

FINAL REPORT
 STUDY OF DIRECT VERSUS ORBITAL ENTRY FOR MARS MISSIONS

Volume III - Appendix A - Launch Vehicle Performance and Flight Mechanics

Prepared by
MARTIN MARIETTA CORPORATION
DENVER, COLORADO
for
Langley Research Center

FINAL REPORT
 STUDY OF DIRECT VERSUS ORBITAL ENIRY FOR MARS MISSIONS
 VOLUME III: APPENDIX A - LAUNCH VEHICLE PERFORMANCE AND FLIGHT MECHANICS

By Hugh N. Zeiner and Donald W. Marquet

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Contract No. NAS1-7976 by MARTIN MARIETTA CORPORATION

Denver, Colorado
for

FOREWORD

This Final Report for the "Study of Direct Versus Orbital Encry for Mars Missions" (NASA Contract NAS1-7976) is provided in accordance with Part III A. 4 of the contract schedule as amended. The report is in six volumes as follows:

APPENDIX A

CONTENTS

Page

APPENDIX A -- LAUNCH VEHICLE PERFORMANCE AND FLIGHT
MECHANICS 1

1. LAUNCH VEHICLE CAPABILITY 1
2. EJECTION/DEORBIT MANEUVER STRATEGY AND TARGETING 99
3. ERROR ANALYSIS 213
4. REFERENCES 259
Figure
A1 Earth Departure Energy, Mars 1973, Type I 3
A2 Earth Departure Energy, Mars 1973, Type II 4
A3 Earth Departure Energy, Mars 1975, Type I 5
A4 Earth Departure Energy, Mars 1975, Type II 6
A. 5 Earth Departure Energy, Mars 1977, Type I 7
A6 Earth Departure Energy, Mars 1977, Type II 8
A7 Titan III. Family, Payload versus Velocity 10
A8 Limiting Launch Azimuth versus Declination ofDeparture Asymptote for ETR11
A9 Launch Time versus Declination of Departure Asymptote for ETR 12
Al0 Velocity Loss Due to Declination 15
All Payload Weight Fraction of Jettisoned Fairing 15
A12 Launch Vehicle Capability after Midcourse Correction 16
A13 Spacecraft Weight, Mars 1973, Type I, Titan IIIC 19
A14 Spacecraft Weight, Mars 1973, Type I, Titan IIIF/ Stretched Transtage 20
A15 Spacecraft Weight, Mars 1973, Type I, Titan IIIC/ Centaur 21
A16 Spacecraft Weight, Mars 1973, Type I, Titan IIIF/ Centaur 22
A17 Spacecraft Weight, Mars 1973, Type II, Titan IIIC 23
Al8 Spacecraft Weight, Mars 1973, Type II, Titan IIIF/ Stretched Transtage 24
A19 Spacecraft Weight, Mars 1973, Type II, Titan IIIC/ Centaur 25
A20 Spacecraft Weight, Mars 1973, Type II, Titan IIIF/ Centaur 26
A21 Spacecraft Weight, Mars 1975, Type I, Titan IIIC 27
A22 Spacecraft Weight, Mars 1975, Type I, Titan IIIF/ Stretched Transtage 28
A23 Spacecraf́t Weight, Mars 1975, Type I, Titan IIIC/ Centaur 29

APPENDIX A

		Page
A24	Spacecraft Weight, Mars 1975, Type I, Titan IIIF/	
	Centaur	30
A25	Spacecraft Weight, Mars 1975, Type II, Titan IIIC	31
A26	Spacecraft Weight, Mars 1975, Type II, Titan IIIF/	
	Stretched Transtage	32
A27	Spacecraft Weight, Mars 1975, Type II, Titan IIIC/	
	Centaur	33
A28	Spacecraft Weight, Mars 1975, Type II, Titan IIIF/	
	Centaur	34
A29	Spacecraft Weight, Mars 1977, Type I, Titan IIIC	35
A30	Spacecraft Weight, Mars 1977, Type I, Titan IIIF/	
	Stretched Transtage	36
A3 1	Spacecraft Weight, Mars 1977, Type I, Titan IIIC/	
	Centaur	37
A32	Spacecraft Weight, Mars 1977, Type I, Titan IIIF/	
	Centaur	38
A33	Spacecraft Weight, Mars 1977, Type II, Tifan IIIC	39
A34	Spacecraft Weight, Mars 1977, Type II, Titan IIIF/	
	Stretched Transtage .	40
A35	Spacecraft Weight, Mars 1977, Type II, Titan IIIC/	
	Centaur	41
A36	Spacecraft Weight, Mars 1977, Type II, Titan IIIF/	
	Centaur	42
A37	Propulsion System Inert Weight for Flyby Spacecraft.	44
A38	Optimum Spacecraft Weight after Midcourse Correc-	
	tion, Mars 1973, Type I .	45
A39	Optimum Spacecraft Weight after Midcourse Correc-	
	tion, Mars 1973, Type II	47
A40	Optimum Spacecraft Weight after Midcourse Correc-	
	tion, Mars 1975, Type I	48
A41	Optimum Spacecraft Weight after Midcourse Correc-	
	tion, Mars 1975, Type II	49
A42	Optimum Spacecraft Weight after Midcourse Correc-	
	tion, Mars 1977, Type I .	50
A43	Optimum Spacecraft Weight after Midcourse Correc-	
	tion, Mars 1977, Type II	51
A44	Propulsion System Mass Fraction for Orbiter	53
A45	Optimum Payload in Orbit, Mars 1973, Type I	54
A46	Optimum Payload in Orbit, Mars 1973, Type I	55
A47	Optimum Payload in Orbit, Mars 1973, Type II	56
A48	Optimum Payload in Orbit, Mars 1973, Type II	57
A49	Optimum Payload in Orbit, Mars 1975, Type I	58
A 50	Opidmum Payload in Orbit, Mars 1975, Type I	59
A51	Optimum Payload in Orbit, Mars 1975, Type II	60
A 52	Optimum Payload in Orbit, Mars 1975, Type II	61

APPENDIX A

		Page
A53	Optimum Payload in Orbit, Mars 1977, Type I	62
A54	Optimum Payload in Orbit, Mars 1977, Type I	63
A55	Optimum Payload in Orbit, Mars 1977, Type II	64
A56	Optimum Payload in Orbit, Mars 1977, Type II	5
A57	Orbit Insertion Velocity and Velocity Increment Required for Periapsis Shift, Mars 1973, Type I . .	71
A58	Optimum Payload in Orbit, Orbit Positioning, Periapsis Shift $=7$ to 25°, Mars 1973, Type I .	72
A59	Optimum Payload in Orbit, Orbit Positioning, Periapsis Shift $=12$ to 30°, Mars 1973, Type I	73
A60	Optimum Direct Entry System Weight, Optimum Orbiter Propulsion, Mars 1973, Type I	5
A61	Optimum Direct Entry System Weight, Optimum Orbiter Propulsion, Mars 1973, Type I . . .	76
A62	Optimum Direct Entry System Weight, Optimum Orbiter Propulsion, Mars 1973, Type II . .	77
A63	Optimum Direct Entry System Weight, Optimum Orbiter Propulsion, Mars 1973, Type II . .	8
A64	Optimum Direct Entry System Weight, Optimum Orbiter Propulsion, Mars 1975, Type I . . .	79
A65	Optimum Direct Entry System Weight, Optimum Orbiter Propulsion, Mars 1975, Type I . . .	80
A66	Optimum Direct Entry System Weight, Optimum Orbiter Propulsion, Mars 1975, Type II . .	81
A67	Optimum Direct Entry System Weight, Optimum Orbiter Propulsion, Mars 1975, Type II . .	82
A68	Optimum Direct Entry System Weight, Optimum Orbiter Propulsion, Mars 1977, Type I . . .	83
A69	Optimum Direct Entry System Weight, Optimum Orbiter Propulsion, Mars 1977, Type I	84
A70	Optimum Direct Entry System Weight, Optimum Orbiter Propulsion, Mars 1977, Type II	85
A71	Optimum Direct Entry System Weight, Optimum Orbiter Propulsion, Mars 1977, Type II . .	86
A72	Entry Weight versus Capsule System Weight, Direct Mode, No Terminal Guidance, Monopropellant Propulsion System	92
A 73	Entry Weight versus Capsule System Weight, Orbit Mode, No Terminal Guidance, Monopropellant Propulsion System	93
A74	Entry Weight versus Capsule System Weight, Direct Mode, with Terminal Guidance, Bipropellant Propulsion System	94
A 75	Encry Weighi versus Capsule System Weight, Point Design Cases, Monopropellant Propulsion System	95
A76	Capsule System Propulsion Characteristics	97

APPENDIX A

Page
A77 Coast Time Dependence on Ejection Distance 100
A78 Mars Entry Velocity versus $V_{H E}$ 101
A79 Periapsis Location Sensitivity to $\overrightarrow{\mathrm{V}}_{\mathrm{HE}}$ and Peri-
apsis Altitude 104
A80 Entry Location (Direct Mode) 105
A81 Ejection $\triangle V$ Requirements 106
thru thru
A104 129
Entry Angle of Attack (Direct Mode) A105 thru 130 thru
A128) A128
A129 Relay Communication Link during Entry 155153
A130 thru A133 Relay Communication Link Boundaries (Direct Mode) $\cdot\left\{\begin{array}{r}\text { thru } \\ 164\end{array}\right.$
A134 Minimum ΔV_{D} Requirements 166
A135 True Anomaly versus Lead Angle 167
A136 ΔV_{D} versus Lead Angle 169
A137 Angle of Attack versus Lead Angle 170
A138 Coast Time versus Lead Angle 171
A139 ΔV_{D} versus Lead Angle 172
A140 Angle of Attack versus Lead Angle 173
Al41 Coast Time versus Lead Angle 174
A142 ΔV_{D} versus Lead Angle 175
Al43 Angle of Attack versus Lead Angle 176
Al44 Coast Time versus Lead Angle 177
A145 True Anomaly versus Lead Angle 178
A146 ΔV_{D} versus Lead Angle 179
A147 Angle of Attack versus Lead Angle 180
A148 Coast Time versus Lead Angle 181
A149 ΔV_{D} versus Lead Angle 182
A150 Angle of Attack versus Lead Angle 183
Al51 Coast Time versus Lead Angle 184
A152 ΔV_{D} versus Lead Angle 185
A153 Angle of Attack versus Lead Angle 186
A155 Relay Communication Link Boundaries (Orbit Mode), $1000 \times 33070 \mathrm{~km}$ 187
A156 Relay Communication Link Boundaries (Orbit Mode), $1000 \times 15000 \mathrm{~km}$ 193
A157 Summary of Entry Locations (Orbit Mode), 1000x 33070 km 197

APPENDIX A

PageA158
Summary of Entry Locations (Orbit Mode),1000 x15 000 km198
A159 1973-I Energy Contours 200
A160 Targeting Capability (1973-I) 202
A161 DSN Tracking of Mars 207
A162 Periapsis Shift Requirements 209
A163 Periapsis Shift Requirements to Land 30° from Even- ing Terminator 210
A164 Earth-Based Tracking 214
Al65 Error Due to Navigation, Entry Flightpath Angle 216
Al66 Error Due to Navigation, Entry Flightpath Angle 217
Al67 Sensitivity to Navigation Error, Direct Mode, Entry Flightpath Angle 218
A168 Nonlinearity Effects, Entry Flightpath Angle 219
A169 Maximum Error Due to Navigation, Downrange Angle 220
A170 Sensitivity to Navigation Error, Direct Mode, Downrange Angle 221
Al71 Nonlinearity Effects, Downrange Angle 222
A172 Crossrange Error, Direct Mode, $50000<\mathrm{R}_{\mathrm{EJ}}<$ 500000 km 223
A173 Entry Flightpath Angle versus Ejection Angle, Direct Mode 225
A174 Entry Flightpath Angle Dispersion versus Ejection Angle, Direct Mode, $\mathrm{V}_{\mathrm{HE}}=3.0 \mathrm{~km} / \mathrm{sec}, \gamma_{E}=-40^{\circ}$ 226
A175 Entry Flightpath Angle Dispersion versus Ejection Angle, Direct Mode, $\mathrm{V}_{\mathrm{HE}}=3.0 \mathrm{~km} / \mathrm{sec}, \gamma_{\mathrm{E}}=-20^{\circ}$ 227
A176 Entry Flightpath Angle Dispersion versus Ejection Angle, Direct Mode, $\mathrm{V}_{\mathrm{HE}}=2.4 \mathrm{~km} / \mathrm{sec}, \gamma_{\mathrm{E}}=-30^{\circ}$. 228
Al77 Entry Flightpath Angle Dispersion versus Ejection Angle, Direct Mode, $\mathrm{V}_{\mathrm{HE}}=3.6 \mathrm{~km} / \mathrm{sec}, \gamma_{\mathrm{E}}=-30^{\circ}$ 229
A178 Dispersion in Entry Flightpath Angle Due to an Impulse Error of 230
A179 Dispersion in Downrange Angle as a Function of Ejection Angle 231
A180 Dispersion in Crossrange Angle as a Function of Ejection Angle 232
A181 Direct Mode Entry Corridor 233
A182 Position Uncertainties at Deorbit, $1000 \times 33000-\mathrm{km}$ Orbit 235
A183 Velocity Uncertainties at Deorbit, $1000 \times 33000-\mathrm{km}$ Orbit 237
A184 Position Uncertainties at Deorbit, $1000 \times 15000-\mathrm{km}$ Orbit 238

APPENDIX A

Page
A185 Velocity Uncertainties at Deorbit, $1000 \times 15000-\mathrm{km}$ Orbit 239
A186 Entry Flightpath Angle Dispersion versus True Anomaly of Deorbit, $i_{\text {PIS }}$ 240
A187 try Flightpath Angle Dispersion versus TrueAnomaly of Deorbit, $i_{\text {PIS }}=5^{\circ}$242
A188 Dispersion in Entry Flightpath Angle Due to Pointing, $\gamma_{E}=-15.5^{\circ}$ 244
A189
Dispersion in Downrange Angle Due to Pointing, $\gamma_{E}=-15.5^{\circ}$ 245
A190
Dispersion in Crossrange Angle Due to Pointing, $\gamma_{E}=-15.5^{\circ}$ 246
A191 Dispersion in Entry Flightpath Angle Due to Pointing, $\gamma_{E}=-18.4^{\circ}$ 247
A192 Dispersion in Downrange Angle Due to Pointing, $\gamma_{E}=-18.4^{\circ}$ 248
A193
Dispersion in Crossrange Angle Due to Pointing, $\gamma_{E}=-18.4^{\circ}$ 249
A194 Dispersion in Entry Flightpath Angle Due to Pointing, $\gamma_{E}=-15^{\circ}$ 250
A195 Dispersion in Entry Flightpath Angle Due to Pointing, $\gamma_{E}=-17.7^{\circ}$ 251
A196 Dispersion in Downrange Angle Due to Pointing, $\gamma_{E}=-17.7^{\circ}$ 252
A197
Crossrange Angle Due to Pointing, $\gamma_{E}=-17.7^{\circ}$ 253
A198 Total Entry Flightpath Angle Error 254
A199 Entry and Touchdown Dispersions, Direct Mode 256
A200 Entry and Touchdown Dispersions, Orbit Mode 257
Tab1eAl Structural Weight Corrections to Basic LaunchVehicle Performance13
A2 Optimum Capsule System Weight for Flyby Spacecraft, 30-Day Launch Period 46
A3 Optimum Capsule System Weight for Entry from Orbit, Optimum Spacecraft, 30-Day Launch Period 67
Á \quad Optimum Capsulc System Weight for Entry from Orbit, Fixed Spacecraft, 30-Day Launch Period 69

APPENDIX A

		Page
A5	Optimum Capsule System Weight for Entry from	
	Orbit, Orbit Positioning, 30-Day Launch Period,	
	1973 Type I	70
A6	Optimum Direct Entry Capsùle System Weight,	
	Optimum Orbiter Propulsion, 30-Day Launch Period	87
A7	Optimum Direct Entry Capsule System Weight, Fixed	
	Orbiter Propulsion, 30-Day Launch Period	88
A8	First Launch Date, Direct Entry Capsule System,	
	Fixed Orbiter Propulsion, 30-Day Launch Period	89

APPENDIX A

1. LAUNCH VEHICLE CAPABILITY

The performance capability of various Titan III family launch vehicles to Mars was presented in reference Al. These results dealt primarily with maximizing useful payload in Mars orbit. Subsequent analyses (refs. A2 and A3) presented updated performance for the 1973 Type I and 1975 Type I and II opportunities. The analyses of references A1 thru A3 made use of several simplifying assumptions. An optimum spacecraft was assumed; the propellant quantity was assumed to be variable according to midcourse correction and Mars orbit insertion requirements for each launch date. In practice, a fixed capability spacecraft will be used with propellant available for the maximum requirement over the 30-day launch period. Other simplifications included launch vehicle velocity loss for a single launch azimuth and payloaddependent items, such as the shroud and adapter, assumed constant for all launch vehicles. The results herein represent a more comprehensive analysis with an attempt at eliminating the simplifying assumptions discussed above. Four launch vehicles are considered -- Titan IIIC, Titan IIIF/Stretched Transtage, Titan IIIC/ Centaur, and Titan IIIF/Centaur. Mars mission opportunities of 1973, 1975, and 1977 with both Type I and Type II transfer trajectories are considered.

Mission Requirements

Earth escape energy (C_{3}) requirements for the six opportunity/ transfer type combinations are shown in figures A1 thru A6. These are presented as energy contours for a range of launch date-encounter date combinations. Overlays of Mars approach energy $\left(V_{H E}\right)$ and declination of the departure asymptote (DLA) are supplied in an envelope inside the rear cover of this report. Loci of minimum C_{3} and $V_{H E}$ are indicated.

The relationship between C_{3} and velocity required for Mars transfer injection $\left(V_{I_{n} j}\right)$ is given by

$$
V_{I_{n j}}=\left(C_{3}+2 \frac{\mu}{r}\right)^{\frac{1}{2}}
$$

APPENDIX A

where

$$
\begin{aligned}
& \mu=\mathrm{GM} \\
& \mathrm{G}=\text { universal gravitational constant } \\
& \mathrm{M}=\text { planet mass } \\
& \mathrm{r}=\text { radius at injection. }
\end{aligned}
$$

The velocity required for Mars orbit insertion $\left(\Delta V_{O I}\right)$ is expressed as a function of $V_{H E}$ by

$$
\Delta V_{\mathrm{OI}}=\left(\mathrm{V}_{\mathrm{HE}}^{2}+2 \mu / r_{\mathrm{P}}\right)^{\frac{1}{2}}-(\sqrt{1+\epsilon})\left(\sqrt{\mu / \mathrm{r}_{\mathrm{P}}}\right)+\Delta \mathrm{V}_{\mathrm{LOSS}}
$$

where

$$
\begin{aligned}
\epsilon & =\text { Mars orbit eccentricity } \\
r_{p} & =\text { radius vector to Mars orbit periapsis. }
\end{aligned}
$$

The relationship between DLA and launch azimuth (LAZ) is discussed below under launch vehicle characteristics.

The energy contours in figures Al thru A6 are presented as an illustration. In actual practice, a digital program has been developed that computes $C_{3}, V_{H E}$, and DLA as functions of launch and encounter dates for a given opportunity and transfer type. The computation is simply described as a point-to-point conic using planet mean orbital elements. The required values of C_{z} and $V_{H E}$ are related to velocity requirements by the above expressions. The velocity requirements are then applied to the launch vehicles described below.

For this study, the Mars orbit periapsis altitude is 1000 km . Two Mars orbit eccentricities are used, 0.6144 and 0.785 , corresponding to apoapsis altitudes 15000 and 33070 km , respectively. A velocity of 75 mps is used to account for Mars orbit insertion losses and orbit trim. In addition, a midcourse correction velocity of 75 mps is assumed. These values are both conservative.

Launch date: 1973
Figure A1.- Earth Departure Energy, Mars 1973, Type I

Launch date: 1973
Figure A2.- Earth Departure Energy, Mars 1973, Type II

APPENDIX A

Figure A3.- Earth Departure Energy, Mars 1975, Type I

Launch date: 1975
Figure A4.- Earth Departure Energy, Mars 1975, Type II

Launch date: 1977
Figure A5.- Earth Departure Energy, Mars 1977, Type I

APPENDIX A

Figure A6.- Earth Departure Energy, Mars 1977, Type II

APPENDIX A

Launch Vehicle Description

The Titan IIIC vehicle consists of the basic Titan III liquid propellant core with two 5 -segment solid propellant strap-on motors. The Transtage provides upper stage capability and is included in the Titan IIIC designation. The performance data quoted herein are for a follow-on class vehicle. This is essentially Article 19 with changes expected to be incorporated before the mission time period considered in this analysis. In general, the performance data represent $15: 1$ expansion ratio Stage I engines and ullage blowdown pressurization system. Also included is a battery change that improves Transtage burnout weight by approximately 100 lb . The Titan IIIC/Centaur is a Titan IIIC with the Transtage replaced by Centaur. The Titan IIIF is a growth version of the Titan IIIC with increased Stage I propellant capacity and 7 -segment solid rocket motor strap-ons. The upper stages used in combination with the Titan IIIF for this study are the Stretched Transtage and the Centaur. The Stretched Transtage provides increased propellant capability over the standard version. It is used with the Titan IIIF (rather than using the standard Transtage) to allow a circular Earth park orbit. With a lighter upper stage, an elliptical park orbit would be achieved with the attendant problems discussed in reference A2. A more detailed description of the launch vehicles including the upper stages may be found in reference A5.

Basic launch vehicle performance capability in terms of payload versus velocity is shown in figure A7. The Titan IIIC data shown represent the latest update as discussed above. Data for the other vehicles were taken directly from reference A5. At a typical inject velocity of 38500 fps , payloads range from $j 150$ to 12500 lb .

It is evident, in the light of the ground rules indicated in figure A7 that adjustments must be made to the data for the velocity losses and additional structural weights accompanying an actual mission application. For launches from ETR, DLA defines the required launch azimuth as shown in figure A8. For values of $|\mathrm{DLA}| \leq 36^{\circ}$, a constant launch azimuth of 115° is used in this analysis. This is the southernmost launch azimuth allowed by range safety considerations. A rather arbitrary northernmost launch azimuth is assumed to be 45°, with a corresponding declination of $\pm 50^{\circ}$. The launch azimuth-declination combinations used provide a minimum 2 -hr daily launch window, shown in figure A9. Note that the left-hand scale of figure A9 is used to define daily launch window only; it is not an indication of time of day. The data for both figures A8 and A9 also appear in reference A4.

APPENDIX A

APPENDIX A

Where $36^{\circ} \mid$ DIA $=50^{\circ}$, the basic launch vehicle data are corrected by the \angle velocity shown in figure Al0. The correction of figure AlO accounts for the difference between a due-east launch from ETR and launch at the azimuth corresponding to the value of DLA required by a launch date/arrival date combination. Where $|\operatorname{DLA}|>50^{\circ}$ for optimum payload studies, the arrival date (for a given launch date) is adjusted to DLA $=50^{\circ}$, and the velocity correction of figure A10 at DLA $=50^{\circ}$ is applied. For more general payload studies, (i.e., payload at a given launch date/ arrival date combination) the actual value of DLA is used, and the velocity correction of figure Al0 (extrapolated where required) is used. In addition to the launch azimuth loss, a superorbital (leaving park orbit) velocity loss of 50 fps is assumed. This is a gravity loss and is estimated on the basis of a digital simulation.

An actual mission involves a payload; this implies a shroud or fairing to protect the payload from the boost environment and an adapter to attach the payload to the launch vehicle. The fairing is jettisoned early in Stage I flight where the dynamic pressure environment is nearly zero. However, some fairing hardware romains with the launch vehicle; the fairing correction must therefore be evaluated in two parts -- jettisoned and fixed. Fairing and adapter weights used for this study are given in '「able Al. Also shown in the table are fairing diameters and barrel lengths. The fairings are described in more detail in the main body of the report. The effect of fairing weight on payload capability is described below.

TABLE A1.- STRUCTURAL WEIGHT CORRECTIONS TO BASIC LAUNCH VEHICLE PERFORMANCE

Launch vehicle	Weight correction, 1b			```Fairing dimension, in.```	
	Juttisoned lairing	$\begin{gathered} \text { Fixed } \\ \text { Eairing } \end{gathered}$	Adapter	Outside diameter	Barre1 length
TIIIC	1480	70	250	${ }^{\text {a }} 120$	144
TIIIF/Stretched Transtage	3570	200	340	200	220
TIIIC/Contaur ${ }^{\text {b }}$	5560	250	500	200	220
TIIIF/Centaur ${ }^{\text {b }}$	6270	280	590	200	280
```a}\mathrm{ Inside diameter. b}\mathrm{ Centaur shrouded by the fairing.```					

The adapter and fixed fairing weights are subtracted directly from the payload shown in figure A7. However, the jettisoned fairing weight must be adjusted to account for the fact that it is not present during the later portion of the boost trajectory. The payload adjustment, $\Delta W_{P / L}$, to figure $A 7$ is obtained from

$$
\Delta W_{P / L}=\Delta W_{F_{J}} \frac{\partial W_{P / L}}{\partial W_{F}}
$$

where $\Delta W_{F_{J}}$ is the jettisoned fairing weight. Values of $\partial W_{P / L} / \partial W_{F_{J}}$ are taken from figure All and are on the order of 6 to $8 \%$ at the inject velocities of interest $(\approx 38000$ to 39000 fps).

The resulting corrected launch vehicle capability is shown in figure $A 12$ as a function of $C_{3}$ (Earth escape energy). It is seen that the payload at $38500 \mathrm{fps}\left(\mathrm{C}_{3}=16.3 \mathrm{~km}^{2} / \mathrm{sec}^{2}\right.$ ) has dropped to 2470 and 10640 lb as a result of the applied corrections. This includes expenditure of midcourse propellant quantities of 65 and 275 lb , respectively. Using the Titan IIIC vehicle and the 1973 Type I mission as an example, the payload capability is computed as follows:

> First launch date . . . . . . . . . . 7/13/73
$\mathrm{C}_{3}, \mathrm{~km} / \mathrm{sec}^{2}$. . . . . . . . . . . . . 16.3
Inject velocity, fps . . . . . . . . 38500
Uncorrected payload, 1b* . . . . . . 3150
Payload corrections are as tabulated.

Item	$\begin{gathered} \Delta V, \\ \mathrm{fps} \end{gathered}$	$\Delta W$ $1 \mathrm{~b}$	$\begin{aligned} & \triangle P / L, \\ & 1 b \\ & \hline \end{aligned}$
$115^{\circ}$ launch azimuth	170	----	147
Inject gravity loss	50	----	43
Fixed fairing	----	70	70
Jettisoned fairing	----	1480	105
Adapter (launch vehicle/spacecraft)	----	250	250
Midcourse propellant	----	65	65
Total			680

*East launch, ETR, 90-n mi circular Earth park orbit, no payload fairing or adapter, no losses after park orbit.

APPENDIX A


Figure Al0.- Velocity Loss due to Declination


Figure All.- Payload Weight Fraction of Jettisoned Fairing


Therefore, allowable spacecraft weight after midcourse correction is $3150-680$ or 2470 lb .

The spacecraft,* supplies the midcourse correction and Mars orbit insertion impulses. A spacecraft propulsion system specific impulse ( $I_{s p}$ ) of 300 to 309 sec is used depending on application. For this study, entry capsule system weight is the variable to be correlated with design studies. Fixed maximum and minimum useful in-orbit orbiter weight values of 890 and 620 lb , respectively, are used. Useful in-orbit orbiter weight, for performance purposes, is spacecraft burnout weight less propulsion system inert weight less capsule system weight. Note that the capsule adapter and sterilization canister are considered a part of the total capsule system weight. Spacecraft propulsion inerts differ somewhat according to the application (i.e., midcourse correction only or midcourse + Mars orbit insertion). These will be shown with the applicable performance data.

In general, capsule system weight is spacecraft weight less the orbiter useful weight, orbiter propellant, and orbiter propulsion inert weight. For any maneuver involving a velocity change $(\Delta V)$, the propellant weight $\left(W_{P}\right)$ required is

$$
\begin{aligned}
W_{P} & =W_{O}-W_{F} \\
& =W_{O}\left(1-W_{F} / W_{O}\right) \\
& =W_{0}\left(1-e^{\left.-\Delta V / C_{J}\right)}\right.
\end{aligned}
$$

where

$$
\begin{aligned}
& W_{0}=\text { weight before maneuver } \\
& W_{F}=\text { weight after maneuver } \\
& C_{J}=g{ }_{\mathrm{G}}{ }^{I} \mathrm{I}_{\mathrm{sp}} \\
& g_{\oplus}=\text { Earth } g\left(32.2 \mathrm{ft} / \mathrm{sec}^{2}\right) .
\end{aligned}
$$

[^0]
## APPENDIX A

For a given propulsion system, inert weight ( $W_{\mathrm{PI}}$ ) is related to propellant weight and propellant mass fraction ( $\lambda$ ) by

$$
W_{P I}=W_{P}(1 / \lambda-1)
$$

Spacecraft Capability
Contours of spacecraft woight are shown in figures Al3 thru A36 for the four launch vehicles and six mission opportunity/ transfer type combinations. Values after midcourse correction are shown; midcourse correction $\triangle V$ of 75 mps and a spacecraft specific impulse of 300 sec are used. The weights shown are injected payload less midcourse propellant required. These are essentially contours of constant $C_{3}$ expressed in terms of the weights shown. Slight differences in shape from the $C_{3}$ contours shown earlier are the result of launch azimuth velocity loss effects. As discussed carlier, where $|\mathrm{DLA}| \leq 36^{\circ}$, a 170 fps constant velocity loss due to launch azimuth is used. Where declination is greater than $36^{\circ}$, velocity loss is increased (see fig. A10). Thus, for $|D L A|>36^{\circ}$, the arrival date for a given launch date must be shifted slightly toward lower $\mathrm{C}_{2}$ to give the desired payload value. These contours are presented as an illustration. They may be used for rapid evaluation of the launch period and arrival date combinations.

Also shown in figures A13 thru A36 are direct entry capsule system weights (total) for maximum and minimum weight flyby spacecraft. Useful flyby spacecraft weight values used are $8901 b$ (maximum) and 620 lb (minimum). For the direct entry capsule system with flyby spacecraft, we have

$$
W_{C / S}=W_{S / C}-W_{F / B}-W_{P I}
$$

where

$$
\begin{aligned}
& W_{C / S}=\text { capsule system weight } \\
& W_{S / C}=\text { spacecraft weight (after midcourse correction) } \\
& W_{F / B}=\text { flyby vehicle useful weight } \\
& W_{P I}=\text { spacecraft propulsion inert weight. }
\end{aligned}
$$

APPENDIX A


Figure A13.- Spacecraft Weight, Mars 1973, Type I, Titan IIIC


Launch date: 1973
Figure Al4.- Spacecraft Weight, Mars 1973, Type I, Titan IIIF/
Stretched Transtage


Launch date: 1973
Figure Al5.- Spacecraft Weight, Mars 1973, Type I, Titan IIIC/Centaur

APPENDIX A


Launch date: 1973
Figure A16.- Spacecraft Weight, Mars 1973, Type I, Titan IIIF/Centaur


Figure Al7.- Spacecraft Weight, Mars 1973, Type II, Titan IIIC



Launch date: 1973
Figure Al9.- Spacecraft Weight, Mars 1973, Type II Titan IIIC/Centaur


Figure A20.- Spacecraft Weight, Mars 1973, Type II, Titan IIIF/Centaur

APPENDIX A


Figure A21.- Spacecraft Weight, Mars 1975, Type I, Titan IIIC

APPENDIX A


Figure A22.- Spacecraft Weight, Mars 1975, Type I, Titan IIIF/Transtage

APPENDIX A


Figure A23.- Spacecraft Weight, Mars 1975, Type I, Titan IIIC/Centaur

APPENDIX A


Launch date: 1975
Figure A24.- Spacecraft Weight, Mars 1975, Type I, Titan IIIF/Centaur

APPENDIX A


Figure A25.- Spacecraft Weight, Mars 1975, Type II, Titan IIIC

APPENDIX A


Figure A26.- Spacecraft Weight, Mars 1975, Type II, Titan IIIF/Stretched Transtage


Figure A27.- Spacecraft Weight, Mars 1975, Type II, Titan IIIC/Centaur

APPENDIX A


Figure A28.- Spacecraft Weight, Mars 1975, Type II, Titan IIIF/Centaur


Launch date: 1977
Figure A29.- Spacecraft Weight, Mars 1977, Type I, Titan IIIC

APPENDIX A


APPENDIX A


Figure A31.- Spacecraft Weight, Mars 1977, Type I, Titan IIIC/Centaur


APPENDIX A


Launch date: 1977
Figure A33.- Spacecraft Weight, Mars 1977, Type II, Titan IIIC

APPENDIX A


Figure A34.- Spacecraft Weight, Mars 1977, Type II, Titan IIIF/ Stretched Transtage

APPENDIX A


Figure A35.- Spacecraft Weight, Mars 1977, Type II, Titan IIIC/Centaur

APPENDIX A


Figure A36.- Spacecraft Weight, Mars 1977, Type II, Titan IIIF/Centaur

## APPENDIX A

$W_{S / C}$ already has the propellant for midcourse correction removed.
For this case, where $\Delta V$ midcourse is constant, $W_{P I}$ is expressed as a function of $W_{S / C}$. Letting $W_{S / C}=W_{F}$ in the previous ex-
pressions,

$$
W_{P I}=W_{S / C}\left(e^{-\Delta V / C} J-1\right)(1 / \lambda-1)
$$

The result is shown in figure A37.
As an example, in figure A38 an optimum spacecraft weight of 2470 1b is shown corresponding to a launch period beginning on 7/13/73. Capsule system weight is computed as follows:

$$
\begin{aligned}
& \begin{array}{l}
W_{S / C} \\
=2470 \mathrm{lb} ; \\
\mathrm{W}_{\mathrm{F} / \mathrm{B}} \\
=890 / 620 \mathrm{lb} ; \\
\mathrm{W}_{\mathrm{PI}}
\end{array}=60 \mathrm{lb}(\text { from figure } \mathrm{A} 37) ; \\
& \mathrm{W}_{\mathrm{C} / \mathrm{S}} \\
& \mathrm{~W}_{\mathrm{C} / \mathrm{S}}
\end{aligned}=2470-890-60=1520 \mathrm{lb} ; \quad \text { shown in table } \mathrm{A} 2
$$

The capsule system weights include spacecraft adapter and sterilization canister.

The optimum spacecraft weights over a 30-day launch period are summarized in figures A38 thru A43. The effect of declination as discussed above is shown by the Titan IIIC curve in figure A42. The dotted line to the right of $11 / 15 / 77$ is based on $\mid$ DLA $\mid$ $\leq 36^{\circ}$. Between $11 / 10 / 77$ and $11 / 15 / 77$ the declination increases to approximately $45^{\circ}$ with the corresponding reduction in payload shown. Optimum weights range from 2470 to 11400 lb for the higher performance transfers. The first day of the launch period and the total capsule system weights for flyby spacecraft corresponding to the data of figures A38 thru A43 are given in table A2. The capsule system weight range is 1500 to 110001 b , neglecting the lower performance transfer types (i.e., 1975-I and 1977-I).

APPENDIX A



Figure A38.- Optimum Spacecraft Weight after Midcourse Correction, Mars 1973, Type I

APPENDIX A

Mission   oppor-   tunity	Transfer type	First launch date	Capsule system weight, $1 \mathrm{~b}^{\text {a }}$			
			TIIIC	TIIIF! Stretched Transtage	TIIIC/   Centaur	TIIIF/   Centaur
1973	I	7/13/73	1520/1790	2665/2935	7000/7270	9645/9915
	II	8/24/73	1505/1775	2645/2915	6990/7260	9615/9885
1975	I	$\mathrm{b}_{9 / 2 / 75}$	720/990	1800/2070	6095/6365	8480/8750
	II	$\mathrm{b}^{\text {9/5/75 }}$	1790/2060	2945/3215	7305/7575	9995/10 265
1977	I	10/1/77	855/1125	1920/2190	6255/6525	8860/9130
	II	9/25/77	2070/2340	3260/3530	7615/7885	10 620/10 890
$\mathrm{a}_{890-1 \mathrm{~b}}$ spacecraft/620-1b spacecraft.						
${ }^{\mathrm{b}} 9 / 1 / 75$ for TIIIC/Centaur .						
${ }^{\text {c }} 9 / 4 / 75$ for TIIIC/Centaur, TIIIF/Stretched Transtage.						

APPENDIX A


Figure A39.- Optimum Spacecraft Weight after
Midcourse Correction, Mars 1973, Type II


Figure A40.- Optimum Spacecraft Weight after Midcourse Correction, Mars 1975, Type I


Figure A41.- Optimum Spacecraft Weight after Midcourse Correction, Mars 1975, Type II


Figure A42.- Optimum Spacecraft Weight after Midcourse Correction, Mars 1977, Type I


In-Orbit Capability
For the entry-from-orbit case, the orbiter and capsule system are taken into orbit. The launch vehicle payload in Mars orbit is determined by spacecraft capability, orbit insertion requirements, and orbiter characteristics. The results lead directly to capsule system weight for the entry-from-orbit mode. The optimum spacecraft capability, discussed in the previous section, corresponds essentially to minimum $C_{3}$ required for each launch date. Optimum useful payload in Mars orbit requires a strong bias toward arrival dates giving the minimum $\mathrm{V}_{\mathrm{HE}}$. Two Mars
orbits are considered, both having a periapsis altitude of 1000 km . Apoapsis altitudes are 15000 and 33070 km (synchronous) leading to eccentricities of 0.614 and 0.785 , respectively. Spacecraft specific impulse is 309 sec , and propellant mass fraction is shown in figure A44.

Figures A45 thru A56 show optimum useful in-orbit weight for the four launch vehicles, six mission/type combinations, and two orbit eccentricities. Useful in-orbit weight for a 30 -day launch period is indicated. The useful in-orbit weight ( $W_{P / L}$ ) is defined as total weight in orbit, less propulsion system inert weight. Thus

$$
W_{P / L}=W_{C / S}+W_{O R}=W_{S / C}-W_{P}-W_{P I}
$$

where

$$
\begin{aligned}
& W_{O R}=\text { useful in-orbit orbiter weight } \\
& W_{P}=\text { propellant required for orbit insertion. }
\end{aligned}
$$

$W_{\text {PI }}$ must be based on the total spacecraft propellant (i.e., midcourse correction + orbit insertion). This is determined using $\lambda$ from figure A44. As shown earlier

$$
W_{P I}=W_{P}(1 / \lambda-1)
$$

where

$$
\left.\begin{array}{rl}
W_{P}= & \text { total spacecraft propellant required (midcourse } \\
& \text { correction and orbit insertion) }
\end{array}\right] \begin{aligned}
& \lambda= \\
& \lambda r o p e l l a n t \text { mass fraction. }
\end{aligned}
$$

APPENDIX A



Figure A45.- Optimum Payload in Orbit, Mars 1973, Type I


Figure A46.- Optimum Payload in Orbit, Mars 1973, Type I


Figure A47.- Optimum Payload in Orbit, Mars 1973, Type II


Figure A48.- Optimum Payload in Orbit, Mars 1973, Type II


Figure A49.- Optimum Payload in Orbit, Mars 1975, Type I


Figure A50.- Optimum Payload In Orbit, Mars 1975, Type I


Figure A51.- Optimum Payload in Orbit, Mars 1975, Type II


Figure A52.- Optimum Payload in Orbit, Mars 1975, Type II


Figure A53.- Optimum Payload in Orbit, Mars 1977, Type I


Figure A54.- Optimum Payload in Orbit, Mars 1977, Type I


Figure A55.- Optimum Payload in Orbit, Mars 1977, Type II


Figure A56.- Optimum Payload in Orbit, Mars 1977, Type II

## APPENDIX A

Using a launch date of 7/19/73, the Titan IIIC spacecraft weight for maximum payload in orbit is 2547 lb . This is within a few pounds of the optimum spacecraft weight for that date as shown in figure A38. This value ( 2547 lb ) reflects a midcourse propellant of 65 lb already removed. The $V_{H E}$ for this case is $2.98 \mathrm{~km} / \mathrm{sec}$, leading to an orbit inscrtion requirement ( $\Delta V_{\mathrm{OI}}$ ) of $1.23 \mathrm{~km} / \mathrm{sec}$ or 4030 fps including losscs ( 75 mps ). The propellant weight is

$$
W_{P}=W_{0}\left(1-e^{\left.-\Delta V C_{J}\right)}\right.
$$

where

$$
\begin{aligned}
& W_{0}=W_{S / C}=2547 \mathrm{lb} \\
& \Delta \mathrm{~V}=4030 \mathrm{fps} \\
& C_{J}=309(32.174)=9942 \mathrm{fps} .
\end{aligned}
$$

Substituting,

$$
W_{P}=2547\left(1-e^{-4030 / 9942}\right)=8581 \mathrm{~b}
$$

The total propellant $=858+65=9231 \mathrm{~b}$.
From figure $A 44, \lambda=0.737$ (using a digital curve fit). The inert spacecraft weight is

$$
W_{P I}=923(1 / 0.737-1)=3291 \mathrm{~b}
$$

Therefore, the value shown in figure A 45 for a 7/19/73 1aunch date is

$$
W_{\mathrm{P} / \mathrm{L}}=2547-858-329=13601 \mathrm{~b} .
$$

To arrive at the capsule system weights shown in table A3

$$
W_{C / S}=W_{S / C}-W_{O R}-W_{P}-W_{P I}=W_{P / L}-W_{O R}
$$

TABLE A3.- OPTIMUM CAPSULE SYSTEM WEIGHT FOR ENTRY FROM ORBIT, OPTIMUM SPACECRAFT, 30-DAY LAUNCH PERIOD

Mission opportunity	Transfer type	Orbit   eccen-   tricity	Capsule system weight, 1ba			
			TIIIC	TIIIF/ Stretched Transtage	TIIIC/   Centaur	TIIIF/   Centaur
1973	I	0.785	470/740	1170/1440	4000/4270	5660/5930
		0.614	340/610	985/1255	3570/3840	5120/5390
	II	0.785	280/550	895/1165	3540/3810	5060/5330
		0.614	150/420	710/980	3150/3420	4540/4810
1975	I	0.785	----/ 80	3390/660	2990/3260	4390/4660
		0.614	-/----	260/530	2640/2910	3950/4220
	II	0.785	640/910	1360/1630	4240/4510	6000/6270
1977		0.614	490/760	1160/1430	3810/4080	5420/5690
	I	0.785	----/ / 120	410/680	2860/3130	4185/4455
	II	0.614	----/50	270/540	2530/2800	3730/4000
		0.785	920/1190	1710/1980	4670/4940	6560/6830
		0.614	750/1020	1480/1750	4190/4460	5930/6200
$\mathrm{a} 890-1 \mathrm{~b}$ orbiter/620-1b orbiter.						

## APPENDIX A

Substituting, using the useful spacecraft weights given earlier,

$$
W_{C / S}=1360-890=4701 \mathrm{~b}
$$

or

$$
\mathrm{W}_{\mathrm{C} / \mathrm{S}}=1360-620=740 \mathrm{lb} .
$$

The solid lines in figures A45 thru A56 indicate payload using an optimum spacecraft.* That is, the propellant weight and insert system weight are allowed to vary according to actual requirements for each launch date. A real-world spacecraft, however, would be designed with a fixed size tankage for a given launch opportunity. Further, the propellant loaded would be the maximum required over the launch period. Adjustment of propellant load as a function of launch date probably would not be attempted due to launch facility implications. Therefore, a fixed spacecraft payload is shown by a set of dashed curves in figures A45 thru A56. The fixed spacecraft payloads are generated by first determining the maximum propellant required for an arbitrary 30 -day launch period. Payloads for launch dates over the 30 -day period are then determined (based on the maximum propellant requirement) and a minimum payload established. This procedure is followed for several different 30 -day periods and a launch period corresponding to the highest minimum payload is established. A preliminary study indicates that the optimum 30 -day period for fixed spacecraft is the one that equalizes the payload at the end of the period. An exception is for the larger launch vehicles and the 1975 Type I and 1977 Type I opportunities. For those cases, the high declinations force an arrival date adjustment away from optimum to meet launch azimuth constraints, $|\mathrm{DLA}|=50^{\circ}$; an improvement in minimum fixed spacecraft payload is found using a 30 -day period where the payloads are not equal at the ends of the period. It is felt that a slight improvement over the results shown could be made by adjusting arrival date in the direction of lower $C_{3}$ until the total propellant loaded is used for all launch dates. This "fine tuning" is beyond the scope of the parametric study, however. The fixed orbiter payloads in orbit range from 1110 to $74501 b$ over the total range of opportunities, orbits, and launch vehicles. Again, this generalization reflects the higher performance transfers for each opportunity.

[^1]
## APPENDIX A

Values of total capsule system weight corresponding to the 30 -day payloads of figures A45 thru A56 are given in tables A3 and A4 for optimum and fixed spacecraft, respectively. These values are determined by subtracting the useful in-orbit orbiter weights of 890 lb (maximum) and 620 lb (minimum) from the values in the figures. Note that in this case, propulsion system inert weights have already been subtracted to give the total useful payload in orbit. Capsule system weights (fixed spacecraft) range from 220 to 6710 lb for the entry-from-orbit mode.
$\begin{aligned} \text { TABLE A4. - } & \text { OPTIMUM CAPSULE SYSTEM WEIGHT FOR ENTRY FROM ORBIT, } \\ & \text { FIXED SPACECRAFT, } 30-D A Y ~ L A U N C H ~ P E R I O D ~\end{aligned}$

Mission opportunity	Transfer type	Orbit   eccentricity	Capsule system weight, $1 \mathrm{~b}^{\text {a }}$			
			TIIIC	TIIIF/   Stretched Transtage	TIIIC/   Centaur	TIIIF/ Centaur
1973	I	0.785	$350 / 620$	1010/1280	3550/3820	5060/5330
		0.614	220/490	825/1095	3140/3410	4530/4800
	II	0.785	90/360	630/900	2900/3170	4170/4440
		0.614	----/230	480/750	2550/2820	3680/3950
1975	I	0.785	-/----	----/230	1760/2030	2650/2920
		0.614	--/----	----/110	1360/1630	3210/2480
	II	0.785	500/770	1180/1450	3860/4130	5490/5760
		0.614	$360 / 630$	985/1255	3440/3710	4920/5190
1977	I	0.785	-1--.-	---------	1830/2100	2830/3100
		0.614	-/----	---------	1420/1690	2260/2530
	II	0.785	850/1120	1620/1890	4600/4870	6440/6710
		0.614	680/950	1370/1640	4110/4380	5820/6090
a $890-1 \mathrm{~b}$ orbiter/620-1b orbiter.						

## APPENDIX A

## Orbit Positioning

For the entry-from-orbit mode, targeting analyses have established a requirement for orbit positioning. The periapsis shifts required are: 12 to $30^{\circ}$ for the $15000-\mathrm{km}$ orbit and 7 to $25^{\circ}$ for the $33070-\mathrm{km}$ orbit. These values correspond to 1973 Type I launch dates of $7 / 13$ to $8 / 12$. Velocity increments are 30 to 150 mps for both orbits as shown in figure A57(a). The effect upon payload in orbit is presented in figures A58 and A59 for the 1973 Type I mission. The resulting capsule system weights are shown in table A5. A capsule system weight reduction of 10 to 60 lb is indicated, compared to the no-positioning data. Shown in figure A57 (b) is the orbit insertion $\Delta V$ with and without the orbit positioning increment. The effect of the increment is to reduce the total $\Delta V$ required between the end points of the launch period. When speaking of fixed orbiter propulsion, the propulsion system is sized for the maximum requirement. Therefore, the inclusion of the positioning $\Delta V$ tends to reduce the payload loss resulting from fixing the orbiter propulsion. For example, in figure A45 (no shift), fixed orbiter propulsion reduces the payload in orbit from 1360 to 1240 lb , or 120 lb . Figure A58 (with shift) shows a reduction due to fixing the orbiter of 70 lb , from 1300 to 1230 lb . Note also that for a fixed orbiter the effect of the periapsis shift itself results in a Titan IIIC payload reduction of only 10 lb .

TABLE A5.- OPTIMUM CAPSULE SYSTEM WEIGHT FOR ENTRY FROM ORBIT, ORBIT POSITIONING, 30-DAY LAUNCH PERIOD, 1973 TYPE I

$\begin{aligned} & \text { Orbit } \\ & \text { eccen- } \\ & \text { tricity } \end{aligned}$	Capsule system weight, $1 \mathrm{~b}^{\text {a }}$			
	TIIIC	TIIIF/   Stretched Transtage	TIIIC/   Centaur	TIIIF/   Centaur
(a) Optimum Spacecraft Propulsion				
0.785	410/680	1050/1320	3710/3980	5300/5570
0.614	260/530	900/1170	3310/3580	4785/5055
(b) Fixed Spacecraft Propulsion				
0.785	340/610	980/1250	3500/3770	5000/5270
0.614	220/490	790/1060	3080/3350	4460/4730
a $890-1 \mathrm{~b}$ orbiter/620-1b orbiter.				


(a) Velocity Increment Required for Periapsis Shift

Figure A57.- Orbit Insertion Velocity and Velocity Increment Required for Periapsis Shift, Mars 1973, Type I


Launch date: 1973
Figure A58.- Optimum Payload in Orbit, Orbit Positioning, Periapsis Shift $=7$ to $25^{\circ}$, Mars 1973, Type I


Launch date: 1973
Figure A59.- Optimum Payload in Orbit, Orbit Positioning Periapsis Shift $=12$ to $30^{\circ}$, Mars 1973, Type I

## APPENDIX A

## Direct Entry Capability

Figures A60 thru A7I present optimum direct entry capsule system weight for the four launch vehicles, six mission opportunity/transfer types, and two orbit eccentricity combinations. The capsule system is ejected after midcourse correction and enters the Martian atmosphere from the heliocentric trajectory. The remaining orbiter is then taken into Mars orbit. Orbiter propulsion and Mars orbit characteristics are described in the previous subsection. Declination/launch azimuth constraints are also as discussed previously. Two useful in-orbit orbiter weights, 8901 b (maximum) and 620 lb (minimum) are used. Data are shown for optimum orbiter propulsion; values of capsule system weight for a 30 -day launch period are indicated. The arrival dates for the optimum direct entry capsule system weights are somewhat different than for the orbital entry system. Whereas the optimum orbital arrival dates were biased heavily toward minimum $V_{H E}$,
the direct entry dates are biased somewhat back toward minimum Cz. This is because the total orbital vehicle is now much lighter than before, reducing the dependence on $\mathrm{V}_{\mathrm{HE}}$. Maximum capsule weight is a stronger function of maximum spacecraft weight increasing the dependence on $C z$. The results from the figures are summarized in table A6.

Capsule system weight for the direct entry case with an orbiter is determined using the same approach as for the orbital case. In actual computation, however, an iteration is required to obtain the required useful in-orbit orbiter weight ( 890 or 620 lb ) after capsule system separation.

For a launch date of $7 / 16 / 73$, the data in figure $A 60$ and table A6 (fron a digital iteration) indicate a direct entry capsule system weight of 7101 b with an $890-1 \mathrm{~b}$ orbiter. The corresponding spacecraft weight for that date is $25301 b$, again within a few pounds of the optimum (fig. A38). The total orbiter weight before orbit inscrtion is then

$$
\mathrm{W}_{\text {OR Tot }}=2530-710=18201 \mathrm{~b} .
$$

The $\triangle V_{O I}$ is 4230 fps ; following the procedure outlined above for the orbit case, the orbit insertion propellant is $6221 b$. Adding $W_{P_{M / C}}$ of $631 b$ gives a total spacecraft/orbiter propellant of 685 11. From figure $\mathrm{A} 44, \lambda=0.69$ (digital curve fit) and $W_{P I}=3081 b$. Thus, useful orbiter weight in orbit is

$$
W_{O R}=1820-622-308=890
$$

which is the required minimum useful in-orbit orbiter weight.

APPENDIX A


Figure A60.- Optimum Direct Entry System Weight, Optimum Orbiter Propu1sion, Mars 1973, Type I

APPENDIX A


Launch date: 1973
Figure A61.- Optimum Direct Entry System Weight, Optimum Orbiter Propulsion, Mars 1973, Type I

APPENDIX A


Launch date: 1973
Figure A62.- Optimum Direct Entry System Weight, Optimum Orbiter Propulsion, Mars 1973, Type II

APPENDIX A


Figure A63.- Optimum Direct Entry System Weight, Optimum Orbiter Propulsion, Mars 1973, Type II

APPENDIX A


Figure A64.- Optimum Direct Entry System Weight, Optimum Orbiter Propulsion, Mars 1975, Type I


Figure A65.- Optimum Direct Entry System Weight, Optimum Orbiter Propulsion, Mars 1975, Type I


Figure A66.- Optimum Direct Entry System Weight, Optimum Orbiter Propulsion, Mars 1975, Type II


Figure A67.- Optimum Direct Entry System Weight, Optimum Orbiter Propulsion, Mars 1975, Type II


APPENDIX A


Figure A69.- Optimum Direct Entry System Weight, Optimum Orbiter Propulsion, Mars 1977, Type I

APPENDIX A


Launch date: 1977
Figure A70.- Optimum Direct Entry System Weight, Optimum Orbiter Propulsion, Mars 1977, Type II


Launch date: 1977
Figure A71.- Optimum Direct Entry System Weight, Optimum Orbiter Propulsion, Mars 1977, Type II

## APPENDIX A

TABLE A6.- OPTIMUM DIRECT ENTRY CAPSULE SYSTEM WEIGHT, OPTIMUM ORBITER PROPULSION, 30-DAY LAUNCH PERIOD

Mission opportunity	Transfer type	Orbit eccentricity	Capsule system weight, $1 b^{\text {a }}$			
			TIIIC	TIIIF/   Stretched   Transtage	TIIIC/   Centaur	TIIIF/ Centaur
1973	I	0.785	710/1150	1820/2270	6120/6590	8830/9250
		0.614	500/1000	1640/2130	5980/6460	8610/9070
	II	0.785	390/860	1500/1990	5850/6300	8520/9020
		0.614	210/730	1320/1840	5670/6160	8270/8790
1975	I	0.785	----/50	620/1100	4910/5380	7190/7680
		0.614	---/----	420/970	4720/5230	7000/7530
	II	0.785	930/1380	2090/2530	6420/6860	9100/9540
		0.614	750/1230	1920/2390	6250/6720	8950/9400
1977	I	0.785	----/230	720/1240	5010/5510	7390/7890
		0.614	----1----	540/1080	4850/5380	7220/7740
	II	0.758	1340/1750	2520/2940	6840/7250	9630/10 040
		0.614	1150/1520	2350/2810	6680/7130	9480/9920
$\mathrm{a}_{890-1 \mathrm{~b}}$ orbiter/620-1b orbiter.						

The difference in capsule system weights shown in table A6 for maximum and minimum orbiters is on the order of $400 \mathrm{1b}$. This is greater than the difference of 270 lb between the maximum and minimum orbiter useful weights. The additional improvement is due to the different propulsion system weights (propellant and inert) required for inserting the two different sized orbiters into orbit.

As in the previous subsection, we are faced with a real-world spacecraft/orbiter in which the propellant quantity and propulsion system are sized for the maximum requirement for a given opportunity. Tables $A 7$ and $A 8$ summarize the direct entry results for the fixed orbiter. These data were obtained by finding the minimum capsule system weight for several 30 -day periods. The weights shown in table A7 correspond to the highest minimum for the opportunity. The first date of the corresponding 30-day launch period is shown in table A8. Capsule system weights for the fixed orbiter range from 270 to $100001 b$.

TABLE A7.- OPTIMUM DIRECT ENTRY CAPSULE SYSTEM WEIGHT, FIXED ORBITER PROPULSION, 30-DAY LAUNCH PERIOD

Mission opportunity	Transfer type	$\begin{aligned} & \text { Orbit } \\ & \text { eccen- } \\ & \text { tricity } \end{aligned}$	Capsule system weight, $1 \mathrm{~b}^{\text {a }}$			
			TIIIC	TIIIF/   Stretched Transtage	TIIIC/   Centaur	TIIIF/   Centaur
1973	I	0.785	450/940	1570/2060	5920/6390	8590/9060
		0.614	270/790	1390/1910	5740/6250	8340/8840
	II	0.785	125/660	1235/1765	5590/6110	8235/8775
		0.614	----/500	1050/1610	5410/5960	7985/8535
1975	I	0.785	----/----	----/450	4210/4770	$6490 / 7080$
		0.614	----/----	----/ 270	3880/4570	6250/6920
	II	0.785	750/1210	1870/2340	6220/6670	8870/9310
		0.614	560/1070	1690/2190	6040/6525	8690/9190
1977	I	0.785	--------	80/630	4360/4920	$6630 / 7180$
		0.614	----/----	----/470	4170/4750	6420/7030
	II	0.785	1280/1700	2570/2910	6790/7220	9580/10 000
		0.614	1100/1575	2300/2770	6640/7090	9420/9910
a $890-1 \mathrm{~b}$ orbiter/620-1b orbiter.						

## APPENDIX A

TABLE A8.- FIRST LAUNCH DATE, DIRECT ENTRY CAPSULE SYSTEM, FIXED ORBITER PROPULSION, 30-DAY LAUNCH PERIOD

Mission   oppor-   tunity	Transfer type	Orbit eccentricity	First launch date			
			TIIIC	TIIIF/   Stretched Transtage	TIIIC/   Centaur	TIIIF/   Centaur
1973	I	0.785	7/12/73	7/11/73	7/11/73	7/10/73
		0.614	7/12/73	7/11/73	7/11/73	7/10/73
	II	0.785	8/6/73.	8/6/73	8/6/73	8/6/73
		0.614	8/6/73	8/6/73	8/6/73	8/6/73
1975	I	0.785	----	9/2/75	9/2/75	9/3/75
		0.614	----	9/3/75	9/2/75	9/2/75
	II	0.785	8/30/75	8/30/75	8/30/75	8/30/75
		0.614	8/30/75	8/30/75	8/30/75	8/31/75
1977	I	0.785		10/20/77	10/19/77	10/18/77
		0.614		10/20/77	10/19/77	10/18/77
	II	0.785	9/25/77	9/25/77	9/25/77	9/25/77
		0.614	9/25/77	9/25/77	9/25/77	9/25/77

## APPENDIX A

## Conversion of Capsule System Weight to Entry Weight

The capsule system weight includes the entry system plus the spacecraft adapter, sterilization canister, the capsule propulsion system, and the terminal guidance system, where applicable. To relate capsule system weight to entry weight, these component weights must be identified. The entry weight ( $W_{E}$ ) is related to capsule system weight ( $\mathrm{W}_{\mathrm{C} / \mathrm{S}}$ ) by

$$
W_{E}=W_{C / S}-W_{A}-W_{C}-W_{E L}-W_{P S}-W_{S}-W_{T G}
$$

where

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{A}} \text { is capsule to orbiter adapter weight } \\
& \mathrm{W}_{\mathrm{C}} \text { is sterilization canister weight } \\
& \mathrm{W}_{\mathrm{EL}} \text { is adapter electrical system weight } \\
& \mathrm{W}_{\mathrm{PS}} \text { is total deorbit propulsion system weight } \\
& \mathrm{W}_{\mathrm{S}} \text { is propulsion module structural weight } \\
& \mathrm{W}_{\mathrm{TG}} \text { is capsule terminal guidance system weight (where } \\
& \text { applicable). }
\end{aligned}
$$

In general, $W_{A}, W_{C}, W_{E L}, W_{T G}$ are reference aeroshell diameter ( $D_{A / S}$ ) dependent; $W_{P S}, W_{S}$ are functions of the velocity increment (deflection or deorbit for direct and orbital modes, respectively) and propulsion system characteristics. The weights are determined below according to this grouping; the presentation, however, is made on the basis of the system mode under consideration. The system modes are as follows:

1) Direct entry, no terminal guidance, Deflection $\Delta V=17.5 \mathrm{mps}, 175 \mathrm{mps}$
Monopropellant propulsion system;
2) Orbital entry (no terminal guidance)

Deorbit $\Delta V=150 \mathrm{mps}, 300 \mathrm{mps}$
Monopropellant and solid propulsion systems.

## APPENDIX A

The, velocity increments are determined by the targeting analysis, discussed in Section 2 of this appendix. The results are presented in figures A72 thru A74 for the above system modes and various aeroshell diameters. Design data using refined velocity increments are shown in figure A75. Diameter-dependent weights are as follows:

1) Adapter,

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{A}}=18, \mathrm{D}_{\mathrm{A} / \mathrm{S}} \leq 15 \mathrm{ft} \\
& \mathrm{~W}_{\mathrm{A}}=18+12\left(\mathrm{D}_{\mathrm{A} / \mathrm{S}}-15\right), \mathrm{D}_{\mathrm{A} / \mathrm{S}}>15 \mathrm{ft}
\end{aligned}
$$

2) Sterilization canister,

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{C}}=2.43\left(\mathrm{D}_{\mathrm{A} / \mathrm{S}}\right)^{1.76}, \mathrm{D}_{\mathrm{A} / \mathrm{S}} \leq 15 \mathrm{ft} \\
& \mathrm{~W}_{\mathrm{C}}=5.22\left(\mathrm{D}_{\mathrm{A} / \mathrm{S}}\right)^{1.51}, \mathrm{D}_{\mathrm{A} / \mathrm{S}}>15 \mathrm{ft}
\end{aligned}
$$

3) Adapter electrical,

$$
W_{E L}=241 \mathrm{~b} \text { (constant); }
$$

4) Terminal guidance, $\mathrm{W}_{\mathrm{TG}}=36+1.1 \mathrm{D}_{\mathrm{A} / \mathrm{S}}$.


APPENDIX A
$5 \times 10^{3}$

$6 \times 10^{3}$
n Figure A73. - Entry Weight Versus Capsule System Weight, Orbit Mode, No Terminal Guidance,


APPENDIX A

$6 \times 10^{3}$ Capsule system weight, lb
Figure A74. Entzy Weight Versus Capsule System Weight, Orbit Mode, No Terminal Guidance, Soisd Propulsion System

APPENDIX A


Velocity-dependent weights are:

1) Propulsion system,

$$
\begin{aligned}
\mathrm{W}_{\mathrm{PS}}= & \begin{array}{l}
\mathrm{f} \text { (total impulse) as } \\
\\
\\
\\
\\
\\
\text { for the in ed in figure A76 } \\
\text { systems shown above }
\end{array} \\
\text { Total impulse }= & \mathrm{W}_{\mathrm{P}}\left(\mathrm{I}_{\mathrm{sp}}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& W_{P}=\text { propellant weight } \\
& I_{s p}=\text { specific impulse } \\
& \qquad W_{P}=W_{0}\left(1-e^{-\Delta V / C_{J}}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{W}_{\mathrm{O}}= & \mathrm{W}_{\mathrm{C} / \mathrm{S}}-\mathrm{W}_{\mathrm{A}}-\mathrm{W}_{\mathrm{C}}-\mathrm{W}_{\mathrm{EL}} \\
\Delta \mathrm{~V}= & \text { velocity increment required } \\
& \text { (deflection or deorbit) } \\
\mathrm{C}_{\mathrm{J}}= & \mathrm{I}_{\mathrm{sp}} \times 32.174 \mathrm{ft} / \mathrm{sec}^{2} ;
\end{aligned}
$$

2) Propulsion module structure,

$$
\mathrm{W}_{\mathrm{S}}=4+0.16\left(\mathrm{w}_{\mathrm{O}}+\mathrm{W}_{\mathrm{PS}}\right)^{0.7}
$$

APPENDIX A


APPENDIX A

This page intentionally left blank.

## APPENDIX A

## 2. EJECTION/DEORBIT MANEUVER STRATEGY AND TARGETING

The ejection/deorbit maneuver strategy is independent of launch period selection. The analysis provides the possible locations of the landing site with respect to orbit periapsis for both the direct and orbit modes. The maneuver strategies consider tradeoffs, between propulsive requirements, telecommunications requirements, and the entry dispersions due to navigation uncertainty and maneuver execution errors. The targeting analysis considers the means for obtaining longitude and latitude control of the landing site as well as its location with respect to the evening terminator. The output of the above analysis is a comparison of the range of possible landing sites on Mars for the direct and orbit modes during the 1973-I launch opportunity. The analysis is developed in the following order:

1) Ejection requirements, direct mode;
2) Relay communication 1 ink constraints, direct mode;
3) Deorbit requirements, orbit mode;
4) Relay communication link constraints, orbit mode;
5) Landing site flexibility, direct mode;
6) Landing site $f$ lexibility, orbit mode.

## Ejection Requirements, Direct Mode

The impulse required for capsule ejection, $\triangle V_{E J}$, is depen-
dent on the following parameters with the ranges studied shown: periapsis altitude ( $h_{p}=1000,2000 \mathrm{~km}$ ); capsule ejection distance ( $50000<\mathrm{R}_{\mathrm{EJ}}<500000 \mathrm{~km}$ ); hyperbolic excess velocity $\left(2.4<\mathrm{V}_{\mathrm{HE}}<3.6 \mathrm{~km} / \mathrm{sec}\right)$; entry flight path angle $\left(-20^{\circ}<\gamma_{\mathrm{E}}<\right.$ $\left.-38^{\circ}\right)$; and ejection angle $\left(-10^{\circ}<\tau_{E J}<-90^{\circ}\right)$.

The capsule coast time, time from ejection to entry, is shown as a function of $R_{E J}$ and $V_{H E}$ in figure A77. The coast time is important in the consideration of power required for the ACS and varies from 3 to 55 hr over the $R_{E J}$ and $V_{H E}$ range considered. The entry velocity is denendent on approach hyperbolic excess velocity, $V_{H E}$, and is shown in figure $A 78$.

APPENDIX A


Figure A77.- Coast Time Dependence on Ejection Distance

APPENDIX A


## APPENDIX A

For the $V_{H E}$ range considered, the entry velocity varies between 17700 fps and 19800 fps . The angle between the $\overrightarrow{\mathrm{V}}_{\mathrm{HE}}$ and periapsis, $\tau^{\prime}$, is a function of $V_{H E}$ and periapsis altitude, $h_{p}$, and is shown in figure A79. For an $h_{p}$ of $1000 \mathrm{~km}, \tau^{\prime}$ varies between $52.5^{\circ}$ and $63.6^{\circ}$ over a $V_{H E}$ range from 2.5 to $3.5 \mathrm{~km} / \mathrm{sec}$. The atmospheric entry point $\left(h_{E}=800000 \mathrm{ft}\right)$ is located with respect to the approach trajectory periapsis by the angle $\beta$, as shown in figure A80. It is a function of ${ }^{\gamma}{ }_{E}$ and $V_{H E}$ and is essentially invariant with the ejection mancuver. The variation in $\beta$ over the range of $V_{H E}$ and $\gamma_{E}$ considered is 24.5 to $53^{\circ}$. A $1^{\circ}$ change in $\gamma_{E}$ changes $\beta$ by about $1.4^{\circ}$. The $\beta$ variation is illustrated for an $h_{p}$ of 1000 km and an $R_{E J}$ of 50000 km . It is a function of $R_{E J}$ and increases slightly, less than a few degrees, with larger capsule ejection distances. Higher $h p$ decreases $\beta$, but $\tau^{\prime}$ is increased by nearly the same amount so that the entry location with respect to the $\vec{V}_{H E}$ is invariant with $h_{p}$. Appendix $B$ shows the large sensitivity of landed equipment weight to $\gamma_{E}$ and little flexibility in ${ }^{\gamma} E$ is available for targeting.

The $\Delta V_{E J}$ is shown in figure $A 81$ for an $h_{p}$ of 1000 km , $R_{E J}$ of 50000 km and a $\gamma_{E}$ of $-20^{\circ}$. The independent variable used throughout is orbiter lead angle, $\lambda$. This is the central angle measured at Mars between the capsule and orbiter at the time of entry. A negative $\lambda$ corresponds to the orbiter lagging the capsule. The lead angle replaces the more conventional lead time since it is extremely useful in analyzing the relay link performance during entry as discussed below. It will be shown that $\lambda$ should be kept roughly in the -5 to $-20^{\circ}$ tange to satisfy communication constraints. To point out the variation of $\triangle V_{E J}$ with $V_{H E}, R_{E J}, \quad \gamma_{E}$, and $h_{p}, a \quad \lambda$ of $-17.5^{\circ}$ will be used. The $\Delta V_{E J}$ increases with increasing $V_{H E}$ as shown in figure A81, while the $\tau_{E J}$ decreases. The ejection angle is shown to be important in the error analysis of mancuver errors discussed later in section 3 . For a $V_{H E}$ of $3.0 \mathrm{~km} / \mathrm{sec}$ the $\Delta V_{E J}$ is $100 \mathrm{~m} / \mathrm{sec}$. The effect of larger $K_{E J}$ is shown in figures A82 thru A84.

The $\Delta V_{E J}$ is seen to be nearly inversely proportional to $R_{E J}$.
The $\Delta V_{E J}$ at 500000 km has decreased to $9 \mathrm{~m} / \mathrm{sec}$. The ejection distance is also important in the analysis of possible entry corridors and is discussed later in this section. The effect of steeper $\gamma_{E}$ is shown in figures A85 thru A92 where $\gamma_{E}$ of $-30^{\circ}$ and $-40^{\circ}$ are shown. For an ejection distance of 50000 km the $\Delta V_{E J}$ is $160 \mathrm{~m} / \mathrm{sec}$ for a $\gamma_{E}$ of $-30^{\circ}$ and $270 \mathrm{~m} / \mathrm{sec}$ for a $\gamma_{E}$ of $-40^{\circ}$. The $\Delta V_{E J}$ increases with $h_{p}$ and a full set of data is shown for 2000 km in figures A93 thru A104. For a $R_{E J}$ of 50000 km and a $\gamma_{E}$ of $-20^{\circ}$, the $\Delta \mathrm{V}_{E J}$ is $170 \mathrm{~m} / \mathrm{sec}$ as compared to $100 \mathrm{~m} / \mathrm{sec}$ for an $h_{p}$ of 1000 km .

At this point it should be emphasized that the choice of nominal $\gamma_{E}$ for a given landed equipment weight is selected on the basis of design aeroshell diameter and the predicted entry dispersions, not any of the ejection requirements discussed in this section.

Although spin stabilization is not used in any of the point designs the angle of attack at entry, $\alpha_{E}$, is shown for the above parameters in figures Al05 thru Al28. It can be seen that small $\lambda$, which requires large $\tau_{E J}$, result in large negative $\alpha_{E}$. The selection of orbiter lead angle, $\lambda$, is discussed in the following section.


Figure A79.- Periapsis Location Sensitivity to $\overrightarrow{\mathrm{V}}_{\mathrm{HE}}$ and Periapsis Altitude

APPENDIX A


Figure A80.- Entry Location (Direct Mode)

## APPENDIX A



Figure A81.- Ejection $\triangle V$ Requirements

APPENDIX A


Figure A82.- Ejection $\triangle V$ Requirements

APPENDIX A


Figure A83.- Ejection $\Delta V$ Requirements

## APPENDIX A



Figure A84.- Ejection $\Delta V$ Requirements

APPENDIX A


Figure A85.- Ejection $\Delta V$ Requirements

APPENDIX A


Figure A86.- Ejection $\triangle V$ Requirements

APPENDIX A


Figure A87.- Ejection $\triangle V$ Requirements

APPENDIX A


Figure A88.- Ejection $\triangle V$ Requirements

APPENDIX A


Figure A89.- Ejection $\triangle V$ Requirements

APPENDIX A


Figure A90.- Ejection $\triangle V$ Requirements

APPENDIX A


Figure A91.- Ejection $\Delta V$ Requirements

APPENDIX A


Figure A92.- Ejection $\Delta V$ Requirements


Figure A93.- Ejection $\Delta V$ Requirements

APPENDIX A


APPENDIX A


Figure A95.- Ejection $\Delta V$ Requirements

APPENDIX A



Figure A97.- Ejection $\Delta V$ Requirements


Figure A98.- Ejection $\Delta V$ Requirements

APPENDIX A


Figure A99.- Ejection $\triangle V$ Requirements

APPENDIX A


Figure Al00.- Ejection $\Delta V$ Requirements

APPENDIX A


Figure Al01.- Ejection $\Delta V$ Requirements


Figure AlO2.- Ejection $\Delta V$ Requirements

APPENDIX A


Figure Al03.- Ejection $\Delta V$ Requirements

APPENDIX A


Figure A104.- Ejection $\triangle V$ Requirements

## APPENDIX A



Figure Al05.- Entry Angle of Attack (Direct Mode)

## APPENDIX A



Figure Al06. - Entry Angle of Attack (Direct Mode)


Figure A107. - Entry Angle of Attack (Direct Mode)


Figure A108. - Entry Angle of Attack (Direct Mode)

## APPENDIX A



Figure A109.- Entry Angle of Attack (Direct Mode)

## APPENDIX A



Figure Allo.- Entry Angle of Attack (Direct Mode)

APPENDIX A


Figure Alll.- Entry Angle of Attack (Direct Mode)

APPENDIX A


Figure All2.- Entry Angle of Attack (Direct Mode)

APPENDIX A


Figure Al13. - Entry Angle of Attack (Direct Mode)

APPENDIX A


Figure All4.- Entry Angle of Attack (Direct Mode)


Figure All5. - Entry Angle of Attack (Direct Mode)

APPENDIX A


Figure All6. - Entry Angle of Attack (Direct Mode)

APPENDIX A


Figure All7. - Entry Angle of Attack (Direct Mode)

APPENDIX A


Figure All8.- Entry Angle of Attack (Direct Mode)

Figure All9.- Entry Angle of Attack (Direct Mode)
appendix a


Figure Al20.- Entry Angle of Attack (Direct Mode)

## APPENDIX A



Figure Al21.- Entry Angle of Attack (Direct Mode)

APPENDIX A


Figure A122.- Entry Angle of Attack (Direct Mode)

APPENDIX A


Figure Al23.- Entry Angle of Attack (Direct Mode)

APPENDIX A


Figure Al24.- Entry Angle of Attack (Direct Mode)

APPENDIX A


Figure A125. - Entry Angle of Attack (Ditect Mode)

APPENDIX A


Figure A126.- Entry Angle of Attack (Direct Mode)

APPENDIX A


Figure A127. - Entry Angle of Attack (Direct Mode)

APPENDIX A


Figure Al28.- Entry Angle of Attack (Direct Mode)

## APPENDIX A

## Relay Communication Link Constraints, Direct Mode

The geometry of the relay link during entry is shown in figure A129. The entry point is measured with respect to periapsis of the approach trajectory by $\beta$. The orbiter is shown lagging the capsule at the time of entry, that is a negative $\lambda$. The relay link antenna on the capsule is assumed along the longitudinal axis of the capsule. The capsule enters the atmosphere with a zero angle of attack. The system performance of the relay link is a function of range and antenna aspect angles (both capsule and orbiter). The capsule antenna aspect angle at entry, $\alpha_{C E}$, is shown and is defined positive when measured counterclockwise from the capsule antenna centerline to the line of sight. The communication distance at entry, $\rho_{C E}$, is shown. Of importance in analyzing fading margin losses during entry is the angle the reflected signal from the Martian surface to the orbiter makes with the local vertical, $\theta_{\mathrm{FM}}$. This angle is almost always greatest at the time of entry. The fading margin losses become significant when $\theta_{\text {FM }}$ becomes greater than $60^{\circ}$. A1so shown is the capsule antenna aspect angle at touchdown, $\alpha_{C_{T D}}$. This angle is a function of atmosphere encountered as well as $\beta$ and $\lambda$. If an elevation mask at touchdown of $34^{\circ}$ is assumed, then $\alpha_{C}$
must be between $-56^{\circ}$ and $56^{\circ}$ if the orbiter is to see the landing. The amount of intitial postlanding link time available is a maximum if $\alpha_{C_{T D}}$ is $-56^{\circ}$, and zero if $\alpha_{C_{T D}}$ is $56^{\circ}$. Some initial
link time is desirable to verify landing and also to get a few pictures out before the orbiter goes out of sight and the capsule goes into darkness. Near-equatorial landing sites $30^{\circ}$ from the evening terminator are not in view of Earth. The $\lambda$ is selected so that at least 5 min of initial link time is obtained with an elevation mask of $34^{\circ}$ in the most critical atmosphere. The most critical atmosphere is VM-3 since the entry time is the longest.

A11 of the parameters discussed can be shown as a function of $\beta$ and $\lambda$ for a given approach trajectory. Boundaries are shown in figure Al30 for an $h_{p}$ of 1000 km and a $V_{H E}$ of $3.0 \mathrm{~km} / \mathrm{sec}$. It should be recalled that $\beta$ is directly a function of $\gamma_{\mathrm{E}}$ and the $\beta$ corresponding to $\gamma_{E}$ of $-20^{\circ},-30^{\circ}$, and $-40^{\circ}$ are shown.


Figure Al29.- Relay Communication Link during Entry

(a) No Overlay

Figure A130.- Relay Communication Link Boundaries (Direct Mode)

(b) Ejection $\Delta V(\mathrm{~m} / \mathrm{sec})$, Overlay 1

Figure A130.- Continued

APPENDIX A

(c) Ejection Angle, $\tau_{E J}$, Overlay 2

Figure Al30.- Continued


Figure Al30.- Concluded

## APPENDIX A

The $\rho_{C E}$ only becomes important for steeper $\gamma_{E}$. The $\alpha_{C_{T D}}=-56^{\circ}$
boundary is always below the fading margin boundary and is below the $\rho_{C E}$ of 5000 km boundary until a $\gamma_{E}$ of about $-34^{\circ}$. Over the range of $\gamma_{E}$ considered in this study $\left(-20^{\circ}\right.$ to $\left.-38^{\circ}\right)$ the $\alpha_{C}$ of $-56^{\circ}$ is taken to be the design upper limit on $\lambda$. The $\alpha_{C_{T D}}$ boundary is a function of atmosphere and VM-8, shortest entry time, is the limiting case. For a $\gamma_{E}$ of $-20^{\circ}$ the allowable range of $\lambda$ is $-2.5^{\circ}$ to $-19.5^{\circ}$. For a $\gamma_{E}$ of $-38^{\circ}$ the range of $\lambda$ is about $+4^{\circ}$ to $-22^{\circ}$. To keep the $\alpha_{C E}$ less than $50^{\circ}$, and thus the capsule beamwidth, with a $\gamma_{E}$ of $-20^{\circ}$ the $\lambda$ must be greater than $-5^{\circ}$. Any $\lambda$ above $-14^{\circ}$ would give at least 10 min of initial postland link time with an elevation mask of $34^{\circ}$.

The ejection $\Delta V$ requirements are given in overlay 1 (fig. A130). For a $\gamma_{E}$ of $-20^{\circ}$ and an $R_{E J}$ of $100000 \mathrm{~km} \mathrm{a} \lambda$ of $-17.5^{\circ}$ is obtained with a $\Delta V_{E J}$ of $50 \mathrm{~m} / \mathrm{sec}$. The ejection angle, ' $E J$, is shown in overlay 2 (fig. Al30) and is seen to be always greater than $-40^{\circ}$ for the required range of $\lambda$. The minimum $\triangle V_{E J}$ occurs very close to a ${ }^{\tau} E J$ of $-90^{\circ}$. Section 3 of Appendix A shows that the entry dispersions due to pointing errors at ejection are minimized for ${ }^{\tau} E J$ of $-90^{\circ}$. The entry angle of attack, $\alpha_{E}$, is shown in overlay 3 (fig. A130). If a spin-stabilized system were used, the $\alpha_{E}$ would always be greater, in absolute value, than $-20^{\circ}$ for the selected range of $\lambda$.

Boundaries of communication parameters for $V_{H E}$ of 2.4 and $3.6 \mathrm{~km} / \mathrm{sec}$ are shown in figures A 131 and A 132 . The $\alpha_{\mathrm{C}_{\mathrm{TD}}}=-56^{\circ}$ boundary is almost unchanged with $V_{H E}$ while the 5 -min line lowers with increasing $V_{H E}$. The $\alpha_{C E}=50^{\circ}$ Iine raises with increasing $V_{H E}$. The effect of a higher periapsis altitude is shown in figure A133. The $\alpha_{C_{T D}}=-56^{\circ}$ and $\alpha_{\mathrm{CE}}=50^{\circ}$ are raised slightly.

```
The 5-min elevation of 34' line is below the }\lambda\mathrm{ scale and
only the 10-min line is shown. The \mp@subsup{\rho}{CE}{}}\mathrm{ for a }\mp@subsup{\gamma}{E}{}\mathrm{ of -20年 is
still less than 5000 km. The major effect of higher h h is
longer initial postlanding link times.
```



Figure Al31.- Relay Commications Link Boundaries (Direct Mode)


Figure A132.- Relay Communications Link Boundaries (Direct Mode)


Figure Al33.- Relay Commications Link Boundaries (Direct Mode)

## Deorbit Requirements, Orbit Mode

The deorbit requirements are given for the two reference orbits: (1) $1000 \times 33070 \mathrm{~km}$ (e $=0.785$, period $=24.62 \mathrm{hr}$ ), and (2) $1000 \times 15000 \mathrm{~km}$ ( $\mathrm{e}=0.614$, period $=10.25 \mathrm{hr}$ ). For orbit (1) $\gamma_{E}$ of $-15.5^{\circ},-18.4^{\circ}$, and $-20.3^{\circ}$ are studied, and for orbit (2) $\gamma_{\mathrm{E}}$ of $-15^{\circ},-17.7^{\circ}$, and $-19.7^{\circ}$. The shallowest $\gamma_{E}$ in both cases is $2.5^{\circ}$ above the skipout boundary. The minimum $\gamma_{E}$ is taken to be 5 c above the skipout boundary to reduce landing site dispersions. It is shown in section 3 of this appendix that the $1_{r}$ error in $y_{E}$ can be controlled to $0.5^{\circ}$ for both orbits. The entry velocities are 15000 fps and 14400 fps , respectively, for orbits (1) and (2).

The minimum deorbit impulse, $\quad \Delta \mathrm{V}_{\mathrm{D}_{\text {min }}}$, is shown as a function of $B$ and ${ }^{\gamma} E$ for both orbits in figure A134. The usefulness of using ? $E$ to increase the range of $\beta$ is seen. Unlike the direct mode $\beta$ can also be varied with deorbit impulse, $\Delta V_{D}$. The $\Delta V_{D}$ does not result in an acceptable relay link during entry for ail $\beta$, however, and other deorbit maneuver strategies must be investigated. The allowable range of $\gamma_{E}$ is limited on the shallow end by the skipout boundary and by the dispersions in $\gamma_{E}$ due to navigation uncertainty at deorbit and maneuver execution errors. The maximum allowable $\gamma_{E}$ for a given landed equipment weight is a function of design aeroshell diameter and is discussed in appendix $B$.

The deorbit true anomaly, $\theta_{D}$, is shown for orbit (1) with a ${ }^{\prime}$ E of $-15.5^{\circ}$ in figure $A 135$ as a function of $\lambda$ for $\beta$ between $26^{\circ}$ and $34^{\circ}$. The ${ }^{\theta} \mathrm{D}$ which results in $\Delta V_{D}$ is shown. As pointed out previously, using $\Delta V_{D_{\text {min }}}$ for every $\beta$ does not result in a favorable relay communication link. For example, a $\beta$ of $34^{\circ}$ would result in a $\lambda$ of $-42.5^{\circ}$ for the $\Delta V_{D_{\text {min }}}$ strategy. This is shown to be unacceptable as discussed later. The curves terminate when $\theta_{D}$ is such that a parabolic transfer occurs from deorbit to entry. For ${ }^{\circ}$ D greater than this cutoff the transfer is hyperbolic. Only elliptical deorbit trajectories were studied. If the $\lambda$ were to be restricted to a maximum of $-17.5^{\circ}$ the $\theta_{D}$ variation is as shown.

APPENDIX A



Figure Al34.- Minimum $\Delta V_{D}$ Requirements

APPENDIX A


Figure A135.- True Anomaly versus Lead Angle

The $\Delta V_{D}$ variation with $\lambda$ is shown in figure A136. Again the $\Delta V_{D} \quad$ line is shown. The variation of angle of attack at enmin.
try, $\dot{\alpha}_{E}$, assuming a spin stabilized capsule is shown in figure A137. It is seen that low $\beta$ result in high $\alpha_{E}$. The coast time, time from deorbit to entry, is very sensitive to $\beta$ and is shown in figure A138. It is desirable to keep $t_{c}$ under 8 hr for $G \& C$ considerations. The $\Delta V_{D}, \alpha_{E}$, and $t_{c}$ are shown for $\gamma_{E}$ of -18.4 and $-20.3^{\circ}$ in figures A139 thru A144. The curves are similar but the magnitude of $\beta$ applicable increases with increasing ${ }^{\gamma}$ E. Similar data are presented for orbit (2) in figures A145 thru A154. The major difference between orbits (1) and (2) is that a coast time of 8 hr is not obtained with orbit (2) until large $\beta$. A $\Delta V_{D}$ requirement of $150 \mathrm{~m} / \mathrm{sec}$ is reached before a $t_{c}$ of 8 hr.


Figure A136.- $\Delta V_{D}$ versus Lead Ang1e


Figure A137.- Angle of Attack versus Lead Angle


Figure A138.- Coast Time versus Lead Angle


Figure A139.- $\Delta V_{D}$ versus Lead Angle

APPENDIX A


Figure A140.- Angle of Attack versus Lead Angle


Figure A141.- Coast Time versus Lead Angle


Figure A142.- $\Delta V_{D}$ versus Lead Angle


Figure Al43.- Angle of Attack versus Lead Angle


Figure Al44.- Coast Time versus Lead Angle

APPENDIX A


Figure Al45.- True Anomaly versus Lead Angle

APPENDIX A


Figure A146.- $\Delta V_{D}$ versus Lead Ang1e

APPENDIX A


Bap $\cdot$ B $_{0}$

APPENDIX A


Figure A148.- Coast Time versus Lead Angle

APPENDIX A


Figure A149.- $\Delta V_{D}$ versus Lead Angle

APPENDIX A


Figure Al50.- Angle of Attack versus Lead Angle


Figure Al5l.- Coast Time versus Lead Angle


Figure A152.- $\Delta V_{D}$ versus Lead Angle


Figure A153.- Ang, of Attack versus Lead Angle

APPENDIX A


Figure A154.- Coast Time versus Lead Angle

Relay Communication Link Constraints, Orbit Mode
The geometry during entry is similar to the direct mode and figure Al29 applies to the orbit mode. Again boundaries of $\rho_{C E}$, $\alpha_{\mathrm{CE}}, \quad \alpha_{\mathrm{C}_{\mathrm{TD}}}$, and initial link time are shown as a function of $\beta$ and $\lambda$ in figure A155 for orbit (1). The $\gamma_{E}$ is another independent parameter for the orbit mode.

The $\alpha_{C_{T D}}$ is a function of $\gamma_{E}$ and atmosphere and is shown for a $\gamma_{E}$ of $-15.5^{\circ}$ and $-20.3^{\circ}$ for the VM-8 atmosphere. The upper bound on $\lambda$ is about $-19^{\circ}$ independent of $\beta$, while the lower bound varies between $-9.5^{\circ}$ and $-5^{\circ}$ as $\beta$ increases from $20^{\circ}$ to $40^{\circ}$. The selected deorbit maneuver strategy must keep $\lambda$ in the proper range as a function of $\beta$. The $\Delta V_{D}$ is shown in overlay 1 (fig. A155) for a $\gamma_{E}$ of $-18.4^{\circ}$. For example, a variable $\Delta V_{D}$ of up to $120 \mathrm{~m} / \mathrm{sec}$ would allow a $\beta$ range from about $33.5^{\circ}$ to $45.5^{\circ}$. The restriction on $\beta$ to keep $\left|\alpha_{E}\right|<30^{\circ}$ is shown in overlay 2 (fig. A155). The upper limit on $\beta$ for orbit (1) is determined by the $t_{c}$ constraint and is shown in overlay 3. Boundary plots for orbit (2) are shown in figure A156, and it is seen that the allowable range of $\lambda$ is similar to orbit (1). Overlays of $\Delta V_{D},\left|\alpha_{E}\right|<30^{\circ}$, and $t_{c}$ are shown for a $\gamma_{E}$ of $-17.7^{\circ}$.

The allowable range of $\beta$ as a function of $\gamma_{E}, \Delta V_{D}$, and $t_{c}$ is summarized in figure A157 for orbit (1). Any point inside the boundaries does correspond to an allowable $\lambda$. If $150 \mathrm{~m} / \mathrm{sec}$ were provided and $\gamma_{E}$ could be varied between $-15.5^{\circ}$ and $-20^{\circ}$, the resulting range of $\beta$ would be $24.2^{\circ}$ to $41.2^{\circ}$, a $\Delta \beta$ of $17^{\circ}$. A similar plot is shown for orbit (2) in figure A158. If $150 \mathrm{~m} / \mathrm{sec}$ were provided and $\gamma_{E}$ could be varied between $-15^{\circ}$ and $-20^{\circ}$, the resulting range of $\beta$ would be $27.2^{\circ}$ to $49.8^{\circ}$, a $\Delta \beta$ of $22.6^{\circ}$. The $\beta$ flexibility of orbit (2) is thus greater mainly due to the $t_{c}$ constraint which is critical for orbit (1).

The minimum allowable nominal $\gamma_{E}$ is shown in figures A157 and A158 based on the error analysis that follows. The maximum allowable nominal $\gamma_{E}$ such that a $3 \sigma$ error in $\gamma_{E}$ does not exceed $-18^{\circ}$ is also shown. The allowable range of $\beta$ for the $1000 \times 33070-\mathrm{km}$ orbit is 27 to $35^{\circ}$ with a $\Delta V_{D}$ of $120 \mathrm{~m} / \mathrm{sec}$. The nominal $\beta$ is $31^{\circ}$. Employing $\gamma_{E}$ steeper than $-16^{\circ}$ or using higher $\Delta V_{D}$ does not significantly increase the capability for this orbit. The allowable range of $\beta$ for the $1000 \times 15000-\mathrm{km}$ orbit is 26 to $34^{\circ}$, with a $\Delta V_{D}$ of $150 \mathrm{~m} / \mathrm{sec}$. The nominal $\beta$ is $34^{\circ}$.

(a) No Overlay

Figure A155.- Relay Communication Link Boundaries (Orbit Mode), $1000 \times 33070 \mathrm{~km}$

APPENDIX A




(a) No Overlay

Figure A156.- Relay Communication Link Boundaries (Orbit Mode), $1000 \times 15000 \mathrm{~km}$



(d) $t_{c}$, hr, Overlay $3\left(\gamma_{E}=-17.7^{\circ}\right)$

Figure Al56.- Concluded

APPENDIX A


Figure A157.- Summary of Entry Locations (Orbit Mode), $1000 \times 33070 \mathrm{~km}$

## APPENDIX A



Landing Site Flexibility, Direct Mode
The first subsection has shown that the entry location parameter, $\beta$, is restricted to about $27^{\circ}\left( \pm 2^{\circ}\right)$ for a $\gamma_{E}$ of $-21^{\circ}$. This is the nominal ${ }^{y}$ E for the direct mode based on the error analysis presented in section 3 of this appendix.

The basic energy contours for the 1973-I launch opportunity are shown in figure Al59. Also given is an overlay for ZAP angle and $\delta_{H E}$ angle. The ZAP angle is the angle between the hyperbolic excess velocity vector and the Mars-to-sun vector. The $\delta_{H E}$ angle is the declination of the $\vec{V}_{H E}$ with respect to the Martian equator. These two angles together position the $\overrightarrow{\mathrm{V}}_{\mathrm{HE}}$ with respect to the sun or the evening terminator. Any approach trajectory must pass through a given $\bar{V}_{H E}$. A family of approach trajectories with different inclinations to the equator are thus possible.

The locations of the sun (assumed on the equator), evening terminator, and a line $30^{\circ}$ from the evening terminator are given in figure A160. The first overlay shows the total allowable variation of the $\vec{V}_{H E}$ during the launch opportunity where the $C_{3}$ has been limited to $30 \mathrm{~km}{ }^{2} / \mathrm{sec}^{2}$ and the $\mathrm{V}_{\mathrm{HE}}$ has been limited to $3.5 \mathrm{~km} / \mathrm{sec}$. The central angle between the $\overrightarrow{\mathrm{V}}_{\mathrm{HE}}$ and the landing site, ${ }_{L}$, is a function of $V_{H E}$ and ${ }^{\gamma} E$ and is given by the sum of $\beta$ and $\tau^{\prime}$ minus the downrange angle traversed during entry, about $12^{\circ}$. For a ${ }_{E}$ of $-21^{\circ}$ the angle ${ }^{\circ} \mathrm{L}$ is about $78^{\circ}$ for a $V_{H E}$ of $3.5 \mathrm{~km} / \mathrm{sec}$ and $68^{\circ}$ for a $V_{H E}$ of $2.4 \mathrm{~km} / \mathrm{sec}$. Based on this angle the allowable landing sites, corresponding to the total variation of $\vec{V}_{H E}$, with respect to the evening terminator and the equator are shown. It must be remembered that for any given $\vec{V}_{\text {HE }}$ the locus of possible landing sites is a circle about the $\overrightarrow{\mathrm{V}}_{\mathrm{HE}}$ with a L between $68^{\circ}$ and $78^{\circ}$ depending on the magnitude of $V_{H E}$. To land at the equator $30^{\circ}$ from the evening terminator the $\vec{V}_{H E}$ must be in the eastern section of the allowable $\overrightarrow{\mathrm{V}}_{\mathrm{HE}}$ region and the orbiter inclination must be low, less than $20^{\circ}$. To have a high inclination orbit, for a good mapping mission, and also a landing sitc $30^{\circ}$ from the terminator, the $\vec{V}_{H E}$ must be in the western tip of the allowable $\vec{V}_{H E}$ region. The latitude of the landing sito is hish, sroater than $60^{\circ}$.


Figure A159.- 1973-I Energy Contours

APPENDIX A


Figure Al59.- Concluded

APPENDIX A

(a) No Overlay

Figure A160.- Targeting Capability (1973-I)

APPENDIX A


Figure A160.- Continued

## APPENDIX A


$\because i g u r e ~ A 160 .-$ Continued

(d) Overlays 1,2 , and 3

Figure A160.- Conc1uded

## APPENDIX A

There is no way of getting both high inclination orbits and nearequatorial landing sites with the direct mode. The effect of a 30 -day launch period requirement on the allowable $\mathrm{V}_{\mathrm{HE}}$ region and the degradation in allowable landing sites is shown in overlay 2 (fig. A160). The allowable $\bar{V}_{\mathrm{HE}}$ region is tied back to
specific launch and arrival dates in overlay 3. Also shown is the launch period discussed in section 1 , which optimizes capsule system weight in orbit.

The above discussion has not mentioned longitude control, only latitude and orientation with respect to the terminator. Longitude control is possible through the selection of encounter time of day. If there were no restriction on encounter time of day, full $360^{\circ}$ coverage is possible. However, if the orbit insertion maneuver must be made in view of Goldstone, the allowable encounter time is reduced to about 10 hr and the allowable range of longitudes to about $150^{\circ}$. If the capsule ejection maneuver were to occur about 8 hr before encounter and it too had to be viewed from Goldstone, the allowable longitude range is reduced to about $30^{\circ}$. The DSN tracking of Mars is shown in figure A161 for two dates.

Once a desirable landing site is selected (latitude, longitude, and distance from the terminator) there is no capability to change it before capsule ejection.

Landing Site F1exibility, Orbit Mode
Earlier it has been shown that the $\beta$ range for the 1000 x $33070-\mathrm{km}$ orbit is between $24^{\circ}$ and $32^{\circ}$ for a $\gamma_{E}$ of $-15.5^{\circ}$ and a $\Delta V_{D}$ capability of $150 \mathrm{~m} / \mathrm{sec}$. The $\beta$ range for the 1000 x $15000-\mathrm{km}$ orbit is between $27^{\circ}$ and $40^{\circ}$ with a $\gamma_{E}$ of $-15^{\circ}$ and a $\Delta V_{D}$ also of $150 \mathrm{~m} / \mathrm{sec}$. Using the extreme values of $\beta, 24^{\circ}$ and $40^{\circ}$, and assuming a downrange angle during entry of $16^{\circ}$, the possible landing area shown in overlay 1 (fig. Al60) is expanded by at most $6^{\circ}$ in all directions. This assumes that the orbiter periapsis is the same as the periapsis of the approach hyperbola. The allowable landing area can be expanded greatly by shifting periapsis at orbit insertion.



## APPENDIX A


#### Abstract

The added orbit insertion requirements for periapsis shift are shown in figure $A 162$ as a function of periapsis shift, $\Delta \omega$, for both orbits. The variation with $V_{H E}$ is slight for $\Delta \omega$ Iess than $60^{\circ}$. Orbit shifts up to $40^{\circ}$ can be obtained with $320 \mathrm{~m} / \mathrm{sec}$ for orbit (1) and $230 \mathrm{~m} / \mathrm{sec}$ for orbit (2).

The $\Delta\left(\Delta V_{0 . I .}\right)$ shown are minimum in that for a given $\Delta \omega$ the approach trajectory periapsis altitude is adjusted to give the minimum $\Delta V$ required. The point on the approach trajectory where insertion occurs is very close to the tangency point between the approach trajectory and the resulting orbit. For negative shifts insertion occurs before periapsis of the approach trajectory and for positive shift afterwards.

The required periapsis shift to land $30^{\circ}$ from the evening terminator at latitudes of 0 and $30^{\circ}$ is shown in figure A163 as a function of launch and arrival date. The shifts are shown for a nominal $\beta$ of $31^{\circ}$, which corresponds to the $1000 \times 33070-\mathrm{km}$ orbit. If the shift is desired for a nominal $\beta$ of $34^{\circ}$, merely add $3^{\circ}$ to the curves shown. The allowable $\Delta \beta$ range can be used to reduce the periapsis shift requirement.


High inclination orbits that have landing sites $30^{\circ}$ from the terminator and near the equator are possible with the orbit mode through periapsis shift. In fact the required region of $\hat{\mathrm{V}}_{\mathrm{HE}}$ on overlay $I$ (fig. Al60) corresponds to a low magnitude of $V_{H E}$, around 2.5 , so that added $\Delta V$ could be used for shifts.

The orbit mode has longitude control through (1) orbital period (2) number of orbits before deorbit; and (3) $\beta$ variation (amount of longitude control depends on orbit inclination).

To land at a preselected distance from the evening terminator there must be an allowable range of $\beta$ that is sufficient to cancel out the error in periapsis location. This ertor is due to two sources; (1) navigation uncertainty at the time of the calculation of the required orbit insertion maneuver; and (2) error in the execution of the orbit insertion maneuver. If the navigation uncertainty is as large as 300 km , the resulting $\Delta \beta$ required would be about $12^{\circ}$. There is another feature of targeting unique to the orbit mode. If a desired longitude is to be reached after a given number of orbis, enough $\Delta \beta$ capability must be available to cancel out the inm phasing error due to period errors in the orbit. Fyon if. an ortid trim maneuver is made there still will be some period ertor, lhe ability of $\beta$ variation to cancel out these errors is of course greater for low inclination orbits.

APPENDIX A


Figure A162.- Periapsis Shift Velocity Requirements

## APPENDIX A



Figure Al63.- Periapsis Shift Requirements to Land $30^{\circ}$ from Evening Terminator

## APPENDIX A

The major advantage of the orbit mode is its ability to survey candidate landing sites from orbit before a deorbit maneuver is made.

## APPENDIX A

This page intentionally left blank.

## APPENDIX A

## 3. ERROR ANALYSIS

The error sources considered for both the direct and orbit modes are (1) navigation uncertainty at ejection or deorbit and (2) ejection error, both pointing and impulse. The most important error at the time of entry for mission planning purposes is the error in entry flight path angle, $\gamma_{E}$. The high sensitivity of landed equipment weight to $\gamma_{E}$ for the direct mode is shown in Appendix $B$. The downrange angle, $\varphi_{E}$, and crossrange angle, $X_{R}$, errors at entry are also presented. An error in $\varphi_{E}$ is equivalent to an error in entry location parameter, $\beta$. The method for propagating $\varphi_{E}$ through the atmosphere to obtain landing footprints is presented.

Entry Dispersions Due to Navigation Uncertainty, Direct Mode
The navigation uncertainty at the time of capsule ejection is expressed in terms of an uncertainty in the impact parameter, $b$, and time of periapsis passage, $t_{p}$. The maximum $3 \sigma$ error in $t_{p}$ is about 4 minutes. The effect of this error source on $\gamma_{E}$ and $\varphi_{E}$ is negligible and can be neglected. With Earth-based tracking, the $1 \sigma$ error in $b$ is shown in figure Al64 as a function of time before periapsis. The upper bound on the present DSN capability is felt to be the maximum curve, while the projected capability in the early 1970 s is felt to be near the minimum curve. The improvement comes about mainly through the improved ephemeris of Mars. The ability to reduce the error in $b$ to about 5 km (10) through onboard guidance is discussed in Appendix D. The error in $b$ does not decrease much until about a day before periapsis. This rapid improvement is caused by the gravitational bending of the trajectory by Mars. The times at which the trajectory enters the Martian sphere of influence are shown as a function of $V_{H E}$. Also shown are the times corresponding to a $V_{\text {HE }}$ of $3.0 \mathrm{~km} / \mathrm{sec}$ for capsule ejection distances of 50000 and 100000 km . The error in $b$ at any $R_{E J}$ was taken to be at the time corresponding to a $V_{H E}$ of $3.0 \mathrm{~km} / \mathrm{sec}$ independent of the actual value of $V_{H E}$.

APPENDIX A


Figure Al64.- Earth-Based Tracking

Analytical expressions were derived for $\partial \gamma_{E / \partial b}$ and $\partial \varphi_{E} / \partial \mathrm{b}$ as functions of $R_{E J}, \tau_{E J}, \Delta V_{E J}, V_{H E}, h_{p}$, and the nominal values of $\gamma_{E}$ and $\varphi_{E}$. Typical results of the $3 \sigma{ }^{\gamma}{ }_{E}$ error are shown as a function of $R_{E J}$ in figure $A 165$ for the assumed maximum and minimum error in $b$. The effect of $\tau_{E J}$ is seen to be significant for lower $\mathrm{R}_{\mathrm{EJ}}$. Section 2 of this appendix shows that the ${ }^{T}$ EJ is always greater, in absolute value, than $-40^{\circ}$, and the variation of $3 \sigma{ }^{\gamma} \mathrm{E}$ between -40 and $-90^{\circ}$ is small. From section 2, it is recalled that minimum $\Delta V_{E J}$ occurs near a ${ }^{\tau} E J$ of $-90^{\circ}$. The effect of $V_{H E}$ is shown in figure Al66 for a $\tau_{E J}$ of $-40^{\circ}$. The sensitivity of $\gamma_{E}$ to an error in $b$ is shown as a function of $V_{H E}$ and $\gamma_{E}$ in figure A167. The sensitivity increases rapidly with shallower ${ }^{\gamma}{ }_{E}$. To investigate the magnitude of $b$ error over which the partials are applicable (i.e., the nonlinearity effect), trajectories with perturbed periapsis altitude were run as shown by the solid line in figure A168. The $\partial \gamma_{E} / \partial r_{p}$ is just the product of $\partial \gamma_{E /} / \partial b$ and $\partial b / \partial r_{p}$. The $\partial b / \partial r_{p}$ is a function of $h_{p}$ and $V_{H E}$ and, for the example shown, is 1.14. Good agreement is obtained for $\Delta h_{p}$ or $\Delta b$ less than 100 km .

The $3 \sigma$ error in downrange angle, $\varphi_{E}$, is shown in figure A169 for the maximum navigation errors as a function of $R_{E J}$. The effect of $V_{H E}$ and ${ }^{\gamma} E$ are shown. The sensitivity of $\varphi_{E}$ to $b$ is shown in figure Al70. The $\partial \varphi_{E} / \partial b$ is approximately 1.4 times as great as the $\partial \gamma_{E / \partial}$. The nonlinearity effects are shown in figure Al71. The ratio of crossrange error, $X_{R}$, to error in $b$ is shown as a function of $\mathrm{V}_{\mathrm{HE}}$ and $\gamma_{\mathrm{E}}$ in figure A172. This assumes that the error in the $b$ plane is spherically distributed.

The expression for $\partial \gamma_{L E} / \partial b$ reduces to the following for small $\Delta V_{E J}:$

$$
\partial \gamma_{L E} / \partial \mathrm{b}=\frac{\mathrm{V}_{\mathrm{HE}}}{\mathrm{r}_{\mathrm{E}}\left(\mathrm{~V}_{\mathrm{HE}}^{2}+\frac{2 \mu}{r_{E}}\right) \sin r_{\mathrm{E}}}
$$

where $r_{E}$ is the entry radius.

APPENDIX A


Figure A165. - Error due to Navigation, Entry F1ightpath Angle

## APPENDIX A



Figure Al66.- Error due to Naviagtion, Entry Flightpath Angle


Figure Al67. - Sensitivity to Navigation Error, Direct Mode, Entry Flightpath Angle

APPENDIX A


Figure A168. - Nonlinearity Effects, Entry Flightpath Angle

## APPENDIX A



Figure A169.- Maximum Error due to Navigation, Downrange Angle

APPENDIX A


Figure A170.- Sensitivity to Navigation Errors, Direct Mode, Downrange Angle

APPENDIX A


Figure Al71. - Nonlinearity Effects, Downrange Angle

APPENDIX A


Figure Al72. - Cross range error, Direct Mode, $50000<R_{E J}<500000 \mathrm{~km}$

## Entry Dispersion Due to Ejection Maneuver Errors, Direct Mode

The ejection maneuver errors comprise a pointing error and an impulse error. A fixed entry altitude computer program was constructed, which propagates these errors from ejection to entry. The entry dispersions due to pointing are most sensitive to the ejection angle, $\tau_{E J}$. The $1 \sigma$ error in $\gamma_{E}$ due to a $1 \sigma$ pointing error of $0.5^{\circ}$ is shown as a function of $\tau_{E J}$ in figure Al73. The error is shown for a nominal $\gamma_{E}$ of $-30^{\circ}$, an $h_{p}$ of 1000 km , and a $V_{H E}$ of $3.0 \mathrm{~km} / \mathrm{snc}$, For a given $\tau_{\mathrm{FJ}}$ the ${ }^{\sigma \gamma}{ }_{E}$ increases with decreasing $R_{E J}$. As mentioned before, the $\tau_{E J}$ is always greater, in absolute value, than $-40^{\circ}$ to keep the $\Delta V_{E J}$ requirements reasonable and to obtain reasonable lead angles, $\lambda$, at entry. The maximum $\sigma \gamma_{\mathrm{E}}$ is, for an $\mathrm{R}_{\mathrm{EJ}}$ of $50000 \mathrm{~km}, 0.4^{\circ}$. The effect of nominal $\gamma_{E}$ is slight as shown in figures A174 and A175 for $\gamma_{E}$ of $-20^{\circ}$ and $-40^{\circ}$. The effect of $V_{H E}$ is also slight as seen in figures A176 and A177 for $V_{H E}$ of 2.4 and $3.6 \mathrm{~km} / \mathrm{sec}$.

The dispersion in $\gamma_{E}$ due to a $1 \sigma$ impulse error of $0.33 \%$ of the nominal value is shown in figure A178 as a function of $\tau_{E J}$. It is seen to be almost independent of ${ }^{\tau} E J$ and nearly a constant value of $0.1^{\circ}$. The variation with nominal $\gamma_{E}$ is again negligible.

The dispersion in $\varphi_{E}$ as a function of $\tau_{E J}$ is shown in figure Al79 for a $1 \sigma$ pointing error of $0.5^{\circ}$. It is again about 1.4 times the corresponding error in $\gamma_{\mathrm{E}}$. The dispersion in $\varphi_{\mathrm{E}}$ due to an impulse error is almost invaliant with $\tau_{\text {EJ }}$ and iss abut $0.14^{\circ}$. The dispersion in $X_{R}$ is shown in figure A180 and is about half the downange ferm

The dispersions in $\gamma_{\mathrm{E}}$ the th the three erxor somens discussed is used to determine the minimum nominal $\gamma_{E}$ possible as well as the 30 dispersions about this nominal. The minimum nominal $\gamma^{\prime}$ is defined to be 50 above the skipout boundary and is shown in figure Al81. It is shown as a function of the $1 \sigma$ error in $\gamma_{E}$ due to an error in b, evaluated for a ${ }^{\gamma} \mathrm{E}$ of $-30^{\circ}$.

APPENDIX A


APPENDIX A


APPENDIX A

Figure Al75.- Entry Flightpath Angle Dispersion versus Ejection Angle, Direct Mode, $\mathrm{V}_{\mathrm{HE}}=3.0 \mathrm{~km} / \mathrm{sec}, \gamma_{\mathrm{E}}=-20^{\circ}, \sigma T_{\mathrm{EJ}}=0.5^{\circ}$


APPENDIX A


APPENDIX A


APPENDIX A


Figure A179.- Dispersion in Downrange Angle as a Function of Ejection Angle

APPENDIX A


## APPENDIX A



Figure Al81.- Direct Mode Entry Corridor

## APPENDIX A

For the ACS, the $\sigma \tau_{E J}$ was taken to be $0.5^{\circ}$, and for the spinner $1.0^{\circ}$. For example, if the $R_{E J}$ is 100000 km and the $V_{H E}$ is $3.0 \mathrm{~km} / \mathrm{sec}$, the error in b is 106 and 37 km for the maximum and minimum curves. Independent of nominal $\gamma_{E}$, the $\partial \gamma_{E} / \partial \mathrm{b}$ is read from figure A167 for a ${ }^{\gamma} E$ of $-30^{\circ}$ as $0.01655^{\circ} / \mathrm{km}$. The resulting $\sigma \gamma_{E}$ due to an error in $b$ evaluated at a $\gamma_{E}$ of $-30^{\circ}$ is 1.75 and $0.61^{\circ}$ for the maximum and minimum curves, respectively. The corresponding minimum nominal $\gamma_{E}$ for the ACS case is -26.7 and $-21.3^{\circ}$.

## Entry Dispersions Due to Navigation Uncertainty, Orbit Mode

The navigation uncertainty for the orbit mode case is analyzed differently from the direct mode. A covariance matrix of orbital elements is assumed after at least four orbits of Earth-based tracking. The standard deviation of the orbital elements is taken to be $\sigma_{a}=3.33 \mathrm{~km}, \sigma_{e}=0.33 \times 10^{-4}, \quad \sigma_{t_{p}}=1.67 \mathrm{sec}, \sigma_{\omega}=$ $0.007^{\circ}, \quad \sigma_{\Omega}=0.141^{\circ}$, and $\sigma_{i}=0.026^{\circ}$. The reference plane used is the plane in the sky. This is the plane that is normal to the Earth to Mars line of sight. Based on the assumed covariance matrix, the position and velocity errors as a function of true anomaly of deorbit, $\theta_{D}$, can be found for a given nominal inclina-
Lion to the plane in the sky, isIS.
The position errors are shown in figure A182 for the 1000x $33070-\mathrm{km}$ orbit for the $\theta$ range between 160 and $240^{\circ}$. The axis system is as shown with the $Z_{M}$-axis always toward the deorbit point and with the $Y_{M}$-axis opposite the angular momentum vector. Curves are shown for $i_{\text {PIS }}$ of 5 and $60^{\circ}$, which considered all six orbital element errors. It is seen that the $X_{M}$ error is lower for the $i_{\text {PIS }}$ of $60^{\circ}$, while the out of plane error $Y_{M}$ is larger. The $Z_{M}$ error is unaffected by $i_{\text {PIS }}$. Also shown is the variation of the position errors if only the in-plane orbital element errors are considered, i.e., $\sigma_{a}, \sigma_{e}$, and $\sigma_{t_{p}}$. The $X_{M}$ component is reduced while the $Z_{M}$ component is unchanged. There is no error out of the plane. Section 2 of this appendix has shown that the reference deorbit maneuver strategies always have $\theta_{\mathrm{D}}$ greater than $180^{\circ}$ and less than $240^{\circ}$.

APPENDIX A


## APPENDIX A

The sensitivity of $\gamma_{E}$ to errors in $X_{M}$ and $Z_{M}$ is roughly the same magnitude and increases with $\theta_{D}$ in this range. The sensitivity of $\gamma_{E}$ to an error in $Y_{M}$ is zero.

The velocity errors are shown as a function of $\theta_{D}$ in figure A183 for the same $i_{\text {PIS }}$ as above. Again the $\dot{X}_{M}$ error is lower for the $i_{\text {PIS }}$ of $60^{\circ}$, while the $\dot{Y}_{M}$ is larger. The velocity component in the radial direction is also lower for the $i_{\text {PIS }}$ of $60^{\circ}$. If only the in-plane orbital element errors are considered, the $\dot{X}_{M}$ is reduced to nearly zero, and the $\dot{\mathrm{z}}_{\mathrm{M}}$ component is also reduced. The sensitivity of $\gamma_{E}$ to an error in $\dot{X}_{M}$ is at least a factor of 10 greater than the sensitivity to error in $\dot{z}_{M}$. The sensitivity to $\dot{X}_{M}$ decreases with increasing $\theta_{D}$.

The position and velocity errors are shown for the $1000 \times 15000-$ km orbit in figures A184 and A185. Only an $\mathrm{i}_{\text {PIS }}$ of $60^{\circ}$ and the in-plane case are shown. All the position components are lower than for the $1000 \times 33070-\mathrm{km}$ orbit. The $\dot{X}_{M}$ component is lower but the $\dot{Y}_{M}$ and $\dot{Z}_{M}$ components are larger. The ${ }^{\gamma} E$ sensitivity to $\dot{X}_{M}$ is more critical, however, and the resulting ${ }^{\gamma}{ }_{E}$ error due to the total covariance matrix of position and velocity is lower for the smaller orbit.

The error in $\gamma_{E}$ is shown as a function of $\theta_{D}$ in figure A186 for both orbits with an $i_{\text {PIS }}$ of $60^{\circ}$. The $\gamma_{E}$ is $-15.5^{\circ}$ for the $1000 \times 33070-\mathrm{km}$ orbit and $-15^{\circ}$ for the $1000 \times 15000-\mathrm{km}$ orbit. The range of entry location parameter, $\beta$, corresponds to that discussed in section 2 of this appendix. A minimum clearly occurs at a $\theta_{D}$ of $180^{\circ}$. Also shown is the effect of only considering in-plane errors, which reduces the dispersion in $\gamma_{E}$. If nearequatorial landing sites $30^{\circ}$ from the evening terminator are desired in the 1973 launch period, the required orbits will have a high inclination to the plane in the sky, greater than $60^{\circ}$. For this reason, the final analysis of entry corridors is based on an ${ }^{i}$ PIS of $60^{\circ}$. For each $\beta$ there corresponds a specific $\theta_{\mathbf{D}}$ for the reference deorbit maneuver strategy as described in section 2 of this appendix.

APPENDIX A


APPENDIX A

Figure Al84.- Position Uncertainties at Deorbit, $1000 \mathrm{xl5} 000-\mathrm{km}$ Orbit

APPENDIX A

Figure A185.- Velocity Uncertainties at Deorbit, $1000 \times 15000-\mathrm{km}$ Orbit

APPENDIX A


Figure Al86.- Entry Flightpath Angle Dispersion versus True Anomaly of Deorbit, $\left(i_{\text {PIS }}=60^{\circ}\right)$

For the $1000 \times 15000-\mathrm{km}$ orbit with a $\beta$ of $25^{\circ}$, the $\theta_{\mathrm{D}}$ that corresponds to minimum $\Delta \mathrm{V}_{\mathrm{D}}$ is $229^{\circ}$. The corresponding error in $\gamma_{E}$ is $0.53^{\circ}$. The error decreases as $\beta$ increases. As a comparison of the effect of $i_{\text {PIS }}$, figure A187 is shown for an ${ }^{i}$ PIS of $5^{\circ}$. Whereas the dispersion in downrange angle, $\varphi_{E}$, for the direct mode is approximately 1.4 times the corresponding dispersion in $\gamma_{E}$, for the orbit mode, the dispersion in $\varphi_{E}$ is about twice the dispersion in $\gamma_{E}$. The dispersion in $X_{R}$ due to navigation error is small compared to the dispersion due to execution errors and is not presented. The dispersions for steeper nominal $\gamma_{E}$ are slightly less than those presented.

APPENDIX A


## APPENDIX A

Entry Dispersions Due to Deorbit Maneuver Errors, Orbit Mode
The entry dispersions due to pointing are shown as a function of $\triangle V_{D}$ rather than $\tau_{E J}$. The dispersion in $\gamma_{E}$ due to pointing is shown in figure A188 for the $1000 \times 33070-\mathrm{km}$ orbit with a $\gamma_{E}$ of $-15.5^{\circ}$. The dispersion is seen to be minimum near minimum $\Delta V_{D}$. The dashed line shows the variation of $\Delta V_{D}$ with $\beta$ for the reference deorbit maneuver strategy. The maximum error in $\gamma_{E}$ occurs for a $\beta$ of $34^{\circ}$, and is $0.12^{\circ}$. The dispersion due to an impulse error of $0.33 \%$ of the nominal $\Delta V_{D}$ is almost invariant with $\Delta V_{D}$ and is about $0.09^{\circ}$. The dispersion in $\varphi_{E}$ is shown in figure A 189 , and, as with the dispersions due to navigation errors, the error in $\varphi_{E}$ is about twice the error in $\gamma_{E}$. The dispersion in $X_{R}$ is shown in figure $A 190$ and is a maximum of $0.066^{\circ}$, for a $\beta$ of $26^{\circ}$. The dispersion in $\gamma_{E}, \varphi_{E}$, and $X_{R}$ is shown for a ${ }^{\gamma} E$ of $-18.4^{\circ}$ in figures A191 thru A193. For the reference deorbit maneuver strategy, the dispersions are nearly the same as for the shallower ${ }^{\gamma} E \cdot$

The dispersion in $\gamma_{E}$ is shown for the $1000 \times 15000-\mathrm{km}$ orbit with a $\gamma_{E}$ of $-15^{\circ}$ in figure A194. The maximum dispersion occurs again at the higher $\beta$ because the deorbit maneuver strategy deviates from minimum $\Delta V_{D}$. The maximum dispersion is about $0.5^{\circ}$ due to pointing and $0.08^{\circ}$ due to impulse. The dispersions in $\gamma_{E}$, $\varphi_{E}$, and $X_{R}$ are shown for a $\gamma_{E}$ of $-17.7^{\circ}$ in figures A195 thru A197.

The total dispersion in $\gamma_{E}$ due to the three error sources discussed above is shown as a function of $\beta$ in figure Al98 for both orbits. The $\Delta V_{D}$ limits and coast time limit are obtained from figures A162 and A163 of section 2 of this appendix. The total dispersion for the $1000 \times 15000-\mathrm{km}$ orbit is less than $0.5^{\circ}$ for all $\beta$ with a $\Delta V_{D}$ capability of $150 \mathrm{~m} / \mathrm{sec}$. To keep the total dispersion less than $0.5^{\circ}$ for the $1000 \times 33070-\mathrm{km}$ orbit, the $\beta$ must be above $29^{\circ}$. The $\Delta \beta$ capability for the large orbit then is only about $3^{\circ}$. The total dispersion in $\gamma_{E}$ as a function of $\beta$ is similar for steeper nominal $\gamma_{E}$ but is a little lower.

## APPENDIX A



Figure Al88.- Dispersion in Entry Flightpath Angle due to Pointing, $\gamma_{E}=15.5^{\circ}$


Figure A189.- Dispersion in Downrange Angle due to Pointing, $\gamma_{E}=-15.5^{\circ}$

## APPENDIX A



Figure Al90.- Dispersion in Crossrange Angle due to Pointing, $\gamma_{E}=-15.5^{\circ}$

APPENDIX A


Figure Al91.- Dispersion in Entry Flightpath Angle due to Pointing, $\gamma_{E}=-18.4^{\circ}$

APPENDIX A


Figure Al92.- Dispersion in Downrange Angle due to Pointing, $\gamma_{\mathrm{E}}=-18.4^{\circ}$

APPENDIX A


Figure A193.- Dispersion in Corssrange Angle due to Pointing, $\gamma_{\mathrm{E}}=-18.4^{\circ}$

## APPENDIX A

Note: 1. $1000 \times 15000-\mathrm{km}$ orbit.
2. $\sigma \tau_{E J}=0.5^{\circ}$.
3. $\sigma \Delta V_{D}=0.33 \%$.
4. Impulse error, max. $1 \sigma \gamma_{E}=0.08^{\circ}$.
$1 \sigma \gamma_{E}$, deg


Figure A194.- Dispersion in Entry Flightpath Angle due to Pointing, $\gamma_{E}=-15^{\circ}$

## APPENDIX A



Figure Al95.- Dispersion in Entry Flightpath Angle due to Pointing, $\gamma_{E}=-17.7^{\circ}$

## APPENDIX A



Figure A196.- Dispersion in Downrange Angle due to Pointing, $\gamma_{E}=17.7^{\circ}$

## APPENDIX A



Figure A197. - Dispersion in Crossrange Angle due to Pointing, $\gamma_{E}=-17.7^{\circ}$

> Legend: $1000 \times 15000 \mathrm{~km}$ orbit $\gamma_{E}=-15.0^{\circ}$ $---100 \times 33070-\mathrm{km}$ orbit $\gamma_{E}=-15.0^{\circ}$


Figure Al98. - Total Entry Flightpath Angle Error

## Entry Corridors and Landing Footprints, Direct and Orbit Modes Compared

The allowable entry corridor for the direct mode is summarized in figure A199 (a) as a function of error in the impact parameter, b. The dashed vertical lines correspond to a capsule ejection distance of 100000 km and the minimum and maximum navigation errors shown in figure Al64. The nominal $\gamma_{E}$ curve is $5 \sigma$ above skipout and varies between -21.2 and $-26.7^{\circ}$ as a function of error in $b$. The $1 \sigma$ touchdown footprint is shown in figure A199(b). The downrange dispersion at touchdown is composed of three parts -- (1) dispersion in $\varphi_{E}$ due to navigation uncertainty and ejection maneuver errors, (2) dispersion in downrange angle traversed through the atmosphere due to a dispersion in $\gamma_{E}$, and. (3) dispersion in downrange angle traversed through the atmosphere due to atmosphere uncertainty (the difference in downrange angle traversed between the VM-3 and VM-8 atmospheres was taken to be a $6 \sigma$ dispersion). Parts (1) and (2) are added and RSS'd with (3). The data for downrange angle traversed through the atmosphere are taken from section 1 of Appendix B.

The allowable entry corridor for the orbit mode is shown as a function of $\beta$ for both orbits in figure A200(a). The touchdown footprints are constructed as for the direct mode and are shown in figure A200(b). The downrange error at touchdown for the orbit mode with the proper choice of $\beta$ can be as low as 60 km for both orbits. With minimum navigation errors, the downrange error for the direct mode is 115 km and is comparable with the worst-case $\beta$ for the orbit mode.

APPENDIX A

(a) Allowable Entry Corridor

(b) $1 \sigma$ Touchdown Footprint

Figure Al99.- Entry and Touchdown Dispersions, Direct Mode

APPENDIX A


Figure A200.- Entry and Toughdown Dispersions, Orbit Mode

APPENDIX A

This page intentionally left blank.

## APPENDIX A

## 4. REFERENCES

Al. Anon.: Launch Vehicle Appendix. PR 22-10-94-2, Martin Marietta Corporation, Denver, Colorado, Sep. 1967.

A2. Anon.: Analysis of Titan IIIF Family Capability for the Mars 1973 Type I Mission. PR 22-10-94-11 (Rev 1), Martin Marietta Corporation, Denver, Colorado, Nov. 15, 1967.

A3. Anon.: Analysis of Titan III Family Capability for the Mars 1975 Type I and Type II Missions. PR 22-10-94-17, Martin Marietta Corporation, Denver, Colorado, Nov. 30, 1967.

A4. Anon.: Trajectory Selection Consideration for Voyager Missions to Mars during the 1971-1977 Time Period. Engineering Planning Document 281, JPL, Sep. 15, 1965.

A5. Anon.: Titan III Family Performance (U). Martin Marietta Corporation, Denver, Colorado, Sep. 1967 (Confidential).


[^0]:    *Precise nomenclature is spacecraft (capsule system included) or orbiter (capsule system ejected).

[^1]:    *In this case, the terms orbiter and spacecraft are interchangeable when speaking of propulsion system characteristics.

