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l a  

TEMPERATURE STRUCTURE O F  NONGREY 

PLANETARY ATMOSPHERES 

JAMES B. POLLACK 

Smithsonian Astrophysical Observatorv. Cambridge, Massachusetts 

Communicated by Car l  Sagan 

R e c e ive d 

To reduce by severa l  o rde r s  of magnitude the number of 

frequency points needed in  calculating net fluxes for  molecular 

a tmospheres ,  t ransmission average opacities a r e  introduced. 

A power-law representation of these broad-band opacities is 

suggested for paths at constant p re s su re  and temperature  and 

generalized to nonhomogeneous paths. These broad-band opac- 

i t i es  fail  to obey the rules  of superposition and a s  a resul t  there  

is a grea te r  tendency toward convective instability. 

formulas  a r e  developed for  the tempera ture  gradient near  the 

bottom of a cloud layer  and a t  large depths within an atmosphere.  

Finally, equations a r e  presented to obtain the distribution of so la r  

energy deposition within a planetary atmosphere,  which exhibits 

scattering and absorption by gas  molecules, cloud aerosols ,  and 

the ground. Such information is needed to  find the amount of net 

thermal  flux a t  any level of the atmosphere.  

Approximate 

I. INTRODUCTION 

In this  paper, nongrey radiative-transfer equations will be developed for  

determining the t ime- ave rage s t ructure  of planetary atmospheres,  particularly 

in the denser  portions of the atmosphere. 

pera ture  profile can be adequately determined f r o m  a local theory, which 

considers  energy exchange withir? a vert ical  c r e s s  section but neglects the 

effects of global circulation. 

It will be assumed that the tem- 

Such an  approach has  been fruitful for  the 
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. I  , .  
Earth,  where global circulation influences mostly the surface boundary 

temperature;  however, Goody and Robinson (1966) have pointed out that global 

circulation could play a very significant role when a l l  the solar  energy is 

deposited a t  the top of an atmosphere. 

the application of Goody and Robinson's resu l t s  to  Venus will be commented 

upon. 

In a companion paper (Pollack, 1968), 

Planetary atmospheres  differ in severa l  respec ts  f rom their  stellar 

In the case of planets, much of the opacity is supplied by counterparts.  

vibration- rotation bands, for  which the absorption coefficient var ies  rapidly 

with wave number. As a result ,  a large number of points may be needed to 

calculate net fluxes. F o r  example, at 1-a tm p res su re ,  the half width 

of rotation l ines i s  typically somewhat l e s s  than 10 c m  , and so intervals  
- 2  -1 of about 10 cm 

is constant over each interval. As the total  wave-number domain is  between 

10 c m  and 10 cm-' ,  10 to 10 wave-number points would be required to  

calculate integrated net fluxes. 

aging monochromatic opacities in order  to greatly reduce the number of 

wave-number points needed. 

-1 -1 

would be required to ensure  that the absorption coefficient 

3 -1 4 5 6 

A feature of this paper is a method of aver -  

Another unusual aspect  of planetary atmospheres  is the absence of net- 

Since solar  energy is deposited i n  each atmospheric layer,  flux constancy. 

t he re  will be a variation with altitude in the net flux integrated over those 

wavelengths in which there  is a significant amount of thermal  radiation. 

A prior i ,  the atmospheric s t ructure  of a planet cannot be considered to 

possess  spherical  symmetry as a resul t  of the latitudinal and longitudinal 

variation in the amount of solar energy falling on the planet. 

the  lower portions of atmospheres typically have la rge  heat capacities so 

that an  atmosphere may exhibit little diurnal variation, except for  a narrow 

boundary layer  near  the surface.  

E a r t h ' s  atmosphere exhibits significant diurnal temperature  changes (Goody, 

1964). Thus, the t ime-average temperature  solutions presented below may 

have general  applicability to any locale. 

Fortunately, 

F o r  example, only the lower 50 m of the 
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. .  , .  
One simplifying feature for  planets is  that once the radiative lapse ra te  

i s  found to be convectively unstable, the t rue  lapse ra te  will be adiabatic. 

This circumstance a r i s e s  because of the high densit ies and low net fluxes 

present,  which ensures  that the lapse rate  of an  unstable atmosphere will be 

exceedingly close to  the adiabatic value. 

shown f rom the mixing-length theory that under unstable conditions the atmos-  

phere of Venus will be adiabatic to one par t  in 10 . 

For  example, Sagan (1960) has 

4 

Finally, the influence of localized cloud layers  must  be considered. 

Within the smai l  range in aititudes occupied by a condensation cioud, the 

opacity may be dominated by aerosol  absorption and the clouds may radiate 

approximately a s  a blackbody in both the downward and the upward directions.  

The clouds may a l so  ac t  a s  indicators of the end of a convection zone. 

In the f i r s t  sections of this paper, the temperature  s t ructure  will be found 

f r o m  a knowledge of the net thermal  f lux :  A radiative equilibrium value of 

the temperature  gradient is  obtained and subsequently tested for  convective 

instability. 

adiabatic value. Various limiting cases  will be considered. The following 

section will be concerned with the calculation of solar-energy deposition in 

various layers  of the atmosphere, as well a s  at the ground. Scattering and 

absorption by cloud a.erosols, atmospheric molecular constituents, and the 

ground will be considered. 

If the solution i s  unstable, we set  the lapse ra te  equal to  the 

11. AVERAGE OPACITIES AND NET THERMAL FLUX 

An appropriate averaging procedure will be presented for calculating net 

infrared fluxes f rom a relatively small number of frequency intervals.  

power-law representation will then be suggested f o r  the average opacities fo r  

constant p re s su re  paths and subsequently generalized to nonhomogeneous paths. 

Finally, an  important distinction between the average opacities and mono- 

chromatic  opacities will be discussed. 

A 
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. .  . .  
We wish to find an expression for  the net infrared f l u x  integrated over 

a l l  wavelengths contributing significantly to  the thermal  radiation. When the 

source function equals the Planck function and the atmosphere is plane 

parallel ,  the monochromatic specific intensity I is related to  B through 

the formal  solution of the equation of t ransfer :  

B 
V 

V V 

where z denotes the ver t ical  coordinate, )L the cosine of the angle between 

the direction under consideration and the ver t ical  direction, T (z' ,  z )  the 

monochromatic optical depth between z and z' , and z 

a t  the appropriate boundary. We a r e  interested in  the specific intensity 

integrated over some finite frequency interval Av - i '  

V 
the ver t ical  coordinate b 

Z 

In a manner  similar to that employed by Goody (1 964), we require  that A v 
be sufficiently smal l  so  that B As a 

resul t ,  the frequency integration can be ca r r i ed  out within the differential: 

i 
will.not vary appreciably over  Av.. 

V 1 

4 



. .  
where T. is the average opacity in direction p over the interval i, whose 

exponential equals an exponential average of the monochromatic opacities, 

and Bi equals BvAu.. The net thermal  f l u x  F is readily found by multiplying 

through by 2np dp and integrating, and then summing over a l l  relevant i 

regions: 

1 

1 

One obvious advantage of employing the average opacities defined above 

is that far fewer frequency intervals are required.  Since the Planck function 

var ies  only slowly with frequency over  those frequencies a t  which it achieves 

its la rges t  values, only 10 to 100 frequency intervals are required in  practice,  

in contrast  to 10 to  10 

calculations. 

simply t ransmission averages and so can be measured directly in the labora- 

to ry  for minor  constituents of a n  a tmosphere;  with present laboratory path 

lengths of up to 1 km-atm, many wavelength regions for  major  constituents 

can a l so  be investigated. 

interpolation and perhaps even extrapolation formulas  for  the average opaci- 

t i e s ,  which will  introduce a grea te r  amount of e r r o r  in the final fluxes. 

addition, it is difficult to deal with severa l  sources  of opacity unless their  

monochromatic opacities a r e  uncorrelated. 

m o r e  fully below. 

monochromatic opacities (rotational line strengths,  line shapes,  etc. ) one 

can  always construct theoretical t ransmissivi ty  averages and so save a 

l a rge  amount of computer t ime in the next s tep of obtaining fluxes. 

5 6 such regions for  the corresponding monochromatic 

Another advantage of the average opacities i s  that  they a r e  

On the other  hand, one must  ultimately use empir ical  

In 

This point will be discussed 

It might be noted that given the necessary information for 
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Experience with C 0 2  and H 0 has indicated that a power-law representa-  2 
tion of T. i s  a good one (Pollack, 1968; Bartko and Hanel, 1968) .  Fo r  paths 

at constant pressure  P and total  gas amounts F, T. is given approximately by 
~ 

1 

1 

r s  i i  
T.  = C i  ye P 
1 

The total  gas amount is proportional to the integral  of the density p over 

the path length L 

We note that 

will not vary l inearly with y. 
explored toward the end of this section. In practice,  r s and c .  s eem to 

change very slowly with large changes in E and P; it would seem that 

reasonable accuracy could be obtained by the employment of a r r a y s  of values 

f o r  r, s, and c corresponding to  various values of and P with the selection 

of appropriate values for  a given calculation. 

not been included in Eq. (6) .  

unlike the situation for  monochromatic opacities, T. in general  
1 

The physical consequences of this will be 

i’ i’ 1 

Temperature  dependence has 

This will  be discussed la ter .  

Equation (6) is valid for  paths a t  constant p re s su re  and so we must  seek 

to generalize it to paths over which the p re s su re  var ies  in order  to  deal with 

planetary atmospheres.  

equations for  the monochromatic opacity T over variable p re s su re  paths. 

F o r  permitted transit ions and sufficiently high p res su res ,  T 

by the sum of the opacity provided by nearby rotation l ines,  whose profile 

is assumed to  be of the Lorentz  form, 

To accomplish this, we make use of the known 

V 
will be given 

V 
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where S1 is the strength of the Pth line, 6 v P  is  the line width and proportional 
to P, v P  i s  the frequency of the line center,and W is the g a s  amount in a 

vertical  column and i s  equal to XJ,  . Inserting Eq. (8) into the definition of 

T. supplied by Eq. ( 3 ) ,  we obtain 
1 

r r  
exp ( - T . )  1 = Jf exp l-]K(v) P 

Av 

(9)  

where K ( v )  includes most  of the frequency dependence of Eq. (8) and q 

is  the effective power-law exponent fo r  the pressure  dependence of T . 
6 v P  - P, q 
any line center. F o r  the lower portions of an atmosphere,  where the opacity 

is significantly different f rom zero at a l l  frequency points of the A v .  interval, 

T. will be determined in good part  a t  those frequencies where T 

and hence qv is close to  t 1 .  

q and so rewrite Eq. (9)  a s  

V 

As 

will vary f rom almost - 1  at line centers  to a lmost  t1 far f rom 
V 

V 

1 
is smallest  

with an average value 
1 V 

We therefore replace q 
V - 

F o r  the limiting case  of a constant p r e s s u r e  path, Eq. (10) becomes 

7 



r . .  
i According to  Eq. (6) ,  T .  varies  as  W, 

effect of varying W,, which appears a s  W 

of Eq. (11), is to  cause a W, 
By symmetry,  any other quantity that var ies  as the f i r s t  power in the expo- 

nential and has no frequency dependence will a l so  vary as the r. power when 
ri the frequency integration i s  carried out. Thus, T~ - (Pq) and T - ( W / p )  . 

Comparing this f i rs t  resuit  with Eq. j6j,  we s e e  that we can identify qr.  as  

s 

of argument leads to  the following expression for  T when the pressure  va r i e s  

over the path: 

under these circumstances;  i. e . ,  the 
1 1 

in the exponential on the right side 
N r .  

dependency in the resultant frequency integration. 

- r i  1 

i 

1 

and this partially justifies our replacement of qy with?. A s imi la r  line i’ 

i 

r - r  i i W e  note that just as f i  var ies  a s  W 

instead of as p . 
instead of a s  W ,  T. var ies  a s  p 

1 -1 

Equation (12) is readily generalized to include temperature  dependence. 

If various paths, each a t  a fixed constant temperature ,  imply that T cc Gi(T), 

then for  a path over which the temperature is varying we can write 
i 

Significant temperature  dependence usually a r i s e s  when the band supplying 

the opacity is a hot band, and i n  that case we can identify G.(T)  

appropriate  Boltzmann factor. 

1 /ri 
with the 

1 
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Using Eq. ( l l ) ,  we can readily show f r o m  a simple example that, in 

general ,  r .  i s  not equal to one. 

centers  to regions between line centers.  

half the frequency interval and 1 fo r  the other half. 

112  to 1, -i changes only f rom 1 . 1 9  to 1 .  64 and therefore would not vary so 

rapidly a s  W .  
1 2 

to vaiues or' r .  i e s s  than one, in agreement with this exampie. 

above that we generally expected 

for  permitted bands, 

Again, this is in agreement with experience (Pollack, 1968) .  In the case 

of pressure-induced bands, T a WP, q equals 1 a t  all v ,  and r = s 

The quantity K(v ) var ies  greatly f rom line 

Let  us suppose K ( v )  equals oc) for 
1 

If W i s  varied f rom 

Est imates  of r .  f o r  various CO and H 2 0  bands always lead 
_ _ _  
we argued 

1 

to be close to and somewhat l e s s  than 1 

so  si should be usually somewhat l e s s  than r i .  - - 

V V i i '  

A very significant difference between the broad-band opacity T. and its 
1 

monochromatic counterpart  is tha t  T does not obey the rules of superposition; 

i. e . ,  the opacity between positions A and B does not equal the difference in 

the opacity between A and C and B and C. 

Eq. ( 1 3 ) :  

i 

This is readily shown f rom 

\ 

i f  r .  # 1 . 
1 
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A consequence of this resul t ‘ is  that one cannot derive the usual equation 

of t ransfer  for  Ii in t e r m s  of T. f rom Eq. (3). Another implication is  the 

greater  tendency of the lower portions of a tmospheres  toward convective 

instability o r  a t  least  a l a rge r  temperature gradient. 

the top of the atmosphere,  then when T(AC) > 1 and, a s  is always the case,  

r < 1, T(AB) will exceed [ T(AC) - T(BC)]  by g rea t e r  amounts a t  deeper 

depths of the atmosphere.  

is exchanging a significant amount of radiation a r e  much c loser  than would 

be expected simply on the basis  of optical depths with respect  to the top 

of the atmosphere.  

This circumstance will be described quantitatively in the next section. 

and Hanel (1 968) carr ied through a n  analysis  s imi l a r  to that in the beginning 

of this section in using transmissivity averages and a power-law representa-  

tion of T.  t o  t rea t  the temperature s t ructure  above the Venus cloud tops. 

However, they apparently assumed superposition was valid f o r  T 

their  numerical  resul ts  a r e  suspect. 

1 

If we let  C r e fe r  to 

i 
Consequently, the layers  with which a deep layer  

As  a result, the temperature  gradient wi!! be l a rger .  

Bartko 

1 
and i f  so, 

i’ 

III. TEMPERATURE PROFILE OF THE LOWEST PORTIONS O F  

THE ATMOSPHERE 

Expressions for the temperature gradient will  now be found fo r  the lower 

portions of the atmosphere and compared with corresponding grey and mono- 

chromatic  expressions.  It is supposed that a given layer  is sufficiently deep 

that p re s su re  and temperature  vary very little over the first few optical depths 

away f rom point z, and so T. ( Z, z’, p) , given by Eq. (1 3), can be approximated 

as: 
1 

W(2’) - W(Z)I] S 

T i ci Gi[T(z)] P i(z)’’ 

10 
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. .  
Similarly, we set  the lirnits'equal t o  k 00 in integrations over optical depth. 

W e  r e s t r i c t  the present situation to opacity supplied by only one gas  specie 

a t  a given wavelength interval s o  that  Eq. (15) is not a sum over various gas 

species.  The f o r m  of Eq. (15) suggests that we t r y  to solve Eq. (5)  by 

expanding Bi(z' ) i n  a Taylor se r ies  for [ W(z'  ) - W(z)]  : 

With these approximations, Eq. (5) i s  readily evaluated: 

4lT dBi r [ (1 / r . )  1 t 11 
F(z) = - Z  - 

i dw (ciGipsi) l'ri ' 

where r is the usual gamma function. 

We next relate dBi/dW to the temperature  gradient. Locally the temper-  

a tu re  T and p res su re  P can always be represented by a power-law relationship: 

(18) + T a p  . 

Differentiating Eq. (18), we find 

Thus, the radiative temperature  profile as indicated by the parameter  + can 

be secured f rom Eqs. (17)  and (19) once we relate dBi/dW to dT/dP.  F o r  the 

monochromatic Planck function,Bv again can be locally related by a power- 

law relation to T: 
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BV = B 

where 

a (4. 9 6 5 ) ( 2 8 9 8 )  a e  
a e -1 V 

A T  
and a =  n = -  

and T has  the units of degrees  Kelvin and X v  microns.  

will  approximately hold for  B. with A 
1 V i’ 

for  band i. Thus, 

A similar relationship 

replaced by 1 an average wavelength 

Bi - - - - - -  - n i + =  3 
dBi - dBi dT d P  
dW dT d P  dW 

where 8 = l/(dP/dW) = dW/dP. Inserting Eq. (22) into Eq. (17), we obtain an 

expression for  the temperature  gradient parameter  LJJ : 

3 F(z)  
+(z) = 4= n. B. l?(l/ritl) 

P BG i 
C 

The analysis so  far has operated under the assumption that there  is  only 

one source of opacity, e. g . ,  H20 vapor opacity, o r  at least  that one source 

is dominant in each band. 

now include all sources  of opacity for  a given band i. 

be approximately the sum of the individual opacities. 

exactly, there  can be no correlation between the positions of the individual 

rotational l ines  for  the various sources  of opacity and, in addition, no large-  

sca le  correlations (see,  e. g . ,  Goody, 1964): 

The latter assumption will usually be t rue.  We 

The quantity T .  will 

F o r  this to  be t rue  
1 

12 



S r J 

7 i = c i j  G..  ij P ij[  Iwj(zr) - wj(z)l]  i j  , 
j = l  

where the index j r e f e r s  t o  the source of opacity. 

derive an  analytic equation for F(z) under these circumstances,  Eq. (17) 

suggests that F(z) is given approximately by 

While we cannot exactly 

Equation ( 2 5 )  meets  certain minimal conditions: 

interval,  Fi, is l e s s  than the f l u x  due to any single constituent, and Fi 

becomes equal t o  the value implied by Eq. (17) when one source of opacity 

is dominant. 

The f l u x  in any wavelength 

Proceeding in the same way as between Eqs.  (17) and (23 ) ,  we can readily 

obtain an  equation fo r  + f rom Eq. (25): 

where  8 = dW./dP. 

8. will be constant throughout the atmosphere as long as the mixing ratio 

of constituent j is  constant, and its value will  depend on the units chosen 

According to the equation of hydrostatic equilibrium, 
j J 

J 

for W .  and P, as well as on the mixing ratio of j,a 

portional to  a 

The quantity 8. is pro- 
J j ' J 

j '  

13 



. .  
W e  now compare our  resul ts  with cer ta in  limiting cases .  To facilitate 

the comparison, we set  W .  identically equal to  the density of the j com- 
J 

ponent integrated over a ver t ical  path length, I p .  dz. 

that  the absorption i s  independent of wavelength, i. e . ,  grey. 

be 1 ,  as can be readily seen from Eq. ( 1 1 ) .  Equation ( 1 3 )  gives an  expres- 

sion fo r  T. f o r  a single component. F o r  severa l  components we s u m  over j. 

With r: equal to  1 ,  the total  optical depth becomes 

First, le t  us  suppose 
J 

Then ri will 

1 

A 

where WT represents  the total gas amount, a i s  the mixing rat io  of the j th 

component, and K is the mass  absorption coefficient. In deriving Eq. (27) 

f r o m  Eq. ( 1 3 ) ,  we have set  dW. equal to a. dW F o r  the case  under con- 

sideration, T has no i dependence. Setting r = 1 in Eq. (25) and 

making use of the m a s s  absorption coefficient defined in  Eq. (27), we obtain 

the following f l u x  equation for a grey absorber  at la rge  optical depth: 

j 

J J T' 
i j  

4 ~ r  (dB/dW) 
3 K 

F = -  , 

where  B is the integrated Planck function. Exactly the same resul t  follows 

f r o m  differentiating the expression fo r  the flux derived under the Eddington 

approximation fo r  the grey case  with constant net flux. Similarly,  if we let  

the wavelength intervals  i be infinitely small, so that monochromatic absorp- 

and r = 1 .  F o r  t ion coefficients k a r e  appropriate a .c. .G. .P - kv , 
this  situation Eq.(25) becomes 

'ij - 
i j  

j J 13 13 

1 4  



The quantity in the denominator of the right-hand side of Eq. (29)  is simply 

the Rosseland mean opacity, which i s  generally believed to be an  appropriate 

average deep in  an atmosphere.  

s eve ra l  sources  of opacity in Eq. (25) reduces to the co r rec t  summation for  

the monochromatic case.  

in the lower portions of an atmosphere reduce to appropriate formulas  in  

cer ta in  limiting cases .  

Notice that the inferred summation over 

Thus, the f l u x  equation for  the broad-band opacities 

IV. TEMPERATURE GRADXENT IN THE VICINITY O F  A CLOUD LAYER 

In this section, the effect of an opaque condensation cloud on the tem- 

perature  gradient of the atmosphere below and near  to i t  will be discussed. 

The bottom of the clouds is assumed to have a sharp  boundary, and we wish 

to  estimate the net flux at  the atmospheric layer  immediately adjacent to  the 

cloud bottoms. The net flux F ( z )  i s  formally divided into the flux received 

f r o m  the atmosphere below level z, F+(z),  and the flux radiated downward 

by the cloud, F ( z ) ,  with F(z)  equal to the i r  sum. The quantity F (z)  is 

readily evaluated f rom an equation similar to  Eq. (4), but with the limits on 

the p integration replaced by -1 to 0. 

ation temperature  of T 
C’ 

i t s  thermometr ic  cloud-bottom temperature,  because of the small ,  nonzero 

thickness of the cloud, which is  contributing significantly to the emergent  

radiation. 

F (z) is then given by 

- - 

We charac te r ize  the cloud with a radi-  

which w i l l  be close to  but somewhat smal le r  than 

The emissivity of the clouds is assumed to be unity. The quantity 

- 

The quantity F ( z )  can be evaluated approximately in a manner analogous t 
t o  that  employed in the previous section for the net f l u x  deep in  an atmosphere.  

We expand Bi(z‘) as 

15 



.’ 

and s imilar ly  we wr i te  

i j  i j  [ ~ ( z ’ )  - ~ ( z ) ]  
S 

r T . . ( Z ’ ,  Z J ) L )  C G . .  P i j  IJ J 

i j  1J 
P. 

--.L W l l c L c  - - - the bar d e l i ~ t e s  aii evaliia’iioii oi quarliiiies ai ilie I‘ieiri poini where 
J 

T = 1, s o  as to allow somewhat for variations in the quantities under i j  
j = 1  

the bar  over the f i r s t  few optical depths. 

obtain F (2) in a manner s imilar  to that used for Eqs.  ( 2 5 )  and ( 2 6 ) :  
With these approximations we can 

t 

rB[T(z)] t . 
i 

The net flux is given by adding together Eqs. ( 3 0 )  and (33 ) :  

2Tr - 
F(z)  = 3 Zi t r{B[T(z)] - B ( T ~ ) }  . 

i 

( 3 3 )  

( 3 4 )  

We can relate B[ T(z)] t o  B(T ) by dividing the radiation field into two 
C 

s t r e a m s ,  It and I , at point z; T ( z )  is the temperature  of the air immediately 

beneath the clouds, and T The 
quantity I 

- 
is the effective cloud emission temperature.  

C 

will  simply be B(Tc), while I can be found f rom the definition of - + 

16 



* _  

net f l u x :  F (z )  = TT (I+ - I-) . This enables us  to  find the average intensity at 

point z ,  (I+ + I - ) / Z ,  which in the spir i t  of the Eddington approximation we set  

equal to B [  T(z)] . Thus, we find 

Inserting Eq. (35) into Eq. (34), we obtain 

i 

If the cloud i s  very opaque so that T equals the cloud-bottom temper-  
C 

a ture ,  then, according to Eq. (35), in radiative equilibrium there  will be 

a temperature  discontinuity at the cloud bottoms. 

will  exist  at the ground surface and is famil iar  f rom calculations for  the 

E a r t h  (Goody, 1964). Naturally, convective instability will lead to a con- 

tinuous variation of temperature with distance in the r e a l  atmosphere.  

However, since the mixing length becomes comparable to the distance to 

the boundary nea r  a surface and possibly a cloud bottom, it becomes quite 

sma l l  close to the boundary. 

ex is t  close to the boundary. 

A similar discontinuity 

As a result ,  superadiabatic gradients may 

Let us  now consider the radiative-equilibrium temperature-gradient 

pa rame te r  + within the first few optical depths of the cloud bottoms. F o r  

simplicity, we suppose that 4 is independent of i. The quantity Z .  var ies  

inversely as  the p re s su re  ? and the variable 8 
the  mixing ratio of component j,a . By increasing and/or  a we decrease  

Zi, and for  a fixed net flux this leads to an enhanced value of +J according to 

Eq. (36). Thus, in principle we can make the radiative equilibrium value of 

+ quite large near  the bottom of the clouds. 
cloud bottom on p res su re  and mixing ratio allows us  to gain valuable informa- 

tion about the sources  of opacity f r o m  the position of a cloud layer  in a given 

1 
which is proportional t o  

j’ 

- j j’ 

The dependence of + near the 
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. .  . _  
atmosphere.  

the end of the convection region of the atmosphere;  i f  the cloud-bottom pres-  

su re  were  too low and so + were  subadiabatic, it would be difficult to regen- 

e ra t e  the cloud through condensation occuring in  rising air parcels.  

other hand, i f  the p re s su re  were  too high and L/J substantially superadiabatic,  

the clouds would tend to be uplifted. Thus, + should be close to  the adiabatic 

value =ear thc b ~ t t o ~ ~ ;  zlf the clouds, and w-e ca,ii use Eq. ~ J U ]  LU determine 

the mixing ratio of one of the absorbing gases,  o r  equivalently to  find the 

cloud pressure.  

It seems physically reasonable for  the cloud bottoms to lie at 

On the 

I * / \  L 

When an  opaque cloud is present at  the boundary of the adiabatic portion 

of the atmosphere,  i t  is f a r  easier  to calculate the net flux a t  the boundary. 

If the opaque cloud layer  is absent, the temperature  s t ruc ture  of the radiative 

equilibrium portion of the atmosphere above the boundary must  be known f o r  

the calculation to be ca r r i ed  out. 

Sagan (1968) showed that the temperature-gradient parameter  + deep 

within an  atmosphere depended only upon how rapidly the opacity changed 

with pressure ,  i. e. , upon the exponents s and r, and not upon the 

absolute value of the opacity. 

ferent.  

Two other temperature  regions can be distinguished. 

within the clouds is controlled chiefly by aerosol  opacity; the radiative temper-  

a tu re  gradient can generally be expected to be convectively unstable and so 

a (wet) adiabatic profile will result. Finally, there  is the temperature  profile 

above the clouds, which may be considerably different f rom the profile imme- 

diately below the clouds, because of the condensation of one component of the 

atmosphere to fo rm the clouds. 

as H 0 and N H  a r e ,  the l a r g e  increase in its mixing ratio between the cloud 

tops and bottoms will substantially decouple the tempera ture  gradients i n  the 

two regions. 

Near the cloud bottoms, the situation is dif- 

Now + depends upon such parameters  as cij, Gij, e., and pressure .  
J 

Radiative exchange 

If this component i s  a good infrared absorber ,  

2 3 
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V. SOLAR-ENERGY DEPOSITION 

We wish to estimate theoretically the fraction of solar  energy absorbed 

by a planet a s  well a s  estimate how much energy i s  deposited in each level 

of the atiiiosphcre. The io rmer  quantity couici, in principie, be obtained i r o m  

reflectivity measurements  over a s e r i e s  of phase angles and wavelengths, but 

it is still useful to calculate this quantity theoretically, 

the model used to  calculate the distribution of deposited solar  energy and to 

cover possible gaps in the observational data. 

both as a check on 

The net infrared f l u x  F(z) at a given level z, which i s  needed to  calculate 

+, can be directly related to the amount of solar  energy deposited below this 
layer  through conservation of energy. 

problem, the temperature  a t  any level  is constant, and so the net flux inte- 

grated over  all wavelengths, FT, must  be constant with depth: 

Fo r  the time-independent o r  average 

- -  d F T - ~  . 
dz (37)  

Since the wavelengths at which there is  a substantial amount of so la r  energy 

exhibit l i t t le overlap with those important for  t he rma l  radiation, F 

the s u m  of the solar  energy flux Fs averaged over the day and night sides,  

and the infrared f l u x  F. 
is a negative quantity, we can relate the absolute values of F 

of Eq. (37): 

i s  simply T 

Remembering that Fs diminishes with depth and thus 
and F by means 

S 

dl Fs I d F  - 
dz dz 
- _ -  . 
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With the boundary condition that the two fluxes have the same absolute value 

at  the top of the atmosphere,  z = 0 0 ,  Eq. (38 )  can be rewrit ten as  

The flux F ( z )  can formally be broken into an  upward directed f l u x ,  which 

consists of sunlight reflected from levels below level z and reaching level 

z ,  F+(z) ,  and a downward directed flux F - (z). 

difference between the absolute values of these two components and so can 

be equated to the quantity of sunlight absorbed below level z .  At the top of 

the atmosphere,  I Fs( z = 00 ) I will equal I" (1 - OX) '7;1 dX/4 , whe re 

is the spherical  monochromatic reflectivity, i. e. , the fraction of the incident 

so l a r  energy reflected away to  space, a n d y X  i s  the monochromatic so la r  

flux a t  Venus' orbit.  The factor of 4 allows for  averaging of the flux over  

the day and night hemispheres.  

S 

The flux F ( z )  equals the 
S 

0 

We can formally express  F (z )  then as  

where  f(z)  is the fraction of the deposited solar  energy that is absorbed 

below level z .  

Our problem is to find both f(z)  and qx, and i n  so doing we will  consider 

scat ter ing and absorption by a cloud layer,  air molecules, and the ground. 

W e  first consider the response of a cloud l a y e r  to so la r  energy falling upon 

it. As we a r e  interested in  quantities that a r e  integrated over both angles of 

incidence and reflection, it may suffice to  use the 2-s t ream approximation in  

obtaining the monochromatic transmissivity rX, reflectivity AX, and absorp- 

t ivity Bx of the cloud layer .  Appropriate equations for  these quantities, which 

allow for  anisotropic, nonconservative scattering, are  presented by Sagan and 

Pollack(l967; henceforth called Paper I). The quantities y., AX, and B a r e  functions x 
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of the total  optical depth T the single scattering albedo w" ( A ) ,  and the 

scattering asymmetry parameter  2 p. 
A' 0 

In turn,  2 p is a slowly varying function 
N 

of the average particle size,  w ( A )  is a function of the indices of refraction, 

r ea l  and imaginary, and the average par t ic le  size,  while f A  can be obtained 

f rom the optical depth at  some standard wavelength, by scaling a s  the extinc- 

tion c ros s  section, which is a function of the average particle size. Thus, i f  

one knows the average particle size, the opticai depth a t  one waveiength, and 

the chemical composition of the clouds, rA, AX, and B can be computed for A 
all wavelengths of interest .  

0 

We now include the effects of Rayleigh scattering by the atmosphere and 

reflection f rom the surface in addition to the radiative t ransfer  in  the cloud 

layer .  

scattering may be important throughout the visible spectrum was first advanced 

by Sagan (1962). 

Fortunately, for  most  wavelengths of interest ,  Rayleigh scattering will  occur  

a lmost  entirely below the cloud layer,  and so the cloud layer ,  Rayleigh layer ,  

and ground a r e  geometrically separated. 

how much f l u x  is absorbed o r  reflected, we will approximate the radiative 

t r ans fe r  problem by dealing only with fluxes absorbed, reflected, o r  t rans-  

mitted by each of the three  scattering layers .  

The possibility that Venus' surface p re s su re  is  so  la rge  that Rayleigh 

Account of atmospheric absorption will be taken la te r .  

Since our  ultimate goal is  to  find 

A fract ion of the sunlight incident at wavelength A penetrates the cloud 

There  a r e  three  possible pathways o r  scenarios  immediately available 
A 

layer .  

to the radiation: 

(i) It may be Rayleigh scattered f rom the atmosphere back through the 
clouds to  be ei ther  absorbed there o r  t ransmit ted to space; 

(ii) it may be t ransmit ted by the atmosphere and absorbed by the surface;  

(iii) it may be transmitted by the atmosphere and reflected f r o m  the 
surface.  
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Consider scenario (i). A photon, having penetrated the clouds, has  a 

probability ( 1  - t )  of being Rayleigh sca t te red  back to the clouds, where t is  

the t ransmissivi ty  of the Rayleigh layer .  

of the clouds f rom below is (1 - A ), and of reflection back into the atmosphere,  

Ac. 
c lear  that we have an infinite but converging s e r i e s  of reflections. 

I'raciion 01 ilie ioiai incident sunlight that initiaiiy penetrates the ciouds, but 

that eventually escapes to space, is 

The probability of repenetration 

C 
This la t ter  fraction may be t ransmit ted o r  again reflected, and it is 

Thus, the 

2 3 2  
t (1 - t) Ac(l  - Ac) t (1 - t) Ac( l  - Ac) t . . . ]  

Similarly,  the fractions of the total incident radiation which undergo initial 

scenar ios  (ii) and (iii) a r e  

and 

where  As is the surface reflectivity. 
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It is readily verified that 

a s  is demanded by the formulation of the problem. 

Consider next the fur ther  fate of the radiation of case  (iii), once reflected 

f r o m  the surface. The following scenarios  a r e  available: 

(iv) It may be Rayleigh scattered back to the surface, and there  

absorbed; 

(v) it may be t ransmit ted by the atmosphere,  but reflected at the clouds; 

(vi) i t  may be transmitted by the atmosphere and penetrate into the clouds, 

to  e i ther  be absorbed o r  emitted into space. 

In a manner exactly analogous to  the derivation of Eqs. (41) to  (43), one 

can  show that the fractions of the total  incident sunlight that  option these 

scenar ios  a r e  , r e  spec tively, 

f( i i i ) ( l  - t)y(l - As) 
y f ( i v )  - - 

1 - (1  - t)  A s  D 

tAY ( iii) 
C 

1 - ( 1 - t ) A s  ' 4"r("' = 

and 
f(iii) t(l  - A c ) Y  

y f ( v i )  - - 
1 - (1 - t ) A s  

(45) 

(46) 

(47 1 

as it must.  
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. .  
Of the five overal l  scenarios (i), (ii), (iv), (v), and (vi) considered to 

this point in the discussion, only scenario (v) leaves the radiation still in the 

atmosphere.  This radiation is indistinguishable f r o m  incident radiation that 

has just penetrated the clouds. Thus, instead of a fraction y o f  the total  

radiation which is incident on the atmosphere below the clouds, we have now 

a fract ion 3 ’ [ 1  t f(v)]. Thereby, we have generated an infinite s e r i e s  for  
th- c , A L  th--- , , A A A c G  ,...-.-+ y U a L L t , A c A C ; m  :+:-- of p r k i ~ r ~  kiterest, the fractioii f ( g )  of the t ~ t ~ l  iiicideiit 

a 
energy absorbed by the ground, the fraction f 

indirectly, 

by the clouds. The la t ter  two quantities a r e  derived f r o m  fi i )  and f iii) a s  well 

as f r o m  the radiation initially incident upon the clouds that is  not transmitted: 

which, either directly o r  r’ 
is  reflected back to space, and the fract ion fa(c) of energy absorbed 

The term (B/1 - Ac) in  Eq. (51) represents  the fraction of the nonreflected 

radiation incident on the bottom of the clouds, which is absorbed. 
(7/1 - A ) in Eq. (50) is that fraction that is t ransmit ted to space. 

A << 1 ,  as seems  reasonable i n m a n y  cases ,  Eqs. (49), (50), and (51) 

simplify t o  the following expressions: 

Similarly,  

If 
C 

S 

t J  
fa(& As = 0 )  = 1 - (1 - t) Ac 
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B T l  - t) 
1 - ( 1  - t ) A c  fa(c, A = 0) = B t 

S ( 5 3 )  

The t ransmissivi ty  of the Rayleigh- scattering layer  t can be expressed 

Setting 2 f3 and w" TR. 0 in t e r m s  of the Rayleigh- scattering optical depth 

equal to  unity in the general  equation for  t ransmissivi ty  of Paper  1, we obtain 

1.16 
t =  l m R  (55) 

pS a 
Pollack (1967) gives a formula f o r  T 

wavelength X, and composition of the atmosphere.  

of the temperature  s t ructure  of the atmosphere.  

composed principally of N2, T 

in t e r m s  of the surface p re s su re  R 
Note that f R  is independent 

F o r  the Venus atmosphere 

can be writ ten a s  R 

where Ps has the units of atmospheres and X of microns.  

were  principally made up of C02, the numerical  parameter  of Eq. (56)  
should be multiplied by a factor of 1. 55. 

If the atmosphere 

We will next present equations for  estimating the amount of absorption 

The amount of energy absorbed above a given layer  by atmospheric gases.  

by a particular absorption band w i l l  be given by?" A T ,  w h e n y -  is the so la r  

f l u x  per  wit wave number, and A v  the equivalent width of the band i n  units of 

wave number. 

known f o r  the various bands. Howard, Burch, and Williams (1956) have 

obtained empir ical  expressions for Av for the strong-line, weak-hand region 

(i. e., the centers  of the individual rotational l ines a r e  "black" while the regions 

V V 
N 

Gaseous absorption can then be readily estimated once AT is 

N 
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between individual l ines a r e  comparatively "white") and for  the strong-line, 

strong-band region. The case of the weak-line, weak-band domain will  not 

concern us since little absorption takes  place there .  

weak-band case,  A; i s  represented a s  

F o r  the strong-line, 

where W is the amount of gas ,  P i s  the pressure ,  c, d, and k a re  empir ical  
parameters  determined f rom the laboratory measurements .  

ponding expression for the strong-line, strong-band equivalent width i s  

The co r re s -  

= C t D log(W P KID)  
9 

where again C, D, and K a r e  empir ical  parameters .  It should be noted that 

a given band investigated by Howard e t  al.,  actually consists,  in general, of 

s eve ra l  individual vibrational- rotational bands that a r e  situated close together. 

Howard et  al. a lso give values for  the equivalent width ATl that defines 

the boundary between expressions (57)  and (58). 
is  appropriate,  while for  A;< AYl Eq. (57) is the one to  use. 

Eqs. ( 5 7 )  and (58), one must  remember that W is the total  gas amount seen 

by photons between the top of the atmosphere and a. given point. Because of 

the nonlinearity of these equations, one cannot substitute the value of W 

between two given points to  find the absorption that takes place between them, 

but ra ther  must  f i r s t  calculate AT for each point with respect  to the top of 

the atmosphere and then subtract  the two numbers.  

geneous path length, we can employ the Curtis-Godson approximation with the 

p r e s s u r e  set equal to  a n  average value along the photon path. 

If A; > Arl then Eq. (58) 

In using 

To allow for  the nonhomo- 
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I '  

Convoluting the gaseous absorption with scattering is difficult, because 

one is dealing with nonmonochromatic equations, and a useful compromise 

is to consider scattering a s  increasing the effective path length. If  rise is 

the equivalent isotropic scattering optical depth of the scattering layer,  with 

T > 1, then the equivalent path length will be about T l a rge r  than the 

geometrical  path; T will equal the actual optical depth T t imes  2p. In 

making this conversion between T. 

(1 /2p) scattering events a r e  needed to  make completely random the direction of 

a photon undergoing scattering strongly biased in the forward direction. 

is0 is0 

is0 
and T, we allow for  the fact  that about 

1so 

Let  us summarize this  section by setting out the general  strategy for 

obtaining?k and f(z) .  Equations ( 5 2 ) ,  ( 5 3 ) ,  and ( 5 4 )  are  used to calculate the 

monochromatic solar-energy deposition in the ground f (g) and cloud layer  

fa(c), as well a s  the fraction reflected to  space f and a r e  valid where energy 

i s  not removed by gaseous absorption. 

to calculate the so la r  energy deposited in the atmosphere above, below, and 

within the clouds with allowance made where necessary  for an  increased path 

length caused by scattering. 

missivity and reflectivity in estimating gaseous absorption below the clouds 

and af ter  reflection f rom the clouds, respectively. Finally, fa(g), fa(c), and 
f a r e  weighted by Y - and integrated over wavelengths not affected by the 

relevant gaseous absorption, and  s imilar ly  the gaseous absorption component 

is  weighted by% and appropriately integrated. 

absorption above any level i s  obtained directly f rom Eqs.  ( 5 7 )  and ( 5 8 ) ,  and 

so f(z) may straightforwardly be found. 

a 

r 
Equations ( 5 7 )  and ( 5 8 )  a r e  then used 

The so lar  beam is multiplied by the cloud t rans-  

r V 

The amount of gaseous 
V 

VI. SUMMARY 

By employing t ransmission average opacities , which a r e  defined in 

Eq. (3), we can greatly reduce the number of frequency points needed to 
calculate net fluxes. 

t ions that can be used to  calculate the temperature  s t ruc ture  of a gaseous 

atmosphere.  

representat ion for  the average opacities, and Eq. (1 3 )  presents  the generaliza- 

t ion to  a nonhomogeneous path. 

Equations ( 3 )  and ( 5 )  a r e  rigorously co r rec t  flux equa- 

A power-law dependence on gas  amount and p r e s s u r e  is a useful 

Since the average opacity does not vary 
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l inearly with gas amount, one cannot write down the usual fo rm of the equation 

of t ransfer ,  and most  importantly this implies a grea te r  tendency toward 

convective instability. 

for  estimating the temperature-gradient parameter  + deep within a n  atmos-  

phere and near  the bottom of an  opaque cloud layer,  respectively. 

asymptotic value of + deep within an atmosphere i s  independent of the absolute 

value of the opacity, but depends only on how rapidly the opacity changes with 

position (Sagan 1968), while the value of near  a cloud bottom depends upon 

the total p re s su re  and the mixing rat io  of the infrared optically active con- 

stituents. 

end of the convection zone of the atmosphere,  and so flux Eq. (36) can be 

used to gain information about the source of opacity. 

flux equals the amount of solar  energy deposited below the level of interest ,  

and this quantity can be calculated f rom Eqs.  (52) ,  (53), (54), (57), and (58), 

which allow for  scattering and absorption by the atmospheric gases,  cloud 

layer ,  and ground. 

Equations (26) and (36) provide approximate formulas 

The quasi- 

Condensation cloud layers  may serve  as useful indications of the 

Finally, the net infrared 
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