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EXPERIMENTAL STUDY OF SOUND AND VIBRATION
TRANSMISSION TO A SHROUD-ENCLOSED SPACECRAFT

by

Jerome E. Manning
Nicholas Koronaios

ABSTRACT

An experimental study of the vibration transmission in a
1/2-scale-model spacecraft-shroud assembly is described. The oo
role of acoustic and mechanical vibration-transmission paths
is studied. The individual elements of the assembly are stud-
ied as well as the complete assembly in order to better under-
stand the vibration-transmission mechanisms. Data obtained in
the program are compared with predictions obtained by using sta-
tistical energy analysis. An Appendix describes vibration mea--
surements made on an actual O0GO-Nimbus shroud.
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1. INTRODUCTION

This report describes an experimental study of the sound-
induced vibration of a shroud-enclosed model spacecraft. A typi-
cal spacecraft-shroud assembly, which was the basis of our model,
is shown in Fig. 1. The major structural elements of this as-
sembly are identified in Fig. 2. Two paths of vibration trans-
mission from the external acoustic field to the spacecraft exist:
first, an acoustic path, involving the external acoustic space,
the shroud, and the interior acoustic space; and second a mechani-
cal path, involving the external acoustic space, the shroud, the
ring frame, and the mounting trusses. The purpose of our experi-
mental study is (1) to determine experimentally the relative mag-
nitude of the vibrations transmitted to the model spacecraft by
the acoustic path and the mechanical path, and (2) to support the
theoretical predictions of the vibration transmission obtained in
Ref. 1 by using statistical energy analysis.

The spectra of the experimentally measured vibration trans-
mitted to the spacecraft by the two paths are shown in Fig. 46,
Vibrations transmitted by the paths are comparable in amplitude.
The statistical-energy-analysis predictions are compared with the
experimental measurements in Figs. 33-45. Agreement between the
predictions and the measurement for acoustic path transmission is
acceptable, which indicates that statistical energy analysis is a
useful means of estimating high-frequency vibration transmission
in the acoustic path. Agreement for mechanical path transmission,
however, is not acceptable; differences greater than 5 dB occur
for many frequency bands. We have concluded that the assumptions
made in obtaining the theoretical predictions are not wvalid.

The experimental program which we conducted is described in
the next section.
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1.1 Description of the Program

Members of the staff at Bolt Beranek and Newman Inc. (BBN)
have designed, fabricated, and conducted experiments on a 1/2-
scale model of a spacecraft-shroud assembly. Section 2 describes
this model. Theoretical estimates of the sound-induced vibra-
tions of the full-scale assembly were obtained in Ref. 1 by using
statistical energy analysis. Experimental data obtained during
the present program are compared with estimates for the 1/2-scale
model in Section 5.

The experimental program is divided into three phases: mod-
el design and construction, conduct of experiments, and compari-

son of the experimental results with theoretical predictions.

Phase 1, described in Section 2, includes design and fabri-
cation of a 1/2-scale model of a typical spacecraft-shroud assem-
bly. The OGO spacecraft-shroud assembly was chosen as the basis
for our model. Properties of our model that determine its sound-
induced vibrations only approximate those of the OGO assembly.

We do not intend that the vibration levels measured for this model
be indicative of vibration levels in the actual assembly. The
shroud model is a ribbed cylindrical shell. The spacecraft model
is an array of honeycomb panels. The model spacecraft is connected

to the model shroud by four channel trusses and a ring frame.

Phase 2 of the study, described in Sections 3 and U4, consists
of several experiments to investigate the flow of vibratory ener-
gy in individual structural elements of the model and in combina-
tions of the elements coupled together. The experiments are di-
vided into two types: (1) experiments to investigate the flow of
energy in the acoustic path—+this path consists of the external
sound field, the shroud, the internal sound field, and the space-
craft; (2) experiments to investigate the flow of energy in the
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mechanical path—this path consists of the external field, the
shroud, the ring frame, the mounting trusses, and the spacecraft.

In phase 3 of the program, described in Section 5, we com-
pare our experimental results with theoretical predictions obtain-
ed in Ref. 1. Specifically, the measured vibratory response of
the individual assembly elements is compared with the theoretical
predictions, and the experimentally determined parameters govern-
ing power flow between the elements are compared with the theo-
retical values. In addition, we measured the spatial variation
of the vibration on each element of the assembly.

A fourth phase of the program, described in the Appendix to
this report, operates independently of the first three phases.
This phase consists of conducting experiments at Goddard Space
Flight Center on a Nimbus-0GO type shroud. The experiments in-
cluded measurement of the acoustic-induced response of the shroud
and the reduction of sound-pressure level (SPL) from the outside
to the inside of the shroud, and measurement of the damping of the
shroud and the absorption of the internal acoustlic space. The
experimental results are compared wifth theoretical predictions and
other experimental results.
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2. DESIGN AND CONSTRUCTION OF THE MODEL
2.1 Description of the OGO Assembly

The assembly, sketched in Fig. 1, is composed of four struc-
tural elements as follows: (1) a ribbed cylindrical shroud, (2)
a ring frame, (3) four wishbone mounting trusses, and (4) the
spacecraft.

The OGO Shroud, shown in Fig. 3, is a Nimbus-type shroud.
It is a ribbed cylindrical shell capped by a conical nose. The
shell is made of a glass-reinforced plastic laminate whose thick-
ness varies, both along the length of the shell and around its
circumference, from 0.1 to 0.14 in. The ribs are aluminum hat-
section rings spaced at various intervals within the shroud. The
entire shroud is split axially (Fig. 4) to permit shroud separa-
tion. Approximate structural properties of the shroud are sum-
marized in Table I.

The lining of the shroud is a microguartz/felt thermal blan-
ket. Since this blanket controls the absorption of acoustic ener-
gy inside the shroud, it had to be considered in designing a mod-
el. The blanket thickness varies from 1/2 to 1 in. Its acoustic
properties are not known and must be found experimentally.

The ring frame in the OGO assembly is shown in Fig. 5. The
shroud is clamped around the ring frame. The important structur-
al properties of the ring frame are given in Table I.

The mounting trusses for the OGO spacecraft are wishbone legs
consisting of aluminum channel beams, as shown in Fig. 6. The
geometric and structural properties of these trusses are given in
Table I.
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The OGO spacecraft is shown in Figs. 6 and 7. Basically, it
is a box of four corrugated-core sandwich panels. The structural
properties of these panels are given in Table I. Two opposite
panels of the box are hinged and can be opened to allow access to
the spacecraft. The top and bottom of the spacecraft are closed
by thin panels. The spacecraft instruments are mounted on the
sandwich panels, as shown in Fig. 7. The base of the spacecraft
is supported by a large X frame as shown in Fig. 6. The space-
eraft connects to the mounting trusses by a clamp arrangement.

2.2 Design of the Model

In order to obtain data relevant to our theoretical predic-
tions, we have made several idealizations in designing a model.
For example, the model shroud is a ribbed cylindrical shell with
constant skin thickness. We have not included the conical sec-
tion of the OGO shroud for the following reasons: we do not feel
that it has great effect on vibration transmission characteristics
of the shroud; and it was not included in the theoretical predic-
tions. In modeling the 0GO shroud, we did not preserve the exact
spacing between the ribs.

It is important for the experiments that the material prop-
erties of the OGO shroud be preserved in the model. Therefore,
we selected a fiberglass/epoxy laminate for the shell. The den-
sity and elastic modulus of this material are similar to those
of the 0GO-shroud material.

We selected a l-in.-thick porous fiberglass blanket to line
the model shroud. The surface density and absorptive properties
of this blanket approximate those of the microquartz/felt lining
used in the OGO shroud.
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Our model does not preserve the exact geometry of the 0GO
ring frame. In the analysis of Ref. 1, the assumption was made
that only bending around a vertical axis that is parallel to the
axls of revolution of the shroud will transmit vibratory energy
to the spacecraft. This assumption was made because the space-
craft vibration induced by such moments is greater than that in-
duced by'other forces and moments. Since only moments around the
vertical axis are important, our model preserves only the linear
density and bending stiffness around the vertical axis of the
ring frame. Bending stiffnesses around the other two axes and
torsional stiffness are preserved only within 50% of the actual
values.

The wishbone trusses of the OGO spacecraft are replaced in
the model by four channel beams. This substitution allows simpli-
fication of the theoretical calculations without altering the
transmission characteristics at high frequencies to any great ex-
tent. The structural properties of the single beams are designed
to be similar to those of one leg of the wishbone.

The actual dimensions of the model elements were determined
by using a dimensional analysis.? According to this analysis,
the following dimensionless groups must be held constant:

2
2. 4° ¢ 2 ¢c ’ pec? 2’ ‘'loss? f° c 2
P50 o] o) 070 p,cg o]

where £ 1is a typical length, f is the test frequency, s is the
speed of sound in the acoustic media, Cy is the longitudinal wave-
speed in the structural material, Py is the surface density of a
typical panel, Py is the lineal density of a typical beam, o is

the volume density of the acoustic medium, Noss is the dissipation
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loss factor of a typical element, A is the test bandwidth, and h

is the bending wavespeed of a typical structural element.

If we use air as the acoustic medium, the test frequencies
for the 1/2-scale model are double those for the full-scale assem-
bly. The longitudinal wavespeed—a material property—remains
constant so that the same materials can be used for the model as
were used for the full-scale assembly. The properties of the

1/2-scale model, according to the above dimensionless groups, are
given in Table I.

2.3 Construction of the Model

The 1l/2-scale-model shroud and spacecraft have been construct-
ed. Details of the model design are shown in Figs. 8-11. The
parameters of the constructed model do not agree exactly with the
design parameters. Changes were dictated by availability of con-
struction materials. A list of the design parameters and the
constructed-model parameters is given in Table TI.

Figure 8 shows the outside view of the shroud. The shroud
consists of a 3/32-in.-thick NEMA Grade G-11 fiberglass/epoxy lam-
inate. Ribs of aluminum channel have been epoxied in position at

the locations shown. The ends are sealed off with 0.75-in. ply-
j wood baffles.

iy Details of the ring frame are shown in Fig. 9. The ring
s frame was constructed from an aluminum channel and two aluminum

angles connected by a rigid epoXxy and screws.

Details of the model spacecraft and mounting trusses are
shown in Figs. 10 and 11. The spacecraft is a rectilinear box,

composed of four honeycomb panels, approximately 3/8 in. thick.
~% The panels are an aluminum honeycomb structure, with a cell size
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of 0.25 in. and a foil thickness of 0.0005 in. The skin thickness
is 0.010 in. The panel edges terminate in solid-aluminum-bar
stock of 0.5-in. width that provides a region of high compressive
strength near the attachment point. The spacecraft box has been
assembled on a frame of 0.5x0.5x0.125-in. aluminum angle.

The model spacecraft is supported on the ring frame by four
mounting trusses. These trusses are made from 1.5x1.5x0.063-in.
aluminum channel. The trusses have been stiffened by introduc-
ing gussets in the middle in addition to the mounting plates on
each end.
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3. MEASUREMENT TECHNIQUES

Three types of measurement are made in the experimental pro-
gram: (1) the vibratory response of the structural elements to
acoustic excitation is measured, (2) the damping of the structur-
al and acoustical elements is measured, and (3) the sound power
radiated by the structural elements when they are excited with
mechanical shakers is measured. Techniques for these measure-
ments are described in the following sections.

3.1 Response Measurements

The experimental setup for measuring response consists of a
set of instruments that produce the sound field in the test room
and a set of instruments that pick up and analyze the vibrations
of the structure under excitation. The experimental setup is

shown in Fig. 12.

The system for producing the sound field is as follows: the
output signal of a Grason-Stadler white-noise generator model 90A
is filtered by a Briiel and Kjaer (B&K) 1/3-oct-band filter model
1609; and is amplified by a McIntosh model K170 power amplifier.
The signal is then converted to a sound field in the test room by
either of two loudspeaker systems. For low-frequency, 1/3-oct-
bands (250-3150 Hz center frequency), a large horn loudspeaker is
used. Twelve drivers, arranged around a pipe manifold, exhaust
into the throat of the horn. For high-frequency 1l/3-oct-bands
(4000-12 500 Hz center frequency), the signhal from the power ampli-
fier is fed to three, small, horn loudspeakers, each of which is
driven by a University model T50 horn driver. The overall system
is capable of producing 1/3-oct-band SPL of 90-100 4B in the test

room.
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A diffuse field was established in the center of the test
room by carefully positioning the speakers. The large horn speak-
er is directed into a solid angle made up of two walls and the
room floor. Hence, the sound produced by the horn is scattered
into the room by the walls. The three high-frequency horns are
placed apart from each other and are directed toward different
walls.

Before response measurements were made, the uniformity of
the sound field-—a practical measure of diffuseness in a reverber-
ant room—was determined. The spacecraft model was hung in the
center of the room. For each 1/3-oct band, the loudspeaker out-
put was adjusted so that the SPL at a chosen reference point in
the room had a fixed value (90 dB). A B&K type U135 microphone
with a B&K type 2630 cathode follower and a B&K type 2801 power
supply were used to measure the SPL at eight locations in a circle
at a distance of 3 ft from the model. Variation in SPL between
positions did not exceed *3 dB. The SPL's at these eight points
were averaged and the difference of this average from the SPL at
the reference point was recorded. Thereafter, whenever response
measurements were made on the spacecraft, the SPL at the refer-
ence point was recorded.

The same procedure was followed for determining the average
value of the SPL around the shroud. In this case, the shroud was
hung in the center of the room and the SPL was measured at 10 lo-
cations around the shroud while the SPL at the reference micro-~
phone was maintained at 90 dB. The results of this measurement

are shown in Fig. 1l4; the scatter was found to be less than *3 dB.

The vibratory response of the structure was measured with
six accelerometers, as shown in Fig. 12. Three of the acceler-
ometers used were of an experimental design not commercially

10
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available, and the other three were B&K type 4336, 2-gram acceler-
ometers. All six accelerometer outputs were led to a switchbox.
The reference-microphone output was also led to this same switch-
box.

The switchbox output was connected to a General Radio type

1551C preamplifier, and then to a General Radio type 1564 sound
sy and vibration analyzer. The latter instrument is a 1/3-oct-band

filter. The response signal was filtered in the same 1/3-oct
band as the excitation signal, and the root-mean-square value of

: the filtered signal was read on the instrument's meter. In low-
o frequency 1l/3-oct bands, the meter fluctuated too widely for ac-
curate reading, a B&K random-noise voltmeter type 2471 was used;
this is an active averaging instrument that provides adjustable
averaging time. This instrument was connected to the output of
the General Radio sound and vibration analyzer. Accuracy of the
e acoustic and vibration measurements is 1 dB.

3.2 Damping Measurement

The decay-rate technique was used for the determination of
damping. This technique can be applied to measure the damping

e loss factor of either an acoustie space or a structure. Using
this method, one measures the reverberation time—the time for
the vibration to decay 60 dB after all external excitation is
stopped. A measurement setup is shown in Fig. 13. The structure,
:m; or the acoustic space, is excited until a steady response level

is reached. The excitation is then switched off and the decay

rate of either the acceleration or the SPL is observed.

The decay-rate measurements were made with a Krohn-Hite decay-

rate meter, which automatically switches the excitation signal on

and off. The response signal, whose decay is to be measured, is

11
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also led to this instrument. The instrument displays the loga-
rithm of the response signal and allows an operator to compare the
vibration decay with an RC-circuif decay. The operator can adjust
the RC-circuit decay and make it fit the envelope of the response
signal. The time that it takes for the response signal to decay
60 dB is read directly from the instrument.

Matching the RC-circuilt decay with the envelope of the decay-
ing signal is, to a degree, subjective. Our measurements were
taken by two or three operators and the results averaged.

The decay-rate method of determining damping loss factors has
some inherent shortcomings, which have made it impossible fo de-
termine the model-spacecraft damping loss factor with this techni-
que. One of the limitations of the decay-rate technique 1is quite
general and is discussed here; The particular problems encoun-
tered with the determination of the spacecraft damping loss fac-
tor will be described later. The major limitation arises when
one measures the damping of a structure that has two groups of
modes with significantly different values of damping. The modes
with low damping values decay more slowly than those modes with
high damping values. If the modes are excited equally, the vi-
bration decay will have a double slope. The initial slope results
from decay of modes with high damping, and the final slope results
from decay of modes with low damping. In this case, 1t is possible
to determine the damping values of each group of modes. If, how-
ever, modes with low values of damping are excited more strongly,
the decay rate of the total vibration will be dominated by these
modes ; hence, the decay rate of modes with high damping will not
be measured.

12
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3.3 Radiation Measurement

Measurements of sound radiation were made by measuring the
sound field that is established in response to excitation of the
structure by a mechanical shaker. For these measurements, the
radiating structure was hung in the center of the room and excit-
ed using a Goodman V47 shaker. The signal applied to the shaker
was generated by a Grason-Stadler 96A white-noise source and fil-
tered into 1/3-oct bands by a B&K 1609 filter. The exciting sig-
nal was amplified by a McIntosh 300 power amplifier.

The SPL in the test room was determined by averaging results
from 10 microphones surrounding the structure. The instrumenta-
tion used for measuring SPL was the same as that used for response

measurements.
3.4 Calibration

Al1l microphones and accelerometers were calibrated five times
during the course of the measurement program. Microphones were
calibrated with a B&K pistonphone. Calibrating with this piston-
phone is accurate to within 0.5 dB.

The procedure employed for calibrating accelerometers was
more complicated. 1Initially, a General Radio type 1557 vibration
calibrator was used. This calibrator is equipped with two plat-
forms, to which accelerometers can be attached. The platforms vi-
brate with a 1l-g acceleration at 100 Hz. A complication arises,
however, if the accelerometer capacitance is small. This capaci-
tance with the input impedance of the amplifier forms an RC cir-
cuit. The response of such a circuilt falls at low frequencies.
Thus, calibration at low frequency can lead to error.

13
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To offset this complication, the following procedure was used
for all calibrations. The accelerometer of a Wilcoxon impedance

head was calibrated carefully by using the General Radio vibration
calibrator. Also, the impedance-head force-gauge was used to de-
tect the force exerted on the impedance head by a known mass and
hence to infer the acceleration. Both methods of calibration were

found to be in agreement with the manufacturers specifications.
The impedance head was attached to a shaker, and all accelerom-

eters were mounted on the impedance head and calibrated at six
frequencies: 100, 250, 500, 1000, 5000, and 10 000 Hz.

s

All microphones and accelerometers were calibrated in the
complete instrument setup in which they were used. The majority
of measurements were made to determine either acceleration per
unit SPL of excitation or the inverse—SPL per unit acceleration.
The same instrument system was used to measure both the SPL and
the acceleration. In this way, the final result of the measure-
ment was independent of the gain of the measuring instruments.

14
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b, PRESENTATION OF DATA

4,1 Classification by Experiment

Data obtained in the experimental study are presented in Figs.
14-32. The procedures used to obtain these data are described be-

low.

We define acceleration level (AL) as

= 10 log,, <a’>. (2)

where <a?> is the mean-square acceleration in g's?. SPL is de-

fined as

<p2>t

SPL WIS
(0.0002)2

= 10 log (3)

re 0.0002ubar

where <p2>t is the mean-square acceleration in dynes?/centimeters”.

4,1.1 Test-room acoustic field. Our first measurements were

conducted to determine whether the field established in the test
room is diffuse. In a diffuse field, the sound intensity incident
from one direction is equal to and uncorrelated with the intensity
incident from other directions. A requirement for diffuseness of
a reverberant field is that many modes contribute independently to
the sound field. To determine the extent to which the sound field
in the test room is reverberant, we measured the dissipation loss
factor of the test room by using the decay-rate method described
in Section 3.2. The measured loss factors are shown in Fig. 15.
These are related to the absorption coefficient by Eg. (4).

15
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o = (8ﬂfV/coA)n S (1)

where o is the statistical absorption coefficient, Cq is the speed
of sound, A is the surface area of the room, f is the frequency,

V is the volume of the room, and n is the dissipation loss factor.
The dissipation loss factors shown ih Fig. 15 indicate an approx-
imately constant value of 0=0.15. The acoustic field in the test
room will be reverberant everywhere, except within 6 ft of the
acoustic source. In our experiments, the test objects were lo-
cated approximately 12 ft from the source.

The number of modes in the test room is given statistically
by Eq. (5).

n(f) = uanV/co3 R (5)

where n(f) is the average number of modes per unit frequency. The
volume of the test room is 3000 ft® so that there are 450 modes

in the lowest 1/3-oct band used in the experiments, (centered at
4oo Hz).

The extent to which the modal responses are independent is
determined by the uniformity of the sound field. Measurements
taken at 10 locations in the test room are plotted in Fig. 1U4.
These show a maximum variation of *I4 dB. No quantitative result
exists that relates uniformity of the sound field to diffuseness.
We feel, however, that the measured variations are sufficiently
small that the sound field can be considered diffuse.

Before conducting experiments on the model, we placed each
test object in the middle of the test room and measured SPL at
a number of points surrounding the object. The average value

16
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of these measurements was taken as the SPL of the diffuse-field

excitation. To simplify the tests, the average SPL surrounding

the spacecraft was referred to the SPL at a reference location.

Similarly, the average SPL surrounding the model shroud was also
referred to the SPL at the reference location.

4.,1.2 Model-spacecraft response. To determine the response

of the model spacecraft to diffuse-sound-field excitation, we

hung the model in the center of the test room by using flexible
string. Following the procedure described in Section 3.1, we ex-
cited the room acoustically, and measured the resulting SPL and
AL. Three accelerometers were located without any particular pat-
tern on each panel of the model; no accelerometer was within 4

in. of the panel boundaries. The measured data are shown in Fig.
16. The response level of each panel of the model was within #2
dB of the average.

4,1.,3 Model-spacecraft radiation. We measured the radiation

by the model spacecraft by using the same experimental setup as
described in the previous section. A point-drive mechanical shak-
er was used to excite the frame of the model. We measured the AL
at six locations on the two opposite panels; no accelerometer was
located within 9 in. of the shaker. The SPL's in the test room
were measured at eight locations around the spacecraft. These lo-
cations were approximately 3 ft from the structure. The AL of

each panel was approximately equal, *2 dB. Measured data are shown
in Fig. 17.

4,1.4 Model-spacecraft dissipation. We conducted the measure-

ments to determine the total loss factor®* of the model spacecraft.

¥The total loss factor is the sum of the dissipation loss factor
and the radiation loss factor.
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Many difficulties were encountered during these measurements. Our
conclusion is that the decay-rate method is not satisfactory for
this structure.

Our first decay-rate measurements were conducted by using

the sefup described in the previous section. We excited the space-

craft frame mechanically, and observed the decay of the response
at several points on the panels. The measurements were performed

in the reverberant test room. The observed decay rate was not

constant; hence, a unique value for the reverberation time could
not be obtained. The reason for the nonconstant decay rate is

given in the following paragraph.

In the decay-rate procedure, the spacecraft is excited by in-
termittent bands of noise. During excitation, a sound field is
generated in the test room owing to radiation by the model space-
craft. Because the dissipation loss factor of the test room is
less than that of the model spacecraft, the sound field decays
more slowly than the vibration of the spacecraft. The initial
slope of the vibration decay is a measure of the spacecraft dissi-
pation. The subsequent slope is a result of excitation of the =
structure by the slowly decaying sound field. This slope is con- .. ’
trolled by losses in the acoustic space and not by losses in the
structure. It soon became evident that the spacecraft was so well
coupled to the acoustiec field that the initial slope could not be
determined with accuracy. Measurements in the reverberant test

room were abandoned.

In a second set of experiments, we conducted decay-rate mea-

surements in an anechoic chamber. Although the loss factor of
the chamber is known to be greater than that of the spacecraft,
the vibration decay continued to show a double slope. As dis-

cussed in Section 3.2, the cause of this double slope is the
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occurrence of two classes of modes with different values of damp-
ing. The lightly damped modes predominantly involve motion of the
spacecraft frame. In an attempt to keep the frame from being ex-~
cited, we performed decay-rate measurements by striking the panels
with an impulsive load. Decay-rate measurements were taken both
on the panel being excited and on the opposite panel. Loss fac-
tors measured in this way were larger then those measured using

a shaker. Subsequent calculations have shown, however, that these
measured loss factors are still less than the radiation loss fac-
tors. We attribute this discrepancy to the occurrence of modes
which predominantly involve motion of the frame.

As a final measurement, we determined the loss factor of a
single panel without the frame. Measured values of the dissipa-
tion loss factor are shown in Figs. 18 and 19. Above the criti-
cal frequency of the panels (800 Hz) the measured loss factors
are greater for the single panel than for the modél spacecraft.

We would expect that addition of the frame would increase the
mechanical damping. The frame surely could not decrease the damp-

ing as indicated by our measurements. We conclude that the decay-
rate method cannot be used when two classes of modes that have
significantly different values of damping exist. Further discus-
sion of this point is given in Section 4.3.

4.1.5 Model-shroud response. To measure the response of the

model shroud to acoustic excitation, we removed the model space-
craft from the test room and hung the model shroud in its place.
The ends of the shroud were baffled with 3/4-in. plywood panels.
The baffles were sealed to the edges of the shroud to prevent
acoustic transmission, but they were mechanically isolated from
the shroud. Using the procedure described in Section 3.1, we ex-
cited the test room and measured the resulting SPL and AL. Mea-
surements were taken at 12 random locations on the shroud. None
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of these locations was within 4 in. of either a support ring or of
the shroud edge. The measured response data are shown in Fig. 20.

4,1.6 Model-shroud radiation. We used the experimental set-

up described above to measure the radiation from the model shroud.
The edge of the shroud was excited by a point-drive mechanical
shaker. The resulting AL and SPL were measured according to the
procedure described in Section 3.3. Accelerometer locations were
the same as for the previous experiment. Microphones were located
in the reverberant field at 10 positions surrounding the shroud.
Each microphone was 2-3 ft from the shroud. The measured radia-
tion data are shown in Fig. 21.

4.,1.7 Model-shroud dissipation. The model shroud does not

fit in our anechoic chamber. Therefore, all measurements were
performed in the reverberant test room. Since the shroud is not
well coupled to the sound field, measurements in the reverberant
room are satisfactory. We used the same experimental setup as
was used for the previous measurement. Three observers measured
the decay rates at 20 locations on the shroud. A double slope
was evident in the decay, but we were able to determine the ini-
tial slope, which is controlled by the dissipation of the shroud.
The measured, total dissipation loss factors are shown in Fig. 22.

4,1.8 Model-shroud noise reduction (NR). NR was measured

by using the same setup as discussed above. The test room was
excited acoustically and the SPL's inside and outside the shroud
were measured. Measurements at 6 random locations within the
shroud were taken. None of the 6 locations were within 6 in. of
the shroud wall. The SPL outside the shroud was found through
the SPL at a reference location. The measured NR is shown in
Fig. 23.
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4,1.9 Internal acoustic-space dissipation. To measure the

internal-space dissipation, we used a small electromagnetic loud-
speaker to excite the internal space. We measured the decay rate
at 8 locations with a microphone in the shroud. The measured,

total dissipation loss factors are shown in Fig. 24.

4,1.10 Model-spacecraft response from acoustic-path trans-

mission. To measure the response from acoustic-path transmission,
we hung the model spacecraft within the shroud from the top baf-
fle. The mounting trusses were removed from the assembly. Six
accelerometers were located randomly on opposite panels of the
spacecraft. The shroud was baffled. Using the procedure describ-
ed in Section 3.1, the test room was excited acoustically and the
AL on the spacecraft and the SPL in the test room was measured.
The measured-response data are shown in Fig. 25.

4,1.11 Model ring-frame response. For this experiment, the

shroud was supported by resilient foam rubber on the floor of the
test room. The spacecraft and mounting trusses were removed from
the assembly. The test room was excited acoustically and the re-
sulting AL on the ring frame and SPL in the test room were mea-
sured. Measurement locations on the ring frame are shown in Fig.
26. Measurements were taken at a number of points around the
shroud. The measured ring-frame AL relative to the shroud AL are
shown in Fig. 26. The AL's of the shroud have been corrected for
accelerometer loading according to the procedure described in Sec-
tion 4.2. The ring-frame response measurements were performed
both with and without the baffle in place. The data show only a
slight effect by the baffle. This indicates that the vibration
transmitted through the ring frame is not affected by the baffle.
Measurements were repeated with the mounting trusses and space-
craft connected. The data are shown in Fig. 27. Connection of
the mounting trusses and spacecraft has only a small effect on the
vibration levels of the ring frame.
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h,1.12 Model-mounting-truss response. The response of two

mounting trusses was measured by using the setup of the previous
experiment. The test room was excited acoustically and the re-
sulting SPL in the test room and AL on the mounting trusses were
measured. Accelerometers were located on the trusses at the
points shown in Fig. 28. Measurements could only be taken where
the channel beam was supported by a crossmember. Measurements

at other points along the truss showed that the truss cross sec-
tion was not rigid at the measurement frequencies. The AL's of
the mounting trusses relative to the AL's of the shroud corrected
for accelerometer loading are plotted in Figs. 28 and 29. 1In
both cases, the spacecraft was connected to the mounting trusses.

4,1.13 Model-spacecraft response from mechanical-path trans-

mission. For this measurement we eliminated the acoustic-path
transmission by enclosing the spacecraft in a soundproof box. The
box was constructed with double walls of 1/2-in. gypsum board.
Both sides of the box were covered with acoustically absorbent
material. The spacecraft was placed within the soundproof box,

which in turn was located inside the shroud.* Holes were cut to

allow the mounting trusses to pass through the box without contact.

The trusses were connected to the ring frame. Accelerometers were
located at 5 random positions on opposite spacecraft panels. Us-
ing the procedure of Section 3.1, the test room was excited acous-
tically and the fesulting SPL's in the test room and AL's on the
spacecraft panels were measured. The response data from this ex-
periment are shown in Fig. 30.

To verify that no acoustic excitation was present, we repeat-
ed this experiment with the mounting trusses disconnected. Short

¥The assembly was turned upside-down for this particular experi-
ment.
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strings were used to hang the base of the mounting trusses from
the ring frame; the soundproof box was not altered. Measured data
are shown in Fig. 31. Comparison of these data with data taken
when the mounting trusses were connected indicate that all trans-

mission is along the mechanical path.

4,1.14 Model-spacecraft response from combined-path trans-

mission. Our final experiment was to support the spacecraft in-
side the shroud using the mounting trusses. Thereby, both
acoustic-path and mechnical-path transmission contributes to the
model spacecraft response. Six accelerometers were located on 2
opposite panels of the spacecraft. Using the procedure of Sec-
tion 3.1, the test room was excited acoustically and the result-
ing SPL's in the test room and AL's on the spacecraft panels were

measured. Data are shown in Fig. 32.
4,2 Accelerometer Loading

At high frequencies the mass of an accelerometer impedes the
structural motion that it is measuring. For very lightweight struc-
tures, this accelerometer loading can apprecilably reduce the local
vibration level near the accelerometer. When the impedance of the
accelerometer equals the driving-point impedance of the structure,
the loading reduces the local acceleration by 3 dB. The frequency

at which the impedances are equal is given by

8pSKc£

fy = 2@ (6)

where Py is the surface density, x is the bending radius of gyra-
tion, Cy is the longitudinal wavespeed, and M is the accelerometer

mass. Above fl’ loading reduces the acceleration 6 dB/octave.
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The accelerometer loading frequency for the model-spacecraft
panels 1is f2=12 000 Hz. Therefore, no correction of the data is
necessary. The loading frequency for the model shroud is 4500 Hz.
Vibration data for the shroud, Figs. 20 and 21, have been cor-
rected for accelerometer loading according to this frequency. The
corrected AL's will be used in comparing theoretical predictions

with the experimental data.
4,3 Parameter Determination

The parameters governing vibration transmission are the modal
densities and dissipation loss factors of each element and the

coupling loss factors between elements.

The modal densities of the individual elements can be deter-
mined by sweeping a sine-wave excitation and counting resonances.
The technique is useful as long as the spacing between modes ex-
ceeds the modal bandwidth. The modal density of the elements in
our model is sufficiently high that this technigue of mode count-
ing is possible only below 400 Hz. Since this frequency range is
below the frequency range of interest, mode counting has not been
performed in our experiments. We have not attempted to develop
other techniques for verifying the theoretical predictions, be-
cause our confidence in these predictions is high.

The dissipation and coupling loss factors are determined by
combining the decay-rate and radiation measurements. The rever-
beration times from the decay-rate measurements are related to a

total dissipation loss factor by the equation

2.2

Neot = FT > (7)
rev
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where Mot is the total dissipation loss factor, Trev is the rever-

beration time, and f is the frequency.

The structural elements in the acoustic path cannot be sepa-
rated from the acoustic media without a large vacuum chamber.
Rather than resort to the use of a vacuum chamber, we performed
decay-rate measurements in the acoustic media. The total loss
factor is, then, a measure of the mechanical damping internal to
the structure and its boundaries and of the radiation losses to
the surrounding medium. The mechanical damping is inferred from
the total dissipation loss factor measurement and a determination
of the radiation loss factor which we obtain from a radiation mea-
surement. When the structure is excited with a shaker, the ratio
of the reverberant, mean-square sound pressure radiated into the
test room to the mean-square acceleration is related to the radla-
tion coupling loss factor by Egq. (8)

2 2
Pt PoCo M "s,A
v nA+(nS/nA) Ng a >
b

(8)

o)

2 2

<a“> w
t

where <p2>1:’X is the time/space, mean-square sound pressure in the
test room, <a2>t,x is the time/space, mean-square acceleration of

the structure, o5 is the acoustic-medium volume density, Cq is the
speed of sound, w is the radian frequency, M is the total mass of

the structure, V is the volume of the test room, nS,A is the radi-
ation coupling loss factor of the structure, Ny is the dissipation
loss factor of the test room, Ng is the modal density of the struc-

ture, and Ny is the modal density of the test room.

The parameters of our test room are such that

n
n, >> HX s, A . (9)
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Thus, a measurement of Ny and the radiated sound field gives the

radiation coupling loss factor for the structure.

4.,3,1 Model-spacecraft parameters. Radiation and decay-rate
measurements were made for the model spacecraft and the model

shroud. The measured, total dissipation loss factor for the space-
craft is plotted in Fig. 18. This total loss factor is the sum

of the mechanical dissipation loss factor N4iss and the radiation

coupling loss factor nsc,ac:

s

Ntot = Ndiss * nsc,ac ' (10)

The measured SPL of the radiated sound field 1s plotted in Fig.
17. These data and the measured loss factor of the test room

In Fig. 33, this esti-
3

give an experimental estimate of n .
sc,ac

mate is compared with a theoretical estimate.

The experimentally obtained values of nsc,ac exceed Mot *
This is physically impossible and indicates that one of the mea-
surements is in error. As explained earlier in this report, we
have concluded that the decay-rate measurements do not give a val-

id estimate of the total loss factor for the model spacecraft.

4,3.2 Model-shroud parameters. The measured, total dissi-

pation loss factor for the model shroud is plotted in Fig. 22.
This total loss factor is determined by the mechanical damping
of the shroud and the radiation to the test room and to the in-

ternal acoustic space. The total loss factor is

Ntot - Ndiss + 2nsh,ac ? (11)

where n is the coupling loss factor between the shroud and

sh,ac
an acoustic space.
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The SPL of the sound field radiated by the shroud is plotted
in Fig. 21. These data can be used in Eg. (8) to obtain an ex-
perimental determination of the coupling loss factor nsh,ac’ This
experimentally determined value is compared with a theoretically

predicted value® in Fig. 35.

The theoretical value of n is consistently low. A cal-

ibration error was suspected buihﬁgz found. We conclude that the
material properties used in the theoretical prediction are inac-
curate. We determined these properties by experiments on a sample
taken from the edge of the shell. Properties at the edge are per-
haps not representative of those in the remainder of the shell.

A second possible conclusion is that the theoretical estimates are

consistently low by 1 or 2 dB.

The dissipation loss factor of the model shroud was inferred
from the measured, total loss factor and the measured, radiation
coupling loss factor. The experimentally determined values are
compared with an empirical prediction of the dissipation loss
factor in Fig. 36. The agreement between values is satisfactory.
We conclude that the decay-rate technique is wvalid for the model
shroud.

4.3.3 Internal-acoustic-space parameters. The measured, to-

tal dissipation loss factor for the internal acoustic space is
plotted in Fig. 24. This total loss factor is determined by ab-
sorption in the space and losses to the external acoustic space
through the shroud. Because of the absorptive liner in the model,
the absorption will dominate the total loss factor so that

Mot  MNgiss (12)

The measured, dissipation loss factors for the internal acoustic
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space are compared with lines of constant absorption coefficient
in Fig. 37. Measured data lie between a value of o=0.2 and a=0.6
which indicates that the liner is more effective at high frequen-

cies.

The dissipation loss factor of the internal acoustic space
of an actual shroud is shown in Fig. A-9. Loss factors for the
model and the actual shroud are comparable over only a small fre-
quency range. For this reason, our experimental results should
only be used to support the theory and not to predict vibration
levels in the actual 0GO assembly.

4.3.4 Discussion. Our conclusion that the decay-rate tech-

nique is valid for the model shroud but not for the model space-
craft is not fully understood. Apparently, two classes of modes
with greatly different radiation properties exist in the space-
craft. The dissipation of one class of modes—those that will be
strongly excited by an acoustic field—is very great and is domi-
nated by radiation. The dissipation of the second class of modes
is significantly less. Decay-rate measurements cannot be used to
determine the dissipation of the first class of modes. We do not
completely understand the reasons for this limitation.

The dissipation of all modes of the model shroud is dominated
by mechanical damping. The decay-rate technique appears to be

valid for this situation.

Initially, the experimental program included decay-rate mea-
surements on the elements of the mechanical path. In view of our
lack of understanding of this technique, we did not conduct these
experiments. Therefore, experimental determination of the remain-
ing coupling parameters is not possible.
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In the following section, we compare the measured response
of the assembly elements with theoretical predictions.
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5. COMPARISON OF DATA WITH THEORETICAL PREDICTIONS

The major purpose of our experimental study is to obtain data
that can be compared with the theoretical predictions developed
in Ref. 1. These predictions were developed through a statistical
energy analysis. We will not discuss this type of analysis. In-
stead, we refer the reader to Refs. 1, 5, 6, and 7.

Reference 1 gives numerical evaluations of the theoretical
predictions for a full-scale model of the 0GO-spacecraft assembly.
The structural parameters used in these evaluations are not cor-
rect for the actual assembly or for the 1l/2-scale model described
in Section 2. For this reason, we have reevaluated the predic-
tions by using the correct parameters for the 1/2-scale model that
are given in Table I.

In our evaluation, we use an empirical value for the dissipa-

tion loss factor of the model shroud and the model spacecraft,

= 0.01 s (13)

where N4iss is the dissipation loss factor. Agreement between
this empirical value and the value measured for the shroud is
shown in Fig. 36. We cannot obtain an estimate of the dissipation
loss factor for the spacecraft by using the decay-rate technique.

We use the measured value for the dissipation loss factor of
the internal acoustic space in our evaluation of the theoretical
predictions. This measured value is plotted in Fig. 37, where it
can be compared with lines of constant absorption coefficient.
Our reason for using the measured value is that we do not feel
that our ability to estimate this parameter correctly should ef-

fect our comparison of theory with experiment. Of course, correct
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evaluation of the dissipation loss factor of the internal acoustic
space 1is necessary for correct prediction of the vibration trans-
mitted by the acoustic path.

The dissipation loss factors of the model mounting trusses
and the model ring frame were assumed, in our evaluation, to be
less than the coupling loss factors. The same assumption is made
in Ref. 1. An experimental verification of this assumption was
not obtained because of the limitations of the decay-rate method.

5.1 Comparison for Acoustic Path

The resonant response of the spacecraft to diffuse acoustic-
field excitation is calculated in Section 3.8.1 of Ref. 1. The
critical frequency for the model spacecraft panels is 800 Hz.
The resonant response calculated by using two values of mechani-
cal dissipation is shown in Fig. 38 and can be compared with the
measured data. The nonresonant, mass-law response is calculated
in Section 3.8.2 of Ref. 1. This nonresonant response is also
plotted in Fig. 38. The measured response is greater than the
theoretical prediction for most frequency bands. The deviations
are between 0 and 5 dB. Such deviations are within the expected
accuracy of the theory.

The resonant and nonresonant response of the shroud to

diffuse-acoustic-field excitation is calculated in Section 3.7

of Ref. 1. The ring frequency of the model shroud is 1160 Hz.

The critical frequency 1is 10 000Hz. The response calculated from
the theoretical equations is plotted in Fig. 39, where it can be
compared with the measured data. As for the model spacecraft,

the measured response of the model shroud above the ring frequency
is 1-6 dB greater than the theoretical prediction. This consis-

tent deviation is not expected; although, random deviations up to
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5 dB commonly occur when comparing predictions found by using sta-
tistical energy analysis with measured data. Below the ring fre-
gquency the measured response is consistently less than the theo-
retical prediction. But again, the deviatilions are within the ex-
pected accuracy of the theoretical predictions. We conclude that
the deviations between theory and measured data are, in part, due
to errors in our estimation of the material properties of the

model shroud.

The NR by the shroud is predicted in Section 3.6 of Ref. 1.
In this prediction the transmission by both resonant and nonreso-
nant modes is considered. To evaluate the NR, we use the mea-
sured values of dissipation loss factor for the internal acoustic
space. The theoretically predicted NR is plotted in Fig. Lo,
where it is compared with the measured data. The lack of agree-
ment at the critical frequency again indicates that the material
properties of the shroud which are used in the evaluation are in-
correct. On the whole, the agreement between theory and experi-

ment 1s good.

The theoretical predictions of model-spacecraft response to
acoustic excitation and of NR by the model shroud can be combined
to give the spacecraft response due to vibration transmission by
the acoustic path. The comparison between the theoretical predic-
tion and the measured data is shown in Fig. 41. We feel that the
agreement between theory and experiment is sufficiently good as
to support the use of statistical energy analysis to predict vi-
bration transmission in the acoustic path.

5.2 Comparison for Mechanical Path

The ring-frame response is a combination of bending in the
plane of the ring and torsion along the ring. In Ref. 1 we as-
sume that only the bending motion contributes to the spacecraft
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response. Therefore, only this motion is calculated in Section
4.6 of Ref. 1. The bending response of the model ring frame is
plotted in Fig. h2.

The measured data at Locations B and C, shown in Fig. 26,
indicate that bending and torsion of the ring are approximately
equal. Measured response at Location A is greater than that at
Locations B and C because of resonant deformation of the ring.
We take the measured vibration data at Location B as representa-
tive of the bending-vibration level. These data are compared
with the theoretical predictions in Fig. 42. The agreement is
within 5 dB for most frequency bands and shows no systematic de-
viation. This agreement is considered to be within the expected
accuracy of the theory.

The response of the spacecraft panels owing to vibration
transmission from the ring frame is calculated in Section 4.7 of
Ref. 1. The theoretical prediction of the model spacecraft re-
sponse 1s shown in Fig. 43, where it is compared with the measured
data. Agreement between theory and data is not as close as ex-
pected. Deviations greater than 5 dB occur in many frequency
bands. These deviations, which show greater response, are possi-
bly due to vibration transmission by torsion of the ring frame.

We have not considered the magnitude of this transmission.

The predicted response of the ring frame and the transmission
from the ring frame to the spacecraft can be combined to give the
spacecraft response due to transmission by the mechanical path.

The theoretical prediction is plotted in Fig. 44 along with the
measured data. The measured response due to mechanical-path vi-
bration transmission is considerably greater than that predicted
theoretically for many frequency bands. As stated above, part of
this increased transmission may be due to transmission by torsional
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motion of the ring frame. In the lower frequency bands, the mea-
sured data is considerably below the theoretical prediction.
These deviations are probably a result of the relatively small
number of modes in each 1/3-oct band in the mechanical-path ele-
ments. Statistical energy analysis treats the modes statisti-
cally and requires that many modes participate in the vibration.
No quantitative results exist for the minimum number of modes re-

guired for the analysis to be wvalid.
5.3 Comparison for Combined Path

The theoretical predictions from Sections 5.1 and 5.2 can

simply be added in order to obtain a prediction for vibration

transmission by the combined path. The theoretical prediction for
the model-spacecraft response to transmission by the combined path
is plotted in Fig. 45, where 1t is compared with the measured data.

Deviations between theory and experiment are a result of the inac-
curacy in the prediction of mechanical-path transmission. We con-
clude that predictions of the mechanical-path transmission require

further investigation.
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6. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

Data from the experimental program are summarized in Fig. U46.
Vibration transmission by the acoustic and mechanical path are
comparable. Acoustic-path transmission dominates at low frequen-
cies, whereas mechanical-path transmission dominates at high fre-
quencies. This conclusion is somewhat unique to our model because
of the large amount of absorption in the internal acoustic space.
Also, the results are unique to the particular configuration that
we selected.

We conclude from the program that statistical energy analysis
can be used to predict, within 5 dB, vibration transmission by the
acoustic path. Accuracy of the predictions for mechanical-path
transmission is *10 dB. A number of problems were encountered in

the program. These are discussed below.
6.1 Difficulty in Measuring Damping

The most formidable difficulty that we encountered was that
of measuring damping. We found that the decay-rate method cannot
be used to determine the damping of the model spacecraft. A4 gen-
eral conclusion is that the decay-rate measurements cannot be used
to measure the damping of a class of resonant modes in a frequency
band when a second set of modes, with significantly less damping,
are also resonant in that bvand. For such a case one must directly
measure the power input required to excite the structure to a
given steady vibration level.

6.2 Need for Lightweight Accelerometers

The design of scale models requires the use of small, light-
weight structures and high test frequenciles. Loading by the mea-
suring accelerometer often becomes a problem. In our study we
used a 2-gram accelerometer; therefore, we had to correct the
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shroud-response data above 4600 Hz for accelerometer loading.
The accuracy of the correction is somewhat questionable. Lighter-
weight accelerometers are available but, at this time, are not

sufficiently reliable or convenient to use.
6.3 Desirability of Other Similar Experiments

The experimental program described in this report was con-
ducted on one particular structural assembly. The results of the
study cannot, unfortunately, be taken as sufficient support for
the use of statistical energy analysis. Further studies are re-
quired in which vibration transmission in other typical configu-
rations 1is studied.

For our particular model assembly, it would be worthwhile
to study the vibration transmitted to instruments on the space-
craft panels, to solar panels, to an antenna, and to other struc-

tures connected to the mounting trusses.
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APPENDIX A

VIBRATION MEASUREMENTS ON A NIMBUS-0GO SHROUD

Al. INTRODUCTION

Bolt Beranek and Newman Inc. (BBN) has conducted Noise-
Reduction (NR) experiments on a Nimbus-0GO shroud at Goddard
Space Flight Center. 1In these experiments the shroud was placed
in a large reverberant chamber and was subjected to a diffuse
acoustic field. The response acceleration level (AL) at several
points on the shroud and the sound-pressure levels (SPL) inside
the shroud were measured in 1/3-oct frequency bands. The experi-
mental program is described in this section and the measured data
are compared with theoretical predictions.

Al.1 Description of the Nimbus-0GO Shroud

The Nimbus-0GO shroud is shown in Figs. 3 and 4. It is a
glass-reinforced, plastic-laminate shell. The shroud geometry
is that of a ribbed cylindrical shell capped by a conical nose.
The shell-wall thickness varies both circumferentially and axially
from 0.10 to 0.14 in. A microquartz/felt blanket lines the in-
side of the shroud. Its density is 3.5 1b/ft?® and its thickness
varies from 1/2 to 1 in. The major structural and geometric prop-
erties of the shroud are summarized in Table I.

Al.2 Experimental Setup

The Nimbus~0GO shroud was set up, as shown in Fig. A-1l, on a
large carrier used for the Launch Phase Simulator (LPS) at Goddard
Space Flight Center. The carrier platform served as a baffle that
prevented the flow of acoustic energy through the open end of the
shroud. Venting holes were sealed so th@ﬁﬁ%ﬁe complete shroud and

W
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baffle were air tight. Later in the experiment, the vents were
opened. No change in the vibration and acoustic measurements was
noted.

The carrier and shroud were placed at one side of the LPS
room. A large sound source was placed on the other side of the
room. The relative positions of the carrier, the shroud, the

sound source, and the LPS are shown in Fig. A-2. These objects

were located in the room so that the sound field around the shroud
was diffuse.¥* We used the uniformity of the acoustic fleld SPL .
as a measure of diffuseness. We consider a field with spatial .

variations in SPL less than #3 dB to be effectively diffuse.
Al.3 Instrumentation

The instrumentation for the sound and vibration measurements
on the Nimbus-0GO shroud consists of several functional groups:
sound source, microphone system, vibration source, acceleration-

measuring system, and reverberation-time measuring system.

A1.3.1 Sound source. The sound source used to excite the

LPS room consists of a General Radio (GR) 1390-B random-noise
generator, a GR 1564-A sound and vibration analyzer used as a 1/3-
oct-band filter, two McIntosh M1-200 AB power amplifiers that are
each capable of delivering 200 W, and a University B-12 horn loud-
speaker with a flare extender to lower the cutoff frequency. The
horn is driven by 12 University 1D-40 drivers rated at 40 W each.

The loudspeaker was driven by 1/3-oct bands of noise to achieve -
as high a level as possible in the band where measurements were
being made. One-third-oct-band SPL of 110 dB re 2 x 10~* ubar
were achieved in the 500 Hz-1 kHz region,

¥The intensity in a diffuse field is uniform for all angles of
incidence.
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Al.3.2 Microphone systems. Three microphones were used.

A1l were Briiel and Kjaer (B&K) capacitor microphones with attached
cathode followers. Two were 1 in. in diameter (type 4131) and one
was 1/2 in. (type 4134). The cathode follower used inside the
shroud was battery-powered for convenience; the others were not.
All microphones were calibrated with a B&K type 4220 pistonphone.
The frequency response of the microphones and associated elec-
tronics is flat *1 dB in the frequency range 100 Hz — 6 kHz.

A1.3.3 Vibration source. The vibration source used to ex-

cite the shroud consisted of a GR 1390-B random-noise generator,
a GR 1564-A sound and vibration analyzer (used as a 1/3-oct-band
filter), a McIntosh M1-200 AB power amplifier, and a Goodmans
V-50A point-drive shaker mounted on a stand so that it could be
lined up with the attachment point on the shroud. The system is
capable of exerting 50-1b peak forces. The attachment point cho-
sen (one of the holes used to attach handling fixtures) was equip-
ped with a 1/U4-in. -28 captive nut. The shaker-output stud was
screwed into the captive nut and a locknut was tightened against
the outside skin of the shroud. The hole used was about 22 in.
above the base of the shroud. No attempt was made to measure the
vibration excitation forces. However, shaker current was ﬁoni—

tored to avoid destructive operation of the shaker.

A1.3.4 Accelerometer system. Vibration of the shroud was

measured by using a Wilcoxon type 111 accelerometer mounted to the
skin with clay. The weight of this accelerometer is 2 grams. Its
mounted resonance, using clay, is above 10 kHz. This lightweight
unit was chosen in order to avoid mass loading of the skin at ther
measuring point. Adhesive tape was used to support the weight of
the lead wire. A GR 1551 B sound-level meter was used as a pre-
amplifier; its output was fed into the 1/3-oct-band filter of the
decay-rate meter according to the quantity being measured. The
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system was calibrated by attaching the accelerometer to a GR type
1337 vibration calibrator. PFrequency response of the accelerometer

and associated electronics is flat *1 dB from 100 Hz to 6 kHz.

Al1.3.5 Decay-rate meter. This instrument was used to mea-

sure the acoustic and mechanical reverberation times of the shroud.
It furnishes a display on an oscilloscope screen of both an inter-

nal RC network discharging and of the signal decay in the environ-

ment that is being measured. The RC network is adjusted until the

decay rates match and the reverberation time (the time for a 60

dB decay in vibration level) is read from the front panel. The in-
strument was designed by BBN and is manufactured by Spencer-Kennedy

Laboratories.
A2. TEST CONDUCT AND DATA PRESENTATION

Three basic measurement tests were conducted:
(1) shroud response and internal SPL's during acoustic

excitation;

(2) reverberation time of the shroud to determine its

damping; and

(3) reverberation time of the interiial acoustic space to

determine its acoustic absorption.

In Test 1 an acoustic field was created in the LPS room by
using 1/3-oct bands of noise. The resulting SPL's were measured
by using a hand-carried roving microphone. The levels were fairly
uniform throughout the LPS room, so that only measurements near
the shroud were recorded, The SPL's varied randomly around the
shroud for all frequency bands. In the high-frequency bands, there
was, in addition, a small amount of shadowing by the carrier. The
average SPL's are shown in Fig. A-4. SPL variations were less than

+3 dB, so that the field can be accurately approximated by a diffuse
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field. The average level and the spatial variation of the level
in each 1/3-oct band were read from the GR vibration analyzer.

During the acoustic excitation, we measured the shroud AL at
7 points. The points were selected at random, but were all on
the cylindrical part of the shroud. One of the 7 accelerometers
was located near a rib. The accelerometer locations are shown in
Fig. A-3.

The average shroud AL and the maximum variation for the 6
measurement locations¥ are plotted in Fig. A-5 relative to the av-
erage exciting SPL.

The SPL's inside the shroud were also measured during the
acoustic excitation. The measuring microphone was suspended from
a traverse that ran diagonally from one side of the base of the
shroud to the nose of the shroud. Measurements were read directly

from the GR vibration analyzer as we slowly moved the microphone
along the traverse. PFigure A-6 shows the average and the spatial

variation of the measured internal SPL relative to the average
external SPL. The difference between the SPL's outside and inside
the shroud is commonly referred to as NR.

The NR measurement was repeated by using the broadband LPS
g“é acoustic source. Because of the intense SPL produced by this
source, electronic measurement equipment and personnel were sta-
tioned outside the LPS room. Two external and one internal mea-
surement locations were monitored and recorded.

The measured SPL in 1/3-oct bands are plotted in Fig. A-T.
The NR calculated from these measurements is plotted in Fig. A-6

¥The location near the rib is not included. AL's at this loca-
tion are significantly less than the skin levels in most 1/3-
oct bands.
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and can be compared with the NR obtained from the low-level 1/3-
oct-band test. The agreement is good except for the high-frequency
bands in which the NR during the LPS test is significantly less
than that recorded in the low-level 1/3-oct test.

The spectrum of the LPS-produced sound field falls off sharp-
ly at high frequencies. One percent third-harmonic¢c distortion of
the shroud vibration induced by this field produces internal SPL's
in the high-frequency bands that exceed the levels produced by
acoustic excitation in the bands. It follows that the NR measured
at high frequencies in the LPS test is influenced by a small amount
of nonlinearity because of the particular shape of the exciting
acoustic spectrum.

Test 2 1s required in order to estimate the shroud damping
loss factor. The damping loss factor is necessary in order to
make theoretical predictions of the shroud response and NR. It
cannot be accurately estimated without experimental data.

We excited the shroud in 1/3-oct bands with a shaker and mea-
sured the reverberation time—the time for the vibration level to
decay 60 dB after the exciting source has been stopped. The total
dissipation loss factor of the shroud Ng is related to the rever-
beration time T by Eq. (Al)

_ 2.2
T]d - ?I\_ H) (Al)

where f is the band center frequency. The measured dissipation
loss factor for the shroud is plotted in Fig. A-8.

Test 3 is required in order to estimate the absorption in
the internal acoustic space. This parameter is necessary to make
a theoretical prediction of shroud NR and cannot be accurately
estimated without experimental data.
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We excited the internal space with a small loudspeaker that
was placed inside the shroud, and we measured the reverberation
time. The total dissipation loss factor is related to the rever-
beration time by Eq. (Al). The measured internal-absorption loss
factor is plotted in Fig. A-9.

A3. COMPARISON OF DATA WITH THEORETICAL PREDICTIONS

We have predicted the response and NR of the Nimbus-0GO
shroud in Ref. 1. 1In these predictions we used empirically esti-
mated values for the dissipation loss factor of the shroud and the

internal acoustic space. To compare the theoretical predictions
™ with the experimental results, we will use the experimentally mea-
il sured values of the dissipation loss factors.

The predictions in Ref. 1 did not include the axial split in
The shroud. The effect of this split is to add twice the length
of the split to the radiating perimeter. The theoretical predic-

tions used in this section are based on the correct radiating
perimeter, which includes ribs, the end of the shroud, and the

axial split.

Figures A-5 and A-6 present a comparison of the theoretical

predictions with the experimentally measured shroud response and
NR. The agreement between theory and experiment is within the

expected accuracy of the theory.

Other experimental NR-measurement programs have been conducted
on the Nimbus-0GO shroud.® The data from these programs were an-
alyzed in octave bands. We have combined the data from our mea-
surement program to give octave-band results. These are compared
with the results of other programs in Fig. A-10. The comparison
is satisfactory, considering that the NR obtained in the other
programs is based on only a few measurement locations.
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TABLE I: PHYSICAL PARAMETERS
060 Designed Constructed
Assembly Model Model
Shroud:
Diameter 65 in. 32.5 32
Length (cylinder section) 137 in. 68.4 73.5
Surface area (¢ylinder section) 200 f£t? 50 51:.2
Rib spacing, base to 1lst 2h in, 12 16.2
1st to 2nd 30 in. 15 19.8
2nd to 3pd 34 1in, 17 13.0
3rd to 4th 42 in. 21 17.0
Skin thickness 0.1+0.14 in, 0.06 0.087
Material phenoliec phenolic G-11 nema
fiberglass fiberglass fiberglass
Material density 113 1b/ft? 113 112
Longitudinal wavespeed ~10 000 ft/sec 10 000 9500
Internal Acoustic Space:
Volume 374 £td 46.8 34,1
Liner material microquartz same porous
felt fiberglass
Liner thickness 0.5+1.0 in. 0.75 0.75
Liner density 3.5 1o/ftd 3.5 ?
Ring Frame:
Lineal density 2 1b/ft 0.5 0.65 1b/ft
Bending radius of gyration ? in. 0.65 in.
around vertlcal axis
Mounting Trusses:
Length (each leg) 20 1in. 10 ' 9.875
Lineal density (each leg) 0.68 1b/ft 0.34 0.337
Bending radius of gyration, axis 1 ? in. 0.66 0.66
axis 2 ? in. 0.51 0.51
Torsional radius of gyration 1.67 in. 0.83 0.83
Spacecraft:
Panel material aluminum with same aluminum with
corregated core honeycomb core
Panel width 30 in. 15.0 15.0
Panel length 70 in. 35.0 35.0
Panel surface density 0.765 1b/ft? 0.382 0.38
Bending radius of gyration, axis 1 0.258 in. 0.135 0.161
axis 2 0.284 in. 0.135 0.161
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FIG.A-1 THE LPS CARRIER AND NIMBUS-0GO SHROUD
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FIG. A-2
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