THE DIRECT POTENTIAL METHOD IN

 THREE DIMENSIONAL ELASTOSTATICST. A. Cruse

This work was supported by the National Aeronautics and Space Administration Research Grant NGR-39-002-023

THE DIRECT FOTENTIAL METHOD IN THREE-DIMENSIONAL ELASTOSTATICS

1. Introduction

The analysis of the stresses and displacements in an elastic body due to some state of loading and confinement usually begins with assumptions which reduce the dimension of the field equations. In many complex problems this reduction is from three dimensions to the familiar two dimensional representations of plane stress and plane strain. The reduction to two dimensions is made so that the problem becomes tractable and the reduction may be justified by the state of loading and the geometrical configuration of the body. For example, In the investigation of the stress field in the vicinity of a crack through a thick body one may consider the region far from the surfaces of the body to be in a state of plane strain. On the other hand, near the surface the stress field is more nearly in a state of plane stress. The crucial problem at this polnt is in determining just when one model or the other may be applied and whether these two models include all important features of the stress field. In some other cases the reduction to one or two dimensions may be made by conditions of symmetry such as when the stresses satisfy the condition of polar symmetry and in yet other cases the reduction to one or two dimensions may be made solely
on the basis of the need for some estimate of the stress state.
The second crucial aspect of the analysis involves the shape and connectivity of the region. If the region has a simple shape for the dimension of the problem, e.g., the rectangle, the circle, the half-space, etc., it is likely that well documented analytic procedures
are available such as separation of variables (or the related use of transforms). If the shape is complex, as in the case of many real problems, one is forced to adopt some degree of approximation with related numerical procedures. Scme problems may be made tractable by replacing the actual shape by an ideal shape as in the analysis of elliptic or parabolic shaped cracks and notches. In the case of the most general shaces of regions solutions may not yet be established and those problems that have been solved have been attacked by entirely numerical methods such as finite differences or finite elements.

While the need for numerical procedures for complex shapes is obvious and will not change, the restriction to two dimensional representations is dictated by the present state of knowledge of solution methods. Therefore, there is a need for new procedures of analysis which can be extended to analysis in three dimensions. These new procedures are necessary to refine the analysis of some problems solved with two dimensional assumptions as well as to analyze previously intractable problems. In keeping with the spirit of true three dimensional analysis the sclution method should maintain the highest state of generality as to geometry, connectivity and loading, as possible.

A method offering the broadest capabilities and ease of use is the direct potential method. This solution procedure has been successfully applied to two dimensional problems in elastostatics [1] and transient elastodynamics [2] and [3]. It is the purpose of this paper to extend the capability to problems of three dimensional elastostaties.

The potential methods of solution in elasticity closely parallel the classical solution methods [4] for Laplace's equation collectively called potential theory. The recent revival of the potential formulation method is due both to the use of a boundary identity analogous to Green's boundary identity in potential theory [5] and also to the capabillty of solving large systems of algebraic equations with the digital computer. The singular featare of the potential method for boundary and initial value problens is the capability of obtaining solution forms which automatically include the prescribed data, boundary configuration, and region connectivity. The potential merhod may be divided into two approaches: the indrect and the direct potential methods.

In the indirect proceciure integral equations are written in terms of harmonic functions from which the displacements and stresses must be derived by differentiation. The necessary boundary values for these functions must be established by integration of the actual boundary conditions. The indirect method has been applied to the problem of vibrations of an elastic body [6] and to problems in acoustics.

The direct method described in [1] and [2] obtains integral equations whose unknowns are the unknown surface tractions and displacements, thus elimineting the need for intermediate potential functions. The interior stresses and dispiscements are calculatec directly from tensor and vector identities respectively. Numerical solution of the integral egrations is achieved by a reduction to algebraic equations and solution of the algebraic equations by standard digital computer methods.

The direct potential method has two advantages over other approximate methods: the dimension of the problem is reduced by one, and all numerical approximations take place at the surface of the body. Further, the formulation of the integral equations and their reduction to algebraic equations is not restricted by geometric considerations. The formulation and subsequent solution offer to the analyst the utmost in generality and applicability to nontrivial problems and the procedures have been fully automated.
2. Integral Equation Formulation

The analysis in thls paper is restricted to the analysis of classical elastostatic problems for which the material may be taken as Isotropic and homogeneous. The usual Navier equations of equilibrium in the absence of body forces is given by

$$
\begin{equation*}
(\lambda+\mu) u_{i, i j}+\mu u_{j, i i}=0 \quad(1, j=1,2,3) \tag{2.1}
\end{equation*}
$$

for the displacement vector, $u_{i}(X)$. The solution to this differential equation must also satisfy appropriate boundary conditions on the displacements and tractions, respectively given as

$$
u_{i}(X)=q_{i} \quad, X \varepsilon S\left(u_{i}\right)
$$

and

$$
t_{i}(X)=\sigma_{i j} n_{j}=p_{i}, X \varepsilon S_{\left(t_{i}\right)}
$$

The unit vector n_{i} is the outward normal vector for the body R. The stress components, $\sigma_{i j}$, and displacement gradients are related by Hooke's law

$$
\begin{equation*}
\sigma_{i j}=\lambda \delta_{i j} u_{m, m}+\mu\left(u_{i, j}+u_{j, i}\right) \tag{2.3}
\end{equation*}
$$

The well-known solution to Kelvin's problem (a concentrated unit load in the infinite body) is given by the tensor field, [7],

$$
\begin{equation*}
u_{i j}=\frac{1}{4 \pi \mu}\left(\frac{1}{r}\right)\left[\frac{3-4 v}{4(1-v)} \delta_{i j}+\frac{1}{4(1-v)} r_{, i}{ }^{r}, j\right] \tag{2.4}
\end{equation*}
$$

for displacements in the x_{j} directions due to point loads in each of the x_{i} directions. These displacement components are given by the operation

$$
\begin{equation*}
u_{j}=u_{i j} e_{i} \tag{2.5}
\end{equation*}
$$

on the base vectors, e_{i}. The distance between the field point X and the load point ξ is given by

$$
\begin{equation*}
r=\left[\left(x_{i}-\xi_{1}\right)\left(x_{i}-\xi_{i}\right)\right]^{1 / 2} \tag{2.6}
\end{equation*}
$$

$$
\Longrightarrow
$$

The traction vectors, $\dagger_{j}=T_{i j} e_{i}$, are determined from Ec. (2.4) and are given by the tensor components, [7],

$$
\begin{equation*}
T_{i j}=-\frac{k}{4 \pi}\left(\frac{1}{r^{2}}\right)\left[\frac{\partial r}{\partial n}\left(\delta_{i j}+\frac{3}{1-2 v} r_{, i} r_{, j}\right)-n_{j} r_{, i}+n_{i} r_{, j}\right] \tag{2.7}
\end{equation*}
$$

where $k=\frac{1-2 v}{2(1-v)}$.
Now letting the load point ξ be surrounded by a small spherical region, R^{*}, with the surface, r, Betti's third identity may be written as

$$
\begin{equation*}
\int_{S+\Gamma}\left(u_{i} T_{j i}-t_{i} u_{j i}\right) d S=0 \tag{2.8}
\end{equation*}
$$

where u_{i}, t_{i} are the displacements and tractions for the unknown stress state. By taking the limits for $R^{*} \rightarrow 0$ in the usual way (see [2]) the following identity results

$$
\begin{align*}
u_{j}(\xi)= & -\int_{S} u_{i}(X) T_{j i}(X, \xi) d S(X) \tag{2.9}\\
& +\int_{S}+_{i}(X) u_{j i}(X, \xi) d S(X) .
\end{align*}
$$

This is Somigliana's identity for the displacements inside the body, R, due to known surface tractions and displacements. The interior stress state may be generated from Eq. (2.9) by differentiation and is given by

$$
\begin{aligned}
\sigma_{i j}(\xi)= & -\int_{S} u_{k}(X) S_{k i j}(X, 5) d S(X) \\
& +\int_{S} t_{k}(X) D_{k i j}(X, \xi) d S(X) .
\end{aligned}
$$

By utillizing the identity

$$
\begin{equation*}
\frac{\partial r}{\partial x_{i}}=-\frac{\partial r}{\partial \xi_{i}} \tag{2.11}
\end{equation*}
$$

the tensors $O_{k i j}$ and $S_{k i j}$ are found to be

$$
\begin{equation*}
D_{k i j}=\frac{k}{4 \pi}\left(\frac{1}{r^{2}}\right)\left(\delta_{k 1} r, j+\delta_{k j, i}-\delta_{i j}{ }^{r}, k+\frac{3}{1-2 v} r, i^{r}, j, k\right) \tag{2.12}
\end{equation*}
$$

and

$$
\begin{align*}
& S_{k i j}=\frac{k \mu}{4 \pi}\left(\frac{2}{3}\right)\left\{3 \frac { \partial r } { \partial n } \left[\delta_{i j} r, k+\frac{v}{1-2 v}\left(\delta_{k i} r, j+\delta_{k j} r, i\right)\right.\right. \\
& \left.-\frac{5}{1-2 v} r_{, i} r_{, j} r_{, k}\right]+\frac{3 v}{1-2 v}\left(n_{i} r, j r, k+n_{j} r, i^{r}, k\right) \tag{2.13}\\
& \left.+3 n_{k} r, j r, j+n_{j} \delta_{k i}+n_{i} \delta_{k j}-\frac{1-4 v}{1-2 v} n_{k} \delta_{i j}\right\} .
\end{align*}
$$

The comma-differentiation is with respect to X, the integration point in Eq. (2.10).

Since it is not possible to independently specity corresponding components of the displacements and the tractions at a boundary point Eq. (2.9) is not suitable for the solution of the givan problem. Let two points on the surface be given by P and Q and let Q represent the variable point X. Let the point p be the point ξ inside R. Finally, allow the field point p approcch the boundary point P. From the continuity of $u_{i}(\xi)$ and by the usual methods of fotential theory [4] the following equation results

$$
\begin{align*}
\frac{1}{2} u_{j}(P) & +\int_{S} u_{i}(Q) T_{j i}(Q, P) d S(Q) \\
& =\int_{S} t_{i}(Q) u_{j i}(Q, P) d S(Q) . \tag{2.14}
\end{align*}
$$

The integrals are to be interpreted in the sense of the Cauchy Principal Value. This is the usual boundary constralnt equation between the surface tractions and suriace displacements. When the boundary conditions, Eq. (2.2), are applied Eq. (2.14) becomes sets of singular inregral equations for the unknown boundary quantities. The numerical solution of these equations is discussed in the next section.

3. Numerical Solution of the Integral Equations

General analytic solutions to the integral equations (2.14) are not available and it is therefore necessary to solve the equations numerlcally. The integral equations reduce to algebraic equations by discretizing the boundary data. Following the procedure used previously in acoustics [8] the two-dimensional surface, S, is assumed to be made up of plane triangular elements, ΔS_{i}. Although attempts have been made [9] to account for the surface curvature this can only be done approximately and imposes a large burden on the analysis. As Important simplifications in the analysis occur by assuming plane surface elements and since many physical problems Involve flat surfaces the assumption that the surface is piecewise flat is made. it is further assumed that on each element, ΔS_{i}, of the surface that the surface data of traction and displacemant may be assumed constant. Following

Figure I each surface element is denoted by its centroldal point, Pm or Qn, depending on whether the point is fixed or variable with respect to the integration.

Figure 1. Suriace Elements

When the surface data is discretized in this way, the integral equations (2.14) may be seen to reduce to the following algebraic equations

$$
\begin{align*}
\frac{1}{2} u_{j}(P m) & +\sum_{n} u_{i}(Q n) \int_{\Delta S_{n}} T_{j i}(P m, Q) d S(Q) \tag{3.1}\\
& =\sum_{n}+_{i}(Q n) \int_{\Delta S_{n}} u_{j i}(P m, Q) d S(Q)
\end{align*}
$$

The values $u_{i}(Q n), t_{i}(Q n)$ are now the constant approximations to u_{i}, t_{i} on element ΔS_{n}. The integrals

$$
\Delta T_{i j}(P m, Q n)=\int_{\Delta S_{n}} T_{i j}(P m, Q) d S(Q)
$$

and

$$
\Delta U_{i j}(P m, Q n)=\int_{\Delta S_{n}} U_{i j}(P m, Q) d S(Q)
$$

may be calculated automatically to any desired accuracy by knowing the size, orientation and location of ΔS_{n} and the point Pm. The numerical procedure used for these integrals (3.2) is discussed in Appendix A. Because of the assumption of plane elements it is possitle to perform the integrations exactly when $\mathrm{Pm}=\mathrm{Qn}$ (taking into account the principal value interpretation) and this is detailed in Appendix B. The points $P m$ and $Q n$ are taken at the centroids of the elements ΔS_{n} to account best for the variation of u_{i} and t_{i} on ΔS_{n}. Equation (3.1) may now be written as

$$
\begin{align*}
\left\{\frac{1}{2} \delta_{i j} \delta_{m n}\right. & \left.+\Delta T_{i j}(m, n)\right\}_{u}(n) \\
& =\Delta u_{i j} \delta_{m, n}(n)+_{j}(n) \tag{3.3}
\end{align*}
$$

which has the matrix representation

$$
\begin{equation*}
\left\{\frac{1}{2}[1]+[\Delta T]\right\}\{u\}=[\Delta U]\{+\} . \tag{3.4}
\end{equation*}
$$

The matrix [1] is the identity matrix. In general, the solution to the mixed boundary-vaiue problem is obtained by first appropriately rearranging the columns in Eq. (3.4) so that all unknown data appear in the vector $\{x\}$:

$$
\begin{equation*}
[A]\{x\}=[B]\{y\} . \tag{3.4}
\end{equation*}
$$

When rearranging, the columns must be scaled to maintain the proper conditioning of matrix [A]. This scaling is based on an attempt to keep the diagonal terms in [A] at the same order of magnitude. Equation (3.4) is scived by a standard Gauss reduction scheme on [A] followed by an iteration to refine the solution $\{x\}$. As the matrix [A] is weighted toward the diagonal, it is well conditioned and in actual numerical examples a single iteration usually achieves refinements In $\{x\}$ on the order of $|\{\Delta x / x\}|<.001$. These examples are discussed in the next section.

Finally, after solving Eq. (3.4), the known boundary data may be used to determine the solution for the internal displacements and stresses by direct integration of the identities (2.9) and (2.10). Following the same numerical procedure these are found to be

$$
\begin{align*}
u_{j}(p)= & -\sum_{n} u_{i}(Q n) \Delta T_{j i}(Q n, p) \\
& +\sum_{n} t_{i}(Q n) \Delta U_{j i}(Q n, p) \tag{3.5}
\end{align*}
$$

and

$$
\sigma_{i j}(p)=-\sum_{n} u_{k}(Q n) \Delta S_{k i j}(Q n, p)
$$

$$
\begin{equation*}
+\sum_{n} t_{k}(Q n) \Delta D_{k i j}(Q n, p) \tag{3.6}
\end{equation*}
$$

The integrations to determine ΔS and ΔD are performed in the same way as those to obtain ΔT and ΔU. Any number of interior solutions may be made once the boundary solution is obtained. Since the solution is performed at pre-selected points the analyst may concentrate on particular areas of interest and is not burdened with conplete field solutions. No approximations to the fleld equations are necessary as all approximations are made at the surface. It can be predicted from St. Venants Principle that the errors are also restricted to nearsurface regions. A discussion of these errors is found in the next section.

4. Numerical Results

Some elementary boundary value problems were solved to determine the validity of the approximations discussed in Sec. 3 as well as to Investigate the behavior of the numerical procedures under different circumstances. The computed results are for a region with a piecewise flat surface: the cube with unit dimensions. In all cases sufficient boundary displacements are set equal to zero to eliminate the rigid body motion. The surface elements for the unit cube are illustrated in Figure 2 for 12 triangles, in Figure 3 for 24 triangles, and in Figure 4 for 48 triangles. All results have been obtained using a single, general source program written in FORTRAN, language. Required data Includes the material properties, the surface element arrangement,

Figure 2. Unit Cube - 12 Elements
the known surface tractions and displacements which are assumed constant over each surface element, and the locations of internal points where the displacements and stresses are desired.

4.1 Uniaxial Stress Distribution

In the first series of problems the unit cube is loaded in a state of uniaxial tension by the application of a normal stress to two ends. On one end and on two normal faces the normal displacement component was set equal to zero. The required tractions at these elements are then part of the solution. The zero displacements are indicated on the appropriate cubes in Figures 2, 3 and 4. The surface displacements in the axial and transverse directions are

Figure 3. Unit Cube -- 24 Elements

Figure 4. Unit Cube - 48 Elements
indicated in Figure 5 for the casa of 12 triangles and values of Poisson's ratio varying from zero to one-half. it is obvious from this plot that for values of Poisson's ratio less than one-quarter large errors are found in the transverse displacements. Similar errors can be seen in the two dimensional case [1]. The source of these errors has not yet been determined but it seems that the numerical procedures introduce the error rather than the approximations given in Sec. 3. This. is indicated by the fact that no appreciable change is found going to 24 surface elements as shown by the data in Table 1 for $v=0.25$. The large error is detected only when the transverse displacements are less than the axial displacements by at least an order of magnitude. However, Table 1 also shows that the calculation of the internal stresses is improved by refining the surface elements and this effect is even more pronounced for lower values of Poisson's ratio.

By assuming the surface displacements at each element to be constant, including the in-plane displacements, the solution method introduces high stresses near the surface. This layer, illustrated for the uniaxial case with 24 elements in Figure 6, is a function only of the size of the surface elements and not the refinement of the integration. Fortunately this layer is restricted to a depth which is a fraction of the size of the element. To determine the stresses at the surface a method is presently being developed which utilizes numerically calculated surface displacement gradients and kno:m tractions as has been demonstrated in [10]. This will enable the analyst to move the interior solution point at will within the region and extend these results to the surface.

Figure 5. Surface Displacements for Various Poisson's Ratios, $N=12$.
Table 1. Data for the unit cubs with 22 and 24 elements under uniaxial tension, p, including surfaces reactions, surface displacements, and intemal stresses at the points (.4, .4, .4) and (.6, .6, .6). Only typical results are shown.
$N=24$
1.0012
.00035
1.025
1.17
Exact
1.0000
1.0000
.0000
1.000
1.000

$$
{\underset{\sim}{N}}_{0}^{0} \underset{0}{8} \underset{0}{0} 0
$$

$$
\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}
$$

$$
\begin{array}{l|llll}
v & = & n & 0 & \\
n & 0 & & \\
n & 8 & 8 & n & - \\
z & 0 & 0 & 0 & =
\end{array}
$$

Reactions ($t, / p$):

$$
\begin{aligned}
& \text { Max. Axial Disp. }(u, / \delta): \\
& \text { Max. Trans. Disp. }
\end{aligned}
$$ Internal Stresses: $\sigma_{x} f P$

1.026
1.027
1.018
1.013
1.000

$$
\begin{array}{ll}
\mathrm{N}=12 \begin{array}{l}
(.4, .4, .4) \\
(.6, .6, .6) \\
(.4, .4, .4)
\end{array} \\
\mathrm{N}=24 & (.6, .6, .6) \\
\text { Exact } &
\end{array}
$$

$$
\begin{aligned}
& \sum_{x}^{2} 08080008
\end{aligned}
$$

Figure 6. Internal Solution - Surface Layer Error
$=$

4.2 Uniform Shear Stress

The second elementary problem was to solve the case of a uniform shear stress applied to the unit cube in one of its planes. This problem was solved for the case of 12,24 and 48 surface elements. Again, sufficient surface displacements were fixed to zero to ellminate rigid body motion. A typical displacement pattern shown for $\mathrm{N}=12$ is
a

Figure 7. Surface Element Displacements for Pure Shear, $N=12$
given in Figure 7. The numerical results for the non-zero shear strain and the internal stresses are given in Table 2. In this problem the assumption of constant displacement at each element is more constraining than in the previous case and significant improvements are shown for the finer surface mashes.

It is apparent that aithough not all questions have been answered the approximations of Sec. 3 are justified for these simple cases. The method is presently being exiended to more significant problems but serious difficulties are not expected. The analysls procedure has been completely automated and the analysls has Been carried out on a UNIVAC 1108 computer making use of external scratch storage. Run times are not miniscule (about three minutes for the surface solution with 12 elements) but no strong attempt was made to minimize run time.

It is further apparent that very good results can be achieved with a minimum number of elements. When analyzing problems with surface stress concentrations, however, it will be necessary to decrease the element size in that area. Although these examples have all been for equal-sized triangles no numerical difficulty is expected when using various sizes and shapes of elements. It is now envisaged that the procedure described in this document will find wide applicability in Inherently difficult problems and that no problems of more than a tactical nature remain.
[1] F. J. Rizzo, An Integral Eqiation Approach to Boundary Value Froblems of Classical Elastostatics, Quart. of Appl. Math. 25, April 1967.
[2] T. A. Cruse and F. J. Rizzo, A Direct̆ Fomulation and Numerical Solution of the General Tronsient Elastodynamic Problem I, J. Math. Anal. Appl. 22, April 1968.
[3] T. A. Cruse, A Direct Pommlation and Numerical Solution of the General Transient Elastodyramic Problem II, J. Math. Anal. Appl. 22, May 1968.
[4] 0. D. Kellogg, Foundations of Potential Theory, Dover, New York, 1953.
[5] R. Courant and D. Hilbert, Methods of Mathematical Physics Vol. II, Interscience, New York, 1962.
[6] R. P. Banaugh, Application of Integral Representations of Displacement Potentials in Elastodynomies, Bull. Seis. Soc. Amer. 54, August 1964.
[7] A. E. H. Love, A Treatise on the Matheratical Theory of Elasticity, Dover, New York, 1944.
[8] L. H. Chen and D. G. Schweikert, Sound Radiation from an Arbitrary Body, J. Acous. Soc. Amer. 35, October 1963.
[9] K. M. Mitzner, Numerical Solution for Transient Scattering from a Hard Surface of Arbitrury Shape - Retarded Potential Technique, J. Acous. Soc. Amer. 42, August 1967.
[10] F. J. Rizzo and D. J. Shippy, A Formulation and Solution Procedure for the General Non-homogeneous Elastic Inclusion Problem, to be published.

```
Appendix A Surface Integrals of the Non-Singular Tensors ( \(P \neq Q\) )
```

Since the surface integrations in Eqs. (3.2), (3.5) and (3.6) cannot, in general, be done in closed form, it is necessary to develop an automatic procedure which will determine the integrals with sufficient accuracy in a minimum of time. The method used in this analysis is similar to that reported in [8], where the kernels corraspond to singular solutions to the Helmholtz equation. The method is based on an affine transformation which meps any physical surface triangle onto a basic "unit triangle." The integration is then performed by subdividing the unit triangle and approximating the integral by a finite sum. The method is suitable for iterating to a desired accuracy but it was found for this work that the added time of iteration was not justified. The use of the unit triangle achieves a uniform distribution of sub-triangles and achieves complete flexibility in the orientation and shape of the physical triangles.

Assume the pody is located in a glooal coordinate system and that any point is denoted by its position vector $\vec{\rho}$. The surface of the three dimensional body is divided into adjoining, plane triangles, denoted by some positive integer n. Let the vertices of the triangles be denoted by the positions $\vec{\rho}_{A}, \vec{\rho}_{B}$ and $\vec{\rho}_{C}$ with A, B and C located in a right-handed sense about the outward pointing normal \vec{n}.

The numerical integration of the kernels T, U, S and D when ? $\neq Q$ is accomplished by first mapping the physical triangle onto a unit triangle. The unit triangle is indicated in Figure 2. The poirit $(0,0)$ is chosen to correspond to corner $A,(1,0)$ to corner B, and

Figure $A-1$. The Unit Triangle
(0,1) to corner C. Corner A should be the largest corner for the best conditioning of the procedure. Let the point $\left(\zeta_{1}, \zeta_{2}\right)$ correspond to the variable point Q and let this be located relative to the corner A in the following way:

$$
\begin{equation*}
\vec{\rho}_{Q}=\vec{\rho}_{A}+\zeta_{1}\left(\vec{\rho}_{B}-\vec{\rho}_{A}\right)+\zeta_{2}\left(\vec{\rho}_{C}-\vec{\rho}_{A}\right) \tag{A.I}
\end{equation*}
$$

The numerical integration is accomplished by first dividing the unit triangle into M equal elements (see Figure $A-2$ for $M=4$) and calculating the locations of the centroids of the sub-element triangles by the procedure given in the following FORTRAN instructions:

Figure 4-2. Division of the Unit Triangle, $M=4$

```
NFINAL = 2*M-1
DO 60 J = 1, NFINAL, 2
DO 60I = 1, J, 2
LIM = I
IF (I .EQ.J) LIM = 2
DO 60 K = LIM, 2
ZETAI = (I*0.5 +.160667*(-1)**K)/M
ZETA2 = 1.C - (J*0.5 +.166667*(-1)**(K+1))/M
IF (I .NE.J) GØT\emptyset 60,
ZETAI = (I*0.5 - .166667)/M
ZETA2 = 1.0 - (J*0.5 +.166667)/M
```

For each point $\left(\xi_{1}, \xi_{2}\right)$ Eq. (A.1) determines a point Q for which the Integrand can be calculated. The value of the integral is approximated by assuming constant values of the kernels over each sub-element,
evaiuating the integrand, and by adding the terms for each sub-element.
The results can be improved by increasing the value of M until some level of accuracy has been achieved.

Appendix B

Integration of the Singular Tensors ($P=Q$)

When the fixed point P and the field point Q are in the same triangles, the kernels $U_{i j}$ and $T_{i j}$ contain slingularities of the order $1 / r(P, Q)$ and $(1 / r(P, Q))^{2}$, respentively. These integrals are to be interpreted in the sense of the Cauchy Principal Value in that the region very close $t 0$ the point P is excluded from the integral and the Integral is to be evaluated as that region shrinks to zero. By letting the surface be represented by plane elements it is possible to perform these integrals exactly.

1. Exact Integration of $U_{i j}$

The Integral to be evaluated is given in Eq. (3.2) as

$$
\begin{equation*}
\Delta U_{i j}(P m, Q n)=\int_{\Delta S_{n}} U_{i j}(P m, Q) d S(Q) \tag{B.1}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{i j}=\frac{1}{4 \pi \mu}\left(\frac{1}{r}\right)\left\{\frac{3-4 v}{4(1-v)} \delta_{i j}+\frac{1}{4(1-v)} r_{, i} r_{, j}\right\} \tag{B.2}
\end{equation*}
$$

Let $d S(Q)=$ rdrde and perform the integration using polar coordinates. Let $r=r(\theta)$, then Eq. (B.l) becories for $P_{i n}=Q n$
2π

$$
\Delta u_{i j}=\lim _{\rho \rightarrow 0}\left\{\frac{1}{4: r \mu} \int_{0}\left[(r(\theta)-p)\left(\frac{3-4 v}{4(1-v)} \delta_{i j}+\frac{1}{4(1-v)} r_{, i} r_{, j}\right)\right] d \theta\right\}
$$

which becones

$$
\begin{equation*}
\Delta U_{i j}=\frac{1}{4 \pi \mu} \int_{0}^{2 \pi} r(\theta)\left[\frac{3-4 v}{4(1-v)} \delta_{i j}+\frac{1}{4(1-v)} r_{, i}, j\right] d \theta \tag{B.4}
\end{equation*}
$$

Now let the triangle be located in a local coordinate system as shown in Figure B-1. Left side 1-2 be parallel to the $\boldsymbol{\zeta}_{1}$, axis and investigate the integral of Eq. (B.4) from θ_{1} to θ_{2} first. .

Figure B-1. Geometry of Integration - ΔU

Let the following changes in variables be made:

$$
\begin{equation*}
\frac{\partial r}{\partial x_{1}}=\frac{\partial r}{\partial \zeta_{1}} \frac{\partial \zeta_{1}}{\partial x_{i}}+\frac{\partial r}{\partial \zeta_{2}} \frac{\partial \zeta_{2}}{\partial x_{i}} \tag{B.5}
\end{equation*}
$$

mhere

$$
\frac{\partial r}{\partial \zeta_{1}}=\sin \theta, \quad \frac{\partial r}{\partial \zeta_{2}}=\cos \theta
$$

The terms $\frac{\partial \zeta_{1}, 2}{\partial x_{i}}$ are the direction cosines of the ζ_{1} and ζ_{2} axes. If base vectors \vec{e}_{1} and \vec{e}_{2} are defined for the ζ_{1} and ζ_{2} axes and the components of thess base vectors in the global coordinate system are denoted by $e_{1 ;}$ and $e_{2 i}$ then

$$
\begin{align*}
r_{, i^{r}}^{r} & =\sin ^{2} \theta e_{1 i} e_{1 j}+\cos ^{2} \theta e_{2 i} e_{2 j} \\
& +\sin \theta \cos \theta\left(e_{1 i} e_{2 j}+e_{2 i^{e}} e_{1 j}\right) \tag{8.6}
\end{align*}
$$

Along $1-2$ rcose $=c_{1}$

$$
\begin{equation*}
\text { or } r(\theta)=c_{1} / \cos \theta \tag{B.7}
\end{equation*}
$$

With these substitutions the integral from θ_{1} to θ_{2} becomes

$$
\begin{align*}
\left.\Delta U_{i j}\right|_{\theta_{1}} ^{\theta_{2}} & =\frac{c_{1}}{4 \pi \mu}\left\{\frac{3-4 v}{4(1-v)} \delta_{i j}[\log (\tan \theta+i / \cos \theta)]\right. \\
& +\frac{1}{4(1-v)}\left[e_{1 i} e_{1 j}(-\sin \theta+\log (\tan \theta+1 / \cos \theta))\right. \\
& \left.\left.+e_{21} e_{2 j} \sin \theta-\left(e_{i j} e_{2 j}+e_{2 i} e_{1 j}\right) \cos \theta\right]\right\}\left.\right|_{\theta_{1}} ^{\theta_{2}} \tag{B.8}
\end{align*}
$$

The entire integral may now be calculated by reorienting the $\boldsymbol{\zeta}_{1}$ and ζ_{2} axes so that the ζ_{1} axis is parallel to side 2-3 and then parallel to side 3-1. The results are easily obtained in terms of the coordinates of P and the corners, 1,2 and 3 .
2. Exact Integration of $T_{i j}$

The integral to be evaluared in this case is also given in
Eq. (3.2):

$$
\begin{equation*}
\Delta T_{i j}(P m, Q n)=\int_{\Delta S_{n}} T_{i j}(P m, Q) d S(Q)^{2}, \tag{B.9}
\end{equation*}
$$

where, for a plane surface (i.e., $\partial r / \partial n=0$), the kernel $T_{i j}$ is given by

$$
\begin{equation*}
T_{i j}=\frac{k}{4 \pi}\left(\frac{1}{r^{2}}\right)\left(n_{j} r, i-n_{i} r, j\right) \tag{B.10}
\end{equation*}
$$

By substituting

$$
\begin{equation*}
\varepsilon_{i j k} \varepsilon_{r s k^{n} r}\left(\frac{1}{r}\right), s=\frac{1}{r^{2}}\left(n_{j} r, i-n_{i} r, j\right) \tag{B.11}
\end{equation*}
$$

into Eq. (B.10) the integral becomes

$$
\begin{equation*}
\Delta T_{i j}=\frac{k}{4 \pi} \varepsilon_{i j k} \int_{\Delta S} \varepsilon_{r s k^{n}}\left(\frac{1}{r}\right), s d . \tag{B.12}
\end{equation*}
$$

The integrand is the k-th component of

$$
\vec{n} \times \nabla(1 / r)
$$

so that by using stokes' theorkin the area integral is converted into the path integral:

$$
\begin{equation*}
\Delta T_{i j}=\frac{k}{4 \pi} \varepsilon_{i j k} \oint \frac{1}{r} d x_{k} . \tag{8.13}
\end{equation*}
$$

Because of the principal velue interpretation of this integral the path must also exclude the region near P (see Figure $\mathrm{B}-2$). Let C denote the path around the edge of the triangle and C^{*} the circular path of radius ε around the point P. Then it follows that

Figure B-2. Geometry of integration - ΔT

$$
\begin{equation*}
\oint_{C^{*}} \frac{1}{r} d x_{k}=\frac{1}{\varepsilon} \oint_{C^{*}} d x_{k}=0 . \tag{B.14}
\end{equation*}
$$

Again change the variables to a local coordinate system such that

$$
\begin{equation*}
d x_{k}=a_{k 1} d \zeta_{1}+a_{k 2} d \zeta_{2} \tag{8.15}
\end{equation*}
$$

whore $a_{k 1}$ and $a_{k 2}$ are the direction cosines of the ζ_{1} and ζ_{2} axes. As in the previous section these are the components of the unit base vectors:

$$
\begin{equation*}
e_{11}=a_{i 1}, \theta_{2 i}=a_{12} \tag{B.16}
\end{equation*}
$$

|Let the side 1-2 be parallel to the ζ, axis and integrate this side first. Then, since $r=i \zeta_{i}{ }^{2}+i_{2}^{2,1 / 2}$, and $d x_{k}=e_{!k} d \zeta_{1}$

$$
\begin{align*}
\left.\Delta T_{i j}\right|_{1} ^{2} & =\frac{k}{4 \pi} \varepsilon_{i j k} \int_{i \sqrt{\zeta_{1}^{2}}+\zeta_{2}^{2}}^{2} \frac{e_{i k} \mathrm{~d} \zeta_{1}}{\sqrt{4 \pi}} \\
& =\left.\frac{k}{i j k}{ }_{i k}\left[\log \left(\zeta_{1}+r\right)\right]\right|_{1} ^{2}
\end{align*}
$$

In the same way as before, this integral may be completed by letting the ζ_{1} axis de parallel to the $2-3$ side and the $3-1$ side. This Integral may also be automatically computed knowing the locations of the corners and the point P.

