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ABSTRACT

A digital program has been written to determine the dynamic behavior of dis-
cretized models for gravity gradient satellite structures, Both passive (elastic
reaction, damping) and active (controller) internal torques can be included in

the computational model. The program can be utilized simply by observing straight-
forward directions given in the introductory section of this report, and a concrete
example (hinged assembly model of the Radio Astronomy Explorer satellite) of
program adaptation is described in detail. To facilitate application to other
configurations a clear separation is made between 1) computations applicable to

a general gravity gradient satellite, and 2) specific RAE computations,

The basis for this digital program is the Roberson-Wittenburg dynamical formalism,
noted and referenced in the text. This formalism grew from the desire to
systematize the rigorous dynamic analysis of structures with multiple interconnected
members. In programming the formulation for the present problem, it was found
possible to supply additional details applicable to a fairly general class of
gravity gradient satellites. Thus the general portion of the program contains
provisions for straightforward implementation of internal moments (passive spring
and damper or active controller torques inherently provided as simple functions
of integrated rates and attitude; constraint torques at locked hinge axes
automatically accounted for by a simple indexing scheme), as well as solar
radiation pressure and thermal (direct Earth and direct plus reflected solar
heating) effects. The necessary astronomical and kinematical expressions are
supplied in a standard form, with explicit relations wvalid for eccentricities

up to one~tenth.

Practical implementation of the dynamical formalism calls for the following
computational refinements: 1) artificial enlargement of small members, to hasten
the integration of high frequency oscillations without materially affecting the over-
all (low frequency) excursions; 2) hinge interactions to enhance the accuracy

of numerical differentiation, necessitated by moment characterization for discretized
elastic members; 3) the use of weak restraining springs and dampers at locked

Joint axes, to counteract the double integration of small numerical errors

incurred by the constraint torque formulation; 4) representation of torsionless
biaxial bending by an orthogonal matrix with one vanishing eigenvector component;

and 5) the use of kinetic or potential energy considerations in fitting segments

to an elastic curve.

Through successful comparison with an independent Lagrangian model analysis, a
three-segment model was deemed sufficient for each of the 750 ft. & inch dia.

RAE antenna booms. Each orbit (approximately 4 hours) of the undisturbed

satellite then requires roughly one hour of simulation time, and the machine time

is approximately doubled by introduction of thermal effects (solar pressure has

a less pronounced effect). The expensive nature of the program is attributed to
modeling sccuracy {e.g., full nonlinear coupling; the interaction between dynamical be-
havior and forcing functions; etc.,) plus the large number of integrated variables, in
comparison witn the number of inaependent co-ordinates,
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FOREWORD

This program was written for use by Goddard Space Flight Center, in the
dynamic analysis of the Radio Astronomy Explorer satellite, under NASA Contract
No. NAS5-9753-10, In combination with additional work performed under this
contract (tasks 15 and 20), the results will provide (1) maximum insight into
the three-dimensional flexible satellite motion, (2) comparison between this
segmented model dynamics and another independent structural analysis (a Lagrangian
modal analysis, documented separately), and (3) complete preparation for an
operational program which provides statistical filtering of boom tip information
(intermittently received by TV stations at fixed points on the Earth) in combination

with attitude and damper position measurements,
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INTRODUCTION

Accurate three-dimensional analysis of non-rigid assemblies has enjoyed
only limited feasibllity and flexibility in the past, due to the existence of
unknown internal forces and moments which influence the relative motion between
members. In many applications these relative motions interact with the rigid
body degrees of freedom (e.g., the flexural behavior of a satellite boom changes
the moments of inertia which in turn affect the attitude dynamics). Because of
the resulting complexity, previous investigations have often employed analytical
transformations whose detailed form depended heavily upon the specific configuration
studied.

In order to provide a method applicable to a more general class of
dynamical situations (e.g., flexural and torsional behavior of discretiged structural
models; attitude control of a hinged aatellite assembly), a two-body Euler formu-
lation devised by Fletcher, Rongved, and Iul was extended to the N-body case by
Hooker and Margulies;* the explicit development was then advanced by Roberson and
Wittenberg.3 These recent advances have been employed in a digital program capable
of describing the rotational dynamics (attitude matrices and inertial angular
rates) of multiple interconnected rigid bodies. The program is applicable to
structural or attitude control problems subject to the conditions (1) existence of
a unique path between any pair of bodies (the arrangement then conforms to the
definition of a topological "tree"), and (2) characterization of interconnections
by hinges which, for any pair of adjacent bodies, must be fixed in both members.

The present scope is restricted to gravity gradient satellites in a
Keplerian orbit with eccentricity less than 0.1. In addition to the effects of

ellipticity on gravity gradient torque, the program includes solar radiation pressure



(at 100% reflectivity) and thermal bending of booms; heat flux sources are the
sun and Earth (direct), plus the component of solar heat. refiected by the Earth,

For a reasonably general class of satellites falling within the above scope,
the program lends itself quite readily to _implenentation of accurate dynamic analysis.
Although the pertinent mathematical developments (derivations in Refs. 2 and 3,
augmented by the additions in Appendix A of this report) involve several arrays of
variables, techniques for computer storage optimization have produced a practical
computational arrangement for structures containing up to 26 members.* Aside from
a few poasible adjustments involving specific satellite geometry,#* all that is necessary
for immediate use of the program 1s a specification of the familiar satellite
parareters, listed together with the corresponding Fortran designations in quotes
below; (Appendix B demonstrates this specification procedure for an illustrative
model of the Radio Astronomy Explorer (RAE) aate]lite;“ the explicit thoroughness
of the l?m:aez'son-l'litt'.enburg3 formulation is attested by the extreme simplicity of
these parameters):

System Parameters

N  (“N”) The number of rigid bodies in the system (There are then N-1 hinges).

m (“,EM") A vector (N x 1) defining the mass of each body.

¥To exemplify the demand for machine capacity it is noted that, with 26 members,
the augmented inertia matrix of Ref. 3 has (26 x 3)2, or over 6000, elements. This
alone consumes about twenty per cent of the IEM 7094 core (the program is written
in single preciaion).

#% Tf solar pressure and/or thermal effects are to be taken into account (AEﬂF o,
J¥ %0, or J¥ 2 0), see Appendix C.

Also, if formulations of curvature (for hinge moments of discretized booms) require
accurate numerical derivatives, the "interacting joint" technique exemplified in

Appendix B must be used.



I (n An)

R (\\Ru)

R' (“RP")

S (\\su)

f (\I RHO")

A third order tensor (N x 3 x 3) containing the principal moments of
inertia for each body. (The off-diagonal terms, though initially
gero, will be appropriately augmented in accordance with the dynamics

in the program).

A third order tensor (N-1 x 3 x 3) of restraining torque coefficients
which generate position feedback (for control problems) or elastic
reaction (for structural analysis) at each hinge.

A third order tensor (N-1 x 3 x 3) similar to R, but generating hinge
torques proportional to relative angular rates between each pair of
adjacent bodies,

A matrix (N x N-1) of ones and seros constructed simply as follows:
Number the bodies (1 to N) and the hinges (1 to N-1). Set 54 3 to
zero for every combination of unconnected body (i) and hinge (j). For
each pair of adjacent members (I and K) identify the one (body I)

to which the coefficients R and R' are referenced.* Set S,., to +1

1J
and Sg; to -1 (where J is the hinge connecting the I and K members),

A third order tensor (N-1 x 3 x 3) defining the orthogonal trans-
formation between each pair of adjacent body principal.axes in the
undeformed or rest position., In the notation of the preceding ltem,

[’J] is the transformation from K to I co-ordinates.

#0One example requiring such an identification would be a skewed boom hinged to a

satellits hub,

The rotational degrees of freedom of the hinge would presumably be

referenced to principal axes of the boom (bending and torsion), rather than the hub.



c (“¢") A matrix (3N x 3N) generated from S as follows: All elements outside
the upper left (3N x N~l) array are zero.®* For each zero in S,
place a2 (3 x 1) null vector at the corresponding position in the
upper left (3N x N-1) corner of C. Choose a right-hand convention
for positive rotations about principal axes of each body (consistent
with the definition of A), and express each mass center-to-hinge
vector in these principal co-ordinates. For each nongero element of S,
multiply the corresponding mass center-to-hinge vector by Si 3
and enter this product in the corresponding location of C.

AE (“AE") A vector (N x 1) defining the effective surface area of each body,
assuming 100¢ reflectivity for solar radiation pressure.

Ne (®NC”)  The total number of locked hings axes in the system. (To clarify
this definition it is noted that the system has 3N-Nc rotational
degrees of freedom). The present program capacity allows up to
thirty-eight locked modes,

/| (“M[") A vector {B(N -1) x l} defined simply as follows: For every
locked hinge axis identify the joint number (J) and the locked mode
(L =1, 2, 3 for x, y, z respectively); compute the argument
=3 (J-1) + . Number the locked modes 1, 2, ...N_ and, for
each value of (j) representing a locked mode, set H;] equal to this
index number, For all other values of (J), set M j to gero,

*These locations are used at a later point, after C is no longer needed and its
storage is utiliged for other purposes.



JE' ( WXJE n)

Js' (nxJsn)

Thermal bending constant computed as shown in Equation(A—l9)
from Earth heat flux (J.; Equation A4-15); linear thermal coefficient
of expansion (e); boom segment length gﬂ), diameter (d), thickness

(3 ), earth heat absorptivity (aE), and thermal conductivity (k).

Thermal bending constant computed as shown in Equation (A-19)
from the above parameters, with (JE) and (a.E) replaced by the solar
heat flux (JS; Equations A-1l6 and A-17) and solar heat absorptivity

(a.), respectively.
S 3

Initial Conditions and Program Control

9 (uTHn)

@ ( "WV n‘WMn)

T ("ORBS")
NR ("ENR")

EL (nERLn)

A third order tensor (N x 3 x 3) containing the dirsction cosine
transformation from each set of body axes (defined for C above)
to reference axes.* The reference axes are defined by the upward

local vertical (+Z) and the orbit pole (+Y).

A vector OWﬂ”gBN x 1) equivalenced to a matrix (WWM"; 3 x M)
containing the absolute angular rate for each body, expressed in

its own (principal axis) co-ordinate frame.
Total number of orbits to be simulated in one run.
Number of readouts per orbit.

4 vector (12 N x 1) of allowable absolute error per integration step

for angular rates (rad./sec.; 1 to 3N) and direction cosines

(3N + 1 to 12N),

#It is thus seen that these addresses contain the desired information (satellite
attitude, shape, angular rates) which can be read out at any time. To begin
the computer run, the initial values are stored in these locations.



Astronomical Parameters

a, (azv) Semi-major axis of orbit.

e, ("Ez") Eccentricity of orbit. (The present program assumes eo < 0.1,

but an extension could readily be made).

to (r1Z"n) Time at periapsis, relative to the time (t = 0) at the start of the

simulation run.

io ("EYZ™) Orbital inclination.

SZO ("THZ ") Longitude of the ascending node.

wo (mwzn) Argument of the perigee.

ND ("™ND™) Launch date (e.g., Ny = 1 for January 1).

For most programs it will be convenient to compute many of the above
parameters from other, more basic, inputs (e.g., length, modulus of elasticity,
angles at connecting points, etec.). This portion of the program will therefore
consist of (a) Part I; controllable (punched card) inputs, and (b) Part II;
fixed and derived inputs. Again, reference is made to Appendix B for an illustration.
It is noted that the present program setup calls for inputs in MKS units, and the
above angle inputs should be expressed in degrees. Also, any of the above provisions
(auxiliary variables, additional dimension statements, print-out directions, etc.)
mst also be added to suit the individual problem under consideration. In general,
the d esired readouts will be simple functions of the angular rates (@W-array) and

attitude matrices (@-array).



GENERAL PROGRAM COMPUTATIONS

The preceding introductory material contains the information required
for program utiliszation. For those interested in the approach, the present
discussion describes the fundamentals of the formulation (Refs. 1~3), and
additional detail is included in the Appendix,.*

To determine the behavior of coupled rigid body motion, the rotational
dynamics are first expressed as a set of equations in the usual form,

(116 + [811]e = 7 &)

where (I] , @ ,[6] , and Z denote inertia tensor, angular rate vector,
the operator (@ >€ ),-and total torque vector, respectively. Since this

Euler relation holds for each of the (N) members of the structure, Eq. (1) can

be thought of as a (3N) dimensional equation; & therefore has (3N) components,
representing the absolute angular rate of each member as previously defined.

The total torque vector z consists of (a) external torques, (b) internal
torques, and (c) moments of internal forces. Since the internal forces are
generally unknown and are not of primary interest in themselves, it is desirable

to replace them by equivalent quantities obtained from Newton's laws. Consequently
the internal forces are re-expressed in terms of external and d'Alembert forces;
the motion of the composite structure mass center is then eliminated from the
equations. As a result, the d'Alembert forces can be defined by second derivstives
of poasition vectors relative to this composite mass center. Through the dynamical
formalism, the moments of these d'Alembert forces are written in a convenient

computational arrangement whereby

¥This report describes only the details of implementing the dynamic computations;
for details of the formalism itself the reader is referred to Ref, 3,



(1) part of the centripetal component is included as a constituent _q.
of the total torque :/_f 3

(2) the remainder of the centripetal component is taken into account
through replacing [I] in the second term of Eq. (1) by a constant
augmented inertia matrix [K:l H

(3) the tangential component (associated with ‘_:-‘_ ) is taken into account
through replacing [*] in the first term of Eq. (1) by the augmented
inertia matrix K+ Y] | vhere ['¥] varies as a known function
of the previously defined attitudes [8] .

With the external and internal torques, and the moments of the external

forces denoted (as in Ref. 3) by t_-_ R QTG‘ [S] 3_§ , and [p]f respectively,

Eq. (1) is rewritten as Eq. (15) of Ref., 3:
K+v]ae +[@][k]@ =L-[PIF+eelS]X+Q (2

To adapt this formulation to the present program, the two terms in the
gravity gradient expression (Eq. 19 of Ref. 3) are symbolized here as ( H - _G_')
respectively; the transformed force vector §" is then substituted for C_'I_'
to include solar pressure effects (Eqs. A-40 and A-4l in Appendix A of this report).

The first two terms on the right of Eq. (2) can then be expressed as
rr
L-[P]JF = H-G (3)

The internal torque vector is then separated into two constituents as suggested

in Ref. 2;

eolsl® = " + [¢]T, w



4
where '3;' includes all spring and damper torques while IC is a vector in which
the (iih) component represents the constraint torque in the (iﬁh) locked mode
(see the definitions for N e and'm in the preceding section); [f] is the matrix

defined by Eq. (A-28). The quantities on the left of Eq. (2) are written as

Frlelk+v] ; weald]lxle (5)

so that
e = g +[F]T, ©

where
E=-wW+H-G"+2Z"+@ )

In Appendix A it is shown that this leads to an expression of the form

r1e = e-CeHE ' FY T e« 2} e

which is the actual equation solved through numerical integration in this program.
Just as the specific system portion of the program has been divided
into (a) Part I - Controlled inputs, (b) Part II - Fixed and derived inputs, and
{c) Readouts, the general program operations fall into three categories:
(a) Part O - Program setup (e.g., dimensions, physical constants, etc.)
(b) Part III - General system constants (e.g., barycentric vectors as
defined in Ref. 3, etc.), and
(c) Part IV - Evalustion of derivatives and numerical integration.
The Fortran nomenclature and operation sequence were chosen to maintain
reasonable storage requirements without incurring any appreciable loss in computation

efficiency. The six largest arrays consume roughly twenty thousand storage locations,



accommodating a maximum of 26 members and up to 38 locked modes for the
complete satellite assembly. All steps of the general computation are identified
in Appendix C.

10



APPENDIX

Most of the detailed theoretical background for the gravity gradient
satellite program is contained in Reéf, 3. In restricting the Roberson-Wittenburg
approach to this application, however, it was found that additional aspects of the
formulation (e.g., hinge moments, additional forces, etc.) could be defined more
specifically with little further loss of generality, The various computations
added to the general program are described in Appendix A,

In order to illustrate in a concrete manner how this program can be
applied to an existing satellite, a model of the Radio Astronomy Explorerl’
is described in Appendix B. A detailed description of the computation then
follows in Appendix C, in the form of an annotated Fortran listing.

It was found convenient to treat much of the notation in an individual
sectional basis, with various quantities defined in the text of the derivations,
The Roberson-Wittenburg not,a.'c.:lon3 , however, and its additions (e.g., augmentation
of external force by the solar pressure, etc.) described in the body of this report,
are retained. Components of torques, angular rates, and angular accelerations,
for example are expressed in the co-ordinate frame of the appropriate structural
member; it follows that vector equations are generally written in these body co-
ordinates, The IJK index (previously defined in terms of the incidence matrix
[S] and the satellite shape ] ), and much of the additional notation defined
in the body of the report, arises repeatedly throughout the analysis. For the
model of gravity gradient booms, the cross-section is presumably circular (either
s0lid or hollow); the length is chosen along the body x-axis, with (y) and (=)
alopg the principal inertia axes of the crosa-section. In all cases, the principal
inertia axes are used for body co-ordinates, and standard right hand conventions
are -used for angle transformations; the matrix notations l: ]T B tz[ ] 3 and

11



[’ ]u represent transpose; trace; and an orthogonal transformation obtained
by a positive rotation of ( ﬂ ) radians about the u-axis, respectively. j'-d

represents the (& ) colum of the 3 x 3 identity matrix [I33] .

12



APFENDIX A

ANALYTICAL FORMULATIONS APPLICABLE TO
THE GENERAL PROGRAM

In Ref. 3 the hinge moment computation was left open in order to
maintain generality of scope for the dynamical formalism, For the gravity
gradient satellite program it has been found that the torque at each joint
can be characterized by a convenient formulation applicable to numerous hinge
types. The method uses straightforward program logic based on the incidence
matrix [3] » with the torque computed from the eigenvector and trace angle of
the orthogonal transformation between adjacent members, When the "rest position"
of one member relative to another is variable (e.g., due to thermal bending),
the same basic formulation is augmented in a straightforward manner. The
Mocked mode" torque described in Ref, 2, for hinges with less than three degrees
of freedom, has also been programmed,

In addition to providing explicit hinge moment computations, the program
includes the force on each member due to solar radiation pressure, Finally
there is a kinematical relation appropriate for satellites in low eccentricity
orbits, and the position of the sun must also be defined in relation to satellite
orientation., All of these items are covered by the analytical background
material in this Appendix.

Hinge Torgues

From the INTRODUCTION it is recalled that the undeformed shape of the
satellite is defined in terms of the matrices [P J’] , where J (€ N-1 ) is
the hinge index number. The next section illustrates how a modified matrix [’;]
performs this function when thermal effects are included, It follows that the

1 4
reaction torque at hinge J is zero when the relative orientation {[V ]

13



T
2 [e;] [® K]} of the two members touching this hinge is equal to [’:;’] ;

in general the hinge moment is a function of the deformation matrix,

r T
V] =[5
J
More specifically, the reaction torque is a function of the trace angle,

A = Arccos {Ji In [V] = ‘é’} (A-2)

and the unit eigenvector y_ of [V] which points along the positive axis of
rotation. This vector satisfies the equation (denoting the 3 x 3 identity by
I)’

[V-1Ju =0 -2
and therefore can be computed from the cross product of any two nonvanishingk*
rows of [V‘I] .

The product ( )\g ) can be thought of as a displacement vector which
generates a reaction torque. Immediately this suggests the form for the '"position
feedback" torque for a linear system having negligible delay:)\[RJ]u s where
[RJ] is the restraining matrix for hinge J , described in Section 1.1.

For attitude control problems the elements of [R_J are easily identified as the
controller sensitivities; for structural applications [R] consists of rigidity

coefficients which are readily derived from the small angle* flexure and torsion

formulas,

¥e.g., when U is along the x-axis the first row of V=11 will vanish. Further-
more, when Y is too close to the x~axis the use of the first row of [V=-1I] in
the computation would lead to numerical problems. Program logic avoids inaccuracy

of this type,
##This restriction of course holds only for structural reaction torques, In contrast

to restricting the scope of application, moreover, this can be viewed as a require~
ment imposed upon (N) since the angles can be made smaller by separating the model into
a larger number of segments, Finally, it is noted that the hinge moment formulation
could be modified to account for larger angles.

14



Ed d63/df (A-4)
Torsion Moment = & } d91’ / dl (4-5)

Bending Moment

vhere E | G s J’ s and j represent Young's modulus and the shear modulus
of elasticity, the in-plane and polar area inertia moments of the structural member
cross-section, respectively; (403 /d,C ) is a measure of bending curvature

which can be approximatedi by (/\Ui/ l ), where Ui is the component of ‘-_.!

along the axis implied in Equation (A~4), and ¢) is the distance between centers

of the members joined by hinge J 3 a similar approximation is used for the
torsional gradient (de'r / dl, ). It follows that, for structural members

with no inherent coupling between bending and torsion (such as that which would arise

from displacement between mass and shear centers), [RJ-] is a diagonal matrix

withelements(64/1 ),(E!‘”/j ), and (EJ;/,& ),wherelny and-l;

correspond to principal axes of the cross-section,#

In addition to the above position feedback or elastic reaction, there
may be a moment restraining relative angular rate between adjacent members. From
the definition of [R'] it follows that this component of torque in the co-
ordinates of body I is

r r -6
[RS](—“-‘K"—“‘I) 5 wy & v ey e

4
and (recalling from Section 1.1 that ['R-] and [R ] are referenced to body I)

the total hinge moment acting on body I is

&/ = AlRJY + [R1(@) - ©;) (a-1)

#In many applications this first approximation will be inadequate; Appendix B

illustrates a refined approximation method for (dGa /3 ) which was success-
fully applied to the RAE program,

15



and the hinge moment on body K is
zr = -v1 2] ()

This completes the discussion for this portion of the program., Before
leaving this topic it is noted that ( 1 ) various nonlinear functions of the
deformation ( A LJ ) and/or the relative rate (Q;‘ Ql) could easily be
programmed, to simulate nonlinear reaction torque characteristica encountered
in practice; and ( 2 ) delayed feedback torque supplied from band-limited devices
could be computed by standard convolution integral techniques,

Thermal Bending

Gravity gradient satellites often employ long narrow booms which are
prons to nonuniform heating., A convenient way to take this into account is to
replace the zero torque rest position matrix [’J] for each hinge by a new
matrix [/‘d'] which defines the reference shape under uneven heating conditions.
This new matrix can be formed by a simple orthogonal transformation of its

original value,
(57 = 41,04, 4] (-5

where the bending angles (§y ) and (&5 ) are identified by combining this
) 4 z

expression with equation (4-1):

rqT
=[-8, 1,0 1v]
[V] [ 8l];:_[ 87]y[’;]
U
Structural deformation is zero when [V] is the identity matrix. Since [V J
is the transformation from actual I to K co~ordinates and [P J] is the transfor-
mation from K to original reference axes of I, it follows that the product
"5 [“‘8 ] must be the transformation from the original (undeformed)
2z ly

to the new rest position (zero torque) axes of body I. This angular displacement of

16



the reference orientation for each segment in the discrete model is obtained by
inscribing a set of chords (n = number of segments per boom) inside the arc
formed by thermal bending, The present description will begin with an
example of planar bending caused by a single heat source, followed by extension
to the general case,

In Fig. 1, J denotes the hinge connecting body I (represented by
the chord JJ’) to body K, which may be visualized on the left of the hinge.

The reference orientation of the I

€

N segment in the absence of heating effects
J —>TI, will be taken along the direction of the

T arrow IO' Thus & is the bending
\i angle due to a heat source in the
direction € , tentatively defined
in the plane of the figure.

Under the above conditions the

' 4
arc JJ is essentially circular¥

0 with center at O and radius of curvature
Re meters, with ( 2 ) again defined
Fig. 1 Effect of Thermal .
Bending as the distance between centers of the
members joined by hinge J , it is seen

that the average change in angle per unit length is ( &/ j = 1 / Re )

and, combined with Eq. (4) of Ref. 5,
£
§ = ¢=(aT) (A-10)
A

#Just as in the preceding section, this small angle approximation is valid pro-
vided that the model contains a sufficient number of segments,

17



vwhere € , A , and (AT ) denote the linear thermal coefficient of expansion
(°c )-1 , boom diameter (meters), and diametric temperature differential (°C),
respectively, With the unit vector along the segment 22 (length) axis JdJ r
denoted by _1-_, it is seen that a direction¥ for & can be defined by the unit
vector {§_ X _1_-_| /l_e_ X l'l } . By reason of the small angle approximation

for adjacent segments, then, the finite rotation can be treated as a vector,

= &2 T) £x1, (A-11)
d lext
Since I'& X 1 ,l is equivalent to the cosine of the angle betwsen ‘_e_

and the normal to the segment, Eq. (6) of Ref. 5 can be written here as

AT 4‘ _
lexi] ~ gxs %) i

and, therefore,

el d
.‘i. = bK< (4?)(ex ) (4-13)

in which X , T , & , and 1’ represents thermal conductivity (large
calories/second-meter—°0), boom thickness (meters), and the absorptivity and heat
radiation (large calories/second—meterz) of the source, respectively. The
convenience of this formulation is apparent when different heat sources are combined;
with direct earth radiation and direct plus reflected solar radiation (at an

albedo6 of 0.4), the unit vectors in the source directions are denoted as

#The cross product conforms to the definition of [SJ a8 the tranaformation
from the original to the deformed rest position of segment I,
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qr,

€ q.
= Solar =171z
3

- e

"em

ﬁggrth =1-613;

- 6133

and the thermal deflection angles are computed from resultants thus: For the

y-axis, the right of Eq, (A-13) is written with the substitutions,

I, Direct Earth

II. Direct Solar

1) @ =dg , sbsorptivity for earth radiation,
2) %- =?J£ , where F s computed from the

earth radius (RE) and the Keplerian orbital
distance (JT ) as"

7= Z[’ -y1- (Re/)’ ] (A-14)

and JE is the Stefan-Boltzmann constant

(5.67 x 10-8/L|.18h large calories per sec
per sq, meter per °K1“) miltiplied by the
fourth power of the effectives spherical

blackbody Earth temperature (246°K):

-8
.L7%10 3
Je = '547;4"_ (z4¢) (4-15)

[ﬁ"it.] +l,= -613

1) 4 = Ag, absorptivity for solar radiation,
2) ﬁ- = JS (Ig-1), where

2, sun not eclipsed
I -

1, sun eclipsed

19



and JS is the product
- A-16
Js = P /4184 (ae)
with £ defined as the speed of light

(3=x 108 m/sec) and

Py = 4.5 x1078 (ovt/ud) o)

3) {ﬁ xl'] . lz =913
III. Reflected Solar 1) 4 =Aag
2) " = .4 ?‘Js(rs’ 1 ), where all
of these quentities are defined above. It
is noted that ? is not the true coefficient
to be used for reflected radiation, but it

provides an excellent a.ppm:d.ma.tion.7

3) [ﬁxl,].lz = —6I33

The total rotation about the y-axis due to thermal bending is therefore

= 4 ’ _ _ (4-18)
8),- -3 Je 6133 + ‘JS (q'“ 47 0133)(15 1)
where
J'-— elegJ . J',_ e .stJ (4-19)
T HAY YE0 S hks Vs
and, similarly, thermal bending about the m-axis is obtained by the negative
{[ﬁ"l.]‘lf"z.} angle transformation in Eq, (A-9) with
(A~-20)

$,=-7 Jg O3z + Jg (932 4 #6132)(Is- 1)

20



Thermal bending throughout the entire structure is accounted for by
repeating these computations at every applicable hinge. For example, in the case
of a nominally straight boom, the reference direction for the segment to the right
of J ’ is the extended line JdJ '; this segment is then denoted as I in
computing the bending angles at J' , while the chord Jd r takes the role
of segment K . The preceding formulation then applies to the computation of
angles st J r , and likewise to all hinges where thermal bending can occur.

As a further refinement is is noted that the matrix ["8!.]z[+ 5/] y

can be replaced by

. v e -8). -
F+Téa 54z (T-1)
sl= §y + T oz y 8z (A-21)
[ ] S? 5;1‘8! 5y + &3 ;e l-s;-s;

582 (T-1)  SE+Téy
8)' Sy +83 S+8%

It has been verified that this matrix is orthogonal and that the x-component of

its real eigenvector is zero,

Constraint Torques at Locked Joints

In many instances there are hinges which are constructed to allow only
one or two degrees of freedom, or it may be desirable to remove a degree of freedom
from the computation model.¥ When a hinge constrains relative motion about the
o ~axis (£=1,2 ,3 for X ,Y , & respectively) of a given
member (I) of the structure, the & -component of the relative angular raste between

body I and K, expressed in I-coordinates, 1s set to zero:

*e,g.,, if the torsional natural frequencies of a gravity gradient boom are very high,
it may be convenient to assume that only flexure is possible,
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17 {a - [o;]Toxl ey} = 0 (1-22)

As noted in Ref, 2, the first step in deriving the constraint torque is to
differentiate the above expression. It is shown in a later section of this

Appendix that

Y4t [or] = [6,)[:]-[N][6:] (122

(where [‘l] and [N] are skew-symmetric angular rate matrices), so that

178, - 17 { (10, Te, - [N ) o] @, + (ren
B (I~ [NI[8]) 2 + BT Tox] Sk } = o

This is simplified by accounting for 1) the skew-symmetric character of [:n-] and
[N] , and 2) the property [-'QK-] By = O ; introducing the previously

! 4 [ 4
defined notations [V J and QK R

T{a 1o Yo -7 r
T{e-v1a, )= -1] ey (1-25)
There will be a scalar equation of this form for every combination ( J , o )

which represents a locked joint constraint, It is therefore appropriate to

define an identifying argument ( j ) for each locked mode,
j’ = 3(J-1)+« (A-26)

plus a column vector ,’_” having 3(N=1] ) components such that lmé is zero
for all unlocked modes and, for locked modes, ’”? a', is an integer representing

the ordered index of that mode ( | £ ’7)7} € N¢ , where NC is the total number
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of locked modes), The set of equations (A-25) can then be written in matrix form
®
[YJ W= -y (A~27)

vwhere [f] is a (3N X NC ) matrix in which the only nonzerc elements are
the unit vector components
[ 4

o = 'y ; F =~ L: v'1 (4-28)

o Ith th
in the M2  row and the L = and K triplet of columns respectively, I
and K representing the bodies constrained by the 'l(; locked mode. The

®
vector @) in (A-27) is the same angular acceleration vector appearing in the

Roberson<ittenburg equation; and _\! is a vector (ch | ) whose m", component,
is

Vo= 1; ] 9.—‘,:

tm} (A-29)

where (d, 1 ) K ) of course correspond to the locked mode under consideration.
T -
At this point, Eq. (6) is premultiplied by [$] ["] ' and
combined with (A-27):

T = (e F ) {[F1Tr T e v 0} o

80 that the final differential equation is

& - -(F1{B1 00} {5101 e+ 2} (1-3)
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Radiation Pressure

The present formulation involves the effective solar radiation force
on each member of the structure, expressed in the co-ordinates of that member.
Although the pertinent theory is well-known, an example of a typical boom segment
(again denoted here as "body I") is treated here to illustrate application to the

problem at hand.

It is convenient to begin by considering a flat surface of area A
subjected to a radliation pressure from a source along the unit sunline vector -Q:I
(see Eqs. A-50 —— A-54). With the force per unit area of A denoted by ( f’ )
the component of the effective force along M due to incident radiation has a
magnitude fA l!:‘l"_ Al , where W1 A 1s the unit normal to the surface A.
With perfect reflection, the total force due to incident plus reflected radiation

is directed along ( = M A ) and has a magnitude

5] = ZfAILfI'_A] (A-32)

While (‘P ) is defined as the force per unit area of A, it is more convenient to

work with the characteristics of the source itself; it is easily shown that
- -1
p = A | € - 24l (A-33)

wnere Pg  is defined by Eq. (A-18). It follows that

2
IFl = 2R (%-,)%A -

Application of this theory to nonplanar surfaces ls straightforward

in principle and, for regular geometry, often leads to simple solutions, Each
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section of a gravity gradient boom, for
example, can be represented by a cylinder,
centered about the boom torsion axis l. .
Fig. 2 shows a small section of width

(d 2& ) with a principal normal (defined

as the normal to the surface extending out-
ward from the center of d4¢ , and lying
in the plane of 1 ! and 9« I ) along

the direction N o + 1t is permissible

to consider the unit sunline vector EI
as originating from the intersection point

Fig. 2 Radiation Pressure on of -1*! ;Ng ,and 0 » S0 that the

S .
ection of Cylinder spherical law of cosines can be invoked:

(€°0,)= (N, )cos A (a-35)

where the significance of n A of course lies in its orthogonality to the

differential surface area

dA = é— d\ dx (A-36)

in which (J ) represents boom diameter. Preparations are now complete for
integrating the force over the cylindrical area, It is first noted that the
component along j'-l vanishes in the present problem because the resultant

must be normal to the surface; furthermore the component along (L. xn ° )
vanlishes by symmetry, For the differentlal area dA the component of force aleng
(= !"0) is (JFA coS A ); it is this quantity which must be integrated using
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(A-34) through (A-36):

W -
2P, (¢7°1 )‘(é)f:f:;: cos A dAdx e

Fcyl

e
It can easily be shown that this is equivalent to ZPSAE ({I' ﬂo)

where A: is the cylindrical effective area,

= 2 (4-38)
A= %124

Since the direction of the effective force is along the unit vector

(o)
- - L.X (-1=| x 9:1) "l o'rz {A~39)

o xg)| Aeiead 913

the solar force vector expressed in I-co-ordinates is

(0]
= |2 | (2R) Vg + < A ()
-3

(A~40O)

Ecrl

By a derivation along similar lines it can be shown that the effective

radiation force vector for a sphere is

fsph = —S:I (ZPS) AE (SPh) (mat)

where the effective area for a sphere of radius ( ,t’ ) is

2 (A-42)
Aeisphy = 574,

Presence of these forces must of course be subject to the condition of

no eclipse.,
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Kinematics

In this section the orthogonal matrices [B] ;[.er] ; and [D] will
denote transformations from principal axes of a structural member (body I} to a
set of inertial axes; from the body axes to a set of local axes; and from the

local to the inertial co~-ordinates, respectively. It follows immediately that
(8] = [0](e,] (A43)

and it is well-inmown that

%t [B] = [B] [nr] (A-bd)

where [ﬂ. I‘] is a skew-symmetric matrix of inertial angular rates (Sl;).z =
-Wrys a1)|3 = tUyg, ;Q;’zs = =Wg, ). Defining the local axes
by (+y ) along the orbit pole and ( + & ) along the upward local vertical,

d/dt [D] = [D] [N] (A-L5)

where [N] is a 3 x 3 matrix whose only nonzero elements appear in the positions
(N|3 = - N3l ) representing the time derivative of the true anomaly; from the

appropriate equation on page 262 of Ref. 9 it can be deduced that

N|3 = 1,}‘(5 h/lz (A-46)

where +° = ao(l—e:); /‘lE , U, do , and @4 are defined as
the Eairth gravitational constant; the Keplerian orbit position vector magnitude,
semimajor axis, and eccentricity, respectively,

By differentiation of (A-43),

Yar (03] =[] %4 [B] + {44 [0} (8] ()
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and, in combination with (A-43) through (A-45),

d/dt [91] = [91] [n-l] +[.N]T[er] (A-48)

To compute the angular rate for the matrix [NJ it is noted that
gravity gradient satellites generally have low eccentricity (e.g., less than 0.1).
The quantity (JU ) in (A-46) can therefore be determined explicitly by a series
approximation on page 153 of Ref. 9; using the notation (’\'n ) for the mean

anomaly,
n-= 40[1- €, cos Am - ;'-ge:‘ (cos ZA,.,,‘ 1) (A-49)
- '§ e: (3 €oSs 3Am - 3 CoS Am)]

Astronomical Geometry
Solar position is determined using the celestial sphere model on page 9

of Ref. 9., A value of 23,5° is used as the ecliptic inclination and, on the

( PJ],SQL) day of the year, the sunline vector makes an angle of
¥, = 2w (N, - 80)/345 (4-50)

with the vernal equinox. The sunline vector expressed in inertial (celestial
sphere) co-ordinates is therefore

cos ¥
S (4-51)

g7 = |cos 23.5° sim ¥y
sin 23.5°sin ¥g

To define this vector in local co-ordinates the inclination, longitude of the
ascending node, and argument of the perigee for the satellite orbit are written

as { 10) flol bdo ) respectively, and the true anomaly is computed explicitly by
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the series approximation on page 154 of Ref, 9:

V= Apt2¢smAy + %_ eZ' sin 2Apy, + (A-52)

-,I!-e: (|3 sin 3Am - 3 an Am)

vwhich is again accurate for most gravity gradient satellite applications

( e, £0.1). The sunline in local co-ordinates is therefore

o ! 0 ) vy (a-53)
f’ =10 O | [wo-v-\l‘]z [l°]x[ﬂ°]i g
I 0 0

The unit vector pointing toward the sun, expressed in body I-axes, is then

obviously,
T _»
= A-5L)
r=[e] ¥ (

and it is this vector which is used for the appropriate thermal bending and radia-~
tion pressure computations,

This completes the description of analytical formulations used in the
gravity gradient satellite program, The next Appendix describes an example

configuration (RAE sa.telli‘beh) .
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APPENDIX B

THE RADIO ASTRONOMY EXPLORER (RAE) SATELLITE
CONFIGURATION AND PARAMETERS

The RAE satellite described in Ref. 4 is cruciform shaped, passively
damped with a horizontal libration damper boom skewed out of the plane of the

crucifomm, 10

The typical RAE example configuration is shown in Fig. 3 with
the flexible antenna booms approximated dynamically with 3 rigid segments per
boom. The four 750 foot antenna booms in their undeformed state make an angle
of 30 degrees with the Z HUB axis in the cruciform plane, The damper boom
(assumed rigid) is spring restrained to its reference poasition relative to the
hub, and is skewed at an angle of 65 degrees from the cruciform plane, Each
rigid body or member and each hinge is indexed as shown in figure 3. The
hinge numbsers are denoted by an underline. For a larger number of segments per
boom, the same counter-clockwise numbering scheme would be used.

Each member has a body-fixed set of right-hand coordinates defined
collinear with the principal inertia axes, and the origin is the mass center of
sach member, Only the direction of two axes need be given for the right hand
coordinate frame to be well defined., The hub axes are shown in Fig, 3. THE
FOLLOWING COORDINATE FRAMES OF THE REMAINING MEMBERS ARE DEFINED WITH THE
SATELLITE IN ITS UNDEFORMED CONFIGURATION, and it should be remembered that the
axes remain fixed in each member even after relative rotational displacement
between then:

The damper boom Z and X axes are in the direction of & HuB
and the outward directed damper boom centroidal axis respectively. In each

antenna boom segment the Y and X axes are in the direction of IHUB
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ANTENNA BOOMS

Fig. 3 RAE Configuration
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:and the outward directed antenna segment centroidal axis respectively. For
radiation pressure effective area computations the hub is assumed apherical in
shape, while the damper boom and all antenna segments are cylindrical. It is noted
that the damper boom is free to rotate about its Y  axis only.

All parameters in the RAE simulation are expressed in MKS units. However,
since many RAE satellite properties are given in English units, appropriate
conversion factors are listed below., Following this is a description of RAE
variable inputs (Part I), fixed and derived inputs (Part II), and inputs to the
general program (Parts III and IV) as defined in the INTRODUCTION of this report#,
Included also are the formulations for initial conditions, magnetic hysteresis
damping torque, and readouts,

MXS Units
Length - Meters (m)
Mass ~ Kilograms (Kg)

Temperature - Degrees Centigrade (°C)

Heat - Large Calories (K-cal; i.s., the amount of heat required to raise
the temperature of 1 KG-H20 by 1°C.)
Force - Newtons (Newt)

Conversion Factors

.3048m = 1 ft.
14.5939 Kg = 1 slug
1 Newt = ,2218 lbs.

418l Kcal = 1 Newt-m = 1 Joule

#Along with the mathematical symbol, the actual Fortran statement as used in the
progran is given in quotation.
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System Parameters

n (wNPBn)
Sd (»sb1v)

fd (nFDu)

RAE VARTABLE INPUTS (PART I)

Number of segments per boom (1 £n¢ 6 ).

Dai:per apring constant ratio. This ratio is defined as the
damper hinge restraining spring constant R('/zlz) divided by
the corresponding 'gravity gradient spring constant':

[ df;: R (u,z,Z/[(”sm,&)I("z'z) (Pe/a3)] (B-1)
where ( Mg) and ( @, ) are defined after Equation (A~46); the
angle (& ) is (-f—';‘—';-"— - &), where ( ¥ ) is the equilibrium

yaw angle defined later in this Appendix. Sgq  should be
greater than unity so that the damper boom will sesk a horizontal
rest poaition.

Linear damping or non-linear hysteresis type damping option

at the damper boom hinge. To simulate hysteresis damping, set
fd = 0, To simulate linear damping set fd equal to the

desired damping ratio, defined as

(B~2)

L4
R,2,2)
A (A} \
1= /[Z I(;/z/z)'\/ (3+sin28)(s4-1) (M5 /a2) ]
It is noted that thls conforms to the standard expresaion for

a damping ratio, with the stiffness term defined as the combined
effect of the spring restraint and gravity gradient,

#The hysteresis damper simulation is described later in this Appendix,
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N, ()

IT ( "ITHERM")

NA (nMn)

»

Locked mode option. Any or all three degrees of freedom at each
hinge may be eliminated, so long as the total number of

locked modes N. £38 ., However, only three locked mode
configurations are included in the RAE similation:

N =1 Eliminates the rotational degres of freedom about the
X and 2 axes of the damper boom relative to the hub.

NL-.-. 2 1Includes N, =1 and also locks the torsional degree
of freedom at hinges on all antenna boom segments.

N =3 Includes N, =1 and also locks the three degrees of
fresdom at the base of each antenna boom. (In this
mode, 1 = 1 ; this simulates a rigid cruciform with
a single degree of freedom dampsr boom).

Thermal bending option., To include effects of thermal bending,
sst It = 1 ; otherwise set I+ =0 .
Solar pressure option. To include effects of solar pressure,

set N,= i ; otherwise set NA= 0.

Initisl and Final Conditions

X ("XINIT(I)")

I= 1,...,12

T ( “ORBS“)
NR( nENR")

Twelve initial amplitudes of fundamental RAE satellite librational
and flexing modes as defined later in this Appendix,

Total number of orbits to be simulated.

Number of readouts* printed per orbit.

Astronomical Parameters

e, (v
io ( ngYZu)

QO ( "THZ")

Eeccentricity of orbit

Inclination angle between the normal to the orbital plane and the
north geodetic poles of the celestial sphere.

Longitude of the ascending node measursd from the Vernal Equinox.

#Readout format is described later in this Appendix,
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RAE FIXED AND DERIVED INPUTS (PART II)
Hub and Boom Parameters

m, ("EM(1)") Mass of hub (Xg.)
ll (EL1n) Effective geometric radius of hub (m.)
Tiux &":(1,!,'()_") Moments of Inertia about hub X ,Y , and # principal
e axes respectively (including two dipoles { 18.3 meter 1ongt.h}
along hub X -axis)
mp ("BMB") Boom mass per unit length (Kg./m.)
l’ ("ELB") Total length of each antenna boom (m.)
L ("SL") Length of each segment, l =l3 /n
ld ("ELD") Length of damper boom (m.)
J {"DIA") Boom cross-section diameter (m.)
("THK") Boom wall thickness (m.)
("0LA") Boom wall overlap half anglen(rad.)

11

¥

vy ("POR") Poisson's Ratio

E ("E")  Modulus of Elasticity (Newt./m.Z%)
5,

("F(et )n) Boom area moments of inertia about the diametral axes parallel
o«= 2,3
’ to the boom segment Y and 2 axis respectively*

3

A5 2sinty (8-3)
5, = =35 ['ﬂ’+\P+sm\|'cos‘l’- Eo et ]

3
fag 'Jaf['n’-i-‘l' —sm‘!cos‘l’] (B-4)

¥Boom principal axes are in the Adiroctiona defined in the beginning of this Appendix,

The values of #g and £s are given in Ref. 11 for open slit tubes, but are
also valid for any tube with overlap.
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§, ("L

X (vcKn)
e  (vcTE")
Ay (v
Jg (mEY)
Jg  (xism)
ae

as

Multiplicative constant for torsional rigidity (locked slit tube):

) = —;"i%" (fz"' fs) (B-5)
Thermal conductivity of boom (Kcal/m.sec.°C)
Temperature coefficient of linear expansion for boom (°C)-'
Ratio of perforation area to total surface area of the booms,
Earth heat flux density, as given in Ba, (A-15); (Kcal./sec. 2.
Solar heat flux density, as given by Eq. (A-16); (Kecal. /aec.nz).
Boom absorbtivity to Earth radiation. (For the RAE simulation
set equal to 0.1l in equation A-19).
Boom absorbtivity to Solar radiation. (For the RAE simulation
set equal to 0.05 in equation A-19).

Equilibrium Parameters

KA ) K)
(n&n,nQBAn)

¥ ("QaAMn)

First cantilever mode antenna boom tip deflection in and out
of the undeformed cruciform plane respectively (m.)

Static yaw angle about hub vertical axis due to skewed damper
boom,

These equilibrium parameters, explained in Ref. 12, are used

in the computation of initial conditions and readouts described later in this Appendix.

Astronomical Parameters
a, ("AZ") Orbital semi-major axis (m.)

We ("WZr) Argument of perigee (deg.)

to  ("IZ") Time at periges of orbit (aec.). NOTE: t & O at start of simulation.
ND ("ND") Vehicle launch date.
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' Gengral Program Inputs

Following is a list of System Parameters plus Initial and Final
Conditions, as defined in the INTRODUCTION of this report, applicable to the
RAE satellite. The Astronomical Parameters, also called for in the INTRODUCTION,

are the same as those just defined.

N (»Nr) Total number of rigid members, N = L4n + 2
m  ("EM(I)") Mass vector with elements WM; , {$i€ N (1%h body).
mi = hub mass
my = £, mg
m; = dmg for 3¢i¢N
I ("A(I,8(,p)") Inertia tensor with elements I(i,« , 8 ),1$i<N; 1€ x,A$3
I(iLx,8) =0, x¥/
1 (1’ ﬁ,m ) = hub principal inertias#
1(;,1,0) = md/y ,2¢i¢N (B-6)
I(2,%,&%) = M, 1‘2/'2 y X¥=2,3 (B-7)

I(i,o,«) = "‘il‘/,,_ , 3¢i¢N; x=2,3 (B8

R ("R(J, &, )") Hinge spring constant tensor (See Eqs, A-7 and A-8):
R(§,%,8), 1$j¢(N-1); 1<%, p$3:
R(i;“]’) =0, &xxA8
r(1,1,1) = r(3,3,3)=0
R (1,2,2) = (3+sn?8)s, (Y5 B-
R (1": °:1°‘) =((1‘Aw) E')F d/(l /?4)‘1(2’-212-) $ o
'« ) 2€4€(N-1) ;1483 (510)

#A considerable saving in machine time was realized by increasing these values in
the computational model, Ref, 12 shows that only the highest frequency (lowest
amplitude) oscillations are affected.
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At this point a brief digression 1s in order, to explain certain subtle
aspects of structural discretization, First it is noted that high frequency
torsional oscillations (which consume excessive machine time in simulation) can
be circumvented through the previously defined input (N ) . wnen N, % 1
all torsion axes are locked; thus (B~10) is applied for X = 2 and 3 only.
When N = 3 all antenna joints are locked and (B-10) is bypassed completely.
Theoretically the rigidity constants for all locked modes should be gzero, since
Eq. (A-30) provides the necessary constraint torque. In practice, however, small
computational imperfections in the value of this torque are doubly integrated with
the dynamical equations. A weak spring and damper have been placed in the locked
torsional joints, to counteract this cumulative effect,

In connection with bending moments, Eq. (A-}) was accompanied by a
statement that the rate of change of slope (d8p /4 ) cannot in general be
adequately determined from a single hinge angle. The inherent accuracy limitations
of numerical differentiation can, however, be minimiszed by using a properly
weighted sum to compute derivatives at each point. For the RAE program this
was accomplished through augmenting the standard internal torque computation#
as follows: the vector {X ‘-_-! } at every antenna boom hinge ( JS ) is trans-
formed into the co-ordinates of each interacting member (I, ); the result, multiplied
by the appropriate rigidity matrix [R] and weighting constant, is included in the

total internal moment acting on that member, The members which may interact with

#The exact form of this refinement will vary with the particular structural topology,
but the method exemplified here will be useful for a wide range of applications.

It is noted that all weighting constants are set to zero in the Initial Program
Setup, (Part 0). Therefore, in the absence of any subsequent introduction of
weights in Part I or II, the internal torque modifications in Part IV of the

General Program will not invalidate the standard formulation (Eqs. A-7 and A-8)
applicable to truly isolated hinges.
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any given hinge are the hub and the segments in the same quadrant as the hinge.
The extent of interaction is determined from Newton's divided difference fonmla.;13

& thres-segment planar model of an antenna boom will serve to illustrate the

technique bslow.

HUB
%,
Fig. 4. Segmented Antenna Boom
Normalized Angle off 1%% Divided | :2;”’l .lf)iv:ldod 3“'l Divided
Arc Length Base Tangent Difference Difference Difference
X 93 f(xo, xl) ;(xo;xl)xl) f(xo:xl,XbXS)
o 0o
: 2
/2. M }J/"l 3 (H2-2M) T Taiin
3/2 M, + Mg ,uz t (¥s-M2) B : 's: L
-5 A
5/2 M+ M+ M3 3 -& 43 kst bhe
o
3 MMt M3

In the accompanying table, attention is first drawn to the first two columns,
The hinge angles ( M ) can represent a Y or 2 axis component of (AQ )
in the present problem. For a boom cantilevered to the kub (OB ) is sero at the
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base and, since there should be no berding moment at the free end, (8@ ) should
not change at X=3 . In addition to the known values of (©g ) for each segment
(prembly the centers), then, these two boundary conditions can be used to
determine the derivative of (Og ). Differentiating Eq. (17) of Ref. 13,

Fx) = F(x %)+ [2X =Ko +x)T F (%o, X, , X,) +
[3 %2 - 2(X4X, ¥ X2) X + (%X, + X XX %z )] § (X, X, X, %3)
where (Op ) is to be substituted for (§) and the divided differences obtained
here conform to the definitions in Ref. 13, In solving this equation for 6;
at the hinge points X =0 and X =1, the values (0, 1/2, 3/2, 5/2) are chosen
for (onx, ) X2, X 3 ), respectively; at X = 2 the values (1/2, 3/2, 5/2, 3)
are used. It is easily verified that

4

§o

(=65 @ x=0) =%”l‘%l‘z+%ﬂ3
§) (of@x=1) =L -2 u - L

’ v _ &7 n
f, (ceg@x=2) = G M3 = 35M2

The internal moments acting on the hudb and the inner, central, and outer segments
would then be (-fo'), (fo'— f,'), (f,'- fz' ), and (f{ ), respsctively, multiplied
by the appropriate element of [‘R] . The amount by which this exceeds the cor-
responding component of { )\[R] L_l} ia provided by the supplemental internal torque
computations in Part IV and the weighting coefficients (Fortran designation "EPSIL")
in Part II of the progranm,

The description of General Program inputs will now continue, with the
damping tensor as the next item, Aside from the previously mentioned "weak
dampers" in the locked modes, the only nonzero value for the present program is
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/ located at the first hinge, its value controlled by the normalized damping ratio

, (F4 ) as indicated in Eq. (B-2):

l

’ » ]
R“)ZJZ) =27, I(z,zlz) A(3+ sn?8)(Sq-1) ﬂs/a'.: (B-11)

and a description of hysteresis damping (for the case fd = 0) appears later in
this Appendix,

S (ns(1,d)m) Structure of the incidence matrix (Note Fig. 3):
p— =
=1 -1l -1 -1 ~1
1
1 -1
1 -1
~ ~
[s] = < .
N N o
~N -1
~N
~N ¢
~N
. 0]
N 0
~
L 1

(B-12)
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I

P (*RHO(J,of ,B)") Rest position rotation matrix between adjacent bodies with
3 x.3 sub-matrices [/’l-] , 3 j, <(N-1)

[4] =[ss Teol,
[2]= [“/3]y

(A] = [""/3-.\,

(B-13)
%] =[- ’-"/3]),
[/j] =[Tya], 6<$sN-1)
C (ne(1,3)m) Hinge connection matrix
C3 = 3(0.3048); See Fig. 3
C|Z= - C'3=—C|q_= CIS = --’il'
(B~14)

Cii, - _'é 2 sd'S(N—i)’ ?: 3}:’-1 AND*
6 <3< 00t), =341

A1l other elements of [C] are sgero,

#These values all have the same sign, since the reversal in direction from segment
mass center to opposite hinges will be cancellsd by the sign reversal in the
pertinent incidence matrix elements.
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Ae

N., ™,
c’(nn%n,nn(d')n)

("AE(I)") EREffective areas for solar presaure forces:

("XJE")

(nUSH)

If Ny =0, all AE(I) = 0 ; otherwise compute the values
indicated (See Eqs. A-38 and A-42):

Ag(l) = 'lz‘ '".4"2

(B-15)
Age) = %J ld (B-16)
Ag(i) = 24l , 3<i¢N (-17)

Total number of locked hinge degrees of freedom and hinge axis
indexing number respectively. Below is a table showing values

of N ¢ and 4" for the three locked mode options, N L

[N. [ Ne " ] m
L I I ORI - el
2 N

M2 1; M3 =25 M{3(a-1) +1} "I +1, 28 TEN-1
N,=1;M3=2; W, =Jd-1, 4¢J<15

Thermal bending constant for Earth radiation as defined by Eq. (A-19),

Thermal bending constant for solar radiation as defined by Eq. (A-19).
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This completes the RAE System Parameter specifications, The initial
conditions need somewhat more detailed treatment here because of their relation
to a Lagrangian formulation of the RAE satellite.12

Initial values for the angular position { direction cosine matrix [91;]}
and angular velocity vector @3 of each member I of the discrete RAE satellite
model are derived from the initial conditions of an equivalent flexible continuous
RAE satellite model."z First cantilever mode shape amplitudes of the booms
are linearly transformed into a set of "satellite modes" (Xg ‘*X42 ). It
is of interest to excite thesé "satellite modes" separately or in combination
in the discrete model program. Also, nonzero initial values of the libration
Euler angles (xj)xz,XB ) with respect to the local frame and of the single degree
of freedom damper angle ()(;r) from the -continuous model will excite similar
motion in the discrete model, Thus the initial values of the twelve quantities
()(1"')(12 ) are transformed to the initial attitude of each member in the
discrete model. It is noted that there is no loss of generality in setting the
initial derivatives (itl---jilz) to zero, since motion is still excited by initial
displacements from equilibrium.

The transformation from the twelve variables of the continuous model
to each member's attitude in the discrete model is accomplished separately for
the hub and the damper boom, and in combination for the antenna boom segments.

First, the orthogonal transformation from hub to local axes is written as

[91] = [Xz]),[x1]x [X3+5]z (B-18)

where }{1 ’,(Z , and )(3 are the roll, pitch, and yaw libration angles respectively

and x is a static yaw angle of the hub body axes in equilibrium due to the skewed
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damper boom. The orthogonal transformation from damper principal axes to the local

frame is

[6,] =164] [Q]T[x‘f] y (B-19)

where [’1] represents the 65 degree hub-to-damper transformation about
the yaw axis (ses Fig. 3).

The conversion from the generalized coordinates describing the satellite
deformation modes to any boom segment direction cosine matrix can be separated
into three steps:

l. First, all in-plane and out of plane tip deflections can be expressed
as a linear combination of the satellite flexing mode amplitudes. For example the

in-plane and out of plane tip deflections of thes lower left antenna boom are

W, = - 3 [Xo+ (Xg+2K) - Xy - Xy ] (B-20)
and

wy = 3 [xs +(X;+2Kg) = X490 - Xy, (B-21)

where K A and KB are the in and out of plane static (equilibrium) tip deflections,
respectively. All other boom tip deflections follow in a similar fashion from the
transformation defined in Ref. 12,

2, In the second step, the elastic deformation slope is computed for
each segment, making use of the first cantilever mode shape. A question immediately
arises as to the method of fitting a finite number of segments to the cantilever
curve, The segments could be inscribed or circumscribed, or their mass centers
could be matched to the mode shape function; alternatively, the slopes of each segment
could be chosen to match the corresponding portion of strain snergy in the continuous

45



elastic curve. Actually, the accompanying Fortran listing uses none of these
methods. Instead, the first cantilevered mode function was approximated by a least
squares fit, giving rise to proportionality constants (4; Fortran designation
nSLSQ") which fix the slopes of the Kb segment as

= W
AY A'Ja .-VIB , 1< k< {B-22)

Ly = A)Q W)’//ll3 , 1sk<n (B-23)

for any values of in-plane (W! ) and transverse (wy) tip deflection. It
was then found that, for three* segments per boom, the results could be improved
through amall changes in the relative magnitudes of (A* ). Chosen values for this
case (i.e., N = 3) minimiged the initial angular accelerations under equilibrium
conditions. No further improvements were investigated for other segmented
approximations, but curve fitting is recognized as a possible means of improving
future discretized structural models of this type.

3. Finally, the transformation is computed for segment-to-local co-
ordinates, Again using the lower left antenna quadrant as an example,

[6,] = [6,1141'[A] (B-24)

where [A] is computed exactly as in Eq. (A~21) using the angles in (B-22)

and (B-23).

#A three-segment model was chosen for actual run trials, as a compromise between
accuracy and economy of computation.
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Initial angular rates arise solely from orbital motion since, as
previcusly explained, the initial generalized co-ordinate derivatives
® L] *
(xi’xl 9 esoe Xiz) are zero, For any member, then, the initial angular rate

vector is

. T
wy = v[6]1, , te¢1¢n (B-25)

vhere ( ‘\;“ ) follows readily from Eq. (A-52).
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HYSTERESIS DAMPER SIMULATION

The hysteresis damping torque for the RAE satellite is taken from the model
found in Ref. 1l.. The damping torque equation, repeated here, is

Ty =Tr +2Tp[1- exp{-zp-Mf ] sgn(i) e

where:

TR = damping torque at the time when A last changed sign,

T'P = peak (saturation) damper torque,
& = exponential rate constant,

A = angle between damper axis and damper rest position (i.e., Ih in the

problem at hand),

L]
An = damper angle when A last changed sign.
The damper hinge has only one rotational degree of freedom (y-axis of the
damper boom). The other two degrees of freedom are eliminated by locked modes
as describaed in Appendix A, When the input variable fa is set to zero,
this hysteresis torque replaces the usual (linear) computation for damping torques

in part IV,
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RAE READOUT DERIVATIONS AND FORMATS

The readouts consist of (1) constant parameters printed only once per
computer run, and (2) variable parameters computed and printed out at multiple
intervals during the simulated orbital period. The format will appear as written
below,

Constant Regdouts
l"FAIRCHILD BOOMS OF" (n ) "SEGMENTS PER BOOM"
"NL""(NL) E =1 (E)
"DAMPER SPRING CONSTANT" ( S4) "DAMPING RATIO" (f,)
WORBIT" nAn (do) non (ao) nIn (io) vEn (eo) WNR = n (NR)

"SIMULATION TO IAST* ( T ) "ORBITS"

"INITIAL CONDITIONS*
ny (Xl ) v (Xp) ... ete., to (xlz)

Sunline vector components in inertial coordinates:

nSYN» ( (1” ) ((2”) ((3”)

Variable Readouts
At integral multiples of TO/NR (where T, = 27y ’us/doa is the
orbital period) the computations itemized below are performed and readouts printed.
(1) Time and satellite position { direction cosine elements of the transformation
[ﬂ'] from local to inertial co-ordinates; inertial axes are defined by the
Vernal Equinox (+X ) and the north geodetic pole (<& )} :
" o= HRS" "SATELLITE" D13 IJ23 l’)33
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(2) When the sightline from the satellite to the suh is not obstructed by the
Earth, this will be indicated by the readout "IN SUN"; the readout "SHADOW"
appears during eclipse,

(3) Attitude of the reference axes of the composite satellite with respect to local

axes,

[e"] = [o;1[-¥], e

where &  1is the static offset angle of the !HUB- plane with

Zhu
the orbital plane:

"ATTITUDE"
6 0L 8
0n 6, 6
6n oL e

(4) Attitude of the damper boom with respect to its reference position:
T
v1=[41[e,1[6,] (B-28)

"DAMPER" v v

31 v

23 12

(5) Antenna boom deformation is characterised by lateral deflections, both in
and out of the cruciform reference plane, for the tip of each segment. The
in-plane and out~of-plane deflections are the 3rd and 2nd components
respectively of a deflection vector ¢_Ii , where (1) is the segment index
number, Since the deflection at the tip of any segment includes the deflections
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T

of all inner segments, _d_ can be computed by a recursion formula:
N

- T .
i"’}”‘ -2 i#(}-z)m—z +1 [’K-ri][ei] e‘u«m-z,zi

6"5“"("2, 1

04 ;e k- (3-29)
2edgn; LK 4 | 42,31

where } is the index number of the segment tip., To atart the recursion,
the values of 51'_3 » é_ 4 -d—5 , and .é.‘ are computed from the last
term of the same expression, (B~29). The relative twist angle (rad.) between
adjacent wmeabers is computed from the trace angle (A ) and the X-axis
component of the deformation eigenvector U for the hinge connecting

those members; ( A ) and 9_ are defined in Egs. (A-2) and (A-3),

respectively,
= . (B-30)

The "DEFORMATION® format is as follows:
Boom number (K) 1 2 3 4
"IN~-PLANE" d33 dh3 d53 d63

g dg3 dg3 40,3
"
OUT OF PLANE" d32 d“2 d53 d62

dr2 da2 dg2 40,2
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(6)

nTWIST" dg 4 dg dgy
4y dgy do1 40,1

‘12
The amplitudes of the satellite flexing modes are computed from the

antenna boom tip deflections and printed out. The computation is the
exact inverse of the operation used to find tip deflections from flexing

mode amplitudes, described earlier in this Appendix,

For example, the in-plane neutral mode amplitude is:
- -d - -
Xy = ‘E(J‘MH,B‘ d'+n+2,3 tdyn_y,3 dun ,3) —2Kp (8-31)

The "SATELLITE MODES" format is as follows:

npoLLr  ( x5) n"PITCH" (X 6) nYAW (x7)
"LONGITUDINAL"  ( Xg)  'LATERAL" (X,5)  "VERTICAL® (X))
"IN-PLANE NEUTRAL"  (Xg ) "OUT OF PLANE NEUTRAL" (X )
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APPENDIX C

PROGRAM LISTING

The RAE segmented model program presented here has been successfully run
in Fortran IV single precision on the Univac 1108 and has been found in agreement
with the independent Lagrangian analysis of Ref. 12. While many of the Fortran
statements are self-explanatory or follow readily from previous discussion,
understanding of the overall computational scheme is enhanced in several instances
by the accompanying comments, referrals to equations, cross-references between
different parts of the program, etc. It will be reiterated here that usage
of the program for other satellite configurations will not require knowledge of the
material in these Appendices. Program utilization for general purposes calls
for 1) all inputs specified in the INTRODUCTION of this report, and 2) Parts O,
IIT, and IV of the present listing (with present FORMAT and WRITE statements
replaced by desired readouts for the particular problem under consideration¥),
augmented by the accompanying subroutines ICE, INTEG, INVERT, and XSIMEQ, plus
card Nos. 55-58 which provide necessary zero resets for each program run. It
should be noted that the hinge interactions, solar pressure forces, thermal
bending, and hysteresis damping present in Part IV, unless actuated by inputs in
Parts T and II, are de-activated by the cards at the end of Part O. If similar
effects are to be included in a simulation for another satellite configuration,
the following minor modifications are needed:

(1) Elastic coefficients derived on pages 38-40 must be co-ordinated

with the appropriate satellite geometry, necessitating logic changes in cards 818-848.

#Note that deletion of the computations associated with readouts in the present program
(e.g., calculations involving the Fortran designation "SD") is optional.
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(2) The geometry of each member will determine its response to
solar radiation pressure; card Nos., 646-652 will be replaced accordingly if
solar pressure effects are to be taken into account.

(3) The thermal bending formulation was derived in terms of lengths
between centers of adjacent members (See discussion preceding Eq. A-10). When
this is not uniform throughout the structure, simple logic must be introduced
into the computation (for the RAE this is done by card Nos. 722-724).

(4) Nonlinear damping and/or spring action can easily be simulated by

modifying the internal torque ("EL") computation at any hinge,
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3¢

Cw~NourmFULUNF

[aN g}

1

e NeNel

2006

6781

9999

PART O

INTEGER XSIMEQ

DIMENSION MI(T75)eSGU(78+38)2GAM(38) »XT(38,38)

CIMENSION Ju(78)0XI8(78) ¢ XIN(78)+DVEC(3+3)

CIMENSION $(26225) PSI(78¢78)r PSIV(78:78)¢EM(26) 9 A(2613¢3)0
1TH(26¢303) tRE259303)sRP(2503¢3) vRHO(25¢3+3) »RHOP (25231 3) 1 AE(26)
2yC(78e78R)

DIMENSION WV (78) e WM(3926) e WD(78)yVECT(T78)H(78)
1G(78)9EL(TE)r Q(T78) s UU(TBY VI(3e3)r VP(3¢3)e P(3+3)1PA(25,25)
2PSQ(25¢25) 2U(3),UP({3) v WKP(3)22(78¢26)¢B(26026¢3)

DIMENSION DUR(3¢3)+DDRD(3+¢3) rEPSIL(6¢7)

DIMENSION Y(312)DY(312)sERL(312),DICE(2184)+SIG(3+26)+DELT(3)
1SIGF{3) »SIGNP(3)

EGULVALENCE(PSQ(101)vPSTI(1e1)) o (PQ{191)»Z(201)) e (WM(1e1),WV(1))
1 eleZ) e (CerPSIV)

EQUIVALENCE (Y (1) eWV(L1)) o (DY(1)rwD(1))

DATA PI /3.1415926%/+FMU /0,398613E+15/+SPC /0.,45%5E-05/9ERRD /0.638
IEXOT/

IBUG = 0 Auwdliary readout control.
ég::[; = g}————lnputs to subroutine ICE (See Card No. 583).

LG 12006 I=1+6
CO l20uU6 J=1.7

EPSIL(Isy) = 0,0 ————— Deactivates interaction in hinge moment computations.

DO 6781 1=1+26

AE(L) = (a0 Deactivates solar pressure unless subsequently overridden.

XJL = 0.0 Deactivates thermal bending unless subsequently overridden.

xJS = 0.0

FO = 1.E~03 Deactivates hysteresis damping computations in Part IV for general

program utilization (See card Nos. 799 and 936).
PART 1

CIMANSION XTRITC(L12)eZINCY) o YIN(Y) #F(3)9SHAD(2)»SD(26¢3)
CIMENSION SLSA(R)
LATA (SHAGLI) »I=ie2) /6FSHADNORP6HIN SUN/

KBBEC = 0
KASE = 0 —— Provisions for running more than one case,
CORT INUE

KASL = KASE+1
IF (KsuC «Eqe 0) GO TO 1970
STPL = T/Kb=C



N W m

9¢

1971
1970

190

1901

OO0

1031

1032

1029

1033

1034

1035

1036

1037

KBBC = 0

WRITE {6,1971) STP1
FORMAY {1H1E18.5)
CONTINUE

READ 1{5,190) NL,NA, ITHERM,NPB,THZ,EYZ4EZ+ENR,DRBS,FD,ySD1
FORMAT {411,7F10.0)
READ (5,1901) XINIT
FORMAT (6F10.0)

IF (NL .EQe. 3) NPB =1

Readout for numerical integration step size.

Antenna base lock is allowed only for the rigid cruciform.
PART {1

DO 1031 J=1,38
GAM{J) = 0.0

DO 103}% I=1,78
SQuU{l,4) = 0.0

DD 1032 1I=14+26

DO 1032 J=1,3
SO{I+J) = 0.0

DO 1029 J = 1,6
SLSQM1J4) = 0.

GO TO (1038,1033,103441035,103651037),NPB ———— See pages L5-46.
SLSQf1} = .595386
SLSQ{2) = 1.40461

GD TO 10328

CONTINUE

gtgg:g = 15‘;2;2 } Obtained from minimum initial ‘d ‘_Q/d'tl al cquilibrium;
= 1. - o 0 ' 0 ent obtained

leata) - 1l3105 slopes for 2, 4, 5 or 6 segments were alned by least squares.

GO TO 1038

SLSQ{l1l) = .321406

S1LSQ{2) = 1.01717

SLSQ(3) = 1l.28445

SLSQ{4) = 1.37697

G0 TO 1038

SLSQU1) = 261152

SLSQ{2) = .865497

StSQ(3) = 1.1645

SLSQ{4) = 1.33302

SLSQ{5) = 1.37583

GO TO 1038

SLSQ(1) = .21987

SLSQ{2Y = 750147



LG

86

88

89 -

90

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

1038

11000

11C08

11005

11006

SL5Q(3)
sLsQl4)
SLSQi5)
SLSQU6)
CONTINUE
SIGH = 77,
TPH=.4506
TRH = 0.0
AMBDR = 0.
SO0 = 1.0
AMDDT = 0.

XJS = 3.0E+08%SPL/4184.
XJE = 5.6TE-08%246.,0%%4/4184.

1.04962
1.25421

1.34979
1.37636

o

Hysteresis
damper
initialization

DO 11000 I=1,6
DO 11000 J=1,7
EPSILII,J) = 0.0
60 TO0 11100%4,11008,11005,11006,11007,11009),NPB

EPSTLI{L, 1)
EPSIL{1,2)}
EPSIL{1,3)
EPSIL(2:51)
EPSIL{2,2)
EPSILEZ,3)

GO TO 11004

CONTINUE

EPSILI1,1)
EPSIL{1,2)
EPSILI1,3)
EPSILIZ,1)
EPSIL2,2)
EPSILEZ,3)
EPSIL{2,4)
EPSILI3,1)
EPSIL{3,2)
EPSIL(3,3)
EPSIL{3,4)

LU | T | T { O N T { I {1

GO TO 11004

CONTINUE

EPSIL(1l,1)
EPSIL(1,2)
EPSILiLl,3)
EPSILIZ2,1)
EPSIL{2,2}

-13.,6.
Te/3.
—10/6.
5¢/6.
-lo
l./6.

-31./15.
11./5.
-20/15-
41./60.
-4./50
l.76.
-1.720.
~3./20.
1./5.
-10/6o
7./60.

‘31./15.
11./5.
-20,15-
41.760.
"4-,5.

1,05 x 10-3

Eq. A-16.
Eq. A-15,

Damper exponential constant.

This normalized hysteresis saturation torque (equivalent to the net
spring torque on an isolated damper, skewed at 65° and inclined

at 0.4506 radian) when expressed in English units corresponds to
f£t.1b, - See card No. 461,

See page 40.



86

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

11007

11009

EPSILIZ,3)
EPSILIZ2,44)
EPSIL(3,1)
EPSILL3,2)
EPSILiI3,3)
EPSIL{3+4)
EPSIL{3,5)
EPSIL{44+3)
EPSILU4+4)
EPSIL{4,45)
60 70 11004
CONTINUE
EPSIL{1,1)
EPSTLIL,2)
EPSILI{1:3)
EPSILI2,1)
EPSIL(2,2)
EPSIL{2:3)
EPSILIZ+4)
EPSIL{3,1})
EPSILI3,2)
EPSIL(3:3)
EPSIL{3,4)
EPSIL{3,45)
EPSIL{4,3)
EPSIL{4+4)
EPSIL{4,5)
EPSIL{4,6)
EPSIL{5,4)
EPSIL{5,45])
EPSIL(5,6)
GO YO 11004
EPSILils1)
EPSILIl+2}
EPSIL(1,31}
EPSIL{2,1)
EPSIL{Z.:2)
EPSIL{2,3)
EPSTILI2,4)
EPSIL(3,1)
EPSIL{3,2)
EPSIL(3,3)
EPSIL{3,4)

LT TS T T T T R T 1 I |

I T TS T T | T T T I TN | N O T ¢ A | T | O 1A [ Y ¥

19./120.
-1-/24.
~34/20.
1./5.
-2./15.
2./15.
-1./20.
1./24.
-19./120.
T./60.

"31-/15-
1i./5.
-20,150
41./60,
—4./5a
19./120.
-1./24.
-3'/20.
1./5.
-2./15.
l1./8.
-1./240
1./24%.
-1./8.
2.715.
_1-/20.
1./24.
-19./120.
T./60,

-31./15.
11./75.
~2./15.
41./60.
~44/5.
19./120.
_10/24-
_3./20-
1./5.
=2./15.
1./8.
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172 EPSILI3,5) = —-1./24.

173 EPSIL{4,3) = 1.724.

174 EPSIL{4,4) = -1./8.

175 EPSIL{4,5) = l./8.

176 EPSIL{G4,6) = -1./24,

177 EPSIL{S,4) = 1./24.

178 EPSIL{5+5) = -1./8.

179 EPSIL(5,6) = 2./15.

180 EPSIL{S,7) = -1./20.

181 EPSIL{645) = 1./24.

182 EPSIL{6,6} = -19./120.

183 EPSIL{6,7) = T7./60.

184 11004 CONTINUE

185 T2 = 0.0

136 WZ = 0.0

187 AZ = 0.123B8E+08 Semimajor axis for 6000 Km, altitude,

188 ND = 80 March 21.

189 ENPB = NPB

150 C

191 C FAIRCHILD BOOM

192 C

193 ELB = 750.%,.3048 Antenna length in meters,

194 103 SL = ELB/ENPB Segment length.

195 THK = .S0BE-04 Boom wall thickness,

196 E = J117E+12

197 3418 AW = 0.0 Value of E used in Eg, B-10 includes effects of perforations.
198 POR = 0.3 Poisson's ratio.

199 EMB = 0.480E-03%14.5939/0.3048 Linear mass density of booms (kg./m.).
200 CK = 0.031 Thermal conductivity of booms (page 36).
201 DIA = 0.587/39.37

202 OLA = 0.1 Small overlap angle due to interlocking at seam; not critical.
203 CTE = 0.0

204 IF (ITHERM .NE. 0) CTE = 1.87E-05 coefficient of thermal expansion.
205 F{2) = .125%DIA*#3%THKA{PI+0LA+SIN{DLA)*COS{OLA)-2.0%3IN{DLA)**2/
206 1(PI+0LA)) Eq. B-3.

207 F(3) = ,125%DIA*#3*THK*{PI+0LA-SIN(OLA)*COS(OLA)) Eq. B-4.
208 FL1) = 0.5/(1+PORI*[F(2)+F{3)) Eq. B-5.
209 DO 104 1 = 1,3

210 104 FU{I) = EXF(I)*(1.0-AW)/SL Eq. B-10; see card No. 368.

211 XJE = EtB/‘f.O/ENPB/CKITHK*O.l*CIE*DIA*XJE} Eq. A-19.
212 XJdS = ELB/4.0/ENPB/CK/THK*. 05« TE*XDIA¥XJS

213 N = 4%NPB+2 Segments, hub, and damper.

214 N3 = 3%\
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215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
2417
248
249
250
251
252
253
254
255
256
257

5555

5556

7301

7303

7304

7307

7305

7308
7401

105

NM = N-1 Allowable error per integration step for angular rates (rad./sec).
EEE1=1.0E-06/2.0

EEE2=1.0E-04%/2.0 ——— Allowable error per integration step for direction cosines,

DO 5555 1=1,N3

ERL(I) = EEE1l

N1l2 = 12%N

NNNN = N3+1

DO 5556 I=NNNN,N12

ERL{1} = EEEZ2

DANG = 65.%P1/180.——Angle OD of Ref, 12; damper skew angle,

CKA = 35.57 1y s
QBA = .9830 { ————— Fquilibrium parameters (Ref, 12, Case 2).
QGAM = L.1131

DO 7301 I=1,75

MI{I) = 0O

GQ TO (7303,7304,7305),NL ———— See pages 34 and 43.
NC = 2

MI{1l) =1

MI(3) = 2

GO TO 7401

NC = N

MI{1) =1

MI(3) = 2

DO 7307 [=2,NM
M= 3%(1-1)+1

MI{M) = [+1

G0 7O 7401

NC = 14

QKA = 0.0

QBA = 0.0 } Values for rigid cruciform.
QGAM = .0623134

MI{1) = 1

MI{3) = 2

DO 7308 1=4,15

Mi{i) = I-1

CONTINUE /
EL]l = 1.5%0,3048

ELD = CBRT{12./EMB*1.0E+04%*14,.5939%,3048%%2}) — per length correspondlng to
EM{1} = 10.52%14.5939 lO slug-fb

EM{2) = ELD*EMB

DO 105 I = 34N

EM{I) = ELB®EMB/ENPB

DO 106 I = 14N

Assumed hub dimension; not at all critical,
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258
259
260
261
262
263
264
265
266
267
268
269
270
271
2712
273
2T4
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

106

1065

107

108

109

111
112

110

113
114

115

il6

117
5070

118

DO 106 J = 1,3
DO 106 K = 1,3
AfI4J,K) = 0.0
Allsl,l) = 14.24
A‘l{'le) = 90.8
Al(l1,3,3) = 92.68
Ally1l,1) = A€1,1,1)%1000.
A{14242) = A(1,2,2)%200. } See footnote on page 37.
A{ls3,3) = All,3,3)%20.
CONTINUE
DO 107 I = 1,3
AllslsI) = AL, 1,1)%14.5939%0.3048%%2
A€24151) = EM{2)*DIA*%2/4.0 Eq. B~6.
A{241,1) = A{2,1,1)%10000.
DO 108 I = 2,3
A{2,141) = 1./12.%EM{2) *ELD**2 —————— Eq, B-7.
DO 109 I = 3,N
AlIslsl) = EM{TI*DIA®*2/4.0 ——Eq. B-6.
AlEelel) = AC¢I,1,1)%10000. Artificial enlargement of small inertias.
DO 109 4 = 2,3
A{Isd9d) = 1lo/12.%EMEI)*SL*s2—  Fq, B-8,
IF{NA) 110,111,110
DO 112 I = 14N
AE{I) = 0.0
GO TO 114
AE(1) = 0.S*PI*ELL*¥2 Sphere; Eq. B-15.
AE(2) = 2./3.%DIA®ELD Cylinder; Eq. B-16.
DO 113 I = 3,N ]
AE(I} = 2./3.%DIA®SL Cylinder; Eq. B-17,
M= N-1
DO 115 [ = 1,N
DO 115 J = 1,M
S(Lyd} = 0.0
B0 116 I = 1,5
S{1s1) = -1.0
1F (NPB .EQ. 1) GO TO 5070
DO 11T I = 6,M —  _ Eq. B-12,
Jd = I-3
StdsI) = -1.0
CONTINUE
DG 118 I = 1,M
4 = I+1

StdeId = 1.0



¢9

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

119

120

121
5071

122

M = 3%N

DO 1191 = 1,M

DO 119 J = 1.,M
Cllysd1 = 0.0

Ci3,1} = 3.0%0.3048
Cll,2) = -0.5%EL]
C€1,5) = C(1,2)
C{1,3) = -C(1,2)
Clls4) = C(1,+3)
Ci3,4) = —-ELL%SIN{(PI/3.)
C(315) = C(3v4)
Ci{342) = -C{3,44)
Cl34+3) = C(3,2)

M = N-1

DD 120 1 = 2.M

K = 3%[+1

CiK,1I) = =-SL/2.

IF (NPB .EQ. 1) GO TO 5071
DO 121 J = 64M

K = 3%(J-4)+1

CiK,J) = -SL/72.

CONTINUE

DO 122 1 = 1,M

DO 122 J = 1,43

DO 122 K = 1.3
RHO(I,J,K) = 0,0
RHOt1l,1,1) = CUGSIDANG)
RHO{1,242) = COSIDANG)
RHO(14152) = SINIDANG)
RHO‘I;Z:I’ = -RHO(111!2)
RHO(1'3y3) = 1.
RHD‘ZpZ,Z) = 1.
RHB{3,2,2) = 1.
RHO(44252) = 1.
RHO{5,2,2) = 1.
RHG(Z,l)l) = .5
RHO(2+3,43) = .5
RHO(5,1,1} = .5
RHO(5’393, = .5
RHO{34141) = —-.5
RHO(343,43) = =.5
RHO{441¢1) = ~.5

RHO (44343} = =5

Eq. B-14.

Eq. B-13.

Note:

Damper displacement C
hub mass center is no
critical.

below
at all
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344

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

123
5072

127

128
5073

1288
1289

RHO(253,1) = SIN(PI/3.} \

RHO(3,3,1) = SIN{PI/3.)}

RHO{(491,3) = SIN{P1/3.}

RHO(5,1,3) = SIN(PI/3.)

RHOt 2,143} = -SIN(PI/3.)

RHD(311'3’ = 'S[N(PI/3.) Eq. B-13.
RHO(44341) = =SIN(PI/3.)

RHO(5,43,1) = -SIN(P1I/3.)

IF (NPB .EQ. 1) GO TO 5072

DO 123 I = 64M

D0 123 K = 1,3

RHO{IHK,K) = 1. /

CONTINUE

M = N-1

DO 127 1 = 1,M

DO 127 4 = 1,3

PG 127 K = 1,3

R(IsJsK) = 0.0

RP{IsJsK}) = 0.0

IF . (NL ..EQ. 3) GO TO 5073 Rigid Cruciform,
QL = 1

18 (NL .EQ. 2) IQL’= 2 Locked torsional modes.

DO 128 I=2.M
DO 128 J=IQL.3

R{L,J9d) = FLJ) See card No, 210,
IF {NL .NE. 2) GG TGO 1289
CONTINUE
DO 1288 I=1.NM
R{ls141) = 10.%A(I+142,21%FMU/AZ¥%3 } Wea.k springs and dampers for locked tors:.ona.
RPITs191) = S5.%A{T141,2,21%SQRT{FMU/AZ*%*3) modes,

vide pPring
CONTINUE Bonst E 8’a 8?51? R/
R{1s242) = SD1%{3,0+SINIDANG —QGAM)*%Z)*FMU/AZ¥*3%A(2,2,2)} radian).

RP{142,2) = 2.0%FD¥A(252,2)%SQRT{ (3.0+SINIDANG -QGAM}*¥2}%
1{SD1-1.0)*FMU/AZ%*%*3 ) ——————— Eq. B-1l.
DUR(2+2) = R{2+2+2)

DUR{393) = Ri{253,+3) Used for interacting hinges,

XC = CDS(XINIT(1}))
YC = COS{XINITi{2))
20 = CDS(QGAM+XINIT(3))
XF = SIN{XINIT{1))
YF = SIN(XINIT(2))
ZF = SIN{QGAM+XINIT(3))
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387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

7480

7481

TH(1,1s1) = ZCH*YC-XFXYF*ZF
THl 141, 2) = ZFRYC+XFXYF*2C
TH{141,43) = -XCXYF
TH(I'Z'I’ = =~XC*7F
TH(1,2,2) = XC*ZIC —— Eq, B-18.
TH{1,2,3) = XF

TH{1,3,1) = ZC*XYF4+XF*YC*ZF
TH{19¢3y2) = YF®ZF-XF*YC*1C
TH(1+3,3) = XC*YC
TH{2,1,1) = COS{XINIT{4))
TH(24142) = 0.0

TH{241,3) = ~SIN{XINIT{%})
TH(2,2,1) = 0.0

TH{242,2) = 1.0

TH{2,2,3) = 0.0

TH{2,3,1) = SINIXINIT(4))
TH(24+3,2) = 0.0

TH(2,53,3) = COS{XINIT(4))

DO 7480 1=1,3

DO 7480 J=1,3

DVEC{I,d) = 0.0

DO 7480 K=1,3

DYEC(I,d) = DVEC(I4J)4RHOUL Ky IV ¥TH{ 24K, d)
DO 7481 1=1,3

DO 7481 J=1,3

TH(2,1,4) = 0.0 ‘)

DO 7481 K=1,3
TH{Z2+1+Jd) = THE2, 19 J)4THIL, I ,K}I*DVEC(K,J)

XINIT(7) = XINIT{7)+2.0%QBA
XINIT{8) = XINIT{8)+2.0%QKA
ZIN{1) =0 SE(XINIT(6)+XINIT{B}-XINIT{9)-XINIT{11))
ZINL2) =05 (XINIT{6)-XINIT{8)-XINIT{9)+#XINIT({11))
ZIN(3) =05 {XINIT{6)+XINITIBI+XINIT{9)}+XINIT(11))
ZIN(4) =—0.5%(XINIT{6)-XINIT(BI+XINIT{9)-XINIT(1L1})

YINC1) O SE(XINIT(S)+XINIT{7)I-XINIT(10)-XINIT{12))

YIN(2] =0 5% (=XINIT{S) +XINIT{TI+XINIT{LO}-XINIT{L2})
YINC3) =0 S*(XINITIS)+XINIT{T)+XINIT{10}+XINIT{12))
YIN{4) DSk (=XINITES)+XINIT{T)-XINIT{10)+XINIT{12})

DO 1812 K=1,4

DO 1812 J=1,NPB

I = 4%4-2+K

YYY = SLSQEJI*ZIN(K)/ELB Eq. B-22,
227 = SLSQUJI*YINIK)/ELB EqQ. B-23,

Eq. B-~19.

Eq. 3-20,

Eq. B-21,
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430 YYS = YYVER2

431 225 = 2122%*%2

432 SQUR = SQRT(1.0-YYS-2ZS)

433 TH{Is1s1) = SQUR

434 TH{Is1s2) = =222

435 TH{Iy1,3) = =-YYY

436 TH{I,2,1) = 121

437 THET 25 2) ={YYS+ZZS*SQUR)/{YYS+IZS)

438 THEI,2,3) = YYY*2ZZ2#%{SQUR-1.0)/7{YYS+ZZS)

439 TH{I+341) = YYY

440 TH{T+392) = TH(I,2,3)

441 TH{I,343) = (ZZS+YYS®SQUR)I/IYYS+ZZS)

442 IF {(YYS+22S JLT. 1.E-30}) TH(I!Z,Z) = 1-0} Resolution of possible singulari‘by.
443 IF-(YYS#ZZS LT. 1.E-30) TH{I,3,3} = 1.0

444 Do 1813 [I=1,3

445 DG 1813 JJ=1,3

446 DVECI{II,JJ) = 0.0

447 00 1813 KK=1,3

448 1813 DVEC{114JJ3) = DVEC{IT,JJ)+RHO(K+1 KK TT}*THI{1,KK,JJ)

449 DO 1814 11=1,3

450 DO 1814 JJ=1,3

451 TH{I,11,4J) = 0.0

452 DD 1814 KK=1,3

453 1814 TH{I,I11,34) = TH{I,11,JJ04TH(1,1}+KK)*DVECEKKsJJ)

454 1812 CONTINUE

455 DO 1815 I=1,N

456 DO 1815 J=1,3

457 CAM = —SQRT{FMU)I*TZ/AZ%*%1,.5

458 1815 WM{J,1) = TH(I,2,J)*SQRT{FMU)I/AZ%*] .5%{1.0+2.0%EZ*COS{CAM)

459 1 #2.5%E2%%2%C0S{2.0%CAM) +1,0/12.0%EZ%*3*(39,%L DS (3. 0%CAY) -3.0%
460 1 COS{CAM}I)) Eq. B-25.
451 TPH = TPH¥{SD1-1.0)*%{3,+SIN{DANG —QGAM}*¥2)%A(2,2,2 )%FMUS/AZ**3 See card Nos, 92 and 376.
462 WRITE (654916}

463 4916 FORMAT (1H130X33HRAE SATELLITE DYNAMICS SIMULATION)

464 WRITE (644918) NPByNL,E

465 4918 FORMAT {1HO22X19HFAIRCHILD BOOMS OF I1,19H SEGMENTS PER 300M. 5X
466 15HNL = I3,5X4HE = E10.4)

467 IF (ITHERM .NE. 0) WRITE (6,4919)

468 4919 FORMAT {1HO34X24HTHERMAL EFFECTS INCLUDED)

469 IF {NA JNE. 0) WRITE (6:4920)

470 4920 FORMAT {1HO29X31HSOLAR PRESSURE EFFECTS INCLUBED)

471 WRITE {6,4921) SD1,FD

472 4921 FORMAT {1HO20X22HDAMPER SPRING CONSTANT E12.4,5X13HDAMPING RATIO
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473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515

1E12.4}
WRITE (6+4922) AL THZ,EYZ,EZ,ENR
4922 FORMAT (1HO16X5HORBITSX1HAEL12.5,5X1HOEL12.5,5X1HIEL2.545X1HEE1245,
1 SX5HNR = F3.0)}
WRITE (6,4923]) ORBS
4923 FORMAT (1HO30X1S9HSIMULATION TO LAST F6.3,7TH DRBITS)
XINIT{7) = XINIT(7)-2.%QBA
XINITL8) = XINIT{8)-2.%QKA
WRITE (6,4924) (I.XINIT(]1),I=1,12)
4924 FORMAT {1HO35X1BHINITIAL CONDITIONS//7(I5+E10.4415,E10.4415,
1E10.44159E10.4415¢E10.4,415,E10.41)
€6 COS(QGAM)
SG SIN{QGAM)

PART TIt

IPART = 3
CAPM = 0.0
DO 3299 I=14N
3299 CAPM = CAPM+EMII) Total mass,
ENZ = SQRT{FMU)/AZ%x%].5
Pl = AZ%{1.0-El%¥2) Used in Eq. A-p6,
WZ = WZ*PI/180.

EYZ = EYI*PI/180.

THZ = THZI*PI/180.

TO = 2.0%PI/ENZ

CAPT = TO*DRBS Duration of run (seconds).
XIF = SIN(EYZ)

XIC = COS{EYL)

THF = SIN{THZ}

THC = CGS{THZ)

PSIS = 2.%PI*FLOAT{ND-B0O)/365,—— Eq. A-50,
X1S = 23.5%P1/180.

SIGDP{1) = COS(PSIS)

SIGDPL2) = CDS(XIS)#SIN(PSIS)‘}-———-Equ-SL
SIGDPE{3) = SIN{XISI®SIN{PSIS)

WRITE (6,974} SIGDP
974 FORMAT (1HOS5X3HSUNTX3E16.7)

DG 420 I = 1,NM NOTE Background for remainder of Part III is contained in Ref. 3.
DO 410 J = 1,NM
PSQII,J) = S{I+1,J)

410 PQUI.J)} = 0.

420 PQUI,I} = 1.
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516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
S41
542
543
544
545
546
s47
548
549
550
551
552
553
554
555
556
557
558

25

XSIMEG(MQrNMosNMIPSQr»PQ, D89 JG)
GO TO (425,900,910),LQ

425 DO 440 I = 1N3

Theorem 2 of Ref. 3.

Z(I'l) - OI
DO 430 J = 1,NM
2(I:J+1) = 9,
DO 430 K = 1,NM eeix [0] of Ret. 3. Wm: original [c]
= Z + —— . 3 : Or
430 g(()ll:ﬁglzl : i:rﬁ'd L)+C{TsK)%PSG(KeJ) B lobgar needed; 3is storegesan-now be used
ClIed) = 0o for other computations.

DO 440 K = 1,N
DUM = =EM(K)/CAPM
IF(K.EQ.\J) OuUM = D\)N+1.
40 C(Ied) = CUIod)+Z(1K)I%DUMXEM(J)
DO 450 I=1,N3
DO 450 J = 1»N3

Product [D)[p] m of Ret. 3.

PSI(Isd) = O
00 450 K = 1/N .
450 PSI(Isd) = PSI(Ird)+C(IsKI*Z(JsK) ———Matrix [3] of Ret. 3.

WRITE (6.17249)
17249 FORMAT (1H )
DO 4705 I=1,N3
IALF = 1+MOD(I~-1.3)
ICAP = 1+4(I-IALF)}/3
DO 470 J=1»,03
IBET = 14MOD(J=1+¢3)
JCAP = 14+(J~IBET)/3
IF (ICAP=JCAP) 470,3701,470
23701 CONTINUE
JAU = 0.,
IF (IALF=-IBET) 4702+4703¢4702
4703 CONTINUE
IF({IALF.EQ.IBET) TAU =
1PSI(3xICAPr3IxICAP)+PSI(3*ICAP=193*%ICAP=1)+PSI(3%xICAP=2,3%ICAP=2)
4702 CONTINUE
TAU = TAU=PSI(I«J)
A(ICAPITALF/»IBET) = A(ICAP»TALF/+IBET)+TAU ——————Constant augmented inertia matrix.
470 CONTINUE
4705 CONTINUE
DO 480 I = 1#N3
IALF = 14+MOG(1=1,3)
ICAP = 1+(I-IALF)/3
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559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

[N e X gl

u7s5

u80

490

L95

800

810

%00

DO 4B0 J=1lei

PSI(Ied) = 0.

DO 475 Kz=1lenM

PSI(IsJ) = PSI(IoJ}+Z(T+K)#FM(K)
PSI(IvJ)==PSI(I,J)/CAPM+Z(I,J)
CONTINUE

DO 490 I = 1,N3

IALF = 1+MOD(I=1,3)

1ICAP = 1+(1I-1IALF)/3

DO 490 J=1/N

B(ICAP,JsIALF) = PSI(I,J) ————_ Barycentric vectors.

PART 1V

DO 4#95 I=1l.N
DO 495 L=1.:3
II = N3+(I=-1)%9+(L~-1)%3
DO 495 K=1.3
;éli*éé/EN;H(l'K'L) Preparation for numerical integration.
LICE = 4
NV = 12x%N
T = 0.0
60 T0 831
CALL ICE (TRyTeTP+NVeY DY!DTCE,LICE»INDe IORD¢sKPRI»ERL)
GO TO (R10,820+830,840),LICF
BOX A
DO 500 I = 1.N
II = N3+(I-1)%9
DO 500 K = 1,3
DO 500 L = 1,3
TH(LeKoeL) = Y(I14+3xL=34K)
KRUM = KRUM+1
IPART = 4
AM = ENZ%x(T=T2)
COAM = COS(AM)
RS = AZ%(1le=~EZx(COAM++.5S%EZ%x(COS(AM+AM) =1 .+, 75%EZ% (COS(3.%xAM)=COAM)

1)) Eq. A-R9.
SCRF = 2.0%(1+0-SQRT(1,0-(ERRB/RS)*%x2)) Eq. A-l.
RMU = 3,%FMU%RS**(=3)

VV = AM4+2.0#EZ*SIN(AM) 41 ,255EZ2%*%2%SIN(2,0%AM)

141.,0/12.0%EZ2%%3%(13,0%2SIN(3,0%AM) =3, 0%SIN(AM)) Eq. A-52.
CV = COS(VV)

Numerical integration,
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602 SV = SIN(VV)

603 SWZ = SIN(WZ)

604 CWZ = c0S5(w2)

605 VC = CWZ*CV=SWZxSV

606 VF = SWZ*CV+CWZ*5V

607 SIGP(1) = (~THC*VF=THF#XIC#VC)*SIGDP(1)+ (=THF*VF+THC*XIC*VC)
608 1xSIGDP(2) +XIF*VC*SIGDP (3)

609 SIGP(2) = THF*XIF*SIGDP (1)=THC*XIF*SIGDP (2)+XIC*SIGDP(3)
610 D13 = THCxVC-THF*XICxVF Eq. A~53.
611 D23 = THF*VC+THC*XIC*VF

612 D33 = XIF*VF

613 SIGP(3) = D13*SIGDP(1)+D23*SIGDP(2)+D33%SIGNP(3)

614 DO 530 I = 1,N

615 ICON = 3x(I-1)

616 DO 510 J = 13

617 utJ) = 0.

618 DO 510 K = 1,3

619 510 U(J) = UGJI+A(TeJdrK)#WM(KeT) Eq. 5, page 9.
620 UUCICON+1) = WM(2:1)%U(3)=WM(3,»I)#U(2)

621 UUCICON+2) = WM(3+I)%xU(1)=WMm(1yI)*U(3)

622 UUCICON+3) = WM(1,1)2U(2)=wM(2,I)*U(1)

623 00 520 J = 1,3

624 ulJ) = o.

625 0O 520 K = 1,3

626 6520 U(J) = UGDI+ACT JdeK) *TH(I¢3,K) First term of Eq. 19 of Ref. 3.
627 HOICON+1) = RMUR{TH(I¢3,2)%U(3)=TH(I+s3,3)%1)(2))

628 HUICON+2) = RMUX(TH(I+3,3)%xU(1)=TH(I+3+1)2U(3))

629 530 H(ICON+3) = RMU*(TH(I¢3,1)*U(2)=TH(I»3,2)%U(1))

630 DO 550 I = 1,N3

631 EL(I) = 0.

632 6(I) = 0.

633 G(I) = 0.

634 DO 550 J = 1,N3

635 50 PSI(I.J) = 0.

636 RUM = FMUXCAPM#RS*%(=3)

637 DUM = ~SERT(1.0~(ERRD/RS) *x?)

638 IS = 1

639 IF(SIGP(3).GT.DUM) IS = 2 In sunlight.
640 DO 730 1 = 1N

641 IF (IS .EQ. 1) GO TO 140

642 141 0O 143 JJ = 13

643 SIG(JJs1I) = 0.0

644 DO 143 K = 1,3



oL

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687

143

145
144

146
140

660

670

680

690

700

710

SIGIJJdy 1) = SIGLIIyI)+THII Ky JJI*SIGP{K) Eq. A-54.
IFtI.NE.1) GO TO 144

DO 145 44 = 1,3

UPLJJ) = =SIGIJJ,1} %2, 0¥SPC*AE(])

Solar pressure force on sphere.

GO TO 140

urtll = 0.0 olar pressure force
DO 146 JJ = 2,3 /////ﬁn cylinder,

UP{JJY = ~SIGLIJ 10 %2,0%SPCESQRT(SIGE2, 1) *%x2+S1IG{3,1)*%2)*AE(])

CONTINUE

ICON = 3%(I-1}
DO 730 J = 1N
JCON = 3%(J-11}

DO 670 JJ = 1,3

DO 660 11 = 1,3

V(il.Jdd) = 0.

00 660 K = 1,3

VIEILJd) = VITI,3J)+TH{I,,K,TT}*TH1JsKydJ}

PUlydd) = B{ly4Js2)%VI3,Jd)=-B(1+Js3}%VI2,JJ)

Pl2:dd) = BL{I:J:3)%V(1,JJ)-BlI+dsl)*VI3,JJ) } Eq. 12b of Ref, 3.
P(39Jd) = BUIsJde1)*VI2,dJ)=-BLlI:d,2)%VI1,JJ)

DO 690 K = 143

1I = ICON+K

IF(1.EQ.J) GO TO 680
PSI(II4JCON+1) CAPME(P{K,2)¥BlJsy143)-PUK,3)¥B(Js1,2)) }

PSI(II,JCON+2) = CAPME{PI{K;3)*B(Js1,1)-P(K,1)%B(JyI1:3))
PSI(II,JCON+3) = CAPM*{P(K,1)%BlJeI;2)-PlK,2)%BLJ,1,1)2
60 TO 690

PSI(ILsJCON#1) = AlI:K,1)

PSIEIT¢JCON#2) = AlI,K:2)

Eq. l4c of Ref, 3;
applicable for I # J,

PSIEIT,JCONE3) AllsKs3)
CONT INUE

DO 700 K = 1,3

UEKY = 0.

DO 700 L = 1,3

DUM = 3.4TH(Js3,KI*¥TH(Js3,L)

IF(K.EQ.LI DUM = DUM-1,

UEK) = U(K)+DUMB(J,1,L)

IF (1 .EQ. J} GO TO 7210 Segond tem of Eq. 19
DO 710 K = 1,3 T
GEICON*K) = GEICONHK)+RUME(PIK, 1) *UCL)+P (K21 *UL2)+P(K,3)*U(3))

UGL) = =BLJs T 1D*(WMI3,5)6¥24WM(2,J1¥%2)4B(J,1,2)%
LWMELoJ) *HME2 4 ) +B(Jr [,3)%WMIL, J)¥HM(3 0 J)

UE2) = BUJoEo1)%HMIL J)*WMI2,J)=BUJs1s2) R(UM(1,J) %2+
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688

689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
104
705
706
707
708
709
710
711
112
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
129
730

720
7210

148

149
147
730

135

555

560

565

150

151

1MMI3 433 %%2)+B(J, 1,3 ¥WMI2,J) *WMI{3, 4}

UL3) = BLJsI 1) ¥WMIL , ) 2WMI{3,J)+BlJ,T+2) *¥WMI2,J)*WN(3,J)

1-B{Je I3 3% (WM{1,J) & %2+WM(2,J)%%2})

DO 720 K = 1,3

QUICON#K) = QUICON+K)I#+CAPME{P(K,L)I*U{1)+P(K,2)*U{2)+P(K,3)%U(3})})
CONTINUE

GO TO (147,148),1S

DO 149 JJ = 1,3

K = 3%{I-1)+JJ

Eq., 14d of Ref, 3,

G(K) = GI{K)+P{JJ, 1I*UP(L)+P{JJ,2)%UP(2)+P1JJ,3)*UP(3) ——— Add moment of solar
CONTINUE pressure force,
CONTINUE

DO 650 I = 1,N

ICON = 3%(]-1}

D0 6500 J=1,NM

IF (S{I,J)-1.0) 6500,735,6500
KAY = 0

DO 560 K = 1,N

IF{K.EQ.TI) GO TO 560
IF{SIKy,Jd1) 555,560,555
IF(KAY.NE.O)} GO TO 920

KAY = K

CONTINUE

IF{KAY.LE.O) GO TO 920
IF{SI{KAY,J)+1l.) 920,565,920

Location of adjacent members for internal torques.

TRACE = 0.

Z1s = IS

DO 150 If = 1,3

DELT{IT) = 0.0 No thermal effects at damper hinge.

IF(J.EQ.1} 60 TO 151 —
DELT(2) = —SCRF¥XJEXTHI 3,3 )+XJS*{SIG(3,11-0.4*SCRF*THII3,3))%

1{Z1S-1.0} Eq. A-18,
DELT(3) = =~SCRF&EXJERTHII 43 ,2)+XdS%{SIG{2+1)~0.4*SCRF*TH(I,3,2))% Bq. A-20
I(ZIS—I.OD . - .

DELT(2) = DELV(2)/2.

DELT{3) = DELT(3})/2.

IF (J .EQ. 1 .OR. J .GT. 5) GO 1O 151
See discussion at beginning of Appendix C.

CONTINUE

YYY = DELT(2)
Z1I = DELT{3)
YYS = YYY*&2
21S = IZ771%%2

SQUR = SQRT{1.0-YYS~ZZS)

1



(41

731
132
733
734
735
736
T37
738
739
740
741
742
743
144
145
746
747
748
749
750
751
752
153
154
755
756
757
758
759
760
761
762
763
164
165
166
167
768
169
170
771
772
773

11119
152

570

580
580

595

596
597

DDRD{1s1} = SQUR

DDRD{1,2) = -Z21Z

DORD{(1,3) = -YYY

DDRD{2,1) = 1IZ

DORD{2,2) = (YYS#ZIS*SQUR)/{YYS+1ZS) —Fq. A-21.
DDRD{243) = YYY*ZZZ%{SQUR-1.0)/7{YYS+Z1S)

DDRD(3,1) = YYY

DDRD(3,2} = DDRD{(2,3)

DDRD(3,3) ={Z2ZS+YYS*SQUR) /{YYS+ZZ5)

IF {YYS+Z22ZS .LT. 1.E-30) DDRD{2,2} = 1.0 Elimination of possible indeterminacy
IF (YYS+#2ZS .LT. 1.E-30) DDRD{3,3) = 1.0 in Eq, A-21.

DO 11119 (I=1,3

DD 11119 Jd=1,3

RHOP{JyI1,J4J) = 0.0

DO 11119 KK=1,3

RHOP(J,11,JJ) = RHOP(JyI11,JJ)+DDRD(II,KK)*RHOIJyKK,JJ) ——— Egs, A-9 and A-2),
CONTINUE

DO 570 K = 1,3

DO 570 L = 1,3

VPiK,.L) = 0.

DO 570 JJ = 1,3
VP{KeL) = VPIKsLI+TH{I ¢JJ,KI¥THI{KAY ;JJ,sL)
DO 590 K 1,3
DO 580 L 1,3
VIK,L) = 0.
DD 580 II = 1,3
VIKyL) = VIKL}+VPILSII}*RHOPLJ,Ko11) Eq. A-1,
TRACE = TRACE+V{K,K)
IF (ABS{VIl,2))+ABS{V{1,3)}+ABS{VI2,3}) .LT. .01) GO TO 603 ——— Off-diagonal vector element
CAMB = ,5%{TRACE-1.) for small angles.
IF{ABS{CAMB).LT.1.) GO TO 595
CAMB = SIGN{1l.,CAMB) —Overrides small numerical error.
AMBDA = ACOS({CAMB) Eq. A-2.
EIGENVECTOR OF/V/ See Eq. A-3.
IF{ABSIV(2,3)3.6T.ABS{V{1,2))) GO TO 596
IF(ABS(V(1,3)).6T.ABSIVI1,2))) GD TO 597

[on I TR ||

UGLY = VILs2)%V(243)=VI(1+3)%{V(2,2)-1.)

UE2) = VI{1,3)%V(2,11-V(253)%(V{lsli=1.) } Cross product of 1lst and 2nd rows of [V‘I] .
UE3) = (VELol)=1od#{VI2,2)-1.)-V(1,2)%V(2,1)

60 TO 599

IF(ABSIV(2,3)).6T.ABStV{1,3))) GO TO 598
u(l) VI3,21%VI143)-V(1,2)%(V(343)}-1.}
U2y (VILy1)-13%{V(343)-1.3-VI(1,3)%V(3,1)
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174
775
176
177
778
179
780
781
782
783
784
785
786
187
788
789
790
791
192
793
794
795
796
797
798
199
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816

598

599

&00

603

607

610

4872

4871

620

630

Ui3) = vi3,1)sVi1,2)-vi3,2)%{Vv(l,1)-1.)

GO TO 599

UlL1) = (V{2,2)-13%(VI{343)-1.)-V{(2,3)%*V{3,2)
Ul2) = VI2,3)%V(3,11-V{2,13 %{V(3,3})-1.}
U3) = VI2,13#V{3,2)-(V(2,2)-1.)*%V{3,1)
UNRM = SQRT{ULL)**%2+U(2)*%2+U(3)%%2}

DO 600 K = 1,3

ULK) = U{K}/UNRM

Utl} = SIGN{U{1l),v(2,3}))

U2} = SIGN{U{2},Vi3,1))

U{3) = SIGNIU{3),V(1,2)}

GO TO 607

AMBDA = SQRT(VI1,2)%*2+V{2,33%%2+V{3,1)%%2)
Uil) = vI(2,3)/AMBDA

U2y = vi3,11/AMBDA

U{43) = Vvil,2)/AMBDA

KON = 3%{KAY-1)
DB 610 K=1,3
WKP{(K} = 0.

DO 610 L=1,3
WKPIK) = WKPIK)+VPIK,L)*WM{L,KAY])

Second half of Eq. A-6.

DO 630 K = 1,3
ur(K}=0.
DUM = 0.

IF (FD .GT. 1.E-05) GG TO 4871/

If {J «NE. 1 «OR. K .NE. 2) GO TO 4871
SAMBDA = SIGN{AMBDA,V{3,1)])

Bypasses the hysteresis damper computation for
general program utiligzation - See card No, 30,

TRYTH = TRH+SIGN(2.O*TPH*(IoO-EXP(-SIGH*ABS(SAMBDA—AMBDR))),AMDDT)'————EQoB"zéa

THH = SIGN{AMINI{ABS(TRYTH) ;TPH) s TRYTH)
DO 4872 1JK = 1,3

UP{2) = UP{2)+R{JK,y IJKI*U{IJK)
UP(2) = AMBDA*UP{2)+THH

WKPS = WKP{2)

AMBDS = SAMBDA

GO TO 630

CONTINUE

DG 620 L = 1,3

UP{K) = UP{K}4RP{J K Li*{WwKP{L}-WM{L,1))
DUM = DUM+R{JKyL)FUIL)

UP{K) = UP{K}+AMBDA®DUM
EL{ICON+K) = EL{ICUN+k}+UP{K)

DD 640 K = 1,3

Torque saturation.

Damper spring torque (Rigidity coefficient
assumed ~fixed, i.e., no damper stops).

Viscous Damping.
Damping plus spring torque.
Internal torque.
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817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859

640

5546

5547

5550

5551
15551

15553

5553
5552
6501

4602

ELIKON+K) = EL(KON#K}-VPI1,K}%UP(1)~VP (2,K)¥UP(2)-VP(3,K) *UP(3) — fiqual and
If (J .EQ. 1) GO TO 6501 — —— No interactions at damper hinge. opposite torque.
DO 5546 11=1,3

DO 5546 JJ=1,3

DVECKITydd) = AMBDASXTH(ISI1,J4)

DO 5547 11=1,3

UPLII) = 0.0

DO 5547 Jd=1,3

UP(II) = UPCII)+DVEC(IT,dJi%U(JJ)

IS = 14042174

DO 5550 I1=1,3

DVEC(1,11) = 0.0

DO 5550 JJ=1,3

DVEC(1,11) = DVEC{1oI1)+EPSTLUJS, 1) ¥THI1,dJ, [1)1*UP{JJ)
DO 15551 11=1,3

DVEC(2,11) = 0.0

DO 5551 JJ=1,32

DVEC{2,11) = DVECI2,11)+DURITT,JJI*DVECIL,Jd)
ELEIT) = EL(IT)+DVECI2,11}

1Q = MODIJ-2,4)+3

NP1 = NPB+1

DO 5552 IP=2,NP1

1A = IQ#4%(IP-2)

DO 15553 11=1,3

DO 15553 JJ=1,3

DVEC(II,J4d) = 0.0

DO 15553 KK=1,3

DVECAII,Jd) = DVEC{II,JJ)+DURITI,KKIZTH{TAyJdyKK)
DO 5553 II=1,3

[IA = [143%(1A~1)}

DO 5553 [J = 1,3

EL(ITA) = EL{IEA)+EPSIL(JS, IPY*DVEC(IL,1J)*UP(IJ)

See pages 38-40.

CONTINUE
SD{J+1,1) = AMBDA*U(]1l) ————— Torsional displacement readout.
DD 4601 K = 1,3

KK = 3%{[-1)+K

KL = 3#%{J-11+K

IF {MI(KL) .EQ. 0) GO TO 4601 ————— Mode not locked.
INDX = MI{KL)

SQUIKK, INDX) = 1.0

DO 4602 IB = 1,3 — —Fq. A-28,

111 = 3*%(KAY-1)+IB

SQUITII,INDX) = =VP(K,18)
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860 G0 TO {4603,4604,4605},K

861 4603 GAM{INDX) = WM{Z,1)*WNKP{3)-WM{3,1}%WKP(2)

862 G0 TO 4801

863 4604 GAM{INDX) = WM{3,1)%WKP{1)-WM{1l,]}*WKP{3) Eq. A-29.

864 60 TO 4601

865 4605 GAM(INDX) = WM{1,T1)*WKP{2)~WM{2,1)*WKP(1]}

866 4601 CONTINUE

867 6500 CONTINUE

868 650 CONTINUE

869 DO 750 J = 14N3

870 750 VECT(J) = —UULJI+H{JII+ELLII-GLII+Q( ) Eq. 7, page 9.
871 DO 5601 I=1,N3

872 DO 5601 J=1,N3

873 5601 PSIV(I,J) = PSI{I,4)

874 7249 FORMAT {1HO/{9E1l.4))

875 CALL INVERT (PSIV,N3,78)

876 IF (NC .EQ. 0) GO TD 14717

877 DO 46391F = 1,NC

878 DO 463944 = 1,NC

879 4639 XT{I1,J4) = 0.0

880 D0 4700 II = 1,N3

88l DG 4700 KK = 1,NC

882 SUM = 0.0

883 DO 4701 LL = 1,N3

884 4701 SUM = SUM#PSIVIII,LL)*SQU{LL,KK) oo
885 DO 4700 JJ = 1,NC 3
886 4700 XT{JJeKKI= XTIJJ,KK)+SQUIIT,JJ)%SUN Matrix [?] {r'] [?] » Bq. A-31,
887 CALL INVERT {XT,NC,38)

888 DO 4712 I = 1,N3

889 XID (1) = 0.0

890 DO 4712 J = 1,N3

891 4712 XIDU{I) = XID(I)+PSIV(I,J)*=VECT(J)

892 DO 4713 I=1,NC

893 XIB(I) = 0.0 -
894 DO 4713 J = 1,N3 T,
895 4713 XIB{II=XIB(I)+SQUIJ,11*XID(J) Vector [F] [T'] E , Eq. A-3L
896 DO 4714 I = 1,NC

897 XID(I) = 0.0

898 DO 4714 J = 1,NC

899 4714 XID{I) = XIDL{I)+XT{I,J)I*XIB{J)

900 DO 4715 I = 1,N3

901 DO 4715 J = 14NC

902 4715 VECT {I} = VECT{I}-SQUII.J)*XID(J)
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903
904
905
906
s07
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945

DO 4716 I = 1oNC
XID(I) = 0.0
PO 4716 4 = 1sNC
4716 XID(I) = XID{II+XT{I,J)*GAMLJ)
DO 4717 I = 1,N3
DO 4717 J = 1,4NC
4717 VECTUI) = VECTUII-SQUIT,I)*XID{J)

14717 CONTINUE

DO 5610 1
WO(I) = 0.0
DO 5610 J = 14N3 P
5610 WD{I) = WO{II+VECT{JI*PSIV(I,J) ————— & from Eq. A-31,
CONS = SQRT(FMU%PZ)/RS%%2 —— Eq. A~L6,
DO 780 1 = 1,N
IT = N3+{I-1)%9
DO 780 K = 1,3
CONK = (K-2)#CONS
DY{II+K) = TH{I Ks2)¥WMI{3 41 )~TH{I Ks3)*WM{2, 1) +CONK*TH{I,4-Ky1)
DY{IT#K#+3) = TH{I K93 %WMILgI)-TH{I yKel)%WM{3,1)+CONK*TH{ I44-K,2)
780 DY(1I+K+6) = TH{I+Ks1)%WM{2,1)=TH{IKs2)%wM{1,1)+CONK®THI I,4-K,3}
IF {IBUG .NE. O} WRITE (652060) T,RS,CONS
IF{IBUG.NE.O) WRITE{652200) (I,UU(1),H{1)EL{L) G{T},QUI)snWV{I}; Extra readouts
1 WD{I)yI=14N3)
2060 FORMAT{1HO/10X16HPART V - TIME = FB8.2,19H, ORBITAL RADIUS = Y
1 F7.3,17Hy ORBITAL RATE = E8.3/7/)
2200 FORMAT{1HO;20X1HW,11X1HH11X1HL,11X1HG,11X1HQ, TXSHOMEGA,
1 3XSHOMEGA DOT//(I11047E12.4))
IF {IBUG .NE. O AND. FD .LT. 1.E-05) WRITE {6,7654) AMBDS,AMBOR,
1 TRHyTRYTH, THH,AMDDT ;WKPS,TPH

7654 FORMAT {1HOSE1B.5) . .
60 TO 800 ypasses the hysteresis damper computation for general
820  CONTINUE program utilization ~ See card No. 30.

KBBC = KBBC+1
1F {FD .GT. 1.E-05) GO TO 800

1,N3

o Eq. A-;8,

AMDDT = WKPS-WM{2,2) Time derivative of damper angle ~- See card No, 807.
SNN = SIGN{1.0,AMDDT) . .
IF (ABS{SNN#+S00) .GT. 1.5) GO TO 4887 ——— denotes no_polarity change in hysteresis

TRH = THH damper angle derivative.

AMBDR = AMBDS
4887 SO0 = SKNN
GO 10 800
830 CONTINUE
THOUR = T/3600,

} ——DReset values for Eq, B-~26,
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946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
369
970
971
972
973
974
975
976
977
978
979
980
981
982
383
984
985
986
987
988

831

951

160

161

952

163

164
162

167

WRITE (6,950) THOUR,D13,D23,D33,SHAD(IS)

DVECI{ls1) = TH{1,1,10%CG+TH{1,1+2)%SG

DVEC(142) = ~TH{l,1,1)%SG+TH{1,1,2)%CG

DVEC(1,3) = TH{1,1,3)

DVEC{2,1) = THi{l¢2,1)2CG+THI142,2)%56G

DVEC(2,2) = —TH{142,1)%SG+TH{1,242)%CG Eq. B2l
DVEC(2,3) =TH{1,2,3) Q- .
DVEC(3,1) = TH{1:351)*%CG4TH{1,3,2}%56

DVEC{342) = ~TH{1s3:1)%SG+TH{1,3,2) *CG

DVEC{3,3) = TH{1,343)

WRITE(65951) {{DVEC{T4d)sd = 143351 = 1,3)

FORMAT (1HO4DXBHATTITUDE //(20X3E16.7))

00 160 I = 1,3

DO 160 J = 1,3

DVEC(I,d4) = 0.0

DO 160 K = 1,3

DVEC{I4J) = TH{1,KeT)%THI12,K,d) +DVEC(I4d)

DO 161 I = 1,3

DO 161 J = 1,3

V(Ied) = 0.0

DG 161 K = 1,3

V(Isd) = VIIyJ)+RHO(1,1,K)*DVECAKsd) ————————— Eq, B-28,

WRITE (64952) V(2,3)4VL{3,1),VI(142)
FORMAT (1HO1OX6HDAMPERSX3EL6.7)

DO 162 II = 346

DO 163 1 1.3

DO 163 J 1+3

DVECtIsJ} = 6.0
DO 163 K = 1,3

DVECUI¢Jd) = DVEC(I JI+RHOUII-1414KI*TH(L,J,K]}

DO 164 1 = 2,3

SD{1is1I) = 0.0

DO 164 J = 1,3

SD{II,1I} = SDUIIcI)+SL*DVEC{I J)*TH(II,J,1)
CONTINUE

DO 166 K=1l:;4

DO 167 Il = 1,3

DO 167 JJ = 1,3

DVEC{II,JJ) = 0.0

DO 167 KK = 143

OVEC{IIoJJ} = DVECIIToJJI+SLARHOIK+L,TT,KKI* THI1,dd,KK)

DO 165 J=24NPB
INDX = 4%¥J+K-2

— Eg. B-29.
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989 DO 168 11=2,3 \

990 SDUINDX,II) = 0.0

991 DO 168 J4=1,3

992 168 SDUINDXoII} = SDOINDXoIT)+DVECUIIJJI*THUINDXsJJel)

993 165 CONTINUE > - Fq. B-29,
994 166 CONTINUE

995 DO 169 11=2,3

9956 DO 169 JJ=T.N

997 169 SD{JJ,11) = SDIJJ,T11}+SDUII-4,1I1) J

998 WRITE (6,953) {SD{I+3),1 = 3,N)

999 WRITE (6,954)(SD{I+2)+1 = 34N)

1000 WRITE (56,955){50{I:1)yI = 34N)

1001 953 FORMAT {1HO3O0X11HDEFORMATION/4X8HIN PLANE /{15X4E16.7))

1002 954 FORMAT (4X12HOUT OF PLANE /{15X4E16.7))

1003 DO 3330 1 = 154

1004 J = 4ENPBR-2+]

1005 ZIN{1)=SD{J,3)

1006 3330 YIN{I) = S01J,2)

1007 XINIT(S5) = —0.5%(YIN{3)+YIN{4)-YINI{1)-YIN(2})

1008 XINIT{B) = =0.5%(ZIN[3}+ZIN{4}+ZINLI)+ZINL2))

1009 XINIT(T7) = ~0.5%(YIN{3)-YIN{4)-YIN[I)+YIN{2))-2.0%QBA

1010 XINIT(8) = -0.5%{ZIN{3)Y-ZIN{4)+ZIN{1)-ZIN{2))-2.0%QKA ———— Fq, B-31,
1011 XINIT(9} = —0.5%{ZIN(3}+ZIN{4}-ZIN{1)-ZIN(2))

i012 XINIT(10) = —0.5*({YIN(3}+YIN(4)+YIN({1)4YIN(2})

1013 XINIT{11) = =0.5%{ZINI{3)-ZIN{4)-ZIN(1)+ZINL2))

1014 XINIT(12) = ~O0.5%({YIN{3}-YIN{4)}+YIN(1)-YIN(2})

1015 WRITE {659511) XINIT{S)XINIT{6),XINITLT) XINIT(9),XINIT{10);,
1016 IXINITL11) o XINIT{B)sXINIT(12)

1017 9511 FORMAT {1HO2T7X1SHSATELLITE MODES//4X4HROLL9XELO.4,5X5HPITCH
1018 18XE10.45 SX3HYAWLIO0XELQ.4//4X12HLONGITUDINALIXELD. 4, 5XTHLAT ERAL
1019 26XE10.4 ,5X8HVERTICALSXEL 0.4/ /4X16HIN PLANE NEUTRALSXE1O.4,
1020 36X20HOUT OF PLANE NEUTRALGXELO.4)

1021 IF (T .GT., CAPT) GD 10 9999 Duration of program run.
1022 TP = T+TR

1023 GO TG 800

1024 840 CONTINUE

1025 G0 TO 800

1026 2080 FORMAT{1H1,30X36HBEGIN INTEGRATION, PRINT INTERVAL =F8.4///)
1027 C ERROR STOPS

1028 900 WRITE{6,3100) IPARY

1029 GO TO 990

1030 910 WRITE(6,3110) IPART

1031 GO TO 990



6L

1032
1033
1034
1035
1036
1037
1038
1039
1040
1041

920 - WRITE{6;3120){S{KyJ) ,K=1,N)
990 WRITE(6,3000)
999 6O TO 9999
950 - FORMAT (1H15X4HT = E16.746H HOURSSXIHSATELLITE3X3E16.7+4XAb)
955 FORMAT (4XSHTWIST /{15X4E16.7))
3000 FORMAT{1HO,15X,18H%** ERROR STOP *¥x)
3100 FORMAT{ 1HO,10X14HOVERFLOW, PART [3)
3110 FORMAT(1HO,10X,21HSINGULAR MATRIX, PART (3}
3120 FORMAT{1HO,10X,24HBAD COLUMN IN MATRIX /S///(15F6.1))
END



Subroutines

Following are listings for standard Westinghouse subroutines ICE,
INTEG, INVERT, and XSIMEQ. For theoretical descriptions of these computational
schemes the reader is referred to "Standard Subroutines Used by Westinghouse

RAE Operational Programs," April, 1968, Contract No. NAS5-9753-20.

80
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o BE N S B PUN N

100

101

106

102

103
104
i05
110

111
112

113

114

SUBROUTINE ICE {(PsTT,TPyNN,Y DYy FsL,INDEX,I,KPRI,ERL}
DIMENSIGN ERL{1)

DIMENSION DUMPR{312)

DIMENSION Y{1),DY(1),F(1)

DIMENSION Y{1),DY{1),F(1)

T=177

G0 TO (100,200,300,400i L
i6=16

G0 TO {101,102),16

3 =1

L =2

M=20

TS =T

DO 106 K = 1N

K1 = K+3*N

K2 = KI+R

K3 = N + ¥

FtK1} = YiK)

FEK3} = F{K1l3}

FIK2)} = DY{K}

GO TO 402

CALL INTEG(T,DT, Ns Y€1) sDY(L1)yF{1)odsI)
J = J+l

IFfJ-1 ) 103,103,104
L =1

GO TO 402

M = M+l

GO T0 {110,120,130),M
DO 111 K = 14N

K1 = K+N+N

F{K1) = Y{K}

DO 113 K = 14N

K1 = K+3%N

K2 = K1+N

K3 = N+ K
Yi{K) = F(K1l)
F{K3} = F{K1)
DY(K} = Fi{K2}
T=1TS§

IF(T) 114,116,114
IF(ABS{H/T)-.000001) 115,115,116

AAILO0030
AAICO0040
AAICO0050
AAICO060
AAICO070
AAIC0O0BO
AAICO0090
AAICOl00
AAICOL10
AAICO120
AAICOL30
AAICO140
AAICO150
AAICO160
AAICO170
AAICO180
AKICO0190
AAIG0200
AAICQ210
AAICO220
AAICO230
AAIC0240
AAICO250
AAIC0260
AAICO270
AAIC0280
AAICO0290
AAICO300
AAICO310
AAICO320
AAICO330
AAIC0340
AAICO0350
AAICO360

AAIC0380
AAICO390
AAICO400



(4:]

115 M =0 AAICO410
L =24 AAIC0420
GO TO 402 AAIC0430
116 DT = .5%H AAICO440
M=1 AAIC0450
Jd=1 AAICO0460
G0 TO 300 AALICO4T0
120 DO 121 K = 1N AALICO480
K1 = K+N AAIC0490
121 F(K1) = YK} AAICO0500
M=2 AAICO510
J =1 AAICO520
I6 = 2 AAICO530
Lt =1 AAICO540
GG 70 402 AAICO550
130 DO 131 K = 1N AAICO560
K1 = K+2%N AAICO570
FIK) = (Y{K)-FIKL)}/(2.0%*%]~-1.0) AAICO580
DUMPR(K) = Y(K)
Y{K} = Y{K} #+F(K) AAIC0590
131 CONTINUE AAICO640

IF {KPRI .EQ. 0} GO TO 1324
WRITE (641325) T
1325 FORMAT {1H15X18HATTEMPTED STEP AT E£10.4//10X2HY1410X2ZHY210X2HYELD
1X2HER//}
DO 1326 IKZ = 14N
IAM = 2%N+1IKZ
1326 WRITE (6,1327) IKZ,F{IAM),DUMPR{IKZ) ,YUIKZ),F(IKZ)
1327 FORMAT (15,4E12.4)
1324 CONTINUE
DO 1967 K=1yN
IF (ABS{FiK)}}) .GT. ABS{ERL{IK})/20.) GO TO 135
1967 CONTINUE

134 H = H#H AAICOT40
1345 DT = H AAICOT50
GO 10 401 AAICO760

135 DG 1968 K=1,N
1F (ABS{F{K)) .6T. ABS{ERLI{K)}) GO TO 136
1968 CONTINUE

G0 TO 1345

136 DO 137 K = 1,N AAICOT78O
Kl = K+N AAICO790
K2 = K#N+N AAICO800



£8

86
87
88
89
90
91
92
93
94
95
36
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

137
138
200
203
204
205
206
207
208
209
210

211
212

213

214

215
300

400

401

402

FEK2) = F{K1}

H = .5%H

MU=2

GO T0 112

MU=MU

GO TD (203,204) MU

H= AMAX1(AMAX1(H,H1),H2)

MU = 2

H1 = ABS{H)

IF{P} 205,206,206

H = -Hl1

60 TO 207

H = H1

IF(ABS{PI~H1} 208,209,209
H=29

T2 = TP-7

IFIT2) 210,212,210

H2 = ABS{(T2)

IF{TP) 211,213,211
IF{ABS(T2/TP)-.00001) 212,213,213
T=7TP

AAICOB10
AAIC0820

AAIC0830
AATIL0840
AAICO0850
AXICO860
AAICOD870
AAICOB880
AAIC0890
AAICO0900
AAICO910
AAICO0920
AAICO0930
AAICO0940
AAICO950
AAIC0960
AAICO970
AAICO980
AALIC0990
AAIC1000
AAIC1010
AAIC1020
AAJC1030
AAIC1040
AAIC1050
AAIC1060
AAIC1070
AAIC1080
AAIL1090
AAIC1100
AAIC1110
AAIC1120
AAIC1130
AAIC1140
AAIC1150
AAIC1160
AAIC1170
AAIC11890
AAIC1190
AAIC1200
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85
86

22

23

24

33

ICE INTEGRATION SUBROUTINE
= 2 SECOND ORDER RUNGE-KUTTA
= 3 THIRD ORDER RUNGE-KUTTA
I =4 FOURTH ORDER RUNGE-KUTTA
E

I
H

STORAG F1 = E =
F2 = YHAF1l
F3 = YFULL
F4& = YSAVE
FS = DYSAVE
£F6 = 12
FT1 = 13

SUBROUTINE INTEG (T,DT,
DIMENSION Y{1),DY{1},F(1)
DIMENSION Y{1),DY{1},F(1)
DO 100 K = 1N

K1 = K

K2 = K+5%N
K3 = K2+N

Ké = K + N

GO TO (999;85495995)51
GO TO {8642:4999,999)d
FIK1) = DYL(K)}*DT

Y{K) = FiK&} + F{K1l}
60 10O 100

GO TO (1:25354),d
F{K1} = DY{K)*DT

YLK} = FiK&4)+.5%F (K1)
GO T0 100

FIK2) = DY{Ki*DT

GO TO (999,22,23524) 51
F(K3) = DY{K}*DT

GO TO (999433,33,34),1

TEMPORARY STORAGE REQUIRED=
DIMENSICON OF F ARRAY =
Nx(3+])
WHERE N = NO OF DERIVATIVES
AND I = ORDER OF INTEGRATION
PROCESS

NeYDYsFrd, 1)

Y{K) = FIK4}+[F{K1}+2.0%(F{K2)+F (K3} )+DY(KI%DT) /6.0

GO 10 100

YEK} = JS5¥{FIK1)+F(K2})
GO 7O 25

YIK) = Z2.0%F{K2)-F{KL)
GO TO 25

YIK) = .S5¥F{K2)}
Y{K) = Y(K)+F{K4}
60 TO 100

Y{K) =

FIK4)+(F{K1)Y+4.0%F{K2)+F{K3))/6.0

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420

s
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34
100

110
120
130
131

132
140
999

GO 16 100

Y{K) = F{K4)+F{K3)
CONTINUE

G0 70 {110512045130,140),+J
GO T0 (9994131,132,132) 41
GO0 TO (999,140,132,140) 41
GO 10 {999,140,140,132) 1
T=0T +7

GO TO 140

T=T + .5%D7

RETURN

PAUSE

60 TO 140

END

0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
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OO~ WN

10

11

12

13
14

15

16

MATRIX INVERSION BY GAUSS—JORDAN ELIMINATION
SUBROUTEINE INVERTULA,N,NN)

DIMENSION A(NN,N)+B(350),C(350),L2(350)

IF { N.EQ.1) GO TO 300

SuM=1.

DO 5 I=1.N

SUM=SUM*A(I, I}

RAVG=10.*%%(-ALOGLO{ SUM} /N)

DO 6 I=1.N

DA 6 J=19N
ACL¢d0=A{1,J)*%RAVG
00 10 J 1,N
LZidy =

DO 20 1
K 1

Y AlI, I}

L -1

LP = I+l

IFEN-LP) 1l4,11,11

DO 13 J = LP.N

W= All,d)
IFCABS(H)-ABS{Y)} 13,13,12
K=2J3

Y =4H

CONTINUE

IF(Y.LT.1.E~8) GO TO 260
DO 15 J = 14N

CL3) = A{J,K)

([ N []

14N

ACJsK) = ALJ,1)
AlJ,1) = ~CLU}/Y
All.4) = AlILJ)/Y
Bl{Jd} = AtL, )
Altl,I} = 1./7Y

d = L2I)

LZ(I) = LI{K)
LZ(K) = J

D0 19 K = 1,N
IFEI-K) 16519,16
DO 18 J = 14N

EE
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17
18
19
20

100

600

700
500
200

OO0

250

300

260

IF(I-J) 17,18,17

AlKsJ) = ALK,J1-BlJ)*C(K)
CONTINUE

CONTINUE

CONTINUE

DO 200 I = 1¢N
IFCI-LZ(I)} 100,200,100
K = I+1

DO 500 J = KN
IFCI-LZ1J)) 500,600,500
M =LZ2{1)

LZ(LY = LZUJ)

LZ{J) = M

00 700 L = 14N

CLL) = All,.L)

AtI.L) = AlJ.L)

Afd,L) = C{L)

CONTINUE

CONTINUE

MAKE IT A SYMMETRIC MATRIX

DO 250 I=14N

D0 250 J=I,N
AVG={A{I,JI#A(J,1))/2.%RAVG
A(T,J)=AVG

Af Jy I)=AVG
CONTINUE

RETURN

IF(ABS (A{1,1)).LT.1.E~10 IN=-IABSIN)

A(111’=10/A(111)
RETURN

N=-TABS{N}
RETURN
END
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43

10
11
69

13

14

19

15
17
16

24

18

143

INTEGER FUNCTION XSIMEQUIMAXyNyMsA,B,DET,IE)
DIMENSION A{IMAX;IMAX),BI{IMAX, IMAX), IE{IMAX)

CALL OVERFL({JOY
CALL D VCHK(JI)
DO 43 1=1,N
IE(1) = 1

DO 1 IN = 14N
AMAX = ACIN,IN)

It = IN
JJ = IN
DO 11 I = INsN
DO 11 J = INN

IMT = ABS {A(I,J4))
IF(AMAX-ZMT)10,11,11
AMAX = IMT

i1 =1

JJd = J

CONTINUE

IF (A(ITIsdJ)) 69,33,69
IF(II-IN} 13,17,13
DO 15 J = 19N

R = A{IIl,J)
A{I1,J) = AUINgJ)
A{IN,J} =R
IF(J-M) 19419,15

R = 8(11,4)
B(I1,.J) B{IN,J)
B{INyJ) R
CONTINUE

IF(JJ-IN) 16,18,16
DO 24 I 14N

R = Al1,Jd)
A{I,JJ) = ALI;IN)
AfI,IN} R
IQ=IEC(IN)
IECINI=IE{JJ)
IE{JJ4) =1Q

DET = DET*AMAX K-l ek { {(TI-INI+{JJ-IN}}

KI = IN#+1
IF {KI-N} 143,143,144
DG 160 J = 1,.M

BUINsJY = BUINoJI/A(INSIN)

_—

SIMEOOO1
SIMEODOZ

SIMEC003
SIMEQQO4
SIMEQO0S
SIMEQOO6
SIMEOQOO7?
SIMEOOOB
SIMEDQOQ9
SIMEOOD10
SIMEOQO11l
SIMEQOL2
SIMEOO13
SIMEOOLl4
SIMEOO15
SIMEOOL16
SIMEOOLY
SIMEOO18
SIMEOOLY
SIMEOOZ0
SIMEOO021
SIMEOD22
SIMEO023
SIMEOO24
SIMEDO25
SIMEDO26
SIMECGO27
SIMEOO28
SIMEQO29
SIMEOO030
SIMEOO31
SIMEGO32
SIMEQO033
SIMEOO34
SIMEOO35
SIMEOO36
SIMEOO37
SIMEQO38
SIMEOOQ39
SIMEOQQ4D

-3
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160

80

145

110
109

DD 160 K = KI4N

B{Ked) = BIK,J)-A{K, IN)*B{IN,J}

DO B0 4 = KI;N

A (INgJ) = A(IN+JI/AL{INGIN)
DO 80 K = KIyN

A{KyJ) =

D0 1 K = KIsN
A{K,IN) = O.
A{IN,IN) = 1.

NF = N-1
IFINFL.LE.OIGO TO 147
DO 109 K = 14NF

I = N-K
NK = I+1
DG 109 L = 1,M
SUM = 0.

DO 110 J = NK,N
SUM = SUM+ALT,J)%B{J,L)
B{I,L) = B{I,L)-SUM

147 CONTINUE

111

118

140
141
189
33

144
161

139

113

DO 111 K ’
DO 111 1 ?
IF(TE{I})-K) 1
CONTINUE

DO 118 1I= 1,N

DO 118 J= 1,.M
Al{l,d) = BUI+J)
CALL OVERFL{J0O)
CALL D VCHK{JI)

G0 TO {139,140), JO
60 TD {139,141),41

1
1

N
N
11,113,111

XSIMEQ =1
RETURN

XSIMEQ = 3
60 TO 189

DO 161 J = 1M

BIINsJ) = B{IN,JI/ALIN,IN)
GO TO 145

XSIMEQ = 2

GO TO 189

DO 114 L=1:M

Q = 8{l,L)

B{ls,L) = B(K, L)

AlK,J)-A{K INI*A{IN,J)

SIMEOO4]
SIMEQ042
SIMEOO43
SIMEOQO44
SIMEO0045
SIMEQO46
SIMEQQ4T
SIMEOQ4S8
SIMEOQ049
SIMEOG50

SIMEOO51
SIMEOO52
SIMEOO53
SIMEQO54
SIMEOO55
SIMEQO56
SIMEQO57
SIMEODOS58

SIMEQO59
SIMEOO60
SIMEOO61
SIMEQCOS2
SIMEOO63
SIMEOO64
SIMEQO06S
SIMEQOSGS
SIMEOO67
SIMEOO68
SIMEDO69
SIMEOOTO
SIMEOOT1
SIMEOO72
SIMEOOT73
SIMEDO74
SIMEQO75
SIMECOT6
SIMEOQOOT7
SIMEOO78
SIMEOOT9
SIMEOOS8O
SIMEQO81
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86
87
88
89
90
91

114 B{K.L) = Q

1IQ = IE(K)
1E(K) = IE(1)
IE(D) = 1Q
GG TO 111

END

SIMEQO082
SINEOO83
SIMEQ084
SIMEQQ85
SIMEDOB6
SIMEOO8T
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