DIGITAL PROGRAM FOR DYNAMICS OF NON-RIGID GRAVITY GRADIENT SATELLITES

by James L. Farrell, James K. Newton, and James J. Connelly
Prepared by
WESTINGHOUSE ELECTRIC CORPORATION
Baltimore, Md.
for Goddard Space Flight Center
national aeronautics and space administration - washington, d. C. - AUGUST 1968

DIGITAL PROGRAM FOR DYNAMICS OF NON-RIGID GRAVITY GRADIENT SATELLITES

By James L. Farrell, James K. Newton, and

James J. Connelly

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

\author{
Prepared under Contract No. NAS 5-9753-10 by WESTINGHOUSE ELECTRIC CORPORATION Baltimore, Md.
 for Goddard Space Flight Center
 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
 [^0]}

ABSTRACT

A digital program has been written to determine the dynamic behavior of discretized models for gravity gradient satellite structures. Both passive (elastic reaction, damping) and active (controller) internal torques can be included in the computational model. The program can be utilized simply by observing straightforward directions given in the introductory section of this report, and a concrete example (hinged assembly model of the Radio Astronomy Explorer satellite) of program adaptation is described in detail. To facilitate application to other configurations a clear separation is made between 1) computations applicable to a general gravity gradient satellite, and 2) specific RAE computations.

The basis for this digital program is the Roberson-Wittenburg dynamical formalism, noted and referenced in the text. This formalism grew from the desire to systematize the rigorous dynamic analysis of structures with multiple interconnected members. In programming the formulation for the present problem, it was found possible to supply additional details applicable to a fairly general class of gravity gradient satellites. Thus the general portion of the program contains provisions for straightforward implementation of internal moments (passive spring and damper or active controller torques inherently provided as simple functions of integrated rates and attitude; constraint torques at locked hinge axes automatically accounted for by a simple indexing scheme), as well as solar radiation pressure and thermal (direct Earth and direct plus reflected solar heating) effects. The necessary astronomical and kinematical expressions are supplied in a standard form, with explicit relations valid for eccentricities up to one-tenth.

Practical implementation of the dynamical formalism calls for the following computational refinements: 1) artificial enlargement of small members, to hasten the integration of high frequency oscillations without materially affecting the overall (low frequency) excursions; 2) hinge interactions to enhance the accuracy of numerical differentiation, necessitated by moment characterization for discretized elastic members; 3) the use of weak restraining springs and dampers at locked joint axes, to counteract the double integration of small numerical errors incurred by the constraint torque formulation; 4) representation of torsionless biaxial bending by an orthogonal matrix with one vanishing eigenvector component; and 5) the use of kinetic or potential energy considerations in fitting segments to an elastic curve.

Through successful comparison with an independent Lagrangian model analysis, a three-segment model was deemed sufficient for each of the 750 ft . $\frac{1}{2}$ inch dia. RAE antenna booms. Each orbit (approximately 4 hours) of the undisturbed satellite then requires roughly one hour of simulation time, and the machine time is approximately doubled by introduction of thermal effects (solar pressure has a less pronounced effect). The expensive nature of the program is attributed to modeling accuracy (e.g., full nonlinear coupling; the interaction between dymamical behavior and forcing functions; etc.) plus the large number of integrated variables, in comparison witn the number of Independent co-ordinates.

FORENORD

Abstract

This program was written for use by Goddard Space Flight Center, in the dynamic analysis of the Radio Astronomy Explorer satellite, under NASA Contract No. NAS5-9753-10. In combination with additional work performed under this contract (tasks 15 and 20), the results will provide (1) maximum inaight into the three-dimensional flexible satellite motion, (2) comparison between this segmented model dynamics and another independent structural analysis (a Lagrangian modal analysis, documented separately), and (3) complete preparation for an operational program which provides statistical filtering of boom tip information (intermittently received by TV atations at fixed pointa on the Earth) in combination with attitude and damper position measurements.

TABLE OF CONTENTS

Section Page
INTRODUCTION 1
general program computations 7
APFRNDIX 11
APPENDIX A: ARALITICAL FORMULATIONS APPLICABLE TO THE
GENERAL PROGRAM 13
Hinge Torques 13
Thermal Bending 16
Constraint Torques at Locked Joints 21
Radiation Pressure 24
Kinematics 27
Astronomical Geometry 28
APPGNDIX B: THE RADIO ASTRONONY EXPLORER (RAE) SATELLITE
CONFIGURATION AND PARAMETERS 30
RAE VABIABLE INPUTS (PART I) 33
System Parameters 33
Initial and Final Conditions 34
Astronomical Parameters 34
RAE FIXED AND DERIVED INPUTS (PART II) 35
Hinb and Boom Parameters 35
Equilibrium Parameters 36
Astronomical Parameters 36
General Program Inputs 37

TABLE OF CONTENTS (con't)

Section Page
HYSTERESIS DAMPER SIMULATION 48
raE readout derivations and formats 49
Constant Readouts 49
Variable Readouts 49
APPENDIX C: PROGRAM LISTING 53
REFERENCES 91

Accurate three-dimensional analysis of non-rigid assemblies has onjoyed only limited feasibility and flexibility in the past, due to the oxistence of unknown internal forces and moments which influence the relative motion between nembers. In many applications these relative motions interact with the rigid body degrees of freedom (e.g., the flexural behavior of a satellite boom changes the moments of inertia which in turn affect the attitude dynamics). Because of the reaulting compleadity, previous investigations have often employed analytical transformations whose detailed form depended heavily upon the specific configuration studied.

In order to provide a method applicable to a more general class of dynamical situations (e.g., flexural and torsional behavior of discretized structural modela; attitude control of a hinged aatellite aasembly), a two-body Euler formulation devised by Fletcher, Rongved, and Iu^{1} was extended to the N-body case by Hooker and Margulies; ${ }^{2}$ the explicit development was then advanced by Roberson and Wittenberg. ${ }^{3}$ These recent advances have been emplojed in a digital program capable of describing the rotational dynamics (attitude matrices and inertial angular rates) of multiple interconnected rigid bodies. The program is applicable to structural or attitude control problems subject to the conditions (1) existence of a unique path betweon any pair of bodies (the arrangement then conforms to the definition of a topological "tree"), and (2) characterization of interconnections by hinges which, for any pair of adjacent bodies, must be fixed in both members.

The present scope is restricted to gravity gradient satellites in a Keplorian orbit with eccentricity less than 0.1. In addition to the offects of ellipticity on gravity gradient torque, the program includes solar radiation pressure
(at 100\% reflectivity) and thermal bending of booms; heat flux sources are the sun and Earth (direct), plus the component of solar heat reflected by the Earth.

For a reasonably general class of satellites falling within the above scope, the program lends itself quite readily to implementation of accurate dynamic analysis. Although the pertinent mathematical developments (derivations in Refs. 2 and 3, augented by the additions in Appendix A of thia report) involve several arrays of variables, techniques for computer storage optimization have produced a practical computational arrangement for structures containing up to 26 members.* Aside from a few possible adjustments involving specific satellite geometry,** all that is necessary for immadiate use of the program is a specification of the familiar satellite paremeters, listed together with the corresponding Fortran designations in quotes below; (Appendix B demonstrates this specification procedure for an illustrative model of the Radio Astronomy Explorer (RAE) satellite; ${ }^{4}$ the explicit thoroughness of the Roberson-Wittenburg ${ }^{3}$ formulation is sttested by the extreme simplicity of these parameters):

System Paramoters

N (" N ") The number of rigid bodies in the system (There are then N-1 hinges).
m ("EM") A vector ($N \times 1$) defining the mass of each body.

FTo exemplify the demand for machine capacity it is noted that, with 26 members, the augmented inertia matrix of Ref. 3 has $(26 \times 3)^{2}$, or over 6000 , elemonts. This alone consumes about twenty per cent of the IEA 7094 core (the program is written in aingle prociaion).
** If solar pressure and/or thermal effects are to be taken into account ($A_{E} \neq 0$, $\mathrm{J} \mathrm{F} \geqslant 0$, or $\mathrm{J} / \mathrm{S} \geqslant 0$), see Appendix C .
Alto, if formulations of curvature (for hinge moments of discretized booms) require accurate numerical derivatives, the "interacting joint" technique exemplified in Appendix B must be used.

I ("A") A third order tensor ($N \times 3 \times 3$) containing the principal moments of inertia for each body. (The off-diagonal terms, though initially zero, will be appropriately augmented in accordance with the dynamics in the program).
\mathbf{R} ("R") A third order tensor ($\mathrm{N}-1 \times 3 \times 3$) of restraining torque coefficients which generate position feedback (for control problems) or elastic reaction (for structural analysis) at each hinge.
R^{Γ} ("RP") A third order tensor ($N-1 \times 3 \times 3$) similar to R, but generating hinge torques proportional to relative angular rates between each pair of adjacent bodies.
S (" S ") A matrix ($\mathrm{N} \times \mathrm{N}-1$) of ones and seros constructed simply as follows: Number the bodies (1 to N) and the hinges (1 to $N-1$). Set $S_{i j}$ to zero for every combination of unconnected body (i) and hinge (j). For each pair of adjacent members (I and K) identify the one (body I) to wich the coefficients R and R^{\prime} are referenced.* Set $S_{I J}$ to +1 and $S_{K J}$ to -1 (where J is the hinge connecting the I and K members).

P ("RHO") A third order tensor (N-1 $\times 3 \times 3$) defining the orthogonal transformation between each pair of adjacent body principal axes in the undeformed or rest position. In the notation of the preceding item, $\left[{ }_{J}\right]$ is the transformation from K to I co-ordinates.

FOne examplo requiring such an identification would be a skowed boom hinged to a satellite hub. The rotational degrees of freedom of the hinge would presumably be refecenced to principal axes of the boom (bending and toraion), rather than the hub.

C ("C") A matrix (3N x 3N) generated from S as follows: All elements ontside the upper left ($3 \mathrm{~N} \times \mathrm{N}-\mathrm{I}$) array are zero.* For each zero in S , place a (3×1) null vector at the corresponding position in the upper left ($3 \mathrm{~N} \times \mathrm{N}-1$) corner of C. Choose a right-hand convention for positive rotations about principal axes of each body (consistent with the definition of A), and express each mass center-to-hinge vector in these principal co-ordinates. For each nonsero element of S , multiply the corresponding mass center-to-hinge vector by $S_{i j}$ and enter this product in the corresponding location of C.
A_{E} ("AE") A vector ($N \times 1$) defining the effective surface area of each body, assuming 100% reflectivity for solar radiation pressure.
N_{C} ("NC") The total number of locked hinge axes in the aystem. (To clarify this definition it is noted that the system has $3 N-N_{c}$ rotational degrees of freedom). The present program capacity allows up to thirty-eight locked modes.

M ("MI") A vector $\{3(N-1) \times 1\}$ defined simply as follows: For every locked hinge axis identify the joint number (J) and the locked mode ($\alpha=1,2,3$ for x, y, z respectively); compute the argument $j=3(J-1)+\propto$. Number the locked modes 1, 2, ... N_{c} and, for each value of (j) representing a locked mode, set M_{j} equal to this index number. For all other values of (j), set M_{j} to zero.

FTheae locations are used at a later point, after C is no longer needed and its storage is utilized for other purposes.
$J_{E}^{7}($ "XJE" $)$
$J_{S}^{7}(11 X J S ")$

Thermal bending constant computed as show in Equation (A-19) from Earth heat flux (J_{E}; Equation A-15); linear thermal coefficient of expansion (e); boom segment length (ℓ), diameter ($(\mathbb{C}$), thickness (\boldsymbol{J}), earth heat absorptivity (a_{E}), and thermal conductivity (\boldsymbol{K})。

Thermal bending constant computed as shown in Equation (A-19) from the above parameters, with $\left(J_{E}\right)$ and (a_{T}) replaced by the solar heat flux (J_{S}; Equations $A-16$ and $A-17$) and solar heat absorptivity (a_{S}), respectively。

Initial Conditions and Program Control

θ ("TH") A third order tensor ($\mathrm{N} \times 3 \times 3$) containing the diroction cosine transformation from each set of body axes (defined for C above) to reference axes.* The reference axes are defined by the upward local vertical $(+Z)$ and the orbit pole $(+Y)$.
$\boldsymbol{\omega}$ ("WV"; "WM") A vector ("WV"; $3 N \times 1$) equivalenced to a matrix ("IM"; $3 \times N^{\prime}$) containing the absolute angular rate for each body, expressed in its own (principal axis) co-ordinate frame.*
T ("OPBS") Total number of orbits to be sjmulated in one run.
$\mathbf{N}_{\mathbf{R}}$ ("ENR") Number of readouts per orbit.
E_{L} ("ERL") A vector (12 N $\times 1$) of allowable absolute error per integration step for angular rates (rad./sec.; 1 to 3 N) and direction cosines $(3 N+1$ to 12 N$)$.
FIt is thus seen that these addresses contain the desired information (satellite attitude, shape, angular rates) which can be read out at any time. To begin the computer run, the initial values are stored in these locations.

Astronomical Parameters

$\boldsymbol{a}_{0}(" A Z ")$	Semi-major axis of orbit.
\boldsymbol{e}_{0} ("EZ")	Eccentricity of orbit. (The present program assumes $e_{0} \leqslant 0.1$, but an extension could readily be made).
t_{0} ("TZ")	Time at periapsis, relative to the time $(\mathrm{t}=0)$ at the start of the simulation mun.
i_{0} ("EYZ")	Orbital inclination.
Ω_{0} ("THZ")	Longitude of the ascending node.
$\omega_{0}(W W Z)$	Argument of the perigee.
$\mathrm{N}_{\mathrm{D}}{ }^{(" N D ")}$	Launch date (e.go, $N_{D}=1$ for January 1).

For most programs it will be convenient to compute many of the above parameters from other, more basic, inputs (e.g., length, modulus of elasticity, angles at connecting points, etc.). This portion of the program will therefore consist of (a) Part I; controllable (punched card) inputs, and (b) Part II; fixed and derived inputs. Again, reference is made to Appendix B for an illustration. It is noted that the present program setup calls for inputs in MKS units, and the above angle inputs should be expressed in degrees. Also, any of the above provisions (auxiliary variables, additional dimension statements, print-out directions, etc.) must also be added to suit the individual problem under consideration. In general, the desired readouts will be simple functions of the angular rates ($\boldsymbol{\omega}$-array) and attitude matrices (θ-array).

GENERAL PROGRAM COMPUTATIONS

The preceding introductory material contains the information required for program utilisation. For those interested in the approach, the present discussion describes the fundamentals of the formalation (Refs. 1-3), and additional detail is included in the Appendix.*

To determine the behavior of coupled rigid body motion, the rotational dynamics are first expressed as a set of equations in the usual form,

$$
\begin{equation*}
[I] \dot{\omega}+[\tilde{\omega}][I] \underline{\omega}=\underline{1} \tag{1}
\end{equation*}
$$

where $[I], \underline{\omega},[\tilde{\omega}]$, and $\underset{\sim}{\boldsymbol{T}}$ denote inertia tensor, angular rate vector, the operator ($\boldsymbol{\omega} \boldsymbol{x}$), and total torque vector, respectively. Since this Euler relation holds for each of the (N) members of the atructure, Eq. (1) can be thought of as a (3N) dimensional equation; \mathbb{W} therefore has (3N) components, representing the absolute angular rate of each member as previously defined. The total torque vector of consists of (a) external torques, (b) internal torques, and (c) moments of internal forces. Since the internal forces are generally unknown and are not of primary interest in themselves, it is desirable to replace them by equivalent quantities obtained from Newton's laws. Consequently the internal forces are re-expressed in terms of external and d'Alembert forces; the motion of the composite structure mass center is then eliminated from the equations. As a result, the diAlembert forces can be defined by second derivetives of position vectors relative to this composite mass center. Through the dynamical formalism, the moments of these diAlembert forces are written in a convenient computational arrangement whereby
Firhis report describes only the details of implementing the dynamic computations; for details of the formallsm itself the reader is referred to Ref. 3.
(1) part of the centripetal component is included as a constituent \boldsymbol{Q} of the total torque $\underline{\pi}$;
(2) the remainder of the centripetal component is taken into account through replacing [I] in the second term of Eq. (1) by a constant augmented inertia matrix [K];
(3) the tangential component (associated with \underline{e}) is taken into account through replacing [I] in the first term of Eq. (1) by the augmented inertia matrix $[K+\Psi]$, where $[\Psi]$ varies as a known function of the previously defined attitudes $[\Theta]$.

With the external and internal torques, and the moments of the external forces denoted (as in Ref. 3) by $L, e^{\top} \odot[S] \mathcal{L}$, and $[P] F$ respectively, Eq. (1) is rewritten as Eq. (15) of Ref. 3:

$$
\begin{equation*}
[K+\Psi] \dot{\omega}+[\tilde{\omega}][K] \underline{\omega}=L-[P] \underline{F}+e^{\top} 0[S] \mathscr{X}+\underline{Q} \tag{2}
\end{equation*}
$$

To adapt this formulation to the present program, the two terms in the gravity gradient expression (Eq. 19 of Ref. 3) are symbolized here as ($\underline{H}-\underline{G}$) respectively; the transformed force vector $G^{\prime \prime}$ is then substituted for $\underline{G}^{\boldsymbol{F}}$ to include solar pressure effects (Eqs. A-40 and A-41 in Appendix A of this report). The first two terms on the right of Eq. (2) can then be expressed as

$$
\begin{equation*}
\underline{L}-[P] \underline{F}=\underline{H}-\underline{G}^{r r} \tag{3}
\end{equation*}
$$

The internal torque vector is then separated into two constituents as suggested in Ref. 2;

$$
\begin{equation*}
e^{\top} \theta[s] \underline{x}=\underline{z}^{r}+[\xi] \underline{I}_{c} \tag{4}
\end{equation*}
$$

where ${\underset{\sim}{x}}^{\Gamma}$ includes all spring and damper torques while I_{C} is a vector in which the ($i \underline{\text { th }}$) component represents the constraint torque in the ($i \stackrel{\text { th }}{ }$) locked mode (see the definitions for N_{c} and $\mathcal{I I}^{\prime}$ in the preceding section); $[\xi]$ is the matrix defined by Eq. (A-28). The quantities on the left of Eq. (2) are written as

$$
\begin{equation*}
[\Gamma] \triangleq[K+\Psi] ; \underline{w} \triangleq[\widetilde{\omega}][K] \underline{\omega} \tag{5}
\end{equation*}
$$

so that

$$
\begin{equation*}
[r] \dot{\omega}=E+[\xi] \mathbf{I}_{c} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
E=-\underline{W}+\underline{H}-\underline{G}^{\Gamma r}+\mathcal{L}^{\Gamma}+\underline{Q} \tag{7}
\end{equation*}
$$

In Appendix A it is shown that this leads to an expression of the form

$$
\begin{equation*}
[\Gamma] \dot{\omega}=E-[\xi]\left\{[\xi]^{\top}[\Gamma]^{-1}[\xi]\right\}^{-1}\left\{[\xi]^{\top}[\Gamma]^{-1} E+V\right\} \tag{A-31}
\end{equation*}
$$

which is the actual equation solved through numerical integration in this program. Just as the specific system portion of the program has been divided into (a) Part I - Controlled inputs, (b) Part II - Fixed and derived inputs, and (c) Readouts, the general program operations fall into three categories:
(a) Part 0 - Program setup (e.g., dimensions, physical constants, etc.)
(b) Part III - General system constants (o.g., barycentric vectors as defined in Ref. 3, etc.), and
(c) Part IV - Evaluation of derivatives and numerical integration.

The Fortran nomenclature and operation sequence were chosen to maintain reasonable storage requirements without incurring any appreciable loss in computation efficiency. The six largest arrays consume roughly twonty thousand storage locations,
accommodating a maximum of 26 members and up to 38 locked modes for the complete satellite assembly. All steps of the general computation are identified in Appendix $\mathbf{C .}$

Most of the detailed theoretical background for the gravity gradient satellite program is contained in Ref. 3. In restricting the Roberson-Wittenburg approach to this application, however, it was found that additional aspecta of the formulation (e.g., hinge moments, additional forces, etc.) could be defined more specifically with little further loss of generality. The various computations added to the general program are described in Appendix A.

In order to illustrate in a concrete manner how this program can be applied to an existing satellite, a model of the Radio Astronomy Explorer ${ }^{4}$ is described in Appendix B. A detailed description of the computation then follows in Appendix C, in the form of an annotated Fortran listing.

It was found convenient to treat much of the notation in an individual sectional basis, with various quantities defined in the text of the derivations. The Roberson-Wittenburg notation ${ }^{3}$, however, and its additions (e.g., augmentation of external force by the solar pressure, etc.) described in the body of this report, are retained. Components of torques, angular rates, and angular accelerations, for example are expressed in the co-ordinate frame of the appropriate structural member; it follows that vector equations are generally written in these body coordinates. The IJK index (previously definod in terms of the incidence matrix [S] and the satellite shape [] , and much of the additional notation defined in the body of the report, arises repeatedly throughout the analysis. For the model of gravity gradient booms, the crossmsection is presumably circular (either solid or hollow) ; the length is chosen along the body x-axis, with (y) and (z) alopg the principal inertia axes of the cross-section. In all cases, the principal inertis axes are used for body co-ordinates, and standard right hand conventions are used for angle transformations; the matrix notations []$^{\top} ; \operatorname{th}^{\boldsymbol{n}}[]$; and
[]$_{u}$ represent transpose; trace; and an orthogonal transformation obtained by a positive rotation of (β) radians about the u-axis, respectively. 1_{α} represents the (\mathcal{C}) column of the 3×3 identity matrix $\left[I_{3}\right]$.

ANALYTICAL FORMULATIONS APPLICABLE TO
THE GENERAL PROGRAM

In Ref. 3 the hinge moment computation was left open in order to maintain generality of scope for the dynamical formalism. For the gravity gradient satellite program it has been found that the torque at each joint can be characterized by a convenient formulation applicable to numerous hinge types. The method uses straightforward program logic based on the incidence matrix [S], with the torque computed from the eigenvector and trace angle of the orthogonal transformation between adjacent members. When the "rest position" of one member relative to another is variable (e.g., due to thermal bending), the same basic formalation is augmented in a straightforward manner. The "locked mode" torque described in Ref. 2, for hinges with less than three degrees of freedom, has also been programmed.

In addition to providing explicit hinge moment computations, the program includes the force on each member due to solar radiation pressure. Finally there is a kinematical relation appropriate for satellites in low eccentricity orbits, and the position of the sun must also be defined in relation to satellite orientation. All of these items are covered by the analytical background material in this Appendix.

Hinge Torques

From the INTRODUCTION it is recalled that the undeformed shape of the satellite is defined in terms of the matrices $\left[\rho_{J}\right]$, where $J(\leqslant N-1)$ is the hinge index number. The next section illustrates how a modified matrix [F] performs this function when thermal effects are included, It follows that the reaction torque at hinge J is zero when the relative orientation $\left\{\left[V^{\sigma}\right]\right.$

人 $\left[\theta_{\mathrm{I}}{ }^{\top}\left[\boldsymbol{\theta}_{\mathrm{K}}\right]\right\}$ of the two members touching this hinge is equal to $\left[\rho_{J}^{\prime}\right]$; in general the hinge moment is a function of the deformation matrix,

$$
\begin{equation*}
[V]=\left[\rho^{T}\right][]^{T} \tag{A-1}
\end{equation*}
$$

More specifically, the reaction torque is a function of the trace angle,

$$
\begin{equation*}
\lambda=\operatorname{Arccos}\left\{\frac{1}{2} \operatorname{tr}[V]-\frac{1}{2}\right\} \tag{A-2}
\end{equation*}
$$

and the unit eigenvector U of $[V]$ which points along the positive axis of rotation. This vector satisfies the equation (denoting the 3×3 identity by I),

$$
\begin{equation*}
[\mathrm{V}-\mathrm{I}] \underline{\mathrm{U}}=\underline{0} \tag{A-3}
\end{equation*}
$$

and therefore can be computed from the cross product of any two nonvanishing* rows of $[V-I]$.

The product ($\boldsymbol{\lambda} \underline{\mathbf{U}}$) can be thought of as a displacement vector which generates a reaction torque. Immediately this suggests the form for the "position feedback" torque for a linear system having negligible delay: $\lambda\left[R_{J}\right] U$, where $\left[R_{J}\right]$ is the restraining matrix for hinge J, described in Section 1.1. For attitude control problems the elements of $[R]$ are easily identified as the controller sensitivities; for structural applications $[R]$ consists of rigidity coefficients which are readily derived from the small angle ${ }^{*} k$ flexure and torsion formulas,

[^1]\[

$$
\begin{align*}
& \text { Bending Moment } \doteq E d d \theta_{\mathbf{B}} / d \ell \tag{A-4}\\
& \text { Torsion Moment }=G \mathcal{L} d \theta_{\mathbf{T}} / d l \tag{A-5}
\end{align*}
$$
\]

where E, G, \mathcal{L}, and \mathcal{f} represent Young's modulus and the shear modulus of elasticity, the in-plane and polar area inertia moments of the structural member cross-section, respectively; ($\mathrm{dO}_{\mathrm{B}} / \mathrm{dl}$) is a measure of bending curvature which can be approxdmated* by $\left(\lambda U_{i} / \ell\right)$, where U_{i} is the component of \underline{U} along the axis implied in Equation (A-4), and (\mathcal{l}) is the distance between centers of the members joined by hinge \boldsymbol{J}; a similar approximation is used for the torsional gradient ($d \theta_{\mathbf{T}} / d \boldsymbol{l}$). It follows that, for structural members with no inherent coupling between bending and torsion (such as that which would arise from displacement between mass and shear centers), $\left[R_{J}\right]$ is a diagonal matrix with olements ($G 4 / l$), $\left(E d_{y} / l\right)$, and $\left(E d_{3} / l\right)$, where d_{y} and d_{z} correspond to principal axes of the cross-section.*

In addition to the above position feedback or elastic reaction, there may be a moment restraining relative angular rate between adjacent members. From the definition of [$\left.R^{\prime}\right]$ it follows that this component of torque in the coordinates of body I is

$$
\begin{equation*}
\left[R_{J}^{\prime}\right]\left(\underline{\omega}_{K}^{\prime}-\underline{\omega}_{I}\right) ; \underline{\omega}_{K}^{\prime} \hat{\approx}\left[V^{\prime}\right] \underline{\omega}_{K} \tag{A-6}
\end{equation*}
$$

and (recalling from Section 1.1 that $[R]$ and $\left[R^{r}\right]$ are referenced to body I) the total hinge moment acting on body I is

$$
\begin{equation*}
\underline{z}_{I}^{\prime}=\lambda\left[R_{J}\right] \underline{U}+\left[R_{J}^{\prime}\right]\left(\underline{\omega}_{K}^{\prime}-\underline{\omega}_{I}\right) \tag{A-7}
\end{equation*}
$$

[^2]and the hinge moment on body K is
\[

$$
\begin{equation*}
{\underset{E}{K}}_{\prime}^{K}=-\left[V^{\prime}\right]^{\top} \mathscr{E}_{I}^{\prime} \tag{A-B}
\end{equation*}
$$

\]

This completes the diacussion for this portion of the program, Before leaving this topic it is noted that (1) various nonlinear functions of the deformation ($\boldsymbol{\lambda} \underline{\underline{U}}$) and/or the rolative rate (${\underset{K}{K}}_{\boldsymbol{\omega}}^{\underline{\omega}} \mathbf{I}$) could easily be programmed, to simulate nonilinear reaction torque characteristics encountered in practice; and (2) delayed feedback torque supplied from band-limited devices could be computed by atandard convolution integral techniques.

Thormal Bending

Gravity gradient satellites often employ long narrow booms which are prone to nonuniform heating. A convenient way to take this into account ia to replace the zero torque rest position matrix [J] for each hinge by a new matrix $\left[\rho_{J}^{J}\right]$ which defines the reference shape under uneven heating conditions. This new matrix can be formed by a simple orthogonal transformation of its original value,

$$
\begin{equation*}
\left[\rho_{J}^{\prime \prime}\right]=\left[-\delta_{z}\right]_{z}\left[+\delta_{y}\right]_{y}\left[\rho_{J}\right] \tag{A-9}
\end{equation*}
$$

where the bending angles (δ_{y}) and (δ_{z}) are identified by combining this expression with equation (A-I):

$$
[v]=\left[-\delta_{z}\right]_{z}\left[+\delta_{y}\right]_{y}\left[\rho_{J}\right]\left[V^{\prime}\right]^{\top}
$$

Structural deformation is zero when $[V]$ is the identity matrix. since $\left[V^{\top}\right]^{\top}$ is the transformation from actual I to K co-ordinates and $\left[\mathcal{P}_{J}\right]$ is the transformation from K to original reference axes of I, it follows thet the product $\left[-\delta_{z}\right]_{z}\left[+\delta_{y}\right]_{y} \quad$ must be the transformation from the original (undeformed) to the new rest position (zero torque) axes of body I. This angular displacement of
the reference orientation for each segment in the discrete model is obtained by inscribing a set of chords ($n=$ number of segments per boom) inside the arc formed by thermal bending. The present description will begin with an example of planar bending caused by a single heat source, followed by extension to the general case.

In Fig. 1, J denotes the hinge connecting body I (represented by the chord $\boldsymbol{J} \mathbf{J}^{7}$) to body K, which may be visualized on the left of the hinge.

Fig. 1 Effect of Thermal Bending

The reference orientation of the I segment in the absence of heating effects will be taken along the direction of the arrow I_{0}. Thus δ is the bending angle due to a heat source in the direction \in, tentatively defined in the plane of the figure.

Under the above conditions the $\operatorname{arc} \boldsymbol{J}^{\top}$ is essentially circular\% with center at O and radius of curvature R_{c} meters. With (\boldsymbol{L}) again defined as the distance between centers of the members joined by hinge J, it is seen that the average change in angle per unit length is ($\delta / \ell=1 / R_{c}$) and, combined with Eq. (4) of Ref. 5,

$$
\begin{equation*}
\delta=\frac{e l}{d}(\Delta T) \tag{A-10}
\end{equation*}
$$

[^3]where e, d, and (ΔT) denote the linear thermal coefficient of expansion $\left({ }^{\circ} \mathrm{C}\right)^{-1}$, boom diameter (meters), and diametric temperature differential (${ }^{\circ} \mathrm{C}$), respectively. With the unit vector along the segment \approx (length) axis $\mathrm{JJ}^{\boldsymbol{J}}$ denoted by 1_{1} it is seen that a direction* for δ can be defined by the unit vector $\{€ \times 1, /|€ \times 1|$,$\} . By reason of the small angle approximation$ for adjacent segments, then, the finite rotation can be treated as a vector,
\[

$$
\begin{equation*}
\underline{\delta}=\frac{e \ell}{d}(\Delta T) \frac{\underline{\varepsilon} \times \underline{1}_{1}}{\left|\underline{\varepsilon} \times \underline{1}_{1}\right|} \tag{A-11}
\end{equation*}
$$

\]

Since $|\underline{E} \times 1|$ is equivalent to the cosine of the angle between E and the normal to the segment, Eq. (6) of Ref. 5 can be written here as

$$
\begin{equation*}
\frac{\Delta T}{\mid E \times 1,1}=\frac{d^{2}}{4 K F}(a q) \tag{A-12}
\end{equation*}
$$

and, therefore,

$$
\begin{equation*}
\underline{\delta}=\frac{e l d}{4 K s}(a q)\left(\underline{\epsilon} \times \underline{1}_{1}\right) \tag{A-13}
\end{equation*}
$$

in which K, f, a, and q represents thermal conductivity (large calories/second-meter- ${ }^{\circ}$ C), boom thickness (meters), and the absorptivity and heat radiation (large calories/second-meter ${ }^{2}$) of the source, respectively. The convenience of this formulation is apparent when different heat sources are combined; with direct earth radiation and direct plus reflected solar radiation (at an albedo ${ }^{6}$ of 0.4), the unit vectors in the source directions are denoted as
*The cross product conforms to the definition of $[\delta]$ as the transformation from the original to the deformed rest position of segment I.

$$
\Xi_{\text {solar }}=\left[\begin{array}{l}
\sigma_{I 1} \\
\sigma_{I 2} \\
\sigma_{I 3}
\end{array}\right] ; \quad \Xi_{\text {Earth }}=\left[\begin{array}{l}
-\theta_{I 31} \\
-\theta_{I 32} \\
-\theta_{I 33}
\end{array}\right]
$$

and the thermal deflection angles are computed from resultants thus: For the y-axis, the right of Eq. (A-13) is written with the substitutions,
I. Direct Earth
II. Direct Solar

1) $a=a_{E}$, absorptivity for earth radiation.
2) $\mathbb{f}=\boldsymbol{F} \boldsymbol{J}_{E}$, where \mathcal{F} is computed from the earth radius (R_{E}) and the Keplerian orbital distance (M) as ${ }^{7}$

$$
\begin{equation*}
7=2\left[1-\sqrt{1-\left(R_{E} / n\right)^{2}}\right] \tag{4}
\end{equation*}
$$

and J_{E} is the Stefan-Boltzmann constant ($5.67 \times 10^{-8} / 4184$ large calories per sec per sq. meter per ${ }^{\circ} K^{4}$) multiplied by the fourth power of the effective ${ }^{8}$ spherical blackbody Earth temperature ($246^{\circ} \mathrm{K}$):

$$
\begin{equation*}
J_{E}=\frac{5.67 \times 10^{-8}}{4184}(246)^{4} \tag{A-15}
\end{equation*}
$$

3) $\left[\underset{1}{E} \underline{1}_{1}\right] \cdot \underline{1}_{2}=-\theta_{533}$
4) $\boldsymbol{a}=\boldsymbol{a}_{S}$, absorptivity for solar radiation.
5) $q=J_{S}\left(I_{S}-1\right)$, where
$I_{S}=\left\{\begin{array}{l}2, \text { sun not eclipsed } \\ 1, \text { sun eclipsed }\end{array}\right.$
and J_{S} is the product

$$
\begin{equation*}
J_{S}=P_{S} \kappa / 4184 \tag{A-16}
\end{equation*}
$$

with C defined as the speed of light ($3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$) and

$$
\begin{equation*}
P_{S}=4.5 \times 10^{-6}\left(\text { Newt. } / \mathrm{m}^{2}\right) \tag{A-17}
\end{equation*}
$$

3) $\left[\underline{E} \times \underline{1}_{1}\right] \cdot 1_{2}=\sigma_{13}$
III. Reflected Solar
4) $a=a_{5}$
5) $f=.47 J_{S}\left(I_{S}-1\right)$, where all of these quantities are defined above. It is noted that 7 is not the true coefficient to be used for reflected radiation, but it provides an excellent approximation.?
6) $\left[\underline{E} \times \underline{1}_{1}\right] \cdot \underline{1}_{2}=-\theta_{I 33}$

The total rotation about the y-axis due to thermal bending is therefore

$$
\begin{equation*}
\delta_{y}=-7 J_{E}^{\prime} \theta_{I 33}+J_{S}^{\prime}\left(\sigma_{I 3}-.47 \theta_{I 33}\right)\left(I_{5}-1\right) \tag{A-18}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{E}^{F}=\frac{e l d a_{E}}{4 M J} J_{E} ; \quad J_{S}^{F}=\frac{e d d a_{S}}{4 K j} J_{S} \tag{A-19}
\end{equation*}
$$

and, similarly, thermal bending about the maxis is obtained by the negative $\left\{\left[E \times 1_{1}\right] \cdot 1_{3}=-\epsilon_{2}\right\}$ angle transformation in Eq. (A-9) with

$$
\begin{equation*}
\delta_{z}=-7 J_{E}^{r} \theta_{132}+J_{s}^{r}\left(\sigma_{12}-.47 \theta_{132}\right)\left(I_{s}-1\right) \tag{A-2O}
\end{equation*}
$$

Thermal bending throughout the entire structure is accounted for by repeating these computations at every applicable hinge. For example, in the case of a nominally straight boom, the reference direction for the segment to the right of J^{∇} is the extended line $\boldsymbol{J} J^{\nabla}$; this segment is then denoted as I in computing the bending angles at $J^{\prime \prime}$, while the chord $J^{J} J^{\prime}$ takes the role of segment K. The preceding formulation then applies to the computation of angles at J^{Γ}, and likewise to all hinges where thermal bending can occur. As a further refinement is is noted that the matrix $\left[-\delta_{z}\right]_{z}\left[+\delta_{y}\right]_{y}$ can be replaced by

$$
[\delta]=\left[\begin{array}{ccc}
\tau & -\delta_{z} & -\delta_{y} \tag{A-21}\\
\delta_{z} & \frac{\delta_{y}^{2}+\tau \delta_{z}^{2}}{\delta_{y}^{2}+\delta_{z}^{2}} & \frac{\delta_{y} \delta_{z}(\tau-1)}{\delta_{y}^{2}+\delta_{z}^{2}} \\
\delta_{y} & \frac{\delta_{y} \delta_{z}(\tau-1)}{\delta_{y}^{2}+\delta_{z}^{2}} & \frac{\delta_{z}^{2}+\tau \delta_{y}^{2}}{\delta_{y}^{2}+\delta_{z}^{2}}
\end{array}\right] ; \tau \Delta \sqrt{1-\delta_{y}^{2}-\delta_{z}^{2}}
$$

It has been verified that this matrix is orthogonal and that the x-component of its real eigenvector is zero. Constraint Torques at Locked Joints

In many instances there are hinges which are constructed to allow only one or two degrees of freedom, or it may be desirable to remove a degree of freedom from the computation model.* When a hinge constrains relative motion about the α-axis $(\alpha=1,2,3$ for $x, y, Z \quad$ reapectively) of a given member (I) of the structure, the \mathbb{C}-component of the relative angular rate between body I and K, expressed in I-coordinates, is set to zero:
Fe.g., if the torsional natural frequencies of a gravity gradient boom are very high, it may be convenient to assume that only flexure is possible.

$$
\begin{equation*}
\underline{1}_{\alpha}^{\top}\left\{\underline{\omega}_{I}-\left[\theta_{I}\right]^{\top}\left[\theta_{K}\right] \underline{\omega}_{K}\right\}=0 \tag{A-22}
\end{equation*}
$$

As noted in Ref. 2, the first step in deriving the constraint torque is to differentiate the above expression. It is shown in a later section of this Appendix that

$$
\begin{equation*}
d / d t\left[\theta_{I}\right]=\left[\theta_{I}\right]\left[\Omega_{I}\right]-[N]\left[\theta_{I}\right] \tag{A-23}
\end{equation*}
$$

(where $[\Omega]$ and $[N]$ are skew-symmetric angular rate matrices), so that

$$
\begin{align*}
& \underline{1}_{\alpha}^{T} \dot{\underline{\omega}}_{I}-1_{\alpha}^{T}\left\{\left[\left[\Omega_{I}\right]^{T}\left[\theta_{I}\right]^{T}-\left[\theta_{I}\right]^{T}[N]^{T}\right)\left[\theta_{K}\right] \dot{\omega}_{K}+\right. \tag{A-24}\\
& \left.\left[\theta_{I}\right]^{T}\left[\left[\theta_{K}\right]\left[\Omega_{K}\right]-[N]\left[\theta_{K}\right]\right) \dot{\omega}_{K}+\left[\theta_{I}\right]^{T}\left[\theta_{K}\right] \dot{\omega}_{K}\right\}=0
\end{align*}
$$

This is simplified by accounting for 1) the skew-symmetric character of $[\Omega]$ and $[N]$, and 2) the property $\left[\Omega_{K}\right] \underline{\omega}=\underline{0}$; introducing the previously defined notations $\left[V^{\Gamma}\right]$ and $\boldsymbol{\omega}_{K}^{\Gamma}$,

$$
\begin{equation*}
\underline{1}_{\alpha}^{\top}\left\{\dot{\omega}_{I}-\left[V^{\prime}\right] \dot{\omega}_{K}\right\}=-\underline{1}_{\alpha}^{T}\left[\Omega_{I}\right] \underline{\omega}_{K}^{r} \tag{A-25}
\end{equation*}
$$

There will be a scalar equation of this form for every combination ($\boldsymbol{J}, \boldsymbol{\alpha}$) which represents a locked joint constraint. It is therefore appropriate to define an identifying argument (j) for each locked mode,

$$
\begin{equation*}
j=3(J-1)+\alpha \tag{A-26}
\end{equation*}
$$

plus a column vector $\mathbb{I I}$ having $3(N-1)$ components such that M_{j} is zero for all unlocked modes and, for locked modes, M_{j} is an integer representing the ordered index of that mode $\left(1 \leqslant M_{j} \leqslant N_{C}\right.$, where N_{C} is the total number
of locked modes). The set of equations (A-25) can then be written in matrix form

$$
\begin{equation*}
[\bar{\gamma}]^{T} \dot{\omega}=-\underline{V} \tag{A-27}
\end{equation*}
$$

where [F] is a ($3 \mathbf{N} \times \mathbf{N}_{\mathbf{C}}$) matrix in which the only nonzero elements are the unit vector components

$$
\begin{equation*}
F_{5, w_{j}}=\underline{1}_{\alpha}^{\top} ; \underline{F}_{K}, m_{j}=-\underline{I}_{\alpha}^{\top}\left[V^{\prime}\right] \tag{A-28}
\end{equation*}
$$

in the N row and the $I^{t h}$ and $K^{t h}$ triplet of columns respectively, I and K representing the bodies constrained by the $\%$ locked mode. The vector i) in (A-27) is the same angular acceleration vector appearing in the Roberson-Wittenburg equation; and Y is a vector ($N_{c} \times \mid$) whose M; component is

$$
\begin{equation*}
\nu_{m_{j}}=1_{a}^{T}\left[\Omega_{I}\right] \omega_{K}^{\prime} \tag{A-29}
\end{equation*}
$$

where $(\boldsymbol{Q}, \mathbf{I}, \boldsymbol{K}$) of course correspond to the locked mode under consideration. At this point, Eq. (6) is premultiplied by $[\xi]^{\top}\left[\Gamma^{-1}\right.$ and combined with (A-27):

$$
\begin{equation*}
\underline{I}_{c}=-\left\{[F]^{\top}[\Gamma]^{-1}[F]\right\}^{-1}\left\{[\xi]^{\top}\left[[r]^{-1} E+\underline{\nu}\right\}\right. \tag{A-30}
\end{equation*}
$$

so that the final differential equation is

Radiation Pressure

The present formulation involves the effective solar radiation force on each member of the structure, expressed in the coordinates of that member. Although the pertinent theory is well-known, an example of a typical boom segment (again denoted here as "body I") is treated here to illustrate application to the problem at hand.

It is convenient to begin by considering a flat surface of area A subjected to a radiation pressure from a source along the unit sunline vector σ_{I} (see Eqs. A-50 - A-54). With the force per unit area of A denoted by (p), the component of the effective force along $n \mathbb{A}$ due to incident radiation has a magnitude $p A\left|\underline{\underline{\sigma}}_{I} \cdot \underline{n}_{A}\right|$, where \underline{n}_{A} is the unit normal to the surface A. With perfect reflection, the total force due to incident plus reflected radiation is directed along ($-\underline{n}_{A}$) and has a magnitude

$$
\begin{equation*}
\left|F_{A}\right|=2 f A\left|\sigma_{I} \cdot \underline{n}_{A}\right| \tag{A-32}
\end{equation*}
$$

While (p) is defined as the force per unit area of A, it is more convenient to work with the characteristics of the source itself; it is easily shown that

$$
\begin{equation*}
p=P_{S}\left|\underline{\sigma}_{I}-\underline{n}_{A}\right| \tag{A-33}
\end{equation*}
$$

where P_{S} is defined by Eq. ($A-18$). It follows that

$$
\begin{equation*}
\left|F_{A}\right|=2 P_{S}\left(\underline{\sigma}_{I} \cdot \underline{n}_{A}\right)^{2} A \tag{A-34}
\end{equation*}
$$

Application of this theory to nonplanar surfaces is straightforward in principle and, for regular geometry, often leads to simple solutions. Each

Fig. 2 Radiation Pressure on Section of Cylinder
section of a gravity gradient boom, for example, can be represented by a cylinder, centered about the boom torsion axis 1_{1}. Fig. 2 shows a small section of width ($d x$) with a principal normal (defined as the normal to the surface extending outward from the center of $\mathbf{d x}$, and lying in the plane of $\underline{1}_{1}$ and \mathbb{S}_{I}) along the direction $\underline{n}_{\mathbf{o}}$. It is permissible to consider the unit sunline vector $\underline{\Phi}_{I}$ as originating from the intersection point of $\underline{1}_{1}, \underline{n}_{0}$, and \underline{n}_{A}, so that the spherical law of cosines can be invoked:

$$
\begin{equation*}
\left(\underline{I}_{I} \cdot \underline{n}_{A}\right)=\left(\underline{I}_{I} \cdot \underline{n}_{0}\right) \cos \lambda \tag{A-35}
\end{equation*}
$$

where the significance of $\boldsymbol{n}_{\mathbf{A}}$ of course lies in its orthogonality to the differential surface area

$$
\begin{equation*}
d A=\frac{d}{2} d \lambda d x \tag{A-36}
\end{equation*}
$$

in which () represents boom diameter. Preparations are now complete for integrating the force over the cylindrical area. It is first noted that the component along 1_{1} vanishes in the present problem because the resultant must be normal to the surface; furthermore the component along ($1, \times \underline{M}_{0}$) vanishes by symmetry. For the differential area $d A$ the component of force along ($-n_{0}$) is $\left(d F_{A} \cos \lambda\right)$; it is this quantity which must be integrated using
(A-34) through (A-36):

$$
\begin{equation*}
F_{c y l}=2 P_{S}\left(\underline{\sigma}_{I} \cdot \underline{n}_{0}\right)^{2}\left(\frac{d}{2}\right) \int_{0}^{\ell} \int_{-\pi / 2}^{\pi / 2} \cos ^{3} \lambda d \lambda d x \tag{A-37}
\end{equation*}
$$

It can easily be shown that this is equivalent to $2 P_{S} A_{E}\left(\underline{\sigma}_{I} \cdot \underline{n}_{0}\right)^{2}$ where A_{E} is the cylindrical effective area,

$$
\begin{equation*}
A_{E}=\frac{2}{3} l d \tag{A-38}
\end{equation*}
$$

Since the direction of the effective force is along the unit vector

$$
-\underline{n}_{0}=\frac{\underline{1}_{1} \times\left(\underline{1}_{1} \times \underline{\sigma}_{I}\right)}{\left|\underline{1}_{1} \times\left(\underline{1}_{1} \times \underline{\sigma}_{I}\right)\right|}=\frac{-1}{\sqrt{\sigma_{I 2}^{2}+\sigma_{I 3}^{2}}}\left[\begin{array}{l}
0 \tag{A-39}\\
\sigma_{I 2} \\
\sigma_{I 3}
\end{array}\right]
$$

the solar force vector expressed in I-co-ordinates is

$$
\underline{F}_{c y l}=\left[\begin{array}{c}
0 \tag{A-40}\\
-\sigma_{I 2} \\
-\sigma_{I 3}
\end{array}\right]\left(2 P_{S}\right) \sqrt{\sigma_{I 2}^{2}+\sigma_{I 3}^{2}} A_{E(I)}
$$

By a derivation along similar lines it can be shown that the effective radiation force vector for a sphere is

$$
\begin{equation*}
\underline{F}_{s p h}=-\underline{I}_{I}\left(2 P_{s}\right) A_{E(s p h)} \tag{A-4I}
\end{equation*}
$$

where the effective area for a sphere of radius $\left(\boldsymbol{l}_{\boldsymbol{I}}\right)$ is

$$
\begin{equation*}
A_{E(s p h)}=\frac{1}{2} \pi l_{1}^{2} \tag{A-42}
\end{equation*}
$$

Presence of these forces must of course be subject to the condition of no eclipse.

Kinematics

In this section the orthogonal matrices $[B] ;\left[\Theta_{I}\right]$; and $[D]$ will denote transformations from principal axes of a structural member (body I) to a set of inertial axes; from the body axes to a sot of local axes; and from the local to the inertial coordinates, respectively. It follows immediately that

$$
\begin{equation*}
[\mathrm{B}]=[\mathrm{D}]\left[\theta_{\mathrm{I}}\right] \tag{A-43}
\end{equation*}
$$

and it is well-known that

$$
\begin{equation*}
d / d t[B]=[B]\left[\Omega_{I}\right] \tag{A-44}
\end{equation*}
$$

where $\left[\Omega_{I}\right]$ is a skew-symmetric matrix of inertial angular rates $\left(\Omega_{\mathbf{I}, 12}=\right.$ $-\omega_{I 3} ; \Omega_{I_{13}}=+\omega_{I_{2}} ; \boldsymbol{\Omega}_{I, 23}=-\omega_{I 1}$). Defining the local axes by ($+y$) along the orbit pole and ($+z$) along the upward local vertical,

$$
\begin{equation*}
d / d t[D]=[D][N] \tag{A-45}
\end{equation*}
$$

where $[N]$ is a 3×3 matrix whose only nonzero elements appear in the positions ($N_{13}=-N_{31}$) representing the time derivative of the true anomaly; from the appropriate equation on page 262 of Ref. 9 it can be deduced that

$$
\begin{equation*}
N_{13}=\sqrt{\mu_{E} p_{0}} / \pi^{2} \tag{A-46}
\end{equation*}
$$

where $\boldsymbol{p}_{0}=a_{0}\left(1-e_{0}^{2}\right) ; \mu_{E}, n, a_{0}$, and e_{0} are defined as the Earth gravitational constant; the Keplerian orbit position vector magnitude, eemimajor axis, and eccentricity, respectively,

$$
\begin{gather*}
\text { By differentiation of }(A-A-3), \\
\left.d / d t\left[\theta_{I}\right]=[D]^{\top} d / d t[B]+\{d / d t]\right\}^{\top}[B] \tag{A-47}
\end{gather*}
$$

and, in combination with (A-43) through (A-45),

$$
\begin{equation*}
d / d t\left[\theta_{I}\right]=\left[\theta_{I}\right]\left[\Omega_{I}\right]+[N]^{\top}\left[\theta_{I}\right] \tag{A-48}
\end{equation*}
$$

To compute the angular rate for the matrix [N] it is noted that gravity gradient satellites generally have low eccentricity (e.g., less than 0.1). The quantity ($\boldsymbol{\Omega}$) in ($A-46$) can therefore be determined explicitly by a series approximation on page 153 of Ref. 9; using the notation (A_{m}) for the mean anomaly,

$$
\begin{align*}
n=a_{0}[1- & e_{0} \cos A_{m}-\frac{1}{2} e_{0}^{2}\left(\cos 2 A_{m}-1\right) \tag{A-49}\\
& \left.-\frac{1}{8} e_{0}^{3}\left(3 \cos 3 A_{m}-3 \cos A_{m}\right)\right]
\end{align*}
$$

Astronomical Geometry

Solar position is determined using the celestial sphere model on page 9 of Ref. 9. A value of 23.5° is used as the ecliptic inclination and, on the ($\mathbf{N}_{\mathbf{D}}{ }^{\text {th }}$) day of the year, the sunline vector makes an angle of

$$
\begin{equation*}
\Psi_{S}=2 \pi\left(N_{D}-80\right) / 365 \tag{A-50}
\end{equation*}
$$

with the vernal equinox. The sunline vector expressed in inertial (celestial sphere) co-ordinates is therefore

$$
\underline{F}^{\sigma}=\left[\begin{array}{c}
\cos \Psi_{s} \tag{A-51}\\
\cos 23.5^{\circ} \sin \Psi_{s} \\
\sin 23.5^{\circ} \sin \Psi_{s}
\end{array}\right]
$$

To define this vector in local co-ordinates the inclination, longitude of the ascending node, and argument of the perigee for the satellite orbit are written as ($i_{0}, \Omega_{0}, \omega_{0}$) respectively, and the true anomaly is computed explicitly by

1
the series approximation on page 154 of Ref. 9:

$$
\begin{array}{r}
v=A_{m}+2 e_{0} \sin A_{m}+\frac{5}{4} e_{0}^{2} \sin 2 A_{m}+ \tag{A-52}\\
\frac{1}{12} e_{0}^{3}\left(13 \sin 3 A_{m}-3 \sin A_{m}\right)
\end{array}
$$

which is again accurate for most gravity gradient satellite applications ($e_{0} \leqslant 0.1$). The sunline in local coordinates is therefore

$$
\Phi^{\prime}=\left[\begin{array}{lll}
0 & 1 & 0 \tag{A-53}\\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\omega_{0}+v\right]_{z}\left[i_{0}\right]_{x}\left[\Omega_{0}\right]_{z} \Sigma^{\infty}
$$

The unit vector pointing toward the sun, expressed in body I-axes, is then obviously,

$$
\begin{equation*}
\underline{V}_{I}=\left[\theta_{I}\right]^{\top} \underline{V}^{\prime} \tag{A-54}
\end{equation*}
$$

and it is this vector which is used for the appropriate thermal bending and radiatin pressure computations.

This completes the description of analytical formulations used in the gravity gradient satellite program. The next Appendix describes an example configuration (RAE satellite ${ }^{4}$).

THE RADIO ASTRONOMY EXPLORER (RAE) SATELITITE CONFIGURATION AND PARANETERS

The RAE satellite described in Ref. 4 is cruciform shaped, passively damped with horisontal Iibration damper boom skewod out of the plane of the cruciform, ${ }^{10}$ The typical RAE example configuration is show in Fig. 3 with the flaxible antonna booms approxinated dynamically with 3 rigid segmonts per boom. The four 750 foot antenna booms in their undeforned state make an angle of 30 degrees with the Z nus axis in the cruciform plane. The damper boom (assumed rigid) is spring restrained to its reference poaition relative to the hub, and is akowed at an angle of 65 degrees from the cruciform plane. Each rigid body or mamber and each hinge is indexed as show in figure 3. The hinge numbers are denoted by an underline. For a larger number of segments per boom, the same counter-clockwise numbering scheme would be used.

Each member has a body-fixed set of right-hand coordinates defined collinear with the principal inertia axes, and the origin is the mass center of each momber. Only the direction of two axes need be given for the right hand coordinate frame to be well defined. The hub axes are shown in Fig. 3. THE FOLIOWING COORDINATE FRAMES OF THE REMAINING MEMBERS ARE DEFINED WITH THE SATELLITE IN ITS UNDEFORMED CONFIGURATION, and it should be remembered that the axes remain fixed in each member oven after relative rotational displacement between thea:

The damper boom E and X axes are in the direction of Z I Z and the outward directed damper boom centroidal axis respectively. In each antenna boom segment the Y and X axes are in the direction of Y HUB

Fig. 3 RAE Configuration
and the outward directed antenna segent centroidal ads respectively. For radiation pressure offective area computations the hub is assumed spherical in shape, while the damper boom and all antenna segments are cylindrical: It is noted that the damper boom is free to rotate about its Y axis only.

111 parameters in the RAF simulation are expressed in MKS units. However, aince many RAB atellite properties are given in Finglish unita, appropriate converaion factors are listed below. Following this is a description of RAE variable inputs (Part I), fixed and derived inputs (Part II), and inputs to the general program (Parts III and IV) as defined in the INTBDDUCTION of this report*. Included also are the formulations for initial conditions, magnetic hysteresis damping torque, and readouts.

MKS Units
Length - Meters (m)
Mass - Kilograms (Kg)
Temperature - Degrees Centigrade (${ }^{\circ} \mathrm{C}$)
Heat - Large Calories (K-caI; i.e., the anount of heat required to raise the temperature of $1 \mathrm{KG}-\mathrm{H}_{2} \mathrm{O}$ by $1^{\circ} \mathrm{C}$.)
Foree - Newtons (Newt)

Conversion Factors

$.3048 \mathrm{~m}=1 \mathrm{ft}$.
$14.5939 \mathrm{Kg}=1$ s1ug
1 Newt = . 2248 lbs.

4184 Kcal = 1 Newt-m = 1 Joule

[^4]
Sybtem Paramators

n ("NPB") Jlmber of segments per boom ($1 \leqslant n \leqslant 6$). S_{d} ("SD1") Damper spring constant ratio. This ratio is defined as the damper hinge restraining apring constant $R_{(1,2,2)}$ divided by the corresponding "gravity gradient apring constant":

$$
\begin{equation*}
S_{d} \triangleq R(1,2,2) /\left[\left(3+\sin ^{2} \delta\right) I_{(2,2,2)}\left(\mu_{E} / a_{0}^{3}\right)\right] \tag{B-1}
\end{equation*}
$$

where $\left(\mu_{E}\right)$ and $\left(a_{0}\right)$ are defined after Equation (A-46); the angle (8) is $\left(\frac{65 \pi}{180}-\gamma\right)$, where (γ) is the equilibrium yaw angle defined later in this Appendix. S_{d} should be greater than unity so that the damper boom will seek a horizontal rest position.
f_{d} ("FD") Linear damping or non-linear hysteresis* type damping option at the damper boom hinge. To simulate hysteresis damping, set $f_{d}=0$. To simulate linear damping set f_{d} equal to the desired damping ratio, defined as

$$
\begin{equation*}
f_{d} \stackrel{R(1,2,2)}{\gamma}\left[2 I_{(2,2,2)} \sqrt{\left(3+51 n^{2} \delta\right)\left(S_{d}-1\right)\left(\mu_{F} / a_{0}^{3}\right)}\right] \tag{B-2}
\end{equation*}
$$

It is noted that this conforms to the standard expresaion for a damping ratio, with the stiffness term defined as the combined effect of the spring reatraint and gravity gradient.

*The hyateresis damper simulation is described later in this Appendix.

N_{L} ("NL") Locked mode option. Any or all three degrees of freedom at each hinge nay be eliminated, so long as the total number of locked modes $N_{C} \leqslant 38$. Howevor, only three locked mode configurations are included in the RAE simulation:
$N_{L}=1$ Eliminates the rotational degree of freedom about the X and z axes of the damper boom relative to the hub.
$N_{L}=2$ Includes $N_{L}=1$ and also locks the torsional degree of freedom at hinges on all antenna boom segnents.
$N_{L}=3$ Includes $N_{L}=1$ and also locks the three degrees of freedom at the base of each antenna boom. (In this mode, $n=1$; this simulates a rigid cruciform with a single degree of freedom damper boom).
I_{T} ("ITHERM") Thermal bending option. To include offects of thermal bending, set $I_{\boldsymbol{T}}=1 ;$ otherwise set $I_{\boldsymbol{T}}=0$.
N_{A} ("NA") Solar pressure option. To include offects of solar pressure, $\operatorname{set} N_{A}=1 ;$ otherwise $\operatorname{set} N_{A}=0$.

Initial and Final Conditions

X ("XINIT(I)") Twelve initial amplitudes of fundamental RAE satellite librational
$I=1, \ldots, 12$ and flexing modes as defined later in this Appendix.

T (MORBS") Total number of orbits to be simulated.
N_{R} ("ENR") Number of readouts* printed per orbit.

Astronomical Parameters

e_{0} (MSE") Eccentricity of orbit
i_{0} ("EYZ") Inclination angle between the normal to the orbital plane and the north geodetic pole of the celeatial sphere.
Ω_{0} ("THZ") Longitude of the ascending node measured from the Vernal Equinox. FReadout format is describod later in this Appendix.

RAE FIXED AND DERIVED INPUTS (PART II)

Hub and Boom Paramoters
m_{1} (nEA(1)n) Mass of hub (Kg.)
l_{1} (nELIn) Effective geometric radius of hub (m.)
$I_{1 \times x}\left(n_{1}(1, \alpha, N) n\right)$ Momonts of Inertia about hub X, Y, and F principal $\boldsymbol{x}=1,2,3$
axes respectively (including two dipoles $\{18.3$ meter length $\}$
along hub X-axis)
m_{B} (MEBBn) Boom mass per unit length (Kg./m.)
Ls (LELB ") Total length of each antenna boom (m.)
$\boldsymbol{\ell}$ (nSL") Length of each segment, $\boldsymbol{\ell}=\boldsymbol{l}_{\mathrm{B}} / n$
$\boldsymbol{L}_{\mathbf{d}}$ (nELDN) Length of damper boom (m.)
d (D DIA") Boom cross-aection diameter (m.)
5 ("THK") Boom wall thickness (m.)
ψ (MOLA") Boom wall overlap half angle ${ }^{11}$ (rad.)
\searrow ("POR") Poisson's Ratio
E (nEn) Modulus of Elasticity (Newt./m. ${ }^{2}$)
$f_{\alpha} \begin{aligned} & (n F(\alpha) n)\end{aligned} \quad$ Boom area moments of inertia about the diametral axes parallel
to the boom segment Y and Z axis respectively*

$$
\begin{align*}
& f_{2}=\frac{d^{3} f}{8}\left[\pi+\psi+\sin \psi \cos \psi-\frac{2 \sin ^{2} \psi}{\pi+\psi}\right] \tag{B-3}\\
& f_{3}=\frac{d^{3} \rho}{8}[\pi+\psi-\sin \psi \cos \psi] \tag{B-4}
\end{align*}
$$

[^5]$f_{1}(\operatorname{nF}(1) n)$ Multiplicative constant for torsional rigidity (locked slit tube):
\[

$$
\begin{equation*}
f_{1}=\frac{0.5}{1+v}\left(f_{2}+f_{3}\right) \tag{B-5}
\end{equation*}
$$

\]

K ("CK") Thermal conductivity of boom (Kcal/m.sec. ${ }^{\circ} \mathrm{C}$)
e ("CTE") Temperature coefficient of linear expension for boom ($\left.{ }^{\circ} \mathrm{C}\right)^{-1}$
AW ("AWN) Ratio of perforation area to total surface area of the booms.
J_{E} ("XSE") Earth heat flux density, as given in Rq. (A-15); (Kcal./sec.m²).
J_{S} ("XJS") Solar heat flux density, as given by Eq. (A-16); (Kcal./sec. ${ }^{2}$).
a_{E} ——Boom absorbtivity to Earth radiation. (For the RAE simulation set equal to 0.1 in equation $A-19$).
$a_{\mathbf{S}}$ ——Boom absorbtivity to Solar radiation. (For the RAE simulation set equal to 0.05 in equation $A-19$).

Equilibrivm Parameters

$\begin{aligned} & K_{A}, K_{B} \\ & (\text { " } K A ", " Q B A n) \end{aligned}$	First cantilever mode antenna boom tip deflection in and out of the undeformed cruciform plane respectively (m_{0})
γ ("CGAM	Static yaw angle about hub vertical axis due to skewod damper boom.

These equilibrium parameters, explained in Ref. 12, are used
in the computation of initial conditions and readouts described later in this Appendix. Astronomical Parameters
\boldsymbol{a}_{0} ("AZ") Orbital semi-major axis (m.)
ω_{0} (${ }^{(W Z n}$) Argument of perigee (dog.)
t_{0} ("TZ") Time at perigee of orbit (sec.). NOTE: t 승 atart of aimulation.
N_{D} ("ND") Vehicle launch date.

Generel Program Inputs.

Following is a list of System Parameters plus Initial and Final
Conditions, as defined in the INTRODUCTION of this roport, applicable to the RAE satellite. The Astronomical Parameters, also called for in the INTRODUCTION, are the aame as those just defined.

N (nIM) Total number of rigid mombers, $N=4 n+2$
m ($\operatorname{mgn}(I) n$) Mass vactor with elements $m_{i}, 1 \leqslant i \leqslant N \quad$ ($i^{\text {th }}$ body).
$m_{1}=$ hub mass
$m_{2}=\ell_{d} m_{B}$
$m_{i}=\ell m_{B}$ for $\quad 3 \leqslant i \leqslant N$
$I(n A(I, \alpha, \beta) n)$ Inertia tensor with elements $I(i, \alpha, \beta), 1 \leqslant i \leqslant N ; 1 \leqslant \alpha, \beta \leqslant 3$:
$I(i, \alpha, \beta)=0, \quad \alpha \neq \beta$
$I(1, \alpha, \alpha)=$ hub principal inertias*
$I(i, 1,1)=m_{i} d^{2} / 4,2 \leqslant i \leqslant N$
$I(2, \alpha, \alpha)=m_{2} l_{d}^{2} / 12, \alpha=2,3$
$I(i, \alpha, \alpha)=m_{i} l^{2} / 12,3 \leq i \leq N ; \alpha=2,3$
$\boldsymbol{R}\left(n_{R}(J, \alpha, \boldsymbol{\beta}){ }^{\prime}\right)$ Hinge spring constant tensor (See Eqs. $A-7$ and $\left.A-8\right):$

$$
\begin{align*}
& R(j, \alpha, \beta), 1 \leqslant j \leqslant(N-1) ; 1 \leqslant \alpha, \beta \leqslant 3: \\
& R(j, \alpha, \beta)=0, \alpha * \beta \\
& R(1,1,1)=R(1,3,3)=0 \\
& R(1,2,2)=\left(3+\sin ^{2} \delta\right) S_{d}\left(\mu_{k} a_{0}^{3}\right) I_{(2,2,2)} \tag{B-9}\\
& R(j, \alpha, \alpha)=\left(1-A_{w}\right) E f_{\alpha} / l, 2 \leqslant j \leqslant(N-1) ; 1 \leqslant \alpha \leqslant 3 \tag{B-10}
\end{align*}
$$

[^6]At this point a brief digression is in order, to explain certain subtle aspects of structural discretization. First it is noted that high frequency torsional oscillations (which consume excessive machine time in simulation) can be circumvented through the previously defined input (\boldsymbol{N}_{L}). When $N_{L} \neq 1$ 211 toraion axes are locked; thus ($\mathrm{B}-10$) is applied for $\mathcal{K}=2$ and 3 only . When $N_{L}=3$ all antenna joints are locked and (B-10) is bypassed completely. Theoretically the rigidity constants for all locked modes should be sero, since Eq. (A-30) provides the necessary constraint torque. In practice, however, small computational imperfections in the value of this torque are doubly integrated with the dynamical equations. A weak spring and damper have been placed in the locked toraional joints, to counteract this cumulative offect.

In connection with bending moments, Eq. (A-4) was accompanied by a statement that the rate of change of slope ($d \theta_{B} / d l$) cannot in general be adequately determined from a single hinge angle. The inherent accuracy limitations of numerical differentiation can, however, be minimized by using a properly weighted sum to compute derivatives at each point. For the RAE program this was accomplished through augmenting the standard internal torque computation* as follows: the vector $\{\boldsymbol{\lambda} \underline{U}\}$ at every antenna boom hinge (J_{S}) is transformed into the co-ordinates of each interacting member (I_{A}); the result, multiplied by the appropriate rigidity matrix [R] and woighting constant, is included in the total internal moment acting on that member. The members which may interact with
FThe exact form of this refinement will vary with the particular structural topology, but the method exomplified here will be useful for a wide range of applications. It is noted that all weighting constants are set to zero in the Initial Program Sotup, (Part 0). Therefore, in the absence of any subsequent introduction of weights in Part I or II, the internal torque modifications in Part IV of the General Program will not invalidate the standard formulation (Eqs. A-7 and A-8) applicable to truly isolated hinges.
any given hinge are the hab and the segments in the same quadrant as the hinge. The extent of interaction is determined from Newton's divided difference formula; ${ }^{13}$ a threo-segment planar model of an antenna boom will sorve to illustrate the technique below.

Fig. 4. Segmented Antenna Boom

Mornulined Arc Length Asc Iength X	Angle off Base Tangent θ_{B}	$1^{\text {st }}$ Divided Difference $f\left(x_{0}, x_{1}\right)$	$\begin{array}{r} 2^{2 \mathrm{nd}} \begin{array}{r} \text { Difivided } \\ \text { Difference } \end{array} \\ f\left(x_{0}, x_{1}, x_{2}\right) \\ \hline \end{array}$	$\begin{gathered} 3^{\text {rd }} \text { Divided } \\ \text { Difference } \\ f\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \end{gathered}$
0	0			
1/2	μ_{1}	$2 \mu_{1}$	$\frac{2}{3}\left(\mu_{2}-2 \mu_{1}\right)$	
3/2	$\mu_{1}+\mu_{2}$	μ_{2}	$\frac{1}{2}\left(\mu_{3}-\mu_{2}\right)$	${ }_{3}-\frac{7}{15} \mu_{2}+\frac{6}{15} \mu_{1}$
5/2	$\mu_{1}+\mu_{2}+\mu_{3}$	μ_{3}	$-\frac{2}{3} \mu_{3}$	$-\frac{7}{15} \mu_{3}+\frac{1}{5} \mu_{2}$
3	$\mu_{1}+\mu_{2}+\mu_{3}$	0		

In the accompanying table, attention is first drawn to the first two colume. The hinge angles (μ) can represont a γ or \mathcal{Z} adis component of ($\boldsymbol{\lambda} \underline{U}$) in the present problem. For a bocm cantilevered to the mub $\left(\theta_{\mathbf{B}}\right)$ is sero at the
base and, since there should be no bending moment at the free ond, (θ_{B}) should not change at $X=3$. In addition to the known values of (θ_{B}) for each segment (presurably the centers), then, these two boundary conditions can be used to deteruine the derivative of (θ_{B}). Differentiating Eq. (17) of Ref. 13,

$$
\begin{aligned}
f^{\prime \prime}(x)= & f\left(x_{0}, x_{1}\right)+\left[2 x-\left(x_{0}+x_{1}\right)\right] f\left(x_{0}, x_{1}, x_{2}\right)+ \\
& {\left[3 x^{2}-2\left(x_{0}+x_{1}+x_{2}\right) x+\left(x_{0} x_{1}+x_{0} x_{2}+x_{1} x_{2}\right)\right] f\left(x_{0}, x_{1}, x_{2}, x_{3}\right) }
\end{aligned}
$$

where (Θ_{3}) is to be substituted for (f) and the divided differences obtained here conform to the definitions in Ref. 13. In solving this equation for $\boldsymbol{\theta}_{\mathrm{B}}$ at the hinge points $X=0$ and $X=1$, the values $(0,1 / 2,3 / 2,5 / 2)$ are chosen for $\left(X_{0}, X_{1}, X_{2}, X_{3}\right)$, respectively; at $X=2$ the values $(1 / 2,3 / 2,5 / 2,3)$ are used. It is easily verified that

$$
\begin{aligned}
& f_{0}^{\prime}\left(=\theta_{B}^{\prime} @ x=0\right)=\frac{46}{15} \mu_{1}-\frac{41}{60} \mu_{2}+\frac{3}{20} \mu_{3} \\
& f_{1}^{\prime}\left(=\theta_{B}^{\prime} @ x=1\right)=\frac{67}{60} \mu_{2}-\frac{2}{15} \mu_{1}-\frac{1}{20} \mu_{3} \\
& f_{2}^{\prime}\left(=\theta_{B}^{\prime} @ x=2\right)=\frac{67}{60} \mu_{3}-\frac{1}{20} \mu_{2}
\end{aligned}
$$

The internal moments acting on the hub and the inner, central, and outer segments would then be $\left(-f_{0}^{\prime}\right),\left(f_{0}^{\prime}-f_{1}^{\prime \prime}\right),\left(f_{1}^{\prime \prime}-f_{2}^{\prime}\right)$, and $\left(f_{2}^{\prime}\right)$, respectively, multiplied by the appropriate element of $[R]$. The amount by which this exceeds the corresponding component of $\{\lambda[R] \underline{U}\}$ is provided by the supplemental internal torque computations in Part IV and the weighting coofficients (Fortran deaignation nEPSIL") in Part II of the program.

The description of General Program inputa will now continue, with the damping tensor as the next item. Aside from the previously mentioned mwak dampers" in the locked modes, the only nonzero value for the present program is
located at the firat hinge, its value controlled by the normalized damplng ratio (f_{d}) as indicated in Eq. (B-2):

$$
\begin{equation*}
R_{(1,2,2)}^{\prime}=2 f_{d} I_{(2,2,2)} \sqrt{\left(3+\sin ^{2} \delta\right)\left(S_{d}-1\right) \mu_{E} / a_{0}^{3}} \tag{B-11}
\end{equation*}
$$

and a description of hystereais damping (for the case $\boldsymbol{f}_{d}=0$) appears later in this Appendix.

$\boldsymbol{P}\left({ }^{\text {RH HO }}(\mathrm{J}, \boldsymbol{\alpha}, \boldsymbol{\beta}) \mathrm{u}\right)$ Rest position rotation matrix between adjacent bodies with 3×3 sub-matrices $\left[\rho_{j}\right], 1 \leqslant j \leqslant(N-1)$:

$$
\begin{align*}
& {\left[P_{1}\right]=[65 \pi / 180]_{z}} \\
& {\left[\rho_{2}\right]=[\pi / 3]_{y}} \\
& {\left[P_{3}\right]=[2 \pi / 3]_{y}} \tag{B-13}\\
& {\left[\rho_{4}\right]=[-2 \pi / 3]_{y}} \\
& {\left[P_{5}\right]=[-\pi / 3]_{y}} \\
& {\left[P_{j}\right]=\left[I_{33}\right], 6 \leqslant j \leqslant(N-1)}
\end{align*}
$$

C ("C(I,J)") Hinge connection matrix

$$
\begin{align*}
& c_{31}=3(0.3048) ; \text { See Fig. } 3 \\
& c_{12}=-c_{13}=-c_{14}=c_{15}=-\frac{1}{2} \ell_{1} \\
& c_{32}=c_{33}=-c_{34}=-c_{35}=\frac{\sqrt{3}}{2} l_{1} \tag{B-14}\\
& c_{i j}=-\frac{1}{2} l\left\{\begin{array}{l}
2 \leqslant j \leqslant(N-1), i=3 j+1 \\
6 \leqslant j \leqslant(N-1), i=3(j-4)+1
\end{array}\right.
\end{align*}
$$

All other elements of $[\mathrm{C}]$ are sere.

These values all have the came sign, since the reversal in direction from segment mass center to opposite hinges will be cancelled by the sign reversal in the pertinent incidence matrix elements.
$A_{E}\left({ }^{n E}(I) n\right)$ Effective areas for solar pressure forces:
If $N_{A}=0$, all $A_{E(I)}=0$; otherwise compute the values indicated (See Eq. A-38 and A-42):

$$
\begin{align*}
& A_{E(1)}=\frac{1}{2} \pi l_{1}^{2} \tag{B-15}\\
& A_{E(2)}=\frac{2}{3} d l_{d} \tag{B-16}\\
& A_{E(i)}=\frac{2}{3} d l, \quad 3 \leqslant i \leqslant N \tag{B-17}
\end{align*}
$$

Total number of locked hinge degrees of freedom and hinge ards indexing number respectively. Below is a table showing values of N_{C} and M_{j} for the three locked mode options, N_{L}.

N_{L}	N_{C}	m
1	2	$m_{1}=1 ; M_{3}=2$
2	N	$m_{1}=1 ; m_{3}=2 ; m_{\{3(J-1)+1\}}=J+1,2 \leqslant J \leqslant N-1$
3	14	$m_{1}=1 ; m_{3}=2 ; M_{J}=J-1,4 \leqslant J \leqslant 15$

$J_{\text {玉 }}^{\prime}$ ("XJE") Thermal bending constant for Earth radiation as defined by Eq. (A-19). $\boldsymbol{J}_{S}^{\prime}$ (${ }^{\prime}$ XJS") Thermal bending constant for solar radiation as defined by Eq. (A-19).

This completes the RAE System Parameter specifications. The initial conditions need somewhat more detailed treatment here because of their relation to a Lagrangian formulation of the RAE satellite. ${ }^{12}$

Initial values for the angular position $\left\{\right.$ direction cosine matrix $\left.\left[\theta_{\mathbf{I}}\right]\right\}$ and angular velocity vector $\underline{\boldsymbol{\omega}}_{\mathbf{I}}$ of each member I of the discrete RAE satellite model are derived from the initial conditions of an equivalent flexible continuous RAE satellite model. ${ }^{12}$ First cantilever mode shape amplitudes of the booms are linearly transformed into a set of "satellite modes" ($X_{5} \cdots X_{12}$). It is of interest to excite these "satellite modes" separately or in combination in the discrete model program. Also, nonzero initial values of the libration Euler angles $\left(X_{1}, X_{Z_{2}}, X_{3}\right)$ with respect to the local frame and of the single degree of freedom damper angle (X_{4}) from the continuous model will excite similar motion in the discrete model. Thus the initial values of the twelve quantities $\left(X_{1} \cdots X_{12}\right)$ are transformed to the initial attitude of each member in the discrete model. It is noted that there is no loss of generality in setting the initial derivatives ($\dot{X}_{1} \cdots \dot{X}_{12}$) to zero, since motion is still excited by initial displacements from equilibrium.

The transformation from the twelve variables of the continuous model to each member's attitude in the discrete model is accomplished separately for the hub and the damper boom, and in combination for the antenna boom segments. First, the orthogonal transformation from hub to local axes is written as

$$
\begin{equation*}
\left[\theta_{1}\right]=\left[x_{2}\right]_{y}\left[X_{1}\right]_{x}\left[X_{3}+\gamma\right]_{z} \tag{B-18}
\end{equation*}
$$

where X_{1}, X_{2}, and X_{3} are the roll, pitch, and yaw libration angles respectively and γ is 2 static yaw angle of the hub body axes in equilibrium due to the skewed
damper boom. The orthogonal transformation from damper principal axes to the local frame is

$$
\begin{equation*}
\left[\theta_{2}\right]=\left[\theta_{1}\right]\left[\rho_{1}\right]^{\top}\left[x_{4}\right]_{y} \tag{B-19}
\end{equation*}
$$

where $\left[\rho_{1}\right]$ repreaents the 65 degree hub-to-damper transformation about the yaw axis (sec Fig. 3).

The conversion from the generalized coordinates describing the satellite deformation modes to any boom segment direction cosine matrix can be separated into three steps:

1. First, all in-plane and out of plane tip deflections can be expressed as a linear combination of the satellite fleaing mode amplitudes. For example the in-plane and out of plane tip deflections of the lower left antenna boom are

$$
\begin{equation*}
W_{2}=-\frac{1}{2}\left[X_{6}+\left(X_{8}+2 K_{A}\right)-X_{9}-X_{11}\right] \tag{B-20}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{y}=\frac{1}{2}\left[X_{5}+\left(X_{7}+2 K_{B}\right)-X_{10}-X_{12}\right] \tag{B-2l}
\end{equation*}
$$

where K_{A} and K_{B} are the in and out of plane static (equilibrium) tip deflections, respectively. All other boom tip deflections follow in a similar fashion from the transformation defined in Ref. 12.
2. In the second step, the elastic deformation slope is computed for each segment, making use of the first cantilever mode shape. A question immediately arises as to the method of fitting a finite number of segments to the cantilever curve. The segments could be inscribed or circumscribed, or their mass centers could be matched to the mode shape function; alternatively, the slope of each segment could be chosen to match the corresponding portion of strain energy in the continuous
elastic curve. Actually, the accompanying Fortran listing uses none of these methods. Instead, the first cantilevered mode function was approximated by a least squares fit, giving rise to proportionality constants (A; Fortran designation "SLSQ") which fix the slopes of the $k^{\text {th }}$ segment as

$$
\begin{equation*}
\Delta_{y}=A_{k} W_{z} / l_{B} \quad, \quad 1 \leqslant k \leqslant n \tag{B-22}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{z}=A_{k} W_{y / \lambda_{B}} \quad, \quad 1 \leqslant b_{p} \leqslant n \tag{B-23}
\end{equation*}
$$

for any values of in-plane (W_{z}) and transverse (W_{y}) tip deflection. It was then found that, for three* segments per boom, the results could be improved through small changes in the relative magnitudes of (A_{k}). Chosen values for this case (i.e., $n=3$) minimized the initial angular accelerations under equilibrium conditions. No further improvements were investigated for other segmented approximations, but curve fitting is recognized as a possible means of improving future discretized structural models of this type.
3. Finally, the transformation is computed for segment-to-local coordinates. Again using the lower left antenna quadrant as an example,

$$
\begin{equation*}
\left[\theta_{7}\right]=\left[\theta_{1}\right]\left[\theta_{2}\right]^{\top}[\Delta] \tag{B-24}
\end{equation*}
$$

where [Δ] is computed exactly as in Eq. (A-21) using the angles in (B-22) and ($B-23$).
*A three-segment model was chosen for actual run trials, as a compromise between accuracy and economy of computation.

Initial angular rates arise solely from orbital motion since, as previously explained, the initial generalized co-ordinate derivatives $\left(\dot{X}_{1}, \dot{X}_{2}, \ldots \dot{X}_{12}\right)$ are zero. For any member, then, the initial angular rate vector is

$$
\begin{equation*}
\underline{w}_{I}=\dot{v}\left[\theta_{I}\right]^{\top} \underline{1}_{2}, \quad 1 \leqslant I \leqslant N \tag{B-25}
\end{equation*}
$$

where (\dot{V}) follows readily from Eq. (A-52).

The hysteresis damping torque for the RAE satellite is taken from the model found in Ref. 14. The damping torque equation, repeated here, is

$$
\begin{equation*}
T_{H}=T_{R}+2 T_{P}\left[1-\exp \left\{-\Sigma\left|\lambda-\lambda_{R}\right|\right\}\right] \operatorname{sgn}(\dot{\lambda}) \tag{B-26}
\end{equation*}
$$

where:

$T_{R}=$ damping torque at the time when $\dot{\lambda} \quad$ last changed sign,
$T_{\mathbf{P}}=$ peak (saturation) damper torque,
$\mathbf{X}=$ exponential rate constant,
$\boldsymbol{\lambda}=$ angle between damper axis and damper rest position (i.e., X_{4} in the problem at hand),
$\lambda_{R}=$ damper angle when $\lambda^{\bullet} \quad$ last changed sign.
The damper hinge has only one rotational degree of freedom (y-axis of the damper boom). The other two degrees of freedom are eliminated by locked modes as described in Appendix A. When the input variable f_{d} is set to zero, this hysteresis torque replaces the usual (linear) computation for damping torques in part IV.

RAF READOUT DERIVATIONS AND FORLATS

The readouts consist of (l) constant parameters printed only once per computer run, and (2) variable parameters computed and printed out at multiple intervals during the simulated orbital period. The format will appear as written below.

Constent Readouts

MFAIRCHILD BOONS OF" (n) "SEGMENTS FER BOOM"

$$
\begin{equation*}
\mathrm{WNL}="\left(N_{L}\right) \quad \mathrm{VE}=" \tag{E}
\end{equation*}
$$

"DAMPER SPRING CONSTANT" (S_{d}) "DAMPING RATIO" (f_{d})
 "SIFULATION TO LAST" (T) MORBITS"
"INITIAL CONDITIONS"
"1" (X_{1}) "2" $\left(X_{2}\right) \ldots$ otc., to $\left(X_{12}\right)$
Sunline vector components in inertial coordinates:
"SUN" ($\left.\alpha_{1}^{F P}\right)\left(\nabla_{2}^{F P}\right)\left(\sigma_{3}^{R F}\right)$

Variable Readouts

At integral multiples of T_{0} / N_{R} (where $T_{0}=2 \pi \sqrt{\mu_{E} / a_{0}^{3}}$ is the orbital period) the computations itemized below are performed and readouts printed. (1) Tire and satellite position $\{$ direction cosine elements of the transformation [D] from local to inertial co-ordinatea; inertial axes are defined by the Vornal Equinox $(4 x)$ and the north geodetic pole (+ E) \}:

$$
\text { "I = HRS" } \quad \text { "SATELLITE" } \quad D_{13} \quad D_{23} \quad D_{33}
$$

(2) When the sightline from the satellite to the sun is not obstructed by the Earth, this will be indicated by the readout "IN SUN"; the readout "SHADOW" appears during eclipse.
(3) Attitude of the reference axes of the composite satellite with respect to local axes,

$$
\begin{equation*}
\left[\theta^{r}\right]=\left[\theta_{1}\right][-Y]_{Z} \tag{B-27}
\end{equation*}
$$

where γ is the static offset angle of the $\underline{X}_{\text {NUB }}-\underline{Z}_{H U B}$ plane with the orbital plane:

"ATTITUDE"

(4) Attitude of the damper boom with respect to its reference position:

$$
\begin{equation*}
[V]=\left[p_{1}\right]\left[\theta_{1}\right]^{\top}\left[\theta_{2}\right] \tag{B-28}
\end{equation*}
$$

$\begin{array}{llll}\text { "DAMPER" } & \nabla_{23} & \nabla_{31} & \nabla_{12}\end{array}$
(5) Antenna boom deformation is characterised by lateral deflections, both in and out of the cruciform reforence plane, for the tip of each sagment. The inaplane and out-of-plane deflections are the 3rd and 2nd components respectively of a deflection vector ${\underset{i}{i}}$, where (i) is the eegment index number. Since the deflection at the tip of any segment includes the deflections
of all inner segments, d can be computed by 2 recursion formula:

$$
\begin{align*}
\underline{d}_{4 j+k-2} & \underline{d}_{4(j-1)+k-2}+\ell\left[\hat{k}_{k+1}\right]\left[\theta_{1}\right]^{\top}\left[\begin{array}{l}
\theta_{4 j+k-2,11} \\
\\
\\
2 \leqslant j \leqslant n ; 1 \leqslant k \leqslant 4
\end{array}\right]\left[\begin{array}{l}
\theta_{4 j+k-2,21} \\
\theta_{4 j+k-2,31}
\end{array}\right] \tag{3-29}
\end{align*}
$$

where i is the index number of the segment tip. To start the recursion, the values of $\underline{d}_{3}, \frac{d}{4}, \frac{d}{5}$, and $\frac{d}{6}$ are computed from the last term of the same expression, (B-29). The relative twist angle (rad.) between adjacent members is computed from the trace angle ($\boldsymbol{\lambda}$) and the X-axis component of the deformation eigenvector $\underline{\mathbf{U}}$ for the hinge connecting those members; ($\boldsymbol{\lambda}$) and $\underline{\underline{U}}$ are defined in Eqs. (A-2) and (A-3), respectively.

$$
\begin{equation*}
d_{i, 1}=\lambda U_{1} \quad, 3 \leqslant i \leqslant N \tag{B-30}
\end{equation*}
$$

The "DEFORMATION" format is as follows:

Boom number (K)	1	2	3	4
"IN-FLANE"	d_{33}	d_{43}	d_{53}	d_{63}
	d_{73}	d_{83}	d_{93}	$d_{10,3}$
HOUR OF PLANE"	\vdots	\vdots	\vdots	\vdots
	d_{32}	d_{42}	d_{52}	d_{62}
	d_{72}	d_{82}	d_{92}	$d_{10,2}$
	\vdots	\vdots	\vdots	\vdots

"TWIST"

d_{41}
d_{51}
d_{61}
${ }^{d} 81$
${ }^{d} 91$
$d_{10,1}$
:
\vdots
(6) The amplitudes of the satellite flexing modes 12 are conputed from the antenna boom tip deflections and printed out. The computation is the exact inverse of the operation used to find tip deflections from flexing mode amplitudes, described earlier in this Appendix.

For example, the in-plane neutral mode amplitude is:
$X_{8}=-\frac{1}{2}\left(d_{4 n+1,3}-d_{4 n+2,3}+d_{4 n-1,3}-d_{4 n, 3}\right)-2 K_{A}$

The "SATELLITE MODES" format is as follows:
"ROLL" (X_{5}) "PITCH" $\left(X_{6}\right)$ "YAW" $\left(X_{7}\right)$
"LONGITUDINAL" (X_{9}) "Lateral" (X_{10}) "VERTICAL" (X_{11})
"In-PLANE NEUTRAL" (X_{8}) "OUT of plane neutral" (X_{12})

APPENDIX C

PROGRAM LISTING

The RAE segmented model program presented here has been successfully run in Fortran IV single precision on the Univac 1108 and has been found in agreement with the independent Lagrangian analysis of Ref. 12. While many of the Fortran statements are self-explanatory or follow readily from previous discussion, understanding of the overall computational scheme is enhanced in several instances by the accompanying comments, referrals to equations, cross-references between different parts of the program, etc. It will be reiterated here that usage of the program for other satellite configurations will not require knowledge of the material in these Appendices. Program utilization for general purposes calls for 1) all inputs specified in the INTRODUCTION of this report, and 2) Parts 0 , III, and IV of the present listing (with present FORMAT and WRITE statements replaced by desired readouts for the particular problem under consideration*), augmented by the accompanying subroutines ICE, INTEG, INVERT, and XSIMEQ, plus card Nos. 55-58 which provide necessary zero resets for each program run. It should be noted that the hinge interactions, solar pressure forces, thermal bending, and hysteresis damping present in Part IV, unless actuated by inputs in Parts I and II, are de-activated by the cards at the end of Part O. If similar effects are to be included in a simulation for another satellite configuration, the following minor modifications are needed:
(1) Elastic coefficients derived on pages 38-40 must be co-ordinated with the appropriate satellite geometry, necessitating logic changes in cards $818-848$. FNote that deletion of the computations associated with readouts in the present program (e.g., calculations involving the Fortran designation "SD") is optional.
(2) The geometry of each member will determine its response to , solar radiation pressure; card Nos. 646-652 will be replaced accordingly if solar pressure effects are to be taken into account.
(3) The thermal bending formulation was derived in terms of lengths between centers of adjacent members (See discussion preceding Eq. A-10). When this is not uniform throughout the structure, simple logic must be introduced into the computation (for the RAE this is done by card Nos. 722-724).
(4) Nonlinear damping and/or spring action can easily be simulated by modifying the internal torque ("EL") computation at any hinge.

```
C
PART O
INTEGER XSIMEQ
DIMLNGION NII(75),SGU(78,38),GAM(38),XT(38,38)
LINENSION JG(78),XIB(78),XIO(7R),DVEC (3,3)
LIMENSION S(26,25), PSI(78,78), PSIV(78,78),EM(26), A(26,3,3),
1TH(26,3,3),R(25,3,3),RP(25,3,3),RHO(25,3,3),RHOP(25,3,3),AE (26)
2.C(78.78)
    UIMLNSION WV(78),WM(3,26),WD(78),VECT(78),H(78),
    1G(78),EL(78), Q(78), UU(78), V(3,3), VP(3,3), P(3,3),PQ(25,25),
    2PSQ(25,25),U(3),UP(3),WKP(3),Z(78.26),B(26,26,3)
        DIMENSION DUR(3.3),DDRD(3,3),EPSIL(6,7)
        DIMENSION Y(312),DY(312),ERL(312),DICE(2184),SIG(3,26),DELT(3),
    1SIGF(3),SIGOP(3)
    EGUIVALENCE(PSQ(1,1),PSI(1,1)),(PQ(1,1),Z(1,1)),(WM(1,1),WV(1))
    1 -(t,Z).(C.PSIV)
    EQLIVALENCE (Y(1),WV(1)),(DY(1)PWD(1))
    DATA PI /3.1415926b/,FMU /0.398613E+15/.SPC /0.45E-05/,ERRD /0.638
    1E+07/
    IBUG = n ________________liary readout control.
    IORU= 4 \ - Inputs to subroutine ICE (See Card No. 583).
    LO 12006 I=1.6
    CO 120U6 J=1.7
12006 EPSIL(I,J) = 0.0 ——_ Deactivates interaction in hinge moment computations.
    CO6781 I=1.26
    6781 AE(I) = 0.0 —— Deactivates solar pressure unless subsequently overridden.
    XJE = 0.0} ——_Deactivates thermal bending unless subsequently overridden.
    xJ5 = 0.0 
    FD = 1. E-03 ____________metivates hysteresis damping computations in Part IV for genersl
C
            PART I
    LIA,ENSION XINIT(12),ZIN(4),YIN(4),F(3),SHAD(2),SD(26,3)
    CIMENSION SLSQ(6)
    LATA (SHAL(I),I=1,2) /GHSHANOM,GHIN SUN/
    kBHC=0
    KASE =0
9 9 9 9 ~ C O N T I N U E ~
    KASL = KASE+i
    IF (K,UCC .EM. O) GO TO 1970
    STP1 = T/Kl3:*C
```

```
    KBBC = 0
    WRITE {6,1971) STP1
                Readout for numerical integration step size.
    1971 FORMAT (IHIE18.5)
    1970 CONTINUE
    READ (5,190) NL,NA,ITHERM,NPB,THZ,EYZ,EZ,ENR,ORBS,FD,SDI
    190 FORMAT (4I1,7F10.0)
    READ (5,1901) XINIT
    1901 FORMAT (6F10.0)
    IF (NL EQ. 3) NPB = 1 __ Antenna base lock is allowed only for the rigid cruciform.
C
            PART II
C
    DO 1031 J=1,38
    GAM(J) = 0.0
    DO 1031 I=1,78
    1031 SQU(I,J) = 0.0
    DO 1032 I=1,26
    DO 1032 J=1,3
    1032 SO\I,J\ = 0.0
    DO 1029 J = 1.6
    1029 SLSQ(J) = 0.
    GO TO (1038,1033,1034,1035,1036,1037),NPB —_ See pages 45-46.
    1033 SLSQ(1) = .595386
        SLSQ(2) = 1.40461
        GO TO 1038
    1034 CONTINUE
    SLSO(1)=.5461
    SLSQ(2) = 1.1432
    SLSQ(3) = 1.3107
    GO TO 1038
    1035 SLSQ(1) =.321406
    SLSQ12) = 1.01717
    SLSQ(3)}=1.2844
    SLSQ(4) = 1.37697
    GO TO 1038
    1036 SLSQ(1)=.261152
    SLSQ(2) =.865497
    SLSQ(3)=1.1645
    SLSQ(4) = 1.33302
    SLSQ(5) = 1.37583
    GO TO 1038
1037 SLSQ(1) = .21987
    SLSQ(2) =.750147
```

\qquad

``` Eq. A-16.
```

 SLSQ(3) = 1.04962
    ```
    SLSQ(3) = 1.04962
    SLSQ(4) = 1.25421
    SLSQ(4) = 1.25421
    SLSQ(5) = 1.34979
    SLSQ(5) = 1.34979
    SLSQ(6) = 1.37636
    SLSQ(6) = 1.37636
1038 CDNTINUE
1038 CDNTINUE
    SIGH=77.
    SIGH=77.
    TPH=.4506
    TPH=.4506
    TRH = 0.0 , Hysteresis
    TRH = 0.0 , Hysteresis
    AMBDR = 0.0 } damper
    AMBDR = 0.0 } damper
    SOO = 1.0
    SOO = 1.0
    AMDDT = 0.,
    AMDDT = 0.,
    XJS = 3.0E+08*SPC/4184.
    XJS = 3.0E+08*SPC/4184.
    XJE = 5.67E-08*246.0**4/4184
    XJE = 5.67E-08*246.0**4/4184
    DO 11000 I=1,6
    DO 11000 I=1,6
    DO 11000 J=1,7
    DO 11000 J=1,7
11000 EPSIL(I,J) = 0.0
11000 EPSIL(I,J) = 0.0
    G0 TO 111004,1100B,11005,11006,11007,110091,NPB __ See page 40.
    G0 TO 111004,1100B,11005,11006,11007,110091,NPB __ See page 40.
11C08 EPSIL(1,1) = -13./6.
11C08 EPSIL(1,1) = -13./6.
    EPSIL(1,2) = 7./3.
    EPSIL(1,2) = 7./3.
    EPSIL(1,3)=-1./6.
    EPSIL(1,3)=-1./6.
    EPSIL(2.1) = 5./6
    EPSIL(2.1) = 5./6
    EPSIL{2,2)=-1.
    EPSIL{2,2)=-1.
    EPSIL{2,3) = 1.16.
    EPSIL{2,3) = 1.16.
    GO 10 11004
    GO 10 11004
11005 CONTINUE
11005 CONTINUE
    EPS1L(1,1)= -31./15.
    EPS1L(1,1)= -31./15.
    EPSIL(1,2) = 11./5.
    EPSIL(1,2) = 11./5.
    EPSIL(1,3)=-2.115.
    EPSIL(1,3)=-2.115.
    EPSIL(2,1) = 41.160.
    EPSIL(2,1) = 41.160.
    EPSIL(2,2) = -4./5.
    EPSIL(2,2) = -4./5.
    EPS1L42,31=1.16.
    EPS1L42,31=1.16.
    EPSIL(2,4) = -1./20.
    EPSIL(2,4) = -1./20.
    EPSIL(3,1)=-3./20.
    EPSIL(3,1)=-3./20.
    EPSIL(3,2) = 1./5.
    EPSIL(3,2) = 1./5.
    EPSIL(3,3) = -1./6.
    EPSIL(3,3) = -1./6.
    EPSIL(3,4)=7.160.
    EPSIL(3,4)=7.160.
    GO TO 11004
    GO TO 11004
11006 CONTINUE
11006 CONTINUE
    EPSIL(1,1)= -31./15.
    EPSIL(1,1)= -31./15.
    EPSIL(1,2) = 11./5.
    EPSIL(1,2) = 11./5.
    EPSIL{1,3)=-2.115.
    EPSIL{1,3)=-2.115.
    EPSIL(2,1) = 41.160.
    EPSIL(2,1) = 41.160.
    EPSIL(2,2) = 4.4.15.
```

 EPSIL(2,2) = 4.4.15.
    ```
```

 EPSIL(2,3) = 19./120.
 EPSIL(2,4)=-1./24.
 EPSIL(3,1)= =3./20.
 EPSIL(3,2)=1./5.
 EPSIL(3.3)= -2./15.
 EPSIL(3.4) = 2./15.
 EPSIL(3,5)=-1./20.
 EPSIL(4,3) = 1.124.
 EPSIL(4,4)=-19./120.
 EPSIL(4,5)=7.160.
 GO TO 11004
 11007 CONTINUE
EPSIL{1,1)= -31./15.
EPSIL(1,2)=11./5.
EPSIL(1,3)= -2./15.
EPSIL(2,1)=41./60.
EPSIL(2,2)=-4.15.
EPSIL(2.3) = 19./120.
EPSIL(2,4) = -1./24.
EPSIL(3,1) = -3./20.
EPSIL(3,2) = 1./5.
EPSIL(3,3)=-2./15.
EPSIL(3,4) = 1./8.
EPSIL(3,5)=-1./24.
EPSIL(4,3)=1./24.
EPSIL(4,4)=-1./8.
EPSIL(4,5)=2.115.
EPSIL(4,6) = -1./20.
EPSIL(5,4)=1./24.
EPSIL(5.5) = -19.1120.
EPSIL(5,6)=7.160.
GO TO 11004
11009 EPSIL(1.1)= =31./15.
EPSIL{1,21=11.15.
EPSIL(1,3)=-2./15.
EPSIL(2.11 = 41./60.
EPSIL(2,2)=-4.15.
EPSIL{2.3) = 19.1120.
EPSIL(2,4)=-1./24.
EPSIL(3,1)= -3.120.
EPSIL(3,2)=1./5.
EPSIL(3.3)=-2./15.
EPSIL(3,4)=1./8.

```
\(\qquad\)
``` Antenna length in meters.
```

$\qquad$

``` Segment length. Value of \(E\) used in Eq. B-10 includes effects of perforations.
\(\mathrm{POR}=0.3\)
``` \(\qquad\)
``` Poisson's ratio.
\(E M B=0.480 E-03 * 14.5939 / 0.3048\) Linear mass density of booms (kg./m.).
\(C K=0.031\) —Thermal conductivity of booms (page 36).
DIA \(=0.587 / 39.37\)
\(O L A=0.1\)
``` \(\qquad\)
``` Small overlap angle due to interlocking at seam; not critical.
CTE \(=0.0\)
IF (ITHERM .NE 0\()\) CTE \(=1.87 E-05\) ——coefficient of thermal expansion.
\(F(2)=.125 * D[A * * 3 * T H K *(P I+O L A+S I N(O L A) * C O S(O L A)-2.0 * S I N(U L A) * * 2 /\)
\(1(P I+O L A)\) ___ Eq. B-3.
\(F(3)=.125 * D I A * * 3 * I H K *\{P I+O L A-S I N(O L A) * \operatorname{COS}(O L A))\)
``` \(\qquad\)
``` Eq. B-4.
\(F(1)=0.5 /(1+P D R) *(F(2)+F(3))\) \(\square\) Eq. B-5.
DO \(1041=1,3\)
\(104 \mathrm{~F}(I)=E * F(1) *(1.0-A W) / S L\)
``` \(\qquad\)
``` Eq. B-10; see card No. 368.
\(X J E=E L B / 4.0 / E N P B / C K / T H K * 0.1 * C T E * D I A * X J E)\)
``` \(\qquad\)
``` Eq. A-19.
\(X J S=E L B / 4.0 / E N P B / C K / T H K * .05 * C T E * D I A * X J S S\)
\(N=4 * N P B+2\) —_ Segments, hub, and damper.
\(\mathrm{N} 3=3 * \mathrm{~N}\)
```

```
 EPSIL(3,5) = -1.124.
```

    EPSIL(3,5) = -1.124.
    EPSIL(4,3) = 1.124.
    EPSIL(4,3) = 1.124.
    EPSIL{4,4)=-1./8.
    EPSIL{4,4)=-1./8.
    EPSIL(4,5) = 1./8.
    EPSIL(4,5) = 1./8.
    EPSIL{4,6) = -1./24.
    EPSIL{4,6) = -1./24.
    EPSIL{5,4! = 1./24.
    EPSIL{5,4! = 1./24.
    EPSIL(5,5) = -1./8.
    EPSIL(5,5) = -1./8.
    EPSIL(5,6) = 2./15.
    EPSIL(5,6) = 2./15.
    EPSIL(5,7)=-1./20.
    EPSIL(5,7)=-1./20.
    EPSILI6,51 = 1./24.
    EPSILI6,51 = 1./24.
    EPSIL{6,6} = -19.1120.
    EPSIL{6,6} = -19.1120.
    EPSIL{6,7)=7.160.
    EPSIL{6,7)=7.160.
    11004 CONTINUE
11004 CONTINUE
T2 = 0.0
T2 = 0.0
WZ = 0.0
WZ = 0.0
AZ = 0.123BE+08 ——_Semimajor axis for 6000 Km. altitude.
AZ = 0.123BE+08 ——_Semimajor axis for 6000 Km. altitude.
ND = 80 M March 21.
ND = 80 M March 21.
ENPB = NPB
ENPB = NPB
C
C
C
FAIRCHILD BOOM
FAIRCHILD BOOM
C
C
ELB = 750.*.304
ELB = 750.*.304
103 SL = ELB/ENPB
103 SL = ELB/ENPB
THK = 508E-04 — Boom wall thickness.
THK = 508E-04 — Boom wall thickness.
E = . 117E+12
E = . 117E+12
3418 AH = 0.0

```
3418 AH = 0.0
```

$\qquad$

``` Allowable error per integration step for direction cosines.
```

    NM = N-1
    ```
 NM = N-1
 EEE1=1.0E-06/2.0
 EEE1=1.0E-06/2.0
 EEE2=1.0E-04/2.0
 EEE2=1.0E-04/2.0
 DO 5555 1=1,N3
 DO 5555 1=1,N3
5555 ERL(II = EEE1
5555 ERL(II = EEE1
 N12 = 12*N
 N12 = 12*N
 NNNN = N3+1
 NNNN = N3+1
 DO 5556 I=NNNN,N12
 DO 5556 I=NNNN,N12
5556 ERL(I) = EEE2
```

5556 ERL(I) = EEE2

```


```

    QKA = 35.57 
    ```
 QKA = 35.57
 OGAM =.9830
 OGAM =.9830
 QGAM =.1131
 QGAM =.1131
7301 MIIII = 0
7301 MIIII = 0
 GO TO (7303,7304,7305),NL ——_ See pages 34 and 43.
 GO TO (7303,7304,7305),NL ——_ See pages 34 and 43.
7303 NC = 2
7303 NC = 2
 MI(1) = 1
 MI(1) = 1
 MI(3)=2
 MI(3)=2
 GO TO 7401
 GO TO 7401
7304 NC = N
7304 NC = N
 MI(1) = 1
 MI(1) = 1
 MI(3) = 2
 MI(3) = 2
 DO 7307 I=2,NM
 DO 7307 I=2,NM
 M = 3* (I-1) +1
 M = 3* (I-1) +1
7307 MII(M) = I+1
7307 MII(M) = I+1
 GO TO 7401
 GO TO 7401
7305 NC = 14
7305 NC = 14
 QKA = 0.0
 QKA = 0.0
 QBA = 0.0
 QBA = 0.0
 QGAM = .0623134
 QGAM = .0623134
 MI{1)=1
 MI{1)=1
 MI(3)=2
 MI(3)=2
 D0 7308 I=4,15
 D0 7308 I=4,15
7308 MI(I) = I-1
7308 MI(I) = I-1
7401 CONTINUE
7401 CONTINUE
 ELI = 1.5*0.3048
 ELI = 1.5*0.3048
 ELD = CBRT(12./EMB*1.0E+04*14.5939*.3048**2) __ Damper length corresponding to
 ELD = CBRT(12./EMB*1.0E+04*14.5939*.3048**2) __ Damper length corresponding to
 EM(1)=10.52*14.5939
 EM(1)=10.52*14.5939
 EM(2) = ELD*EMB
 EM(2) = ELD*EMB
 DO 105 I = 3,N
 DO 105 I = 3,N
105 EM(I) = ELB*EMB/ENPB
105 EM(I) = ELB*EMB/ENPB
 DO 106 I = 1,N
```

    DO 106 I = 1,N
    ```
\(\square\)

``` Sphere; Eq. B-15.

``` Cylinder; Eq. B-16.
```

    DO 106 J = 1,3
    ```
 DO 106 J = 1,3
 OO 106 K = 1,3
 OO 106 K = 1,3
 106 A(I,J,K) = 0.0
 106 A(I,J,K) = 0.0
 A(1,1,1)=14.24
 A(1,1,1)=14.24
 A(1,2,2)=90.8
 A(1,2,2)=90.8
 A(1,3,3) = 92.68
 A(1,3,3) = 92.68
 A(1,1,1)=A(1,1,1)*1000.
 A(1,1,1)=A(1,1,1)*1000.
 A(1,2,2)=A(1,2,2)*200.
 A(1,2,2)=A(1,2,2)*200.
 A(1,3,3)=A(11,3,3)*20
 A(1,3,3)=A(11,3,3)*20
 1065 CONTINUE
 1065 CONTINUE
 DO 107 I = 1.3
 DO 107 I = 1.3
 107 A(1,I,I)=A(1,I,I)*14.5939*0.3048**2
```

    107 A(1,I,I)=A(1,I,I)*14.5939*0.3048**2
    ```


```

    A(2,1,1)=A(2,1,1)*10000.
    ```
 A(2,1,1)=A(2,1,1)*10000.
 00 108 I = 2,3
 00 108 I = 2,3
10B A(2,I,I)=1./12.*EM(2)*ELD**2 — Eq. B-7.
10B A(2,I,I)=1./12.*EM(2)*ELD**2 — Eq. B-7.
 00 109 I = 3,N
 00 109 I = 3,N
 A(I,1,1) = EM(1)*DIA**2/4.0
 A(I,1,1) = EM(1)*DIA**2/4.0
 A(I,1,1) = A(I,1,1)*10000.
 A(I,1,1) = A(I,1,1)*10000.
 Artificial enlargement of small inertias.
 Artificial enlargement of small inertias.
 DO 109 J = 2.3
 DO 109 J = 2.3
109 A(I;J,J)=1./12.*EM(1)*SL**2—_ Eq. B-8.
109 A(I;J,J)=1./12.*EM(1)*SL**2—_ Eq. B-8.
 IF(NA) 110.111,110
 IF(NA) 110.111,110
111 00 112 I = 1,N
111 00 112 I = 1,N
112 AE(I) = 0.0
112 AE(I) = 0.0
 GO TO 114
 GO TO 114
110 AEI1)=0.5*PI*ELI**2
110 AEI1)=0.5*PI*ELI**2
 AE(2) = 2./3.*DIA*ELD
 AE(2) = 2./3.*DIA*ELD
 00.113 1 = 3,N
 00.113 1 = 3,N
113 AEIII = 2./3.*DIA*SL ___ Cylinder; Eq. B-17.
113 AEIII = 2./3.*DIA*SL ___ Cylinder; Eq. B-17.
114 M = N-1
114 M = N-1
 DO 115 I = 1,N
 DO 115 I = 1,N
 OO 115 J = 1,M
 OO 115 J = 1,M
115 S(I,J) = 0.0
115 S(I,J) = 0.0
 00 116 I = 1,5
 00 116 I = 1,5
116 S(L.I) = -1.0
116 S(L.I) = -1.0
 IF (NPB -EQ. 1) GD TO 5070
 IF (NPB -EQ. 1) GD TO 5070
 00 117 I = 6,M __ Eq. B-12.
 00 117 I = 6,M __ Eq. B-12.
117 S(J.I) = -1.0
117 S(J.I) = -1.0
5070 CONTINUE
5070 CONTINUE
 DO 118 I = 1,M
 DO 118 I = 1,M
 J=I+1
 J=I+1
118 S\J,It = 1.0
```

118 S\J,It = 1.0

```

\(\qquad\)
``` Eq. B-ll.
\(\operatorname{DUR}(2,2)=R(2,2,2)\}\) Used for interacting hinges.
\(X C=\operatorname{COS}(X I N I T(1))\)
\(\mathrm{YC}=\operatorname{COS}(X I N I T(2))\)
ZC = COS(QGAM+XINIT(3))
\(X F=\) SINIXINIT(1))
\(\mathrm{YF}=\mathrm{SIN}(X I N I T(2))\)
ZF = SIN\{QGAM+XINIT(3))
```

```
    RHO(2,3,1)=SIN(PI/3.1
```

 RHO(2,3,1)=SIN(PI/3.1
 RHO{3,3,1)=SIN(PI/3.1
 RHO{3,3,1)=SIN(PI/3.1
 RHO(4,1,31 = SIN{PI/3.1
 RHO(4,1,31 = SIN{PI/3.1
 RHO(5,1,3)=SIN(P1/3.)
 RHO(5,1,3)=SIN(P1/3.)
 RHO{2,1;3)=-SIN(PI/3.)
 RHO{2,1;3)=-SIN(PI/3.)
 RHD(3,1,3) = -SIN(PI/3.)
 RHD(3,1,3) = -SIN(PI/3.)
 RHO(4;3,1)=-SIN{PI/3.1
 RHO(4;3,1)=-SIN{PI/3.1
 RHO(5,3,1) = -SINIPI/3.
 RHO(5,3,1) = -SINIPI/3.
 IF (NPB .EQ. 1) GO TO 5072
 IF (NPB .EQ. 1) GO TO 5072
 DO 123 I = 6,M
 DO 123 I = 6,M
 DO 123 K = 1,3
 DO 123 K = 1,3
 123 RHO{I;K,K) = 1.
123 RHO{I;K,K) = 1.
5072 CONTINUE
5072 CONTINUE
M=N-1
M=N-1
DO 127 1 = 1,M
DO 127 1 = 1,M
DO 127 J = 1,3
DO 127 J = 1,3
DO 127 K = 1,3
DO 127 K = 1,3
R(I,J,K) = 0.0
R(I,J,K) = 0.0
127
127
RP(I,J,K) = 0.0
RP(I,J,K) = 0.0
IF (NL.EQ. 3) GO TO 5073
IF (NL.EQ. 3) GO TO 5073
IOL = 1
IOL = 1
IF (NL .EQ. 2) IQL = 2 _____L_Locked torsional modes.
IF (NL .EQ. 2) IQL = 2 _____L_Locked torsional modes.
DO 128 I=2,M
DO 128 I=2,M
00 128 J=1QL,3

```
    00 128 J=1QL,3
```



```
    IF (NL .NE. 2) GO TO 1289
```

 IF (NL .NE. 2) GO TO 1289
 5073 CONTINUE
5073 CONTINUE
DO 1288 I=1,NM
DO 1288 I=1,NM
R[I, 1,1]=10.*A(I+1,2,2)*FMU/AZ**3
R[I, 1,1]=10.*A(I+1,2,2)*FMU/AZ**3
RP(I,1,1)=5.\#A(I+1,2,2)*SQRT(FMU/AZ**3)},
RP(I,1,1)=5.\#A(I+1,2,2)*SQRT(FMU/AZ**3)},
1288 CONTINUE
1288 CONTINUE
1289 CONTINUE
1289 CONTINUE
R(1,2,2)=SDI*(3.0+SIN(DANG -QGAM)**2)*FMU/AZ**3*A(2,2,2)

```
R(1,2,2)=SDI*(3.0+SIN(DANG -QGAM)**2)*FMU/AZ**3*A(2,2,2)
```



```
provides a damper.spring constant of 0.01015 ft.-1b.
```

provides a damper.spring constant of 0.01015 ft.-1b.
RP(1,2,2)=2.0*FD*A(2,2,2)*SQRT{(3,0+SIN(DANG -QGAM)**2)*
RP(1,2,2)=2.0*FD*A(2,2,2)*SQRT{(3,0+SIN(DANG -QGAM)**2)*
1(SD1-1,01*FMU/AI**3) -___ Eq. B-1l.
1(SD1-1,01*FMU/AI**3) -___ Eq. B-1l.
DUR (2,2)=R(2,2,2)

```
DUR (2,2)=R(2,2,2)
```

```
TH(1,1,1) = ZC*YC-XF*YF*ZF
\(T H(1 ; 1,2)=Z F * Y C+X F * Y F * 2 C\)
TH(1,1,3) = -XC*YF
\(\mathrm{TH}(1,2,1)=-X C * 2 F\)
\(T H(1,2,2)=X C * 2 C\)
TH(1,2,3) \(=\mathrm{XF}\)
TH \((1,3,1)=Z C * Y F+X F * Y C * Z F\)
TH \((1,3,2)=Y F * Z F-X F * Y C * Z C\)
TH \((1,3,3)=X C * Y C\)
TH \((2,1,1)=\operatorname{Cos}(X I N I T(4))\)
TH \((2,1,2)=0.0\)
TH \((2,1,3)=-S I N(X I N I T(4))\)
TH(2,2,1) \(=0.0\)
TH\{ \(2,2,2)=1.0\)
\(\mathrm{TH}(2,2,3)=0.0\)
TH( \(2,3,1)=\) SIN(XINIT(4))
\(\operatorname{TH}(2,3,2)=0.0\)
\(\operatorname{TH}(2,3,3)=\operatorname{COS}(X I N I T(4))\)
DO \(7480 \quad \mathrm{I}=1,3\)
DO \(7480 \quad \mathrm{~J}=1,3\)
DVEC(I.J) \(=0.0\)
DO \(7480 \mathrm{~K}=1,3\)
7480 DVEC(I;J) = OVEC(I;J)+RHO(I,K,II*TH(2;K,J)
    00 \(7481 \quad I=1,3\)
DO \(7481 \mathrm{~J}=1.3\)
\(T H(2, I ; J)=0.0\)
OD \(7481 \mathrm{~K}=1,3\)
7481 TH( \(2, I, J)=T H(2, I, J)+T H(1, I, K) * O V E C(K, J)\)
XINIT(7) \(=\mathrm{XINIT}(7)+2.0 *\) QBA
XINIT(8) \(=\) XINIT(8)+2.0*QKA
\(\operatorname{ZIN}(1)=-0.5 *(X I N I T(6)+X I N I T(8)-X I N I T\{9)-X I N I T(11)) —\) Eq. \(3-20\).
ZIN(2) \(=-0.5 *(X I N I T(6)-X I N I T(8)-X I N I T(9)+X I N I T(11))\)
\(\operatorname{ZIN}(3)=-0.5 *(X I N I T(6)+X I N I T(8)+X I N I T(9)+X I N I T(11))\)
ZIN(4) \(=-0.5 *(X I N I T(6)-X I N I F(8)+X I N I T(9)-X I N I T(11))\)
YIN(1) \(=0.5 *\{X I N I T(5)+X I N I T(7)-X I N I T(10)-X I N I T(121)\)
YIN(2) \(=-0.5 *(-X I N I T(5)+X I N I T(7)+X I N I T(10)-X I N I T(12))\)
YIN(3) \(=-0.5 *(X I N I T(5)+X I N I T(7)+X I N I T(10)+X I N I T(12))\)
YIN(4) \(=0.5 *(-X I N I T(5)+X I N I T(7)-X I N I T(10)+X I N I T(12))\)
DO \(1812 \mathrm{~K}=1,4\)
DO \(1812 \mathrm{~J}=1\), NPB
\(I=4 * J-2+K\)
YYY \(=\) SLSQ(J)*ZIN(K)/ELB
\(Z Z Z=S L S Q(J) * Y I N(K) / E L B\)
```

\qquad

``` Eq: B-22.
                                Eq. B-23.
```

 YYS = YYY**2
 ZZS = ZZZ**2
 SQUR = SQRT(1.0-YYS-ZZS)
 TH(I.1.1) = SQUR
 TH(I,1,2) \(=-2 Z Z\)
 \(T H(1,1,3)=-Y Y Y\)
 TH(1,2,1) \(=22 Z\)
 TH(1.2,2) \(=(Y Y S+Z Z S * S Q U R) /(Y Y S+Z Z S)\)
 TH(I,2,3) \(=Y Y Y * Z Z Z *(S Q U R-1.0) /(Y Y S+Z Z S)\)
 TH(I, 3,1) = YYY
 THI \(1,3,21=\) TH(1,2,3)
 THII,3,3) \(=(2 Z S+Y Y S * S Q U R) /(Y Y S+Z Z S)\)
 IF \((Y Y S+Z Z S\)-LT. \(1 . E-30)\) TH \((I, 2,2)=1.0\}\). Resolution of possible singularity.
 IF (YYS+ZZS .LT. 1.E-30) TH(I,3,3) \(=1.0\)
 OD \(1813 \quad 1 I=1,3\)
 DO \(1813 \mathrm{JJ}=1,3\)
 DVEC\{II;JJ) \(=0.0\)
 DO \(1813 \mathrm{KK}=1,3\)
 1813 DVEC\{II,JJ)= DVEC\{II,JJ)+RHO(K+1,KK;II)*THII,KK,JJ)
DO $1814 \quad 11=1$, 3
DO $1814 \mathrm{JJ}=1,3$
TH(I,II,JJ) $=0.0$
OD $1814 \mathrm{KK}=1.3$
1814 TH(I,II,JJ) $=T H(I, I I, J J)+T H(1, I I, K K) * D V E C(K K, J J)$
1812 CONTINUE
DO $1815 \quad 1=1, N$
DO $1815 \mathrm{~J}=1,3$
CAM $=-$ SQRT(FMU)*TZ/AZ**1.5
$1815 \mathrm{WM}(\mathrm{J}, \mathrm{I})=\mathrm{TH}(\mathrm{I}, 2, \mathrm{~J}) * \operatorname{SQRT}(\mathrm{FMU}) / \mathrm{AZ**1.5*(1.0+2.0*EZ*} \mathrm{\operatorname{COS}(C A M)}$
$1+2.5 * E Z * * 2 * \operatorname{COS}(2.0 * C A M)+1.0 / 12.0 * E Z * * 3 *(39 . * \operatorname{COS}(3.0 * C A M)-3.0 *$
$1 \cos (C A M) 11$
\qquad Eq. B-25.
$T P H=T P H *(S D 1-1.0) *(3 .+S I N(D A N G-Q G A M) * * 2) * A(2,2,2) * F M U / A Z * * 3$
 See card Nos. 92 and 376. WRITE $(6,4916)$
4916 FORMAT (IH130X33HRAE SATELLITE DYNAMICS SIMULATION)
WRITE $(6,4918)$ NPB,NL, E
4918 FORMAT (1H022X19HFAIRCHILD BOOMS OF II,19H SEGMENTS PER BOOM. 5 X
$15 \mathrm{HNL}=13,5 \times 4 \mathrm{HE}=\mathrm{E} 10.41$
IF (ITHERM .NE. O) WRITE $(6,4919)$
4919 FGRMAT (1 HO 34×24 HTHERMAL EFFECTS INCLUDED)
IF (NA .NE O) WRITE (6.4920)
4920 FORMAT $\{1 H 029 \times 31 H S O L A R$ PRESSURE EFFECTS INCLUDED
WRITE (6,4921) SDI,FD
4921 FORMAT (1HO2OX22HDAMPER SPRING CONSTANT E12.4,5X13HDAMPING RATIO

```
    1E12.41
        WRITE (6,4922) AZ,THZ,EYZ,EZ,ENR
4922 FGRMAT (1H016X5HORBIT5X1HAE12.5,5X1HOE12.5,5X1HIE12.5.5X1HEE12.5.
        15X5HNR = F3.0)
        WRITE (6,4923) ORBS
4 9 2 3 ~ F O R M A T ~ ( 1 H 0 3 0 X 1 9 H S I M U L A T I O N ~ T O ~ L A S T ~ F 6 . 3 . 7 H ~ O R B I T S I ~
        XINIT(T) = XINIT(7)-2.*QBA
        XINIT(8) = XINIT(8)-2.*QKA
        WRITE (6,4924) (I,XINIT(I),I=1,12)
    4924 FORMAT ILHO35XIBHINITIAL CONDITIONS//(I5,E10.4,I5,E10.4,I5,
    1E10.4,I5,E10.4,I5,E10.4,I5,E10.41)
        CG = COS(QGAM)
        SG = SIN(QGAMI
C
C
    PART III
        IPART = 3
        CAPM = 0.0
        DO 3299 I=1,N
    3299 CAPM = CAPM+EM{I| _______________mal mass.
        ENZ = SQRT(FMU)/AZ**1.5
```



```
        WZ = WZ*PI/180.
        EYZ = EYZ*PI/180.
        THZ = THZ*PI/180.
        TO = 2.0*PI/ENZ
        CAPT = TO#ORBS ___ Duration of run (seconds).
        XIF = SIN(EYZ)
        XIC = COS(EYZ)
        THF = SIN(THZ)
        THC = COS(THZ)
        PSIS = 2.*PI*FLQAT(ND-80)/365._ Eq. A-50.
        XIS = 23.5*PI/180.
        SIGDP{1) = COS(PSIS)
        SIGDP{21 = COS{XIS)*SIN{PSIS)}_-Eq.A-5I.
        SIGDP(3)= SIN{XIS)*SIN(PSIS)
        WRITE (6,974) SIGDP
        FGRMAT (1H05X3HSUN7\times3E16.7)
        00420I=1,NM NOTE Background for remainder of Part III is contained in Ref. 3.
        DO 410 J = 1,NM
        PSQ(I,J)=S(I+1,J)
    410 PQ(I,J)=0.
    420 PQ(I,I) = 1.
```

516
MO = 25
LQ = XSIMEQ(MG,NM,NM,PSQ,PQ,DQ,JQ)

```
\(\qquad\)
``` Theorem 2 of Ref. 3.
 G0 TO (425,900,910),LQ
 425 00 440 I = 1,N3
 z(1,1)=0.
 DO 430 J = 1,NM
 2(I.J+1) = %.
 00 430 K = 1,NM
 430 Z(I,J+1)=2(I,J+1)+C(I,K)*PSQ(K,J)_____Matrix [D] of Rof, 3. NOTE:Original [c]
 D0440 J=1,N 隹 (s no longer needed; its
 c(1,J) = 0.
 00 440 K = 1.N
 DUM = -EM(K)/CAPM
 IF(K.EQ.J) DUM = DUN+1.
 440 C(I,J)=C(I,J)+Z(I,K)*DUM*FM(J)
```

$\qquad$

```
 Product [D][典] m of Ref. 3.
 DO 450 I=1,N3
 DO 450 J = 1.N3
 PSI(I.J) = 0.
 00 450 K = 1.N
 45n PSI(I,J) = PSI(I,J)+C(I,K)*Z(J,K)___Matrix[J] of Ref. 3.
 WRITE (6.17249)
17249 FORMAT (1H)
 DO 4705 I=1,N3
 IALF = 1+MOU(I-1,3)
 ICAP = 1+(I-IALF)/3
 DO 470 J=1.N3
 IBET = 1+MOD(J-1,3)
 JCAP = 1+(J-IBET)/3
 IF (ICAP-JCAP) 470.3701.470
 3701
 CONTINUE
 TAU = 0.
 IF (IALF-IGET) 4702,4703.4702
 4703 CONTINUE
 IF(IALF.EQ.IEET) TAU =
 1PSI(3*ICAP, 3*ICAP)+PSI(3*ICAP-1,3*ICAP-1)+PSI(3*ICAP-2,3*ICAP-2)
 4702 CONTINUE
 TAU = TAU-PSI(I,J)
 A(ICAP,IALF,IBET) = A(ICAP,IALF,IBET)+TAU _____Constant augmented inertia matrix.
 470 CONTINUE
 4705 CONTINUE
 DO 480 I = 1.N3
 IALF = 1+MOC(I-1,3)
 ICAP = 1+(I-IALF)/3
```

```
DO 480 J=1, N
```

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578 579

```
 DO 475 K=1.N
 475 PSI(I,J)= PSI(I,J)+Z(I,K)*FM(K)
 PSI(I,J)=-PSI(I.J)/CAPM+Z(I.J)
 4 8 0 ~ C O N T I N U E ~
 DO 490 I = 1,N3
 IALF = 1+MOD(I-1,3)
 ICAP = 1+(I-IALF)/3
 DO 490 J=1.N
 490 B(ICAP,J,IALF) = PSI(I,J)___ Barycentric vectors.
C
C
c
 DO 495 I=1,N
 D0 495 L=1,3
 II = N3+(I-1)*9+(L-1)*3
 00495 K=1.3
 495 Y(II+K) = TH(I,K,L) {revR
 TR = TO/ENR
 LICE = 4
 NV = 12*N
 T}=0.
 GO TO 831
 800 CALL ICE (TR,T,TP,NV,Y,DY,DICE,LICE,IND,IORD,KPRI,ERL)
```

$\qquad$

``` Numerical integration.
 GO 10 (810,820,830,840),LICF
 C
 BOX A
 810 DO 500 I = 1,N
 II = N3+(I-1)*9
 DO 500 K = 1.3
 00 500 L = 1,3
 500 TH(I,K,L)=Y(II+3*L-3+K)
 KRUM = KRUM+1
 IPART = 4
 AM = ENZ*(T-TZ)
 COAM = cos(AM)
 RS = AZ*(1.-EZ*(COAM+.5*EZ*(COS(AM+AM)-1.+.75*EZ*(COS(3.*AM)-COAM)
 1)|
 SCRF = 2.0*(1.0-SQRT(1.0-(ERRE/RS)**2))
 KMU = 3.*FMU*RS***(-3)
 VV = AM+2.0*EZ*SIN(AM)+1.25*E2**2*SIN(2.0*AM)
 1+1.0/12.0*EZ**3*(13.0*SIN(3.0*AM)-3.0*SIN(AM))
 __ Eq. A-52.
```

        SV = SIN(VV)
        SmZ = SIN(wZ)
        cwz = cos(wz)
        vC = CWZ*CV-5WZ*SV
        VF = SWZ*CV+CWZ*SV
        SIGP(1)=(-THC*VF-THF*XIC*VC)*SIGDP(1)+(-THF*VF+THC*XIC*VC)
    1*SIGDP(2)+XIF*VC*SIGDP(3)
    SIGP(2) = THF*XIF*SIGDP(1)-THC*XIF*SIGDP(2)+XIC*SIGDP(3)
    D13 = THC*VC-THF*XIC*VF
    023 = THF*VC+THC*XIC*VF
    D33 = XIF*VF
    SIGP(3) = D13*SIGDP(1)+D23*SIGDP(2)+D33*SIGDP(3)
    D0 530 I = 1,N
    ICON = 3*(I-1)
    DO 510 J = 1,3
    U(J) = 0.
    DO 510 K = 1,3
    510U(J)=U(J)+A(I, J,K)*WM(K,I)
    UU(ICON+1) = WM(2.I)*U(3)-WM(3.I)*U(2)
        UU(ICON+2) = WM(3,1)*U(1)-WM(1,I)*U(3)
        UU(ICON+3)=WM(1,I)*U(2)-WM(2,I)*U(1)
        00 520 J = 1,3
        u(J)=0.
        CO 520 k = 1.3
    ```

```

        H(ICON+1)= RMU*(TH(I,3,2)*1)(3)-TH(I,3,3)*1)(2))
        H(ICON+2)=RMU*(TH(I,3,3)*U(1)-TH(I,3,1)*U(3))
    530 H(ICON+3)= RMU*(TH(I,3,1)*U(2)-TH(I,3,2)*U(1))
        DO 550 I = 1.N3
        EL(I) = 0.
        O(I) = 0.
        G(I) = 0.
        DO 550 J = 1.N3
    550 PSI(I,J) = 0.
        RUM = FMU*CAPM*RS***(-3)
        DUM = -SQRT(1.0-(ERRD/RS)**?)
        IS = 1
        IF(SIGP(3).GT.DUM) IS = 2 _______________________
        DO 730 I = 1,N
        IF (IS .EG. 1) GO TO 140
    141 DO 143 JJ = 1,3
        SIG(JJ.I) = 0.0
        DO 143 K = 1.3
    ```
```

    143 SIG(JJ,I)=SIG(JJ,I)+TH(I,K,JJ)*SIGP(K) __ Eq. A-54.
    ```
 143 SIG(JJ,I)=SIG(JJ,I)+TH(I,K,JJ)*SIGP(K) __ Eq. A-54.
 IFII.NE.1I GO TO 144
 IFII.NE.1I GO TO 144
 DO 145 JJ = 1,3
```

    DO 145 JJ = 1,3
    ```


```

    GO TO 140
    ```
 GO TO 140
 144 UP(1)=0.0 Solar pressure force
 144 UP(1)=0.0 Solar pressure force
 D0 146 JJ = 2,3
 D0 146 JJ = 2,3
 146 UP(JJ) = -SIG(JJ,I)*2.0*SPC*SQRT(SIG(2,I)**2+SIG(3,I)**2)*AE(I)
 146 UP(JJ) = -SIG(JJ,I)*2.0*SPC*SQRT(SIG(2,I)**2+SIG(3,I)**2)*AE(I)
 140 CONTINUE
 140 CONTINUE
 ICON = 3*{I-1)
 ICON = 3*{I-1)
 00 730 J = 1.N
 00 730 J = 1.N
 JCON = 3*(J-1)
 JCON = 3*(J-1)
 DO 670 JJ = 1,3
 DO 670 JJ = 1,3
 DO 660 II = 1,3
 DO 660 II = 1,3
 V(II,JJ) = 0.
 V(II,JJ) = 0.
 00 660 K = 1.3
 00 660 K = 1.3
 660 V(II,JJ) = V{II,JJ)+TH(I,K,II}*TH{J,K,JJ)
 660 V(II,JJ) = V{II,JJ)+TH(I,K,II}*TH{J,K,JJ)
 P(1,JJ) = B(1,J,2)*V(3,JJ)-B(I,J,3)*V(2,JJ)
 P(1,JJ) = B(1,J,2)*V(3,JJ)-B(I,J,3)*V(2,JJ)
 P(2,JJ)= B(I,J,3)*V(1,JJ)-B(I,J,1)*V(3,JJ)}——_ Eq. 12b of Ref.3.
 P(2,JJ)= B(I,J,3)*V(1,JJ)-B(I,J,1)*V(3,JJ)}——_ Eq. 12b of Ref.3.
 670 P(3,JJ) = B(I,J,1)*V(2,JJ)-B(I,J,2)*V(1,JJ)
 670 P(3,JJ) = B(I,J,1)*V(2,JJ)-B(I,J,2)*V(1,JJ)
 D0 690 K = 1.3
 D0 690 K = 1.3
 II = ICON+K
 II = ICON+K
 IF(I.EQ.J) GO TO 680
 IF(I.EQ.J) GO TO 680
 PSI(II,JCON+1) = CAPM*(P(K,2)*B(J,1,3)-P(K,3)*B(J,1,2))
 PSI(II,JCON+1) = CAPM*(P(K,2)*B(J,1,3)-P(K,3)*B(J,1,2))
 PSI(II,JCON+2) = CAPM*(P(K,3)*B(1,I,1)-P(K,1)*B(J,I,3))
 PSI(II,JCON+2) = CAPM*(P(K,3)*B(1,I,1)-P(K,1)*B(J,I,3))
 PSI(II,JCON+3) = CAPM*(P(K,1)*B(J,I,2)-P(K,2)*B(J,I,1))
 PSI(II,JCON+3) = CAPM*(P(K,1)*B(J,I,2)-P(K,2)*B(J,I,1))
 60 TO 690
 60 TO 690
 680 PSI(IIfJCON+1) = A(I,K,1)
 680 PSI(IIfJCON+1) = A(I,K,1)
 PSI(II,JCON+2)=A(I,K,2)
 PSI(II,JCON+2)=A(I,K,2)
 PSI(II;JCON+3)=A(I;K,3)
 PSI(II;JCON+3)=A(I;K,3)
 690 CONTINUE
 690 CONTINUE
 DO 700 K = 1,3
 DO 700 K = 1,3
 U(k) = 0.
 U(k) = 0.
 DO 700 L = 1,3
 DO 700 L = 1,3
 DUM = 3.*TH(J,3,K)*TH(J,3,L)
 DUM = 3.*TH(J,3,K)*TH(J,3,L)
 IF(K.EQ.LI DUM = DUM-1.
 IF(K.EQ.LI DUM = DUM-1.
 700 U(K) = U(K)+DUM*B(J,I,L)
 700 U(K) = U(K)+DUM*B(J,I,L)
 IF (I.EQ. J) GO TO 7210 Second term of Eq. 19
 IF (I.EQ. J) GO TO 7210 Second term of Eq. 19
 DO 710 K = 1.3
 DO 710 K = 1.3
 710 G(ICON+K) = G(ICON+K)+RUM*(P(K,1)*U(1)+P(K,2)*U(2)+P(K,3)*U(3))
 710 G(ICON+K) = G(ICON+K)+RUM*(P(K,1)*U(1)+P(K,2)*U(2)+P(K,3)*U(3))
 U(1) = -B(J,I,1)*(WM(3,J)**2+WM(2,J)**2)+B(J,I,2)*
 U(1) = -B(J,I,1)*(WM(3,J)**2+WM(2,J)**2)+B(J,I,2)*
 1WM(1,J)*WM(2,J)+B(J,1,3)*#NM(1,J)*WM(30J)
 1WM(1,J)*WM(2,J)+B(J,1,3)*#NM(1,J)*WM(30J)
 U(2) = B(J,I,1)*GM(1,J)*WM(2,J)-B(J,I,2)*(WM(1,J)**2+
```

    U(2) = B(J,I,1)*GM(1,J)*WM(2,J)-B(J,I,2)*(WM(1,J)**2+
    ```

 U(3)=V{3,1)*V(1,2)-V(3,2)*(V(1,1)-1.)
 GO TO 599
 598 U(1)=(V(2,2)-1.)*(V(3,3)-1.)-V(2,3)*V(3,2)
 U(2) = V(2,3)*V(3,1)-V(2,1)*(V(3,3)-1.)
 U(3)=V(2,1)*V(3,2)-(V(2,2)-1.)*V(3,1)
 599 UNRM = SQRT(U{1)**2+U(2)**2+U(3)**2)
 DO 600 K = 1,3
 600 U(K) = U(K)/UNRM
 U(1) = SIGN(U(1),V(2,3))
 U(2) = SIGN(U{2),V(3,1))
 U(3) = SIGN(U{3),V(1,2))
 GO TO 607
 603 AMBDA = SQRT(V (1,2)** 2+V(2,3) ##2+V(3,1)***2)
 UI1)= V(2,3)/AMBDA
 U(2) = V(3,1)/AMBDA
 U(3)= VA1,2)/AMBDA
 C
 607 KON = 3*(KAY-1)
 DO 610 K=1,3
 WKP(K) = 0.
 DO 610 L=1,3
 610 WKP(K) = WKP(K)+VP(K,L)*WM(L,KAY) —__ Second half of Eq. A-6.
 DO 630 K = 1,3
 UP(K)=0.
 DUM = 0.
 IF (FD.GT. 1.E-05) GO TO 4871
 IF (J.NE. 1 .OR. K .NE. 2) GO TO 4871
 SAMBDA = SIGN(AMBDA,V(3,1})
 TRYTH = TRH+SIGN(2.0*TPH*(1.0-EXP(-SIGH*ABS(SAMBDA-AMBDR))),AMDDT) ——Eq. B-26.
 THH=SIGN(AMINI(ABS(TRYTH),TPH),TRYTH)_____ Torque saturation.
 DO 4872 I JK = 1,3
 4 8 7 2
 UUP(2)=UP{2}+R{J,K,IJJK
 WKPS = WKP(2)
 AMBDS = SAMBDA
 GO T0 630
 4871
 cONTINUE
 DO 620 L = 1,3
 UP(K)}=\operatorname{UP}(K)+RP(J,K,L)*(WKP(L)-WM(L,I))_ _ Viscous Damping
 6 2 0
 DUM= DUN+R(J,K,L)*U(L)}
 UP(K)=UP{K}+ANBDA*DUM}}\mathrm{ ———Damping plus spring torque.
 630 EL(ICON+K)=EL{ICUN+K)+UP(K)

 DD 640 K = 1,3
```

```
640 EL(KON+K)=EL(KON+K)-VP(1,K)*UP(1)-VP(2,K)*UP(2)-VP(3,K)*UP(3)________Lual and
 IF (J.EQ. 1) GO TO 6501 _ No interactions a.t damper hinge.
 DO 5546 1I=1,3
 DO 5546 JJ=1,3
5546 DVEC(II,JJ) = AMBDA*TH(I,II,JJ)
 DO 554.4 11=1,3
 UP{II} = 0.0
 00 5547 JJ=1,3
5547 UP(II) = UP(II)+DVEC(II;JJ)*U(JJ)
 JS = 1+(J-2)/4
 DO 5550 II=1,3
 DVEC(1,II) = 0.0
 DO 5550 JJ=1,3
5550 DVEC(1,II)= DVEC(1,II)+EPSIL(JS,1)*TH(1,JJ,II)*UP(JJJ)
 DO 15551 II=1,3
 DVEC(2,II)=0.0
 OO 5551 JJ=1,3
5551 DVEC(2,II) = DVEC(2,II)+DUR\II,JJ)*DVEC{1,JJ)
15551 EL(1I) = EL(II)+DVEC(2,II)
 IQ = MOD(J-2,4)+3
 NP1 = NPB+1
 DO 5552 IP=2,NP1
 IA = IQ+4*(IP-2)
 DO 15553 1I= L,3
 DO 15553 JJ=1,3
 DVEC(II,JJ) = 0.0
 DO 15553 KK=1,3
15553 DVEC(II,JJ) = DVEG(II,JJ)+DUR(II;KK)*TH(IA,JJ,KK)
 DO 5553 II=1,3
 IIA = II+3*(IA-1)
 DO 5553 IJ = 1,3
5553 EL(IIIA)= EL(IIA)+EPSIL(JS,IP)*DVEC(II,IJ)*UP(IJ)
5552 CONTINUE
6501 SD{J+1,1)=AMBDA*U(1) T___ Torsional displacement readout.
 DO 4601 K=1.3
 KK = 3*(I-1)+K
 KL = 3*(J-1)+K
 IF (MI(KL) &EQ. O) GO TO 4601 —_MMO not locked.
 INDX = MI(KL)
 SQU(KK,INDX) = 1.0
 DO 4602 1B = 1,3
 III = 3*(KAY-1) +IB
4602 SQU(III,INDX) = -VP(K,IB)
\begin{tabular}{|c|c|c|c|}
\hline 817 & 640 & \(E L(K O N+K)=E L(K O N+K)-V P(1, K) \neq U P(1)-V P(2, K) * U P(2)-V P(3, K) * U\) & P(3) ——equal and opposite torque \\
\hline 818 & & IF (J.EQ. 1) GG JO 6501 -_ No interactions at damper hinge. & site torque. \\
\hline 819 & & DO \(5546 \mathrm{II}=1,3\) & \\
\hline 820 & & DO \(5546 \mathrm{JJ}=1,3\) & , \\
\hline 821 & 5546 & DVEC(II,JJ) = AMBDA*TH(I, II, JJ) & , \\
\hline 822 & & DO \(554711=1.3\) & , \\
\hline 823 & & \(U P\{11\}=0.0\) & \\
\hline 824 & & D0 \(5547 \mathrm{JJ}=1,3\) & \\
\hline 825 & 5547 & UP(II) \(=\) UP(II)+DVEC(II, JJ)*U(JJ) & \\
\hline 826 & & \(J S=1+(J-2) / 4\) & \\
\hline 827 & & D0 5550 II \(=1,3\) & \\
\hline 828 & & DVEC(1,II) \(=0.0\) & \\
\hline 829 & & DO \(5550 \mathrm{JJ}=1,3\) & \\
\hline 830 & 5550 & DVEC(1, II) = DVEC(1,II)+EPSIL(JS, 1)*TH(1, JJ, II)*UP(JJ) & \\
\hline 831 & & DO 15551 II =1,3 & \\
\hline 832 & & \(\operatorname{DVEC}(2,11)=0.0\) & \\
\hline 833 & & OO \(5551 \mathrm{JJ}=1,3\) & \\
\hline 834 & 5551 & DVEC(2,II) = DVEC(2,II) + DUR(II, JJ)*DVEC\{1, JJ) & , \\
\hline 835 & 15551 & \(E L(11)=E L(11)+\operatorname{DVEC}(2,11)\) & See pages 38-40. \\
\hline 836 & & \(1 Q=M O D(J-2,4)+3\) & ¢ \\
\hline 837 & & \(N P 1=N P B+1\) & \(\square\) \\
\hline 838 & & DO \(5552 \mathrm{IP}=2\), NP1 & \\
\hline 839 & & \(I A=1 Q+4 *(1 P-2)\) & \\
\hline 840 & & DO \(1555311=1,3\) & \\
\hline 841 & & DO \(15553 \mathrm{JJ}=1,3\) & \\
\hline 842 & & DVEC(II.JJ) \(=0.0\) & \\
\hline 843 & & DO \(15553 \mathrm{KK}=1\), 3 & \\
\hline 844 & 15553 & DVEC(II, JJ) = DVEC(II, JJ)+DUR(II,KK)*TH(IA,JJ,KK) & \\
\hline 845 & & DO \(5553 \mathrm{II}=1.3\) & \\
\hline 846 & & IIA \(=11+3 \pm(14-1)\) & \\
\hline 847 & & DO 5553 [J \(=1,3\) &) \\
\hline 848 & 5553 & \(E L(I I A)=E L(I I A)+E P S I L(J S, I P) * \operatorname{DVEC}(I I, I J) * U P(I J)\) & \(\gamma\) \\
\hline 849 & 5552 & CONTINUE & , \\
\hline 850 & 6501 & & \\
\hline 851 & & DO \(4601 \mathrm{~K}=1.3\) & \\
\hline 852 & & \(K K=3 *(I-1)+K\) & \\
\hline 853 & & \(K L=3 *(J-1)+K\) & \\
\hline 854 & & IF (MI(KL) ©EQ. 0) GO T0 \(4601 \longrightarrow\) Mode not locked. & \\
\hline 855 & & INDX \(=\) MI(KL) & \\
\hline 856 & & SQU(KK, INDX) \(=1.0\) & \\
\hline 857 & & D0 \(4602 \mathrm{IB}=1,3 \mathrm{l}\) & \\
\hline 858 & & & \\
\hline 859 & 4602 & SQU(III,INDX) \(=-V P(K, I B)\) & \\
\hline
\end{tabular}
```

```
 G0 TO (4603,4604,4605),K
4603 GAM(INDX) = WM(2,1)*WKP(3)-WM(3,1)*WKP(2)
 GO TO 4601
4604 GAM{INDX)= WM(3,I)*WKP(1)-WM(1,I)*WKP(3)
 GO TO 4601
4605 GAM(INDX)=WM(1,1)*WKP(2)-WM(2,I)*WKP(1)
4 6 0 1 ~ C O N T I N U E ~
6500 CONTINUE
650 CONTINUE
 DO 750 J = 1;N3
750 VECT(J)=-UU(J)+H(J)+EL(J)-G(J)+Q(J)—Eq. 7, page 9.
 DO 5601 I=1,N3
 00 5601 J=1,N3
5601 PSIV(I,J) = PSI(I,J)
7249 FORMAT (1HO/(9E11.4))
 CALL INVERT (PSIV,N3,78)
 IF (NC .EQ. O) GO TO 14717
 DO 4639II = 1,NC
 DO 4639.JJ = 1,NC
4639 XT(III,JJ)=0.0
 00 4700 II = 1,N3
 DO 4700 KK = 1,NC
 SUM = 0.0
 DO 4701 LL = 1,N3
4701 SUM = SUM+PSIVIII,LL)*SQU(LL,KK)
 DO 4700 JJ = 1,NC
4 7 0 0
 XT(JJ,KK)= XT({J,KK)+SQU(II,JJ)#SUM
```

$\qquad$

``` Matrix \([\xi]^{T}[\Gamma]^{-1}[\xi]\), Eq. A-31.
 CALL INVERT (XT,NC,38)
 DO 4712 I = 1,N3
 XID {I| = 0.0
 DD 4712 J = 1,N3
4712 XID(I)= XID(I)+PSIV(I,J)#VECT(J)
 00 4713 I=1,NC
 XIB(I) = 0.0
 DO 4713 J=1,N3
4713 XIB(I)=XIB(I)+SQU(J,I)*XID(J)
 L
 Vector [\zeta] T[\Gamma] E , Eq. A-31.
 004714 I = 1%NC
 XID(I) = 0.0
 OD 4714 J=1,NC
4714 XID(I) = XID(I)+XT(I,J)*XIB(J)
 DO 4715 I = 1,N3
 DO 4715 J = 1,NC
4715 VECT (I) = VECT(I)-SQU(I,J)*XID(J)
```

903

```
 DO 4716 I = 1,NC
```

    DO 4716 I = 1,NC
    XID(I) = 0.0
    XID(I) = 0.0
    DO 4716 J=1,NC
    DO 4716 J=1,NC
    4716 XID(I) = XID(I)+XT(I,J!*GAM(J)
4716 XID(I) = XID(I)+XT(I,J!*GAM(J)
DO 4717 I = 1,N3
DO 4717 I = 1,N3
DO 4717 J = 1,NC
DO 4717 J = 1,NC
4717 VECT(I) = VECT(I)-SQU\I,J)*XID(J)
4717 VECT(I) = VECT(I)-SQU\I,J)*XID(J)
14717 CONTINUE
14717 CONTINUE
DO 5610 1 = 1,N3
DO 5610 1 = 1,N3
WD(I) = 0.0
WD(I) = 0.0
DO 5610 J = 1,N3
DO 5610 J = 1,N3
5610 WD(I) = WD(I)+VECT(J)*PSIV(I,J) Eq. A-46. © from Eq. A-31.
5610 WD(I) = WD(I)+VECT(J)*PSIV(I,J) Eq. A-46. © from Eq. A-31.
CONS = SQRT(FMU*PZ)/RS**2—ESM. A-46.
CONS = SQRT(FMU*PZ)/RS**2—ESM. A-46.
DO 780 1 = 1,N
DO 780 1 = 1,N
II = N3+(I-1)*9
II = N3+(I-1)*9
DO 780 K = 1,3
DO 780 K = 1,3
CONK = (K-2)*CONS
CONK = (K-2)*CONS
DY(II+K)=TH(I,K,2)*WM(3,I)-TH(I,K,3)*WM(2,I)+CONK*TH(I,4-K,1)
DY(II+K)=TH(I,K,2)*WM(3,I)-TH(I,K,3)*WM(2,I)+CONK*TH(I,4-K,1)
}-Eq. A-48.
}-Eq. A-48.
DY(II+K+3)=TH(I,K,3)*WM(1,I)-TH(I,K,1)*WM(3,I)+CONK*TH(I,4-K,2)
DY(II+K+3)=TH(I,K,3)*WM(1,I)-TH(I,K,1)*WM(3,I)+CONK*TH(I,4-K,2)
780 DY(II+K+6)=TH(I;K,1)*WM(2,I)-TH(I,K,2)*WM(1,1)+CONK*THII,4-K,3)
780 DY(II+K+6)=TH(I;K,1)*WM(2,I)-TH(I,K,2)*WM(1,1)+CONK*THII,4-K,3)
IF IIBUG .NE. O) WRITE (6,2060) T,RS,CONS
IF IIBUG .NE. O) WRITE (6,2060) T,RS,CONS
IF(IBUG.NE.O) WRITE{6,2200) (I,UU(I),H(I),EL(I),G(I),Q(I),WV(I), Extra readouts
IF(IBUG.NE.O) WRITE{6,2200) (I,UU(I),H(I),EL(I),G(I),Q(I),WV(I), Extra readouts
1 WD(I), I=1,N3)
1 WD(I), I=1,N3)
2060 FORMAT(1HO/10X16HPART V TIME = F8.2.19H, ORBITAL RADIUS = Y
2060 FORMAT(1HO/10X16HPART V TIME = F8.2.19H, ORBITAL RADIUS = Y
1 F7.3.17H% GREITAL RATE = E8.3//I)
1 F7.3.17H% GREITAL RATE = E8.3//I)
2200 FORMAT { 1HO, 20\times1HW, 11X1HH, 11\times1HL, 11X1HG, 11XIHQ,7X5HOMEGA,
2200 FORMAT { 1HO, 20\times1HW, 11X1HH, 11\times1HL, 11X1HG, 11XIHQ,7X5HOMEGA,
1 3X9HOMEGA DOT//(I10,7E12.4))
1 3X9HOMEGA DOT//(I10,7E12.4))
IF (IBUG .NE. O.AND. FD .LT. 1.E-05) WRITE (6.7654) AMBOS.AMBDR,
IF (IBUG .NE. O.AND. FD .LT. 1.E-05) WRITE (6.7654) AMBOS.AMBDR,
1 TRH,TRYTH,THH,AMDDT,WKPS,TPH
1 TRH,TRYTH,THH,AMDDT,WKPS,TPH
7654 FORMAT (1HO5E18.5)
7654 FORMAT (1HO5E18.5)
GO TO 800
GO TO 800
820 CONTINUE
820 CONTINUE
KBBC = KBBC+1
KBBC = KBBC+1
IF (FD.GT. 1.E-05) GO TO 800
IF (FD.GT. 1.E-05) GO TO 800
AMODT = WKPS-WM(2,2)
AMODT = WKPS-WM(2,2)
SNN = SIGN(1.0,AMDDT)
SNN = SIGN(1.0,AMDDT)
IF (ABS(SNN+SOO) ©GT. 1.5) GO TO 4887
IF (ABS(SNN+SOO) ©GT. 1.5) GO TO 4887
TRH=THH
TRH=THH
4887 SOO = SNN
4887 SOO = SNN
GO TO }80
GO TO }80
830 CONTINUE
830 CONTINUE
THOUR = T/3600.

```
 THOUR = T/3600.
```

```
831 DVEC(1,1)=TH(1,1,1)*CG+TH(1,1,2)*SG
 DVEC(1,2)=-TH(1,1,1)*SG+TH(1,1,2)*CG
 DVEC(1,3)=TH(1,1,3)
 DVEC(2,1) = TH(1,2,1)*CG+TH(1,2,2)*SG
 DVEC (2,2)=-TH(1,2,1)*SG+TH(1,2,2)*CG
 DVEC(2,3) =TH{1,2,3)
```

$\qquad$

```
 Eq. B-27.
 DVEC(3,1) = TH(1,3,1)*CG+TH(1,3,2)*SG
 DVEC(3,2)=-TH(1,3,1)*SG+TH(1,3,2)*CG
 DVEC (3,3) = TH(1,3,3)
 WRITE(6,951)(1DVECI1,J),J = 1,31,I = 1,3)
 WRITE(6,951)(1DVEC(1,J),J = 1,3),I = 1,3
 DO 160 I = 1,3
 DO 160 J = 1,3
 DVEC(I,J) = 0.0
 DO 160 K = 1,3
160 DVEC(I,J) = TH(1,K,I)*TH(2,K,J)+DVEC(I,J)
 DO 161 I = 1,3
 DO 161 J = 1,3
 V(I.J) = 0.0
 DO 161 K=1,3
- - 967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
161V(I,J)=V(I,j)+RHO(1,I,K)*DVEC(K,J) _________-28.
 WRITE (6,952) V(2,3),V(3,1),V(1,2)
952 FORMAT (1HO1OX6HDAMPER5\times3E16.7)
 DO 162 II = 3.6
 DO 163 I = 1,3
 DO 163 J = 1,3
 DVEC(I;J) = 0.0
 00 163 K=1,3
163 DVEC(I,J)= DVEC(I,J)+RHD(II-1,I,K)*TH(1,J,K)
 DO 164I = 2.3
 SD(11,1) = 0.0
 DO 164 J = 1,3
164 SD(II,I)= SD(II,I)+SL*DVEC(I,J)*TH(II,J,I)
162 CONTINUE
 - Eq. B-29.
 D0 166 K=1,4
 DO 167 I1 = 1.3
 DO 167 JJ = 1,3
 DVEC{II,JJ] = 0.0
 DO 167 KK = 1,3
167 DVEC(II,JJ) = DVECIII,JJ)+SL*RHO(K+1,IIqKK)* TH(1,JJ,KK)
 DO 165 J=2,NPB
 INDX = 4*J+K-2
```

```
 989
 DO 168 II =2,3
 SDIINDX,III = 0.0
 DO 168 JJ=1.3
 168 SD(INDX,II)= SD(INDX,II)+DVEC(II,JJ)*TH(INDX,JJ,I)
 165 CONTINUE
 __ Eq. B-29.
 166 CONTINUE
 DO 169 II=2,3
 DO 169 JJ=7.N
 169 SD(JJ,II) = SD(JJ,II)+SD(JJ-4,II)
 WRITE (6,953) (SD(1,3),1 = 3,N)
 WRITE (6,954)(SD(I,2),I = 3,N)
 WRITE (6,955)(SO\I,1),I = 3,N)
 953 FORMAT (1HO3OXIIHDEFORMATION/4X8HIN PLANE /(15X4E16.7))
 954 FORMAT (4X12HOUT OF PLANE /(15\times4E16.7))
 DO 3330 1 = 1.4
 J = 4*NPB-2+I
 ZINII)=SD(J,3)
3330 YIN(I) = SD(J,2)
 XINIT(5) = -0.5*(YIN(3)+YIN(4)-YIN(1)-YIN(2))
 XINIT(6) = -0.5*{ZIN(3)+ZIN(4)+ZIN(I)+ZIN(2))
 XINIT(7) = -0.5*(YIN(3)-YIN(4)-YIN(1)+YIN(2))-2.0*QBA
 XINIT(8) = -0.5*(ZIN(3)-ZIN(4) +ZIN(1)-Z{N(2))-2.0*QKA —_ Eq. B-3l.
 XINIT(9) = -0.5*(ZIN(3)+ZIN(4)-ZIN(1)-ZIN(2))
 XINIT(10) = -0.5*(YIN(3) +YIN(4)+YIN(1)+YIN(2))
 XINIT(11) = -0.5*(ZIN(3)-ZIN(4)-ZIN(1)+ZIN(2))
 XINIT(12)= -0.5*(YIN(3)-YIN(4)+YIN(1)-YIN(2))
 WRITE (6,9511) XINIT(5),XINIT(6),XINIT(7),XINIT(9),XINIT(10),
 IXINIT(11), XINIT(8),XINIT(12)
 9511 FORMAT {1H027X15HSATELLITE MODES//4X4HROLL9XE10.4,5X5HPITCH
 18XE10.4.5X.3HYAW1OXE10.4//4X12HLGNGITUDINALIXE10.4,5X7HLAT ERAL
 26XE10.4.5X8HVERTICAL5XE10.4//4X16HIN PLANE NEUTRAL5XE10.4,
 36X20HOUT DF PLANE NEUTRAL6XE10.4)
```



```
 TP = T+TR
 GO TO 800
 840 CONTINUE
 GO TO 800
 2080 FORMAT(1HI,30X36HBEGIN INTEGRATION, PRINT INTERVAL =F8.4///)
C ERROR STOPS
 900 WRITE{6.3100) IPART
 GO TO }99
 910 WRITE(6,3110) IPART
 GO TO 990
```

```
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
920.WRITE(6,3120)(S(K,J),K=1,N)
990 WRITE(6,3000)
999 GO TO 9999
950. FORMAT (1HI5X4HT = E16.7,6H HOURS5X9HSATELLITE3X3E16.7.4XAG1
955 FORMAT (4X5HTWIST /(15X4E16.7))
955 FORMAT (4X5HTWIST /(15X4E16.7))
3100 FORMATI IHO,10X14HOVERFLOH, PART I3)
3110 FORMATI 1HO,10X,21HSINGULAR MATRIX, PART [3\
3120 FORMAT(1HO,10X,24HBAD COLUMN IN MATRIX /S///(15F6.11)
END
```


## Subroutines

Following are listings for standard Westinghouse subroutines ICE, INTEG, INVERT, and XSIMEQ. For theoretical descriptions of these computational schemes the reader is referred to "Standard Subroutines Used by Westinghouse RAE Operational Programs," April, 1968, Contract No。NAS5-9753-20.

```
 DIMENSION ERL(1)
```

    SUBROUTINE ICE (P,TT,TP,NN,Y,DY,F,L,INDEX,I,KPRI,ERL
    DIMENSIDN DUMPR (312)
    DIMENSION Y(1), DY(1),F(1)
    DIMENSION Y(1) DDY(1),F(1)
            \(T=T T\)
    \(60 \mathrm{TO}(100,200,300,400), \mathrm{L}\)
    100
    1G=1G
    GO TO (101,102),IG
    101
    \(J=1\)
    \(L=2\)
    \(M=0\)
    \(T S=T\)
    DO \(106 K=1, N\)
    \(K 1=K+3 * N\)
    \(K 2=K I+N\)
    \(K 3=N+K\)
    FEK1) = Y(K)
    \(F(K 3)=F(K 1)\)
    106
$F(K 2)=$ DY(K)
GO TO 402
102 CALL INTEG(T,DT, N,Y(I),DY(II,FILI;J,I)
$J=J+1$
IFIJ-I $103,103.104$
103
$L=1$
GO TO 402
104
105 GO TO (110,120,130), M
110 DO $111 \mathrm{~K}=1 \mathrm{~N}$
$K 1=K+N+N$
$111 F(K 1)=Y(K)$
112
$00113 \mathrm{~K}=1 \% \mathrm{~N}$
$K 1=K+3 * N$
$K 2=K 1+N$
$K 3=N+K$
$Y(K)=F(K 1)$
$F(K 3)=F(K 1)$
$113 \mathrm{DY}(K)=F(K 2)$
$T=T S$
IF(T) 114,116,114
114 IF(ABS(H/T)-. $0000011115,115,116$
AAICOO 0
AAIC0040
AAIC0050
AAI C0060
AAIC0070
AAIC0080
AAIC0090
AAIC0100
AAICOL10
AAIC0120
AAICO130
AAICO140
AAICOI50
AAICO160
AA1C0170
AAICO180
AAICO190
AAIC0200
AAICO210
AAICO220
AAICO230
AAICO240
AAICO250
AAIC0260
AAIC0270
AAICO280
AAIC0290
AAIC0300
AAIC0310
AAICO320
AAICO330
AAICO340
AAIC0350
AAICO360
AAIC0380
AAIC0390
AAIC0400

```
M15 M=0
AAIC0410
AAIC0420
AAICO430
AAIC0440
AA1C0450
AAIC0460
AAIC0470
AAIC0480
AAIC0490
AAIC0500
AAIC0510
AAIC0520
AAIC0530
AAIC0540
AAIC0550
AAIC0560
AAIC0570
AAICO580
AAIC0590
AAIC0640
AAIC0740 AAICO 750 AAIC0760
AAIC0780 AAIC0790 AAICO800
```

```
137 F(K2) = F{K1)
```

137 F(K2) = F{K1)
H=.5*H
H=.5*H
MU=2
MU=2
G0 TO 112
G0 TO 112
200 MU=MU
200 MU=MU
GO TO (203,204),MU
GO TO (203,204),MU
203 H= AMAXI(AMAX1(H,H1),H2)
203 H= AMAXI(AMAX1(H,H1),H2)
MU = 2
MU = 2
204 Hl = ABS(H)
204 Hl = ABS(H)
IF(P) 205,206,206
IF(P) 205,206,206
205 H = -H1
205 H = -H1
G0 TO 207
G0 TO 207
H=H1
H=H1
206 H=HI
206 H=HI
207 IF(ABS\P)-HI\ 208,209,209
207 IF(ABS\P)-HI\ 208,209,209
208 H= P
208 H= P
209 12 = TP-T
209 12 = TP-T
IF(T2) 210,212,210
IF(T2) 210,212,210
210 H2 = ABS(T2)
210 H2 = ABS(T2)
IF(TP) 211,213,211
IF(TP) 211,213,211
211 IF(ABS{T2/TP)-.00001) 212,213,213
211 IF(ABS{T2/TP)-.00001) 212,213,213
212 T = TP
212 T = TP
OT = H
OT = H
L=3
L=3
GO TO 402
GO TO 402
213 M = 0
213 M = 0
J=1
J=1
[F(H1-H2) 215,215,214
[F(H1-H2) 215,215,214
214
214
MU = 1
MU = 1
H = T2
H = T2
215 DT = H
215 DT = H
300 IG = 2
300 IG = 2
GD TD 102
GD TD 102
400 MU = 2
400 MU = 2
H=P
H=P
DT = P
DT = P
N = NN
N = NN
401 16 = 1
401 16 = 1
L = 1
L = 1
402 TT = T
402 TT = T
RETURN
RETURN
END

```
 END
```

AAIC0810
AAIC0820
AAIC0830
AAIC0840
AAIC0850
AAIC0860
AAIC0870
AAIC0880
AAIC0890
AAIC0900
AAIC0910
AAIC0920
AAIC0930
AA [C0940
AAIC0950
AAIC0960
AAIC0970
AAIC0980 AA.IC0990
AAIC1000
AAIC1010
AAIC1020
AAIC1030
AAIC1040
AAIC1050
AAIC1060
AAIC 1070
AAIC 1080
AAIC1090
AAIC1100
AAIC1110
AAIC1120
AAIC1130
AAIC1140
AAIC1150
AAIC1160
AAIC1170
AAIC1180
AAIC1190
AAIC1200
C
C
$c$
$C$
$C$
$C$
C
C
C
C
$c$
C
ICE INTEGRATION SUBROUTINE
0010
$I=2$ SECOND ORDER RUNGE-KUTTA
0020
$I=3 \quad$ THIRD ORDER RUNGE-KUTTA
0030
I $=4$ FOURTH ORDER RUNGE-KUTTA
0040
STORAGE $F 1=E=Z 1 \quad 0050$
F2 $=$ YHAF1 TEMPORARY STORAGE REQUIRED $=\quad 0060$
F3 $=$ YFULL $\quad$ DIMENSION OF F ARRAY $=\quad 0070$
F4 = YSAVE $N *(3+1) \quad 0080$
F5 = DYSAVE WHERE N = NO OF DERIVATIVES 0090
F6 = 22 AND I = ORDER OF INTEGZATION 0100
$F 7=Z 3$ PROCESS
0110
SUBROUTINE INTEG (T,DT, N,Y,DY,F,J,I) 0120
DIMENSION Y(1), DY(1),F(1) 0130
C DIMENSION Y(I),DY(I),F(1) 0140
DO $100 \mathrm{~K}=1 \mathrm{~N}$
0140
$K 1=K K=1 \% N$
0150
$K 1=K$
0160
$K 2=K+5 * N$
0170
$K 3=K 2+N$
0180
$K 4=K+N$
0190
GO TO $(999,85,95,95), I \quad 0200$
85 GOTO $186,2,999,99918 \mathrm{~J} 0210$
$86 \mathrm{~F}(\mathrm{~K} 1)=\mathrm{DY}(\mathrm{K}) * \mathrm{DT} \quad 0220$
$Y(K)=F(K 4)+F(K 1) \quad 0230$
GO TO 100
95 GOTO $(1,2,3,4), j 0250$
$1 \quad F(K 1)=D Y(K) * D T$
0260
$Y(K)=F(K 4)+.5 * F(K 1) \quad 0270$
GO TO 100 O 0280
$F(K 2)=D Y(K) * D T \quad 0290$
GO TO (999,22,23,24),I 0300
$F(K 3)=D Y(K) * D T \quad 0310$
GOTO $(999,33,33,34), 10320$
$4 \quad Y(K)=F(K 4)+(F(K 1)+2.0 *(F(K 2)+F(K 3))+D Y(K) * D T) / 6.0 \quad 0330$

```
GO TO 100
0340
```

$22 Y(K)=.5 *(F(K 1)+F(K 21) \quad 0350$
0360
$23 Y(K)=2.0 \neq F\{K 2)-F(K 1) \quad 0370$
GO TO 25 (K)
$24 Y(K)=.5$ \#F $(K 2) \quad 0390$
0380
$25 Y(K)=Y(K)+F(K 4) \quad 0400$
60 TO 100
0410
$33 \mathrm{Y}(\mathrm{K})=F(K 4)+(F(K 1)+4.0 * F(K 2)+F(K 3)) / 6.0$
0420

43		GO TO 100	0430
44	34	$Y(K)=F(K 4)+F(K 3)$	0440
45	100	CONTINUE	0450
46		GOTO $1110,120,130,140), J$	0460
47	110	GO TO $(999,131,132,132), I$	0470
48	120	GO TO $(999,140,132,140), I$	0480
49	130	GOTO $1999,140,140,132), I$	0490
50	131	$T=D T+T$	0500
51		GOTO 140	0510
52	132	T $=T+.5 * D T$	0520
53	140	RETURN	0530
54	999	PAUSE	0540
55		GOTO 140	0550
56		END	0560

```
```

C MATRIX INVERSION BY GAUSS-JORDAN ELIMINATION

```
```

C MATRIX INVERSION BY GAUSS-JORDAN ELIMINATION
SUBROUTINE INVERT(A,N,NN)
SUBROUTINE INVERT(A,N,NN)
DIMENSION A(NN,N), B(350),C(350),LZ(350)
DIMENSION A(NN,N), B(350),C(350),LZ(350)
IF ( N.EQ.1) GO TO 300
IF ( N.EQ.1) GO TO 300
SUM=1.
SUM=1.
DO 5 I=1.N
DO 5 I=1.N
SUM=SUM*A(I,I)
SUM=SUM*A(I,I)
c
c
RAVG=10.**(-ALOG10(SUM)/N)
RAVG=10.**(-ALOG10(SUM)/N)
C
C
00 6 I=1,N
00 6 I=1,N
00 6 J=1,N
00 6 J=1,N
6 A(I;J|=A|I,J|*RAVG
6 A(I;J|=A|I,J|*RAVG
C
C
00 10 J = 1.N
00 10 J = 1.N
10 L2\J)=J
10 L2\J)=J
00 20 I= = N
00 20 I= = N
K=I
K=I
Y=A!I,I|
Y=A!I,I|
L}=I-
L}=I-
LP}=1+
LP}=1+
IF(N-LP) 14,11,11
IF(N-LP) 14,11,11
DO 13 J = LP,N
DO 13 J = LP,N
W=A(I,J)
W=A(I,J)
IF(ABS(W)-ABS(Y)\ 13,13,12
IF(ABS(W)-ABS(Y)\ 13,13,12
K = J
K = J
Y = \#
Y = \#
13 CONTINUE
13 CONTINUE
14 IF(Y.LT.I.E-8) GO TO 260
14 IF(Y.LT.I.E-8) GO TO 260
00 15 J = 1,N
00 15 J = 1,N
C(J)=A(J,K)
C(J)=A(J,K)
A(J,K) = A(J,I)
A(J,K) = A(J,I)
A(J,I)=-C(J)/Y
A(J,I)=-C(J)/Y
A(I;J)=A(I,J)/Y
A(I;J)=A(I,J)/Y
8(J)=A(I,J)
8(J)=A(I,J)
A|I;II = I./Y
A|I;II = I./Y
J=LZ(I)
J=LZ(I)
LZ(I|=LZ(K)
LZ(I|=LZ(K)
LZ(K)=J
LZ(K)=J
DO 19K K = 1,N
DO 19K K = 1,N
IF(I-K) 16,19,16
IF(I-K) 16,19,16
16

```
 16
```

```
 K = J
```

        K = J
    DO 18 J = 1,N

```
DO 18 J = 1,N
```

```
 IF(I-J) 17,18,17
```

        IF(I-J) 17,18,17
    17 A(K,J) = A(K,J)-B(J)*C(K)
    17 A(K,J) = A(K,J)-B(J)*C(K)
    18 CONTINUE
    18 CONTINUE
    19 CONTINUE
    19 CONTINUE
    20 CONTINUE
    20 CONTINUE
        DO 200 I = 1.N
        DO 200 I = 1.N
        IF(I-LZ(I)] 100,200,100
        IF(I-LZ(I)] 100,200,100
    100 K=I+1
    100 K=I+1
    00 500 J = K,N
    00 500 J = K,N
        IF(I-LZ(J)) 500,600,500
        IF(I-LZ(J)) 500,600,500
    600 M =LZ(I)
    600 M =LZ(I)
        LZ(I)=LZ(J)
        LZ(I)=LZ(J)
        LZ(J)=M
        LZ(J)=M
        DO 700 L = L,N
        DO 700 L = L,N
        C(L)=A{I,L)
        C(L)=A{I,L)
        A(I,L) = A(J,L)
        A(I,L) = A(J,L)
    700 A(J.L) = C(L)
    700 A(J.L) = C(L)
    500 CONTINUE
    500 CONTINUE
    200 CONTINUE
    200 CONTINUE
    C
C
C
C
C MAKE IT A SYMMETRIC MATRIX
C MAKE IT A SYMMETRIC MATRIX
00 250 I=1,N
00 250 I=1,N
00 250 I=1,N
00 250 I=1,N
AVG=(A{I,J)+A(J,I))/2.tRAVG
AVG=(A{I,J)+A(J,I))/2.tRAVG
A(I,J)=AVG
A(I,J)=AVG
A( J,Il=AVG
A( J,Il=AVG
250 CONTINUE
250 CONTINUE
C
C
RETURN
RETURN
300 IF(ABS (A(1,1)).LT.L.E-10 IN=-IABS(N)
300 IF(ABS (A(1,1)).LT.L.E-10 IN=-IABS(N)
A(1,1)=1./A(1,1)
A(1,1)=1./A(1,1)
RETURN
RETURN
C
C
260 N=-IABS{N)
260 N=-IABS{N)
RETURN
RETURN
END

```
 END
```

SIME 0001 SIME0002

SIME0003
SIME0004
SIMEOOO5
SIME0006
SIME0007
SIME0008
SIMEOOO9
SIME0010
SIMEOOI1
SIME 0012
SIMEOO13
SIMEOO14
SIME0015
SIME0016
SIME0017
SIME0018
SIME0019
SIME0020
SIME0021
SIME 0022
SIME0023
SIME0024
SIME0025
SIME0026
SIME0027
SIME0028
SIME0029
SIME0030
SIME0031
SIME0032
SIMEOO33
SIME0034
SIME0035
SIME0036
SIME 0037
SIME0038
SIME0039
SIME0040

```
 INTEGER FUNCTION XSIMEQIIMAX,N,M,A,B,DET, IE)
```

    INTEGER FUNCTION XSIMEQIIMAX,N,M,A,B,DET, IE)
    DIMENSION A(IMAX,IMAX), B(IMAX,IMAX), IE(IMAX)
    DIMENSION A(IMAX,IMAX), B(IMAX,IMAX), IE(IMAX)
    CALL OVERFL(JO)
    CALL OVERFL(JO)
    CALL D VCHK(JI)
    CALL D VCHK(JI)
    OO 43 I=1,N SIME0003
    OO 43 I=1,N SIME0003
    IE(I)=1
    IE(I)=1
    OO 1 IN = 1,N
    OO 1 IN = 1,N
    AMAX = A(IN,INI
    AMAX = A(IN,INI
    II = IN
    II = IN
    JJ = IN
    JJ = IN
    OD 11 I = IN,N
    OD 11 I = IN,N
    DO 11 J = IN,N
    DO 11 J = IN,N
    ZMT = ABS {A(I,J))
    ZMT = ABS {A(I,J))
    IF(AMAX-ZMT)10,11,11
    IF(AMAX-ZMT)10,11,11
    AMAX = ZMT
    AMAX = ZMT
    II=I
    II=I
    JJ=J
    JJ=J
    11 CONTINUE
11 CONTINUE
IF (A(II,JJ)) 69,33,69
IF (A(II,JJ)) 69,33,69
IF(II-IN) 13,17,13
IF(II-IN) 13,17,13
DO 15 J = 1,N
DO 15 J = 1,N
R = A{II,J
R = A{II,J
A(II,J)=A(IN\&,J)
A(II,J)=A(IN\&,J)
A(IN,J)=R
A(IN,J)=R
IF(J-M) 19,19,15
IF(J-M) 19,19,15
19 R = B(II,J)
19 R = B(II,J)
B(II,J)=B(IN,J)
B(II,J)=B(IN,J)
B(IN,J) = R
B(IN,J) = R
CONTINUE
CONTINUE
IF(JJ-IN) 16,18,16
IF(JJ-IN) 16,18,16
00 24 I = 1,N
00 24 I = 1,N
R=A(1,JJ)
R=A(1,JJ)
A(I,JJ) = A(I,IN)
A(I,JJ) = A(I,IN)
A(I,IN) = R
A(I,IN) = R
IQ=IE(IN)
IQ=IE(IN)
IE(IN)=IE(JJ)
IE(IN)=IE(JJ)
IE(JJ)=IQ
IE(JJ)=IQ
DET = DET*AMAX *(-1.)**((II-IN)*(JJ-IN))
DET = DET*AMAX *(-1.)**((II-IN)*(JJ-IN))
KI = IN+1
KI = IN+1
IF (KI-N) 143,143,144
IF (KI-N) 143,143,144
143 00 160 J = 1,M
143 00 160 J = 1,M
B(IN,J)= B(IN,J)/A(IN,IN)

```
B(IN,J)= B(IN,J)/A(IN,IN)
```

```
 DO 160 K = KI,N
 B{K,J)= B(K,J)-A(K,IN)*B{IN,J)
 OO 80 J = KI,N
 A {IN,J} = A(IN,J)/A|IN,IN)
 DO 80 K = KI,N
80 A(K,J) = A(K,J)-A(K,IN)*A(IN,J)
 DO 1 K = KI,N
1
145
 NF=N-1
 IFINF.LE.OIGO TO }24
 DO 109 K = 1,NF
 I = N-K
 NK = I+I
 DO 109 L = 1,M
 SUM = 0.
 DO 110 J = NK,N
110 SUM = SUM+A(I,J)*B(J,L)
109 B(I,L) = B(I,L)-SUM
 147 CONTINUE
 DO 111 K = 1,N
 DO 111 I = 1,N
 IF(IE(I)-K) 111,113,111
 111 CONTINUE
 DO 118 I= 1,N
 DO 118 J=1,M
118 A(I, J)= B(If,J)
 CALL OVERFL{JO)
 CALL D VCHK(JI)
 GO TO (139,140): JO
140 GO TO (139,141),JI
141 XSIMEQ = 1
189 RETURN
33 XSIMEO = 3
 GO TO 189
144 DO 161 J = 1,M
161 B(IN,J) = B(IN,J)/AI(IN,IN)
 GO TO 145
139 XSIMEO = 2
 GO TO }18
113 DO 114 L= 1,M
 O=BIL,L)
 B{I,L}=B{K,L)
```

SIME0041
SIME0042
SIME0043
SIME0044
SIME0045
SIME0046
SIME0047
SIME0048
SIME0049
SIME0050

SIME0051
SIMEOOS2
SIME0053
SIME0054
SIME0055
SIME0056
SIME0057
SIMEOO58
SIME0059
SIME0060
SIME0061
SIME0062
SIME0063
SIME0064
SIME0065
SIME0066
SIME0067
SIME0068
SIMED069
SIME0070
SIME0071
SIME0072
SIME0073
SIMEOOT4
SIME0075
SIME0076
SIME 0077
SIME 0078
SIME0079
SIME0080
SIME0081

```
114 B(K,L) = Q
```

SIME0082

SIME0083
SIME0084
SIME0085
SIME0086
SIME0087

1. Fletcher, H.J., L. Rongved, and E. Iu, "Dynamics Analysis of a Tro-Body Gravitationally Oriented Satellite", BSTJ 42, 2239-2266 (1963).
2. Hooker, W. and G. Margulies, "The Dynamical. Equations for an n-Body Satellite", J. Astro. Sci. XII, 123-128 (Winter, 1965).
3. Roberson, R.E. and J. Wittenburg, "A Dynamical Formalism for an Arbitrary Number of Interconnected Rigid Bodies, with Reference to the Problem of Satelifte Attitude Control", IFAC Paper No. 46.D, London, 24 June 1966.
4. Stone, R.G., "RAF - 1500 Foot Antenna Satellite", Astronautics and Aeronautics, March 1965, p. 46.
5. Fixler, S.Z., "Effects of Solar Environment and Aerodymamic Drag on Structural Booms in Space", AIAA J. Spacecraft and Rockets 4, 315-321 (1967).
6. Levin, E., "Reflected Radiation Received by an Earth Satellite", ARSJ 32, 1328-1331 (1962).
7. Jensen, J. ot. al., Design Guide to Orbital Flight, New York, McGraw-Hill, 1962, pp. 795 and 842.
8. Blanco, V.M. and S.W. McCuskey, Basic Physics of the Solar System, Reading Mass., Addison-Wosley, 1961, p. 53 and 286.
9. Danby, J.M.A., Pundamental of Celestial Mechanics , New York, Macmillan, 1964.
10. Tinling, B.E. and V, K. Merrick, "Exploitation of Inertial Coupling in Passive Cravity-Gradient-Stabilized Satellites", AIAA J. Spacecraft and Rockets 1, 381-387 (1964).
11. Rimrott, F.P.J., "Storable Tubular Extendible Member", Machine Design 37, 28, 156-165 (1965).
12. Nowton, J.K. and J.L. Farrell, "Natural Freauencies of a Flexible Gravity Gradient Satellite", to appear in AIAA Journal of Spaceoraft and Rockets.
13. WIlie, C.R., AdVanced Engineering Mathematics, New York, McGraw-Hill, 1951, p. 509.
14. Dow, P.C. et.al., "Dynamic Stability of a Gravity Gradiont Stabilizod Satellite Having Long Mexible Antennas" presented at AIAA Guidance and Control Specialists Conference, Seattle, Washington, Aug. 15-17, 1966.

[^0]:    For sale by the Clearinghouse for Federal Scientific and Technical Information <br> Springfield, Virginia 22151 - CFSTI price $\$ 3.00$

[^1]:    Keg., when $\Psi$ is along the $x$-axis the first row of $[V-I]$ will vanish. Furthermore, when $\Psi$ is too close to the $x$-axis the use of the first row of [V-I] in the computation would lead to numerical problems. Program logic avoids inaccuracy of this type.
    *- This restriction of course holds only for structural reaction torques. In contrast to restricting the scope of application, moreover, this can be viewed as a requirement imposed upon ( $N$ ) since the angles can be made smaller by separating the model into a larger number of segments. Finally, it is noted that the hinge moment formulation could be modified to account for larger angles.

[^2]:    *In many applications this first approximation will be inadequate; Appendix $B$ illustrates a refined approximation method for ( $d \theta_{B} / d \ell$ ) which was successfully applied to the RAE program.

[^3]:    状Ust as in the preceding section, this small angle approximation is valid provided that the model contains a sufficient number of segments.

[^4]:    *Along with the mathomatical symbol, the actual Fortran statemont as used in the program is given in quotation.

[^5]:    FBoom principal area are in the directions defined in the beginning of this Appendix. The values of $f_{2}$ and $f_{3}$ are given in Ref. 11 for open slit tubes, but are sleo valid for any tube with overiap.

[^6]:    Fi conaiderable saving in machine time was realizod by increasing these values in the computational model. Ref. 12 shows that only the highest frequency (lowest amplitude) oscillations are affected.

