Gradual gain reduction at high frequencies replaces

the sharp attenuation. In short, when the random signal is present, the closed

loop frequency response appears to be more like that of a linear system.

Closed
Loop
Gain

-~

-
I
i | | :
! | ] \ 7
| |
' !
| I |
l
) i | |
| | l |
I l | |
| I |
I | | l
1 ' 1
n v * v S
“i Y Ya Y4 s
Frequency

Figure 4.2-3 Closed Loop Response for a Ternary Gyro With
Random Nonlinearity Input ’
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2 GYRO AND SYSTEM ERROR SIMULATION

51 MOTIVATION FOR A SIMULATION

The analysis and results reported in Refs. 1 and 2 are based on
several assumptions and simplifications. Before proceeding with further work
based on those results it would be prudznt to establish some check on the
validity of prior approximations. While simulation is not a perfect substitute
for the construction and testing of hardware it is Qonsiderably less expensive
and far more versatile. As an intermediate step between analysis and prototype
construction, simulation is ideaily suited to the present stage of the investi-
gation.

Topics which were treated in an approximate manner during the
prior analysis include crosscoupling errors, gyro structural dynamics, random
vehicle angular motions and closed loop characteristics of pulse torqued gy:os.
When crosscoupling errors were computed in the case of oscillatory angular
motion, the gimbal output angle was obtained from a linearized model for the
binary pulse torqixed gyro. The linear sensor approximation does not take into
account the pulsed nature of the rebalance torque or float angles generated by
limit cycling. In addition, treatment of crosscoupling errors in‘ihe ternary
pulse torqued gyro is very difficult even with the aid of describing function
techniques. The nonlinear natire of pulse rebalanced gyros does not permit
confidence in the results obtained from analysis of crosscoupling effects unless
they are substantiated by simulation.

The rimple model of wheel and gimbal dynamics used in almost all
_ the previous investigat.ons ignores the lightly damped structural vibrations
which can occur. Though these vibrations lend themselves to mathematical
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description as linear dynami~ effects, their inclusion makes the analysis of the
gyro loop behavior considerably more complex. Even the simple determination
of their effext on !{imit cycles in a binary gyro led to the curicus indication that
three limit cycles with the same amplitude but different frequencies were
mathematically possible. Whether the two additional limit cvcle modes will in
fact occur is an appropriate 3ubject for a simulation study. Indeed, through
simulation, it should be possible to determine when and if structural dynamics

2.e of any major importance in strapdown gyros.

In the portion of Ref. 1 dealing with the gyro parameter optimiza-
tion, several approximations and simplifications were made to permit easy
calculation of gyro errors caused by random vehicle angular motions. A
simulation which generates realistic analogs of random angular motion about
all major sensor axes is nee- .d to cteck the assumptions. In addition, non-
linear simulation of the sampled switching logic found in puise rebalanced gyros
will be useful in evaluating sensor closed loop transfer characteristics and to
check the validity of the continuous signal describing function analysis used in
the past.

Several questions which arose and werz left generally unanswered in
the preceeding work can be treated easily bv a weil designed simulation. In the
discussion of strapdown gyro error compensation, the possibility of using the
three basic gyros to measure angular motion for their own compensation is
treated. Stability and accuracy analyses of this apprcach are very difficult to
perform analytically because many closed loops, often containing time -varying
gains, are gener-ted. However, the technique is so attractive in terrmas
of cost, power, weight and reliability that it must not be igrored for this reason.
A well designed simulation of three gyros and th: compensatior calculation will
permit an empirical determination of 'the feasibility of this approach. In addition,

simulation provides an inexpensive way of checking all proposed gyro error
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—,

compensation schemes, including their sensitivity to the cccuracy of various

motion sensors.

In the work reported by Refs. 1 and 2, a system level figure-of-
merit was developed to indicate the effect of gvro errors on strapdown system
accuracy. Equations were developed relating the time histories of gyro errors
to system attitude error. These expressions were exercised in the case of
certain easily described gyro output errors< (hias, white noise, oscillations,
etc. ) to give simple analytic relations retween sensor and system drift ates.
When examples were presented and parameter optimization was illustrated the
latter relations were used rather than the original more complex equations
which require complete specification of gyro error and system attitudes histories.

The approximation which results is a fit subject for validation by simulation.

In addition to verifying results from prior analyses, a well designed
flexible simulation will be invaluable in the continuing stud; of strapdown
sensors. Compensation within the gyro icop is easily analyzed and the effects cf
various torque generator characteristics on system errors can be studied. Test
procedures for determining basic sensor error parameters can be evaluated.
Using the simulation, dynamic test inputs can be designed and simulated
information will be avai.able {or use in comparing different test data reduction
techniques. Finally, the versatility and flexibiliiy of a simulation must be
emphasized. While the ultimate veri -ation stil) .ies in constiuction and
testing, of actual hard' are, when it 1s still desirable to investigate many
propcsed changes in gyro parameters o ' simulation provides an inexpensive

and expedient means.

Description of the Projected Simulation -— The simulation planned

and under construction is illustrated in Figure 5. 1-1. Investigation indicates

that a purely digi.al simulation will be too slow when numerical integration is
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used with the complex, high frequency dy.:amics to be simulated. On the other
hand, the system error is to be computed using the error growth difference
equations described in Ref. 2. This requires a digital computer. The

hybrid simulation shov'n permits simultaneous determination of high frequency
variables and accurate calculation of system error growth., Three gyros,
including pulse rebalance torquing, will be simulated on the analog portion along
with random and deterministic motion in three dimensions, gyro motion-induced
error torques and error compensation schemes. The gyro models will include
structural dynamics when desired. Sensor outputs and true angular moticn

will be provided to the digital portion for calculation of system attitude errors.
The simulation described remains a flexible tool for analyzing additional
aspects of strapdown sensor errors. The gyro models can be changed to

accommodate studies of exotic sensors as well as accelerometers.

ANALOG COMPUTER

r——— -7/ - ]

I | Measured

I GYROS | Rotational T

| i Environment )g

| Error Torqgues :

| Compensation '

| | Detailed Dynamic Models | System

| \ I Attitude

| : DIGITAL | Error

I —
|

I | Actual WCOMPU’I‘ER

! ENVIRONMENT [otadionsl X

| | Environment

| Deterministic |

: Random :

L J

Figure 5.1-1 Hybrid Simulation of Gyros and Calculation of
System Attitude Error
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5.2 PROGRAM FOR THE DIGITAL PORTION

One function of an inertial navigation system is to provide an
indication of vehicle orientation with respect to a reference coordinate frame.
In strapdown systems this requirement is satisfied by computing a direction
cosine matrix, C, relating vehicle and navigation reference frames. Given an
initial C matrix, the direction cosines can be computed from the history of
rotations abeut each body axis. If we compute C at discrete intervals T seconds
apart, the direction cosines at the end of the (n + 1}st interval can be expressed
in terms of those at the end of the prior period and a matrix of incremental
angles, A6 (see Ref. 1). The matrix Af contains the angles through
which the body axes have rotated since the last sample time. The equation
relating the two direction cosine matrices is:

a6
€. 1=C.& (5.2-1)

when computer considerations such as quantization, word length and truncation

are ignored. A Bn is defined by

A DT 0 -w, Yy
AG_ = S‘ w0 -w_|dt (5.2-2)

nT z &

W, W 0

where Wys wy and w, are the angular rates about the body axis. In practice the

elements of A On are measured by the x,yand z axis gyros.

Generally, there is a difference between the actual A 6n matrix and
that obtained from gyro measurements. The difference between the actual

A Gn matrix and that given by the gyros is a third matrix, En’ which represents

H4
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the error. The presence of En results in an error, AC, in the C matrix
computed from the gyro measurements. Given En for all values of n, we can
compute AC at the end of each interval. A difference equation for AC which
retains second order small matrices is obtained from the series expansion of
Eq. (5.2-1):

T

=c g +%(En)2)+ ac C C (I+En) (5.2-3)

aC n+1\ n n n+l

n+1

The figure-of-merit for gyro performance, P, can be computed from ACn

(see Ref. 1):

Al _ T
B, = 5 trace(ACnACn) (5.2-4)

Description of the Program — At each sample time the digital

computer portion of the simulation receives the simulated gyro outputs (pulse

counts) and true body rotations (actual A Gn matrix) as inputs. The program

, AC
n+1 n+l
are stored for the next cycle and P, is provided as an output. Figure

then proceeds to compuce En’ C

AC
n+l
5. 2-1 is a flow chart for the program. On this chart, Co and AC0 are initial

and p - The matrices Cn+1 and

condition matrices for C and AC, respectively. The number n is the current
number of compute cycles executed. This program has been run on a digital
computer identical to the one to be used in the simulation. The compute cycle
was found to be about 45 msec in duration. This constitutes a lower limit on
the size of the sample period T if the digital computer is to process data when
received and the analog simulation is not time scaled. The program was also
checked out on an IBM QUIK-TRAN time -sharing system. Simulated gyro error
inputs in the form of ramps, sinusoids and coning motion were used. In every
case the computer program output (pn) agreed with the expected result. The

program is considered ready for use,
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Enter C , AC
0 0

<

n=n-+1

\

Enter gyro pulse count (PC)

and A0 . measured since

last sampling.

:

E =PC- Af
n n

!

] 2, 3
Fm_l = Cn(I +A0_+ A6 2+ A9n/6)

T

2
AC = Cn+1(En - En/2) + Acncn Cn+1(I + En)

n+1

[

B T
= - n+1 ACn+1

el trace (AC

)

Do -

[

WRITE P P

n+1’ " n+l

Hold for

next analog

output

Figure 5.2-1 Flow Chart for the Digital Part of the Hybrid Simulation
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6. GIMBAL MISALIGNMENTS CAUSED BY OUTPUT AXIS
ANGULAR MOTION

A single-degree-of-freedom gyro experiences torques about its
input axis which result from angular rates about its output axis. These torques
misalign the float about the input axis, IA, to a degree which depends or: the
stiffness of the float suspension. Suspension stiffness together with the flotation
fluid determine the time constant of the relative motion between case and float.
In this section we analyze the time response of the float misalignment about IA

to a step angular rate applied about the input axis, OA.

Figure 6.1-1 shows the model assumed for float dynamics about the
input axis. The suspension stiffness is represented by linear springs and fluid

damping by a pair of dashpots.

a; = Float-to-case angular misalignment about IA

A Float-to-case angular misalignment about OA

w, = Case angular rate about IA

w, = Case angular rate about OA

Iii =  Float moment of 1nertia about IA

H = Wheel angular momentum

¢ = Distance between float center of mass and each float bearing

D = Equivalent linear damping constant in dyne-sec/cm

Ci =  Equivalent rotational damping constant in dyne-cm-sec
- D22

K = Equivalent linear spring constant in dyne/cm
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Figure 6.1-1 Model for Gyro Case and Float Dynamics

The equation for angular motion of the float about IA is derived:

Torgue on Float = Gyroscopic Torque -
(Spring + Damper Reaction Torques)

= Iii(wi + ozi)

or
. oy « oy 2. _ 2 .
Iii(wi + ai) = H(u.)0 + ao) 2D¢ a; 2K( a, (6.1-1)
Simplifying, we have
H . & _ b/ . 2
- E (wo + ao) -w =a+ ZCQnozi+Q a, (6.1-2)
where
fe 2 (6.1-3)
2KI. .
ii
C.
A
( \IZKIii
and
o 12K \
Qn—ﬂ I— (6. 1-4)
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If we assume Cui and ('yo to be zero, Eq. (6.1-2) reduces to

- . 2 H
a@; + ZCQnai+Qnai = —f;wo. (6.1-5)
For most gyros the float motion is heavily damped and the response
to a step of angular rate about CA can be accurately described by a single

time constant, 7

“o <H \ -t/7
a;=- =g (¢ ) @-eD (6.1-6)
L Qn 11/
1 <
. — (6.1-17)
a(-yei-1) K

Equations (6.1-3), (6.1-4), (6.1-6) and (6.1-7) are used to compute float
misalignment behavior for different values of Ci and K. The fixed gyro

parameters chosen are

H=2.5x 105 dyne -cimi -sec

£=3.6cm

I.. = 300 gm-cm2
ii

Three plots are presented to assist the gyro designer in picking the appropriate

suspension stiffness and damping coefficient to constrain misalignment about IA.

Figure 6. 1-2 shows the behavior of the float time constant, 7, as a
function of K and Ci' Given 7 we can enter Fig. 6.1-3 and obtain a time

history of the normalized float angle, ZK“Kai/ Hwo. Note that any time constant
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100
10
Float Time
Constant
(sec)
1
0.1 =
i Iii - 300 g_:m—cm2
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10” 108 10
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Figure 6.1-2 Float Misalignment Time Constant as a Function of
Suspension Stiffness K and Damping Constant Ci'
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obtained from Fig. 6.1-2 implies ( = 3.6 cm. Figure 6.1-4 allows us to
obtain the misalignment angle as a function of time directly. The effect of

suspension stiffness on the time response is readily observed.

If the suspension is not stiff enough for the range of expected cutput
axis rates, the float pivots can strike the bearings. The resulting static friction
between pivot and bearing surfaces provides a static break-out torque, Tos which
masks small torques applied about the output axis by input angular rates.
Accordingly, when the three-level torquer ic used inpuvt rates smaller than 'rs/H
are not seen at the sensor loop output, and the gyro has an effective rate dead-

zZone.

The force, F, pushing each pivot against its bearing results from
the gyroscopic torque caused by an output axis angular rate and from forces

applied by the gimbal suspension:

Hw

F = 7[_0 iad Kd
where d is the clearance between bearing and pivot. Knowing Ktatic’ 20

effective measure of static friction at the pivot-bearing interfuce, we can

evaluate TS:

Te = Shiatie F

Hwo
= Ugtatic \ T - 2Kd
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“o _ 2Kd
T Hgtatic \ €T H

In a binary gyro the constant application of torque by the (orque generator
prevents this deadzone.

- -10
5x10 j
2
I. 300 gnmi-cm”
i
( 2.6 cm
-10 .
4x10 Cx 107 dyne-cr -sec.
time from initiation of a
step angular rate aoout
-10 the output axis

3x10 R0
o,
i
Huw

0
(1 dyne-cm)

; -10

2x10

1x10°"

0] l 1 1 1 [N | 1 1 + b 1 412
10" 108 9

K(dyne cm)

Figure 6.1-4 Normalized Misalignment for Values of
Suspension Stiffness
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s CONTINUATION OF EFFORT

Develooment of the gyro syst m error simulation will be the focus
of future work., For the reasons stated in Sect. 5.1, the hybrid simuiation is
both a useful ard neccssary design tool. Upon completion of all the program
subsystems presently anticipated, the simulation will first be exercised to
check the validity of assumptions used in previous analysis. Then, the
pcssibility of compensating environment-induced gyro errors by processing
outputs from the basic sensor triad will be explored. The use of additional

angular motion sensors will also be investigated.

The equations for single-of-degree-of-freedom pendulous accelero-
meter will be developed and compensation for this instrument will be treated

by both analysis and simulation.

In brief, it is expected that the remainder of this study will advance
knowledge of strapdown sensor errors and their reduction to the point where it

can be used as the basis for some hardware construction decisions.
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APPENDIX A

ACCURACY OF THE SMALL SIGNAL APPROXIMATION
TO THE DUAL INPUT DESCRIBING FUNCTION
FOR THE BINARY NONLINEARITY

In Sect. 3.1 the Dual Input Describing Function (DIDF) gain of the
binary nonlinearity is used. The describing function gain for a small signal
sinusoid in the presence of a large limit cycle sinusoid is expressed by the

approximation:

where A is the limit cycle amplitude at the nonlinearity input and D is the relay
drive (output) level. It is desireable to e¢v luate the accuracy of this approxi-

mation.

The DIDF is given for two sinusoids in Appendix D of Ref. 3.
Denoting the amplitude of the small signal as B, where B/A = p, p < 1:

Ng&B) = L [o) - (1) KGo)
7T Bp
where
m/2
K(p) = ( gy (Elliptic Integral

“0 l( 1- pzsing " of the First Kin)

/2 =
E(p) = g ql-p sin™y dy (Elliptic Integral
Y0 of the SecondKind)
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The percentage error in the DIDF estimate caused by using the approximation
is

Approximate Value of N
) Exact Value of N

B

% Error = - 1; x 100

g5 | 1024 [E()-(1-pDK ()] |
E(p) - (1-p2K(p)

Note that this error is a function of p only. Figure A.1 shows the percentage
error plotted as a function of p. As expected, the error in the approximation

goes to zero as the amplitude ratio p vanishes.

p
0 0.2 0.4 0.6 0.8 1.0
0 ) 1 i 1 1 1 L 1 n 1
-2 \ A= g where:
B = signal amplitude
=4 E entering the
nonlinearity
-6 1 A = limit cycle
Percent amplitude entering
Error the nonlinearity
-8 4
-10 T
-12 -
-14 +

Figure A-1 Error in the Approximation to the DIDF
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APPENDIX B

DERIVATION OF THE ELLIPSES USED IN DETERMINING
THE FREQUENCY RESPONSE OF THE
TERNARY GYRO LOOP

In analysis of the ternary pulse rebalanced gyro loop (see Sect. 4),
a graphical solution is used. This is done by using two separate descriptions
for the amplitude ratio for a sinusoid on either side of the nonlinear elemert.
One description, developed from linear analysis techniques, generates a

family of ellipses. The equation for these ellipses is derived below.

Figure B-1 shows a generalized loop containing a single nonlinearity.
N is an equivalent sinusoidal gain (describing function gain) for the nonlinearity
and is assumed to involve no phase shift. The loop is driven by a sinusoid of
constant amplitude, M, and frequency, w. The amplitude of the transfer
function between the signals A sin(wt + ¢) and M sin wt is:

164
A Pr®
o = (B-1)
i(6.+6,)
1+ Nppe’™ 1 72
Using the identity
el® = coso + jsing (B-2)
Eq. (B-1) may be written as:
A /1 i
- (B-3)

2 2 . 2 J
J(1+Np1p2cos(61+62)) +N PPy Sin (01+62)

68




THE ANALYTIC SCIENCES CORPORATION

M sin ot _,q) o L (Al e N | ANsin(wt  ¢)
+
\

Ly M=
i0
A 1
L1 = py€
o
A 2
L2 = Py e
N = equivalent sinusocidal gain

of the nonlinearity

Figure B-1 A Loop Containing One Nonlinear Element

Squaring and cross multiplying gives:

2 2 2,222 .2 2 2
A (1+Np1pzcos(91+92)) + A°N p1PySin (91+92) =M Py (B-4)

Solving for the loop output amplitude, AN, we obtain

-Acos(6,+6,) !
AN = 122 1 \/:\42p?-A28in2(91+9 ) (B-5)
P1Pg ~ pypy 2

In this expression M is given and el,pl, 62, pqy are determined from the
frequency w. Thus, for fixed input amplitude and frequency we have a relation

giving the amplitude of the nonlinearity output as a function of A, the amplitude
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of its input. Note that AN is independent of the value of N. Plotting AN for
values of A yields the ellipse shown in Fig. B-2. Critical points in the

construction are illustrated.

(-M pz) CSC(O1 - 92) ______________

(M p2) COt(91 o 02) s, S (G S |, S (—— — —" w—— am— g | a— C— —

AN

|
|
|
|
|
|
|
|
l
|
|
|
|
|
J

M
Pq A le csc(91+92)
le cot(nlmz)
Figure B-2 Nonlinearity Input-Output Relation Derived From Analysis
of the Linear Portion of the Loop Shown in Figure B-1
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