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ABSTRACT 

It i s  o f t e n  assumed t h a t  s tars  are formed when a 
l a r g e  i n i t i a l  c loud  s p l i t s  up i n t o  smaller f r agmen t s ,  each  
o f  which may i n  t u r n  s p l i t  i n t o  smaller p i e c e s ,  and s o  on. 
T h i s  c o n t i n u e s  u n t i l  t h e  f i n a l  s t a g e  b e f o r e  t h e  c loud  con- 
denses  i n t o  a v i s i b l e  s t a r ,  a t  which s t a g e  t h e  c loud  fragment  
may b e  c a l l e d  a p r o t o s t a r .  We p r e s e n t  a s imple  mathemat ica l  
model f o r  the e x p e c t e d  number d e n s i t y  ( i . e . ,  "mass spec t rum")  
o f  c loud  f r agmen t s  which does  n o t  r e q u i r e  d e t a i l e d  knowledge 
o f  t h e  p h y s i c s  o f  t h e  f r a g m e n t a t i o n  p r o c e s s ,  b u t  u s e s  merely 
some s imple  and p l a u s i b l e  phenomenological  hypo theses .  

The p r e s e n t  s t a t e  o f  e m p i r i c a l  ev idence  about  t h e  
i n i t i a l  mass spec t rum o f  p r o t o s t a r s  and i n t e r s t e l l a r  c louds  
i s  f i r s t  rev iewed.  We t h e n  d e s c r i b e  and expand upon a mathe- 
mat ical  model proposed  b y  F i l i p p o v  ( 1 9 6 0 )  f o r  t h e  mass spec-  
trum o f  o b j e c t s  formed by t h e  repeated random independent  
s p l i t t i n g  o f  an  i n i t i a l  o b j e c t .  Assuming t h a t  b o t h  t h e  ra te  
o f  s p l i t t i n g  and t h e  "one-shot" s p l i t t i n g  d i s t r i b u t i o n  are  
power f u n c t i o n s  of f ragment  mass, i t  i s  p o s s i b l e  t o  reproduce  
e i t h e r  t h e  " f r a c t i o n a l  e x p o n e n t i a l "  o r  inverse-power laws 
which have been proposed  as d e s c r i p t i o n s  o f  t h e  observed  mass 
spec t rum o f  p r o t o s t a r s  and i n t e r s t e l l a r  c l o u d s .  

I n  t h e  inverse-power l a w  d e s c r i p t i o n ,  t h e  F i l i p p o v  
model cannot  produce an  index  la rger  t h a n  1 . 0 ,  whereas t h e  
index  es t imated  from f i e l d  s t a r s  l a r g e r  t h a n  one s o l a r  mass 
i s  on t h e  o r d e r  o f  1 .33.  T h i s  d i f f e r e n c e  can be  e x p l a i n e d  by 
assuming t h a t  p r e s e n t  f i e l d  s ta rs  were formed i n  d i f f e r e n t  i n ? -  
t i a l  c l o u d s ,  t h u s ,  t h e  observed  mass spec t rum i s  a m i x t u r e  o f  
F i l i p p o v - t y p e  s p e c t r a .  

The  i n d e x  2/3 observed  i n  t h e  inverse-power l a w  mass 
spec t rum o f  s m a l l  s t a rs  ( l e s s  t h a n  one s o l a r  mass) can be ex- 
p l a i n e d  by a one-shot  s p l i t t i n g  l a w  i n  which g r a v i t a t i o n a l  po- 
t e n t i a l  ene rgy  of f ragments  of a c loud  i s  d i s t r i b u t e d  un i fo rmly  
ove r  e q u a l  r a n g e s  of f ragment  mass. T h i s  seems to be more 
r e a l i s t i c  t h a n  t h e  o t h e r  one-shot  s p l i t t i n g  laws proposed  by 
v a r i o u s  a u t h o r s .  
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RANDOM INDEPENDENT SPLITTING MODEL FOR THE 
MASS SPECTRUM OF PROTOSTARS AND INTERSTELLAR CLOUDS 

1.0 INITIAL PROTOSTELLAR MASS SPECTRUM 

Can we learn something about the processes govern- 
ing the formation of stars and interstellar clouds from the 
present stellar luminosity function? The present distribution 
of stellar absolute magnitudes can be related to theoretical 
models of star formation by means of the initial protostellar 
mass spectrum, q(m,t). Denote the present epoch by T, and the 
expected (normalized) number of stars whose absolute visual 
magnitudes are between Mv and Mv - dMv by Y(P~lv,T)dMV; the func- 
tion +(M 7') is known as the present luminosity function. V' 

Suppose that luminosity Mv is a one-to-one function 

Then of the stellar mass m, Mv(m)(see, e.g., Limber (1960)). 
the expected number of stars  of mass m to m + dm at the present 
time T is q(m,T)dm, where 

is the present mass spectrum, i.e., expected number density. 

We are interested in the stellar mass spectrum at 
the time t when the large cloud from which stars had allegedly 
formed was split into many small fragments or protostars which 
had not yet commenced thermonuclear element-burning. Unfor- 
tunately the initial protostar spectrum q(m,t) is probably not 
equal to the present stellar mass spectrum q(m,T). First of 
all, it is possible that not all of the mass of the protostar 
contracted into a presently observable star (Kiang, 1966a) and 
that the fraction of mass lost varied greatly with the initial 
protostellar mass. A physical process exhibiting this effect 
would be the loss of gas by radiation pressure when the central 
condensation of the protostar grew hot before the outlying re- 
gions did. In the rest of this paper we will ignore this effect. 

Secondly, we no longer observe o l d  massive stars. 
The old massive stars have already evolved off the main sequence 
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into relatively invisible white dwarfs. This is often taken 
into account by means of an "evolution correction" of $(m,'i',t) 
which is the fraction of stars of mass m which are still visi- 
ble at time T, i.e., the proportion of stars of mass m whose 
main sequence ages are less than the ages T - t of the star 
system. Therefore 

This correction was first introduced explicitly by Salpeter 
(1955) 

Salpeter's assumption is that stars are "born" (we 
interpret this as "reaching the main sequence") uniformly in 
time, and thereafter evolve at a rate which is independent of 
the time of birth. Thus 

if T - t > ~ ~ ~ ( m )  

+(m,T,t) = 1 if T - t - < ~ ~ ~ ( m )  
( 3 )  

where ~ ~ ~ ( m )  is the lifetime on the main sequence of a star 
whose mass is m. 
is not well known. Schmidt (1959) uses 

Even if this were correct the function ~ ~ ~ ( m )  

where k(m) is a slowly varying function of m, and m/L is the 
mass-to-light ratio. 
[therefore $(m,T,t)] rapidly decreases with increasing m, ex- - 

It can be said in general that ~ ~ ~ ( m )  

ceeding the presumed age of the galaxy (perhaps some 8 x 10' 
years) only for m < 0.75 m,, roughly. 
sun. ) 

(m, is the mass of the 

The basic difficulty in applying formula ( 3 )  is that 
we cannot say what the distribution of birthdays is without 
making some very strong and, in general, unverifiable assump- 
tions about the physical processes of star and protostar forma- 
tion. Some attempts to compute the rate of star formation have 
been made by Mathis (1959), Salpeter (1959) and Schmidt (1959); 
the rate of protostar and stellar cloud formation has been es- 
timated by Field and Saslaw (1965). 
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The above-named astronomers readily point o u t  the speculative 
nature of' their conclusions. 

In summary, while some sort of evolution correction 
is needed in order to estimate the initial protostellar mass 
spectrum for relatively large stars, the precise nature of the 
correction is unknown. We must therefore restrict our atten- 
tion to the mass spectrum of relatively small stars (m < 0.75 
m,). 

Unfortunately, the present spectrum of small stars 
is not well determined empirically, a major reason being se- 
lection effects for low-visibility stars. Nevertheless, there 
appear to be no visible stars with m < 0.035 m, and only three 
with m c: 0.075 m,, (O'Leary, 1966). For 0.15 mQ < m < 0.75 m, 
the mass spectrum of field stars is empirically of the form of 
an inverse power law with index a, 

(5) -a-1 q(m,T) = constant m 

There is considerable disagreement about the numerical value of 
01. Brown (1964) and O'Leary (1966) concentrate on low-mass 
(m < 0.5 m,) stars, obtaining respectively a = 0.61 and a = 0.74. 
Warner (1961 a,b) verified Salpeter's (1955) value a = 1.35 for 
0.25 m, < m < 10 m,; however, this estimate was based on an 
"evolution corrected" mass spectrum over most of the range of m, 
and we have already discussed some of t h e  difficulties in 
applying this correction (3). Using a somewhat different evolu- 
tion correction, Limber (1960) obtains a spectrum of inverse 
power law type with a = 1.55 for 1.5 m, < m 40 m,. Reddish 
(1966) concludes that a = 1.5 (20.3) for 0.1 m, < m < 100 mo, 
and a = 1.33 over most of this range; these counts include field 
stars locally and in the small Magellenic cloud, as well as the 
galactic cluster h-Persei, Pleiades, Hyades, and Praesepe 
(Reddish, 1962). However, the mass spectrum is definitely some- 
what flatter for m < 0 . 5  mo than the a = 1.33 inverse power law. 
If Wanner's (1964) luminosity function for the solar neighbor- 
hood is correct, i.e., $(MV,T) is fairly constant for 6 < MB < 16, 
then a < 0 for small m. In summary: The mass spectrum of small 
stars, for which no evolutionary correction is needed, is too 
poorly determined to furnish reliable information about the ini- 
tial protostellar mass spectrum. 
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The mass spectrum of very small and very massive 
stars falls off much faster than the above-mentioned power 
laws. Kiang (1966 a) has fitted the upper end of the "cor- 
rected" stellar mass spectrum by a fractional exponential 
law with characteristic exponent n, 

-cmLL (constant) mb e 

where n = 1/5 for Salpeter's (1955) spectrum. These empirical 
results and the theoretical arguments at the end of this paper 
suggest that we consider the family of initial mass spectra 

n -a-1 -cm q(m,t) = (constant) m e 

which exhibits both inverse power law and fractional exponen- 
tial law behavior, according to the values of the constants, a, 
c and n. 

2.0 MASS SPECTRUM OF INTERSTELLAR CLOUDS (REVIEW) 

Scheffler (1967) has attempted to estimate the index 
a in an assumed inverse power law mass spectrum. The index a 
is determined empirically in two ways: 

(1) From the relation between visual absorption values 
and cloud diameters, and the distribution of these 
absorption values. 

(2) From the frequency distribution of absorption values 
and optical depths at 21 cm wavelength. 

These are the only determinations of the cloud mass spectrum 
known to the author. We will briefly review Scheffler's argu- 
ment s . 

He first notes that, on the average, the dust spatial 
density p s ,  gas density p, diameter A and absorption a (in mag- 
nitudes)of an interstellar cloud are related by 

B 
P s  'L P 

E 
P ' L A  (7) 
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The mass m(a) of a cloud with absorption a is 

The probability density of absorption (i.e., attenuation of 
light) along a line of sight, say g(a) ,  is related to the true 
(spatial number) density function of clouds h(a) by 

2 
1 + E  h(a) (10) g(a) % h2(a)h(a) % a - 

Scheffler observes, for large a, 
- 
g(a> % a-6 

Thus the mass spectrum q(m) is 

-a-1 q(m) % h(a)da/dm % m 

for large m, where 

6 - 1 ,  2 
5 5(1 + E )  

a =  

The parameters 6, E, 5 are not well determined numerically. 
We are likely to have, however, 

~t 1 

E ; 0 

5 3 (from the preceding) 

6 > 1 (6 3 )  (observed) 

(dust density proportional to o r  increasing 
slightly with increased gas density) 

(larger clouds may have slightly higher gas 
density due to self-compression) 

+ > 2/3 ( a  % 4/3)  (from the preceding) 3 a "  

(13) 
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Scheffler attempts to estimate a from estimated actual 
sizes of absorbing clouds, but the physical uncertainties leave 
c1 very poorly determined--2/3 - < a - < 4/3 for m < 5000 me and 

a 1/2 for m > 5000 ma. 

The distribution of the optical depth T f o r  21 cm 
radiation leads t o  a ore consistent estimate. Assuming that 
optical depth T and c f oud diameter A are related by 

1 + E / @  - c % A  (15) ' 4  
i 

then the mass m(-r) of a cloud with optical depth T is 

E *  m(-c) % T (16) 

The observed line of sight probability density of T, g*(T), is 
assumed t o  be a power law for large T ,  

i 
i 

Proceeding as above, we derive 

Scheffler obtains the empirical value 6 *  = 2, thus c1 = 1, using 
Clarks' (1965) data. 
6 *  The power law assumed for 
R*(T) cannot, of course, be verified with such a small number 

With the same data the author obtains (Fig. 1) 
3.0 for T > 0.75, thus a Q, 4/3. 

- 
of observations. 

tenuously support the hypothesis that the mass spectrum of in- 
terstellar clouds is roughly an inverse power law with index 

To summarize, independent lines of investigation 

a -  > 1 ( a  = 4/3). 

3.0 FILIPPOVS MODEL OF INDEPENDENT SPLITTING (REVIEW) 

Suppose that at time t = 0 there is a single particle 
of positive mass moa This particle breaks up into a finite or 
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countably infinite number of smaller particles whose masses 
are positive numbers ml, m2, m3, ... . The splitting con- 
serves mass: 

0 
c mi = m 
i=l 

Each particle existing at time t can split in the interval of 
time ( t , t  + At) (independent of its past and of the fate of 
other particles) with probability p(m)At + o ( A t )  where m is 
the mass of the particle and the function p(m) depends only on 
m and is bounded in any positive interval Dl < m < D2, Dl > 0, 
D2 < m e  

one splitting of mo are random variables. The fraction of 
mass in particles whose mass is less than m is 

The number and masses of the particles arising from 

1 m - mi = @(mo,m> 
o m.<m 

1 

Thus mo @(mo,m) is the mass of all particles whose masses are 
less than m, formed by a single splitting of the mass mo. 
Assume that the mathematical expectations 

depend only on the indicated arguments. In general 

F(mo, + 0 )  = 0 

B(mo, + 0,m) = 0 B(mo, m, + 0 )  = 0 
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These functions are sufficient to describe a very 
general splitting process (Filippov, 1961). Some further 
specific assumptions are needed to compute a limit distribu- 
tion. They are: 

depends only on the value of m/mo, thus 

for any 0 - < A - < 1 and mo. Similarly, 

< 1 and mo 1' A2 - f o r  any 0 - < A 

(C) l1 f(A)dA/A < m 

(d) f'(A) > 0 

for a set of A of positive measure. 

Assumption (a) says that the probability per unit 
time (rate) of splitting is a non-decreasing function of the 
mass of the particle, i.e., large particles tend t o  break up 
faster than small particles, which seems physically plausible. 
That p(m) is a power function is also plausible, since we 
would suspect that the splitting rate might be proportional to 
the radius (n = l / 3 )  or radius squared (n = 2 /3 )  or mass (n = 1) 
of the cloud. Since the exact mechanism governing the fragmen- 
tation of gas clouds is not known, it seems prudent to leave the 
parameter n unspecified. 
which a particle of unit mass will survive with probability l/e. 

mechanism operates in the same manner whatever the size of the 
initial particle. This is likely to be untrue for mo suffi- 
ciently large or sufficiently small, but may well hold for a 
very large range of values of mo. 

Note that the unit of time is that 

The similarity assumption (b) says that the breakup 
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Assumption (c) says, in effect, that not t o o  much 
mass is lost in small (zero-mass) particles. Assumption (d) 
says that a positive quantity of mass goes into fragments 
with strictly different sizes. 
mathematically necessary. 

Using the above assumptions, Filippov derives 
integro-differential equations for the first and second mo- 
ments of the proportion of mass m(x,t) contained in particles 
of mass - < x at time t. 

These assumptions are also 

In particular, for mo = 1 

a - E{m(x,t)I at 

-E{m(x,t) 1 +11 E(.(: , tAn))df(A) 

Filippov establis es that (26) has an as 
solution (t + -) of the form 

E{m(x,t)) = G [(t + l)xn] 

rmp t ot i c 

n In (26), letting u = (t + 1)x , v = (t + l)vn, and f(A) = fl(An), 
he obtains 

,m 

3 
._.I 

G(0) = 0 , G(m) = 1 

or letting uG'(u) = cg(u) for c constant, 

Thus 
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Where G(u)  may be found from ( 2 8 )  or ( 2 9 ) .  H e  a l s o  e s t a b l i s h e s  
a s t r o n g e r  r e s u l t ,  t h e  convergence i n  p r o b a b i l i t y  o f  m ( x , t )  to 
G .  

An i m p o r t a n t  s p e c i a l  c a s e  i n  which G may be e v a l u a t e d  
e x p l i c i t l y  i s  a power law f o r  s p l i t t i n g .  

I n  t ha t  c a s e  

n - 
(32) F ( l  + k , 2 , (1 - v k ) t ) d v  E { m ( x , t ) )  = t e  

0 

f o r  x 5 m o  = 1 and n > 0 where F ( a , y , z )  = M ( a , y , z )  i s  t h e  con- 
f l u e n t  hypergeometr ic  f u n c t i o n  ( Jahnke  and Emde, 1 9 4 5 ) .  Also  

k 
X 

E { m ( x , t ) l  = t e - 7  1 11(2J-t l o g  v ) d v  
J-t l o g  v 

0 

( 3 3 )  

for x 
o r d e r  1 ( t h i s  c a s e  n = 0 was d i s c u s s e d  by Kolmogorov ( 1 9 4 0 ) ) .  
We are r e a l l y  i n t e r e s t e d  i n  t h e  mass spec t rum or expec ted  
number d e n s i t y  

1, n = 0 where I1 i s  a modi f ied  B e s s e l  f u n c t i o n  of  

where t h e  number of  p a r t i c l e s  o f  mass x to x + dx expec ted  a t  
t i m e  t from a s i n g l e  i n i t i a l  p a r t i c l e  o f  u n i t  mass i s  q ( x , t ) d x .  
I n  g e n e r a l  t h e  f u n c t i o n  q ( x , t )  cannot  be  normal ized  to a proba- 
b i l i t y  d e n s i t y .  The t o t a l  expec ted  number o f  p a r t i c l e s  N ( t )  a t  
t i m e  t i s  

1 
E { N ( t ) )  =I q ( x , t ) d x  + e-t 

0 

( 3 5 )  
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and from ( 3 2 )  and ( 3 4 )  w e  o b t a i n  

f o r  n > 0 ,  k > 1 
k k-1 E(N(t)l = F (  , 7 , t )  

f o r  n > 0 ,  k < 1 - - - w  

i 

For n = 0 and - any f ( h )  w e  o b t a i n  

where a =11 f ' ( A ) d A / A  may be i n f i n i t e  ( t h i s  happens under  

( 3 0 )  f o r  k 51). 
l a rge  for t h e  a sympto t i c  s o l u t i o n s  (32 ,  33)  to a p p l y ,  w e  ob- 
t a i n  

Assuming ( 2 4 )  and ( 3 0 )  and t s u f f i c i e n t l y  

k q ( x , t )  = k t  e-t xk-2F(1 + , 2 , ( l - x n ) t )  for n > 0 ( 3 7 )  

q ( x , t )  = k t  e-t ~ ~ - ~ 1 , ( 2 d - k t  l o g  x/d-kt l o g  x )  f o r  n = 0 (38)  

Independent  of t h e  a sympto t i c  p r o p e r t i e s ,  i t  can 
be shown t h a t  as t+O, 

( 3 9 )  
k- 2 q ( x , t )  Q, k t  x 

which makes s e n s e ,  s i n c e  for small t on ly  t h e  i n i t i a l  p a r t i -  
c l e  has had t i m e  to break up,  and t h e  mass spec t rum of 
f ragments  from t h e  i n i t i a l  p a r t i c l e  i s  just f ( x ) / x  = kx . 
A s  z-tw w e  have f o r  t he  a sympto t i c  s o l u t i o n  

1 k-2 
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t h u s  

4 . 0  FILIPPOV MODEL: NUMERICAL CALCULATIONS 

The a u t h o r  has s t u d i e d  i n  g r e a t e r  d e t a i l  t he  c a s e  

r a non-negat ive i n t e g e r .  
l a s  f o r  q ( x , t )  from ( 3 2 ) .  
be p o s s i b l e  t o  c a l c u l a t e  q ( x , t )  by  i n t e r p o l a t i n g  between v a l u e s  
d e r i v e d  f o r  i n t e g e r  k/n. It i s  eas i ly  shown t h a t  

We w i l l  d e r i v e  s i m p l e  e x p l i c i t  formu- 
I f  k/n i s  n o t  an  i n t e g e r ,  i t  may s t i l l  

where Q r ( z )  i s  a polynomial  of deg ree  r i n  z .  T h e r e f o r e  

n n-2 - t x  q ( x , t )  = n t  x e f o r  k=n (48) 

f o r  k=2n (49) 
n = 2nt  [ l + [ l - x n l f ] x  2n-2 .-tx 

n 
3n-2 e- tx  f o r  k=3n (50) 

and so  on. 
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We see for large t and x<<1 (the initial cloud is 
extensively fragmented) the mass spectrum of fragments will 
be of the form 

n ktkin X k-2 .-tx q(x,t) % 

r ( i  t 
< 

k-2 which has aspects of both the inverse power law ( x  

fractional exponential law with exponent n( e "). 

ticed only for sufficiently large x, say 

) and 
-tx 

The fractional exponential behavior will be no- 

txn > 1/5 , x >  ( 5t ) -lln 

Even when n = 0 ,  the mass spectrum will be roughly the same 
form, as is seen by rewriting (44) to read 

The exact asymptotic mass spectrum q is sketched in 
Figures 2-10, for n = l/3, 2/3, k = 1/3, 2/3, 1, 4/3, t = 1, 2, 
3, and for k = n=l, t = 1, 2, 3. k < 1 corresponds to the 
shattering of a cloud into a multitude of small pieces. k > 1 
corresponds to the splitting of a cloud into one large piece 
and a few very small ones, i.e., to the "shedding" of a few 
small fragments. 

It is important to notice that if q(x,t) behaves es- 
sentially like an inverse power law, its index a must obey 

since k > 0. This is a consequence of mass conservation at 
each splitting, However, we have shown that for some real 
distributions, a>l. The author, therefore, extended Filippov's 
model to cover these observations. 
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5.0 EFFECT OF MIXING SPECTRA FROM CLOUDS OF DIFFERENT AGES OR 
I N I T I A L  SIZES 

I n  t h e  p r e v i o u s  s e c t i o n  w e  o b t a i n  a sympto t i c  formulae  
f o r  the expec ted  number d e n s i t y  q ( x , t )  o f  c loud  f ragments  of  
mass x a t  t i m e  t from a s i n g l e  i n i t i a l  c loud  of  mass x = 1 a t  
time t = 0 .  I n  p r a c t i c e  t he  mass spec t rum of  f i e l d  stars ( i n  
t h e  S o l a r  neighborhoodi, f o r  example)  w i l l  have come from c louds  
w i t h  d i f f e r e n t  ages  or, what amounts t o  t h e  same t h i n g ,  w i t h  
d i f f e r e n t  i n i t i a l  masses mo. 
d e n s i t y  v a r i a t i o n s  w i t h i n  a large i n i t i a l  c loud .  

There i s  a l s o  t h e  p o s s i b i l i t y  of  

Mixing t o g e t h e r  p r o t o s t a r s  from c louds  w i t h  d i f f e r e n t  
ages t w i l l  y i e l d  an obse rved  mass spec t rum q T ( x )  which i s  a 
mix tu re  of  s p e c t r a  q ( x , t ) , y  

where T i s  t h e  p r e s e n t  epoch and f t ( u )  i s  t h e  p r o b a b i l i t y  dens i -  
t y  f u n c t i o n  of t h e  b i r t h d a y s  t of  t h e  i n i t i a l  c louds  c o n t r i b u t i n g  
obse rvab le  p r o t o s t a r s .  A s i m p l e  c a l c u l a t i o n  w i l l  i l l u s t r a t e  qua- 
l i t a t i v e l y  t he  e f f e c t  o f  t i m e  ave rag ing .  
t ed  un i fo rmly  over  t h e  i n t e r v a l  (O,To), i . e . ,  

Suppose t i s  d i s t r i b u -  

= l / T o  for o < u < To (55) 

f t ( u )  = 0 o the rwise  

and f u r t h e r  assume t h a t  To i s  ve ry  la rge ,  

> >  1 TO > >  k/n , TO 

T h i s  k ind  of  h y p o t h e s i s  i s  assumed e x p l i c i t l y  by S a l p e t e r  (1955). 
Since  To i s  l a r g e ,  w e  adopt  t h e  a sympto t i c  formula  ( 4 3 )  and wr i te  
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Therefore 

(57 )  
-n-2 n)ii - l/To 

% k x  1-x 

i.e., the mass spectrum is (asymptotically) an inverse power 
law with index n + 1 (>l). 

In the same way let us consider a mixture in mo. Let 
the initial ( t  = 0) cloud mass be mo, and suppose that mo has a 
probability density fm (m). Then the observed mass spectrum at 
time t is 0 

where q(x,t) is the normalized spectrum derived as in the pre- 
ceding section. 
formula (43) is exactly correct, we obtain 

Assuming that for large enough t the asympotic 

Suppose, for the sake of definiteness, that mo has an inverse 
power law probability density 

where a > 0 and s is "small". Then for m > s, 
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a+2k-1 
n ¶ (m,t> = n qm 

0 

assuming as well that a > 1 - k. Since, for large t, the con- 
fluent hypergeometricifunction F is approximately 

we have, for very large t ,  and a # 1, 

a -a-1 qm (m,t> % 

0 

We see tLLat, in a certain limited sense, the inverse power law 
type of spectrum reproduces itself under Filippov's independent 
splitting mechanism. If q(m,t) is both time-mixed by (55) and 
initial-mass-mixed by ( 6 0 ) ,  the initial-mass mixing effect (in- 
dex a )  will predominate. 

is clear that mixtures of protostar populations from different 
initial clouds can lead to an inverse power law type of mass 
spectrum with index > 1, which is strictly impossible for the 
unmixed spectrum. Local field stars, which probably were formed 
in many different initial clouds, may exhibit a mixed spectrum 
of this kind. 

We will not pursue this line of argument further. It 

6.0 SOME OTHER MODELS 

Previous theoretical models for q(m,t) are based on 
"one-shot" once-and-forever splitting mechanisms, rather than on 
repeated mechanisms. For example, one very simple model for the 
fragmentation of a large initial volume of gas has been proposed 
by Auluck and Kothari (1965) (see also Kushwaha and Kothari, 
1960). The assumed physical process is that the volume of in- 
terest is cut into parallelipipeds by three orthogonal systems 
of parallel planes, the position of each plane along a perpendi- 
cular axis being given by a Poisson (purely random) process. 
The mass spectrum derived is approximately 
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-1/3 .-em 113 
% (constant) m 

for m > >  = average hass of fragment. This is similar to (6) 
with a = -2/3 and n = 1/3. It does not fit the observed spec- 
trum very well. Further, the underlying physical model does 
not appear to be very plausible. 

A much more plausible model has been suggested by 
Kiang (1966 b). Let points (condensation centers) be distri- 
buted Poissonwise (at random) in space, and suppose that each 
center captures all the matter closer to itself than t o  any 
other center. The region of interest will then be divided into 
a set of irregular polyhedra known as Voronoi polyhedra. The 
probability density of the volume (equivalently, the mass) of 
these polyhedra is approximately of the form of a gamma density 
with exponent 6, or 

-em q(m> = (constant) m5 e 

the determination of this density being the result of a Monte 
Carlo calculation (Kiang, 1966b). However, it can be shown 
quite rigorously (Gilbert, 1962) that this random cell model 
produces a number density which for large m is of the order of 
e , or more precisely -cm 

-cm q(m’)dm’ % (constant) e 

for some c and for m sufficiently large. The present stellar 
number density (equivalently, mass spectrum) does not show an 
exponential tail, which leads Kiang (1966a) to suggest that 
only a fraction of the protostellar mass contracts into an ob- 

servable star, the fraction being roughly proportional to m 
for some n < 1. 

n 

Gilbert also discusses a plausible generalization 
of the cell model, known as the Johnson-Mehl model. In the 
Johnson-Mehl model condensation centers are inserted into the 
region at random times as well as in random positions, and 
cells grow outward from these centers at a uniform velocity u n t i l  
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they encounter other cell walls. Gilbert (1962) establishes 
that the tail of the mass spectrum will fall off even faster 
than exponentially; more precisely, 

for large m, and some constant c. Therefore this model also 
cannot describe the observations. 

Kruszewski (1961) has computed the mass spectrum 
with the assumption that linear perturbations in density have 
a "white noise" spectrum, and then invoking a parallelipiped 
approximation (as did Auluck and Kothari). Assuming that the 
minimum stellar mass is 1-1 = 0 . 0 7  m,, he obtains an initial 
stellar mass spectrum 

2 
q(m> = (constant) [1og(m/1-I)] m -3 f o r  m>p (67) 

which is actually in rather good agreement with Limber's (1960) 
initial mass spectrum for 0.10 m, < m < 50 mo. 
physical basis of Kruszewski's results requires further elabora- 
tion in particular; it would be interesting to see if the 
parallelipiped approximation can be removed. 

clouds, originally proposed by Oort, has been analyzed by Field 
and Saslaw (1965). This model assumes that small interstellar 
clouds grow by collision and coalescence into larger and larger 
clouds, until finally the cloud mass exceeds some critical value 
and the large cloud breaks up into very small clouds, which be- 
gin repeating the coalescence process. The coalescence and 
breakup mechanisms tend to produce a steady-state mass spectrum 
which, for constant coalescence kernel, is approximately of the 
form 

However, the 

A coalescence and breakup model for interstellar 

-3/2 Bm q(m) = (constant) m 

where B ,  a constant > 1, depends on the critical unstable cloud 
mass and rate of bregkup of large unstable clouds. This is also 
of the same form as (6), with c1 = 1/2 and n = 1, c - < 0 .  For a 
coalescence kernel proportional to m 2/3 (a geometric collision 
factor, and physically plausible) q(m) will be roughly o f  the 
form of an inverse power law with a = 2/3. 
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Reddish (1962, 1966) has proposed a llone-shot" 
splitting mechanism based on equipartition of gravitational 
potential energy among cloud fragments. Since a variation 
of his arguments will play an important role in our inter- 
pretation of the data, we will next discuss this splitting 
process. 

7.0 THE REDDISH MODVL 

Reddish (1962, 1966) makes the following argument: 
Suppose that a cloud (of initial mass mo and radius ro)  breaks 
up into spherical fragments of uniform density. 
tional potential energy of a fragment of radius r is 

The gravita- 

(69) 2 5 n(r) = (constant) m /r = (constant) r 

where m is the mass of the fragment. 
spectrum resulting from this splitting: i.e., the expected 
- number of fragments whose radii are between r and r + dr is 
f(r)dr. 
among fragments of different radius, we have 

Let T ( r )  be the radius 

If gravitational potential energy is divided equally 

n ( r ) T ( r )  = constant 

f ( r )  = (constant) r-5(rl<r<r 0 ) - 

i 

Reddish assumes that this splitting occurs only once, and that 
the process does not produce fragments smaller than radius 
rl(mass s) in which case (reverting to the notation of Section 3) 
the "one-shot" splitting spectrum is given by 

1/3 -113 -213 (Urn]& F(m,mo) = T ([3m/4..1 )(36n~] m 

f o r  s < m < mo -7/3 = (constant) m 

thus 
m F m,mo =I, (constant) m -4/3 dm 

or 
A 1/3 

(constant) x -4/3 dx = (constant) [(mo/s] /s /mo (72) 
f(X) = 

- A  for 1 > A > s/mo 
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To let s -+ o introduces a mathematical singularity in f(A); 
the physical interpretation of this singularity is that most 
of the mass of the initial particle is found in the smallest 
(zero-mass) fragments. We therefore cannot use the hypothesis 
( 7 0 )  advanced by Reddish to determine a single-splitting 
fragment size distribution f(A) which is of the form required 
in Filippov's analysis, i.e., a power law (30) with s = 0. 

A simple reformulation of Reddish's argument pro- 
duces a theoretical single-splitting fragment mass distribu- 
tion which is applicable to Filippov's repeated splitting 
theory, and which has empirical justification. The gravita- 
tional potential energy as a function of fragment mass m is 

513 n(m) = (constant) m (73) 

Suppose now that gravitational potential energy is distributed 
evenly among fragments of different mass. 
from a single splitting of a particle of mass mo is, as before, 
(l/m) dm F(m,mo), thus the analogy of (70) - (72) with s = 0 is 

The mass spectrum 

d 

Q(m) ( l / rn)& F(m,mo) = constant 

in other words 

k = 1/3 

The prediction from (74) is, therefore, that the 
initial mass spectrum of small stars from a single cloud, 
which have not yet evolved off the main sequence, is an in- 
verse power law with index 2/3. This is supported by Brown 
(1964) and O'Leary (1966). 

If the splitting process leading to the "initial" 
protostellar mass spectrum was very extended in time, 
Filippov's treatment seems the most plausible and the most 

(74) 

(75) 
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tractable. For an initial mass spectrum which is the result 
of a single cloud fragmentation, the approach suggested by 
Reddish seems most plausible. The author's application of 
Reddish's method yields k = l/3, that is, a = 2/3 for small 
stars. 

We interpret the index a = 4/3  (which may apply to 
large field stars) in the following way. The observed mass 
spectrum is in fact a mixture of spectra from clouds with 
different ages and initial masses. It was shown in Section 2 
that the distribution of cloud masses is roughly an inverse 
power law with index 4/3, which would produce an initial-mass 
mixed spectrum of protostellar masses of about the same shape 
(62). On the other hand, a time-mixed spectrum could produce 
an inverse power law with index 1 + n (see (57)) which in 
this case would imply n = l/3, i.e., the rate of splitting is 
roughly proportional to the radius of the fragment. It is not 
clear which of these interpretations is correct. 

Probably the most useful t o o l  in clearing up these 
theoretical uncertainties would be an improved, unevolved 
luminosity function or mass spectrum, determined either for 
young clusters or for small (m < 0.5 m,) field stars. 

2015-AHM-kse A. H. Marcus 
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CAPTIONS TO FIGURES 

Figure  1. 

F i g u r e s  2-10. 

Number of i n t e r s t e l l a r  c louds  w i t h  o p t i c a l  depth 
T ( i n  i n t e r v a l s  of  l e n g t h  0 . 5 ) ,  a f t e r  Clark (1965) 

Expected number d e n s i t y  q ( x , t )  of  f ragments  of  
mass x ' a t  t i m e  t from an i n i t i a l  p a r t i c l e  of  
u n i t  mass. 
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