
https://ntrs.nasa.gov/search.jsp?R=19680022329 2020-03-12T10:09:01+00:00Z

Office of Naval Resea rch

Contract N00014-67-A -0298-0006

NR - 372 - 012

any purpose of the United States Government.

National Aeronautics and Space Administration

Grant NGR -22-007-068

THE

MATRIX ALGEBRA PROGRAM

A

CONVERSATIONAL LANGUAGE FOR

NUMERICAL MATRIX OPERATIONS -
PART I: USER'S MANUAL

BY

P. M. Newbold

Technical Report No. 561

May 1968

The r e s e a r c h reported in this document was made possible through
support extended the Division of Engineering and Applied Physics ,
Harvard University by the U. S. Army Resea rch Office, the U. S.
A i r F o r c e Office of Scientific Resea rch and the U. S. Office of
Naval Resea rch under the Joint Services Electronics P r o g r a m by
Contracts N00014-67-A-0298-0006, 0005, and 0008 andby the National
Aeronautics and Space Administration under Grant NGR 22-007-068.

Division of Engineering and Applied Physics

Harvard University Cambridge, Massachusetts

THE

MATRIX ALGE RA PROGRAM

A

CONVERSATIONAL LANGUAGE FOR

NUMERICAL MATRIX OPERA~IONS -

PART I : USER'S MANUAL

Division of Engineering and Applied Physics

Ha ward h i v e rsi t y, Cambridge , Ma~sach~set ts

ay 1968

CONTENTS

INTR ODUCT ION 1.

2.

3.

4.

5.

6 .

7.

8.

STRUCTURE OF THE LANGUAGE

Statements

Labels

A r guments

C ommands

THE MODES O F OPERATION OF MAP

Execute Mode

Edit Mode

CREATION AND MANIPULATION O F A
VARIABLE LIST

Adding to the Variable Lis t

Deleting f r o m the Variable List

Pr int ing the Variable List

CREATION AND MANIPULATION O F A
PROGRAM

Appending Indirect Statements

Ins e rting Indirect Statements

Deleting Indirect Statements

Printing the P r o g r a m

Attaching Comments

PROGRAM STORAGE AND RETRIEVAL
Rules for Fi lenames

Saving a P r o g r a m

Reloading a P r o g r a m

EXECUTION O F STATEMENTS AND
PROGRAMS

Branches and P r o g r a m Loops

Entering a P r o g r a m for Execution

STANDARD MATRIX OPERATIONS O F
MAP

Class A Operations
Class B Operations

4

5
5

8

9
10

10

11

12

13

14

14

15

17

17

19

19
20
2 1

9. INPUT AND OUTPUT O F NUMERICAL
DATA

Teletype Input and Output

File Storage of Data

10. ERROR MESSAGES AND PROCEDURES

Execution E r r o r s

Teletype E r r o r s

Storage E r r o r s

11. UPPER LIMITS ON STORAGE SPACE

12. AN EXAMPLE

APPENDIX

Logging In

Loading the MAP P r o c e s s o r

Exit f r o m MAP Language

Logging Out
The Filing System

21

21

24

25

26

28

30

32

33

39

39
40

41

41 .

42

R EFER E NC ES 45

1. INTRODUCTION

THE MATRIX ALGEBRA PROGRAM, abbreviated to MAP, is an

ARPAS p rogram writ ten for the SDS 940 d i rec t access t ime-sharing

sys tem, to operate independently. The purpose of MAP is to c a r r y

out numerical operations on matr ices . The language is designed to

be extremely simple to use: mat r ices can be operated on with the

same ease as scalar variables.

other language is required.

No knowledge of F o r t r a n o r any

The program is based on an earlier one, MM, developed recently by

the author [l] ; but is considerably more flexible. A completely new

facility is the ability to c rea te s tored sequences of matrix operations

for execution at a later time.

In the following sections of this manual severa l conventions a r e used.

Charac te rs that MAP types are underlined, while those that the use r

types are not. A ca r r i age re turn is denoted by the symbol @ and a

bell by the symbol @ . In the text any words o r phrases printed in

capitals a r e to be considered as definitive t e r m s relating to MAP lan-

guage.

The manual assumes that the use r has a basic familiari ty with the op-

eration of the SDS 940 sys t em such as may be gained f r o m the s tan-

dard manuals for the system. The use r of MAP will find, however ,
a section devoted to the sys tem operation as it re la tes to him, in the
Appendix.

2 . STRUCTURE OF THE L A

MAP LANGUAGE CONSISTS of sequences of STATEMENTS typed in

by the user .

one o r more of the following responses f rom MAP:

The typing of a STATEMENT will in general give rise to

-2 -

(a) a request for the next STATEMENT;

(b) computation of a matrix operation;

(c) a request for numerical data o r additional informa-
tion for that same STATEMENT;

(d) output of information o r numerical data ;

(e) generation of a n e r r o r message (in the event of the

u s e r typing a n i l legal STATEMENT).

St a t ements

MAP LANGUAGE STATEMENTS a r e of two types:

DIRECT STATEMENTS - these are decoded and executed by MAP at the

time that the u s e r types them in. MAP requests new
DIRECT STATEMENTS f r o m the use r by typing < @ and

waiting.
-

INDIRECT STATEMENTS - these are decoded and s tored but not executed

at the time of typing in. Thus the u s e r can c rea t e his own

MAP PROGRAM. INDIRECT STATEMENTS are distin-

guished by the presence of a STATEMENT LABEL; and

can only be typed by the u s e r when MAP is in EDIT MODE.

Each STATEMENT consis ts of a COMMAND, denoting the operation to

be executed; up to two ARGUMENTS, which are ei ther VARIABLE names

on which the operation is executed, o r LABELS re fe r r ing to other

STATEMENTS; and, if the STATEMENT is INDIRECT, a LABEL.

- 3 -

The format of a STATEMENT is in general:

I n] : [a] , cb] , {command]

where in] is the LABEL;

{a] , {b] a r e the ARGUMENTS ;

[command] is the COMMAND.

Labels

A STATEMENT LABEL consists of any two-digit number between

01 and 6 3 inclusive, and is invariably followed by a colon. If MAP
is not to confuse two INDIRECT STATEMENTS all LABELS must
be distinguishable, It follows, therefore , that it is possible only t o

c rea te a PROGRAM up to 6 3 STATEMENT§ long.

The re is no relation whatever between a STATEMENT LABEL and

the position of that STATEMENT in the PROGRAM, the LABELS

only being for the u s e r convenience.

THE ARGUMENTS OF, any STATEMENT a r e of two types. Only

ARGUMENT§ of one type appear in any particular STATEMENT.

STATEMENTS with ARGUMENTS of a n incorrect type for the COM-

MAND a r e illegal. If the'type of a n ARGUMENT is numeric, then

that ARGUMENT is a LABEi . It must therefore conform to the re-
quirements of a~ LABEL, and must re fer to some other INDIRECT

-4-

STATEMENT in existence at the time of execution of the STATE-

MENT containing that ARGUMENT .

If the type of the ARGUMENT is alphanumeric, then it i s the name

of a VARIABLE represent ing ei ther a matrig o r a sca l a r quantity.

This VARIABLE name mus t have previously been defined in a LIST

of VARIABLES. If the ARGUMENT is of this type, it must consist

of two alphanumeric cha rac t e r s , the first of which must be alphabetic.

The VARIABLE name 00 is reserved and must not be redefined.

An ARGUMENT is invariably followed by a comma, whichever its

A COMMAND CONSISTS of the name of the operation it represents

as defined in the later sections of this manual. Only the first th ree

cha rac t e r s of the COMMAND a r e interpreted by MAP; A COM-

MAND is invariably followed by a ca r r i age re turn , which a l so s ig-

nifies t o MAP that the u s e r has completed the typing of the STATE-

MENT containing that COMMAND. Any COMMAND can be used
both in DIRECT and INDIRECT STATEMENTS.

3. THE MODES OF OPERATION OF MAP

FOR THE CONVENIENCE of the u s e r , the VARIABLE LIST and

PROGRAM manipulation facil i t ies of MAP are largely separated

f r o m the main execution facilities by the division of operation into

two distinct MODES; EXECUTE M W E and EDIT MODE.

-5-

Execute Mode

IN EXECUTE MODE, MAP is ei ther demanding and executing DIR-

ECT STATEMENTS, o r is executing a PROGRAM of INDIRECT

STATEMENTS. If the first al ternat ive is true, then MAP demands

each new DIRECT STATEMENT by typing - < @ and waiting. No

LIST o r PROGRAM ent r ies can be created in this MODE.

MAP is normally in EXECUTE MODE and automatically t r ans fe r s

to EDIT MODE on the execution of cer ta in STATEMENTS. This is

the only way of entering EDIT MODE.

Edit Mode

IN EDIT MODE, MAP is ei ther accepting VARIABLE names as el-

ments in a LIST, o r is creat ing a PROGRAM of INDIRECT STATE-

MENTS. In this MODE, DIRECT STATEMENTS are illegal. MAP

demands each new entry by typing @ A re turn $0 EXECUTE

MODE is effected by the u s e r typing a n a s t e r i sk instead of an entry.

This a l so closes the LIST o r PROGRAM under manipulation.

4. CREATION AND MANIPULATION OF A VARIABLE LIST

BEFORE THEIR USE in STATEMENTS denoting matrix o r other op-

erat ions, the u s e r must define the names of VARIABLES that he wishes

to use , by appending them with their dimensions to a LIST of VARIABLE

names. Only one such LIST is generated by MAP; the u s e r can add

to this o r delete f r o m it at any stage in’kiis use of the language. LIST

-6 -

On first en t ry into the language, the is empty except f o r the spec-

ial VARIABLE name 00, which at this point represents a 10 by 10 mat-

r ix.

LIST

Adding to the Variable List

THE LIST OF VARIABLES can be added to a t any stage of the u s e r ' s

computations by use of the STATEMENT

VARIABLES 0

On the execution of this STATEMENT, MAP automatically en ters ED-

IT MODE, reopens the LIST and awaits entr ies . These entr ies have

two forms:

MATRIX FORM: If the VARIABLE name to be defined r e p r e s e n t s a mat-

rix the general f o r m of the entry is

Cv3 = Cm3 , Cn3 Q

where {VI is any valid VARIABLE name;

{m] is the row dimension of the mat r ix ;

[n] is the column dimension of the matrix.

SCALAR FORM: If the VARIABLE name to be defined represents a

scalar, the general f o r m of the entry may still be as ab-

ove, of course sett ing [m] and {n] equal to unity, There
is, however, the shortened f o r m

where [VI is any valid VARIABLE name.

-7 -

AS explained previously, typing a n a s t e r i sk instead of a n en t ry closes

the LIST and re turns MAP to EXECUTE MODE.

EXAMPLE:

< VARJABLESCB -
AA=2,2 @
B2 =4,1 09 - XY=1,6 @
PP 09

- -

Deleting from the Variable List

THE LIST OF VARIABLES may be edited at any point in the u s e r ’ s

computations by deleting entr ies , thereby releasing the VARIABLE
STORE space associated with that entry. VARIABLE names may be

deleted one at a time by the STATEMENT

where [VI is any valid VARIABLE name.

MAP does not enter EDIT MODE for execution of this STATEMENT.

EXAMPLE: -continued f r o m previous Example

- 8 -

Printing the Variable list

THE USER CAN print the LIST of VARIABLES a t a n y t i m e by
using the STATEMENT

LIST @

Scalars a r e printed a s 1 by 1 mat r ices .

in the same o rde r as they were typed in and s tored (except for those deleted).

LIST entr ies are printed out

EXAMPLE: -continued f r o m previous Example

< L I S T @
00 1 0 , l Q @
-
AA 2 , 2 @
XY 196 0
PP 1 , l 0
QQ 1 , l @
<

5. CREATION AND MANIPULATION OF A PROGRAM

MAP CAN STORE a PROGRAM consisting of a sequence of INDIRECT

STATEMENTS typed in under EDIT MODE by the user . This PROGRAM

may be edited by deleting or inserting fur ther INDIRECT STATEMENTS,

and may a l so be s tored on a disk file.

execution may be added to this PROGRAM.

COMMENTS to be printed during

Only one PROGRAM can be in existence in the working s tore of MAP at
any one time, although others may be in existence on disk files. A s ex-

plained previously, each PROGRAM must have a length not exceeding

6 3 INDIRECT STATEMENTS. A l l VARIABLE names used in

-9-

the PROGRAM must have previously been defined in the LIST of
VARIABLES.

Before the first use of any STATEMENT creat ing sequences of IN-

DIRECT STATEMENTS i n a PROGRAM, that PROGRAM is sa id

to be ze ro STATEMENTS long.

Appending In d i r ec t Stat emen t s

TO APPEND NEW INDIRECT STATEMENTS to the end of an ex-
ist ing PROGRAM (or to start creat ing a new PROGRAM) the STA-

MENT

APPEND 0

is used. On execution of this STATEMENT, MAP automatically en-

ters EDIT MODE, reopens the PROGRAM for manipulation and wa-

its for entries. The u s e r then types in the INDIRECT STATEMENTS

he requi res , as described in Section 2.

the des i red sequence, he then types a n a s t e r i sk instead of an entry to

c lose the PROGRAM and r e tu rn MAP to EXECUTE MODE.

When he reaches the end of

EXAMPLE:

< A P P E N D @
I_

l@:AA, BB,ADD @
11:AA, CC,SUBTRACT 0
12:00, DD, MULTIPLY 0

- - -

-10-

lnsertiny Indirect Statements

T O INSERT A new sequence of INDIRECT STATEMENTS into a n

existing PROGRAM at any point, the STATEMENT

{ n l , INSERT

is used. The LABEL-type ARGUMENT of the STATEMENT, {n] ,
is the LABEL of the INDIRECT STATEMENT in the PROGRAM

immediately before which the inser t ion is to occur.

On execution of this STATEMENT, MAP automatically en ters EDIT

MODE, reopens the PROGRAM for manipulation and waits for en t r -

i es , Procedure on the par t of the u s e r is now exactly the s a m e as in

the case of appending INDIRECT STATEMENTS.

F o r this STATEMENT t o be valid {n] must be the LABEL for some

INDIRECT STATEMENT already in existence at the time of execution

of the STATEMENT causing the insertion.

EXAMPLE: -continued f r o m previous Example

- < 12,INSERT 8 - 13:EE, 00, EQUATE 0
14:EE, INVERT @ -

* @ - - < -

eleting Indirect Statements

TO DELETE A sequence of INDIRECT STATEMENTS f r o m a

PROGRAM the STATEMENT

{m] , {nl , DELETE Cg,

-11-

is used. INDIRECT STATEMENTS f rom that having LABEL [m) to

that having LABEL b) inclusive are deleted f r o m the PROGRAM.

MAP remains in EXECUTE MODE. The LABEL [m] must occur

before the LABEL [n) in the PROGRAM at the time of execution of

the STATEMENT causing the deletion, otherwise the STATEMENT is

inexecutable.

A single INDIRECT STATEMENT is deleted by setting [m) equal t o

{n] and - not by omitting ei ther one of the ARGUMENTS of the STATE-
MENT causing the deletion.

EXAMPLE : -continued f r o m previous Example

< l@, 1lDELETE @ - < -

Printing the Program

THE USER CAN print the PROGRAM he has generated at any time by

using the STATEMENT

PROGRAM CB

MAP prints out all INDIRECT STATEMENTS including their COMMENTS,

if any, in the o r d e r in which they are stored.

EXAMPLE : -continued f r o m previous Example

PROGRAM@
X E E , 00, EQU 8
14:EE, INV .@
12:00,DD, MUL @
< -

Only the first three charac te rs of the name of each COMMAND are printed

out.

-12-

Attaching Comments

THE USER CAN cause a COMMENT to be attached t o a n INDIRECT

STATEMENT, so that whenever that STATEMENT is executed during

the execution of the PROGRAM containing the STATEMENT, the COM-

MENT is typed out by MAP for the benefit of the user . This facility may

be used with advantage, for example in the case of an INDIRECT 'READ'

STATEMENT. T o cause a COMMENT to be attached, the STATEMENT

C n] , COMMENT CB

is used. MAP then waits for the u s e r t o type the COMMENT he wishes:

this COMMENT will be attached to the INDIRECT STATEMENT which

has the LABEL [n]. Such a n INDIRECT STATEMENT must of course

be in existence at the t ime of execution of the STATEMENT attaching the
COMMENT.

The COMMENT itself mus t be 72 o r fewer charac te rs long, and ends with
the first ca r r i age return.

the COMMENT.
There is no other res t r ic t ion on the f o r m of

If the u s e r tries to attach m o r e than one COMMENT to a n INDIRECT

STATEMENT, only the - last COMMENT is attached. The u s e r should

note, however, that - all such duplicated COMMENTS a r e kept in the

COMMENT STORE area of MAP, and so reduce the available space.

T o effectively e r a s e the COMMENT of some INDIRECT STATEMENT,

the u s e r can attach a fur ther COMMENT t o that STATEMENT consis-

ting mere ly of a car r iage return.

EXAMPLE: -continued f r o m previous Example

- < 14,COMMENT @
INVERSION OF THE MATRIX E E @
<

-13-

6. PROGRAM STORAGE AND RETRIEVAL

AS BRIEFLY MENTIONED- in the previous section a PROGRAM gen-

e ra ted by the u s e r can be saved on a disk file for reloading and use o n a

la te r occasion. MAP has a complementary pa i r of STATEMENTS which

effect these operations.

planation of the filing sys t em for the SDS 940.
The u s e r is r e fe r r ed to the Appendix for a n ex-

When the u s e r saves a PROGRAM on disk, in addition to t ranscr ibing

the PROGRAM itself onto a file, MAP a l so t ranscr ibes the LIST of

VARIABLES and the COMMENTS for that PROGRAM. When the use r

reloads a PROGRAM f rom a file, the associated LIST of VARIABLES

and COMMENTS are in addition reloaded. Any LIST, PROGRAM:, o r

COMMENT existing before the reloading operation is erased. During

the reloading operation, the u s e r has the option of redefining the dimen-

sions of the VARIABLES in the VARIABLE LIST.

No files except those created by MAP a r e acceptable to MAP for these

operations. Only one whole PROGRAM and associated data can be placed

on any one file. A second u s e of any file to save a PROGRAM erases any

previous contents of that file.

file in any way.

-
Reloading f r o m a file does not affect that

The VARIABLE STORE area of MAP is unaffected by PROGRAM s to r -

age and re t r ieva l , s o that the numerical values of a quantity remain un-

changed. F o r c o r r e c t r euse of this numerical data, however, the LIST

of VARIABLES mus t be the same before and after the s torage and re-

t r ieva l operations.

- 14-

Rules for Filenames

EACH FILE THAT the u s e r s to re s a PROGRAM on must be given

a name that follows cer ta in rules. A valid FILENAME has the fol-

lowing general form:

/ E name3 /

where {name] is any sequence of charac te rs up to a maximum length

of nine characters . 1

Saving a Program

THE USER CAN save a PROGRAM on a disk file by using the

STATEMENT

SAVE 8

On execution of this STATEMENT, MAP first a s k s for the FILENAME

of the file on which the PROGRAM is to be saved. The use r types in any

FILENAME he wishes, according to the rules a l ready stated. If a file of

that FILENAME al ready exists, MAP calls it a n OLD FILE; o r i f not,

a NEW FILE.

The u s e r must now confirm execution of the operation by typing a period,

whereupon MAP completes execution of the STATEMENT. Any other

charac te r typed instead of a period aborts the execution of the STATE-

MENT.

The re are cer ta in names which are reserved for l ib rary files, but the
u s e r is not likely to encounter problems connected with this.

1

-15-

EXAMPLE: -continued f r o m previous Example

- 6 SAVE@
F I L E NAME /JUNK / OLD FILE. - 8
<

Reloading a Program

THE USER CAN reload a PROGRAM f r o m a disk file by using the

STATEMENT

RESTORE @I

On execution of this STATEMENT, MAP first a s k s for the FILE-

NAME of the file f r o m which the PROGRAM is to be reloaded. The

u s e r types in the des i red FILENAME according to the stated rules ,

If that FILENAME is acceptable, MAP proceeds by loading the

PROGRAM, together with the associated COMMENTS and LIST of

VARIABLES.

Next, for the benefit of the u s e r , IhAP prints out the LIST of VAR-

IABLES, and then a sks i f the u s e r requires the VARIABLES in the

LIST to be redimensioned. The u s e r either types

o r YES @
NO @

If the answer is in the negative, then execution of the STATEMENT

is complete.

ceeds in a fashion somewhat similar to that qf the

STATEMENT.

If the answer is in the affirmative, execution now por-

'VARIABLES'

MAP types each of the VARIABLE names f r o m the old LIST in t u r n ,

waiting for the u s e r to enter the new dimensions for each name.

- 16-

These can be entered in two ways:

MATRIX FORM: If the VARIABLE name is to represent a mat r ix ,

then the general f o r m is

where {m] is the row dimension of the matrix;

[n] is the column dimension of the matrix.

SCALAR FORM: If the VARIABLE name is to represent a scalar, the

general f o r m may still be the same as for the matrix case,

of course sett ing {m] and {n] equal to unity.

eve r , the shortened f o r m which mere ly consists of a car-

r iage return.

There is, how-

When the whole of the LIST of VARIABLES has been t rea ted in this way,

execution of the STATEMENT is complete.

EXAMPLE: -continued f rom previous Example

< R E S T O R E 0
FILE NAME /JUNK / 0 -

-
VARIABLES USED (9

00 18,10 8
AA 3 ,2 8
BB 3 ,2 0
CC 3.'2 69
DD 2 , 5 Q
EE 2 , 2 @

REDIMENSION VARIABLES? 8

YES 0

- AA=4,2 @ - BB=4,2 d

- DD=3,5 0 - EE=3,3 0

- c c = 4 , 2 @

-17-

7. EXECUTION OF STATEMENTS AND PROGRAMS

THE EXECUTION O F DIRECT STATEMENTS is controlled by the user :

the ac t of typing the STATEMENT a lso causes execution of that STATE-

MENT. The execution of a PROGRAM of INDIRECT STATEMENTS is

controlled by MAP ; the way in which control m a y be passed f r o m the u s e r

to MAP for execution of a PROGRAM is discussed later in this section.

Execution of a STATEMENT o r PROGRAM may be halted by pressing

the 'ESCAPE' key once. After stopping execution, MAP waits fo r a new

DIRECT STATEMENT. The 'ESCAPE' key is a l so used to make an exit

f r o m the language. 2

The execution of a PROGRAM proceeds by NATURAL SEQUENCE ; that

is to say, the f i rs t -appearing STATEMENT

second and so on.

Execution always proceeds by NATURAL SEQUENCE except when a

STATEMENT

incorporate this type of STATEMENT into his PROGRAM, for example,

to construct PROGRAM LOOPS.

is executed first, then the

The execution is - not in o rde r of the sequence of LABELS.

changing the flow of execution is executed. The u s e r can

Making allowance for these STATEMENTS, the execution of a PROGRAM

is said to proceed by LOGICAL SEQUENCE. When there a r e no fur ther

STATEMENTS to be executed in the LOGICAL SEQUENCE, MAP auto-

matically re turns control of execution to the u s e r , and waits for a new

DIRECT STATEMENT to be typed.

Branches and Program Loops

A PROGRAM LOOP is a sequence of STATEMENTS so constructed as

to be executed repetitively by MAP until some condition is fulfilled. MAP

contains two flow-changing operations with which the u s e r may construct

PROGRAM LOOPS, o r other conditional s t ructures .

'The u s e r is r e fe r r ed to the Appendix for a n explanation of this procedure.

-18-

The ‘BRANCH’ STATEM.ENT - Execution of the STATEMENT

[n), BRANCH a

causes the flow of execution t o be interrupted.

stead of executing the next STATEMENT in the

NATURAL SEQUENCE, MAP locates the INDIR-

ECT STATEMENT having LABEL {n]. The flow

of execution then restarts with this STATEMENT,

continuing again in the NATURAL SEQUENCE un-

til another flow-changing operation is met.

In-

The ‘SKIP’ STATEMENT - Execution of the STATEMENT

where {a] and {b] are VARIABLE names represent-
ing scalars, causes MAP t o take one of two different

courses of action. If {a] > {b] then execution contin-

ues normally in the NATURAL SEQUENCE. If {a]< {b]

then MAP ignores the next STATEMENT in the NAT-

URAL SEQUENCE, and the flow of execution resumes

with the one a f t e r next.

In the following Example , it is shown how these two flow-changing op-

erations are combined t o f o r m a PROGRAM LOOP.

EXAMPLE:

10:AA, NULL @
#ll:AA,BB,ADD @

I 12:OO. DETERMINANT 63
13:CC,OO,SKIP @ --- - - - - - - % ’ cc> 00 \ C C 6 00

/
‘-14:11,BRANCH @ +-e’

15:00,PRINT @ C - - - - - - - - -

-19-

Entering a P r o g r a ~ for Execution

AT THE START of this section it was stated that control mus t be t r a n s -

f e r r e d f r o m t h e u s e r t o MAP for the execution of a PROGRAM. This is

achieved by using the branching operation in its DIRECT form. Obviously

execution of the PROGRAM can be s t a r t ed at any STATEMENT by spec-

ifying the LABEL for that STATEMENT as the ARGUMENT of the

DIRECT 'BRANCH ' STATEMENT .

The following Example shows how the u s e r would d i rec t MAP to execute

the PROGRAM illustrated in the previous Example, s tar t ing with the first

STATEMENT.

E XA MP LE : -continued f rom previous Example

< lO,BRANCH@
(execution follows)
-

8. STANDARD MATRIX OPERATIONS OF

MOST OF THE standard operations which are ca r r i ed out on mat r ices

o r vectors are available in MAP.
ations involving partitioning of mat r ices and the manipulation of the i r sub-

mat r ices .

The major exceptions are those oper-

The compatibility of the mat r ices involved in each operation is checked

before the execution of that operation.

execution halted if an incompatibility is detected.

An e r r o r message is given and

MAP mat r ix operations are divided into two classes. CLASS A oper -

ations are those in which the resu l t of the operation is placed in the s tan-

dard output matrix denoted by the VARIABLE name 00. CLASS B

compr ises the remainder of the matrix operations.

-20-

Class A Operations

THE RESULTS OF all CLASS A operations are placed in the s tan-

dard output matrix denoted by the VARIABLE name 00. The VARI-

ABLE takes a dimension appropriate to the operation. F o r this reason,

when the LIST of VARIABLES is printed, the dimensions of 00 shown

will be those implied by the resu l t of the last operation involving 00.

The VARIABLE 00 may be used in the s a m e way as any other VARI-

ABLE the u s e r defines, and may appear as a n ARGUMENT in any
3 STATEMENT .

The reuse of 00 by any CLASS A operation automatically erases the

previous value of 00.

CLASS A operations comprise the following STATEMENTS:

la], {b], ADD @ 00 = {a] t {b]

{a], [b], SUBTRACT Q 00 = { a] - [b]
{a], {b] , MULTIPLY 8 00 = {a] - {b]

{a], {b],SCALAR MULTIPLY 8

[a] , NEGATE 8
{a], TRANSPOSE @

[a], INVERT 0
{a] ,DETERMINANT

{a], DIAGONAL SUM 8

00 = {a] {b] ({a] scalar)

00 = -[a]

00 = la]
00 = [a]-'

00 = Det. [a]

00 = T r a c e [a]

T

In addition the operation of finding eigenvalues and vectors is considered

a CLASS A operation. The values and vectors found are not s tored, but

are printed during execution of the operation. The VARIABLE 00 is
used for temporary s torage purposes and is left as a square matrix
of the same dimension as the matrix operated upon.

,

{a], EIGENVALUE 49 00 = !il

3The VARIABLE 00 may not appear in the 'OMIT' STATEMENT be-
cause it cannot be deleted f r o m the LIST of VARIABLES.

-21-

Class B Operations

CLASS B OPERATIONS have no common distinguishing feature. They

compr ise the following STATEMENTS:

Ea] NULL GB
{a) , {b] EQUATE @ {a] = {b) ({ b) unchanged)

{a] = Q

9. INPUT AND OUTP T OF NUMERICAL DATA

SO FAR NO mention has been made of the input and output of numerical

values of VARIABLES. MAP contains four STATEMENTS which take

c a r e of these operations,

teletype console.

Two are for the input and output of data via the

Two a r e for saving data on disk files.

Teletype Input and Output

THE TELETYPE INPUT and output of the values of matrices has the

s a m e general format as a matrix writ ten out by hand. MAP uses one

fixed format for the output of data ; but the input of data by the u s e r is

relatively free -form.

TELETYPE OUTPUT - On execution of the :STATEMENT

{a) ,PRINT @

MAP prints the values of the elements of the VARI-

ABLE [a]. The values of the matrix are printed out

-22-

row by row in the s tandard way.

values to four significant f igures. Each value is nor-

malized to between 1.000 and 9.999 and an exponent par t

is printed immediately below the fract ional p a r t of the

element.

MAP prints out the

EXAMPLE:

TELETYPE INPUT - On execution of the STATEMENT

[a],READ 8

MAP waits for the values of the elements of the VARI-
ABLE [a] to be typed in by the user . These are typed

in row by row in the same orde r as values writ ten out by

hand.

has to consider.

The re are relatively few restr ic t ions that the u s e r

The value of each element, if it is qot the final element

of a row of the matrix, must be terminated by a space.

If the u s e r has reached the right-hand s ideo f the paper

without completing a row, he may terminate a value by a

line feed charac te r instead of a space. MAP then re turns

the ca r r i age to the left-hand s ide of the paper and the use r

may continue as before.

-23-

The value of the final element of the row of the matrix

must be terminated by a car r iage return.

ning of each row of the mat r ix ,MAP gives a bell.

A t the begin-

The value of each element may be typed in as an integer

o r a decimal, and with o r without a n exponent part.

fractional pa r t may have the decimal point in any position,

and must be l e s s than 12 digits long.

the fractional par t are ignored.

The

Leading spaces in

The exponent par t , if present , immediately follows the

fractional par t with no intervening spaces.

the le t ter E followed by a signed integer. Spaces leading

the signed integer are ignored.

that the value of the element lies within the range

It consists of

The exponent must be such

to
o r is zero. La rge r values will be truncated.

EXAMPLE:

8765.2 3*684 * ""I for the matrix AA =

16543. 1

< AA,READ 63
T 6 4 5 3 1 3.684Et8 0
1.65431Et4 8765.2 Q
< -

Section 10 contains a procedure to be followed if the use r should type

erroneous data.

-24-

File Storage of Data

JUST AS A PROGRAM may be s tored on a disk file fo r reloading on

a later occasion, so may the u s e r a l so s t o r e the values of a VARIABLE.

The operations themselves are somewhat similar.

MAP contains two operations for s tor ing and loading the values of a

VARIABLE. The file concerned in the operations is given a FILENAME

which conforms to exactly the same rules as the FILENAME of a file
used for PROGRAM storage. The u s e r is r e fe r r ed t o Section 6 for

these rules.

In the absence of any special arrangements , only those data files created

by MAP a r e acceptable to MAP.
4

STORING ON A FILE - On execution of the STATEMENT

[a],STORE 0

MAP s to res the values of the elements of the VARIABLE

{a] on a disk file.

MAP demands a FILENAME f r o m the user and waits for

it to be typed in.

MAP calls it a n OLD F I L E ; or if not, a NEW FILE.

The exact procedure is as follows. First,

If a file of the FILENAME already exists,

In either case MAP then waits for the u s e r t o type a con-
f i rmatory period, and then completes execution of the

STATEMENT. Any other charac te r typed will cause MAP

to a s k f o i the FILENAME again.

,
If the file is a n OLD FILE, the previous contents of the

file are e ra sed by execution of this STATEMENT.

4Details of a routine which may be used in SDS 940 FORTRAN programs
t o c rea te files compatible with MAP files, will be found in the MAP
REFERENCE MANUAL. [Z]

-25-

EXAMPLE:

< AA,STORE 8
FILE NAME /TRASH/ OLD FILE. d
<

- - -

LOADING FROM A FILE - On execution of the STATEMENT

[a], LOAD 0

MAP loads the values of the elements of the VARIABLE

[a] f r o m a disk file. First MAP demands the FILE-

NAME of the fi le containing the values, and waits for the

u s e r to type it in. If the FILENAME is acceptable, MAP
completes execution of the STATEMENT.

The file itself remains unaffected by this operation.

EXAMPLE:

AA,LOAD @ -
FILE NAME /TRASH/?
<

10. ERROR MESSAGES AND PROCEDURES

MAP IS PROVIDED with a comprehensive e r r o r detection scheme. Any

mistake which could cause MAP to malfunction is detected, and a n e r r o r

message printed out tQ the user .

type of e r r o r .

The subsequent aGtion var ies with the

T h e r e are th ree types of e r r o r s :

(a) EXECUTION ERRORS - those e r r o r s occurr ing during

the execution of a STATEMENT ;

-26-

(b) TELETYPE ERRORS - those e r r o r s detected as
the u s e r types information or numerical data ;

(c) STORAGE ERRORS - those e r r o r s due to the over-

filling of s torage space.

In this section, each of these three categories is dealtwith in turn.

possible causes of each e r r o r message given by MAP a r e l i s ted ; and

the subsequent action to be taken by the u s e r is explained where appro-

priate.

The

Execution Errors

MAP SIGNALS AN EXECUTION ERROR if it finds it impossible to

continue executing a STATEMENT, o r i f it cannot decide which STATE-

MENT to execute next.

If the e r r o r occurs during the execution of a DIRECT STATEMENT, exe-

cution is interrupted, and an e r r o r message printed out. If It occurs dur -

ing the execution of an INDIRECT STATEMENT having LABEL {n],

execution is interrupted, and the following message is printed:

STOP IN STATEMENT Cn3 GB

This is followed by the printing of the e r r o r message.

deleted, then MAP a lso terminates execution of the whole PROGRAM.

If execution is

The following e r r o r messages may appear.

INCOMPATIBLE MATRIX @

Some ma t r ix operations cannot be executed if their oper-

ands have incompatible dimensions. MAP checks the

-27-

ARGUMENTS of the corresponding STATEMENTS for

compatibility before execution.

This message is printed if an incompatibility is discovered.

Execution of the STATEMENT is deleted, and MAP waits

for the u s e r to type a new DIRECT STATEMENT,

LABEL UNDEFINED @

This message is given i f the LABEL-type ARGUMENT

of a STATEMENT refers to a LABEL which does not

exist a t execution time. Execution of the STATEMENT

is deleted, and MAP waits for the use r to type a new
DIRECT STATEMENT.

DETERMINANT ZERO 8

This message is given if MAP tries to find the de te r -

minant of a singular matrix. The resul t of the operation

is set to zero , and execution is resumed.

MATRIX SINGULAR - RANK = {n]

This message is given if MAP tries to find the inverse
of a singular matrix. The resu l t is set to a null matrix

of the same dimension as the operand, and execution is

resumed.

COMPUTATION FAILURE @

This message is given during the calculation of the eigen-

values of a matrix, i f calculation of the cur ren t eigenvalue

cannot proceed.

matr ices .

This is most likely to occur in ill-conditioned

The calculation of fur ther eigenvalues is

-28-

Te I e t ype

terminated, but execution continues as if the operation

had been successfully completed.

Errors

MAP signals a TELETYPE ERROR if it cannot understand what the

u s e r is typing, o r i f some other ru le re la ted to teletype input is contra-

vened.

r e tu rn after the occurrence of the e r r o r , and print out an e r r o r message.

MAP will interrupt the u s e r when he types the first ca r r i age

Generally the u s e r mus t re type the line containing the e r r o r .

continues f r o m the point of interruption.

He then

WHAT ? 0

This message is given whenever the u s e r types something

unintelligible to MAP.

If the u s e r is typing a DIRECT STATEMENT, the e r r o r

may be due t o an i l legal charac te r , o r the u s e r may have

typed the wrong number of ARGUMENTS. MAP wai t s for

the u s e r to type the STATEMENT again.

If the u s e r is typing a n INDIRECT STATEMENT in EDIT

MODE, the e r r o r may have a similar origin.

the u s e r may have given the STATEMENT the same LABEL

as a previous INDIRECT STATEMENT. MAP deletes the

STATEMENT f r o m the PROGRAM, and waits for the u s e r

t o retype it.

Alternatively,

I

If the u s e r is typing a n entry in the LIST of VARIABLES,

the e r r o r is usually due to a n illegal character . MAP

-29 -

deletes the entry f r o m the LIST, and waits for the u s e r

t o re type it.

If the u s e r is typing in the values of the elements of a

VARIABLE, the e r r o r is usually due to a n i l legal cha r -

ac te r . MAP deletes the values f r o m a l l the elements i n

the row of the matrix containing the e r r o r , and waits for

the u s e r to retype the row.

If the u s e r is redimensioning a n entry in the VARIABLE

LIST during the execution of a 'RESTORE' STATEMENT,

MAP deletes the new dimensiona, and waits for the u s e r

to retype them.

If the u s e r is typing a FILENAME, the e r r o r is due either

to a bad charac te r , o r to the specification of an unacceptable

file. MAP re jec ts the FILENAME, and asks the u s e r to

type a new one.

VARIABLE UNDEFINED @

This message is given i f the u s e r types a STATEMENT

containing a VARIABLE name not previously defined in

the LIST of VARIABLES. If the STATEMENT is DIR-

ECT, MAP waits for a new DIRECT STATEMENT to be

typed. If the STATEMENT is INDIRECT, MAP deletes

it f r o m the PROGRAM and waits for it to be retyped.

ILLEGAL VARIABLE 0

This message is given if the u s e r types a STATEMENT

with the wrong type of ARGUMENT. The procedure fol-

lowed is the same as for the previous message.

-30-

If the message occurs while the u s e r is typing a n entry in

the VARIABLE LIST, then a VARIABLE name has been

duplicated. MAP deletes the entry f r o m the LIST, and

waits for the u s e r to retype it.

MATRIX IS OVERSIZE8

This message is given if the u s e r defines a dimension of

A VARIABLE la rge r than the maximum permissible. This

may happen either when the u s e r is typing in an entry in the

LIST of VARIABLES, o r during the redimensioning of the

LIST while reclosing a PROGRAM.

If the u s e r is typing a list entry, MAP deletes the entry

and waits f o r the u s e r to retype it.

If the u s e r is redimensioning a n entry, MAP deletes the

new dimensions, and waits for the u s e r to retype them.

Storage Errors

STORAGE ERRORS OCCUR when the use r t r i e s to use more space than

is available in MAP, These e r r o r s a r e not likely to be encountered very often.

NO MORE STATEMENTS@

This message is given when the use r h i s reached the maximum

allowable length of PROGRAM. It is printed out immediately

after the u s e r has typed the 63rd INDIRECT STATEMENT.

This last STATEMENT is s tored, but the u s e r may type no

m o r e in. MAP closes the PROGRAM, returns to EXECUTE
MODE, and waits for the u s e r to type a new DIRECT STATE-

MENT.

-31 -

TOO MANY VARIABLES@

This message is given when the u s e r tries to define m o r e

than 59 VARIABLES. It is printed immediately after the

u s e r defines the 60th VARIABLE. The VARIABLE is

not entered in the LIST ; instead U P closes the LIST,

re turns to EXECUTE MODE, and waits fo r a new DIRECT

STATEMENT.

VARIABLE STORE F U L L @

This message is given during the definition of a LIST of

VARIABLES, o r during the redimensioning of a LIST while

a 'RESTORE' STATEMENT is being executed.

It means that the total number of elements in all the VARI-

ABLES in the VARIABLE LIST, including 00, has ex-

ceeded 4000 . MAP deletes the entry in the LIST

that the u s e r last typed in, and waits for a new entry.

new entry must not violate the rule o r the e r r o r message

will be repeated.

This

COMMENT STORE F U L L @

This message is givenduring the execution of a

STATEMENT if the total number of charac te rs in all the

COMMENTS including their terminating ca r r i age re turns

exceeds 3000. After giving the e r r o r message , MAP ter-
minates execution of the 'COMMENT ' STATEMENT.

'COMMENT'

The contents of the COMMENT STORE cannot be e ra sed

except by making an exit f r o m the language.

-32-

11. UPPER LIMITS SPACE

THE MAXIMUM STORAGE space available in MAP for any purpose

depends on two factors ; the s t ruc tu re of the language, and the s torage

space available on the u s e r ' s own SDS 940 system.

The maximum lengths of the LIST of VARIABLES and of the PROGRAM

depend on the s t ruc tu re of the language, and cannot be increased.

The maximum s i ze of a matrix cannot eas i ly be increased.

The s izes of the VARIABLE STORE o r COMMENT STORE can be in-

c reased relatively easily. Instructions for doing this may be found in the

MAP REFERENCE MANUAL.

The following are the maximum dimensions associated with MAP as it

stands at the t ime of publication.

MAXIMUM SIZE OF VARIABLE-

Matr ices of dimension not exceeding 10 by 10 .

MAXIMUM LENGTH OF VARIABLE LIST-
Not m o r e than 60 VARIABLES, including 00, but depend-

ing on:

SIZE OF VARIABLE STORE-

A total of 4000 elements in a l l VARIABLES including

00 .

LENGTH OF PROGRAM- 1.

Not m o r e than 6 3 INDIRECT STATEMENTS.

LENGTH OF EACH COMMENT-
Not m o r e than 72 cha rac t e r s , including the te rmina l

ca r r i age return.

- 3 3 -

SIZE OF COMMENT STORE-

Not m o r e than 3000 charac te rs total , including those

COMMENTS overwrit ten with later ones by the user .

12. AN EXAMPLE

THE EXAMPLE GIVEN in this section demonstrates some of the m o r e

important propert ies of MAP.

type console is reproduced.

An actual printout f r o m the u s e r ' s tele-

The example is the calculation of a positive integer power of a matrix by

the method of repeated multiplication.

First a PROGRAM for doing this calculation fo r any 3 by 3 matrix is

created. This is executed to calculate

where A = A 2

The PROGRAM is saved on a disk file, and then reloaded so as to allow

this calculation for 2 by 2 matrices. Lastly the PROGRAM is re-executed

to calculate

[::: :: :] A1 where A =

By deleting the PROGRAM f r o m the PROGRAM STORE between the

saving and reloading operations, it is shown that s torage on file has ac t -

ually taken place. The PROGRAM remains on the file after log-out.

The processes of log-in, log-out, and loading of MAP are explained in
the Appendix.

-34-

H A R V A R D TIME S H A R I N G SYSTEM (D 0 0 - H 19): 3- 14-65
MAY -ID 1968 2: 1 1 P*Mw

ACCOUNT: 110
PASSWORD:
NAME: AGRAWALA.

QDDT.
; T / P 3 B / 20047
W W S G

... , Iog-im to system

M A T R I X M A Y I P U L A T O R (1 1 0 - 3) MAY 1 9 6 8

. . . creation o f LIST
O f VflRJABLt:S N 1

N 2
UN *
A P P E N D
10 : X X r R E A D
1 l : N l r READ
12: LkJr R E A D
1 3 : Y Y r X X r E Q U A T E
1 4 : N 2r 'UN r E QUAT E

1 6 : N 2 r O O r E Q U A T E
1 7 2 N 2 r N l r S K I P
18 : 22. BRANCH
1 9 : X X r Y Y r M U L T I PLY

2 0 : Y y r O O ~ E Q U A T E
2 1 : 1 5 s BRAVCH
22: X X r P R I N T
23: Y Y r P R I N T *
1 0 r C O M M E N T

READ I N M A T R I X
1 1 r C O M M E N T

R E A D I N POWER OF M A T R I X < A S D E C I M A L)
1 2 r C O M M E N T

R E A D I N W I T S C A L A R

M A T R I X .=

FOWER O F M A T R I X =

1 5: N 2 D UND ADD

2 2 , C O M M E N T attachment o f
COMMENTS 2 3 r C O M M U U T

L I S T
00 103 10
xx 3r3
YY 383
N 1 l r 1
N 2 I r 1
UN 1. 1

PROGRAM

-35-

READ IN MATRIX
10:XXr REA
READ IN Po WER 0 F MATRIX < AS DECIMAL)
11:N lr REA
READ IN W I T SCALAR
12: W r REA
1 3 : Y Y r X X r EQU
14:N 2 s Ws EQU
15:N2r Wr ADD
16:1\12rOOr EQU
17ZN2rN 1, SKI

19 : X X r Y Y r M U .
20:YYrOOr EQU
21: 15rBRA

22: XX, PRI

23:YYr PRI
e 10rBRANCY
R E A D IN MATRIX
1.0 2.0 3.0
4.0 S r 0 6.0

18 : 22r BRA

MATRIX =

POWER OF MATRIX =

....
COMMENTS

. . . . start o f e>tw*ion

w

4.

A

0

T? typi"9 of' rbp& da&
5- 0 6. 0 (note comclild -or)

7.0 8 .0 9.0
READ IN WWER O F M A T R I X (A S DECIMAL)
2.0
READ IN W I T SCALAR
1.0

MATRIX =
1.000 2-000 3.000
E+00 E+00 E+00

4.000 5.000 6.000
E+00 E+00 E+00

7.000 8.000 9 .000
E+00 E+00 E+00

WkER O F MATRIX =
3. 000 3.600 4.200

E+01 E+01 E+01

6.600 8. 100 9.000
E+@l E+01 E+01

10020 1.260 1.500
E+02 E+02 E+02

-36-

F I L E N P M E / F I L F l / O L D F I L F .
< 1 Or 2% D E L E T E
< PROGRAM

R E S T O R E
F I L E NAME / F I L E 1 1

V A R I ABL E S U S E D

R E D 1 M EN SI ON V A R I ABL ES?

Y E S
xx= 2r 2
Y Y = 2 , 2
N l
N 2
UV

c PROGRAM
R E A D I N M A T R I X
10: X X r R E A
R E A D I N POWER O F M A T R I X (A S D E C I M A L)
11:N 1 s R E A
READ I N U N I T S C A L A R
1 2 : Wr R E A
1 3 : Y Y ~ x X r F Q U

18 : 2% B R A
1 9 8 XX r Y Y r M UL
2 0 : Y Y r O O r F Q U
21: 1 5 r E R A

2 2 : X X r P R I
M A T R I X =

W W E R O F M A T R I X =
2 3 : Y Y r P R I
< 1 0 r E R A N C H

-37-

READ IN M A T R I X
1.52 2.0
3. P 4.0
READ I N POWER O F M A T R I X < A S DECIMAL)
1.e
READ I N l N l T SCALAR
1. e

M A T R I X =
1.e00 2.e00
E+00 E+00

3.000 4.e00
E+00 E+0@

POWER OF MATRIX =
1.e00 2.800
E+0@ E+00

3.000 4.e00
E+00 E+E0

c

@LO GO UT AGRAWAL A.
MAY I > 1968 2:25 P.M.

TIME USED
CPU: 00: 00: a6
CONNECT: 00: 1 4
X

data

.,. . end of e x d h t

PRECEDING PAGE &LANK NOT FILMED.

-39 -

THIS APPENDIX IS devoted to a n explanation of the operation of the

SDS 940 as it affects the MAP user . F o r a m o r e detailed t reatment ,

the u s e r should consult the SDS sys t em manuals.

The instructions given he re only apply to the SDS 940 sys t em in operation

at the Harvard University Computation Laboratory. While other 940 sys -
tems are essentially s imi l a r , there may be minor differences in operating

procedure.

Logging In

ON BEING CONNECTED with the sys tem, the u s e r is asked for his

account number, password, and name. The following sequences a r e typed:

HARVARD TIME SHARING SYSTEM (D@@-H19) : 3-14-68 @
- \date) { t ime) 8

ACCOU NT: { u s e r ' s account number] 8 - ~~

PASSWORD: [u s e r ' s password] - Q
NAME: { u s e r ' s name] . - d --

If the sys t em accepts the u s e r ' s credentials, he is logged in. The symbol

@. signifies that the sys t em is under control of the Executive, and is wait-

ing for a command. While in the Executive, the u s e r can per form various

operations. These a r e explained in the TERMINAL USER'S GUIDE for

the HARVARD system. [4] A t this point, the u s e r can load the MAP pro-

cessor .

-40-

ing the MAP Processor

BEFORE MAP CAN be used, the MAP language processor must be loaded

into co re , and control delegated to it f rom the Executive.

ferent methods of loading MAP.
There a r e two dif-

METHOD I. This is the prefer red method of loading the processor . A copy

of the processor is held in the LIBRARY of the sys tem on the

file MAP. . To load the fi le and delegate control to MAP, the

use r types:

@EXECUTE - MAP. (LIBRARY).

Note that the sys tem completes typing the word 'EXECUTE'

af ter the first three charac te rs .

METHOD 11. This method can only be used if the u s e r possesses his own

copy of the processor on a BINARY file. Such a file can be

loaded by calling in the DDT subsystem . 5

Suppose that the u s e r has a copy of the processor on the BINARY

file /MAP/ . Then the user loads MAP and delegates control

to it by typing:

@DDT. 8
TT /mP/ 20047 @
W 0 T K ; G - Q

After e i ther method of loading, MAP types

MATRIX MANIPULATOR (110-3) M2$ Y 1968 0
< -

and is ready for the u s e r to type his first DIRECT STATEMENT.

F o r details on DDT see the SDS 940 DDT REFERENCE MANUAL. [3] 5

-41 -

Exit from MAP language

A S EXPLAINED EARLIER, at any stage, the u s e r can s top execution

of a STATEMENT o r PROGRAM by press ing the 'ESCAPE' key.

MAP then waits for a new DIRECT STATEMENT to be typed.

The 'ESCAPE' key a l so controls the exit f r o m MAP language. If the

u s e r p r e s s e s the dey s e v e r a l times in rapid succession, o r in conjunc-

tion uses the 'REPEAT' key, the sys t em will r e tu rn to the Executive

and type @ .

T o re turn to MAP again, the u s e r can follow the loading procedure once

more. Note that in this case the new copy of the processor overwri tes the

old one in core , and the u s e r cannot c a r r y on f r o m the point of exit.

natively, i f MAP had been loaded by Method I1 , the old processor could

be reinstated by typing

Alter-

$CONTINUE DDT. @
WORK; G - @
- -

MAP starts by typing the usual sequence ; a n d retains the LIST of

VARIABLES, PROGRAM, and COMMENTS, if any, created before the

exit.

IF THE USER wishes to log out he first escapes to the Executive. He

then types:

@LOGOUT [use r ' s name] . -
Tda te 1 l t ime j 0

TIME USED 63
CPU: \hrs:mins:secs] Cii,
CONNECT: l h r s : m i n s l @

- 42-

In the above sequence, the CONNECT time is the time f o r which the u s e r

was lvggedin; and the C P U time is the actual time taken by the sys t em on

the u s e r ' s work.

The Filing System

USER'S PROGRAMS AND data can be s tored on disk files by using the ap-

propriate commands in the language in which the u s e r is working.

files can be defined and manipulated as complete enti t ies in the Executive.
Several Executive commands useful for the manipulation of MAP files are

given here. The use r will find a comprehensive list in the TERMINAL

USER'S GUIDE. [4]

These

T o delete a file:

@DELETE - / I name] / . - @ -

T o rename a file:

 RENAME/{^^^^ - - 131 - AS /{name 2]/ . - a

T o copy one file t o another:

@COPY - /[name I]/ - TO /{name 2]/ . - -

Note that since all MAP files a r e BINARY files, the con-

tents cannot be typed by using the command

@COPY - /{name]/ - T O TEL. - d -

T o make a file Public, Readout only:

-43 -

@DEFINE - /{name]/ A$ PUBLIC. - @

To make a file Private:

 DEFINE - /{name1 / - AS PRIVATE. - @ -

A l l MAP files a r e Pr iva te on creation.

PRECEDING PAGE BLANK NOT FILMED.

-45 -

REFERENCES

[l] P. M. Newbold and A. K. Agrawala. "Two Conversational Languages
for Control Theoret ical Computations in the Time-sharing Mode.
Harvard University Technical Report TR 546, November 1967.

[2] P. M. Newbold. "M.A. P. - A Conversational Language for Numerical
Matr ix Operations. Part 11: Reference Manual. Harvard University
Technical Report TR 562, June 1968.

[3] "DDT Reference Manual fo r SDS-940 Time-sharing Computer Systems.
Scientific Data Systems Publication 90 11 13A, May 1967.

[4] "Harvard Computing Center Time-sharing Termina l U s e r ' s Guide".
Harvard University Computing Center , January 1968.

Unclassified
Sccuritv C1,issiticaticm

Division of Engineering and Applied Physics
Harvard University, Cambridge, Massachusetts

3 R E P O R T T I T L E

THE MATRIX ALGEBRA PROGRAM A CONVERSATIONAL LANGUAGE FO:
NUMERICAL MATRIX OPERATIONS - PART I: USER S MANUAL

P. M. Newbold

7b. NO. O F R E F S 6 R E P O R T D A T E 7a. T O T A L NO. O F P A G E S

May 1968 49 4
ea. C O N T R A C T O R G R A N T NO 9s. O R I G I N A T O R ' S R E P O R T NUMBER(S)

N00014-67-A-0298-0006 and
b. P R O J E C T N O NASA NGR -22-007-068 Technical Report No. 561

C . 96. O T H E R R E P O R T NO(S) (Any other numbers that may be assigned
this report)

I d.

10 D I S T R I B U T I O N S T A T E M E N T

R ep roduction in whole o r in pa r t is permitted for
any purpose of the United States Government.

1 I S U P P L E M E N T A R Y N O T E S 12 SPONSORING M I L I T A R Y A C T I V I T Y

Office of Naval Resea rch

13 A 8 S T R A C T

This repor t is Part I of a two-part description of a new programming
language MAP. The language is in a conversational mode, created expres-
s ly for direct-access t ime-sharing computer systems.
execute numerical matrix operations with the same ease and flexibility as
sca l a r operations.

It is designed to

No knowledge of any other language is required.
Part I is the U s e r ' s Manual for the language.

I
DD N O V 6 5 Unc las s if ied FORM 1473 (PAGE t

S I N 01 01 -807-681 1 Security Classification
A - 3 1 4 0 8

U n c tassified
. Securitv Classification

K E Y W O R D S

t
D ir ec t -ac c e s s computer language
Conversational programming language
Numerical matrix operations

L I N K A

R O L E - = H O L E

C -
W T -

Uric las s ified
Security Classification S I N 0 1 0 1 - 8 0 7 - 6 8 7 1 A - 3 1 403

