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FOREWORD

The typical few-of-a kind nature of NASA systems has made reliability a premium

even on the initial items delivered in a program. Reliability defined and treated

on the basis of percentage of items operating successfully has much less meaning

.than when larger sample sizes are available as in military and commercial products.

Reliability thus becomes based more on engineering confidence that the item will work

as intended. The key to reliability is thus good engineering--designing reliability

_into the system and engineering to prevent degradation of the designed-in reliability

from fabrication, testing and operation.

The PRACTICAL RELIABILITY series of reports is addressed to the typical engineer

to aid his comprehension of practical problems in engineering for reliability. In

these reports the intent is to present fundamental concepts on a particular subject

in an interesting, mainly narrative form and make the reader aware of practical

problems in applying them. There is little emphasis on describing procedures and

how to implement them. Thus there is liberal use of references for both background

theory and cookbook procedures. The present coverage is limited to five subject areas:

Vol I. - Parameter Variation Analysis describes the techniques for treating

the effect of system parameters on performance, reliability, and other figures-

of-merit. :

Vol. II. - Computation considers the digital computer and where and how it can

be used to aid various reliability tasks.

Vol. III.- Testing describes the basic approaches to testing and emphasizes

the practical considerations and the applications to reliability.

Vol. IV. - Prediction presents mathematical methods and analysis approaches

for reliability prediction and includes some methods not generally covered

in tests and handbooks.

Vol. V. - Parts reviews the processes and procedures required to obtain and

apply parts which will perform their functions adequately.

These reports were prepared by the Research Triangle Institute, Research Triangle

Park, North Carolina 27709 under NASA Contract NASw-1448. The contract was adminis-

tered under the technical direction of th_ Office of Reliability and Quality

Assurance, NASA Headquarters, Washington, D. C. 20546 with Dr. John E. Condon,

Director, as technical contract monitor. The contract effort was performed jointly

by personnel from both the Statistics Research and the Engineering and Environmental

Sciences Divisions. Dr. R. M. Burger was technical director with W. S. Thompson

serving as project leader.
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This report is Vol. III - Testing. It is not devotedjust to formal reliability
testing but is concernedmoregenerally with all testing throughouta hardwareprogram
since it all affects reliability to someextent.

Oneof the obviousdifficulties in writing on a subject so broad is that of
including both breadth anddepth. Considerablebreadth is included evento the
extent of introducing somefringe topics which aids in illustrating the relationship
Of testing to other activities. Equaldepth could not, of course, be achievedin
all topics. Hardcore topics are thus treated morethoroughly than others. There
Wasan attempt to provide enoughdescription on eachtopic so that the newcomercan
immediatelygrasp the major conceptsandideas involved in the subject. Further
depth is aimedat practical considerations. To prevent a "rehash" of muchmaterial
adequatelytreated in the literature, liberal use is madeof references.

Theorganization of the report departs considerably frommost presentations
on testing. Attention is called to the major parts designatedin the table of
contents. Theorganization of the material resulted after considerabledeliberation
on what is really involved in testing.

W.S. Thompsonis the principal author of this report. A. C. Nelson,Jr.
provided muchassistance in the developmentof material involving statistics and
authoredmostof the Appendix. R. R. Stockardparticipated in the initial drafting
of material. Dr. R. A. Evansassisted in outlining the text andthe section on
accelerated testing drawsheavily from sometext material on the subject previously
preparedby him.
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ABSTRACT

Testing is discussed from an engineering viewpoint. The subject is structured

in terms of basic test types, basic problem types amenable to treatment by the basic

test types, and a@plications of testing in hardware programs. The emphasis is on

°basic principles and practical problems in implementing them. Generally, the

discussion emphasizes testing for reliability rather than reliability testing in the

formal sense. Part I is devoted to concepts, definitions and general procedures. In

particular, a section on test classifications considers the many ways of viewing

_ests and some of the prevalent confusion in terminology is resolved. Parts II and

Ill collectively treat the basic test and problem types. The manner of separating

these discussions into the two parts serves to highlight an important consideration

in testing which is often overlooked, viz., whether or not aging is important.

Part IV contains discussions on several subjects including nondestructive testing,

environmental testing, and accelerated testing which are common to several or all

of the basic test types. Part V surveys the major applications of testing in hard-

ware programs and draws special attention to applications associated with reliability.

An Appendix contains discussions of the mathematical topics pertinent to testing.
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i. Introduction

A large portion of systemprocurementcosts is designatedexplicitly for testing.
Coupledwith the manyother test expenditures disguised underother programcosts,
testing is indeed expenslve. Systemsmustperform successfully, however,and this
requires knowledgeof howthey operate andverification of their ability to perform.
Testing, whenproperly coordinatedwith other sounddesign, production, and operation
practices, is a key meansfor accomplishingthis.

Testing is thus expensive,but it canalso be expensivenot to test. Testing
is a necessity, but it is not alwayseasily justified. Resourcesallocated for
te_ting are typically the first onesparedin budgetcuts. This reflects on the
difficulty of Justifying the expenditurebut morethan ever serves to emphasizethe
needfor makingthe best use of available testing resources.

Improvedtesting proceduressuchas screening, automation,and integrated
testing approachesare evolving, but changesare slow and result primarily when
states of urgencyarise. Suchimprovementswill continue to evolve, but so manyof
the real problemsstill occur at the implementationlevel. Typically, accelerated
aging proceduresare improperly applied, inefficient test designsare used, and
damageis inducedwhennot required. It is toward these latter problemsthat most
of this report is aimed.

This report is devotedto promotinga better understandingof the basic principles
of testing and the practical problemsin implementingthem. Theprinciples are few
andreally relatively easy to grasp. Thepractical problemsare manyandnot often
obvious.

Theorientation is toward the interests of the engineerwhohas a problemthat
requires testing for its resolution. It is not concernedso muchwith whoin the
organization haswhat responsibility nor with detailed proceduresof howto carry
out a test. Rather, the emphasisis on those conceptswith which the engineer should
be familiar, what testing approachesare available andwhat they can do for him, and
practical considerations which he shouldbear in mind in planning a test.

Theorganization of the report recognizes a structuring of the subject sun_narized
by the following brief comments.First, there are basic test types distinguished
largely by the severity of the conditions for the test and the effects produced. For
example,in one test the conditions maybe irrelevant, in another they maybe intended
to causeinstantaneousfailure, and in still another they maycauseaging. Inherent
in these distinctions also are the nature of the observedresponsesand the types of
measurementspermissable. Second,there are basic problemtypes to be treated by
the basic test types. For example,the investigation of failure mechanismsand the
measurementof life mayboth require the samebasic test types in somecasesbut



different ones in other cases. Third, there are different applications of testing
in hardwareprogramsrequiring certain testing approaches;the testing approaches
generally are characterized by the basic problemtype treated and the test type
employed. For example,qualification testing employstesting approacheswhich
generally give a better assessmentof capability than does say acceptancetesting.
Reliability testing, a morediscipline-oriented application, traditionally treats
manyproblemareas and thus involves manytesting approaches.

This structuring of testing is notably different than that associatedwith mos_
presentations on the subject. Themotivation for it is the desire to create a
commonlink to all interests in testing. Onehasonly to samplethe literature to
appreciate the lack of effective communicationon the subject. For example,a
particular designation of a test or a conceptby onepersonmaymeansomethingquite
different to another. Section 3 on test classifications treats this problemin
moredetail and provides further clarification of the structuring introduced above.

As indicated in the Table of Contents, the mainbodyof the report is
partitioned into five major parts. Part I is devotedmainly to concepts, definitions,
and general proceduresas groundworkfor later discussions. Parts II and III collec-
tively treat the basic test andproblemtypes recognizedin the structuring scheme.
Themannerof separating these discussions into the two parts serves to focus atten-
tion on another important distinction in testing which is often overlooked, viz.,
whetheror not aging is important. Part IV contains discussions on several subjects
commonto several or all test types. Part V surveys the various applications of
testing in hardwareprogramsand drawsspecial attention to the applications associated
with reliability. TheAppendixis devotedto a presentation of various mathematical
topics pertinent to testing.



2. Elementsof Testing
A test is a procedureused to characterize an object or substance. In a test

certain conditions either exist or are purposely applied, the item respondsby ex-
hibiting sometype of behavior, and there is someobservation or measurementasso-
ciated with the behavior. Thebasic ingredients of a test are thus

(i) the test conditions,
(2) the responseduring the test,
(3) measurements.

Wecan anddo talk about tests representing degenerateforms of this definition;
for example,whenthe specific test conditions are not really of interest, whenthe
responsemerely represents a static property of an item, and whenthe measurement
is simply a qualitative observation.

Note that in the abovedefinition we talk about a test in terms of a single
item. Theterm testing, will be used to refer to either a single test or a group

of tests generally used to resolve a particular problem. Testing may thus involve

a single test, a number of different tests with the same item, identical tests of

different items, or different tests with different items. Reliability demonstra-

tion, for example, generally requires testing instead of Just a test.

Experimentation or an experiment is used synonymously with testing to generally

denote something broader than a test.

2.1 The Response During the Test

The response of an item during a test refers specifically to the cause and

effect relationship between conditions and behavior. The relationship is also de-

pendent upon properties of the tested item. The response of an item thus provides

us with a physical model showing behavior as a function of certain parameters or

variables.

To elaborate let y be a physically measurable parameter (or variable) chosen

to describe an item's behavior in a test. y is called the response variable and

may represent a characteristic such as resistance, thrust, color, electrical conti-

nuity, explosive force, detection probability, time that a signal is above a given

level, or structural deflection. Also, let the set of parameters needed to describe

the test conditions and item properties be _x _ Xl, x2,... , Xn. Those x's associ-

ated with the test conditions may represent temperature, rate of _hange of tempera-

ture, rms vibration level, radiation intensity, or salt concentration for example,

The terms, variable and parameter, are used interchangeably through this report.



while those associatedwith the item properties mayrepresent such things as impurity

concentration, specific heat, stray capacitance, volume, rigidity, and absorptivity.

The test response provides y, the dependent variable, as a function of x, the inde-

pendent variables. Usually a test involves behavior over time, thus some or all of

the variables may be functions of time. Further complexity may result from concern

for more than one response variable and possible correlation among these for simul-

taneous responses.

A familiar analogy to this physical model is the mathematical model of the

response or the equation linking y to _ which can be written in general form as

y = g(_). Often there is some correspondence between a mathematical model and a

physical model; for example, structural equations derived on an analytical basis may

closely conform to certain static test results. Certain tests may be conducted for

the express purpose of verifying a mathematical model and also some may be devoted

to estimating certain parameters of a mathematical model.

Responses can generally result in any type of behavior from no change to total

destruction and can be discrete, continuous, or intermittant functions of time, the

test condition parameters, or the characteristics of the tested item. Other funda-

mental concepts pertinent to discussion of test methods are presented in the remain-

der of this section.

2.1.1 Reversible Responses vs. Nonreversible Responses

A reversible response is one in which there is no permanent change in the

item's properties of interest as a result of the conditions causing the response; a

nonreversible response is one in which there is such a change. The distinction be-

tween reversible and nonreversible responses is not always clear-cut. For practical

purposes we consider a response to be reversible if an item could be treated as the

same item in a repeated application of the same conditions. Damage and aging are

thus characteristic of nonreversible responses but not reversible responses. Some

permanent change is, of course, always present even if at the atomic level. However,

for practical purposes, many items display reversible responses.

Certain responses not normally considered reversible such as those involving

hysteresis and yield of materials may, for practical purposes, be considered re-

versible if the item can be conveniently forced to return to its original state.

Generally we say that if an item's functional characteristics are not altered in the

response then the response is reversible. Damage, normally a nonreversible phe-

nomena, can often be repaired; however, the assumption of reversibility for repairs

depends upon how much repair is required. Some repair results in essentially a new

item. Even certain time dependent processes such as annealing, normally associated

4



Themajor purposeof this discussion is introduction of the basic concepts
applicable to all types of conditions. Thusweare not emphasizingat this point
the physical environmentalfactors suchas temperature,vibration andradiation.
Theseare treated with greater emphasisin Sec. i0, EnvironmentalTesting.

2.2.1 Basic Characterization

Thecharacterization of test conditions is fundamentalto their description,
measurement,and control. Both qualitative andquantitative descriptions are used.
Both are frequently required to completely specify conditions for a test. Although

crude descriptions suchas "salty atmosphere"or "low voltage" are sometimesade-
quate, quantitative descriptions are neededfor most tests.

Thebasic ingredients of quantitative descriptions are (i) the characterizing
parameters, (2) their values, and (3) the functional form of the modelwhich relates
them. As a simple example,a vibration condition specified for a test mayread
"...sinusoidal vibration, 5 mils, at 3 Hz for 25 seconds". Theunderlying modelis
N(t) = A sin (2_ft + _) whereA, the amplitude, is 5 mils; f, the frequency, is 3 Hz;
t, time, runs from zero to 25 sec.; and _, the phase, is arbitrary. Valuesof param-
eters can also be specified by statistical characteristics suchas range of parameter
or values of distribution parameterssuchas meanandvariance.

Relation to Real-World Conditions

Descriptions for test conditions have no value unless the descriptions relate

to quantities that can be measured and controlled. The above description of vibra-

tion, for example, is quite typical of what a vibration table can deliver. In this

case, the characteristics of the test condition can be directly related to the char-

acteristics of what the facility can provide. That is, the vibration amplitude,

frequency, duration, and sinusoidal motion are easily achieved and measured.

In some cases the relation between test conditions and facility capability is

known only indirectly. For example, the characteristic of real interest in a tem-

perature test of a circuit often is the Junction temperature of each of the solid

state devices in the circuit. The available parameters to be measured and controlled

are ambient temperatures or, at best, device case temperatures. Some extrapolation

is thus required to obtain the temperatures of interest.

Effect on Test Results

The above relation between the test description and what i_ practically avail-

able raises questions on validity and accuracy of test results. The test descrip-

tion is a conceptual model; what is achieved for the test and what exists during

normal item use are each physical models. The differences among these models are

related to test validity and accuracy.



Themeasurementof vibration table motion, for example,mayreveal harmonics
which for completedescription of inducedvibrationwould require a morecomplex
modelof table motion than a simple sinusoid. Whetheruseof the morecomplexmodel
is necessarydependsuponthe details of the problemat hand. Typically, sinusoidal
vibration is a gross approximationto the very complexvibration of a vibration table.
However,a signif_icant effort to identify and describe the shaketable harmonicsis
not Justified unless there is reasonto expect that the item(s) to be tested could
be moresensitive to harmonicsthan to the fundamentalfrequency. Usually onewould

not want, say, 25%of the total powerto be contained in the harmonicsbecausethen
a particular failure modeobservedmight be in responseto a harmonicinstead of to
the fundamental. For somevibration tests, however,the purposeof testing an item
is simply to vibrate the item to seewhethersomethingcomesloose, with the funda-
mental frequencychosenonly as a convenientnumber. In suchcases, the harmonic
content of the table motion clearly is not of interest.

Descriptions of test conditions are not alwaysas simple as the exampledis-
cussedabove. Often operational profiles have to be simulated, aging mustbe accel-
erated, and manytest conditions mustbe treated. A discussion of test conditions
and howthey are specified as functions of time is given below.

2.2.2 Stress

Theterm, stress, has its origin in the field of mechanicswhereit has
specific meaningas force per unit area for various types of stresses suchas
principal, tensile, and shear. Throughfrequent usagein testing and reliability
literature, it hasbecomegeneralized (andperhapstoo readily so) to meansimply
anyphysical entity suchas temperature,voltage, pressure, vibration, electrical
load, andradiation which potentially causesfailure whether through a nonagingor
an aging response.

Manymisconceptionsanddifficulties haveresulted from this generalization,
not the least of which is an understandingof what really causesfailure. A good
attempt at clarifying this is presentedin Ref. 2-1 in which the causesof failure
are dichotomizedinto (i) the severity of the conditions (irrelevant of time) ex-
ceedingstrength, and (2) cumulative damage(resulting from conditions acting over
time) exceedingendurance. In that discussion the meaningof stress is extended
from the mechanicsviewpoint to include other physical factors in addition to force;
however,it is implied there that the term, stress, shouldbe reserved to designate
only those conditions which result in the first causeof failure while the conditions
in the latter should be referred to as damagers. Stress thus would apply only to
conditions causing responsesin which cumulativedamagecanbe disregarded. Even



with aging, canbe consideredto restore an item to a form where it canbe subjected
to a repeated test under the sameconditions as the sameitem.

2.1.2 Agingvs. Nonaging
Aging is a nonreversible process that occurswith the passageof time and re-

sults in the accumulationof damage.Mostoften, aging canbe equatedintuitively
to expendinguseful life of an item. However,as in the caseof annealing (negative
damage),not all aging is detrimental andmaythus actually improvethe item and
lengthen its llfe.

It is not alwayseasy to discern whether aging is present becausesomenonaging
processes, for example a reversible responsewhich includes delay, mayalso require
the passageof time and appearto someobserversas an aging phenomena.Also,
certain items under test maybe actually aging without any indication of this on the
basis of measuredparameters.

2.1.3 Degradation,Drift, andFailure
Degradationanddrift are terms typically used to denotechangesin a param-

eter or an item's property over time. Weassign no explicit meaningto them;
however,degradationgenerally denotesa detrimental effect while drift typically
signifies either a detrimental or a beneficial effect.

Failure is simply a condition of unacceptablebehavior of an item basedon
someprespecified criteria. Thecriteria are subject to the needsof the designer
or the investigator andmayrange from a simple out-of-tolerance condition to total
destruction. Failures maybe associatedwith either reversible or nonreversible
responses. Itemsmaybe "born failures" as in the caseof production defects or
causedto fail by aging or application of test conditions.

Failures involving damagecan be further groupedinto simple categories. The
first is similar to the voltage breakdownof a transistor: Voltages up to the break-
downpoint producenegligible damage(if the voltage is removedbefore breakdown
the transistor is as goodas it ever was)but as the voltage exceedsthe critical
value the transistor is essentially destroyed. Another caseoccurs, for example,
in dielectric breakdownat reasonablevoltages: Theapplication of an electric
field at a given temperaturedegradesthe dielectric; if the electric field is re-
movedthe degradationstill remains; if the electric field is applied again the
degradationpicks up whereit left off; this processcan continue until finally the
dielectric breaks down. Obviouslynot all failures canbe uniquely classified into
simple categories; the intent is to help organize ideas.

There is often reference to specific types of failure suchas catastrophic,
drift, degradation, and chanceor random. Misconceptionsoften prevail about the



designation of chancefailures and this is discussedfurther in Sec. A.9 of the
Appendix. Themajor concernhere is the distinction betweencatastrophic and drift
(or degradation) failures. Thedesignation, catastrophic failure, usually refers to
a very rapid or abrupt changein an item's characteristics such that it ceasesto
function as intended. Degradationor drift failure, on the other hand, generally
implies a slow changeof characteristics such that at somepoint or level of drift
or degradation the item canbe said to fail. Thedistinction betweencatastrophic
or drlft(or degradation)failures is not alwaysobvious. Whatis a slow changeto
one observermaybe an abrupt changeto another andfor any oneobserver there are
usually "in-betweens" that do not seemto fall in either category. Nevertheless
failure is failure whether slow or rapid and in subsequentdiscussion there will
usually be little emphasison makinga distinction.

2.1.4 ModesandMechanisms
Referenceis often madeto modesandmechanismsof failure, degradation,

drift, aging, damage,anddestruction. Thetermsmechanismsandmodesusedin this
respect are often confusedin use andmeaning. For example,it is not uncommonto
find reference to an electrical short of a capacitor as both a failure modeand a
failure mechanismin the samediscussion. A modeis the observedwayin which an
item fails or degrades,etc.; the mechanismis the thing in the item responsible for
the mode. For the capacitor, for example,the failure modemaybe the electrical
short while the mechanismmaybe structural deformity.

Thetwo terms are strictly relative; the failure mechanismsfor oneobservermaybe
the failure modeof another andvice versa. To an equipmentsupplier the loss of
output of the equipmentcanbe the failure modewith the capacitor short representing
the failure mechanism.To the packagedesigner the structural deformity of the
capacitor maybe the failure mode,andmaterial fatigue maybe the failure mechanism.

2.2 TheTest Conditions
Sometests are concernedonly with behavior underexisting conditions. Somere-

quire complexgeneration and control capability for the conditions. Generally, the
moresophisticated a test, the moreattention is required of the conditions.

Test conditions in general refer to the total environmentof the item during
the test including signal andpowerinputs, loads, and the physical environmentplus
any special requirementsfor the item suchas size, compositionor orientation. We
will, however,often refer to a single factor suchas vibration, load, input voltage,
or orientation as a test condition which comprises,of course, only a small part of
the total environment.



thoughthe terminology suggestedin Ref. 2-1 is not followed in this report, it is
recommendedreading for thosewishing to explore the conceptsin moredepth.

Thegeneralization of the meaningof stress is allowed in this report. The
term, stress, thus will refer to any condition or set of conditions which potentially
causefailure or which causeanydetrimental effect suchas aging or degradationof
performance.

Whenimportant, the causeof the responsesconsideredin a discussion will be
madeclear. All responsesinvolving aging are emphasizedas a cumulativedamage
phenomenarequiring a stress-time (stress acting over time) condition. However,
stress-time conditions can also be required for certain nonagingresponsesas in en-
vironmental profile simulation.

,
Note that it is not the stress itself but the severity of the stress with

whichweare really concerned. Thehigher the severity level the moredamageis
likely to be doneto an item in a given time or the morelikely it is to fail. The
only wayof knowingwhethera particular set of stresses producesa higher severity
level is to knowwhether in fact the systemis morelikely to fail or is being
damagedat a greater rate. Thereare circumstances,electrical contacts for example,
where increasing the voltage or the current being carried mayactually improvethe
performance. Yet voltage and current are ordinarily consideredto be stresses.
Therealso are situations wherein increasing the temperaturewill improvethe life
of the equipment,especially if by so doing it is generally kept drier.

2.2.3 NonstressingConditions
Test signal inputs to an amplifier necessaryto measureits gain are not

normally considereda stress; neither are the nominal supply voltages and normalop-
erating temperatures. But whois to say they are not stressing the item? As the
input signal level to the amplifier is continually increased, somethingeventually
has to be stressed. Measuringthe drift rate of conventional gyros certainly causes
wearof the bearings if only by a negligible amount.

Practically speaking, someconditions especially whenkept within design limits,
do not stress the items. But there is somepoint of transition whenany condition
can becomea stress. Generally, this report will treat eachfactor, whenconsidered
singly or in combinationwith other factors, as either a stress condition or a non-
stressing condition.

Thephrase, stress severity, is meantto bevery general.



2.2.4 Single Factors vs. Multiple Factors

A fixed temperature test or a fixed altitude test of an item is concerned

only with the effect of a single factor, either the temperature level or the pres-

sure level in this case. A test to treat the combined effects of several types of

conditions, say a temperature-altltude test, introduces multiple factors. Multiple

factors also are introduced when more than one parameter is needed to describe a

particular type of condition. Simulation of a temperature profile for example, may

require being concerned with temperature levels, rates of change, and durations at

given levels.

The treatment of single factors is usually quite simple. The single required

parameter assumes one or, at most, several fixed values or is treated as a random

variable having certain statistical characteristics such as range of the variable

or mean and varlance of the distribution. When the single factor becomes a time-

varying function, the methods for treating it are described in Sec. 2.2.5.

Multiple factors introduce considerably more complexity. Additional considera-

tion is required to account for the relationship among the factors and the effect of

factors acting in combination, whether sequentially or simultaneously.

Consider the case of the two parameters of temperature, T, and altitude, h,

having ranges (Tmln, Tma x) and (%in' hmax) respectively. Figure 2-1 illustrates

three of several possible ways representing relationships between them. When

there is no known relationship, one can only define a region assumed or known to

contain all combinations as illustrated in the upper diagram. The other extreme as

shown in the lower diagram is represented by a deterministic relationship between

the two parameters. Between these extremes, parameter values may only be related

by known or assumed statistical properties. The central diagram illustrates one

way of representing this. Each T, h coordinate pair thus has some probability of

occurrence.

The extension of these concepts to more than two parameters is straightforward

in principle; practically, however, sophisticated treatment of even two becomes dif-

ficult requiring special statistical and mathematical skills. More detailed discus-

sion of treating relationships among multiple factors is presented in Sec. A.II of

the Appendix.

It should be noted that regardless of how well the relationships among param-

eters are known, they say nothing about their combined effect on the item to which

they are applied. Temperature and/or altitude acting separately on an item may

constitute a stress, each with its own severity characteristics. But the simultan-

eous application also represents a stress the severity characteristics of which may
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not be closely related to those of eachacting independently. Further discussion on
this effect also appearsin Sec. A.II of the Appendix.

2.2.5 Time-DependentConditions
The time dependencyof conditions during a test becomesimportant when:

(i) effects of agingmust be considered,
(2) there are transients or delays in the responseto be measured,
(3) the responseis dependentuponrate of changeof applied conditions, or
(4) behavior over a profile of conditions is of interest.
Test conditions are often controlled to makesomeof these factors unimportant.

For example,during static testing initial transients canbe eliminated or minimized
by a gradual transition from one level of a parameterto the next. Also, in stress-
to-failure testing the stress canbe applied sufficiently slowly so that strain rate
is not a significant problem.

Descriptions of time-dependentconditions are consideredfor three time periods:
(i) the period during which initial conditions are established,
(2) the period during the test, and
(3) the period at test termination.

Figure 2-2 summarizesthe various waysa single parametermayvary or be controlled
during these periods. Theparameterillustrated mayrepresent one descriptive param-
eter of any type of condition, for example,temperaturelevel, rate of changeof
temperature, powerspectral density of randomvibration, or saline concentration of
salt spray.

A special precaution is noted whenvarying parametersof frequency-dependent
functions. For example,randomvibration is typically described by the powerspec-
trum of a stationary randomprocess. A simple spectrumis

2
¢(o)

¢(_) = c
2 2

c

where _(m) is the proper spectral density as a function of frequency m and m is a
c

measure of bandwidth. To change the characteristics such as power spectral density

and bandwidth, _(o) or _c may be programmed to change with time. This mixing of

time and frequency renders the above simple description of the spectrum invalid

during changes. The true spectrum during transition is much more complex than that

represented above, and the amount of departure from the given representation becomes

more severe with increasing rates of change of the parameters. In certain applica-

tions, of course, any rate of change that can be achieved is acceptable. What is
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important from a practical viewpoint is the recognition that the specified spectrum

may only be a gross approximation of what actually exists.

Initial Conditions

Some tests require no change. As illustrated in Fig. 2-2, the simplest change

is a step function; however, the step is not always easily obtained nor is it always

desirable. It is frequently employed deliberately to compare experimental transient

responses with analytical ones for analysis of dynamic performance. A servo loop

response to a step input is a typical example.

Attempts to suddenly load an item, however, can sometimes lead to undesirable

effects. Consider a test to measure the structural deflection of a beam under static

loading. With loads applied gradually the deflection builds up gradually to its

final value. Sudden applications of large loads, however, introduce mechanical

shock which may cause severe transients or a strain response greater than the yield

point. Furthermore, the strain itself during the load increase may depend upon the

rate of increase of load.

Undesirable effects could be similarly described for other types of equipment

and test conditions. Incremental or continuous (linear or non-linear) changes, as

illustrated in Fig. 2-2 are often used to avoid such effects. For example, in

Ref. 2-2, the procedure specified to achieve constant acceleration requires a grad-

ual increase to the specified value in not less than twenty seconds. Often due to

physical limitations of test equipment, only gradual transitions are possible. A

vibration table under heavy load, for example, may require several cycles to achieve

its full amplitude of vibration. Instructions for controlling initial conditions to

prevent unwanted responses appear frequently in test specification and standards.

In many cases the manner of achieving initial condition is arbitrary. When the

engineer is at liberty to select his own procedures (as in informal tests) it may be

beneficial to deliberately depart from standard practices. Just trying different

test methods can often be informative and may aid in identifying that a specific

method such as overshoot is really needed.

Conditions Durin$ the Test

Various forms of behavior for a test condition parameter are illustrated in the

central portion of Fig. 2-2. Some tests involve combinations of these forms. For

example, a random process variation of a parameter may be superimposed on a determ-

inistic behavior, and certain tests may require precise control of some parameters

while allowing others to assume arbitrary values.

Impulse Conditions. Impulses are typified by mechanical shock, explosive en-

vironment, transient radiation pulses, and electrical power transients. The impulse

14



function is typically defined analytically [Ref. 2-3] to be a function having infin-
itesimal width, infinite height, andunit area. Clearly, the unit impulsefunction
cannotbe achievedphysically, but it canoften be approximatedadequatelyto compare
experimentalresponseswith those obtainedanalytically. Theapproximatedunit im-
pulse is often substituted for the input step function whena step causesdifficulty
in observingthe response.

In mosttests employingimpulse type conditions, it is not desired to approxi-
matea unit impulsebut rather to simulate the impulsesoccurring during normal

;operation. Considera mechanicalshockpulse. It is describedin test specifica-
tions and standardsby peakacceleration and duration, suchas 50gfor 6 to i0 msec.
To readers unfamiliar with shockspecifications andtest methods,this might imply a
rectangular waveform. Shockpulses, however,havevarious shapeswhichdependupon
the characteristics of the shockmachine. As describedin Ref. 2-4, for example,
shapecanbe controlled by adjusting dampingcharacteristics.

A precise representation of mechanicalshockpulses is often not required. For
example,whether the waveformis rectangular, triangular, or a half sinusoid maynot
really be important; simply achieving an impulsewhich is approximatelyequivalent
to the onespecified maybe all that is needed. Thestarting height of a simple
drop test to obtain a shockpulse maybe quickly computedwith equationsof motion
by assumingany of several simple pulse waveforms. Calculations of this type are
included in Ref. 2-4 and are extendedto include dampingeffects.

Most shockpulse specifications are moreexplicit than the examplepresented
above; Ref. 2-2 specifies half sinusoidal pulses of 30gpeakamplitudewith a total
time betweeni0 and15msec. MIL-STD-810A[Ref. 2-2] prescribes a sawtoothshock
pulse configuration. Although the tolerance requirementsindicated for that wave-
form are morestringent thanneededfor manyapplications, it canbe readily
achievedby mostshockmachines.

Fixed Conditions. Fixed conditions are the most common conditions employed in

testing. Fixed conditions have the disadvantage of rarely representing operating

conditions. Their major advantage is convenience and ease of test control. However,

when operating conditions are not known, tests under fixed conditions is a way to

collect valuable data for extrapolation to operating conditions when they become

known.

Prosrammed Conditions. During many tests, conditions are varied by programming

values of parameters. Operational profile simulation is the most obvious example.

However, the concept applies as well to other mrogrammed conditions, for example,

temperature cycling and thermal shock, varying vibration frequencies and amplitudes

15



to scan for maximum severity of vibration stress, and step-stress or progressive-

stress for accelerated testing. The functions which define parameter variations

during the test may produce step changes, linear changes, non-llnear changes, or

periodic behavior. Theoretically, these functions can be combined to make up very

complicated profiles; however, practical limitations imposed by test equipment

usually limit them to fairly simple functions.

Operational profile simulation finds its largest application in reliability

demonstration. When aging is involved, it is important to program the changes in

the same order that they occur during operation. When aging is not involved, the

order is not generally as important, and it may even be desirable to purposely

change the order or eliminate some of the profile. Suppose for example that the

effect of a launch vehicle acceleration profile on stable platform drift is of

interest. A rocket sled can provide high unlaxial accelerations but is very diffi-

cult to program to simulate a complex acceleration profile. However, a series of

rocket sled tests with the platform operated in different orientations can be used

to obtain drift rates as functions of acceleration. These rates can be used

analytically to predict the behavior during a launch profile.

Instead of directly simulating the temperature profile, the effect of slowly-

varying temperatures on electronic equipment drift may be investigated by static

measurements of drift as a function of temperature. More rapid changes may require

measuring, in addition, the effects of rate of change. From static and rate measure-

ments the predictions for temperature profile operation often can be adequately made.

Although the designer and the customer are generally much more satisfied with

an item when its performance can be observed under a simulated operational profile,

cost savings accrue in many cases if the profile does not have to be simulated.

Intelligent planning and evaluation of alternatives are required to determine

whether the profile should be simulated.

Random Conditions. Many tests assume certain random characteristics. A phys-

ical'quantity (such as force, acceleration, temperature, or voltage) representing

a test condition is described by a random process if, as a function of time, it

possesses random characteristics of significant magnitude. The different types of

random processes are detailed in Sec. A.13 of the Appendix; in summary they are:

(i) Random series - impulses having random times of occurrence, random wave-

fomm characteristics (such as rise time or amplitude), or both;

(2) Constants which have random levels - simple random variables;

(3) Deterministic random processes - functions having recognizable functional

form but also certain random characteristics;
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(4) Stationary random processes - functions having no recognizable functional

form and for which the statistical properties do not change with time; and

(5) Nonstationary random processes - functions having no recognizable form and

for which the statistical properties change with time.

From the point-of-view of controlling test conditions, the treatment of certain

random conditions during a test may really be no different than for the first three

types of conditions described above. Consider random vibration, for example. As

noted earlier, it is typically specified by power spectral density and bandpass cut-

off frequencies for a stationary random process. Controlling the specified param-

eters gives rise to a random process. Assuming that the vibration is typically

generated by power amplifying the output of a noise tube and driving a vibration

table, controlling the rms level and the bandwidth gives the desired spectrum. From

the point-of-view of control this is really no different from programming simple

factors like temperature and pressure, since it is the parameters of the process and

not the process itself that are being controlled. That is, the parameters are con-

trolled explicitly while the underlying random process is implicit.

Conversely, if a test is being conducted under uncontrolled conditions (as en-

vironment is uncontrolled in field testing) explicit description of the random

conditions may become very important. Treatment then must be more statistically

oriented; sample functions have to be obtained for estimating the statistical

characteristics. With random vibration, for example, the determination of whether

the random process is stationary or nonstationary has to be made.

Arbitrary Conditions. Sometimes we are not really concerned with specific

values of test condition parameters. For example, in certain field tests, prelaunch

checkout and production testing, we may simply assume that any condition is repre-

sentative without caring whether a parameter is constant or varying according to

some functional form. Under such arbitrary conditions the test becomes merely a

measurement of behavior.

Terminatin$ Test Conditions

The possible types of conditions during test terminations are similar to those

for initial conditions; however, for most tests the manner of removing test conditions

from the item or returning to normal ambient levels is arbitrary. The possibility

of damage to the item or to test facilities is generally the only important question

to be considered.
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2.3 Measurements
Measurementsare basic to testing in that they provide the record of the

response. Theonly neededclarification at this point is the explanation of the
basic types and the fundamentalviewpoints.

2.3.1 Attributes Measurementsvs. Variables Measurements
A measurementof a parameteris either an attributes measurementor a vari-

ables measurement.An attributes measurementis concernedonly with determining
which one of two possible results is present. For example,an item is either good
or bad, it either fails a test or doesnot fail a test, a performancecheckindicates_
either "go" or "no-go". Theresult of an attributes measurementis alwaysan either-
or situation. In the terminology of the statistician, weare dealing with Bernoulli
trials. Certain responsescanonly provide an attributes measurement;a test to
determinemerely whethera flash bulb operates results in a responseof this type.
Parametershaving continuousvalues canbe subject to attributes measurementssuch
as being in- or out-of-tolerance or being aboveor belowa discrimination level.

A variables measurementis concernedwith determining the specific value of a

parameterwhich can, in general, assumemultiple values. Theremaybe a finite or
infinite numberof possible values either distributed continuously or at discrete
levels over a range of values. Measurementof resistance of a resistor or the dimen-
sion of a structural memberare typically variables measurementseventhough, as
discussedabove, these canbe, and frequently are, reducedto attributes measure-
mentsas whenscreening out items which are not in tolerance.

Whenonehas a choice betweenthe two types, which shouldhe use? Variables
measurementsare generally more troublesometo make. For example,it takes longer
to read and record the value indicated on the scale of a voltmeter than to merely de-
termine whether it is in the green or red region. If the results neededfor the
immediatepurposeat handcanbe obtained with attributes data and there is no bene-
ficial use of variables data, then the simplest methodis obviously the one to use.
But foresight on possible usesof variables data suchas"post mortem"evaluationhas
often beena saving grace.

2.3.2 Measurementof Responses
Thereare only two basic points-of-view in test measurementsdependingupon

what one is trying to learn from a test. Theseare:
(I) "Given the conditions, what is the response?",and
(2) "Given the response,what are the conditions?"
Thefirst is typified by structural proof tests, measuringamplifier gain at

high temperatures,measuringthe life of a steel specimensubjected to fatigue stress,
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andpowerburn-in of electronic devices. With this point of view the emphasisis on
the dependentvariables as a function of time, the conditions, or the item's
characteristics. It is often referred to as the direct responseproblem.

Thesecondsituation is typical of measurementof strength (i.e., the maximum
severity of stress whichan item canwithstand without failing), measurementof the
levels of temperatureand input voltage acting simultaneouslyto give an output
voltage variation of an inverter, anddeterminingthe maximumallowable vibration
level for an accelerometerto survive a given duration. This viewpoint is often re-
ferred to as the inverse responseproblem. Anotherdesignation usedis response
surface determinationwhenthere is morethan one independentvariable of interest.

Sometesting applications mayinvolve both points-of-view. For example,there
is a testing approachcalled gradient-seekingwhich is useful for determiningthe
conditions which optimize performance. In this, the responseis observedat different
sets of conditions which are changedin a direction which improvesperformance. Both
polnts-of-view are also commonlyinvolved in reliability testing.
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3. Test Classifications
A significant barrier to understandingtesting is the plethora of test namesin

commonuse. A given test nameoften meansdifferent things to different people, and
two tests with the sameobjectives sometimeshavedifferent names.

Anyform of classification is simply a wayof viewing testing and there are
manywaysof doingJust this. This section considersseveral ways;however,the
emphasisis on the three describedfirst since their relationship has influenced
the organization of this report to sucha large extent.

3.1 ThreeFormsof Classification andReport Organization
Mostpresentations of testing identify one or moremajor testing areas suchas

reliability demonstrationand acceptancetesting andproceedto discuss different
methodsand approachesfor implementingthese (cf., Ref. 3-1 and3-2). Of consider-
able importanceto a thoroughunderstandingof testing is first a familiarity with
basic test approachesandwhat basic problemsthey cansolve. Theunderstandingof
their broaderapplications for program-orientedactivities then follows more
easily. Three important classifications are thus:

(i) basic test types,
(2) their basic problemuses, and
(3) their programapplications.

A tabulation of typical types in eachcategory is presentedin Fig. 3-1.
Thegeneral relationship indicated in Fig. 3-1 is the basis for organization

of this report. Becausethere is not a one-to-onecorrespondenceamongclassifica-
tions, different classifications are treated in separatesections.

Noteespecially, however,that there is a distinction madebetweenagingand
nonagingtest types. Theimportanceof aging has a large influence on the way
items are tested. Whenaging is present different things are generally of interest,
different responsesare encountered,and different considerations of the effect of
test on the item are introduced. Generally, the distinction dependsuponthe inten-
tiona_ effect of the test time on the item tested. Any test canbe characterized as
either againg an item intentionally or aging it only unintentionally if at all. Thus
an enginerun-in test is an aging type, for it is the intent to alter (and in this case
actually improve) the performanceof the engine by operating it for an appropriate
length of time. Conversely,a test to measurethe gain stability of an amplifier
over a temperaturerangeis not intended to alter the gain of the amplifier dueto
time henceis a nonagingtest although somegain changecould result from agingproduced
by time-temperatureeffects.

It mustbenoted that it is not alwaysimmediatelyclear whethera responseis
due to aging. For example,creep of metals is a phenomenathat maybe viewedas
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either a nonaging or an aging response. However, tests involving such responses

usually belong to one class or the other. A test to measure strength of the metal

involving creep would logically be a nonaging type whereas one to measure the dura-

tion of the creep process prior to failure would be an aging type.

For report organization the earlier sections, Secs. i - 4, serve as introductory

material common to all later discussion. Sections 5 - 8 are then devoted to descrip-

tions of the basic test types and their uses. Sections 5 and 6 specifically treat

the nonaglng types and emphasis is on clarification of concepts applicable to each

and practical problems in implementing them. The aging types are similarly treated

in Secs. 7 and 8.

Following these discussions several sections, Secs. 9 - 12, are devoted to sev-

eral miscellaneous but popular topics which do not belong to the orderly classifica-

tion employed. Section 9, for example, describes nondestructive testing (NDT), the

special technology developed to perform measurements more conveniently and/or less

destructively than conventional methods allow. Environmental testing, described in

Sec. i0, is a subject area applicable to all test types, basic uses, and program

applications. Accelerated testing is treated in Sec. ii; this is applicable to all

aging test types. A brief discussion of field testing in Sec. 12 completes the

treatment of miscellaneous topics. Section 13 is then devoted to the various major

applications of testing in hardware programs. The testing specifically for reliability

is discussed separately in greater depth in Sec. 14.

Because the three classifications introduced are considered in more depth in

later sections no further treatment is given in this section.

3.2 Other Forms of Test Classification

Tests can be classified in a considerable variety of ways in addition to those

classifications given in Sec. 2.1. Some of these classifications and the test names

likely to be found in them are outlined below. Some of the names appear in more

than one classification which indicates the different viewpoints that the names may

reflect. References 3-3 through 3-5 are additional sources for test designations

and classifications.

3.2.1 Classification by Specific Purpose

Some test names are indicative of specific purposes and citing the test name

reveals the specific problem being resolved. Test names in this category generally

reflect the basic problem areas introduced in the previous section. Test names il-

lustrative of specific purposes are:

proof test go, no-go test burn-in test

life test run-in test functional check

strength test failure mode test performance check.
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3.2.2 Classification by GeneralPurpose

Sometest namesdenotea moregeneral purposeand donot indicate whatspecific
problemis being treated. For example,an environmentaltest indicates that environ-

mentsare being treated but doesnot indicate whetherperformance,life, strength, or
Just a functional checkis important. A numberof test namesof this type are:

environmentaltest
reliability test
developmenttest
engineering test
screening
tolerance test

flight test
researchtest
assurancetest
specification test
storage test
evaluation test

3.2.3 Classification by Severity of Test Conditions

acceptancetest
quality control test
systemsintegration test
feasibility test
in-service evaluation
end-of-servlce evaluation.

Sometest namesindicate the level of severity of test conditions but do not
help in identifying the purposeof the test. Typical namesare:

overstress test accelerated test normalstress test
peripheral test understresstest high temperaturetest
low voltage test.

3.2.4 Classification by Test Design
Thestatistical designof a test often influences the namedesignated. Some

of theseare self-explanatory while with others the namemaymerely indicate the
nameof the personwhodevelopedthe techniqueor mayJust generally designate the
approach. Sometypical test designationspertaining to test design are:

nonsequential
sequential
up-and-downmethod
Robbins-Monroedesign

randombalancedesign
20 zil design
Langlie design
spllt-the-dlfference design

matrix testing
factorial design
Alexanderdesign
probit design.

3.2.5 Classification by Methodof Analysis
Namesin this category are not really test namesbut rather indicate methods

of treating data from tests of various types. This classification category is in-
cluded to dispel confusion in this respect.
analysis andnot to the type of test are:

linear dlscriminant
sequential analysis
Dixon-Moodanalysis

3.2.6 Summaryof Additional Forms

Typical namespertaining to the type of

probit method
hypothesis testing
maximumlikelihood analysis.

Severaladditional test classifications are possible. Thosegiven belowplus
those already given include all that are likely to be encountered.
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Classification by Method of Applyin s Test Conditions

constant stress test programmed stress test

step-stress test random stress test

progressive stress test stress-to-failure (test-to-failure)

profile test.

Classification by Proportion of Population Tested

sampling

100% screening

screening (title alone implies 100%)

Classification by Level of Assembly

material test part test component test

subassembly test assembly test subsystem test

system test.

Classification by De_ree of Formality

formal test probe test (informal)

informal test search test (informal)

exploratory test (indicates informality).

Classification by Desree of Destruction

destructive test

nondestructive test (general sense)

nondestructive test (special methods to circumvent destruction).

Classification by Type of Hardware Function

electrical test

structural test

mechanical test.

Classification by Method of Terminating Test

time-truncated test

failure-truncated test

sequential test (implies that termination depends upon cumulative results)

stress-to-failure (test-to-failure) test.

Classification by Type of Measurement

variables test parameter test

attributes test go, no-go test.
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Classification by Item Maturity

breadboard test

engineering model test

production model test.

boiler-plate model test

prototype test
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4. Perspective of Testing

Testing is the experimental approach to problem solving. Its relation to the

analytical approach is illustrated in Fig. 4-1. The experimental approach in engi-

neering has traditionally been associated with "cut-and-try" or "build-and-test"

procedures. In recent years, however, analytical techniques have become more helpful

because of improvements in computing capabilities. This development in no way de-

creases the importance of testing because the physical prototype itself remains its

own most accurate model. Actually, the two approaches are complementary and best

serve the engineer in a coordinated role as illustrated by the center path in

Fig. 4-1.

4.1 Relation of Testing to the Hardware Development Process

Testing is a key ingredient throughout hardware development. As a design

progresses from planning and definition to final operational form, problems contin-

ually arise which must be resolved by analysis or testing. The role of testing at

any stage of the development cycle is illustrated in Fig. 4-2. At any o_ these

stages the approach to solution of defined problems is formulated and this includes

making decisions concerning the part that testing will play.

If adequate physical models are available, testing is generally the more reli-

able procedure. Even when an analysis approach is pursued, experimental data is a

major input.

Good results serve to verify that the design, procedures, and applications of

the design are adequate or provide the necessary information to determine the

Problem

Analytical

___Comblned
Analytical Solution

Figure 4-1. Approaches to Problem Solution
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needed changes to progress the design toward maturity. The results must first be

evaluated to establish their validity. Where the evaluation reveals inadequacies,

modifications of the problem solving process itself may be in order. As illustrated

by the inner loop in Pig. 4-2, this may result in modifying the approach by redefining

the problem, reformulating the approach to solution, or revising or continuing the

test to improve the information.

4.2 General Test Procedures

Even though there are many purposes for testing, all tests have a common basis

in the general procedure followed. This procedure is illustrated in Fig. 4-3, which

basically is an expansion of the inner loops in Fig. 4-2 and emphasizes testing

rather than analysis.

One of the most practlcal aspects of testing, often downgraded in most discus-

sions of testing, is that of forming a notion (often preconceived) of how an item

behaves; this is Just the conceptual model designated by the second block in Fig. 4-3.

The soundness of all subsequent test procedures and the test evaluation depend

heavily upon this. The model can range from only a qualitative concept of behavior

to a precise mathematical description.

With reference to Fig. 4-3, the formulation of specific test objectives is a

necessary prerequisite to selecting the appropriate testing approaches and designing

the test. For example, the objective of measuring strength of a pressure vessel de-

sign will require stress-to-failure testing of several specimens. The test design

and analysis of data are often closely linked with certain assumptions. The design

of the pressure vessel test, for example, may specify the sample size required to

achieve an estimate of the median of the strength distribution at a given confidence

level. Furthermore, both the design and analysis may be based on the assumption

that the strength distribution is cumulative normal (Gaussian).

Evaluation of results is a very important stage of the procedure. In this,

queries pertain mainly to whether the results fit the original concept of behavior

and to whether the original problem definition is adequately resolved with the

achieved results. Rejection of either requires further decision about how to proceed.

Note that both questions must be answered since it is possible that the results

may fit the concept but still not solve the problem at hand--the case of getting the

right answer to the wrong problem.

The order of these queries is also important because it is sometimes easy to

think that the problem is solved even though the original concept is erroneous. For

example, an exposure of a resistor to high temperature for measuring its temperature

coefficient (the ratio of reversible resistance change to the change in ambient
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temperature) may reveal a true change, but was all of the change reversible? If the

conceptual model is found invalid, the problem definition itself may be no longer

meaningful. Then obviously, a modification of the problem is in order. Such a mod-

ification may take one of several different forms: redefine the problem, retest

with a different model, resort to an analytical approach; or abandon the whole

situation. If only the model is in error, then a modification of the model and

perhaps a retest is in order.

Note that the above decisions do not automatically reject negative results but

only those which do not fit the orlglnal concept of how the item behaves. Negative

results may still fit and in some cases even solve the problem (by contradiction).

It is also possible that conforming results do not solve the original problem,

e.g., when too few data points are obtained or when the wrong test conditions are

chosen. Before specifying more tests, however, the validity of the original problem

definition should be questioned. Problem modification may be required at times even

though the original concept is valid. This is more a fault of the experlmenter's

statement of the problem than improper procedure.

Each block in Fig. 4-3 could be expanded considerably. Conducting the test,

for example, involves the tasks of obtaining test specimens, lining up test facili-

ties, setting up and instrumenting the test, and actually taking the measurements.

Test conduction activities form a large portion of the effort devoted to testing.

Since such activities are fairly routine, the emphasis in this discussion has been

on the importance of the conceptual model and the practical evaluation of test

results.

4.3 Test Planning

Sound planning is critical to efficient testing. It deserves more depth and

breadth than can be inferred from the brief discussions in the previous section.

Facilities, personnel skills, instrumentation, and methods of reducing and analyzing

data are typical of things considered, but has anyone considered, for example, what

happens if the power fails during the test?

Test planning involves the prior consideration of as many of the practical test

factors as possible. There are many of these and Table 4-1 illustrates the magnl-

tude and complexity of them.

Amount of Planning Effort

A basic question concerns the proportion of total test effort to devote to

planning. The answer itself depends on schedules, experience, and cost and complex-

ity of test specimens. It is often stated simply In testing literature that more
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test planning is needed; clear Justification for such statements is usually missing.

Nevertheless, situations have arisen when it was obvious that more though to test

planning could have provided significant benefits.

Consider, for example, random drift testing of gyros. Drift measurements in

all three orthogonal orientations are not necessary if the orientation during appli-

cation is controlled by serialization. Yet, an equipment manufacturer has been ob-

served to conduct several hour drift tests in three orientations for each gyro during

receiving tests, and the fact that some gyros failed from wearout prior to system

acceptance indicates that better planning of gyro testing was badly needed.

Generally, the more complex and expensive the test specimens, the greater the

proportion of total test effort that should be devoted to planning. Five to twenty

percent of the total cost of testing is the typical range. Less than five percent

is common when certain test procedures such as blanket screening and qualification

testing have become routine. Cases llke the one described above for gyro testing

Justifies wariness of minimum effort in test planning, however. Occasionally,

greater than twenty percent of the total test effort must be applied to planning for

tests of expensive items. Static firings of boosters, for example, requires exten-

sive planning.

There is no fixed criterion. Every situation has to be considered on its own

merit. The decision is guided to a large extent by the importance of the considera-

tions discussed below in the test being implemented.

The discussions that follow highlight some important considerations for

illustration. These considerations are highly interrelated, and it is recognized

that for numerous tests many of the considerations are obvious. However, the

"obvious" has many times caused difficulty, and it is in the interest of preventing

the recurrence of such difficulty that some of the discussion is given.

4.3.1 Problem Definition

When a test is to be conducted, formal problem statements do not always exist.

A circuit designer may simply be wondering what will happen if he grounds the output

of his breadboarded amplifier. The same question may appear more formally as a

checklist item in a formal failure mode and effects analysis. Generally, the higher

the level of assembly of the item and the more mature its design, the more formal

will be the problem statement.

In test planning the most basic consideration regarding the problem definition

is whether the problem should be resolved by testlng--Just how useful will the test

results be? Testing may be a faster and cheaper way of getting an answer but not

necessarily of getting the appropriate answer. It does not always solve the real

problem, e.g., when the operational environment cannot be closely simulated.
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Alternate approaches to testing are analytical treatment or "build-and-operate".

The penalties for not testing should be considered in selecting trade-offs between

testing and its alternatives. For example, if the test item is flight hardware, an

inadvertent error in test procedures could turn out to be more costly than not

testing. Every situation has to be treated on its own merit.

4.3.2 The Conceptual Model

This is one of the most important considerations in test planning, for it

strongly influences many other test decisions. The anticipated responses of indl-

vldual items is first considered because they aid in determining which basic test

approach is required. Any important uncertainty in this behavior or significant

variability among items leads then to statistical treatment for a sample of items.

With respect to the tabulation in Table 4-1 some important factors related to

item behavior are:

(i) type of response,

(2) test condition severity,

(3) relation of test conditions to operational conditions,

(4) manner of controlling test parameter values,

(5) degree of item destruction,

(6) response duration,

(7) type of hardware tested,

(8) relation of item operation during test to operation during application,

(9) failure mode complexity,

(i0) relation of multiple failure modes, and

(11) criteria for terminating test.

It is often said that an item should be operated in the same mode during a test

as that during normal application, but such operation during a test is not always

possible nor is it always desirable. A solid propellant rocket obviously cannot be

flight certified by measuring its thrust and is an example of the special case of

triggered response, one-shot items have a noninterruptable response, none of which

can be tested in their normal operational mode without destruction. Other reasons

arise for testing in modes different from the normal operational mode--due to

safety, aging, cost, or limitation of facilities. While behavior during intended

application may be the eventual chief interest, the different modes of operation

and special conditions required for the test often lead to different concepts of

how items behave. For example, attempts to accelerate aging can radically change

the behavior of items during testing from that expected during intended operation.

However, even when behavior during a test is different, it still can be informative
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about behavior during intended application if a meaningful correlation can be made

between test conditions and application conditions.

When items cannot be operated in the normal mode for testing purposes, other

adequate tests or measurements can often be substituted. The rocket, for example,

may be inspected by special nondestructive testing techniques such as ultrasonic

or X-ray scanning to obtain measurements of parameters such as the weight, the uni-

formity, and the dimensions of the solid propellant charge which then can be corre-

lated with thrust or other operating characteristics of interest.

Sometimes advantage can be taken of different but related modes of operation.

Operating an integrating gyro in its normal open loop mode for a long term drift

test is undesirable because the drift continues to grow without bounds. A common

technique to circumvent this problem is to provide compensating torque about the

output axis through an electrical feedback from the output signal generator of the

gyro, which in effect converts the integrating gyro into a rate gyro with constraints

on the drift. The drift characteristics of the rate gyro can be correlated with

those of the integrating gyro via the transfer functions of the two configurations.

Similarly, shear strength of metals may be estimated from tensile strength tests and

known correlating functions. It is clear that one should make doubly sure when using

such correlations that the functions used for establishing correlation between the

different modes adequately reflect the real physics of the situation.

The testing of expensive items such as large rockets and satellites having a

noninterruptable response, one-shot type of operation have notably posed difficult

problems. Operational tests of such items are expensive, and typically for aerospace

systems there are at most several-of-a-kind of such items. Several testing

approaches are used to test such items. One is to rely heavily on testin_ components

most of which can be treated conventionally. Another is to specifically design the

test item to permit interruptable responses for test purposes. For example, a liquid

propulsion engine is designed to operate in this manner. Another approach is to

design the test in such a manner that the property of interest can be measured,

without the necessity of operating in the destructive mode. The problem of corre-

lating responses in such different modes was discussed earlier.

4.3.3 The Test Objectives

Specifying the objectives of a test typically entails clarifying the problem

definition based on knowledge of item behavior. For example, the original problem

of needing to know the expected llfe of an item may get translated to estimating

the failure rate of a population from a i000 hour life test of several items at

125°C. Not all problems can be reduced to single simple objectives. The
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requlrGient for adequately demonstrating an item's reliability may, for example,

demand life tests, strength tests, performance tests, and simple measurements of

parameters. Such situations usually result in a multiplicity of simple objectives,

each of which defines a unique problem whose solution contributes toward solution

of the original problem.

• An explicit statement of objectives is usually the first item in a test speci-

fication or test procedures document. Typical objectives are:

(i) to determine the minimum discernible signal sensitivity of the AN/SPC 401

receiver,

(2) to estimate the shear stress of the Type IIA rivet, and

(3) to burn in IN619 diodes.

Even in informal testing, such statements typically become entries in technicians'

notebooks.

4.3.4 Testing Approaches

A significant portion of the remainder of this report is devoted to describing

basic testing approaches. With familiarization of these, the specific approaches to

be used follow from the objectives in that the types of response, type of measure-

ment, and way of applying test conditions are (at least implicitly) already

identified. For example, the first objective stated above is typical of a simple

performance test; the second, a strength measurement by a stress-to-failure approach;

and the third, a tlme-truncated aging test.

Testing approaches employed for flight accepting a satellite are limited to

those which do not damage or significantly age the system. Obviously, a stress-to-

failure test or a long duration test under severe aglng-condltlonlng is not suitable

in this case. Certain proof tests and some brief aging to reveal defects are typ-

ically very appropriate for flight acceptance.

Testing approaches are often predetermined by organizational policy of using

standard procedures. References 4-1 through 4-3 are cited to simply illustrate the

type of NASA standardization that has evolved for testing procedures; additional

current NASA standards of this type can be identified in Ref. 4-4 (NASA SP-9000).

References 4-5 through _-7 similarly illustrate standardization in military develop-

ment programs. The approaches in such standards are often adequate, but caution is

always in order. For example, there are situations when a stress-to-failure

approach is much more useful than a standard proof test approach. Special appli-

cations, new design techniques, new suppliers are all suspects for departing from

standard approaches.
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4.3.5 Test Design
A satellite once toppled several feet from its mount onto a concrete floor

during a high temperature test of a flight acceptance test series because someone

had failed to consider the effect of high temperature on the mount. This illustrates

Just one of many practical aspects of proper design for a test.

Test design is much more than the statistical design. It is that stage re-

quiring utmost attention to detail, especially when the penalty for a "goof" in the

test will be large. It is the stage when use of the checklist is most valuable.

Some typical considerations are:

(i) availability and adequacy of test facilities,

(2) costs (including possible penalties),

(3) time (set-up, test duration, data reduction, etc.),

(4) skills,

(5) order and combination,

(6) analysis techniques,

(7) benefit of prior information,

(8) required accuracy and precision,

(9) desired form of final results,

(i0) failure definition, and

(ii) criteria for terminating tests.

Many of these considerations are resolved by the designer or production engineer

himself. Others require special skills such as test specialists, the systems

analysts, or statisticians.

The majority of tests are very informal and often consist of exploratory

measurements Just to learn more about an item such as a breadboard. These do not

usually follow any carefully planned experimental design. On the other hand, there

are many instances where statisticians can be invaluable in helping decide such

issues as how many runs or trials to make, how many items should be in a sample,

expected distribution of failures, method of analysis, etc. These tests are usually

formal tests such as acceptance testing, sequential life testing, etc.

A discussion of statistical design of experiments is presented in Sec. A.II of

the Appendix and from this the engineer can obtain an appreciation of what role the

statistical skills can play. It is again worth noting, however, that only a small

portion of the testing effort is directly influenced by sophisticated statistics.

Whenever statistical specialists are used, there needs to be good communication be-

tween the engineer and the statistician. It is up to the engineer to control the

test planning and supply real world practicality.
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In planning for tests, appropriate parameters have to be selected which truly

characterize the effect of interest. Although the interest may be in determining

some estimate of a quantity not directly measurable, the test itself concerns only

parameters that are directly measurable. For example, direct measurements of basic

physical quantities such as voltage, temperature, force, and time may eventually get

translated to quantities such as strength, life, safety margin, and failure

probability.

Measurements are concerned with both the test conditions themselves and with

responses to these conditions. Too often, test procedures fail to include the

appropriate measurements of test condition parameters for later correlation with

measurements. Two basic types of measurements are attributes (go/no-go) and vari-

ables (parameter values). Even when the major analysis is concerned with attributes

data, there is potential benefit in recording the tested parameters first as vari-

ables data; the need for additional analyses may occur later. For example, there is

a notable increase in measuring part parameter values in all formal tests instead of

Just checking for conformance to tolerance. This trend has enabled statistical dis-

tribution characteristics to be obtained, providing valuable information for use in

analyzing for effects of parameter variations.

One of the most often confused aspects of testing concerns units of measurement;

measurement units during a test are frequently different from those eventually needed.

For example, the inverse of temperature may be the correct units rather than the tem-

perature level itself.

Automated test facilities aid in measurement and control of test conditions,

but they cannot handle all situations. Even with automated facilities, manual over-

rides during the test are sometimes necessary. On-line computer operation aids in

handling larger volumes of data than is possible manually, but care must be taken in

designing and executing the test to insure that the larger data volume enables more

results or more useful results to be obtained.

For most measurements that have become routine, standard procedures have

evolved. Reference 4-1 through 4-7 contain typical standard procedures. Such

standards serve a valuable role in reducing the planning effort and providing common

procedures. Even when standard procedures appear applicable, caution is still in

order--do the standard procedures really provide the information that is needed?

Special tests are often required which depart from routine procedures only in the

sense of their being conducted on unfamiliar equipment, used to measure a new un-

certain effect, or applied to conditions which are different from usual.
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4.3.6 Test Conduction
Test conductionis the phasewherepreviously laid plans are put into effect;

test conditions are applied according to the designandmeasurementsare made. But
"the best lald plans of miceandmen...". Hasanyonestoppedto consider, for exam-
ple, whathappensif the main powersupply fails? Canthe test be resumedfromwhere
it stoppedwithout affecting results? Will the test item be damaged?Will the test
results already achievedbe invalidated?

Manyunexpectedincidents are possible, but prior considerations cancircumvent
ithe detrimental effects of someof th_se. Goodcontrol documentationandproper

training of personnelcanalleviate manyproblems.

4.3.7 Analysis of Data
Theconsiderations to be extendedto data analysis during planning are highly

interrelated to those for the statistical designof a test. For example,a designer
wanting to knowthe effect of ambienttemperaturevariations on his equipmentmay
design his test using a proof testing approachto merely checkthe responseat
worst-case conditions. Theanalysis in this case is simple, either the item is
goodor bad at these conditions. However,there maybe someconcernabout accuracy
andprecision of the test conditions andwhether the tested item is representative
of similar items in a population. Alternatives to the aboveobjective andapproach
are measuringvariation in behavior as a function of temperatureor determiningthe
temperaturelevel which causesa tolerance to be exceeded. Either introduces more
complexity in the test design anddata analysis.

Thedegreeof formality of the test often hasa large influence on the extent
andcomplexity of the analysis to be performed. An acceptancetest specified by the
customermaydemandthat extensive testing and analysis be performedto demonstrate
a certain statistical confidence. Whereasfor in-houseverification purposesthe
designer maysettle for considerably less becausehe has benefit of engineeringcon-
fidence that the customerdoesnot have. Thedesigner, for example,maybe quite
satisfied with only simple functional checksor a simple graphical analysis.

Therequired extent andcomplexity of the analysis dependuponmanyother
factors but certainly oneshould refrain from "analysis simply for analysis sake".
Compatibility with the intendeduse of results is the foremostguideline. Will the
procedurereally resolve the problem? Are statistical procedurescluttering up
your knowledgeof the physics underlying the behavior? Is variability really as im-
portant as it seems?
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4.3.8 Useof Results

Prior consideration of the intended useof results shouldexert a major in-
fluence on test planning from problemdefinition throughdata analysis. Certainly
the test objectives shouldbe derived directly from this.

Severalviewpoints affect howthe intendeduse of results influence planning.
A general but basic viewpoint is that of learning versusverification. Anytest in-
volves someof both but sometendmoretowardonethan the other. Development
testing is generally associatedmorewith the learning function than verification
even thoughthe designermayoften bemoreintent (and possibly erroneouslyso) on
verifying his paperdesign than in learning howthe thing really works. Acceptance
testing on the other hand, tendsmoretowardverification or getting yes-no answers
even thoughmanyare the caseswhereimportant things havebeendiscoveredat that
late date. Generally, test planning should take advantageof the opportunity to
learn but within reasonableconstraints. Couldyoubenefit in later analyses, for
example,by makingvariables measurementsin incomingtesting rather than attributes
measurements?

Theviewpoint of the statistician on use of results is typically that of esti-
mationversus hypothesis testing andthis influences the phasesof test planning in
whichhe maybe involved. Theengineeron the other hand, is primarily interested
in getting correct solutions to real-world problems. His interpretation of the
problemand translation to the statistician has often failed to bring about the
results really needed. Whatuse doesthe engineerhavefor a statementabout statis-
tical confidenceandhowoften doeshe really understandwhat it meanswhenhe has
it provided? Theengineer is really interested in engineeringconfidence . Such
problemsresulting from these different viewpoints are mostoften attributed to
communication.

Muchdiscussion could be presentedon the influence of the intended useof re-
sults on test planning. Muchof it, however,would require simply reiterating much
of what is said in the abovesections. Theessential task in planning for a test
is matchingthe approachto problemsolution to the real problemat hand. Thereis
no simple step-by-step procedurefor doing this.

Discussionof these and other conceptsare presentedin Sec. A.5 throughA.7
of the Appendix.

39



References

4-1. Anon.: General Specification, Semiconductor Devices, Established Rellabillty.

NASA MSFC-SPEC-438, 1964.

4-2. Anon.: Electronlc Equipment, General Specification for NASA ARC-SPEC-302,

1964.

4-3. Anon.: Standard, Environmental Test Methods for Ground Support Equipment

Installatlons at Cape Kennedy. NASA KSC-STD-164(D), 1964.

4-4. Anon.: NASA Specifications and Standards. NASA SP-900011967.

4-5. Anon.: Military Standard, Test Methods for Semiconductor Devices.

MIL-STD-750A, 1964.

4-6. Anon.: Military Standard, Electromagnetic Interference Test Requirements and

Test Methods. MIL-STD-826A, 1966.

4-7. Anon.: Military Standard, Environmental Test Methods. MIL-STD-810B, 1967.

4O



5. NonagingTest Types

Whenonedoesnot haveto accountfor aging in a test, the approachesto testing
are generally simpler and less time consuming.The relative importanceof aging and
howit affects the testing approachandclassification of tests wasintroduced in
Secs. 2 and3. Thetest types consideredin this section are thosewhich treat the
item basically as if aging is not a factor of importancein the response.

Certain tests are clearly devoidof aging to the tested item. A structural proof
test and anamplifier gain measurementare typically nonagingtypes.

In somecasesitems simply haveto be agedin order to measurecertain character-
istics. A drift test of a gyro, for example,requires operating time andhencewear
(equivalent aging) of the bearings. In such tests, however,the results of the test
donot generally dependuponthe agingsustained during the test.

It is also possible that certain responsesknownto dependalmostaltogether on
aging maybe treated by certain nonagingtest approaches. A mechanicalload applied
to a metal specimenat high temperaturewill result in creep of the material, a cumu-
lative damagephenomena.Thermalrunawayof transistors is an analogousproblemin
electronics. Sucheffects are often treated by a nonagingtest approach. This basi-
cally involves ignoring the cumulativedamageprocessper se andbeing concernedwith
the endresult andits dependencyuponthe stress. For example,a stress maybe
applied at somegiven level and the observation continuedfor several secondsto see
if thermal runawayis initiated.

Evenlong duration cumulativedamageeffects maybe investigated by the nonaging
test types. Typically, onemaymeasurea fatigue strength by stress cycling a material
for a fixed numberof cycles at several levels of stress.

If, on the other hand, the duration of the responseor the amountof cumulative
damagefor a given duration is of moreimportance, the aging test type describedin
Sec. 7 wouldbe employed.

Test methodsdiscussedin this section are identified in Table 5-1. Descriptions
are presentedthere to distinguish amongthem. Thesedistinctions are basedprimarily
on the relative importanceof stress. Rememberthat stress, by definition, is some-
thing that causes(at least potentially so) a detrimental response.

Theorder of the test types in Table 5-1 is generally such that the effects of
stress becomeprogressively moreimportant. The latter type, sensitivity testing, is
a special approachfor testing one-shot items whichhaveonly two possible levels of
a response;a familiar exampleis the acceptancesampletesting of flashbulbs.

It is not easy to assign a known,specific test to one of these categories nor is
it important that onebe able to doso. That is, a specific test suchas a checkof
transistor current gain at low temperaturemaybe a proof test to somebut a performance
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test to others. The test types identified are basic test approaches and we consider

it more important to first understand the basic concepts and let the reader apply

them where applicable.

The emphasis in this section is then only on describing the basic test types

and pointing out unique, practical problems associated with each. Basic uses of these

methods are presented separately in Sec. 6 because there is not always a one-to-one

correspondence between methods and uses.

5.1 Simple Measurements

This applies to the many measurements such as dimensions, weight, and inherent

functional characteristics measurements where the conditions under which the measure-

ments are made either represent usual ambient or are simply irrelevant. Even a non-

stressing stimulus may be required as when measuring the nominal transient response

of an amplifier, an inherent property. In a simple measurement, items are not pur-

posely stimulated with stress to create a response and thus one is not concerned with

measuring the behavior in response to stress. A standard measurement of resistance

with an ohmmeter is a simple measurement; measurement of resistance as a function of

current through the device or ambient temperature generally would not be a simple

measurement.

A simple measurement is thus essentially a test without a response and even

though it may not be considered a test in the strict sense by some readers, it is

included as a type of testing because a large portion of test expenditures are devoted

to it.

The following examples illustrate some typical simple measurements.

Example 5-1

Instructions for incoming tests specify a visual inspection for existence

of corrosion and burrs on the electrical contacts of all relays. Relays

observed to have corrosion or burrs on the contacts are rejected from

application.

This is a simple attributes measurement based on the quality judgment; items are either

acceptable or unacceptable. A simple attributes measurement based on a quantitative

measure is illustrated by the next example.

Example 5-2

The resistance of resistors is checked during incoming inspection for

conformance to + 1% variation from the nominal value. Even though the
resolution of the meter is 0.01%, each measurement results in either an

in-tolerance or out-of-tolerance determination of each resistor.

Many simple measurements are variables measurements. The next example is typical

of these.
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Example 5-3

In the fabrication of a stable platform a particular part is weighed prior

to installation to determine how much compensating mass is required for

balance of the glmbal. Any part mass is acceptable, but it must be recorded

to the nearest 0.01 gram of the instrument scale.

The concept also applies to tlme-varying behavior of items so long as it truly

represents an inherent property of the item as is illustrated by the next example.

Example 5-4

A gyro is operated in a fixed orientation under laboratory conditions

to measure its drift. The results of the test are illustrated in Fig.

5-1 as a continuous recording of its output signal.

The property of real interest for the gyro may only be whether the cumulative drift

at time T is within tolerance or it may be something more complex such as the frequency

spectrum of the recorded process. Either is still a simple measurement.

Simple measurements are applicable to all types of items both simple and complex.

Measurement of characteristics of one-shot items, e.g., the measurement of light inten-

sity of flashbulbs, can be a simple measurement if made under usual ambient conditions.

Simple measurements are prevalent throughout any hardware program. Typical

rellabillty-related uses are:

(i) distinguishing between good and bad items,

(2) measuring performance-related characteristics, and

(3) as the measurement technique for other test types.

These are discussed in Sec. 6.

&J

o

I

Time

Figure 5-1. Simple Measurement of Gyro Drift
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Special Considerations

A survey of practical factors related to testing was presented in Table 4-1.

Even though a simple measurement is the simplest form of a test, many of the factors

still apply. Some typical considerations are discussed below.

Responses. By definition simple measurements are not concerned with responses.

In most cases, the item is simply devoid of a response or any response present is

irrelevant. It is possible in some measurements, however, that the parameters are

unknowingly responding to something. In a gyro drift test for example, the observed

drift may actually be strongly dependent upon test stand vibrations transmitted via

the floor and ground from a nearby highway. Even significant aging may be unavoidably

or unknowingly present in the response. The required gyro operation for the drift

test is certainly providing some wear of the bearings; is it significant? The control

or elimination of such unwanted responses can sometimes be achieved by control of the

conditions which cause it.

Conditions. It would be of little benefit to specify 30 times magnification in

a visual inspection for material defects if the microscope is located on a shaky bench.

It is occasionally necessary to expend considerable effort to isolate items from cer-

tain conditions. Clean rooms, vibration isolation, and thermal and humidity control

are typical of such effort to eliminate unintentional effects.

Even though the conditions for simple measurements are generally less complex

than those for other test types, there can be many practical considerations. Practical

queries should be raised and resolved conscientiously. Typical of these are:

(i) How close the conditions should be maintained to those of normal use?

(2) Are the inputs such as supply voltage and signal inputs at the proper level?

(3) How precisely do the conditions need to be controlled?

(4) Do I really need the laboratory environment?

Measurements. Even though the emphasis is on measurements, there is really no

uniqueness applicable here in contrast to other test types. A typical major considera-

tion is whether to record information as attributes data or variables data. Most often,

this is dictated by the immediate use to be made of the results as exemplified by

Examples 5-2 and 5-3. In contrast Example 5-1 exemplifies the situation where the

nature of the available information restricts the choice to attributes data only.

Occasionally, it proves to be advantageous to record measurements as variables

data (when available) even though the immediate use of it demands only attributes

data.
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Example 5-4

During customer acceptance tests of the equipment employing the resistors

treated in Example 5-2, it is discovered that an analytical assessment of

the effect of parameter variation of circuit components is necessary.

Subsequent sensitivity analysis shows that the resistance variation of

these particular resistors is crucial and realistic estimates of the

absolute variations are needed. But, alas_ The values were not recorded

during the tests.

It is, of course, impractical in all cases to simply record variables data and

convert to attributes data, but there is room for intelligent foresight and discretion

in this matter.

Other practical considerations regarding the measurements can be raised by queries

such as :

(I)

(2)

(3)

Should certain measurements be made simultaneously?

Can special nondestructive testing techniques be beneficial?

How important are precision and accuracy in the measurements?

Simple measurements are the simplest of all test types; the practical considera-

tions still possess similarity in complexity to other types, however.

5.2 Performance Testing

Given some limit which defines the range of conditions within which an item is

considered capable of performing (possibly even in a degraded fashion), performance

testing is generally concerned with how well (or how poorly) it performs within this

range or perhaps what characteristic the item should have in order to be able to

successfully perform within this region. A measurement of amplifier gain as a function

of temperature, load or supply voltage and a measurement of structural deflection

dependency on load or vibration are typical examples of performance tests. Remember,

however, that only nonaging types are being treated in this section.

It is not always easy, nor necessarily important, to clearly distinguish between

a performance test and a simple measurement. We have chosen to call a test such as

a standard amplifier gain measurement under laboratory or usual ambient conditions a

simple measurement. If, however, under the same conditions, one is concerned with the

output waveform characteristics resulting from a complicated input signal, then we

assign it to the performance test category. Why? Because mainly the viewpoint is on

behavior (of the output) in response to some test condition. But there is no need to

quibble over such decisions because any practical principles needed for such border-

line cases could be drawn from either type. Similar borderline situations occur also

between performance testing and other types of nonaging test types.

In a performance test some stimulus, either stress or a nonstressing condition

is applied and the subsequent behavior observed. These conditions may assume any of

the characteristics described in Sec. 2.2 including fixed or time-varying characteristics
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andhavestressing or nonstressing effects. Behaviormaybe discrete, intermittent,
or continuousover time.

Most responsesgiving rise to the behavior encounteredin performancetesting
are reversible; however,numerousexamplesof nonreversible (even exclusive of un-
intentional aging) responsesexist. Measurementsmaybe either attribute or variable
types andmayemphasizeeither viewpoint of determiningperformanceas a function of
conditions or determining conditions whichcausegiven performance. Several examples
are presentedbelow to illustrate manyof these aspects.

Example 5-5

One step of a qualification test procedure for a servo amplifier specifies

that the output null voltage at 60°C shall be less than 0.1v. The amplifier

is operated in an oven at 60°C until is stabilizes and then checked to

determine if the output null voltage is within tolerance.

Due to the attributes measurement, this is merely a performance check. Performance

checks may be considered just one form of a proof test and is also recognized in

Sec. 5.3. This, then, is just another borderline case for classification and may be

viewed as either.

Variables measurements of the following type are very prevalent in performance

testing.

Example 5-6

A nominally IOOK_ resistor is known to have that value of resistance at

25°C. It is tested at 100°C to determine the change in resistance. The
result is an increase of 2.3K_.

This test measures a performance parameter for a particular stress condition. As

illustrated below it is easily extended to measure performance as a function of the

stress.

Example 5-7

The resistor of Example 5-6 is tested at different levels of ambient tem-

perature between -50°C and 150°C. The result is illustrated in Fig. 5-2.

The concept is equally applicable to all types of items to measure any parameter

behavior as a function of test conditions. The next example illustrates the generality.

Example 5-8

In the design of a sounding rocket the aerodynamic drag as a function

of Mach number and angle of attack are needed as design information.

Wind tunnel tests are conducted and the reduced results for a particular

configuration may appear as illustrated in Fig. 5-3. Drag is the per-

formance parameter and Mach number and angle of attack are the conditions.

The concept also applies to consideration of performance as a function of time.
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Example 5-9

The drift of a stable platform is measured while the platform is sub-

Jected to vibration which is programmed to simulate a launch profile.

The test conditions and results are illustrated in Fig. 5-4.

Even though time is an important parameter, the emphasis is not on an aging response.

There is an inference in each example above that the response is reversible.

Most performance tests are, in fact, concerned primarily with reversible responses,

"but they can also be concerned with nonreversible responses as illustrated by the

next example.

,-4
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!
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0
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m-5 sec At i0 sec t2-r- 170 sec

Time

gtl, At2, and At 3 are held to a minimum

l

Time

Figure 5-4. Measurement of Stable Platform Drift Performance over Time
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Example 5-10

The attenuating effect of a pliable material being considered for use

as an impact absorber is measured in a drop test of a load both with and
without the absorber material attached. The results are illustrated in

Fig. 5-5 as measured deceleration of the load. The attenuation and damping

of the shock by the material is accomplished by allowing permanent defor-

mation, a nonreversible process.

Because the deformation is permanent, a repeated test with the same specimen would

yield different results. An absorber employing the material would typically be designed

as a one-shot item. It is possible, however, that certain items having such non-

reversible responses could be designed for several repeated uses. This seemingly

introduces some type of aging and repeated tests for performance might be more properly

considered an aging type.

Another viewpoint of repeated tests may be that of measuring degraded performance.

This concept, however, is broader than implied by the repeated shock absorber tests;

for example, an item may become degraded in one type of performance measurement such

as behavior due to vibration and still another performance measurement made, say, to

shock.

Behavior at overstress (but nonaging) conditions may even be of emphasis in a

performance test. The absolute deflection of a structural member beyond its yield

point, for example, may be a very important consideration.

All of the above discussion has emphasized the direct response problem viewpoint

of "Given the conditions, what is the performance?" The inverse response problem

viewpoint, viz., "Given the performance, what are the conditions?" often arises in

performance testing. A very simple case is illustrated.

/ Shock without Absorber

g2o I

/\

Time --_

Figure 5-5. Measurement of Shock Absorber Performance
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Example 5-11

A relay is tested to determine its threshold voltage (i.e., the voltage

required to cause it to throw). The voltage to the coil is gradually

increased until it throws and that value recorded as the threshold voltage.

A related problem is performance optimization, i.e., determining the combination

of conditions which optimize the performance. As discussed in Sec. 2.3.2 this involves

both viewpoints.

Performance testing is also found throughout hardware programs from feasibility

testing to end-of-service evaluation. The basic reliability-related uses considered

i_ Sec. 6 are:

(i) distinguishing between good and bad items,

(2) measuring performance-related characteristics, and

(3) as a measurement technique for other tests.

5.3 Proof Testing

The concept of proof testing is simple. A stress condition is applied and the

item either fails or does not fail. The basic purpose is to determine whether the

tested item can withstand predetermined stress conditions without failure. Items

considered good pass the test; those that are bad fail the test. Items that pass a

proof test are thus known to have a strength greater than the severity of the applied

stress; items that fail, a strength less than the severity level of the applied

stress. It is important to remember, however, that proof testing is basically a non-

aging type.

The designation, proof testing, has most often been associated with a test in

which the item is either damaged or not damaged as a result of applied mechanical

stress. The concept, however, applies equally to any test designed to "prove" the

capability of any type of item (including, for example, electronic parts) to any £ype

of stress and does not necessarily have to be concerned with damage as a criteria for

failing the test. Note, however, that one does not have a proof test unless a stress

is present.

Example 5-12

In a qualification te&t of a particular transistor type the dc current

gain is measured at -25°C with other conditions nominal to determine if

the transistor gain meets the lower tolerance limit of 30. The measured

gain is 22 and the transistor thus fails the test.

This proof test is really nothing more than a performance check because typically in

such transistor tests the item is not damaged by the conditions. The test shows, how-

ever, that the capability of the item to function properly at the low temperature

conditions cannot be proven.

Since damage was not induced in the tested item in Example 5-12, the response
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is a reversible one. Frequently, the criteria for failure is based strictly upon

whether damage is induced.

Example 5-13

A quality assurance provision for an inverter specifies a vacuum test (with

the inverter inoperative) at a pressure of 0.2 mm of Hg. It is furthez

required that the performance shall he checked following the test and that

the performance shall not be impaired by the test.

Performance impairment in the above example, and hence failure to pass the test, would

be indicative of damage. A similar example for proof testing to check for structural

integrity is presented below.

Example 5-14

A pressure vessel having a rated working stress of 1,000 ibs. gauge pressure

is proof tested by gradually increasing the gauge pressure to 1,500 ibs.

and monitoring for leaks and deformation. If no leaks or deformation are

detected, then the pressure vessel or its design is considered satisfactory

for normal use at 1,000 ibs. gauge pressure.

Such tests are typical of those for testing commercial gas bottles before refills.

For structural items the level of the stress used in the test is most often

selected not to exceed the elastic limit of the structural material. For a good

item the response for any item passing the test is definitely a reversible one and

is nonreversible for any item failing. In contrast, a proof test of pliable materials

could conceivably involve nonreversible responses. The concept of proof testing may

also be extended to one-shot items. A flashbulb could be tested to prove the capa-

bility at a particular temperature.

The above examples are adequate to illustrate the concepts of proof testing. An

excellent example of a proof test design is presented in Ref. 5-1. Note that

the criteria for failure is quite important. The specific criterion depends generally

upon whether emphasis is upon performance or upon integrity but may range from a simple

out-of-tolerance condition to total destruction.

The basic reliabillty-related use of proof testing is for distinguishing between

good and bad items. With this ability it is especially suitable as a screening pro-

cedure for those types of items which can be tested on a go, no-go basis. Further

discussion of these applications is presented in Sec. 6.

Special Considerations

A basic problem in proof testing pertains to the selection of the maximum severity

of the stress to be applied in the test. Should it be the maximum working level, 150%

of it, 200% of it? Example 5-14 specified 150%. Certainly if there is a known

danger of damaging all items at 150% maximum stress, then testing at this level would

defeat the purpose of it.

52



Typically in qualification testing of purchased components the stress levels

are set at the manufacturer's rated value. If the results are acceptable at this level,

then the component is considered qualified for those applications in which the stress

severity is lower than this (but often with derating employed to increase the safety

margin). This implies that the manufacturer knows the appropriate strength of his

components and that his advertised rating is less than this.

The problem with an in-house design and fabricated item is basically the same.

The strength must first be known with some acceptable (engineering) confidence, either

by measurement or analytical prediction, and a rated stress specified which allows

the desired safety margin. The maximum allowable severity of stress is then required

to be less than or equal to this value depending upon the amount of derating desired.

At any rate, the rated stress becomes the level for proof testing. Items which fail

the test are thus known to have a strength less than that allowed.

The above presents the rudiments of the problem resolution; however, it may be

approached in other ways. In any approach trade-offs among the factors, i.e., the

design strength, the safety margin, and the maximum severity of working stress will be

required. The problem is also further complicated when multiple stress factors are

involved.

5.4 Stress-to-Failure (Test-to-Failure) Testing

In a stress-to-failure test approach the severity of the stress is increased,

continuously or in steps, up to the level where failure is induced. This approach

is applicable only to those items which do not have to be destroyed at each level of

stress in order to observe its response. This characteristic clearly distinguishes

it from sensitivity testing described in Sec. 5.5.

Note that because we are talking about nonaging responses the approach is not to

be confused with step-stress or progressive-stress testing approaches applicable only

to accelerated testing as described in Sec. ii. Also note that even though time may

be important for reasons such as delayed responses and rate of increasing stress severity

being critical, there is no implication of a stress-until-failure nature of the test;

thus, it is not to be confused with failure-truncated testing introduced in Sec. 7.

This is only one of several ways of viewing safety margins; more detailed dis-

cussion is presented in Sec. 5.4.

The term "stress-to-failure" is preferred to the often used term "test-to-failure"

because it is more descriptive of the true nature of the testing approach.
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The following exampleillustrates a familiar type of stress-to-failure test.

Example 5-15

A pressure vessel is tested to destruction by gradually increasing the

internal pressure with all other conditions fixed while a critical dimension

y is monitored. The response during the test is illustrated in Fig. 5-6

as Ay, a change in the dimension y, versus the stress of gauge pressure.

If the definition of failure for this test is rupture of the vessel then the test

is literally a stress-to-destruction test. Even though the concept is most popularly

associated with stressing mechanical items to induce damage it is also applicable to

other types of hardware and other criteria of failure. Application to an electronic

equipment is illustrated by the next example.

0.2

o

0.i

0

I Rupture

ure at 2690 ibs.

0 i 2 3

Internal Pressure (klbs/in 2)

Figure 5-6. General lliustration of a Possible Stress-to-

Failure Response of a Pressure Vessl to Gradually

Increasing Internal Pressure

Example 5-16

A dc to dc converter is tested by increasing the load current in increments

to the level where failure occurs. Failure is defined by the output

voltage variation exceeding one volt. The response is illustrated in

Fig. 5-7. With the incremental changes in stress levels for the above

test the stress level at which failure occurs is not as precisely defined.
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Note the difference in the failure definitions of the two examples above. As

for proof testing the specific criterion depends generally upon whether emphasis is

on performance capability or integrity and failure definitions can range from simple

nondestructive criteria such as an out-of-tolerance to some predetermined level of

damage such as total destruction or impairment of performance.

The stress-to-failure approach finds application only when there is a need to

intentionally fail an item. The prime uses described in Sec. 6 are thus for measuring

strength and for investigating modes and mechanisms of failure. Reference 5-2 gives

a good description of an application of the approach to measuring strength distribution

characteristics of electronic equipment.

5.5 Sensitivity Testing

The specific severity level of a stress, say pressure, which would cause a particu-

lar explosive bolt to fall in operation cannot be determined experimentally by a stress-

to-failure approach because a test at any level requires destructive operation of the

item. Sensitivity testing is an approach especially suitable for investigating sensi-

tivity of items requiring such destructive, one-shot operation to test conditions.

It has been employed for many years in connection with dosage mortality and response

to bio-assay work.

In a sensitivity test an item representing a sample from a population of interest

is subjected to a stimulus and either of two possible levels of a response occurs,
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e.g., an explosive bolt fires or doesnot fire. Theresponselevel is assumedto
dependuponwhether the stimulus exceedssomecritical physical threshold for the
particular sample. Furthermore,it is assumedthat a distribution of these thresholds
exists for the population andthe aimof sensitivity testing a numberof items is to
describe one or several characteristics of this distribution.

Theunique distinguishing features of sensitivity testing thus are:
(i) only oneresponseis available for eachlevel of stimulae andfor eachitem

tested, and
(2) a responsecanhaveonly one of two possible levels (i.e., the measurement

is an attributes measurement).
Note first that a sensitivity test of a single item is nothing morethan a proof

test. It is the use of these in combinations at different stimulus levels that demand

the special attention here.

A general illustration of the sensitivity testing approach is illustrated by the

following example.

Example 5-17

Ten explosive bolts are tested for satisfactory operation at each of

five levels of pressure. The results for the total sample of fifty

are presented in Fig. 5-8 as the relative number of successes at each

pressure level.

i0

= 6 --u_O
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o 4 --
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0

0

Figure 5-8.
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lllustration of a General Form of Sensitivity Testing
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With suchan approachit is easy to seehowthe responsedependencyon stress severity
canbe determined.

Therehas beenconsiderableemphasisin the past on designof sensitivity tests
for greater efficiency in terms of obtaining moreinformation of the type neededper
test sample. Manydesignshaveevolved.

Theaboveexampleillustrates a nonsequentialapproachin which tests of indi-
vidual specimenscanbe performedwithout regard to order of stimulus levels. In a
strict nonsequentialapproachk stimulus levels are specified prior to the test with

ni(i = i, 2, ..., k) items allocated for eachi-th level. Theprobit design is a
non-sequentialdesign andwasoneof the earliest of all sensitivity testing designs.

Eventhough nonsequentialapproachesare still frequently used, sequential
approacheshaveprovento be moreefficient for most applications. Theearliest of
thesewas the Brucetonor UpandDownMethod. In a sequential approachan item is
tested at a particular level, andbasedon the responsethe next item is tested at
somehigher or lower level. Thetesting proceedson this basis with the stimulus level
for eachdependentuponthe results of prior tests, somefor only the previous one
and others for several.

Table 5-2 identifies a numberof available designs for sensitivity testing. The
uniquenessof eachdependsmainly uponthe inherent assumptionsabout the underlying
statistical distribution and the purposeof the test.

Somerequire no assumptionabout the distribution, andhencethe results are
distribution-free while others assemea specific type of cumulativedistribution for
the responsefunction, for example,normal(or Gaussian), log-normal, or uniform
distribution.

As noted earlier sensitivity testing is generally devotedto describing oneor
morecharacteristics of the distribution of threshold levels which causesthe response.
Actually, both the direct and indirect responseproblemviewpoints are applicable
in sensitivity testing. Example5-17 aboveandExample5-18 later illustrate its
use for the direct responseproblemof seeking the response(in this case the statistical
frequency) dependencyon stimulus level. A simple caseis representedby specifying
a stimulus level andestimating the fraction responding. For the increase response
problemonemaybe interested in finding the medianstimulus level at which 50%of
the items wouldbe expectedto respond. For a symmetricaldistribution this would
be equivalent to estimating the meanand could be used in determining the safety
margin for the particular item being evaluated.

Note that wedo not refer to designs themselvesas test types. Sensitivity
testing is the basic test type; the designations refer to different designsof sensi-
tivity testing in muchthe sameway that there are different designs for a series of
performancetests.
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Since it is not possible to discuss all of the designs in depth, two are chosen

for discussion below to illustrate more of the concepts. Reference 5-3 is an excellent

source for more in-depth treatment of other designs. It also identifies a number of

good background references. Reference 5-2 gives a good description of using the Langlle

method in a systems test program.

Problt Design - A Non-sequential Type

Problt design is one of the earliest formal approaches specified for sensitivity

testing. In the design there are k levels of the stimulus with ni(i = I, ..., k_

items tested at each level. The choice of k and n depends upon such factors as

application, the number of items available for testing and inherent assumptions.

Example 5-17 is an illustration of a simple form in which n = i0 for each level which

are equally spaced. The presentation of results in Fig. 5-8, however, does not con-

form strictly to a probit analysis.

Probit analysis was developed for use in connection with the probit design and

is based on the assumption that the critical threshold levels for a population are

cumulative normal. The approach is to transform the fractions of items having the

same response at each stimulus level to probits and fit a llne of probit value versus

stimulus level. Probit is defined as the standard normal deviate corresponding to the

fraction plus five. For r_ acceptable responses of ni_ tests at level i the standard

normal deviate is easily obtained from tables of normal error as the deviate corres-

ponding to cumulative probability rl/n i. The addition of 5 is a formal procedure

merely to eliminate negative numbers in the analysis. Tables giving probit values

directly for fractions are readily available, e.g., Ref. 5-5.

Example 5-18

Ten flashbulbs are tested with nominal voltage and current but at

different temperature levels. The number of acceptable responses at

each level is tabulated below and the computation of probits is shown

in accompanying columns. A plot of the computed probits versus

logarithms of the stress level is presented in Fig. 5-9 with a straight

line fitted to the points.

The term, probit, is a contraction of "probability unit" and was introduced by

Dr. C. I. Bliss [Ref. 5-4].
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Example5-18 (Continued)

Level
No.

2

3

4

5

No. of Standard
Temperature Unacceptable Fraction Normal

(°F_ Responses Respondin_ Deviate

ii0 i 0.i0 -1.28

120 2 0.20 -0.84

130 3 0.30 -0.52

140 4 0.40 -0.25

150 8 0.80 -0.84

Ad___d

5

5

5

5

5

Probit

3.72

4.16

4.48

4.75

5.84

5

3

2

i

0 l J I i f
ii0 120 130 140 150

Temperature (°F)

Figure 5-9. Sample Probit Graph
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Straight line fits are obtainedby methodsdescribed in Sec. A.8 of the Appendix.
The transformation has thus provided the frequencyof responseas a linear function
of the stimulus variable. Occasionally, experienceor underlying knowledgemaysuggest
a preliminary transformation suchas logarithm of the stimulus parameter.

Whatadvantagesdoesthe plot of Fig. 5-9 represent over the type in Fig. 5-8
which did not employprobit analysis? Theonly advantageis that the frequencyof
responseis transformedto a convenientlinear function of the stimulus. But whyn_t
simply fit a straight llne through the points in Fig. 5-8? This is perfectly per-
missible and is, in fact, often relied uponwithout going through the probit procedure.

Remember,however,that probit analysis is baseduponan underlying assumption
that the responseis cumulativenormal. Whenthis assumptionis valid problt analysis
is helpful in the mechanicsof determiningthe dependencyof fraction responseon the
stimulus level. This assumptionsometimesintroduces difficulties which are exempli-
fied by the next example.

Example 5-19

The results of the tests described in Example 5-17 are to be analyzed by

a problt analysis. An attempt to apply the same procedure as employed

in Example 5-18 (especially in using tables of normal error) results in

the following.

No. of Standard

Level Pressure Unacceptable Fraction Normal

No. (mmof H_) Responses Respondln_ Deviate Ad___d Problt

1 30 0 0 -® 5 -_

2 25 i 0.i0 -1.28 5 3.72

3 20 2 0.20 -0.84 5 4.16

4 15 1 0.i0 -1.28 5 3.72

5 i0 4 0.40 -0.25 5 4.75

A plot of the probits is presented in Figure 5-10. The first problem recognized

is that of the problt for the zero (or unity) fraction response. As indicated by

the problt at the first level this gives rise to an infinite probit by the procedures

followed. Accepted practice is to rely on minimum (or maximum) working problts for

purposes of fitting the llne. This problem is discussed in more detail in Refs.

5-i and 5-2.

A second problem is noted from the fact that the problt for level 3 is greater

than that for level 4. There is no guarantee that the observed response function
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Figure 5-10. Probit Plot Illustrating Ambiguities

(i.e., the fraction responding at given levels versus the level) for certain choices

of stimulus variables is monotonic. For example, in Example 5-19 one might normally

think that the fraction failing would increase with decreasing pressure (increasing

stimulus level); however, it may, in fact, be true that level 4 represents a less severe

condition than level 3. Another way of stating this is that some of the items failing

at level 3 may not have failed had they been tested at level 4. As discussed in

Sec. 2.2.2, one must be careful how he defines the severity of the stimulus or stress

and transformation of the stimulus variable may be in order.

Even with the proper choice of stimulus variable, it is to be remembered that

one is still not observing a true cumulative response. That is, the observed fraction

responding at any one level has a binomial distribution and for small sample sizes

the random variation may yield nonmonotonic fluctuations in the response function.

Transformations of the frequencies of response to other than probits are sometimes

helpful to permit fitting curves easily when probits do not work. Reference 5-2 cites
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anddefines logit, log log, andangular transformationsas other possible types. Tables
for values of theseare available in Ref. 5.5.

Theefficiency of probit designmaybe improvedto someextent by specifying
different sampl_sizes for each level dependinguponthe relative weighting desired
at eachlevel. Attempts to improvethe probit design, however,usually fall short of
the efficiency achievedby sequential designs.

Up and Down Design - A SeRuential Design

There are several possible variations of this design. The original, the Up and

Down (Bruceton) design, was first implemented at the Explosives Research Laboratory

at Bruceton, Pennsylvania. The design is aimed primarily at the purpose of estimating

the median, x0. 5, of the distribution of the stimulus levels which cause the response

of interest. The analysis is based on certain distributional assumptions. The design

of the original approach consists of the following rules.

(i) A fixed step-size, d, for the stimulus levels is chosen and is selected to

be as near the standard deviation of the distribution as prior knowledge

permits.

(2) The first test is performed at a stimulus level as near as possible to the

median.

(3) The n-th test is performed at a stimulus level

L = I Ln-i + d; Yn-i = 0

n I - d; = i
Ln-i Yn-i

where Yn-i = 0 (or i) denotes an acceptable (or unacceptable) response.

(4) Testing continues until some specified criteria is met. This may be based

on the available sample size or some criterion such as continuing until a

certain number of changes of response have occurred.

An illustration of this procedure and the results is presented in Fig. 5-11. Various

_nalysls procedures are suitable for estimating the median and variance of the stimulus

threshold distribution from the test results. A method was developed by Dixon and

Mood specifically for the Up and Down design results when the frequency of response

can be assumed to be cumulative normal. This is described in Ref. 5-5.

Of the modifications in the Up and Down design the most useful is the Up and

Down Small Sample Method, recently reported by Dixon in Ref. 5-6. The rules for

conducting the tests are the same as those for the original approach except for the

last step. The modification consists of continuing the testing until the total number

of tests is N' where N' = N + NL - 1 with N representing a prespecified nominal sample

size and NL, the number of like responses at the beginning of the series. For example,
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Figure 5-11. Illustration Up and Down Test Design and Results

in the series shown in Fig. 5-11 and for, say, N = 4 only 5 (i.e., N') tests are

required resulting in the sequence of results of 00100.

Note that N is specified prior to the test whereas N' is known after the first

change of response from the initial type. N is dependent upon the confidence level

required for the estimate of the median.

For the analysis the estimate of the median Xo. 5 is computed simply by
^

Xo. 5 = xf + kd

where xf is the stimulus level used in the last test of series, d, is the spacing

of the stimulus levels, and k is a quantity dependent upon the sequence of the two

types of responses. Tabulations of k for all response sequence combinations for

N _ 6 are given in Refs. 5-5 and 5-6.

Example 5-20

Suppose the flashbulbs in Example 5-18 were tested by the Up and Down Small

Sample Method. Let N = 6 be the desired nominal sample size and let the

first test be conducted at 120°F. Further, let 0 represent an acceptable

response and i an unacceptable response. A possible sequence of responses

and the corresponding stress levels dictated by the rules of the design are:

Responses

0011010

Temperature Levels (°F)

120, 130, 140, 130, 120, 130, 120, 130.
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For this responsesequence,a value of k = 0.952 is obtained from the tabulation in
Ref. 5-6 and the estimate of the medianthreshold temperatureis

x0.5 = 130+ 0.952(10)= 139.5°F.

It is further stated in Ref. 5-6 that the estimateshaveerror approximately

independentof the chosenstarting level of the tests and spacingbetweenstimulus
levels. Thespacingshould still be about equivalent to the standarddeviation of
the responsethresholds but anychoice between2/3 and3/2 of it will provide good
estimates.
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6. Basic Uses of Nonaging Test Types

Descriptions of nonaging test types were presented in Sec. 5. A particular test

type may find several uses. An illustration of the complexity of this relationship

between test types and basic uses is presented in Fig. 6-1. The purpose of this sec-

tion is to describe the basic uses and illustrate some practical problems associated

with using specific test types for fulfilling them. As described in Sec. 3, the basic

problem uses are also encompassed in broader program applications such as reliability,

development and acceptance testing. This is further discussed in Secs. 13 and 14.

6 1 Strength Measurements

The strength of an item generally refers to its ability to withstand stress with-

out failure. A measurement of strength is a measurement of an ultimate capability of

the item. Here, we are talking about strength as basically a nonaging phenomena in

the sense that we are primarily interested in the level of stress (or its severity)

which causes failure in contrast to a time at which failure occurs. It is permissable

to talk about strength when the response to the stress is time or aging dependent as

when one refers to fatigue strength. One type of fatigue strength, for example, may

be defined as the maximum peak cyclic stress for which failure does not occur for 1,000

stress cycles. Also there are strength tests (see, for example, Ref. 6-1) in which

failure may not occur immediately after application but after a minute or so has

elapsed. Regardless of such situations we generally consider strength as independent

of aging.

Whereas in most strength testing of mechanical items the criteria for failure

is some predetermined level of damage such as yield or rupture of the material, failure

can be defined on any basis from a simple out-of-tolerance condition to total destruc-

tion. The strength of a resistor subject to temperature stress may thus be defined

as that temperature at which the resistance exceeds its tolerance and the test to

measure it may not damage it at all or age it significantly.

A formal definition of strength is provided by an appropriate stress-strength

model. For the immediate purpose we will rely on the following: "There is a level

of stress severity, called strength, such that there is failure if and only if the

stress severity exceeds the strength." More complex stress-strength modeling concepts

are described in Refs. 6-2 and 6-3.

The concept of fatigue being analogous to aging was introduced in Sec. 2.

The importance of specifying severity instead of just stress itself was dis-
cussed in Sec. 2.2.2.
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A common example of strength in this context is the yield strength of a metal;

however, even for metal one can easily define other strengths such as ultimate strength

and rupture strength. Since the concept of stress in testing is extended from mechanical

stresses to include other physical entities such as temperature and radiation, there

is also an analogous extension of strength to include these. Remember, however,

that the units for strength are those of the severity of the stress which is not

necessarily the same as those of the stress itself.

As noted in Fig. 6-1, the measurement of strength can be accomplished by either

the stress-to-failure or the sensitivity testing approach. The approach depends upon

the nature of the item. For those items which can be tested by the stress-to-failure

approach, the strength of individual items can be measured.

Example 6-1

For purposes of application of a particular pressure vessel design, failure

of the vessel is defined by a critical dimension y changing by 0.i in.

The strength of the vessel to a stress of gauge pressure is measured by

a stress-to-failure approach. The response is illustrated in Fig. 6-2

as the monitored Ay, the change in dimension y, versus gauge pressure.

The strength of the vessel is measured as 1960 ibs.

-H

_0

o
.r4

_0

0.2

Tolerance Limit

0.i_ Failure at 1960 ibs

___/
0

0 i 2 3

Gauge Pressure (klbs/in 2)

Figure 6-2. Response of Pressure in Stress-to-Failure Test where

Failure is Defined by the Tolerance on the Critical

Dimension

The extension of stress to include other physical entities and the implication

was discussed in Sec. 2.2.2.
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Note first that nothing wassaid in this exampleabout damageto the vessel. It is
thus possible that the responsecanbe entirely reversible, i.e., returning the gauge
pressure to zero after the test would result in the monitoredresponseretracing the
responsecurve shownin Fig. 6-2.

Whereas,the strength of individual items canbe measuredby the stress-to-failure
approach,it cannotbewith sensitivity testing. Only characteristics of a multiple
samplecanbe measuredby sensitivity testing. Example5-18 illustrates the use of
the Probit design for measuringthe cumulative frequencyof responseas a function of
stress severity andExample5-20 illustrates howthe Up-and-Downdesign canbe used
to obtain estimatesof characteristics of distributions of stress severity levels which
causefailure.

Themost useful conceptof strength is that of a strength distribution. Fig. 6-3
showsa popular illustration of a strength distribution and its interaction with
applied stress. If the strength distribution of an item is knownexplicitly, then

the probability of the item failing due to applied stress havingseverity level S1 is

Probability Density Function
of Applied Stress Severity

Probability Density

tion of Strength

Stress Severity LeVel, S

Figure 6-3. Strengthvs Applied Stress Severity Distributions
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Prob. of Failure for Stress Severity S I = j g(S)dS

where g(S) is the probability density function for the item's strength. Furthermore,

if the severity of the applied stress was known to be distributed according to a

probability density function f(S) then for all possible stresses

Prob. of Failure for all Stress =

where n is a dummy variable of integration.

Typical uses of these concepts are:

(i) computing safety margins,

S

--oo --_

(2) reliability demonstration and estimation, and

(3) determining what should be the severity level of the operating stresses.

Safety margins are simply a measure of the separation between operating stress

severity and strength but are typically defined in several ways. For example, with

uncertainty or variability in both stress severity and strength a popular definition

is

_strength - _stress
Safety Margin --

_°s2trength + °2stress

where _ and o represent the mean and standard deviations. Alternately, one might

assume a maximum stress severity S as a reference and define
max

Safety Margin _ _strength - Smax
o
strength

The use for reliability demonstration and estimation follow from the earlier

expressions for probability of failure where reliability is one minus the probability

of failure. Examples and further discussion of this appear in Vol. IV - Prediction

of this series and Ref. 6-4.

The allowable characteristics of the operating stresses can be determined on

the basis of either a desired safety margin or a specified reliability. This first

requires knowing the appropriate characteristics of the strength distribution which is

an important reason for testing to measure strength.

Rarely is enough testing performed, either by the stress-to-failure or the sensi-

tivity testing approaches to obtain a precise representation of the distribution.

Most often, the results of several tests are used to obtain estimates of the charac-

teristics such as percentiles, the median, the mean, and the standard deviation.
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Histogram of Stress-to-Failure Results for a Pressure Vessel

Example 6-2

Eight pressure vessels are tested by the method of Ex. 6-1 in order to
evaluate the strength of the design to gauge pressure. The results are

tabulated below.

Test No.

Pressure Level at

which Failure

Occurs, x

(Ibs./in 2)

1960

Sample Mean - x -

2090

3 _ 5 6

1750 1930 2110 1980

8
- 1

iZl xi

- 1990 psi.

7 8

2160 1940

8Sample Std. Dev. = s = Z (x i - x)_2
i=l

- 121.4 psi.

A histogram of these results is shown in Fig. 6-3.
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Onthe basis of a small sampleof eight measurementsno inferences canbe made
concerningthe form of the distribution of the measurements.It is true that a statisti-
cal test for a specific form of the distribution, e.g., normal, canbe madebut the
capability of detecting a departure from the specific distribution form is very small.
However,it is often the casethat a great deal of similar data hasbeenobtained in
the past and that certain specific distributions havebeenfound to be adequate
representatlons of the measurements.Twoapproachesare usedbelow to demonstrate
what further inferences canbemadeon the basis of the small samplesubject to stated
assumptions.

Approach i. Assume the measurements are normally distributed with a mean _ and

standard deviation o both of which are unknown. Then on the basis of the estimates

and s of the mean and standard deviation and the use of the t-distributlon (see

Sec. A.I of the Appendix) one can obtain a confidence interval estimate of the mean

stress at which failure occurs. Thus, if a confidence level of 90 percent is selected

a one-slded interval is given by

-- s

_ x- t.90(7) /_n

For x = 1,990, s = 121.4, n = 8 and t0.90(7 ) = 1.415 (Ref. 6-5), then _ = 1,929 psi

with 90 percent confidence.

Another useful type of inference for a small sample of this type is a statistical

tolerance interval for an individual measurement, Ref. 6-5 has more detailed discussion

and Sec. A.6 of the Appendix has a limited description of the procedure. In this case

the inference can be made that 95 percent of individual measurements fall between

- ks and x + ks, with a selected level of confidence, where k is obtained from tables

in Ref. 6-5. In this example, for 90 percent confidence k = 3.136, thus 95 percent

of the measurements fall between the values 1,609 and 2,271 with 90 percent confidence.

This inference is also based on the assumption that the observations are normally

distributed. These tolerance intervals can also be made one-sided as the above confi-

dence interval. Reference 6-6 contains the appropriate tables and a description of

the procedure.

Approach 2. Do not assume a specific distribution form; this is thos a distri-

bution-free approach. From tables of Ref. 6-7 the following type of confidence inter-

val can be obtained. For example, one is 96 percent confident that 50 percent of the

individual stress-to-failure measurements (obtained under the same conditions as those

of the sample) fall between the largest and the smallest value observed in a sample of

eight measurements.

Similarly an inference concerning the median (as opposed to the mean for a normal

distribution) can be made. For eight measurements one can infer with confidence 0.992
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that the medianfalls betweenthe smallest and largest measurements,i.e., 1,750 and
2,160 psi, respectively. This inference is basedon the assumptionof symmetryof the
distribution. Theconfidencelevel is determinedby the samplesize and the order
statistics used(i.e., the largest, next largest, etc.). SeeRef. 6-5 for abbreviated
tables of information neededfor the inferences under this approach.

6.2 Investigation of Failure ModesandMechanisms
Mechanismsandmodesof failure are often of interest from the reliability view-

point. To investigate these, there is no alternative but to have the item fail. Failure
investigations often follow the observation or occurrenceof failure during the normal-
coarse of someother effort suchas operational use, prelaunchcheckout, field testing,
life testing, or proof testing. But it is sometimesnecessary,evensometimesformally
speciifed, that items be purposely failed in order to learn moreabout the mechanism
andmodesinvolved.

As illustrated in Fig. 6-1, the stress-to-failure and the sensitivity testing
approachesare the basic test types applicable. Thestress-to-failure approachis
obviously limited to those items which canbe treated in that manner. All items
tested by the stress-to-failure approachare available for "post mortem"investigations.
Sensitivity testing is less efficient, but there is no alternative for one-shot items
whichhave to be destroyedin order to obtain a response.

Themajor practical consideration here is makingsure that your test gives you
the correct failure mode. In the stress-to-failure approach,for example,the severity
of the stress canbe increasedslowly or rapidly. Theselection of this rate could be
important. It is also possible that multiple stress factors acting simultaneously
could give a different failure modethan wheneachis acting singly.

6.3 Distinguishing BetweenGoodamdBadItems
Thebasic problemhere is one of placing items on test undersomespecified

test conditions and using the results to determinewhethereachis goodor bad. The
criteria distinguishing betweengoodandbad can range from a simple in- versus out-
of-tolerance condition to not-damagedversus damaged.

As illustrated in Fig. 6-1 the basic test typesmostsuitable for this purpose
are proof testing, performancetesting, and simplemeasurements.With the proof
testing approachone is most often concernedwith whether the item is damagedor not.
For example,a structural proof test maybe employedin flight qualification testing of
an airframe; a load is applied at somepredeterminedmaximumlevel andthe airframe
either fails due to damageor passesbecausethere is no damage.This is often referred
to as stress-strength comparison.

Whenthe failure criteria is less severe, say, deflection of the aircraft structure
being less than somespecified amount,the test approachis hardly morethan a performance
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check. Morecomplexcriteria of performancemaybe employedin distinguishing between
goodandbad items, for example,the shapeof a performanceresponsesurface or the
time behavior over a complexprofile of conditions.

Simplemeasurementsare very commonfor this usewith quality control being a
very familiar area of application.

Basically, in this category one is only concernedwith makinga discrete value
jludgmentabout eachitem tested. If the item doesnot haveto be damagedor destroyed
as a result of the test, then the procedurecanbe usedas a go, no-gotest. That is,
items that pass the test are available for other tests or for intended application
anditems that fail are no longer useful (at least for the original purpose). Speci-
fically for items intended for operation, the procedurebecomesa useful screening
procedurein acceptancetesting; this is discussedfurther in Sec. 14. If the item
is not intended for operational use, the procedurewill mostoften be a qualification
test.

Whenthe item operation is a one-shot type suchas the normalmodeof operation
for a squib or a flashbulb andis tested by this procedure, the use emphasizedhere
is not an endresult. Rather the value judgmentof whether the item is goodor bad
becomesan input to a strength measurementor a samplingprocedureto consider popu-
lations of items.

Themostbasic problemwith this application is in selecting the criteria for
distinguishing betweengoodandbad. For the proof testing approachthis problemgas
discussedin Sec. 5.3 but as mentionedthesecandependheavily on the maximumseverity
level of the working stress and/or the estimatedstrength of the item. For the per-
formancetesting andsimple measurementsapproachthe answeris approachedthrougha
tolerance analysis (seeVol. I - ParameterVariation Analysis of this series).

An extensionof using results only from a single test to makethe value judgment
of goodversus badis to use the results of several different tests. Thesimplest
procedureis to apply the different tests in sequence. This is often donein screening
programsandfurther discussion appearsin Sec. 14.

Anotherprocedureis to combinethe results from different tests according to
somemathematicalmodel. _ very simple exampleis the computationof a gain-bandwidth
product of an amplifier from separate measurements of gain and bandpass. More complex

computations with analytical models are often used. For example, a value judgment for

a specific structure may be made by making several different measurements and combining

the results through conventional structural equations.

Empirically-based models have also been used. Reference 6-8 gives a discussion

of this approach for a linear model of this type. The approach is called linear dis-

criminant. In brief, p parameters are measured for a device and the values Xl, ..., Xp
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substituted into an equation of the form z = XlX I + ... + XpXp where the X's are

optimal numerical "weights" associated wlth the measured values. The equation is

the linear discriminant and if z, the weighted average of the parameter values, is less

than a critical value z' then the component is unacceptable. Obviously z' has to be

determined beforehand and this can require considerable experimentation and analysis.

The approach is described in detail in Ref. 6-8. The criteria distinguishing good

from bad is arbitrary. In Ref. 6-8 it was based on life; however, it could also be

based on strength or performance.

Because of the extensive experimental and analysis effort required, such an

empirical approach is feasible only for situations where large numbers of components

of the same type are handled.

6.4 Measurement of Performance Characteristics

As introduced in Sac. 5.2 performance is generally concerned with how well (or

how poorly) an item performs within the range of conditions in which it is considered

capable of performing (possibly even in a degraded fashion). The performance testing

approach was addressed specifically to observing this for individual items. Results

of performance measurements for individual items are often directly appllcable as an

end result as the performance measurements of interest. The general problem of

measuring performance, however, is broader than this.

Besides performance testing per se, Fig. 6-1 illustrates that sensitivity testing

and simple measurements are also applicable for measuring performance characteristics.

One may apply the methods of sensitivity testing described in Sac. 5.5 to measuring

the performance threshold of one-shot devices. For example, the distribution of supply

current which yields a given peak light intensity of flashbulbs of a particular type

can be estimated by this approach. The basic procedures and designs are no different

from those for measuring strength with this approach.

Simple measurements also yield useful information on performance. The measurement

of the distribution of resistance of a certain type of resistances under fixed, benign

conditions can be information of considerable importance in performance estimation

even under different environments. Considerations of the use of such information is

presented in Vol. I - Parameter Variation Analysis of this series.

Response surface determination (i.e., the inverse response problem described in

Sac. 2.3.2) for performance and optimization of performance are both frequently encoun-

tered as basic problems applications. Some good discussion of these from the experi-

mental design point-of-view is presented in Ref. 6-4.

The general problem of measuring performance characteristics is basically one

of estimation. The approach to estimation is discussed in Sac. A.5 and A.6 of the

Appendix.
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The most outstanding practical problem is selecting the parameters to be esti-

mated. This is related heavily to the intended use of results.

6.5 Measurement Techniques for Other Test Types

In a proof test the measurement of response is an attributes measurement. The

measurement itself in a proof test is really the same in concept as the simple measure-

ments described as a basic test type in Sec. 5.1. Measurements are involved in all

basic _ test approaches, even in aging types. For example, a life test of a component

requires making simple measurements over time to determine when a failure response has

occurred. Also, a performance test to measure the dependence of a performance parameter

on a stress requires certain simple measurements.

The above is a simple illustration of how one basic testing approach can be a

measurement technique for another. Other nonaging test types are applicable in this

role.

Consider, for example, a measurement of llfe of a power supply and assume that

it is desired to age it while operating at 50% load but that the desired criteria for

success or failure is whether it is capable of supplying 120% load when demanded. The

test can be designed to provide these aging conditions with periodic checks at 120%

load. These checks at 120% are thus nothing more than a series of proof tests dispersed

throughout the duration of its life.

Similarly, a stress-to-failure or a sensitivity testing approach is sometimes

nployed to measure periodically over time a residual strength of items which are

elng aged. This approach would assume that strength is changing with age or else

here would be no benefit to testing more than once. An example of this procedure

0 determine a hazard rate function is described in Ref. 6-9.

It is of utmost importance in knowing what is being measured with such approaches

as failure to do so can readily cause misinterpretation. For example, to age an item

at one stress level and then in a very short period cause it to fail by a stress-to-

failure approach may introduce a completely different failure mode than if failure had

resulted later from continued aging. Failure from aging is a cumulative damage

phenomena and is to be interpreted quite differently from failure resulting directly

from stress. This specific concept was discussed briefly in Sec. 2.2.2; more detailed

discussion is presented in Ref. 6-2.
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7. Aging Test Types

When aging dependent properties of an item are to be investigated by an experi-

mental approach, it becomes necessary to test items for sufficient durations to ob-

serve and measure these properties. For example, if one really wants to know how

long a gyro will last before wearout, he has no alternative but to test it until

failure occurs. The test duration may possibly be shortened by accelerating the

wearout process in some way; however, it must still be operated until its useful

life is consumed.

Certain aging effects can be treated by testing for some duration less than the

total life the item is normally expected to have. For example, the observed per-

formance in the early portion of the llfe of a component may provide some clue about

how well it will perform during later life. Component failure rate estimates are

often made by logging a certain number of device operating hours during the early

life of a sample of items; however, this approach can have certain weaknesses de-

pending upon the distribution of failures over time and the importance of the esti-

mate precision.

A summary of basic test types which emphasize aging is presented in Table 7-1.

The distinctions here are based generally on the relative severity of aging.

Failure-truncated testing is the most severe in that all of the useful llfe of all

or a significant portion of the sample tested must be consumed. In the sequential

approach, testing may involve failures but the test must be continued until suffi-

cient time passes to make some value Judgment about the item (or sample); the amount

of aging required of tested items may thus range from small to large amounts. In

time-truncated testing the relative amount of aging of each item is generally much

less than for failure-truncated testing because of the shorter test duration.

Performance testing is a special situation where the amount of aging depends upon

how much is needed to observe the performance properties of interest. When the

amount of aging becomes insignificant or irrelevant, the basic nonaging types de-

scribed in Sec. 5 apply.

It is important to re-emphaslze what we mean by aging. Aging is a non-

reversible process that occurs with the passage of time and results in the accumula-

tion of damage. Most often, aging can be equated intuitively to expending useful

llfe of an item; however, as in the case of annealing (negative damage), not all

aging is detrimental and may thus actually improve the item and lengthen its life.

This is in contrast to the distinctions among the nonaging types which were

based upon the relative severity of the stress.
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Table 7-1

Comparisonof AgingTest Types

Test Typea Examples Distinguishing Features b

Time-Truncated Test

Sequential Testing

Failure-Truncated Test

Performance Test

Mission duration simulation

of a spacecraft component

to determine if it survives

the mission

Power burn-in of transistors

Sequential-life testing for

performing accept-reject

decisions of a design

Battery llfe test

Failure mode investigation of

a gyro for long term

operation

Measurement of transistor

current gain for long

durations

Periodic functional checking

of a radar for long term

degradation

Items are purposely aged only

for a fixed duration.

Testing continues until suffi-

cient time passes to deter-

mine whether items are good

or bad; this is a special

approach employing sequential

analysis to determine whether

to continue testing.

Items are purposely aged until

each fails or a specified

proportion of a population

fails.

Items are purposely aged by an

amount dependent upon the

needs of the test; the purpose

is to effect aging-dependent

changes in performance

characteristics.

a
Note especially that accelerated testing is not identified as a basic test

type but is applicable to all of the above mentioned approaches.
b

When the amount of aging is insignificant or irrelevant the nonaging test types

apply.
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A run-in test of an engine, for example,maybe concernedwith improvingit both from
a performanceand life viewpoint. Froma reliability point-of-view, however,weare
mostfrequently concernedwith the detrimental effects as whenweare looking for
failures or degradedperformance.

In all of these test types the observedresponsesare thus assumedto result
from an underlying cumulativedamageprocesswhich itself maynot be readily (if at
all) observable. A transistor, for example,mayexhibit the behavior wewant for
monthsbut then, all of a sudden,fail with no indication that this wasimminent.
O_the other handwemaybe able to periodically checkthe wear of a bearing and
predict whenfailure will occur. It makeslittle difference from the basic testing
viewpoint usedhere whether the damageis internal (physical or chemicalstructure
or compositionchanges)or external (wear, erosion, etc.) so long as it is cumulative.

Note that the classification acknowledgeslittle about the test conditions
themselves,i.e., about their severity or howthey are programmedover time.
Certainly the rate of the agingprocess is dependentuponthis. This is really
commonto all of these aging types. Accelerated testing, for example,purposely
speedsup the aging processandis applicable to all of these.

With the aboveclassification, the descriptions of the basic test types are
notably simpler than for the nonagingtypes.

7.1 Failure-TruncatedTesting
In a failure-truncated test of a single item the item is subjected to the condi-

tions until a failure criteria is met. Theitem is thus alwaysfailed. Theconditions
maybe constant or varying andthe failure criteria mayrangefrom a simple out-of-
tolerance condition to total destruction.

Example 7-1

A nominal six-volt battery is left connected to a constant load until fail-

ure occurs. Failure is defined by the output voltage decreasing to less
than five volts.

The purpose of this time-truncated test may be anything from measuring the life

under this condition to continuously monitoring the electrolytic composition.

Failure-truncated testing is often applied to samples of several items. In

certain life tests for example items are placed on test and the test continued until

a certain proportion have failed.

Example 7-2

One-hundred resistors are tested at a fixed ambient temperature and fixed

current level until a total of seventy have failed.
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This simply illustrates the approach. The actual purpose of such a test may be to

determine the distribution of failures over time in which case the time at which

each failure occurs would be recorded. The termination criteria, i.e., the propor-

tion of items that have to fail before test termination, depends upon such factors

as what is being measured, the desired precision and confidence of the result, and

the sample size.

The major disadvantage of failure-truncated testing, especially for high relia c

billty items, is the extensive test time required. Items with very low failure rates

require an unacceptably long time to fall a significant number of them. For exampl_,

failure rates on the order of 10 -6 failures/devlce-hour are not at all uncommon and

a single device from such a population might have to be tested for more than i00

years in order to observe failure. It is thus obvious why accelerated testing ap-

proaches for shortening the test time have been promoted.

Failure-truncated testing of long life items is often supplanted by the time-

truncated approach. For example, i00 identical devices tested for 2000 hours gives

200,000 device-hours (approximately 20 device-years) of testing. For these to be

"equivalent" devlce-hours, however, requires the distribution of failure times to

be exponential. This problem is discussed further in Sec. 8.1.

The most frequent applications of the failure-truncated approach are for

measuring llfe (and related) characteristics and investigating modes and mechanisms

of failure. These uses are explored in more detail in Sec. 8.

7.2 Sequential Testing

In a sequential testing approach the duration of the test (hence the amount of

aging) depends upon the results accumulated during the test. The most publicized

form is sequential life testing. In this the test results are used continually from

the start of the test to compute some decision function, typically the total operating

time versus the total number of failures from the start of the test. Based on certain

decision criteria, the test continues until a decision can be reached whether the

product (or design) is acceptable or unacceptable.

The sequential llfe testing procedure is illustrated in Fig. 7-1. The accept

and reject lines represent the decision criteria. The function containing the steps

at each failure number is the decision function and in this case it illustrates that

testing continues until after the eighth failure occurs with the product then being

accepted. It is computed as the total operating time from the start of the test for

all items placed on test.

A significant advantage to this approach is that when items are very good or

very bad considerably less test time is required to reach an accept-reject decision
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Figure 7-1. Illustration of Sequential Life Testing

than with either of the non-sequential approaches, failure-truncated or time

truncated. When, however, a product is marginal, i.e., not exceptionally good or

bad, the test can run on indefinitely producing indecisive results. For this reason,

added conditions are often assigned to truncate the test so that the test is termi-

nated if an accept-reject decision has not been made before a preassigned time

and/or number of failures. Figure 7-1 illustrates combined truncation of both op-

erating time and failure. Truncated tests are often referred to as truncated

sequential tests. The truncation can be a very important feature in terms of prior

allocation of test facilities, manpower, and specimens for test.

These procedures can be employed with single items or several items and with

or without replacement of failed items. Essentially all designs for sequential life

tests known to be implemented to date have been based on the assumption of constant

hazard rates. Sequential testing designs are discussed in more detail in Sec. 8.1

The definition of hazard rate and description of different forms are described

in See. A.9 of the Appendix.
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but basically they consist of specifying the slope and intercepts of the accept-
reject lines and the truncation limits if appropriate. This selection of accept-
reject lines dependsuponthe acceptablemeanlife, the unacceptablemeanlife, and
the risks of acceptingbad products or rejecting goodproducts. In addition, trun-
cation dependsuponthe minimumsamplesize and slope of the accept-reject lines.

Theabovediscussion has focusedon sequential life testing to illustrate the
concept. Theconceptcanbe interpreted in a broadersenseto include purposes
other than for measuringlife characteristics eventhoughthe testing andreliability
literature also concentrateson these. An engineermonitoring the amp-sec,output -
of a battery in an environmentaltest to determinewhetherto terminate or continue
testing is certainly using a sequential procedure.

7.3 Time(or cycle)-TruncatedTesting
In a time-truncated test of an item the test endsafter someprespecified dura-

tion (or numberof stress cycles) of testing or whenthe item fails, whicheveroccurs
first. Theitem is thus not alwaysageduntil failure occurs.

Example 7-3

In a flight acceptance test of a satellite, exposure to an ambient tem-

perature of -IO°C is specified for a duration of 24 hours. The system

is operated briefly at one-hour intervals throughout this period to demon-

strate the capability to operate under this condition.

The basic purpose of this test might typically be to uncover potential failures re-

sulting from workmanship errors during fabrication. In this case it must be assumed

that only a very small portion of its useful life (if hardly any at all) is consumed

unless perchance the intended mission itself is very short.

Time-truncated testing is also applicable to sample sizes larger than one.

Example 7-4

Fifty transistors of a particular type are stored in an oven at 125°C for

2,000 hours. Following this exposure, the electrical properties of each
are checked for conformance to tolerance. Two were determined to be fail-

ures at the end of the test.

Such a test might typically be used for qualifying the parts, estimating certain

characteristics about them, or bake-in to weed out defectives from the population.

The tlme-truncated testing approach is a necessity when aging has to be limited

as in burn-in. Also as mentioned in Sec. 7.1, one advantage of time-truncated testing

over the failure-truncated approach is the shorter test time required.

These are often referred to as the consumer risk and the producer risk

respectively; see Sec. A.10 of the Appendix for more detailed description.
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7.4 Performance Testing

Performance testing as a basic aging test type is a logical extension of the

nonaging type having the same designation. The extension is not merely in time

since certain nonaglng performance tests also require testing over time but rather

in the underlying mechanisms causing observed changes in performance. When aging is

involved, the mechanism is one of cumulative damage.

The following example illustrates a test to measure aglng-dependent performance

changes in a single item.

Example 7-5

A rate gyro is operated continuously while subjected to a known periodic

positive and negative rotation with fixed amplitude about its input axis

and all other conditions fixed. The rms error monitored in the output

signal during the test is illustrated in Fig. 7-2.

This test may be typically one conducted by the gyro manufacturer to measure the

effect of gimbal bearing wear on performance. The large increase in error after

several hundred hours of operation indicates that wear indeed may be degrading

performance. Also, as illustrated by the initial period, performance may improve

with some aging rather than degrade.

The plot alone, however, does not indicate that the performance changes are due

solely to aging. One quick check for this would be to stop and restart the test.

If the performance did not change in this process, then it is reasonable to assume

that aging is the cause. If performance changed back to that at the start of the

test, there would be strong suspect that no significant aging was involved since the

performance change appears to be reversible. Any other magnitude of change may or
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may not indicate significant aging. A series of stops and starts for example may

actually show that there is considerable variability present. The presence of aging

then may only be detected by testing to measure changes in the statistical properties

over time, say the average of several such tests.

Example 7-5 dealt with performance testing a single item for a fixed amount of

aging. The observed performance is characteristic of that single item and only for

the period of observation. Attempts to extrapolate from performance measurements on

one item to similar items and from behavior of one period to another are often made.

They cannot be done legitimately on the basis of single test results alone but re-

quire additional knowledge of the aging process available from either theory or other

tests. Even then extrapolation must be done with discretion.

The value of a performance test of a single item which involves aging has its

greatest significance only when the item is representative of a population or is one

item of a larger sample. Use of performance tests in this context are discussed in

more detail in Sec. 8.
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8. Basic Uses of Aging Test Types

The four basic testing approaches which emphasize aging were described in Sec. 7.

The relationship between these test types and basic uses is illustrated in Fig. 8-1.

Discussion of basic uses is presented below.

8.1 Life Measurements

The life of an item is an important trait from the reliability point-of-view

and represents another measure of ultimate capability. The life of an item is

simply the duration that it maintains the properties that we intend for it to have.

When it no longer possesses these properties we say that it has failed. The defini-

tion of failure depends upon the properties but range in complexity from a simple

out-of-tolerance condition to total destruction.

When talking about failure as a result of useful life being expended, it is

understood that failure results from a cumulative damage process. The observed

mode of failure of a resistor subjected to high temperature for a long duration may

actually be a sudden discontinuity or "opening" between its terminal; however, we

assume that this resulted from some underlying time dependent process leading to the

failure.

Obviously the life of an item intended for application cannot be measured di-

rectly since this requires destruction. Repairable items can be repaired and re-

tested repeatedly but generally they must be treated as new items. Repeated tests

of the same repaired item does result in increased (engineering) confidence, however,

this approach is not necessarily equivalent to testing a sample of similar items.

From the reliability viewpoint typical reasons for wanting to measure life (or

related characteristics) of a sample of items are concerned briefly with using the

results to

(i) predict the probability of success of similar items scheduled for applica-

tion, and

(2) determine the acceptability of a product or design.

Both of these may involve aspects of both estimation and test of some hypothesized

value of a life characteristic or index. Typical life-related characteristics used

for this purpose are life distributions, mean life, mean-time-between-failure (MTBF),

mean-time-to-(first) failure (MTTF), failure rates, and hazard rate functions.

Strength is the other measure of ultimate capability and was introduced in

Sec. 6.1.

This concept was discussed in more detail in Sec. 2.2.2.

87



QI

u

4J

,f-I

a.J
U
ca

,.C
U

aJ
v,-i
or,I

Qo

QI
l-i

4.J U

.w

I-4

i

U

!

!

!

I.i

• .m

I 13 oo
i aJ ol-i
I "_
I I_ aJ

aJ a_I ,'_u
i ! m

tll\

"<,I I

"1

,,,,..I

[--I

4.J

[--I
!

[.-I

1.1
o.

I11

0

k

_n

U

_J

[-..I

1.1

0

,-4
I

_J

-I,-I
r.T-I

88



One would normally have the greatest confidence in a llfe test if the test con-

ditions simulate those of normal use for the item. But due to required application

time or complexity of the normal use environment it is seldom possible to do this.

Accelerated testing is one popular method of shortening the test time; however,

this can introduce many problems and decrease the (engineering) confidence in the

results if used without familiarity of how the increased severity is really affecting

the aging. Concepts and problems with accelerated testing are discussed separately

in Sec. Ii. At any rate, the use of accelerated testing does not basically influence

the statistical design of the test.

Most often, life measurements are made under fixed conditions usually chosen

with discretion to represent some typical conditions for application. A particular

type of a transistor may find several different applications in a design and as a

result be exposed to a different environment for each. Does one then select the most

severe of these and test a sample in this environment to measure llfe? There is no

clear-cut answer to this for it is even difficult in many cases to know a priori

which environment is the most severe. Even using the most severe environments for

testing will lead to pessimistic results for estimating the llfe of the system.

This is typically illustrated by the known diversity of testing and operating en-

vironments from which generic failure rate data of parts is derived and which in

turn has led to the use of application factors to adjust failure rates for each

application. But the fact is that an environment has to be specified for a test

and good engineering Judgment is obviously needed. To the extent feasible one would

match the test conditions to those of normal application.

As illustrated in Fig. 8-1, there are three basic testing approaches for

measuring llfe. The test approaches themselves were described in Sec. 7; their use

specifically for measuring life are discussed below. Two of these, failure-truncated

and time-truncated are both nonsequential approaches and consequently, are treated

together. The sequential approach deserves special attention and is treated later

in a separate discussion.

Nonsequential Testing Approaches for Measuring Life: Failure- and Time-Truncated

Testing

In either of these approaches n items are placed on test and the test continued

until the appropriate termination criteria are met. The information generally re-

quired to plan a life test consists of

(i) the sample size n,

(2) the testing approach (whether failure- or tlme-truncated),

(3) the decision of whether to replace failed items,
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(4) the termination criteria,
(5) the degreeof precision (i.e., the desired statistical confidencein the

caseof estimation andthe accept-reject risks in the caseof testing an
hypothesis), and

(6) the modelassumedfor the distribution of failures.
There is a considerable degree of dependency among these factors.

Consider, for example, that it is desired to test the hypothesis that the mean

life of a particular type of item is 6,000 hours. If a particular lot of these

items has an actual mean llfe of 3,000 hours, it would be desirable to plan the test

so that there is high probability that the hypothesis, and hence the sample, would

be rejected. By making certain assumptions about how the failures are distributed,

the number to be tested and the testing time (or number of failures) can be determined

to accomplish the desired aim of discriminating between good lots having a mean life

greater than 6,000 hours and poor lots with mean life less than 3,000 hours.

It stands to reason that the probability of a lot being accepted increases as

the mean life increases. A typical relationship of this type is shown in Fig. 8-2
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and is called an operating characteristic (OC) curve. OC curves play a large role

in implementing life tests when used to test hypotheses. The procedures are dis-

cussed later and illustrated by example.

There is a trade-off between the size of n and the waiting time to test

termination. For the failure-truncated approach the trade-off is subject to a con-

straint on the specific number of failures required to obtain a given precision.

With the tlme-truncated approach precision is dependent mainly upon the total test

time of all items tested and the trade-off must allow for this.

In both approaches there is an option of whether or not to replace failed items

during the test to maintain n constant. The decision should be heavily influenced

by the relation of the test to normal application. For example, if the test is con-

ducted to determine the proportion of spacecraft components of a given type which

survive a given mission time, then it is desirable to start with n items and not re-

place failed items.

The termination criteria is dependent upon the desired degree of precision.

For the failure-truncated approach the number of failures is the sole requirement

and the greater the precision the more failures are required. For short-life items

it is not uncommon to fall every item of a sample, but as noted in earlier discussion

high reliability (long-life) items can demand unreasonable test durations.

For the time-truncated approach the total test time of all items tested is the

basic criteria to be made compatible with the desired precision. Most often, a mean

life is assumed or estimated a priori and an appropriate test duration determined

from this.

The model assumed for the distribution of failures has a large influence on the

test design and subsequent analysis. When there is not enough information to make

an intelligent assumption about the distribution of failures, it is preferred to use

a distribution-free design. This is compatible only with the time-truncated approach

and entails using only the number of failures (or successes) versus the number tested

as the basis for the estimate or test of hypothesis.

Usually there is enough prior knowledge to make an intelligent assumption. For

example, such information as.test results on an earlier design or tests on items of

a similar design are available. Increased emphasis on determining such distributlo_

on a theoretical basis has evolved in reliability physics, but this has proven to be

generally an inefficient approach for this sole purpose.

A number of life test designs are summarized in Table 8-1. The specific assump-

tion concerning the distribution of failures is the major factor used to distinguish

these since it serves a key role in the test design. Since a complete tabulation of

all related facts would be voluminous, Table 8-1 emphasizes scope primarily and

91



0
.,-I
4.b

0
4.4

I-4

'0

,IJ

I
oo "0

"0

o
0

_a

[-4

.i-I

_a

_a
I

d-0

t,4
0

0

dJ

CO

_9
0

I,-0
:::9

0

-H
.dJ

4J

_9

0
,,IJ

-r-I

0
4-1

0

dJ
U

u_

>,
d_

J_
v
U_

.tJ

0

m

4-)

u_ "1'4
0 d-J

03
u_ m

0 0
._ 4J

4J

l,a

14
=9

"t-I

u_

II

II

,.<

g

,-t

II II II

[.-I _ ,,:=,

4-1

¢a
.IJ

0

"0
0_
_J

-el

_ .I-I

0 0

o o _.1_ 4..J

II II fl

,.--I

,,-4

'0

,i-I

W

0

o

m

eJl

0

4J

o

I11

4-1
m

4J

",_ 0 (_

m .=

0

P_

_d

0 I_
_J

O0
•-4 _)

0
.-I 0

_ m ul

I

co

IJ

m

I

II

I

'El (J

.IJ [-.4 I--I

.IJ _1.4 :3
I "1"1 0 ,I.I

W O
44 -I-I

0

g:l

x.

I

m

I11
4J

I

I

,u k_ :3
I "_ 0

Q;

0
.rl
4-;

_J
m

!
oo

=
"0 Q_

m,o ,u _

U .=.,_ O.

0 0 "1-1 I _ •
o ,-I _ 0o4

ca 0 _-i 0 [--I _
o l-i 0 =

tj U

,'-_ O I= 0 ,--I"0

0 II II

I_ cJ f:_

4J

•u _l..i _ ul 4J _.t

= 0j _Jn_J

(J .,-I14 0

M _ Q; ,r.t CO

•,.-4 :3 vq4 _t

92



¢1
._J

O

rn

QJ

.,-,I
.iJ

o
rO
v

,-4
I

uo

Q;

.En

u

Q;
u,-i
Q)

cU
.LJ
m

-,-I
rn

,C
.u
o

p-,

.i,J

o

03

,-I Q;

_, -H .LJ
Q; m _
13_ Q; Q;

r._ C_ P4

0
•r-I 0
•_J .,-I

_ IJ ol

•,-I .,_

&
,.-.4

I

4-1

_-_
I

II

+

_D .I.J
,"4

.u -,-I

e _ e

I.M

O m
,..j.

°H

I
Q;

o QA

::l

I .H O

_ _u -,_ N

I o
I::I "_ .u

o -,_ _ _. ^1

-.1"

I
oo

u_

II

I< CD

oo
_D

m

.,-I
4J

u_

0 m

0

I

.,,1"

.-I
I

oo

,4a

II

((z)

¢z:,

(U

_J

I

:_,H O .u
H u,c: _

I
o0

u_

II

,4.1

•_ • II
_,,J=

u,-i

"El

(I:S

_",4
,'-I 'J ,.=

',-1"
I

CX)

_:) <_,

•H ,_ ,H 0

'_l -r-I "H

m m m 0 co

o

if)

II II
_J u_ 44
I

F._ r._ r.fJ

I

4.1 G) _D '3) CZ)

v v c_
I_ _1 -H I A

0 _) =1 ,u N 0

93



0

w4

0
r,.)

,--I
I

oo

0

,.o

i.i
In

.IJ

I_ o-,_
.,.4

0

0

I>,

.I-I

4.4 •

o_

0

,-.I _1

0 .,-I ,I.J
0J In _

cn Cl [.,-,

C
0 C
-_ 0

"0
C
0

o
q.4 u_
• I

QO

0

¢j ¢1

iJ

IJ
ffl

I

O,-'4

0
_ .el _ o-

_ 0 _

_ _ ._.,_

0 "13 0 ¢1 .,-I

m o
0 C_ _ m

•M °r4
_J ¢J

C
_J

• .u _ ¢.J

vl

I -;-I

,-I

•J • • _1
C .C

_J 0 _ D._4

ctl .- O,.C •

O_ I,-I < C" _1[I I._ O) •

•_ _ _1,_ 0 _ _
_ _ 0 C_

_J o •
14 .i-I I 4.1

•H ,_ I_ ,,-I OJ IJ
III ,--I oJ gl,._ _ I_

•M 1,4 I-I u,-I • ,--I l_,

i_ u m

H Ii II II

0
,-4

I
cO

,-4

El :>-,

"-4

+ _ _0 _..t _ " cq

• -4 II .,-4 ,'_

,_ _ _= ,, <_

..-I
.I-I

l_ I

ii
'q-I .i.=l

I_I 0 •
I ,l_

•,-i _ I:I
<..J ,,-I _
0.,-I I-_

I
,J 14 I

0"/

• _, u:> I::L

0 "_ _ _ O.C

, .

.94



o

v

I
oO

I_ 0.,--4

0

o _
Ill

o
•,.-I 0

_I _.I -,-I

u

Q)

J

m

m

.H

0
•H II
_J

0 I

II "H _- "_

,-I
I

_J ._

_,--I _-_ II I

I ,,C:3 _ _
0 ",'_ _ ._

•_ °,-I

• I_ 0 •
._i o u_

E! • 0

_ 0 _

_ -r"l

O _

0._

= gg

[z]

-,-I

u_

_J ,-I
.,-I

0# -H v

"_,_ I_ _-_
I_ .,-i

0 _
I_ r_ _ I

_)

II

v

_D

I

_4
_J
I

,.-t

II

,,1-t

oo
I

co

A

o)

0
0

o

m _

iJ

t_ II

o. _..4

:_ -_I

4-1 I
r.j II

•H _ _ I

O
A

_' O

1.1

95



°,-I
4.1

O
CO
v

,-4
I

CO

,-4
,O

[-_

Q)

U)

_; [-4
4.1

I_ O ",_

m _C
p.] _J

O
C_
P_

Q;

,-_ Q;

¢J .H _.J

co _

O
•_ O

•r..t _
t_._ m

O

0

0

m u,.l iJ

4_1
t_

,-.-t o
•,-i _
e_ _u

o

°A

A

¢N
,-4
I

p_u_ .
_O O _)

O ,_
O) -,.4.,-I
_J _J 0_

_ D O
_ _4_ 4o
o_

_O'_

•,-1 U) 0

• C

_u,.l

!
I._ I._ I

.i.I .i-I

,-'-, c- II I-i v

I A -,-I
¢.1 ,_ ¢1 _ I_ 4-1 1.4

v * ,--I O., O • g

I v o,_ O •
¢.1 u_ u_ O ,-I

I

O ,-I

o • u_
O

•H "O

DQ

u)

-,-I
_J

_J

¢J

4-I

Q)

.H
0_
P_

I
O

P_ _C

m

Q_ o;

I

O .i-4 lw

O _ _ ..rl
I_ O • •

N •

°H

U
"0
C:.-_

.g

-el _

i_ g..,

0 O II _1

I

rn ,o I

96



C
O
_D

I
cO

,-.I

u)

E_ o._

o
C_

C
u_
O

'0 °,-t 4._

C,_ OJ
r.n _C_ r-,-i

O
•,-I O

__ _
_ m m

C

oo

_1 _-_

0 ,_

_.

_._ _ 4-_

•,-4 $_ _

_D

4_

r..-i _
•r,i _

I:D

! !

G_ -_ II

0 _ 0 --_
_:_ _ -_

_ _ 0 C

o_
U,-4 _ _1 ,-4

O O Ill ,1_

_ _._ _ _

cD

,-I
O I

4...i
r..; u)

',4-1 v

•rt v

"O ,"t I <D

I

I
_C II

_0 _

u_
,--I

I
oO

I
-H

0 _ _,._

_ O _ O

--_=_,__ _

•r't _ $4 O

I._ I _j ,1.1

o_ c_ _ •
u)

_> _c _Z _ _ 0

._ o _

-H _ ._ 0 o

u)

0_

o

C_

O

v

:>., _ _ (:. .
•_ -- I _ O.

AI_ .-, _ _, _,.
_ _D I ^l

o_
'---, _ (D

97



.,-I

0
r.,J
v

I
oo

,-(
,0

(J

;-4

'0

.l.J
m

[--I
.I-;

o
i-I
co

o

,-I ll)

._I
£J -i-,I ,w
Qj r_ _
Io., OJ _

0
•_ 0

,..-4
I

ql

._..I

O

O _

m •

[--I

O
;:L

A

v

0
;o.

II

;:I.

"0
OJ .u

I,-i I>-,

oJ _J

.it

0

i00

,.-4

O

,..-t
I

,d

(lJ

.,-_
_0

O)
_--_
..0

O)
{3,

Jr 0_
_J u

II ,_ •
•_ _.

_..i .I-I _--I

_, 8
II ;::I v

I

- I I

o_
O

I

0
(J

-I

OJ
m_g

0
•0 -

0_

:>_
_J k_

.,-_
QJ (J

I

"H
W
.Id
00

"0

,--I

O

I O
I:_°N
O _

O

A

v"

ill

I>

O

II

I

.H

I!1
I>

ffJ
IlJ

,-4

[-i

0J

I

,..-t _

II _
r-I

IO
£N

I

0J
4.)
IO

v
;:1
v

/%
I::)

A
4.1

O

10

98



serves to guide the reader to appropriate references for more detail. Confidence

interval estimation procedures, for example, can be obtained from the reference for

most types presented.

Example 8-1

Suppose that 20 items are placed on test under simulated operating condi-

tions for a maximum test time of 200 hours, and that 5 items failed at

times 5, 30, 40, 55 and 200 hours, respectively. Assume that no prior in-

formation is available concerning the time to failure. It is desired to

estimate the reliability of an item obtained under llke conditions or man-

ufacture and design.

An estimate of reliability is obtained from the distribution-free procedure given in

the first row of Table 8-1.

15
R - - 0.75 .

2O

Also using procedures given in Ref. 8-1, a 95 percent one-sided lower confidence in-
^

terval estimate of _ = 0.545 is obtained. Thus with 95 percent confidence the

probability of survival for 200 hours exceeds 0.54.

Example 8-2

Suppose that i0 items are placed on test under intended operating condi-

tions until the 5th failure occurs and the failure times in hours are re-

corded as follows:

tI = 21, t 2 = 29, t 3 = 59, t4 = 70, t5 = 386 hours.

Assume that an exponential failure time distribution is applicable and

suppose that it is desired to obtain an estimate of the mean-time-to-

failure 8 and give a one-sided lower 90 percent confidence limit for 8.

Using the procedures in the third row of Table 8-1, the total test time is

T = 565 + 5(386) = 2495 hours

^

and the estimate 8 of the mean-time-to-failure is

^

8 = 2495/5 = 499 hours.

Further, using procedures in Ref. 8-1, a one-sided 90 percent confidence interval

8L = 312 hours is obtained." Thus with 90 percent confidence, it is inferred that

the mean-time-to-failure exceeds 312 hours.

In many practical problems one desires a statement such as "with 90 percent

confidence 95 percent of the life times of individual items selected from a given

Confidence interval estimation is also discussed in Sec. A.6 of the Appendix

to this report.
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population will exceed 200 hours, assuming this to be the mission time." Assuming

an exponential distribution and applying other procedures given in Ref. 8-1, one ob-

tains a one-sided lower confidence limit for the probability of survival _ - 0.527.

Hence, since only 52.7 percent of the items would survive 200 hours (under the as-

sumptlons stated'), one would question the use of the item for such a mission.

Example 8-3

Suppose that ten items are tested under specified operation conditions un-

til all fail. Assume that a Weibull distribution applies with the location

parameter equal to zero. Suppose that it is desired to estimate the scale

and shape parameters. The observed failure times in hours are as follows:

260, 600, 630, 820, 930, 950, 1270, 1590, and 1760 hours.

Using a graphical method based on the order statistics as given in Ref. 8-9, the

failure times are plotted versus the expected values of the Welbull order statistics

for m = n = I0 as obtained from Table 2 in the reference. Figure 8-3 clearly indi-

cates that a shape parameter K = 2 yields a much better fit to the data than a shape

parameter K = 1 (exponential case), hence K = 2 is assumed. (In this example the

data were generated from a Weibull distribution having K = 2.) This slope of a
^

fitted line yields an estimate of the Weibull scale parameter 8. Thus 8 is near

1,000 depending upon the fitting procedure used. (In this example e = i000 was used

in the Monte Carlo simulation.)

The above examples highlight the use of nonsequential life testing procedures

for direct estimation of characteristics of llfe. Another use of considerable

utility is the determination of acceptability of a product or design. Performing

accept-reject decisions in qualification testing, reliability testing, and acceptance

sampling are popular applications. The principals and procedures for these are well

described in Ref. 8-19 from a very practical viewpoint. References 8-20 (DoD Handbook

H-108) and 8-21 (MIL-STD-690A) also document a number of life testing plans and con-

tain the OC curves for many combinations of mean llfe, confidence and risks and pro-

vide the information for readily determining the required test time (or number of

failures) and number of items required. Both replacement and nonreplacement plans

are included. Reference 8-20 is especially good for it contains a clear explanation

of all aspects of the tests.

The basic concepts associated with sampling plans are summarized in Sec. A.8 of

the Appendix. Two concepts, producer's risk and consumer's risk, are of particular

interest and are defined as follows:

(I) Producer's risk, _, is the probability of rejecting a product with accept-

able mean llfe. A product having acceptable mean llfe will thus be

accepted i-_ fraction of the time.
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Figure 8-3. Graphical Estimation of Weibull Shape Parameter K and Scale Parameter @

(2) Consumer's risk, 8, is the probability of accepting a product with un-

acceptable mean life. A product having unacceptable mean life will thus

be rejected i-_ fraction of the time.

An example illustrates the use of standard sampling plans.

Example 8-4

A design goal for a particular equipment is "a mean life of 2,000 hrs."

The customer specifies acceptance sampling to be designed to accept 95%

of the time production lots having an actual mean life of 2,000 hrs. but

reject 90% of the time the lots having a mean life of 200 hrs. Further,

testing without replacement is specified. The manufacturer is allowed

the liberty to select the method and design the test according to standard

sampling plans based on the exponential distribution for failure times.

In this case assume that scheduling does not allow for more than 200 hrs. of test

time. A tlme-truncated procedure conforming to this constraint on test time is
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considered to determine the sample size and the number of failures for rejecti_ Z_e

lot. Using Ref. 8-20 (DoD Handbook H-108) a possible design is illustrated.

The pertinent data for designing the test is

T = test duration = 200 hrs.,

80 = acceptable mean llfe = 2,000 hrs.,

01 = unacceptable mean life = 200 hrs.,

= producer's risk = 0.05, and

= consumer's risk = 0.i0.

The values of _ and 8 follow from the earlier definitions and the problem statement.

With the above data the appropriate plan is located in Table 2C-3 of Ref. 8-20

and specifies a sample size, n = 9 and a number of failures for rejecting, r = 3.

Thus nine items are tested and the lot rejected if three failures occur before 200

hrs. duration and accepted if less than three failures occur after 200 hrs. of testing.

Note that the design above did not employ OC curves even though it is possible

to do so. OC curves have their greatest values in evaluating trade-o_fs between

test approach, sample size, test time, etc. For example, a shorter duration test

with a larger sample will accomplish the same objective.

Most llfe test designs described in the literature are based on the assumption

that failures are distributed according to the exponential failure time distribution

(i.e., a constant hazard rate ) as described by the third and fourth types listed in

Table 8-2. A major reason for this is that experience has shown that many items con-

form to this assumption. For example, empirical Justification is given in Ref. 8-19

for two systems. This does not say that it holds for all equipment however. Too

often, however, the reason turns out to be simply because the procedures are much

simpler than those required for other distribution assumptions with the result that

gross errors are often made.

Sequential Life Testing

Sequential life testing is a procedure developed primarily to determine accept-

ability of a product or design more efficiently than the nonsequentlal procedures.

When products are very good or very bad the procedure requires considerably less

total test time, (i.e., the total for all items tested) that either of the non-

sequential procedures. However, when a lot of items is marginal (not exceptionally

good nor bad) the test could run on indefinitely without producing decisive results.

For this reason provision is usually made to truncate the test on the basis of time,

There is often confusion in the literature that a constant hazard and random

failures are synonymous. Clarification of this presented in Sec. A.9 of the Appendix.

102



number of failures, or both. Such truncated tests are called truncated sequential

life tests.

In sequential life testing n items are placed on test and the test continued

until a decision to accept or reject a given hypothesis can be made on the basis of

accumulated results. A sequential analysis is thus required along with the test to

make a decision. This consists of generating a decision function, usually total op-

erating time of all items tested versus the number of failures and observing whether

the accept or reject bounds are crossed. A simple illustration of this was presented

in Fig. 7-1; more detailed illustration is presented below by example.

Example 8-5

A truncated sequential life test procedure is considered for the same

problem posed in Example 8-4.

Again we use the standard procedures in Ref. 8-20 (DoD Handbook H-Z08) with the same

basic design data following Example 8-5. Using either Table 2A-I or Table 2A-2 (this

latter gives OC curves) of Ref. 8-20 for _/80 = i/i0, a specific plan coded as B-2

is specified. Using this designation one resorts to another tabulation in Ref. 8-20,

Table 2D-I to obtain the test design parameters. These are:

r0 = the minimum sample size = 6

ho/80 = ratio of accept line intercept to the acceptable mean life = 0.2254

hl/00 = ratio of reject line intercept to the unacceptable mean life = 0.2894

s/e 0 = ratio of decision line slopes to the acceptable mean life = 0.2400

Reference 8-20 also instructs the accept-reject criteria to be computed as follows:

(1) For acceptance, the acceptance line is

V a = h 0 + sk

= (h0/e0)e 0 + (S/Oo)e 0 • k

and the truncation on total operating time is sr 0 = (s/e0)00 rO.

(2) For rejection, the rejection line is

V r = h I + sk

= (hl/80)O 0 + (s/80)80 • k

and the truncation on total number of failures is rO.

Further, in testing without replacement the decision function or the total operating

time of all items on test is

k

T t : _ t i + (n-k)t
i=l
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wheren is the samplesize, k the numberof failures, ti the time of the i-th failure

and t is the time from the start of the test. Substitution of the test design para-

meters yields the design illustrated in Fig. 8-4.

Note that n does not have to be specified to design the test. This again allows

for trade-off between test duration and sample size. A larger sample size for example

causes the total test time to be accumulated faster (but also the failures). The

dashed llne in Fig. 8-4 represents a test of eight items where the six failures leading

to the reject decision occur at test times of 30, 62, 165, 241, 385, and 794 hrs. from

the start of the test.
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The above illustration is a straight-forward application of the standard proce-

dures of Ref. 8-20. More detailed practical discussion on the development of sequen-

tial llfe test design with more examples is available in Ref. 8-19 where the develop-

ment parallels that of the two nonsequential approaches discussed above.

It is especially noted that the procedures described in these references are all

based on the assumption that failure times are exponentially distributed. Theoretically

procedures can be based on other distributions such as the Weibull or log-normal [Ref.

8-22]. These, in general, lead to more complicated designs and have yet to be imple-

mented on a significant scale as an improvement.

Further Perspective on Life Measurements

Of the three basic approaches to life testing, viz., failure-truncated, time-

truncated, and sequential, which does one choose for his application? There are ad-

vantages and disadvantages for each and the selection should be tailored to the parti-

cular problem at hand.

For the nonsequential approaches most test requirements can be fixed in advance

which can be an important factor in planning. But of these two the failure-truncated

generally requires a longer test duration. For estimating life the nonsequential

approaches are more suitable, but for merely judging acceptability of products the

truncated sequential approach is most likely to be favored.

In making such comparisons care should be taken that they are evaluated on an

equal footing. Precision of results, assumptions, mean life, replacement policy,

etc. should all be equivalent for the approaches considered. Some good discussion

including both qualitative and quantitative viewpoints on comparing approaches is

presented in Ref. 8-19.

An even more basic question to be first answered is whether life testing itself

need be used. It is generally more expensive to test in this manner; however, the

penalties for not testing this way must be considered also. Could, for example,

historical data from similar items provide enough (engineering) confidence? Would

burn-ln screening be a more feasible approach? Often the assumptions that have to

be made to make the accompanying design and analysis tractable cause the results

to be quite far removed from the real problem to be solved. Remember that statistical

confidence when based on assumptions does not necessarily mean that you have the same

engineering confidence.

Two trends in technology have tended to reduce the relative significance of

life measurements. These are (I) the design and fabrication of complex, expensive,

several-of-a-kind items,and (2) the development of very high reliability components

such as integrated circuits.
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Thefirst of these introduces the problemof extremelysmall samples. It is

too expensiveto build a large numberof satellites, for example,as a samplefor
life measurements.Thelogical alternatives to this introduce the conceptof inte-
grated testing in which the tests at all levels from parts to the systemare carefull
designedto achievemaximumconfidencein the adequacyof life.

Theproblemwith measuringthe life of extremelylong-life componentshas led.
to greater interest in accelerated testing, reliability screening, reliability
physics, reliability growthcomputations,Bayesianapproaches,andtesting larger
samplesfor relatively short periods t6 obtain equivalent operating hours. Someof
these are consideredelsewherein this report; the latter approachintroduces special
considerations treated below.

As already noted several times, manyestimatesandsamplingplans for life
measurementsare basedon the assumptionthat failure times are exponentially dis-
tributed. Oneshould alwaysbe reasonably confident of the validity of this assumpti
since actual distributions other than this can lead to unsatisfactory conclusions.
For example,there is often reference to "equivalent operating hours" whenshort dura-
tion tests are conductedon a large numberof items to computea failure rate for
items that are to be applied for longer operating periods. But this hasmeaningonly
whenthe hazardrate is constant throughout the long duration. If, for example,the
true hazardrate is decreasingthen the results of the short duration are pessimistic
for longer periods of application. Onthe other hand, an actual increasing hazard
rate cangive an underestimateof failure rate over the longer period.

Therehasbeenno direct reference to application of life measurementtechniques
to fatigue testing. Onebasic difference is that failure is duemainly to the number
of cycles of stress rather than duration. Ref. 8-23 is a goodsource for identifying
practical problemsassociatedwith measuringfatigue llfe. A goodsurveydiscussing
conceptsandapproachesis provided by Ref. 8-24which also identifies other good
sources.

8.2 Investigation of Failure Modes and Mechanisms
**

This category extends the concepts discussed in Sec. 6.2 to account for cumula-

tive damage exceeding endurance as the predominant cause of failure. As indicated

in Fig. 8-1, a failure-truncated test is the obvious approach to inducing failure

when items simply have to be failed for this purpose. Failure investigations often

accompany the observation or occurrence of failure in the normal course of some other

Integrated testing is also discussed in Sec. 13.

Sec. 6.2 has the same title but pertains only to tlme-independent failures

caused by stress exceeding strength.
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effort suchas operational use, field testing,life testing, performancetesting, etc.
It is important in suchcasesto be sure which causeof failure you are investigating.

Thereare frequent attempts to induce failure of long-life items in short time
by accelerating the agingprocess. Onemustbe careful in this approachthat the
acceleration doesnot induce a different modeof failure that wouldbe obtained under
conditions of normaloperation. Problemswith accelerated testing are discussedin
Sec. ii.
8.3 Burn-in, Bake-in, Run-in, etc.

z Certain items suchas electronic parts and equipmentare often purposelyaged
for a particular duration prior to their application to induce failure in those items
which havethe shortest life. Suchtests are called burn-in or bake-in tests. On

the other hand an item such as an aircraft engine is sometimes purposely aged prior

to application, not to induce failure but to improve the item. Tests of this type

are called run-ln or "break-in" tests. Other tests may "operate-in", "vibrate-in",

or "pressurlze-in" but all have the common goals of using aging purposely to results

eventually in a product (the tested items themselves or other items assembled from

them) that is more reliable than if the testing were not done. Whether a reliability

improvement is in fact achieved or not depends on certain characteristics of the tested

items.

*
Burn-in (or Bake-in)

The popular "bathtub" curve often used to illustrate the hazard function of

an item is shown in Fig. 8-5. The infant mortality region is typically assumed to

represent the behavior of items failing early due to manufacturing and material

defects. Refs. 8-25 and 8-26 are often cited as containing adequate empirical

evidence on the existence of this behavior in semiconductor devices. A later report

on this behavior for integrated circuits is presented in Ref. 8-27. Empirically

determined hazard functions exhibiting this property for other types of equipment

are presented in Ref. 8-28.

Burn-in consists of using this property of a decreasing hazard function to

improve reliability. Items can be placed on test subject to conditions which cause

aging and during the infant mortality region the failure rate of the population of

items not failed is decreasing.

Burn-ln infers aging while operating; bake-ln, aging while nonoperating.

The hazard function for an item is the conditional probability of failure

in the interval (t, t+dt) given that failure has not occurred prior to time t.

See also Sec. A.9 of the Appendix.
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Figure 8-5. Popular Illustration of a Hazard Function

If a period of lower constant failure rate as illustrated in Fig. 8-5 does in

fact exist, then a population operating during this period is obviously more reliable

than if the infant mortality region were included in the period of application. In

this case one would obviously conduct burn-in for the duration of the infant mortality

and use the remaining nonfailed items for application.

The real situation, however, is not always this simple. First, any single

hazard function represents only a particular environment; another environment may

give a quite different shape. Also, a constant hazard rate is actually more rare

than a nonconstant one. The argument, particularly for many reliability calculations,

is usually that it is near enough constant to assume it so. Watson and Wells[Ref.8-29]

considered the case where the failures are distributed according to the Weibull dis-

tribution and showed that reliability improves by eliminating those items with short

lives. This has been generalized by others (see, e.g., Ref. 8-30) to show that the

only requirement is a decreasing hazard rate.

The hazard function is typically constructed from the results of tests on a

number of items. There are often misunderstandings when extrapolating to a single

item. For a single item damage is done as time progresses; therefore, an aged item

is not as good as it was when it was new. If the hazard rate is decreasing continuously

we have the apparent anomaly that, even though the item itself is being degraded, as

long as it has not failed it is more likely to last longer than an item which has

not been operated. The explanation of course is that we do not know what the starting
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endurance of each item is. If we did, the endurance would no longer be a random

variable and we would know the llfe of each part to begin with. Then the cumulative

hazard function would be either 0 or 1 and the hazard rate would be a spike at the

changeover. This illustrates the difference between considering an individual item

and making probability statements which, even though made about an individual item,

are effectively relative frequency observation about the population to which the

Item belongs.

A major problem is concerned with how long a burn-in test should last. For a

¢mnstant hazard rate following infant mortality, one would obviously run the test

long enough to encompass the infant mortality if the application duration is less

than the period of constant hazard rate. For other application durations and hazard

function shapes the general problem becomes one of trade-off between burn-in time and

reliability of the application. For a mission starting at time t. and extending over
l

the interval (ti, tf), one would want to locate this interval on the time axis of

the hazard function to minimize the area under the hazard function if he desired to

maximize reliability. This can be easily seen from the general formula,

ft2 h(t)dt

R = e tl

for reliability since the maximum R is obtained by the minimum value of

ft2 h(t) dt.

tI

The problem has been formulated by others as "how long to burn-in the components

to achieve a specified reliability or mean life?" A recent paper by Lawrence

[Ref.8-31] treats this with the only assumption that there is a period of decreasing

hazard rate and he derives upper and lower bounds on the burn-in time to achieve

a specified reliability.

Another discussion of this problem but extended to include the practical problem

of selecting the test conditions is presented in Ref. 8-32 . Basically, that reference

proposes that some of each lot be used for accelerated llfe testing to guide the choice

of burn-in duration and conditions and then applying the chosen burn-in procedure to

the remainder of the lot. From the discussion of the proposed procedure it appears

that this would be forbiddingly expensive; however, the paper has value in the

comprehensiveness of the many aspects of the burn-in problem discussed.

The term, run-in, used in the title of that paper is synymous with burn-in;

it should not be confused with the designation of run-in used in this section.
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Suffice it to say that there is nothing to be gainedby purposely conductinga
burn-in test whenit is knownthat an item possessesan increasing hazardrate during
the burn-in period. Thereare cases, however,whereburn-in of someitems with in-
creasing failure rate are unavoidable. Anequipmentfabricated from a numberof
different types of componentseachhaving a characteristics hazardfunction often
has to be tested or "tuned up". Someof the componentsmaythus indeedbe operating
in a period of increasing hazardrate .

Generally, in suchcasesonemakesthe best selection of componentsandburn-
in philosophypossible while considering that equipmenttests are part of the mission
for the components.Theconglomerationof all componentsand their interactions
actually gives rise to a hazard function for the equipment. It is sometimespossible
that with past experienceon similar equipmentsor tests on several equipmentsthat
somecharacteristics of the hazardrate maybe determined.

Quite often, however,only oneor, at most, several mayexist andrelatively
little knownabout the hazard function. This is quite typical, for example,of a

spacecraft or satellite. Yet testing of flight items hasvirtually provedto be
a necessity. Evidenceanddiscussion of this is presentedin Ref. 8-33 for preflight
environmentalsimulation as a flight acceptancetest procedure. Onedoesnot normally
refer to such tests as burn-in tests eventhoughthey are basically no different. An
environmentaltest of an operational satellite, for example,has as a major purpose
inducing failures to uncoverworkmanshiperrors andmaterial defects. Test conditions
are typically chosento be considerably less severe than those for a flight qualification
with nonflight hardware. Still, somecumulativedamagemaybe occurring in the flight
acceptanceproceduresevenif no failures occur andonewouldwant to wisely choose
the duration andenvironmentssuch that the successof the mission is not jeopardized

by the test if it passes.
As noted in Fig. 8-1, both the tlme-truncated andthe sequential test approaches

are applicable to burn-in testing. However,all implementationsof burn-in noted to
date havebeenby the tlme-truncated approach;a test duration is specified prior to
placing items on test for burn-in andthe test terminatedwherethis time has elapsed.
It is surprising that there has beenlittle consideration of sequential decision
proceduresfor burn-in. Suchan approachmight, for example,involve a continual
estimation of mean-time-between-failure(MTBF)andthe test terminated at any time
that this exceedsa given value. Sucha procedureis describedfor repairable equip-
ment in Ref. 8-35 andthe problemis formulatedfrom a dynamicprogrammingpoint of view.

This problemis closely related to the reliability growthproblem.
gives a goodintroduction to reliability growth concepts.

Ref. 8-34
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Ref. 8-35 also gives a gooddiscussion of burn-in testing conceptsfrom the
mathematicalpoint of view anditself cites several goodreferences for further study.

Most of the above discussion has focused on the problem of the burn-in duration.

Two additional problems are the parameters to be measured and the severity of the

aging conditions.

In most burn-in tests there is some type of performance check following the test.

A failure may thus be defined simply by an out-of-tolerance or total destruction. In

some cases there may be attempts to select parameters that can provide a pre-indication

.of later failure. Instability, noise factor, and rate of change are parameters types

often employed. Such preindicator measurements are only as good as your ability to

correlate the parameter behavior with underlying aging mechanisms and later performance.

Such problems with extrapolating performance is discussed in Sec. 8.4.

For the test conditions the normal operating conditions cannot always be simulated

nor is it necessarily desirable that they be. The basic rule is to select those which

will induce the cumulative damage process of real interest. This of course is not

always known and other tests may be needed to achieve this. For example, tests of

two separate groups of similar items, one in a high temperature environment and the

other in a low pressure environment, may yield quite distinct hazard functions; say

the one for the low pressure exhibits no significant infant mortality characteristic.

Discounting possible interaction effects, it may thus be desired to use only a high

temperature environment for burn-in.

With the increased interest in accelerated testing, it is only natural that it

be applied to burn-in. The inherent problems are basically the same as those when

accelerating aging for other aging tests. It is discussed in more depth in Sec. ii.

Run-In

This use of testing is introduced only with brief discussion to illustrate its

role and perspective. Everyone knows that special care to prevent overheating is

required for breaking in a new automobile engine. This is typical of a run-in test.

The concept applies mainly to items having moving parts with the intent to perform

the initial aging under controlled conditions such as speed, lubrication, and operating

temperature to improve the individual item. An anmlogy with electronics is operating

equipment at higher than normal temperature to drive off moisture.

In a run-in test, cumulative damage is present but because the test is purposely

conducted to improve the item, the damage must be beneficial (i.e., negative damage).

For example, piston rings and bearings are wearing but in a manner to seat them

properly.

A run-in test may employ a time-truncated approach or a sequential approach. In

the case of an automobile a run-in period and speed conditions may be recommended;

III



the actual duration andconditions are at the customer'sdiscretion. For moreformal
run-in proceduresthe duration maybe specified prior to the test andbasedon llfe
andperformancetest results of similar items. A goodillustration of this draws
from Ex. 7-5 in Sec. 7 wherea long-term test of a gyro indicated performanceimproving
throughout the first i00 hrs. of operation. If this gyro wererepresentative of a
population of similar units, then a specified run-in period for all gyros of this
type wouldbe in order.

A sequential decision procedurefor terminating run-in tests maytypically involve
testing until someperformancelevel or criteria suchas minimumdrift rate, horsepower,
or operating temperatureis reached.
8.4 MeasuringAging-DependentPerformanceCharacteristics

Whenaging is present andaffects performance,a measurementof performance
generally has explicit measuringonly for the period of observation. Yet there are
often attempts to extrapolate performanceto later periods. A circuit designer, for
example,mayspecify a 1%purchasetolerance for a resistor in production to obtain
reasonable(engineering) confidencethat it will be within 3%tolerance after i0,000
hours of operation. Evena i00 hour performancetest of the resistor mayprovide
little verification of this.

Often suchextrapolations canbe confidently madeon the basis of experience.
Eventests mayhavebeenrun to establish the correlation of performancebetween
early and later life. As described in Sec. 8.3, the ability to extrapolate canbe
very useful in burn-in testing whenlooking for pre-indlcators of failure.

The conceptof a performancetest on a single item to measureaging-dependent
properties wasintroduced in Sec. 7.4; an exampleillustrated gyro performancechanging
over time. Thereare often attempts to extrapolate the behavior of a single item
in sucha test to describe performanceof another similar item or to a population
of several such items. This is typically a necessity with large expensiveitems such
as satellites andlaunchvehicles.

In somecasesone mayhavereasonable(engineering) confidenceon the basis of
theory or past experiencethat suchanextrapolation is meaningful. As is more
often the casethe major "trouble spots" or sourcesof degradationcanbe traced back
to a few componentsfor which test results or morethan one item are available. The
gyro test describedin Ex. 7-5, for example,might represent one realization of ob-
servedbehavior for a larger population.

With a population of items tested in this mannerit maythen be possible to view
the performancedegradationin terms of a time-changingdistribution of performance
parameters. For example,Fig. 8-6 illustrates the observedtime behavior of a
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Examples of Monotonic Drift

performance parameter y for these items. In this case, we consider simple monotonic

drift behavior where the parameter values may start within normal tolerance defined

by y' and y" in Fig. 8-6 and some remaining within tolerance while others drift out

of tolerance.

Extending this to a larger population, it is possible to construct histograms

at various times to depict the time-changing nature. Numerous examples of this

appear in electronic part manufacturer's literature. An illustration of this for the

case of continuous distributions is shown in Fig. 8-7 which shows that as time pro-
,

gresses the frequency function f(y;t) broadens with the proportion of items having

parameters outside of tolerance limits increasing. As described in more detail in

Vol. IV - Prediction of this series, this property is occasionally used to describe

a drift reliability. This requires, however, that the tolerances or bounds chosen

be able to represent failure.

When the observed behavior of a parameter is nonmonotonic in time it may not be

easy from the observations to directly discern whether performance is degrading. One

may then specify another quantity dependent upon the parameter behavior to more appro-

priately describe performance changes. Typically for a noise process the time average,

variance, or certain power spectral density characteristics may be derived from the

observations. When the appropriate ones for describing degradation are chosen they

may be treated as the monotonic behavior described above. More discussion on this is

presented also in Vol. IV - Prediction of this series.

An excellent example of performance degradation measurements and use of the re-

sults to predict reliability is given in Ref. 8-36. Performance measurements of

Whereas the frequency function for the distribution of the variable y is usually

written as f(y); it is represented here by f(y;t) to indicate t as a parameter.
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Figure 8-7. Illustration of Degrading Performance for a Population

the type described are useful for obLaining design and component application

information.
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9. NondestructiveTesting

In the broadestsense,nondestructive testing (NDT)pertains to any testing ap-
proachwhichdoesnot impair the usefulnessof an item. Thediscussion of NDTin
this section, however,focuseson the special technologysuchas infrared scanning
andX-ray radiographywhich is employedto

(i) circumventdestruction of items in the measurementof properties which

wouldnormally require destruction if measuredby conventional techniques
and/or

(2) permit certain measurementsto be mademorerapidly andconveniently than
conventional techniquesallow.

It is the purposeof this section to give an introductory "broad brush" review of
this very extensive subject as perspective for its role in testing. In addition to
cited references several sourcesfor further reading are included at the end of this
section.

Themajor areas of application andtypical functions it canperformare illus-
trated in Table 9-1. In researchanddevelopmentNDTfrequently serves as a valuable

Table 9-1

Applications, Functions, andExamplesof NDT

Areasof
Application Function Performed Examples

Research&
Development

Evaluating materials, components
andparts; comparingandevaluating
fabrication andassemblytechniques;
data acquisition.

Measuringfatigue in
metals, detecting
cracks in welds, and
non-bondsin bonded
materials.

Process Measuringprocessvariables and Radioisotopethickness
Control providing control information gauging.

Quality
Control

Detecting andlocating anomalies
in materials, defective parts, etc;
detecting andlocating fabrication
andassemblydefects; evaluating
the production process.

Detecting flaws, defects, wear
and deterioration of items in
field usewithout major dis-
assembly.

In-Service
Evaluation

Pooradhesivebonding,
cracks in welds, contam-
inated transistors, non-
uniform porosity in
metals.

Locating corrosion in-
side gas tanks, detect-
ing moisture in bonded
wing structures on
aircraft, etc.
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measurementand evaluation tool for measuringspecial properties of materials. In
processcontrol a useful control function canoften be generatedfrom measurements
with NDTdevices monitoring certain stagesof the production process. Thegreatest
benefit of NDTto date is in quality control whereitems andmaterials are evaluated
without destructive sampling. NDTis also employedto measurewearand deteriora-
tion in items whichare in service. It is particularly convenienthere becauseit
canoften accomplishits purposewithout major disassemblyof the item.

Mostforms of energyhavebeenharnessedto someNDTproblemor investigated
as a possible NDTmethod. Items are Observed,smelled, felt, measured,exposedto
X-ray, magnetized,vibrated, acoustically excited, or heatedall in the nameof NDT.
Noone form of energynor anyoneNDTmethodis the answerto all or evena large
portion of the nondestructive testing needs. Eachtechniquehas its limitations and
the methodsusually complimentrather than competewith one another. It is sometimes
necessaryto developa special NDTmethodalong with developmentof the item to which
it is to be applied.

Most NDTmethodsdo not measurea parameteror characteristic directly but
measuresomemoreeasily observedphenomenonwhich canbe correlated with the de-
sired characteristic. For example,the uniformity of a material canbe inferred by
observingmagneticflux perturbations through it or ultrasonic energyreflections
from it. Onthe other hand, there are methods,suchas X-ray radiographywhich
permit a moredirect observation. Table 9-2 summarizestypical characteristics of
the morepopular andmostwidely applied NDTmethods.

9.1 Optical Methods
Optical techniquesutilize optical aids suchas microscopes,magnifyingglasses

and interferometers, to detect the presenceof surface flaws, anamolies,andmal-
functions in materials and items. A permanentrecord of surface conditions or out-
ward appearancecanbe obtained by photographicmeans. This methodcanprovide
excellent permanentrecords, but canonly detect andrecord surface phenomena.

Microscopescanprovide a maximummagnification on the order of 2000with
field of view and depth rangedecreasingwith increasing magnification. Interferom-
eter type microscopesoffer depth measurementsin the low micron region. Microscopy
is greatly extendedby the useof electron beammicroscopes,although this technique
is muchmoreexpensiveandrequires moreoperator skills andspecialized interpre-
tation of results. Optical microscopyandphotographyare commonlyJoined to produce
photomicrographs--photographstaken throughmicroscopes. Fiber optics technologycan
be utilized to observeandrecord information in otherwise inaccessible areas suchas
the inside of fuel tanks, inside completedwingstructures, etc. Wideangleand long
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rangephotographyallow recording of moreinformation than could be obtained by the
nakedeye. High speedphotographycanproducevery useful records of motion and the
dynamiccharacteristics of a material or item. Optical equipmentis available from
manyvendorsas off-the-shelf items.

9.2 Radiography
Radiographyis onemethodfor seeingbeneathsurfaces. Theradiographic system

consists of three major components:the radiation source, the radiation detector,
andthe material or item to be inspected. Thebasic arrangementsof these compo-
nents generally usedin radiographyare illustrated in Fig. 9-1. Thearrangement
in Fig. 9-1(a) is the morecommonof the two. In this penetrating radiation is
allowed to pass through the object of interest onto a film or other detector that is
sensitive to the radiation. Thepresenceof flaws, anomalies,and foreign objects
are revealedby the imageor detector output. A less frequently usedarrangement
has the source andthe detector on the sameside of the material as shownin
Fig. 9-1(b). In this method,radiation from the sourcepassesthrough the detector
andstrikes the material causingscatter or secondaryemissionswhichare then
detected.

Bothnuclear andatomic radiation are usedin radiographic NDT. Somepertinent
characteristics of these are summarizedin Table 9-3.

X and gala radiation with conventionally developedX-ray sensitive films as
the detector are the mostwidely usedof present techniques. Thesemethodscan
detect defects which are on the order of 1%of the material thickness. Procedures

soUrCv//////////////i,i
Material

Detector

(a) (b)

Figure 9-1. Basic Arrangements of Radiographic Measurement Components
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Table 9-3

Characteristics of Radiographic NDT Methods

Radiation Source Material Detector

(Applications)

. X-Rays

Electrons

(Beta Particles)

Neutrons

Protons

Gamma Rays

Alpha
Particles

Conventional X-ray

equipment

Electron guns; sec-

ondary electrons

emitted when X-rays

enter sample; radio-

isotopes

Fission reactors

and special neu-

tron sources.

Accelerators

Radioisotopes

Radioisotopes

Locating foreign ob-

jects, flaws, and

anomalies in parts

and materials; ob-

serving machinery in

operation.

Density measurements,
thickness measure-

ments, surface phe-
nomena detection not

distinguishable under

visible light.

Used in lieu of

X-rays for heavy mat-

erials; for use with

materials which ab-

sorb X-rays but not

neutrons.

Thickness and dens-

ity measurements.

Used in same manner

as X-rays.

Thickness measure-

ments of very thin
materials.

X-ray sensitive films;

color radiographic

films; Polaroid proc-

ess; Xeroradiography;

fluoroscopy.

Photographic films;
electrical detectors.

Photographic film

!sensitive to neutrons;
neutron detectors.

Proton detector

Photographic films;

gamma detectors.

Alpha detectors with
electrical readout.

have also been developed which use the faster and sometimes more economical Polaroid

and Xeroradiographic processes. Color radiography has also been recently developed.

This technique adds the dimensions of hue and saturation to that of brightness so

that areas of opacity are easier to distinguish. Fluoroscopy can be used as the de-

tecting phenomenon.

Electron radiation is generated by electron accelerating tubes (electron guns)

and by X or gamma rays entering a material. The electron beam type radiation is
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usedin conjunction with electron microscopesto mapsub-surfacephenomena.Resolu-
tions in the submlcronregion are reported [Ref. 9-1]. Electron radiographyalso
makesuseof the source-detector-materlal arrangementshownin Fig. 9-1(b). Anad-
vantageof this methodis that accessto only one side of the material or item is
necessary. Electron radiation canalso be transmitted throughthe material to make
suchmeasurementsas material density and thickness.

Neutronshaveanadvantageover X-rays andgammarays in that they are absorbed
differently by different materials. Thesedifferences cansometimesbe exploited
for better flaw detection discrimination. Mostheavymaterials do not absorbneu-
trons well thus thick sections canbe investigated with shorter exposuretimes.
Neutronsare very useful for examiningmaterials (suchas manyplastics) which con-
tain muchhydrogen. A disadvantageis that neutrons are hard to record on films and
a special processis necessaryto detect them.

Bothalpha andbeta particles are usedas thickness measuringgauges. By
using a wide rangeof energies, thickness measurementsusing beta sourcescanbe
madefrom 1.5 x 10-5 inches of aluminumto 50mils of steel. Reference9-2 cites

an application of alpha particles to measure1%thickness changesin thin foils and
paper.

Radiographyis probably the mostwidely usedof all NDTmethodsandhasmany
morefacets than are describedhere. Equipmentfor conductingsuch tests is readily
available from manymanufacturers. Thetopic is very thoroughly coveredin Refs. 9-2
through 9-4. Specific applications are discussedin Refs. 9-1, 9-6, and 9-7.

9.3 Thermal Methods

The flow of heat through a material is altered by any discontinuities in the

material. These discontinuities are reflected as variations in temperature at the

surface of the item. The location and size of an anomaly can be determined by the

temperature profile at the surface. Thermal methods are especially suited for eval-

uating bonds between two materials, i.e., for the detection of non-bonded areas.

The heat is either applied artifically or is generated in conjunction with op-

eration of the item. For example, engine cylinders can be uniformly heated by

filling with hot oil. A microcircuit in operation produces heat internally_ The

method of detecting and recording the surface temperature gradient varies from

thermocouples to infrared scanning with various degrees of resolution and sensitivity.

Table 9-4 outlines the characteristics of the techniques employed.

The frost test is a method widely used for testing the bond quality of cladded

nuclear fuel elements. A chemical which has a frosty appearance and a given melting

temperature is applied to the element and heat applied. A poor bond causes a change

in appearance of the bond. The method can also be used on other materials.

122



0
_C

I ,..C
c_

4.4
,-I 0

c_ m
u

,_J

4-J
0
c_

c_
,.C
cD

u)

_0

C_

o_
,-I cU _

•I.J u

cU 0

m

,-I

m

,_ 0 °

•IJ u) ._

m _

c_.,_ r_

0

0J -,-4

0

I11

_ 0 _ •

_ _ _._
I

_,_ _._
._ _ o

,j) 4J ,,_ u_
m • 0

_D._ _ O_

=o

_ 0 _ _ _

li..-o_o_

I I

_J _J 1,4 0

_ 0 >
• _ O_
_-_ o

0 _J _o

_0

.M
_C
,j

0

0

0 0 _ 0

_'. _" i,__ _°
Im _ o

o _ _o _

co

0

I ul

O

o 0 .M

CqC_ m_D

o +1_ 6
4-1

[-_ .M _ 0

I II • _II

"i _ >

-M
u) u)

111 _ ,-t

• ._ =

_ O0

•_ (i) 0 _,_

O.,M 0
_ 0._

_ u C_
)-4 _ 0

•IJ ,'_ ,.Q

0 m m

0 "0 .M "

O_ 0 _-_

._ ,==I o ::)-,.4
m _ rn u _

I
I _._

•_ (1} I .M

:::I(i) 0o
u),._ 4=)O

_-_ _ 0

o

o

4=) ",'4 (D
0"0 M

'0 _I m

0 M O_
C.> 0 I_

I OJ

C' -M

o m

o m :) ,==_
_ 0 o 0J 0

I
I ,-I 0 I_
,-'I (i) _ _-_ 0

l-I 0 .I-I 'q-I
"el _ ¢)

d
0

I

(I)
C_C
R_

q-_ 0
.I.=)

o o
,,_ ¢)
,._ .)a
O.,0J
_) ,._)

0 )-4
.IJ
0"_)

I:M _I

O0

=
0

0 ._

0 m 0

I

m
m @ .l.J
m o m
• m o

m o

•_ 0 •

4.J
m
0

e
m

m m

u_

.l.J

m 0

m ,.o

_) _0 Cl
,==.I .IJ,==I 0
_-,-4 0,.o

io

> • 0 _o o =_=,-4

M
0

O >
m -,..¢
M .)=)

Cure _

[..-I m p._

t_

1-1

_ m

[-4O.,

'_ 4J

123



The temperature profile of a surface can also be sensed by a coating of some

phosphor suspended in a liquid. The phosphor changes emissivity to ultraviolet

light as a function of temperature.

Tempilstlks are crayons made of a material which melts at a calibrated

temperature. A specimen is marked with the appropriate Tempilstik before heat is

applied. The mark melts at its calibrated temperature. There are various "tricks-

of-the-trade" which extend the use of the method. Other similar Tempil products

such as Tempilaq and temperature sensitive pellets are also available commercially.

Temperature sensitive paints are available which change color as a function of

temperature. Some such paints change color as many as four times at four different

temperature levels. The changes are permanent and provide a good permanent record.

These paints are applicable over a range of 104°F to 2912°F and are accurate within

+ 9°F. The paints can be used on almost any surface. Drawbacks are that the paint

must dry for 30 minutes before use and must be removed after use. The surface to

which it is applied must also be thoroughly clean before application. These paints

are known as Thermocolor. Reference 9-2 describes these in more detail.

Methods are also available which make use of the infrared emission from heated

objects. Infrared photography and photomlcrography have been used for some time to

record temperature profiles of surfaces. A newer and more sophisticated method is

infrared scanning. Here the surface of the specimen is scanned by an optical-

mechanical system which focusses small points on the surface onto an IR detector.

The output signal can be IR sensitive photographic film or a voltage. Walker

[Ref. 9-8] used this technique to determine the temperature profile of microcircuits.

He reportedly could resolve temperature differences as low as 0.5°C and could dis-

tinguish between components separated by as little as 0.0014 inch. This method has

also been used to determine bond quality in objects as large as solid-fuel rocket

motor cases [Ref. 9-9]. A practical application of the IR technique is discussed in

Ref. 9-10.

IR photographic equipment can be obtained from most producers of regular photo-

graphic equipment. One has also developed a sensitive solld-state IR detector.

Temperature probes are also used as temperature profile gauges. These probes

utilize conventional thermometers, thermistors, resistance thermometers, and therm-

ocouples as the temperature sensing elements. These devices measure temperature

accurately, conveniently, and economically, but great numbers of them are necessary

to profile a surface without loss of resolution. Also, the devices themselves,

along with associated lead wires, etc., tend to lower the temperature to be measured.

Thus measurements with these devices tend to indicate temperatures lower than the no-

contact measurements such as IR scanning.
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9.4 Liquid Penetrants
This is a methodof detecting surface flaws in mostmaterials, i.e., flaws which

are opento the surface but not readily detectable by visual means. Fewflaws are
revealed by penetrant inspection which could not be seenvisually, but penetrants
makethe defects mucheasier to locate. Penetrantsare applicable to all metals as
well as to glazed ceramics,plastics, andnon-porousmaterials. A special penetrant
is usedon porousmaterials.

Flawsare rapidly andeasily foundby covering the surface of the material or
item with a liquid having a low surface tension anda low viscosity. Theliquid is
drawninto the surface defects by capillary action. After the excesspenetrant has
beenremovedfrom the surface, a developeris applied whichmakesthe penetrant, and
hence, the flaw, visible.

Thereare twobasic types of penetrants available; dyepenetrants and fluores-
cent penetrants. Dyepenetrants consist of a dyedissolved in the liquid penetrant.
Thecolor of the dye is chosento give greatest contrast with the developer. One
dyepenetrant in general useprovides a red-on-white record of defects which canbe
removedfrom the material as a permanentrecord or for slide projection.

Fluorescentpenetrants consist of a fluorescent phosphordissolved in the liquid
penetrant. This type of penetrant worksin the samemanneras other penetrants.
However,flaws mustbe viewedundernear ultraviolet light with a wavelengthof

O

3650 A.

Some precautions associated with using these materials are that

(i) the surface of the specimen must be thoroughly cleaned before the penetrant

is applied,

(2) sufficient time must be allowed for the penetrant to penetrate the flaw,

(3) the excess penetrant must be removed with care,

(4) the developer must be applied within a temperature range specified, and

(5) the results must be interpreted with care and understanding of the method

used and material to which it is applied.

There are several special penetrant techniques, two of which are radioactive

penetrants and the filtered particle technique. The radioactive method uses a radio-

active penetrant and detects the amount of this penetrant trapped in defects by

either a photographic method or with a suitable radiation detector gauge. This tech-

nique is used primarily to determine the porosity in metal alloys. The filtered

particle method is used to detect flaws in porous surface such as concrete, carbon,

etc. The penetrant in this case contains suspended particles. The liquid is ab-

sorbed by the defect but the particles are larger than the defect and are filtered
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out and left behindon the surface. Theseparticles then give an indication of a
flaw. Fluorescentparticles canbe usedto provide morecontrast.

Liquid penetrant inspection is coveredin detail in Refs. 9-3 and 9-11.

9.5 Magnetics
This methodis basedon the fact that flaws in a magneticmaterial havemag-

netic properties different from those of the material itself. Oncea magneticfield
is inducedin a magnetic, any flaw will perturb or distort the field becausethe
flaw hasa different magneticpermeability, and thus a different reluctance, than
the material. Theflaw is located bymeasuringtheseperturbations. Figure 9-2
showshowflaws affect magneticflux lines.

Thereare three basic waysof setting up a magneticfield in a magnetic
material:

(i)

(2)

by passing a current through all or a portion of the specimen,

by passing a current through a coil surrounding or in contact with the

specimen, and

(3) with magnets.

The method used depends on the type of flux lines desired. Passing a current

through a specimen generates circular flux lines around the current path in accord-

ance with the familiar "right-hand-rule". A coil around a specimen and magnets pro-

duce longitudinal magnetization. Both types of flux lines may be needed because

the extent to which a flaw perturbs flux lines depends on its orientation with re-

spect to the direction of the lines. For example, a crack perpendicular to flux

lines perturbs them whereas a crack parallel to the lines may not. Thus, both flux

orientations may be necessary to detect all flaws in a material.

/'- _ Leakage Flux

(a) Surface Flay

..__1-Leakage Flux

(b) Internal Flow

Figure 9-2. Effect of Flow of Magnetic Flux Lines
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the eddy currents. As in the previously discussed magnetic method, the problem re-

duces to one of detecting and measuring these perturbations and distortions.

Two general types of probes are used in eddy current testing. One is an encir-

cling coll which surrounds the specimen and investigates everything within the coll

geometry. The other is a point probe which inspects only the area beneath it.

The coll type detector is affected by all the metal enclosed by the coll so

statements about sensitivity are difficult to make, i.e., a long shallow crack may

give the same output as a short deep one. The maximum resolution is defects with

length comparable to the coll length (roughly 1/8 inches minimum) and depths of 5%

or more of material wall thickness. The probes are also sensitive to the displaced

volume of metal and are sensitive to defects on the order of the probe diameter.

One such probe, the Probolog--developed by Shell Development Company--can detect

cracks or seams 0.005 inches deep by 1/2 inches long. Generally, a defect where 1%

material displaced in a 1/2 length is detectable. The probe can also detect 1%

thickness changes in a 1/2 inch length. References 9-2, 9-2, and 9-12 have good

discussion sections on the theory and use of eddy current testing.

9.6 Ultrasonics

Ultrasonic waves are acoustic waves above the audible range. They are employed

in NDT to detect and locate flaws in composite materials and non-bonded areas in

bonded materials. The impedance to ultrasonic propagation is different for a flaw

or anomaly than for the basic material. Thus, a portion of the induced ultrasonic

energy is reflected by a flaw just as it is by a boundary of the material. Measure-

ment of the reflected portion or the unreflected portion is the basis for employing

ultrasonics in NDT.

There are three methods of ultrasonic testing in general use: pulse, echo,

transmission, and resonance.

Pulse Echo Method. In this method an applied pulse travels through the material

and reflection is obtained from both a flaw and a material boundary. As the surface

of the material is scanned, the appearance of a defect pulse locates the surface

position of a flaw. The energy of this pulse is related to flaw size but is usually

difficult to correlate with precision. By monitoring the time relationship of the

initial pulse, the defect pulse, and the echo pulse, the defect can be located in

depth. Many ingenious schemes have been used in the pulse echo method. For example,

by introducing the initial pulse at an angle to the material surface the boundary

reflection can be effectively removed in the return. Also, flaws not accessible by

a simple geometry can be detected by letting the pulse zig-zag from one boundary to

another until a flaw is reached. Thus, rather complex geometries can be probed by

this method.
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There are several methods of detecting the perturbations caused by flaws and

defects. The most simple is to pass a compass over the magnetized surface. The

compass needle will align with the over-all field except in the vicinity of a flaw.

Although this method is crude and insensitive, the same principle gives good results

when extended to distributing iron filings--either dry or in a liquid suspension-over

the surface of interest. These filings are sometimes coated with a fluorescent ma-

• terial for a more visible pattern. These filings, of course, line up with the induced

magnetic field except in the area of flaws or discontinuities in the material.

Another detection method is to pass a current-carrying search coll over the surface.

When the coil moves through a perturbation a voltage is generated between the coil

and the inspected material. The magnitude of the voltage gives an indication of the

size of the flaw. This is an especially useful method when the entire object to be

insPected such as pipes, wire, etc., can be passed through a coil. A third method

takes advantage of the Hall effect, which is the generation of a voltage across a

current carrying material when it is placed in a magnetic field. Hall effect probes

are usually made of a semiconductor material and are used by passing them over the

surface of the magnetized specimen. Variations in the magnetic field due to defects

and discontinuities result in a variation in the Hall voltage of the probe.

The sensitivity of this method depends on the strength of the magnetic field.

All defects of consequence can usually be detected down to 0.060 inches below the

surface. Defects down to 0.i00 inches deep will show under ideal conditions

[Ref. 9-12]. A number of other factors such as sharpness, direction and orientation

of the defects also affect the sensitivity of the method.

Much of the equipment for conducting such tests can be fabricated in the lab-

oratory based on the fundamental principles of the method. Reference 9-12 discusses

several tests and test equipments put together in such a fashion. The magnetic

particle technique is the most widely used. References 9-2, 9-3, and 9-12 cover

magnetics in great detail. Reference 9-13 describes a special automated application

of magnetic perturbation scanning.

Another method of NDT which is usually given a heading of its own but is dis-

cussed here under magnetics due to its close association is eddy current testing.

It is based on the simple principle that when a coil carrying a high frequency alter-

nating current is brought into the vicinity of an electrical conductor. These in-

duced currents, in turn, induce a magnetic field about the conductor.

The induced currents, and thus the magnetic field, are affected by the permea-

bility of the material. Although eddy currents can be used to test and measure such

things as hardness, alloy content, uniformity of heat treatment, etc., it is largely

used for flaw detection. Flaws perturb and distort the magnetic field produced by
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Transmission Method. The transmission method is very similar to the pulse echo

technique. A pulse is introduced at one boundary of a material but sensed at another.

The energy transmitted past the flaw is attenuated due to reflection. The energy re-

ceived is thus less when a flaw is present than when there is no flaw. This decrease

indicates the surface position of a flaw but gives no measure of depth. This tech-

nique can also take advantage of reflections for complex geometries.

Resonance Method. The resonance method consists of exciting a material at its

thickness resonant frequency. The material is driven by a transducer which is, in

turn, controlled by a variable frequency oscillator. When the resonant frequency is

reached, a standing wave will become established between the material faces. As the

surface of the material is scanned, any change in resonant frequency not associated

with material thickness is indicative of a flaw. This method is used for thickness

measurement as well as flaw detection.

Both longitudinal and transverse waves are involved in propagation of ultrasonic

energy in the techniques described above. Special propagation called Raylelgh waves

and Lamb waves are also used but less frequently.

Raylelgh waves are surface waves analogous to ripples on water and result from

control of the angle of incidence of the input ultrasonic energy. The Rayleigh-

wave technique is useful for scanning across the surface of an item for flaws near

the surface. A distinct advantage is the ability to investigate curved surfaces.

Lamb wave propagation applies only to thin materials and is an elastic vibration

analogous to setting up ripples in the whole material. Such wave propagations have

proven useful, for example, in detecting non-bonded areas in laminated structures

where vibration in localized areas induced by the Lamb waves can be sensed. The

Lamb-wave technique is capable of detecting cracks that extend as little as one mil

below the surface of a material.

One of the major advantages of ultrasonic testing is its ability to penetrate

deep into a material to locate flaws. This depends on available power and sensitivity

of the detection equipment; however, the technique has been used to locate flaws as

deep as 30 feet down a metallic bar. It also permits rapid measurements and is

economical, relatively sensitive and reasonably accurate for measuring flaw extent

and position. Accessibility to a single surface only is adequate for detecting many

flaws and anomalies.

The resolution of ultrasonic test methods depends on the frequency of the ultra-

sonic propagation, i.e., the higher the frequency the smaller the defect that can be

resolved. A limiting factor is that absorption of ultrasonic energy increases with

increasing frequency. Thus a tradeoff between frequency and available energy must
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be made. Equipment generally available permits detection of flaws with dimensions

in the i to 5 mll range.

The inconveniences of getting ultrasonic energy into and detection of the energy

from a specimen is one of the major disadvantages. Air does not provide the needed

impedance match between the transducer and specimen and liquid couplants such as oil,

water, or glycerine are required. Another major disadvantage is in readout of the

information. Display of pulse positions on a CRT is a much used method. Two-

dimensional scanning and imaging is being employed to a limited extent but requires

further development to become a practical tool. Major drawbacks with imaging are

distortion and resolution. Even holographic methods are being investigated for

three dimensional imaging.

Other disadvantages are the required operator skills and experience. There are

also limitations posed by certain specimen geometries with regard to size, contour,

and complexity. Misleading responses can also be obtained from normal internal

structural characteristics such as large grains and material porosity.

Ultrasonic testing is no cure-all for NDT or even Just flaw detection; however,

when used with discretion in applicable situations, it is a valuable NDT tool.

Good discussion on how to employ ultrasonic testing methods can be found in

Refs. 9-2, 9-3, 9-12, 9-14, and 9-15. Reference 9-16 discusses the application of

Rayleigh waves and Lamb waves. Specific instrumentation problems are covered well

in Refs. 9-2 and 9-3. The theory of ultrasonic propagation is covered in depth in

Ref. 9-15.

Ultrasonic testing equipment can be made fairly reliable and also light and

portable enough to permit some on-the-site inspection. Much of the console ultra-

sonic equipment is developed for a specific purpose such as the ultrasonic scanning

system described in Ref. 9-16.

9.7 Further Perspective

As mentioned earlier most forms of energy have been harnessed to some NDT

problem or investigated as a possible NDT method. The preceding discussion by no

means cover all NDT techniques but is an attempt to provide some appreciation for

its capability. In searching the literature for new methods, look for topics such

as color radiography, pulsed X-rays, microwaves, ultrasonic imaging, and cholesterlc

liquid crystals. Many of these are currently showing promise as NDT methods.

In addition to the references already cited, there are many other excellent

sources of information. A good introductory survey is provided by McGonnagle

[Ref. 9-17] which cites many other sources of information. Neither Ref. 9-2 nor

9-3 should be overlooked by the beginner in the field. Various military handbooks
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andstandardscontain a wealth of standard techniques; see for exampleRef. 9-18.

For keepingabreast of latest developmentsin NDTthe Journal, Materials Evaluation,

is published monthly and describes many specific applications. Various government

agency sponsored conferences specifically on NDT are frequently concerned, see for

example Refs. 9-19 through 9-21.
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i0. EnvironmentalTesting
To someextent any test is an environmentaltest since sometype of environment

is alwayspresent. As discussedherein, however,environmentaltesting pertains to
selecting and simulating the various environmentalconditions of temperature,vibration,
radiation, humidity, etc., for the expresspurposeof determiningor verifying the
capability of an item to operate satisfactorily whensubjected to them. As such, it
is not a basic test methoditself but is a wayof implementingthe basic testing
approachesdescribed in earlier sections. Strength, life, andperformancetests as
well as other basic test types mayall involve environmentaltesting. Somehardware
developmentprogramsdesignate a particular phaseof their testing programformally
as environmentaltesting. In this section weare not concernedwith such formality,
rather with the basic problemsandconsiderations for selecting andsimulating environ-
mental test conditions themselves.

Theeffect of environmentalconditions, either natural or induced (man-made),on
equipmentis an important aspect of reliability. Environmentaltesting provides a
methodfor investigating these effects. It is emphasizedthat environmentaltesting
is donenot becauseof the uncertainty of the environmentbut becauseof the uncertainty
in the effects of the environment. Theuncertainty of the environmentcanonly be
accountedfor by conservative designpractices to render it unimportantor perhaps
by field testing to verify the successof the conservativedesign.

In environmentaltesting, conditions suchas ambienttemperature,vibration, and
RFradiation are generatedand controlled. In somecases there is a deliberate attempt
to simulate as closely as possible the environmentalprofile during intended equipment
operation. This is occasionally done, for example,in reliability demonstrationwith
samplesof prototype hardware. Morefrequently the emphasisis on simulating certain
critical features of the total operational environmentat specific severity levels.
This is typically the approachin design qualification and flight acceptancetesting
of spacecraft componentsand systemsand serves the useful purposeof uncoveringdesign
andmaterial weaknessesandworkmanshiperrors. In still other cases (suchas develop-
ment tests) the operational environmentmaynot be knownand test conditions consequently
cover a wide range to explore the capabilities of an item.

All usesof environmentaltesting haveas commonobjectives either determining
the effect of the environmentalconditions on an item or verifying that the item is

Theenvironmentalconditions discussedherein generally exclude required power
suppyinputs suchas electrical current, hydraulic pressure, etc. eventhoughthese
too maybe included in a specific environmentaltest design.
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capableof withstanding them. It is nowemployedin essentially all phasesof hardware
programsandfrom the parts andmaterials level of item complexity to fairly large

systems. In programs which rely primarily on a "build and test" approach it provides

the major source of confidence in operational hardware. It also remains a necessity

in a complementary role in programs where greater emphasis is placed on analytical

design procedures.
/

A logical alternative to environmental testing is testing under field or flight

conditions. This alternative can provide the desired confidence but usually costs

more (especially in the case of complex expensive items) and often delays the desired "

information. In field or flight testing test conditions are generally not as well

controlled as environmental testing permits; hence, cause and effect relationships

may be more obscure.

Environmental testing ranges in sophistication from very crude methods such as

using an improvised temperature chamber to testing in very elaborate facilities

which enable simulating many combinations of conditions. Tests may be purposely

destructive (as in strength and life testing), or nondestructive (such as proof tests

and burn-in).

Selecting the appropriate test conditions is the major problem associated with

environmental testing. Basic factors that affect this selection are:

(i) the possible environmental conditions during intended use of the equipment,

(2) the subset of these that need to be treated by a testing approach, and

(3) the capability for generating and controlling them.

The crux of the problem lies in determining which environmental features can affect

the item's behavior during intended use and in employing environmental simulation

to investigate these features to the extent feasible within the constraints of cost,

schedule, and testing capability. Not all environmental conditions that affect

behavior can be readily simulated, and very rarely can all be generated simultaneously

to account for interaction effects. Tradeoffs are thus necessary in selecting the

test conditions to make the best use of available capability in obtaining environmental

performance information.

i0.i Environmental Factors and Their Effects

Environmental conditions may be natural, induced, or combinations of these.

Natural environments are those which exist in nature such as the weather, solar

radiation and low pressure in deep space. Induced environments are man-made and

include such things as mechanical shock during transportation and handling, air

In further discussion we will not generally be concerned with distinguishing

whether a specific environmental factor such as temperature is natural or induced.
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conditioned rooms for computers, and radio frequency interference (RFI). An example

of a combined natural and induced environment is the set of conditions surrounding

a space vehicle operating under the acceleration of the launch vehicle and the low

pressure of space.

Table i0-I illustrates the coverage of a number of environmental factors for a

space system. The list is by no means all-inclusive for every application. Even

factors of other origin (such as sub-oceanic) could possibly affect a space vehicle

before recovery. Remember that the environment of on-board components may be very

d/fferent due to sealing, shielding and mechanical isolation. Environmental testing

is, of course, important to all types of items and not just to aerospace-oriented ones.

The set of environmental conditions in proper sequences and combinations that

an item encounters during its lifetime is its environmental profile. The total profile

begins during an item's fabrication and continues throughout its life. Therefore,

environmental testing must consider the environments encountered in manufacturing,

storage, transportation and handling as well as those experienced during operational

use.

Descriptions of the environmental conditions are not always available in explicit

form. No one knows precisely, for example, the environmental profile that a retro-

rocket will experience throughout its llfe including all types of environmental factors

and their severity levels. Through various sources of data on environments it is

often possible to select representative characteristics, such as averages or maximum

levels of major factors, for adequately describing conditions for a test. The ways

of describing test conditions and the associated concepts which were discussed in

Sec. 2 are very relevant here.

Environmental conditions of greatest interest from the reliability viewpoint

are those that have detrimental effects (i. e., those that cause drift, degradation,

failure, wear, etc.) on equipment operation. Some conditions have no significant

effect; some even may be beneficial. Table 10-2 lists some typical detrimental effects

of several environmental factors. In many cases, effects not detectable when the

factors are encountered singly show up when two or more are present simultaneously.

For example, some electronic components function properly in either a low temperature

or a vibrational environment, but when the environments are combined, component leads

may break. The combined effects of several environmental factors as might apply to

References i0-I through 10-12 are sources for defining criteria on space, geo-

graphical, climatic, atmospheric, manufacturing, storage, and transportation environ-

ments. This type of information also frequently appears in Refs. 10-13 through 10-16.

NASA SP-9000 [Ref. 10-17] also identifies environmental criteria documents for specific

space programs and equipment.
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Environment

Acceleration

Acoustics

Aerodynam. heating

_ibedo

Asteroids

Clouds

Cosmic radiation

Dew

Electric atm.

Explosive arm.

Fog
Frost

Fungi

Gases,dissociated

Gases, ionized

Geomagnetism

Gravity
Hall

Humidity

Ice

Insects

Magnetic fields

Meteoroids

Moisture

Nuclear radiation

Pollution, air

Pressure, air

Rain

RF Interference

Salt Spray
Sand and dust

Shock, Mechanical
Sleet

Snow

Solar radiation

Temperature
iThermal shock

!Turbulence

Vacuum

Vapor trails

Vibration

Winds and Gusts

Wind shear

Zero gravity

Table i0-I

Environmental Factors for Space System Application

Mission Phases

Fabri-

cation

X

X

X

X

X

X

X

Prelaunch

Storage,

Trans.,

H_ndlin_

X

X

X

X

X

X

X

X

X

X

X

X

X

Pre- Launch

launch

X

X X

X

X

X X

X

X X

X X

X X

X X

X X

X

X x

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X

X X

X X

X X

Flight

Space Re-

entry

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Landing Recovery

X

X X

X X

X

X X

X X

X

X X

X X

X

X X

X X

X x

X X

X X

X X

X X

X X

X X

X X

X X

x X

X x

X X'

X X

X X

X X

X X

X X

X X

X X

X X

X

X X

X

X X

X X

X X
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Table 10-2
EnvironmentsandTypical Effects

Environment Effects

Winds,GustandTurbulence

Precipitation: Sleet, snow,
rain, hail, dew, frost

Sandanddust

Salt atmosphereandspray

Humidity

Sunshine

High temperature

Applies overloads to structures causingweakening
or collapse; interferes with function suchas
aircraft control; convectively cools surfaces and
componentsat low velocities and generatesheat
through friction at high velocities; delivers
anddeposits foreign materials which interfere
with functions.

Applies overloads to structures causingweakening
or collapse; removesheat from structures and
items; aids corrosion; causeselectrical failures
causessurface deterioration anddamagesprotec-
tive coating.

Finely finished surfaces are scratched andabraded;
friction betweensurfaces maybe increased;
lubricants canbe contaminated;clogging of
orfices, etc.; materials maybe worn, cracked,
or chipped.

Salt combinedwith water is a goodconductorwhich
can lower insulation resistance; causesgalvanic
corrosion of metals; chemicalcorrosion of metals
is accelerated.

Penetratesporoussubstancesandcausesleakage
paths betweenelectrical conductors; causes
oxidation which leads to corrosion; moisture
causesswelling in materials suchas gaskets;
excessive loss of humidity causesembrittlement
and granulation

Causescolors to fade; affects elasticity of cer-
tain rubber compoundsandplastics; increases
temperatureswithin enclosures; can causethermal
aging; can causeozoneformation.

Parametersof resistance, inductance, capacitance,
powerfactor, dielectric constant, etc., will
vary; insulation maysoften; movingparts may
Jamdue to expansion;finishes mayblister;
devicessuffer thermal aging; oxidation and
other chemicalreactions are enhanced;viscosity
reduction andevaporationof lubricants are
problems;structural overloadsmayoccur due to
physical expansions.
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Table 10-2 (Continued)

Environment Effects

Low Temperature

Thermal shock

High pressure

Low pressure

(High altitude)

Gases

Acceleration

Vibration

Shock

Nuclear/cosmlc radiation

Plastics and rubber lose flexibility and become

brittle; electrical constants vary; ice formation

occurs when moisture is present; lubricants gel

and increase viscosity; high heat losses; finishes

may crack; structures may be overloaded due to

physical contraction.

Materials may be instantaneously overstressed

causing cracks and mechanical failure; electrical

properties may be permanently altered.

Structures such as containers, tanks, etc. may be

overstressed and fractured; seals may leak;

mechanical functions may he impaired.

Structures such as containers, tanks, etc. are

overstressed and can be exploded or fractured;

seals may leak; air bubbles in materials may

explode causing damage; internal heating may

increase due to lack of cooling medium; insula-

tions may suffer arcing and breakdown; ozone may

be formed; outgassing is more likely.

Corrosion of metals may be enhanced;dielectric

strength may be reduced; an explosive environment

can be created; heat transfer properties may be

altered; oxidation may be accelerated.

Mechanical overloading of structures; items may be

deformed or displaced; mechanical functions may

impaired.

Mechanical strength may deteriorate due to fatigue

or overstress; electrical signals may be mechani-

cally and erroneously modulated; materials and

structures may be cracked, displaced, or shaken

loose from mounts; mechanical functions may be

impaired; finishes may be scoured by other sur-

faces; wear may be increased.

Mechanical structures may be overloaded causing

weakening or collapse; items may be ripped from

their mounts; mechanical functions may be

impaired.

Causes heating and thermal aging; can alter chemi-

cal, physical, and electrical properties of

materials; can produce gasses and secondary

radiation; can cause oxidation and discoloration

of surfaces; damages electrical and electronic

components, especially semiconductors.
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Table 10-2 (Continued)

Environment Effects

ThermalRadiation

RFI

Solar radiation

Albedoradiation

Zero gravity

Magnetic_ields

Insects

Clouds, Fog, smog,smoke,
haze, etc.

Acoustic noise

Causesheating andpossible thermal aging; surface
deterioration; structural weakening;oxidation;
acceleration of chemicalreactions; and altera-
tion of physical and electrical properties.

Causesspurious and erroneoussignals from elec-
trical and electronic equipmentandcomponents;
maycausecompletedisruption of normalelectri-
cal and electronic equipmentsuchas communica-
tion andmeasuringsystems.

Effects similar to those for sunshine,nuclear/
cosmicradiation, and thermal radiation.

Albedoradiation is reflected electromagnetic (EM)
radiation; amountdependson the reflective
capabilities of illuminated object suchas a
planet or the moon;effects are the sameas for
other EMradiation.

Disrupt gravity-dependentfunctions; aggravates
high-temperatureeffects.

False signals are inducedin electrical and elec-
tronic equipment;interfered with certain func-
tions; can induceheating; canalter electrical
properties.

Cancausesurface damageand chemicalreactions;
cancauseclogging andinterference with func-
tion; can causecontaminationof lubricants and
other substances.

Caninterfere with optical andvisual measurements;
deposition of moisture, precipitation, etc.;
enhancescontamination; can act as an insulator
or attenuator of radiated energy.

Vibration applied with soundwavesrather than with
a mechanicalcouple; cancausethe samedamage
andresults as vibrational environment,i. e.,
the soundenergyexcites structures to vibrate.
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a particular item are illustrated in Table 10-3. As illustrated, synergistic effects
do not alwayshaveadverseeffects. For example,low temperatureinhibits the growth
of fungi and rain dilutes the corrosion effects of salt spray. A goodtabulation of
this type for manyenvironmentalfactors andgenerally appropriate for manytypes of
equipmentis presentedin Ref. 10-18.

A less frequent effect is whenoneenvironmentalcondition creates another.
Anexampleof this effect is whenarcing betweenswitch or relay contacts causesthe
formation of ozone, thus changingthe environmentandits effects.

Someconditions causecumulativenonreversible changesin equipment;therefore, .
whenconsidering equipmentbehavior at anypoint during its useful life, the history
of environmentalexposuresshouldnot be ignored. For example,heating fromwelding
and soldering can causepermanentshifts in device characteristics, mechanicalshock
can result in permanentdislocation of a lead or a part, andnuclear radiation can
causepermanentdefects in semiconductordevices. Thepossible needfor conditioning
items prior to environmentaltesting to simulate the historical effects shouldnot be
ignored. This conditioning is sometimesnecessaryto assurethat the responseduring
the test is representative of that in operational use. Knowingthe environmental
history is not important whenthe effects were reversible, but whetherall pertinent
responsesare reversible canbe determinedonly through careful consideration. Ignoring

Table 10-3
lllustration of Interacting EnvironementalEffects

High
Temperature

Low
Temperature

Vibration

Salt
Spray

Salt
Spray

Accelerate
Corrosion

Decelerate
Corrosion

No
Interaction

Vibration

Increase Rate
of Wear

Intensity,
Fatigue,
Rupturei etc.

Low
Temperature

Mutually
Exlcusive

High
Temperature

140



the nonreversible effects whichhaveoccurredin previous testing andoperations can
lead to very misleading environmentaltest results. Admittedly they are not always
easy to assessor simulate, but just knowingof their possibility canoften be infor-
mative in testing.

In selecting the environmentalfactors and the severity levels andcombinations
of themto be treated, experienceis usually the most reliable guide. For instance,
a'designer of a launchvehicle componentmayknowthat vibration andhigh temperature
is far morelikely to harmhls componentthan low pressureandhigh ozonecontent.
Hemayalso knowthat the mostsevere conditions to consider for testing are determined
by the launch environmentrather than by the transportation andhandling environment.
Suchprior knowledgeandexperiencecanhelp reducethe numberof environmental
tests neededto insure the successful operation of the item.

Theproblemsassociatedwith commonenvironmentalfactors suchas temperature,
vibration, andthermal shocknearly alwaysreceive attention. Less familiar factors
cansometimesbe equally or evenmoreimportant. Effects of albedo, for example,
are morelikely to be strange to most engineersthan the effects of high temperature.
For spaceapplication the operation of a lunar orbiting vehicle maybe considerably
influenced by reflected energyfrom the lunar surface. Thecharacteristics of this
energyfor environmentaltesting purposes,however,are just those of electromagnetic
radiation. Lesscommonfactors suchas hall andinsects demandspecial attention to
determinewhat characteristics andseverity levels to represent if indeedthese factors
needto be treated at all. With hail, for example,if mechanicalimpactdamageis
the major effect of interest, then the size, shape, velocity, andnumberper unit
area of the simulatedhailstones are the characteristics to worry about. Onthe
other hand, the vibration inducedby the incident hail maybe the mostsignificant
factor. Insects can causeboth mechanicalandchemicaldamageandboth characteristics
demandconsideration wheninsects can reasonablybe expected.

Whenthere is little available knowledgeabout the operational environmentor
its effect on an item, it is often simpler andmoreeconomicalto test andseewhat
happensinstead of spendinga great deal of time andmoneyon an independentstudy.
This is essentially the "build-and-test" approachandcertainly has its limitations
for large andexpensiveitems. But whenusedwith discretion it canbe especially
applicable to certain newdesignsor newapplications of old designs.
10.2 Simulating the Conditions

Theemphasison environmentaltesting has led to the developmentof very
elaborate facilities. For example,Ref. 10-19gives a description of the hugeNASA
dynamic-test facility which canaccommodatea six-milllon poundreplica of the complete
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Apollo-Saturn V vehicle in tests involving six degrees of motion. Other facilities

have even more versatility in terms of the number of different conditions that

generated simultaneously. Refs. 10-20 and 10-21 describe examples of such facilities.

Some good general surveys of current environmental test capabilities are presented

in Refs. 10-22 and 10-23. Ref. 10-18 gives detailed descriptions of methods for

simulating various environmental conditions. Methods employed in NASA programs

are described in various specifications and standards which are easily identified

in Ref. 10-17 (NASA SP-9000). The most frequently cited standard for methods in

military procurement is Ref. 10-24 (MIL-STD-810A). Refs. 10-15 and 10-16 are good

sources for learning of new developments.

Given that certain environmental conditions need to be treated by a testing

approach, it is not always possible to generate similar conditons even with the most

elaborate facilities. No single facility, for example, can generate at once all

of the types, energies, and intensities of Van Allen radiation for the space environment.

Air turbulence, gases, and insects can typically present similar problems for environ-

mental conditions not related to space. Many facilities are even limited in their

capability to generate complex temperature profiles.

The realization of such problems has been the motivation for creating more

sophisticated simulation capability. But there are often other ways of resolving

the question at hand. Remember first that it is the effect of the environmental

conditions that is of interest, not just the conditions themselves. Thus, is there

a suitable substitute? For example, pebbles might substitute for hailstones if

mechanical damage from impact is the effect of interest. Or if vibration induced

by hailstones is of interest, then a vibration test already scheduled may be adequate.

Some effects are often more easily investigated from a more fundamental level.

The effect of ionizing radiation is most often studied at a materials or parts level

than at the level of assembled equipment. Also, the environmental conditions them-

selves may sometimes be separated into more fundamental components. Typically, a

temperature profile is simulated by high and low levels and thermal shock; cosmic

radiation may be separated into components composed separately of protons and beta

particles. In such cases one must be alert that there is proper accounting for

nonreversibility, interactions, and aging.

Elaborate environmental test facilities are not always needed to resolve certain

problems. Simply heating individual circuit components with a soldering iron may

in some cases be more informative than testing the entire circuit or assembly in

an oven. And in the absence of certain capabilities, an answer from an improvised

test may be better than no answer at all. For example, when concerned about mechanical
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shocktesting capability, simply droppingthe tubes from a prescribed height as a
substitute maybe better than ignoring the effects of shockaltogether.

With the increasedemphasison generating conditions for different factors
simultaneously, a very important question concernswhetherto use single or combined
environments. Whenfacilities do not exist for generating combinedenvironments,
there is of courseno choice but to generatesingle environments. Multiple environ-
mental factors must then be treated as single environmentsin sequence. If the
severity levels of the environmentsare not purposely damaging,as in a sequenceof
screening tests, the order of application is determinedby whatever is most convenient.
Testswhich are purposely damaging,as in certain qualification tests and acceptance
sampling,demandcareful consideration of order of environmentsespecially whereonly
oneor just a few test specimensare available. Thebasic criterion to employin
this case is to apply first those conditions which are least likely to damagethe
specimen. For a mechanicalpart, humidity andsalt-spray tests would thus logically
be applied before vibration or a mechanicalload test. An electronic part would
morelikely be tested by applying vibration before high temperature. Suchtest
sequencingallows the maximumamountof information to be obtained before damage
occurs.

Ordering of environmentsfor items composedof both mechanicaland electrical
parts is not as clear-cut. Thesamebasic criterion still applies; however,ability
to repair the item cangreatly influence the ordering.

Whencapability exists for generatingboth single and combinedenvironmental
conditions, it doesnot necessarily follow that combinedenvironmentaltesting is
preferable. Thedecision dependsmainly onwhat is to be accomplishedwith the test
and is influenced strongly by factors suchas time, cost, skills, and instrumentation.

Combinedenvironmentaltesting has two significant advantagesover single
environmenttesting. First andmostsignificant is the ability to investigate the
synergistic effects of multiple conditions, i. e., combinedtesting in mostinstances
moreclosely approximatesthe real environment. Second,several conditions can
usually be applied simultaneously in a shorter time than in sequencedue to savings
in set-up time. Therefore combinedtesting often savesmoney. Themajor disadvantage
is that the initial cost of the equipmentfor combinedtesting is higher.

In qualification andacceptancetests, combinedenvironmentaltesting is preferable
to testing with single environments. Theincreased confidencederived from the
knowledgethat synergistic effects are accountedfor usually allows use of smaller
safety factors in application.
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In testing to relate cause and effect, combined environmental testing is used

as an extension of single environment testing. Testing during development usually

emphasizes learning the effects of single environments. Combined environments are

employed after single environment effects have been determined and synergistic effects

become of interest. Employing combined environments first can be impractical. Single

environment testing can also be preferable in long duration tests due to the impracti-

cality of commlitting combined environmental test facilities for long periods of time.

A good discussion of the benefits and problems of testing with combined environments

is presented in Ref. 10-25. •

For Further Appreciation

The general survey article by Bleich[Ref. 10-23] provides easy reading and a

good appreciation for environmental testing in general. Another good general dis-

cussion is presented in Ref. 10-26. The discussion by Junker [Ref. 10-27] is

especially interesting in that it describes some of the chromological development

of methods for specific environmental factors. Experience in the environmental

testing of some spacecraft providing further justification of its effectiveness are

summarized in Refs. 10-28 through 10-30.
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ii. AcceleratedTesting
In accelerated testing items are subjected to conditions moresevere than those

for normaluse in anattempt to speedup aging andhenceobtain degradationand fail-
ures in less time. It is thus a techniqueto shorten test time but applicable only
to those tests in whichaging is important. It is a very loosely defined concept;
attempts to makeit rigorous generally run into problems.

Looselyspeakingaccelerated testing probably started whensomeonesaid, "Let's
shoot the Juice to it andseewhat happens". This meansroughly, "Let's treat it
worsethan weexpect it to be treated_in ordinary practice and then seewhathappens".
Onedifficulty is that "treating it worse" doesnot alwaysmean"shooting the Juice
to it". For example,electrical contacts behavebetter as voltage and current are
increased (up to a point) andsomeheating mayimprovematters for electronic equip-
mentby driving off moisture.

Becausethere is a reasonablyfirm qualitative foundation for muchof acceler-
ated testing, it is often usedbeneficially andwithout too muchdifficulty in
qualitative roles suchas failure modeinvestigation. It is in the quantitative
interpretation and application suchas predicting performanceand life of items
undernormaloperating conditions that it begins to run into the greatest difficulty.

A major consideration in accelerated testing is concernedwith what really
happenswhenthere is an attempt to speedup the aging process. Is aging truly
being accelerated or are other mechanismsbeing excited? To provide a commonbasis
for discussing this andfor appreciating the practical problemsof accelerated
testing, a simple but useful definition of true acceleration is given below.

It is first recalled that a changeof conditions may, in somecases, causeboth
reversible andnonreversible responses. For example,someof the changein resist-
ancefor a resistor whenits ambienttemperatureis changedcanbe accountedfor by
the temperaturecoefficient with the remainderdueto aging. Suchreversible effects
canusually be distinguished; for example,they often appearas initial transients.
It is assumedin the following discussion that all such reversible effects havebeen
eliminated or subtracted out of the data. In particular a reference to the state of
a device will be understoodto meanthat only nonreversible effects are included.

True acceleration. The aging of an item is truly accelerated if and only if

the item, under the accelerating conditions passes through all of the same

states and in the same order that it would have under usual conditions.

Thus at any time t under accelerated conditions the item is in the same state

as it would have been at some time kt under usual conditions, k is the acceleration

factor and, itself, may be a function of time.
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By the abovedefinition onenever really knowswhether true acceleration exists
since aging, a nonreversible process, precludes observingall states of the sameitem
underboth (accelerated versus usual) conditions. At best, onecanonly observesim-
ilar items underboth conditions, andeven then not necessarily all of the character-
istics that define the state downto the last orbital electron. Thus, for practical
purposesthe definition mustbe relaxed to correspondto observablestates of similar
items. Fromthe practical viewpoint a moremeaningfuldefinition is given.

"Practical True Acceleration". The aging of an item is truly accelerated

if and only if the item, under the accelerating conditions, passes reason-

ably through all of the same states and in the same order that a similar
item does at usual conditions.

Thus, at any time t the item under accelerated conditions will have, within

accepted limits the same state parameter values as those for a similar item at time

kt under usual conditions, k is the acceleration factor, and itself, may be a function

of time.

The detailed specification of the item state will vary with our needs and desires

and with the required tractability of the resulting equations. The state of an item

will ordinarily have several dimensions (components); so it can be classed as a

vector. For example, consider a resistor. If we are concerned only about its resist-

ance and nothing else, then the state of the system will be given by the resistance

of the device (or something equivalent thereto such as a ratio of the resistance to

an initial resistance). On the other hand, we may be concerned about several param-

eters, such as the resistance, the temperature coefficient of resistance, the voltage

coefficient of resistance, and the chemical composition of the resistive material.

Then there will be several dimensions for the system state, and two states will not

be the same unless all corresponding dimensions are pair-wise the same.

One would hardly expect the two sequences of states achieved by the two tests

to coincide (i.e., on a state parameter pair-wise basis) with any high precision.

This relates back to the term "reasonably" in the definition of "practical true

acceleration" and to the lack of precision which one is willing to accept. In order

to have true acceleration in the practical sense it is only necessary that the things

in which we are immediately, interested be close enough under the two sets of

conditions. For example, it is possible that different dimensional (components) of

the state are accelerated at different rates. Not all failure modes and mechanisms

need be identical. Similarity of failure modes and mechanisms may help in determining

whether or not there is in fact true acceleration but it is not necessary.

In addition to verifying that true acceleration exists, much of the effort is

devoted to determining the acceleration factor. It is, of course, convenient if the

acceleration factor is constant and depends in some tractable way on the severity
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level. Estimates of an acceleration factor depend on the statistical procedures

used to arrive at it.

Some of the gross failure modes in aerospace systems which can be accelerated

are fatigue, cor_oslon, creep-rupture, stress corrosion, and various combinations of

them--for mechanical parts. In electronics one does not ordinarily specify the gross

failure modes for acceleration but rather specifies the "stresses" which are being

increased. Some of these are temperature, supply voltage, power dissipation, vibra-

tion, humidity, corrosive elements in the ambient. There is a large body of material

'in the mechanical and metallurgical fields dealing with those gross failure modes,

both on an implied level and on a more theoretical basis. See for example the ASTM

references on fatigue for a reasonably complete bibliography on that subject; a good

starting point is Ref. ll-l. Since the behavior of electronic components is organized

differently, there is no organized body of literature dealing with the gross failure

modes which cuts across all components. A number of information sources on acceler-

ated testing of electronic components are listed [Refs. 11-2 through 11-26], but they

should be read critically because many of them contain conceptual errors of varying

degrees of importance. They will, however, give a newcomer to the field an idea of

what other people are doing or are suggesting should be done. A good forthcoming

state-of-the-art survey for accelerated testing of electronics is Ref. 11-27.

ii.i Methods of Programming Test Conditions

The most familiar ways of programming the conditions for accelerated testing

are constant-stress and step-stress. Another approach frequently recognized is the

progressive-stress method; however, as later described this is no different from the

step-stress approach when the steps are small.

Remember that it is the actual severity of the stress that is of interest rather

than the level of a stress factor in defining the appropriate severity when multiple

stresses are involved. There are also potential problems to be resolved beforehand

when multiple stresses are involved.

The different methods are discussed separately below. Statistical designs are

not discussed with these because the procedures are independent of the acceleration

of the tests.

ii.i.i Constant-Stress Method

This is the traditional type of test wherein the severity level remains con-

stant throughout the life of the items on test. It is customary to run tests at

These concepts were discussed in more detail in Sec. 2.2.2.
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several severity levels and to plot a curve (showing some measure of goodness versus

the measure of severity level) which is faired through the resulting points. The

measure of goodness may be failure rate, time to failure, etc. A sample of several

items is usually tested at a level and the test stopped when some fraction of the

original sample has failed, i.e., the test at each level is a failure-truncated test.

For reliability prediction purposes the early fraction that fails is most important

because only the short-llved items are going to affect seriously the reliability.

For engineering improvement purposes the fraction that is very long-llved may be im-

portant as an example of a design which did in fact prove quite reliable.

The measure of severity level where there is only one dimension is usually easy;

some function of the parameter used to describe that dimension is plotted. As is

traditional with engineering, one hopes to choose the coordinate axes so that the

stress severity versus goodness llne is predicted to be straight. If more than one

stress is being changed, then it is up to the engineer to either

(i) find some scalar which will measure the overall severity level or

(2) plot each one of the dimensions of the severity level; this immediately

creates a problem for graphical presentation but the analytic continuations

can easily be written down in their generality.

11.1.2 Step-Stress Method

In this method the severity for a sample of items is simply increased in steps

or increments until some criterion for test termination is met. All steps do not have

to be the same size even though this is most often done.

The term step-stress as used in the literature is ambiguous. It is convenient

to classify step-stresslng into three categories:

(i) Large steps in which the steps are presumed high enough and long enough so

that for a given step the damage accumulated at all previous steps is

negligible.

(2) Small steps in which the steps are small enough so that in the analysis one

can presume with negligible error that the severity level is steadily

increasing. This is then just the progresslve-stress case (Sec. 11.1.3).

(3) Medium steps for which the assumptions for neither small nor large steps

are valid. The cumulative damage at previous steps must be taken into

account but the steps are not small enough that the severity level can be

considered continuously increasing.

In order to be able to refer reasonably to these three cases in further dis-

cussions the following terminology is used: large/step-stress, medlum/step-stress,

and small/step-stress_ The size designations are not absolute but are relative to the

kind of analysis that must be performed.
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Large/step-stress tests are analyzed as if they were constant-stress tests

being run at the severity level of the last step. Parts which are very expensive or

otherwise difficult to acquire or test are often treated in this way. Often a sample

of only one is used. It is wise to consider the results as "ballpark" figures since

the necessary assumption of negligibility of previous steps is likely to be in error.

Preliminary tests are very often run in this way to be followed by a more comprehen-

sive set of tests later.

Small/step-stressing is analyzed the same as progressive-stressing, and in fact

"by definition there is really no distinction between them. Whether in actual prac-

tice the value of a severity level jumps in small but nonzero increments or rises

smoothly may be only a matter of resolution of measuring instruments or of pencil

lines on graph paper. In many cases there will be a large economic advantage to

choosing either very small step increments or a nominally continuously increasing

procedure. As an example, if extremely accurate voltage steps are desired, a stepping

switch might be used with a voltage divider; otherwise a slow motor might be used to

turn a multi-turn potentiometer.

The only difference in analysis between medium/step-stressing and progressive-

stressing is the summation signs being required in the former and an integral sign in

the latter. Discretion may call for increasing the measure of severity level in such

a way that this summation or integration is very tractable (possibly replacing the

need for a complicated digital computer analysis with one which can be done by hand

via the evaluation of a simple equation). As an example consider a situation wherein

the Arrhenius equation is presumed and temperature is being increased. If tempera-

ture itself is increased linearly the summation or integral will be intractable; if

I/T is increased linearly the equations are tractable; further, if e -I/T is increased

linearly the analysis may be even more tractable.

Less testing time is usually the major advantage promoted for using step-stress

tests instead of constant-stress tests. A direct comparison of the methods requires

an assumption for some theory of cumulative damage. In the area of metal fatigue

there are many theories of cumulative damage. In electronics a simple linear model

is most often assumed because of both simplicity and the absence of knowledge about

existing processes.

A linear model of cumulative damage is generally, at best, a gross approximation.

In some circumstances it consistently underestimates and in other circumstances,

The Arrhenius and other equations for acceleration are discussed in Sec. 11.2.

In this case a linear increase in the stepped parameter means that the level

for each successive step is increased linearly with time.
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consistently overestimates the correct value. Regardless of these deficiencies it

has the big engineering advantages of being tractable, easily remembered, and widely

used.

An important parameter in step-stress testing is the ratio of severity step

size to the time at each level. This controls the rate of increase of the stress

severity and is the parameter which is varied when running several tests on a partic -°

ular population of items.

It is possible for some kinds of items that the maximum useful severity level

will be exceeded before the device fails in the proper mode. For example, on tran-

sistors which are thermally stressed there are sometimes eutectlc points where

melting occurs and the transistor essentially ceases to be a transistor. When this

happens the rate of increasing the stress severity needs to be lessened. It is also

possible to change the slope of the steps during the course of the tests--there is no

law that says it has to be constant. The severity level limits (i.e., the level

where the device ceases to be its usual self) are an important limitation to step-

stressing. There are other cases where the failure mode changes so drastically at

some level that it is senseless to continue testing above that level.

Another advantage of step-stress testing occasionally cited is the elimination

of "swltch-on" problems such as initial transients and failures due to high stress

rates. This is because the severity level is zero at the beginning and the severity

increase can be held gradual.

11.1.3 Progressive-Stress Method

The problems and considerations associated with progressive-stress tests are

essentially those of medlum/step-stress and small/step-stress tests. As mentioned

in Sec. 11.1.2, there is no need to belabor the difference between small/step-str_sslng

and progresslve-stressing; the only difference between medlum/step-stress and

progressive-stress testing is in the tractability and form of the resulting analysis.

11.1.4 Other Approaches

The simplest modification of the step-stress or progresslve-stress method is

to start the severity level above zero. This is an endeavor to save time, and upon

occasion, to reduce the amount of cumulative damage done at severity levels other

than the failure level. Some kinds of programs which are concerned with investigating

cumulative damage theories may change the severity level only once during a test. For

example, the initial part of one test may be at a high severity level and the re-

malnder at a low severity level; a subsequent test reverses the procedure. Not much

work of this sort is done in electronics, but metallic fatigue is a field wherein these

methods of programming stresses have received considerable attention. There is no reason

why the programming of the severity levels in an accelerated test cannot be anything
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which will add to the useful knowledgeabout the system. The term "probe testing"
hasbeenusedin the literature, but this testing is a special caseof step- or
progressive-stressing wherethe severity level is a vector with several dimensions
(components).

11.2 Acceleration Equations
Temperatureis the mostpopular andprobably the mostimportant environmental

factor for accelerated testing. It has beentreated extensively in the past, and its
co_Itinueduseappearsboth easyand fruitful. Theequationsusedin the literature
to describe the accelerated behavior are a matter of somecontroversy. Thereare
manyexperimentalsituations wherein temperatureis changed,the results recordedat
eachlevel, then the logarithm of the results are plotted versus 1/kT (or against l/T).
This is often donebecausethe conceptualmodelbeing usedto describe the process
suggeststhat the resulting line will be nearly straight (neglecting random
variations). Manyof these situations havenothing to dowith the Arrhenius or
Eyring equations. For example,the product of the electron andhole concentrations
in a semiconductoris given by

np= P(T) x exp(-Eg/kT)

whereP(T) is a polynomial in T (or similar expressioncontaining fractional
exponents)and E is the bandgapenergy. Theform of this equationhas its roots ing
the Maxwell-Boltzmanndistribution.
beenput in the form

Thereare thermodynamicequationswhich have

y = exp(-E/kT)

whereE is somethermodynamicenergy. Oneof the reasonsthis form is preferred is
that it turns up in the rather tractable analysis for perfect gases. Therefore, in
other situations somenewgeneralizedparametersmaybe defined by an equation of
that form. Theenergies E andE aboveare not usually constant, but the variationg
of,either with temperatureis usually quite mild comparedto the T in denominator.
It happensto be convenientsometimesto split the E in the aboveequation into two

parts, E,IandE2, such that exp(-El/kT) is a polynomial in T (fractional exponents
allowed ). Theresulting equation is y = PI(T) exp(-E2/kT). Unlessthe data are
quite accurate, muchmoreso than usually found in engineeringexperiments, the

variation due to PI(T) is completelyswampedby the randomvariations measuredin y.
In someexperimentsin basic physics (e.g., determiningthe bandgapenergyof silicon)
or in chemistry (e.g., the hydrogeniodide decompositioninto hydrogenand iodine) the

This canhappenexactly if EI/kT is the log of sucha polynomial.
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results are accurate enoughto behooveoneto get a reasonablyaccuratemodelfor the
polynomial in T. Thenthe y's canbe correctedand the nonstraightnessof the re-
sulting llne madeduesolely to the temperaturedependenceof the energy in the
exponent. It is worth noting that the energyof the exponentis associatedwith a
physical quantity only to within a fewkT becausemostmodelsneglect variations in
energyof this amount. Thevariations are quite small, e.g., at roomtemperature
kT = O.025eV.

Other forms relating time and temperaturehavebeenusedin chemistryandmetal-
lurgy (rarely in physics). In particular, a tlme-temperatureparameteris introduced
and the observedbehavior is postulated to be expressible in terms of this parameter
with no other time or temperaturedependence.

The reasonablesuccessof the exp(-E/kT) equationhas led manypeople to specu-
late on extensionsof it to include damagingfactors other than temperature. These
extensionshavebeencompletelyarbitrary and shouldnot be imbuedwith anymystical
senseof theoretical soundness.

11.2.1 TheArrenius Equation
This is often cited as the classic examplefor temperaturedependenceof

,
reaction rates and canbe written

rr = A exp(-E/kT)

While wedo not haveaccessto the personal thoughts of Arrhenius, he wasundoubtedly
influenced for the form of the equationby the thermodynamicformsmentionedabove.
TheArrhenius equationhas enjoyedan appreciable amountof successfor both inter-
polation andextrapolation.

TheArrhenlus equation is often written in an approximateform whenthe tempera-
ture excursionsare small, as

rrl/rr2 = exp(-E/kT0 x AT/To) ,

whereTO is the nominal temperatureof the reaction. A very commonform of this
approximationis the statement that specific reaction rates will doublefor every

Sometimesan R is used in place of the k. R is the universal gas constant; k is
Boltzmann'sconstant. Chemiststend to use the former andphysicists the latter, the
difference being per mole or per molecule, respectively. WhenR is used, E is usually
given in kilocalories per mole, whereaswhenk is used, E is usually given in electron
volts per molecule. Very often the per moleculeor per moleis dropped. A is often
called the frequencyfactor becausethe earliest reactions consideredwere of the firsl
order. This name does not apply to reactions of other orders. The specific reaction
rate is also called the reaction rate constant.
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energysurface canbe introduced and if there are not too manydimensions(say only
one or two), the systemis extremelysimple, andyou are lucky, this surface canbe
obtained from quantummechanicalconsiderations. Actually, "For all but the simplest
systemsthis is not feasible. Thereare also semiempiricalmethodsfor the calculation
of thesepotential energysurfaces, but these do not generally give sufficiently accu-
rate surfaces for practical use in predicting kinetic data. In fact, for all but the
very simplest reactions oneexaminesthe nature of the activated complexfrom experi-
mentalkinetic data."

Electronic componentsare complexengineeringsystemsfrom the point of view of
theoretical chemistry/physicsand for practical purposesuse of absolute reaction
rate theory will offer little if anything over the Arrhenius equation. Oneof the
biggest obstacles to its use is the tremendousscatter in the data. Another is that
the specific reaction rate is not observed,but somecomplicatedfunction of it is.
By the time one is discussing failure rates, he is a long, long way from a specific
reaction rate.

11.2.3 A Relationship for Stress Severity Dependencyona Time-TemperatureParameter
In the field of metallurgy, in particular for prediction of time to creep-

rupture failure, a time-Temperatureparameter(tTp) hasbeenfound to be useful. A
similar tTp is presumablyalso useful for plastics. In this conceptualmodelthe
severity level is consideredexpressible as a function of a single parameter,the tTp,
where

tTp z T(A+ log tF) _ T log(tF/t 0) ,

with tF representing the time to failure andT the absolute temperature. In creep-
rupture situations the constant tO is taken to be on the order of 10-15 hr, so that
for 1 hr < tF < I000 hr, 15 < log(t/t O) < 12. This rangeof times includes most test
times. It canbe seenthat variations in failure time up to a factor of three will
producea changein the tTp of only a few percent. Thusthere is an extremecom-
pression of the time scale. Discrepanciesin the data are coveredupwhetherby
intention or not.

It is easy to showby simple algebra that this equation is inconsistent with the
Arrhenius equationwhenusedas a theory for cumulativedamagenotwithstanding the
procrusteanapproachesin the literature to derive one from the other. In fact, the
tTp cannotbe usedat all as a measureof cumulativedamages.

There is certainly nothing wrongwith trying to fit the results of an accelerated

life test of an electronic componentwith a tTp. Theconstant tOcanbe considered
adjustable to give the best fit to the data. Just rememberthat time andTemperature
canenter in no other way than through the tTp.
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IO°Crise in temperature. If TO is taken anywherein the range0 to 100°C,E varies
between0.5 and 0.7 eV. Theuncertainties in the experimentaldata in manypractical
situations swampout the approximation.

If the results of an engineering investigation showthat the Arrheniusbehavior
is not followed, all that suchresults meanare that the systemis obviously behaving
in someother fashion. Theresults do not meananything is right or wrong, but simply
t_at the simple-mindedconceptualmodelbeing usedis inadequate.

Since its birth over 75years ago, the Arrhenius equation hasundergonemodifi-
cations in endeavorsto makeit morewidely applicable. Thesemodifications are
basically of little concernin accelerated testing; they are discussedin texts and
articles on physical chemistry.

11.2.2 TheEyring Equation (TheAbsolute ReactionRateEquation)
TheEyring equation, or as it is moreoften knownin physical chemistry, the

equation for absolute reaction rates, seemsto have assumedan undue,god-like image
in someof the reliability-physics/accelerated-testing literature. Thespecific
reaction rate maybe written as

<kT _-AG%]
rr= expL-e-J

where AG% is the Gibbs free energy of the activated complex, _ is a transmission co-

efficient and is usually virtually unity, and h is Planck's constant. "It should be

clearly noted that the equation has been developed for an elementary reaction and

that it should be applied only to such a reaction." "The absolute reaction rate

theory...has been applied with success to a wide range of solid, liquid, and vapor

phase reactions. It is equally useful in considering the rates of very rapid re-

actions which may occur in a flame, and the rates of those reactions which under

ordinary conditions require geologic ages."

Now since AG% = AHt - TAS#, where H% and S# are enthalpy and entropy of the

activated complex respectively, the equation can be put in the following form

KkT _AS_] I-AH%]

rr = _ exp[-_-j exp[ kT J

The AH% is closely associated with the activation energy and is equal to it within an

uncertainty of a few kT (depending on the exact conceptual model chosen for the re-

action kinetics). It is the term exp(AS%/k) that gives the trouble. A potential

An excellent short reference is Ref. 11-29.

section (11.2.2) are from this paper.

All the quotations in this
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11.2.4 Extensionsof the AbsoluteReactionRateEquation
As mentionedin the introductory portion of this section there havebeenex-

tensions of the equation for absolute reaction rate (Eyring) whichhavebeentermed
"generalized Eyring equations". Theyinvolve an exponential term in which two arbi-
trary constantsandan arbitrary function of the measureof stress are introduced.
Thename,Eyring, applied to this equation shouldnot misleadanyoneinto thinking
• hat he and the other eminentphysical chemistswhodevelopedthe theory of absolute
reaction rates are responsible for it. Theequation itself is obviously gross empir-
icism, whichwhile not bad in itself, takes someof the aura of primacyawayfrom it.

11.2.5 Applicable Parameters
Very often in the literature, the life of an elementis consideredto have for

example,an Arrhenius acceleration, but the exact meaningto be associatedwith this
statement is not clear. If the llfe is a randomvariable it is difficult to knowwhat
is meantby the life following a certain law. It is muchmoremeaningfulto assert
that a particular parameterin the life distribution follows a certain law. For
example,if the hazardrate is constant, the life distribution hasa single parameter
(I), andit canbe asserted that I has the Arrhenius form. Other one-parameterdistri-
butions canbe treated similarly.

If the life distribution has morethan oneparameter,e.g., the Weibull distri-
bution, then it makesno senseat all to assert that the life follows the Arrhenlus
acceleration formula. Ratheronemustassert that one (or both) of the parametersin
the distribution follows the Arrhenius formula. It is mostcommonly(and implicitly)
assumedthat the reciprocal of the location parameterhas the Arrhenius form andthat
the shapeparameterremainsconstant. If in fact the shapeparameterremainsconstant,
a very simple time transformationwill convert the Weibull distribution to the
exponential, and there is no needto treat it as a special case. If the shapepa-
rameterdoesnot stay constant, there are serious difficulties in interpreting the
data unless separateforms are assumedapriori for both the location andshape
parameters. In the Normaldistribution which also has two parameters(the meanand
variance) a similar problemarises, viz., separateequationsmustbe assumedfor each
of the parametersin order to interpret the data. Rarely doesanyonein the field of
reliability concernhimself with a life distribution whichhasmorethan two parameters
becausethe data are usually too inadequateto makesenseout of the results.

Youmust alwaysask yourself the question of the title: This is a thermal
acceleration equation for whatparameter?

11.2.6 Estimation of Parameters

Estimating the parametersof the Arrhenius equation from a set of llfe data
is difficult becausethe equation is nonlinear. Several computerprogramsare mentioned
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in Sec. 8, Vol. II - Computationof this series whichcanperform this by iteration
using nonlinear least squaresmethods. Themostdesirable way, if it could be done,
is actually to substitute the Arrhenius formula in the probability density function
(or the cumulativedistribution function) anduse the data to estimate the parameters
directly. In using a least squaresanalysis attention must alwaysbe paid to the
weighting of the data points in termsof the estimatedaccuracy. Theweight given to
any point is proportional to the reciprocal of the squareroot of the variance at that_
position. For example,if a Poissondistribution hasbeenassumed,the uncertainty in
the estimate of the rate is directly related to the numberof failures (or, more
exactly, is directly related to the true meanat that position).

Someauthors havecautionedagainst transformation of the variables becauseof
the effect on the weight of the points. Onecan transform the variables if he changes
the weighting of the points with every transformation of the dependentvariable. The
weighting doesnot changeat all with transformations of the independentvariable.
Thehelp of a competentstatistician will beworthwhile if the estimations are at all
critical, e.g., in meetinga specification.

11.3 Extrapolation
Just as everyoneusesaccelerated testing andwill continue to use it regardless

of the Judgementspassedon it andits limitations, everyonewill continue to extrap-
olate from the data regardless of the admonitionsagainst andthe dangersbefalling
extrapolation. It is not the purposeof this section to proscribe extrapolation but
to showwhat uncertainties exist whenit is done. It is presumedthat somereasonable
equation derived from a modelof the processexists. Curveswhich are fit to data
points by brute force with a series, suchas a powerseries or orthogonal polynomials,
are never to be extrapolated unless the true modelis of that form. Thoseformulas
are for interpolation only; they usually behavevery wildly outside the data interval.
It makesno difference for examplewhethera least squaresfit or anexact fit to the
data is used, the extrapolated curvewill not be a smoothextrapolation of the data
points nor is it intended to be. This is not an ivory tower proscription but a very
realistic one.

II.3.1 KnownModel
If the modelis knownoutside the rangeof the data, then the problemis

statistical in nature. A statistician maybe able to give help on the design of the
original experimentto maximizethe precision of the extrapolated value. Virtually
alwaysthe data are transformedso that the resulting curve is a straight line and
only a straight line is consideredin the following. Theprinciples are applicable
to morecomplicatedcurveshowever. Considerthat the origin is at the "center of

158



gravity" of the data points. The straight line will be of the form y = mx + b where,

except for uncertainty, b is zero. In virtually all situations the error in extrap-

olating due to the uncertainty in b is negligible. The uncertainty in the slope m is

what causes the trouble as is shown in Fig. ii-i. The heavy line is the best line

calculated by whatever means are desired. The dashed lines are the loci of confidence

points about that line for extrapolation purposes. In the lower right of the figure

fhe uncertainty in x for a given value of y is shown as a solid heavy line. In the

upper left the uncertainty in y for a given value of x is similarly shown. The de-

tails of calculating these intervals are included in many computer programs and are

available in some statistics texts. If extrapolations are made very far, and they

usually are, the uncertainty can be an appreciable fraction of the value. For example

where log time scales are used uncertainties in time of factors of i0 ÷ i00 are not

unknown. These are very real uncertainties; within the confidence limits stated you

don't know where a point lies, and giving point estimates can be extremely misleading

to the reader. Remember that this discussion presumes that the model accurately

describes the behavior in the region of extrapolation. Models are often known to have

a very restricted region of applicability; certainly this region should be included in

any equations written down so that the limitations are kept firmly in view.

Figure ii-i. Illustration of Extrapolation

If the points are weighted in the analysis, the origin will be the weighted

center of gravity.
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11.3.2 Unknown Model

If the behavior in the region of extrapolation is not known to follow a partic-

ular model, or if, as usual, one is not sure whether or not it follows that model in

the region, then it is often possible to hypothesize several models and to extrapolate

according to each. If the decision you make on the basis of the extrapolation is ex-

tremely sensitive to the model which has been assumed, then you are in trouble. If

the decision you make on the basis of the extrapolation is not very sensitive to the

model, it is generally assumed to be safe to go ahead. Fortunately, very often the

latter is the situation. No one really cares what the exact prediction of life of a

component or a part is, all he really cares about it whether it is long enough. This

is why many acceleration and extrapolation techniques are successful. The parts are

very good, so good in fact that they transcend the limitations of the analysis.

In most engineering situations one has to work in regions where decisions are

not clearcut and there just aren't enough data. Generally speaking if you are in a

satisfactory region, someone wants to redesign the system and put you in a questionable

one; this is a consequence of getting the most for the least. Under these trying

circumstances, this section can be used only as a guide, but the idea of sensitivity

to the exact model is very useful and can give the engineer more engineering confidence

in his decision. In this kind of situation you must beware of the statistician's use

of the word confidence, since in that use it is a very technical term and certainly

does not mean engineering confidence. You can easily have one without the other. It

is engineering confidence in a decision that an engineer wants--not statistical

confidence per se.
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12. Testing in the Operational Environment

It is often said that the only way to really determine whether an item will

function as intended in its operational environment is to put it there and see.

This is basically true but it is not always possible to do this prior to the real

mission nor is it necessarily desirable. One significant shortcoming of this

approach, for example, is that certain cause and effect relationships may be obscured

because of lack of knowledge about operating conditions.

Field tests, flight tests, commercial marketing tests, and in-service evaluation

tests are all examples of testing in the operational environment. Typical reasons

for wanting to test in this manner are:

(i) increase confidence in the ability of the item to perform in the actual

operational environment,

(2) inability to simulate particular environmental conditions in the

laboratory,

(3) the item is too large and complex for environmental simulation, and

(4) obtain response data as a basis for future laboratory tests.

Sometimes it may simply be less expensive or easier than simulating conditions.

However, if the capability to simulate conditions already exists, it is usually less

expensive to use environmental simulation. As illustrated by the second and third

reasons above, there is often no choice but to resort to the operational environment.

There are often certain shortcomings in the approach. A simple flight test

of a launch vehicle, for example, gives response to only a particular set of condi-

tions and the behavior is not known to be representative of the population of

operational items.

The extent of other shortcomings depends considerably upon how much control is

maintained over the tests. If the items are merely put in the hands of customers to

operate and checked from time to time, the results may only indicate how well they

survived this environment. Items may get used for purposes other than those intended

or operated under conditions not included in the design criteria. Unlesb these are

known, the results can have only limited utility. An even worse situation occurs

when the reporting of behavior is left to the customer. Usually he considers it the

least important of his jobs and it often gets done poorly if at all.

Even when more control is maintained by the manufacturer, there can be disad-

vantages. Some cause and effect relationships may be obscured because of lack of

detailed knowledge of the conditions. Measurements are often not as thorough or as

accurate. There are typically delays in reporting results.
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When the individual items are simple and inexpensive such as hand tools, turning

them over to the customer for testing in his environment can be a good way of evalua-

ting the product. When they are expensive as aircraft, usually the controlled approach

is better. Basic procedures for planning such tests are no different than others.

The rewards must be evaluated with respect to costs in time, money, and effort.
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13. Major Applications of Testing in Hardware Programs

Three important classifications of tests were introduced in Sec. 3.1. Two of

these, the basic test types and the basic uses of tests, are discussed in Secs. 5

through 8. This section treats the third, viz., major applications of testing in a

hardware development program.

As a design evolves from its initial concept through design and production to

final operational form, numerous tests are required. The tests at a particular stage

can usually be associated with some general problem area such as development, design

qualification, and verification of the final product. Whether the program is concerned

With developing a plece-part, an equipment, or a large system, the types of problem

areas to be treated are basically the same.

An illustration of how these applications relate to product evolution is presented

in Fig. 13-1. The designations such as feasibility, development, qualification, etc.

are common terminology found in most programs. One has only to sample the literature

to discover that their meaning differs quite radically from program to program. The

meanings we have assigned to these is made clear in later discussion. Instead of

rigid definitions we have generally compromised on concepts defined or implied by a

number of sources including especially Refs. 13-1 through 13-7.

Note that in this representation the cycle of evolution ends following production;

the testing and operation following production is associated with either the evolution

cycle of a higher level of assembly or the operational use of the end-item. For ex-

ample, installation and checkout are simply in-process activities during fabrication

of higher levels of assembly. Even though the manufacturer's major attention to a

product may terminate with customer acceptance, the post-productlon tests and op-

erations can often provide good feedback information for improving other items in

production or aiding new or modified designs. Some programs even provide for field

personnel in support of this.

As illustrated, testing generally becomes more formal as the design matures.

Formality indicates the degree to which the plans for carrying out the test and for

documenting results are explicitly controlled by program management or the user.

Early in a program the tests are usually less formal because of their required ex-

ploratory nature and their tendency to provide little information to the user or

customer on the verification of the end-item. The most formal is acceptance testing

which provides final verification (within its ability) to the customer that the end-

item conforms to his application requirements.

The omission of test designations such as reliability, quality, and production

testing may surprise some readers. These designations are mainly discipline-orlented;

production testing is essentially synonymous with in-process testing but reliability

165



and quality testing mayapply to any of several applications. This dependsuponwhich
discipline is assignedthe major cognizanceover an application. This varies from
programto programandas noted at the top of Fig. 13-1, the possible areas of involve-
mentby the various disciplines or organizations is far-reaching.

Typically in mostprogramsthe engineeringorganizations responsible for design
anddevelopmentalso maintain control over the earlier tests in the program. As the
designprogress towardfinal form, moreandmoreinfluence is exerted from reliability,
quality, andproduction personnel. Designqualification is usually controlled by
quality or reliability personnelandrepresents the major point of transition of
responsibility of the design from engineering to production.

Themajor influence of quality control organizations traditionally begins in the
designanddevelopmentstage in connectionwith selection andqualification of
components.Thesubsequentdesignqualification, componentacceptance,in-process,
andend-itemacceptancetesting are all usually controlled by quality control
personneleventhoughthe actual conductof these tests maybe by engineeringand
production personnel.

Theinfluence of the program'sreliability organization is dependentuponthe
emphasison reliability in the programand the approachto its treatment. Testing
is a source of data for reliability assessment.Until the last few years, mostof
the reliability data for assessinga specific designwasachievedby special tests
for reliability conductedquite distinctly from others andwasdesignedand controlled
mainly by reliability personnel. Morerecently there hasbeenemphasison considering
all areas of testing as potential sourcesof reliability. This has necessarily in-
volved modifying someof these andincorporating someof the test design features
previously provided only by the special reliability tests. Theintegration of these
tests to provide the necessaryreliability information requires someoverall program
test and evaluation plan. All high reliability programsnowrequire this in one form
or another. This conceptof integrating tests is further discussedin Sec. 13.8.
Section 14 pursuesthe specific problemsof testing for reliability in moredepth.

Thenature of the testing for eacharea of application results from a trade-off
betweenthe information desired andthe information feasibly obtained within the
constraints of available models,time, cost, etc. For example,a test to obtain a
reasonablyaccurate estimate of reliability of the end item requires test specimens
similar to those intended for operational use; it mayalso require testing for a long
duration and in a complex,simulatedenvironment. Suchtest specimenswill not usually
be available until late in the designanddevelopmentstage or early in the production
stage.
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Remember also that a particular application may involve several of the basic

testing approaches introduced earlier in this report. For example, qualification

testing may involve proof, performance, and time-truncated testing to fulfill all

objectives.

13.1 Feasibility Testing

Prior to proceeding at "full speed" in developing a particular design concept,

it is first necessary to verify its feasibility or to select the best of several

approaches. Informal testing is often performed in support of this and such tests

are usually called feasibility tests. It often involves testing existing (but per-

haps refurbished) spare hardware from another program under conditions different from

that originally intended. If hardware has to be fabricated for the testing it usually

consists of crude breadboards and other special engineering models.

Feasibility testing may require any of the basic test types and emphasize simple

functional performance in some cases, and life or strength in others. Because of its

informality much of the data gets no further than laboratory notebooks. It generally

is not a major source of data for quantitative reliability assessment; its major con-

tribution to reliability is in the (engineering) confidence it provides about the

accepted design approach. Statistical design of feasibility tests is rarely done.

13.2 Development Testing

Following feasibility investigations and selection of design concepts to be

developed more fully, much additional testing is necessary during the design and

development for generating design data or resolving specific design problems.

Typically, there may be several design approaches to be further evaluated and com-

pared on some basis or a designer may need to learn more about the operation of his

design in a particular environment. Test items for such development tests are

typically breadboarded circuits, boiler-plate structural models, and other special

engineering models. In some programs development testing may extend to include tests

with pilot production models of operational hardware.

The responsibility for design and control of much of the development testing

programs usually rests with design personnel. These tests are usually very informal

and tend to be exploratory or probing in nature; most data is generally retained in

laboratory notebooks. There is now more emphasis in programs involving design of

high-reliability and particularly few-of-a-kind items to utilize development testing

as a reliability data source to the extent practical. Such integration of test appli-

cations is discussed in Sec. 13.8.

The problems treated in design and development are many and varied in nature;

hence, one can readily find applications of all the basic testing approaches in-

troduced earlier. With the exception of specially integrated tests for reliability,
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statistleal design is generally not as prevelant as in later applications. Most of

the tests are devoted to building up engineering knowledge (hence confidence) about

the design.

One major word of caution to the designer is in order: Beware of nonreversible

effects. After.a series of tests under extreme severities of conditions plus all of

the necessary handling and Jiggling of wires and components, your model may be quite

different than what you started with due to hidden damage and aging.

13_,3 Qualification Testing

Before proceeding with full-scale production of operational items, the manu-

facturer and often the user want to know that the design and its component parts are

inherently capable of meeting all of the application criteria. Qualification testing

aids experimentally in doing this. It has long been a very formal procedure.

In some cases designers conduct the qualification testing. It is preferable,
**

however, if other groups conduct them to eliminate possible bias. Separate test

and evaluation groups sometimes serve this role. Some organizations consider it an

integral part of reliability or quality testing. In an integrated testing approach

it can be a valuable source of data for reliability assessment.

Test articles designated for design qualification testing are usually as near

like the final operational item as is practical. In the qualification of a component

of a space system the test article may in all noticeable respects be identical to the

intended flight articles. In less critical programs special engineering models, per-

haps even a refined breadboard version, may be adequate for qualification. In some

cases only one specimen may be available and hence is usually treated with the utmost

care. It is worthy to remind the reader that even though a small sample of one or

two items may represent a large proportion of a population of kew-of-a-kind items, it

is not necessarily a representative sample. With smaller, less expensive items such

as piece-parts, larger samples are easier to obtain but remember here that the sample

you purchase today is not necessarily representative of the ones you will purchase

several weeks hence.

Most qualification tests employ conditions which at a minimum are as severe as

those for usual operation. Extensive laboratory simulation of operational environments

In the development of high-reliability items it is complemented by other efforts

such as design reviews, part application reviews, reliability prediction, and vendor

qualification for verification of design adequacy.

As observed in several programs, special in-house tests are conducted by designers

prior to qualification using identical procedures in order to assure themselves that

the item will pass the qualification test.
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is often involved. Field and flight testing is employedto achieve the conditions
whenthey cannotbe adequatelysimulated. Becauseof the severity of the conditions,
tested items are usually consideredunfit for further application as componentsfor
hlgher-level assembliesor as operational hardware.

Lowerlevel componentsof the designare usually qualified prior to assembly.
Whenthere are special designsdevelopedin separateprograms,the basic quallficatign
procedurefor these is the sameas describedabove. Off-the-shelf componentssuch
as piece-parts mayhavealready beenqualified per somespecification andappearin a
qualified (or preferred) parts list. Thedesignsof suchcomponentsgenerally ex-
periences a qualification in the manufacturer'sdevelopmentprogrambefore release
for production. Thequalification for application of these in a specific design is
often performedagainby the user but will generally employthe sameapproach. The
conditions for this latter qualification are typically those rated by the manufacturer
for his componentanddue to deratlng by the manufacturermaynot be as severeas
those he originally used for his qualification. Remember, however, that not all manu-

facturers are equally conservative in their derating practices.

Qualification testing most commonly employs proof testing and time-truncated

testing approaches. In the former, test conditions are applied at a fixed severity

and the item either passes or fails the test. In the time-truncated approach the

item is tested for a fixed time under certain conditions. Performance measurements

are also commonly made in connection with these. A complete qualification test of an

item may involve a number of individual tests and measurements under various conditions.

If reliability demonstration is integrated into the testing procedure or if one-shot

items are being treated, then some sampling plan (see Sec. A.10 of the Appendix) may

be involved.

General guidelines for qualification testing of space system components can be

found in Refs. 13-4 and 13-8; the latter also contains typical conditions for

qualification. A general discussion of the philosophy of qualification testing for

a specific spacecraft and the choice of conditions is presented in Ref. 13-9.

Numerous NASA specifications and standards on qualification testing of specific com-

ponents can be identified in Ref. 13-10; Refs. 13-11 through 13-14 are typical ex-

amples of these.

In typical qualification test specifications the specific objective of time-

truncated tests is not always clear, i.e., whether the test is to look for possible

aging or cumulative damage effects or is simply another form of proof testing. If

the conditions closely simulate those of a mission, for example a random vibration

profile representing the launch environment, then it can be either but neither does

it matter. However, there are numerous examples of tests, for example one in which
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several high-low temperaturecycles are applied, in which the conditions are very
different from those for intended operation. It is usually true that if failure does
occur undersuchconditions it doesindicate a possible inherent weaknessin the design.
Tests of this latter type are often misleadingas to the causeof failure. Theyare
also not suitable as a sourceof failure-time data for estimating reliability.

It is often necessaryto requalify items whenthe designhasbeenmodified or
th_ fabrication processhasknowinglychanged. This is often the casewith piece-
parts and the manufacturerdoesnot alwaysmakethe customeraware,nor is he always
aw_are,of changesin the process. Increasedincidents of failure during the customers
receiving tests or during later operation of the item maybe the only indicator. Some
high reliability programsspecify a periodic requalification of certain parts; some
specify tests of eachlot receivedwhich if are not requalification in nameare in
essence. Requalification of larger items mayinvolve waiver of a portion of the
original qualification test stages.

13.4 AcceptanceTesting
Whereasqualification testing verifies that a designor a componenttype is

inherently capableof performingunder intended conditions, it cannotverify that the
end-itemsfrom production havethe samecapability. Acceptancetesting plays a very
formal role in providing this verification. It is a major step in the transfer of a
product from the manufacturerto the customeror user. Typically, a manufacturerof
high-reliability items is required to havea very extensive acceptancetest andin-
spection procedurefor incomingparts andmaterials. Also, formal acceptancetests
are required for fabricated items prior to acceptanceby the customers.

Themajor responsibility for acceptancetesting is practically alwaysassigned
to quality control personnel. In somecasesacceptancetesting mayprovide data
whichwill aid the reliability organization in refining their evaluation of the item.
A well-planned integrated testing approachwouldconsider the useof the results of
acceptancetests of lower level items usedin assemblyfor reliability assessment.

Mostacceptancetesting is performedusing a go, no-go test approachwherein the
conditions are chosenso that bad items fail and are rejected andgooditems passand

Important complementaryefforts are quality control measuresduring fabrication
of the designand in procurementof lower-level items; in somecaseswith procureditems
the customermayinsist on his performingcontinual inspection of the manufacturer's
process.

**
There is a trend towardhaving the manufacturerperformmoreof these tests

prior to shipment.
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are available for application. For spaceequipmentRef. 13-2 specifies that the
tests will be performedin sucha mannerthat will simulate operational conditions to
the highest degreepracticable without damageto the end-itemandwhichwill provide
a measureof over-all quality. A major intent with muchacceptancetesting is to re-
veal any possible material defect andworkmanshipdiscrepancies in the end-item.

Someacceptancetests are knownto consist only of simple functional checksin
a benign laboratory environment. Moreoften, however,there is someattempt to stress
the item to causedefects and deficiencies to be revealed. Theproceduresare usually
somewhatsimilar to conventionalqualification testing in that the basic testing
approachesare proof testing and time-truncated testing. A major difference, however,
is that the stresses are usually chosento be less severethan in qualification
testing to prevent damaginggooditems. Somegooddiscussion on acceptancetesting
of a specific spacecraft is presentedin Ref. 13-9 andsince qualification testing is
discussedthere also it provides a goodcomparisonof the proceduresandconditions
for the two applications. Onecan identify numerousspecifications and standardson
acceptancetesting also in Ref. 13-10. References13-11 through13-14are also good
examplesof these.

There is usually sometype of acceptancetest performedon every item larger and
morecomplexthan piece-parts. In high reliability programsthere is evennowconsid-
erable emphasison acceptancetesting 100%of all piece-parts; the term screeningis
used to designate this and the subject is treated in more depth in Sec. 14. When it

is necessary to destroy or significantly age items in order to test them, it must be

done by sampling (See Sec. A.10 of the Appendix for discussion on sampling).

13.5 In-process Testing

This pertains to all of the testing performing during fabrication. Most of

it is done as part of the routine quality control inspection and testing to maintain

quality standards of the process procedures and the workmanship. Production personnel

typically perform most of the testing with quality control sampling periodically to

maintain the checks and balances. Production engineers may need others simply as

part of their assembly procedure as in the case of an alignment test of a gyro after

it is installed.

For quality control purposes it is generally desirable to conduct some test

after each step of assembly to check the items of hardware involved. Such tests

are usually kept as simple as possible but they must be adequate to do the job. It

typically involves simply attributes measurements such as visual inspection and

functional checks but may in some cases require a proof test approach. Variables

data is often recorded to determine the amount of variability. Sometimes the

172



variation at one step is combinedor traded off with variation of other steps to
assess the overall variability andmaintain it within requirements.

It is not alwayspossible to measurethe characteristics of interest by conven-
tional methodswithout destroying or significantly aging something. This has promoted
the useof nondestructive testing (NDT)(seeSec. 9 for a discussion of NDTprinciples)
methodsin in-process testing. Whenthere is no alternative to destroying or aging
the item, destructive testing mustbe doneon a samplingbasis. If manyidentical
items are produced,samplingcanbe performedin accordancewith MIL-STD-105D
[Ref. 13-15]. It is often desirable, especially with low-volumeproduction, to make
the samplesizes dependentuponthe results of previous tests; that is, the sample
size will decreaseif few or no failures are observed. Section A.10 of the Appendix
of this report gives a sunmmrytreatmentof samplingprocedures. For description and
proceduresof various approachesto sampling, consult Refs. 13-16and13-17.

In-process testing treats manycharacteristics that cannotbe checkedby usual
acceptancetesting of the end-item. It is thus worth doing well. It is not tradi-
tionally a sourceof reliability data for input to reliability assessmentmodels.
There is no argument,however,about its potential contribution to reliability through
the control measuresit provides; lack of soundin-process testing and other quality
control measurescan only degradethe reliability that wasoriginally designedinto
the item.

13.6 Special Tests
In someprogramthere maybe special applications of testing not coveredin the

earlier categories. Special reliability demonstrationtesting is an exampleof this
for those programsnot integrating this in with developmentor qualification testing.
Reliability demonstrationis just oneform of reliability testing. This and other
forms are discussedin Sec. 14.

It is not uncommonto find special designations of certain test programsin
somehardwareprograms;somenoted are environmentaltest, evaluation test program,
engineeringspecification test, verification tests, proof test program,and safety
margin test. Mostoften thesebelong to oneof the other categories as defined
earlier.

13.7 Post-AcceptanceTests
As noted earlier, post-acceptance tests refer to all tests conducted after

customer or user acceptance. As indicated in Fig. 13-1 installation and checkout

testing, systems testing, and in-service and end-of-service evaluation are typical

of these. In these the product in question is simply a component of a higher-level

assembly and/or is being applied in its intended application. The installation
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and checkouttesting andthe systemstesting maythus represent in-process testing
andqualification or acceptancetesting of a higher-level assembly.

Thefield experiencefrom testing andoperation in the post-production period
can, in manycases, bevery valuable as an indicator of quality andreliability.
If moreitems are to be producedthe information mayaid in determiningnecessary
modifications in the design or in the fabrication process. Fabricated end-items
are often modified as a result of the experience. Theexperiencecanalso beuseful
for similar designs in later programs.

Mostof the data from the post-production period is attributes data. It also
possessesmanyof the sameundesirable characteristics as thosementionedfor data
from usual field testing (seeSec. 12); typically there is often uncertainty of what
really causesa failure or a particular response.

Manyof the tests during the post-productlon period involve the item in question
only indirect. For example,a systemstest concernedmainly with overall performance
of the systemprovides only a functional checkof lower level components.For the
most part, the specific behavior of lower-level componentsis only of interest if
the systemfails to function properly and the sourceof discrepancyis being traced.
In somecasesbehavior of someindividual components,especially critical ones,may
bemonitoredseparately. For example,separatedrift tests of gyros after installation
in stable platforms are very con_nonand suchtests provide valuable field data to the
gyro manufacturer. Thelocation of test points in a systemdeterminesalso howwell
the behavior of an individual componentscanbe observed.

For someprogramsthere maybe a plannedin-service andend-of-service evaluation
procedure. This is influenced largely by the maintenanceandreplacementpolicy.
On-line testing provides an in-service evaluation of howwell items are performing.
"Post morte_' tests andanalysis of failed or worn-out items are sometimesperformed
as an end-of-service evaluation to determinewhyandhowitems fail. Theremayalso
be someretest of successfully operateditems after completionof a mission; however,
this is usually less frequently done.

Mucheffort is expendedon testing during the post acceptance. Manypeople
are involved in it but there is relatively little in the literature about it except
under the subject areas of the categories introduced earlier whenthey apply. This
is largely becauseof the inappropriatenessof statistical designsandexplicit proce-
dures. Someuseful information canbe foundundersubject headingssuchas failure
reporting, field data and experiencedata. Somegoodsourcesfor a start are Refs.
13-18and 13-19.
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13.8 Integrated Testing
Integrated testing pertains to coordinatedplanning and implementationof all

testing in a programto satisfy all data requirementsin the mostefficient manner.
It involves all major applications of testing suchas development,qualification,
reliability demonstrationandacceptancetesting andthe needsof the various data
users suchas designers, reliability personnel, quality personnel, production
engineers, systemanalysts, andcustomers. Ideally, it coordinates the tests of
all levels of hardwarecomplexity from the parts andmaterials level to the total
system.

Themajormotivation for integrated testing is efficiency. Prior to its

emphasismuchof the testing wasdoneas a result of piece-mealplanning; individual
groupsplannedand implementedtests mainly on the basis of their ownneeds. As
systemsbecamemorecomplexandprogramslarger, there wassimply the needto more
objectively improvethe return on investmentsin testing. Elimination of manydupli-
cations typical of conventional test programscontributes greatly toward this.

A distinct advantagein integrated testing has provento be in communication.
Throughcoordinatedplanning amongdifferent groupsand sharing of information, the
problemsandneedsof the different groupsbecomemorecommonlyknownpromotingan
atmosphereof cooperationamongthem.

Reliability evaluation hasprobably benefited from integrated testing more than
any other activity andhas also servedas a major motivating force for it. NASA
Reliability Publication NPC250-1 (Ref. 13-1) hasbeena major instrument in promoting
integrated testing for reliability. It specifies that a reliability evaluation plan
be established in a programandan integrated test programbe conductedin parallel
to serveas the major source of reliability data. It specifies that the plan shall
include all tests of major components,except those for feasibility, and that the
requirementfor various types anddegreesof testing shall bebasedon the reliability
prediction and assessmentmodels. Similar provisions for military equipmentprograms
are given in Ref. 13-5.

Integrated test planning is thus influenced heavily by reliability data needs.
This is brought out moreclearly in the next section on reliability testing and
several articles on further discussion andapplication are cited there.
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14. Reliability Testing

In a broad sense reliability testing pertains to any test conducted to generate

information on reliability characteristics. As a whole, it treats several problem

areas. Typical of these are:

(i) reliability demonstration,

(2) reliability estimation,

(3) investigation of failure modes and mechanisms,

(4) reliability screening,

(5) reliability growth, and

(6) performance variation.

It it thus more than Just reliability demonstration or just life testing as is often

inferred in the literature.

Because of this diverse nature reliability testing overlaps in many ways with

other discipline-oriented tests such as engineering, production, and quality testing.

For example, a designer conducting a test to determine a cause of failure or measure

the sensitivity of performance to changes in an environmental factor is generating

reliability information. Also, quality control personnel designing a sequence of

screening tests for acceptance testing of incoming parts are very much concerned

about reliability.

A major impetus for formal reliability testing resulted from the report by the

Advisory Group on Reliability of Electronic Equipment (AGREE) in 1957 [Ref. 14-1].

Of the nine task groups, Task Groups 2 and 3 were concerned primarily with reliability

testing and more specifically, the problem of reliability demonstration. Whereas the

specific recommendations of AGREE have not been closely followed in subsequent

specifications and standards, their attention to the reliability testing problem

served as a significant stimulus in bringing about the development of many of the

procedures in use today.

The different problem areas of reliability testing introduced above are not

n_cessarily mutually exclusive. For example, certain reliability demonstrations can

involve elements of reliability estimation, performance variation, and even screening.

Also, a point on a reliability growth curve results from a point or interval estimate

of reliability. The treatment of each problem area requires the use of one or more

of the basic testing approaches introduced in Secs. 5 through 8. These problem areas

are discussed in more detail in the following sections.

Task Group 2 was concerned with testing in the development phase and Task Group 3,

the production phase.
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14.1 Reliability Demonstration

When reliability is an important trait of a product, the customer or user

usually wants sound evidence that the reliability meets his requirements. Relia-

bility demonstration pertains to the testing and subsequent analysis performed to

supply such evidence. It is the most popular and written-about area of reliability

testing. As noted above, it was also the major area of emphasis of the AGREE groups

concerned with testing.

The general problem statement for reliability demonstration is: A reliability

is to be demonstrated with confidence y. _ represents a lower one-sided con-

fidence limit on the true reliability R such that there is a probability of y that

R > RL. The quantity, l-y, represents the risk of the statement being in error.

Alternate forms of this statement can be made on the basis of mean life, strength,

safety margins, failure-rate, or other reliability parameters rather than the relia-

bility per se. Two-sided confidence limits on the parameters are also permissible;

however, the one-sided limit is the most used form for this purpose.

Reliability demonstration thus consists of collecting the information necessary

to accept or reject a statement about the level of reliability. It is basically an

hypothesis testing procedure. As will be discussed later, it is not always possible

to formulate and test an hypothesis in the formal statistical sense; such a demon-

stration then relies strongly on engineering judgment and engineering confidence.

14.1.1 Perspective

The general role of reliability demonstration in a hardware program is illustrated

in Fig. 14-1 along with other factors that influence how it is performed. Through

the closed loop flow of information, it can serve as a beneficial evaluation tool.

The Tests

The reliability demonstration tests involve any one of several basic testing

approaches depending upon the nature of the reliability problem. A summary of the

applicability of basic test types described in Secs. 5 and 7 to reliability demonstra-

tion is presented in Table 14-1. Generally, there are specific parameters of

characteristics such as probability of success at time t, mean life, safety margin,

mean value of a parameter, and per cent in-tolerance on which the demonstration or

accept-reject decision is based. These are usually specified by the reliability

requirements and are related to reliability of the item through the applicable
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Table 14-1

Basic Approaches to Reliability Demonstration

Life

Reliability _/

Model

Basis

Strength

Simple attributes/

variables

Typical

Demonstration

Parameters

Probability of success at any
time t

Per cent success (or failure)

at fixed time T

Mean life

Failure rate

Mean-time-between-failure

Probability that strength
exceeds stress

Per cent surviving (or

failing) at fixed stress S

Mean strength

Standard deviation of strength

Safety Margin

Percentile x of strength

Probability that parameter

is in tolerance

Per cent nondefective (or

defective)

Parameter mean

Parameter standard deviation

Basic b_/

Test

Types

Failure-truncated testing

Time-truncated testing

Sequential testing

Stress-to-failure testing

Sensitivity testing

Proof testing

Simple measurements

_a/

b_/

Different forms of models for reliability are described in Vol. IV - Prediction of

this series. The categorization introduced here is slightly different but is more

suitable for discussing reliability demonstration.

Basic test types are defined and described in Secs. 5 and 7.
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-Atreliability model. For example,if a reliability modelof the form R(t) = e is

acceptable, the demonstrationof anupper one-sidedconfidencelimit IU on failure
rate I at confidencey is equivalent to the demonstrationof a lower one-sided
confidencelimit _ = e-lUt at confidencey on reliability at any time t.*

As illustrated in Table 14-1 three major categories of reliability modeling
types are assumedfor discussion of reliability demonstrationproblems. Thelife
category is appropriate whenfailure is causedby cumulativedamage; mostoften,
reliability is considereda function of time R(t). Thestrength category applies

when failure is assumed caused by stress severity exceeding strength; reliability

in this case is treated primarily as a function of stress and strength rather than

time. The latter category is designated as simple attributes/variables to denote

those measurements of items' characteristics when the effect of stress or time can

be disregarded; typically an item's operation is represented by observed success as

failure or a characteristic is represented by the value of some continuous parameter.

Models for reliability employing these types of measurement are independent of

stress or time.

There are obviously demonstration approaches which do not conform explicitly

to the classification in Table 14-1. For example as described in Sec. 6.5 a

measurement at specific points in time of residual strength of items sampled from a

larger population being aged can be used to estimate a hazard function, a parameter

of which, say the average, may in turn be the basis for a reliability demonstration.

One should always be careful in such complicated cases to make sure he is well aware

of just what is being demonstrated; otherwise, the results can be very misleading.

It is also possible that a complete demonstration may require testing with two or

more approaches. This would apply for example, when both adequate mean life and

safety margins are required to be demonstrated.

The direct substitution of a point estimate into a function to get a point estimate

of the dependent variable is always valid when the argument contains only one parameter

which is allowed to be variable and when the function is monotonic; it is not generally

valid when the function is nomonotomic nor when two or more parameters are treated as

variables.

The concept of cumulative damage as a cause of failure was introduced in Sec. 2.2.2.

Specifically, the emphasis was actually on stress and cumulative damage as distinct

causes of failure. The difference has been noted numerous times in this report when

appropriate and most significantly in Secs. 5 through 8 as it influenced the categori-

zation of basic testing approaches.

The concept of stress as a cause of failure was also introduced in Sec. 2.2.2.
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Test Conditions

It is often stated or strongly inferred in discussions of reliability demonstra-

tion that simulation of the normal operating environments is very necessary and

important. Actually it depends upon how the conditions affect the reliability.

For measurements belonging to the latter category in Table 14-1, the choice of test

conditions is generally not very critical. Don't forget, however, that even though

specific factors such as high temperature and low supply voltage may be discounted

as important, other test conditions such as clean atmosphere or preconditioning of

the test specimen may be very necessary.

At the other extreme there are situations when the conditions for the test may

be very important. When failures can be influenced by operating conditions and

result from cumulative damage, the only way of truly demonstrating reliability is

by performing the test with the conditions accurately simulating those during normal

operation. When this is possible, the achieved confidence is then dependent only

upon the variation in the population of items tested and on the sample size. Any

departure of the test conditions from those or normal operation can only tend to

modify the confidence in the demonstrated reliability. It is of course impractical

in many cases to simulate complex profiles or different environmental factors simul-

taneously. For example, a particular piece-part type such as a IN619 diode may find

many different applications in a system resulting in many different application

environments for the part type. Procurement practices of most programs would specify

testing for reliability demonstration with only one set of conditions. Absolute

worst-case or manufacturer's rated conditions are most often used and this would

tend to provide some degree of conservativeness in the confidence of the demonstrated

reliability. Generally the higher the level of assembly that the item represents,

the more emphasis there is on accurately simulating the conditions of normal use.

Limitation of capabilities for environmental testing of very large systems increases

the need for accurately representing the operational environment when testing its

components. The general discussion on environmental testing in Sec. i0 applies to

reliability demonstration as well as other areas of testing.

Remember that if the cause of failure is stress severity exceeding strength,

there is no need to generate profiles; one need only generate the stress severity

required for a stress-to-failure, sensitivity, or proof testing approach, whichever

method is being used. This can still involve having to generate different environ-

mental factors simultaneously.

Various methods of simplifying conditions are acceptable for reliability

demonstration as in other areas of testing. For example, worst-case or high-low

level cycling is often employed when operational profiles are not known explicitly
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or are too complex to simulate. Some factors may be treated separately or eliminated

altogether. Application of different conditions in sequence rather than simultaneously

is often used. Whatever form of simplification is used, one should always demand

that adequate justification and rationale be used either by sound engineering judgment

or by prior experimentation. It is rarely easy to provide the full confidence

in_tially desired. The problem is more than a statistical one, for statistical

confidence achieved under test conditions can rarely be extrapolated directly to

application conditions.

Evaluation

The evaluation (see Fig. 14-1) is simply the test of the hypothesis leading to

the accept-reject decisions. The basic concepts of hypothesis testing are presented

in Sec. A.7 of the Appendix; however, it is important to remember here that there

are two basic approaches to testing an hypothesis and hence to reliability demonstra-

tion.

One approach is characterized by the question: "Given some observations, what

can I say about accepting or rejecting the hypothesis?" In this case test results

would be available in the form of values of the demonstration parameters. Then

along with knowledge of such factors as sample size, test duration, and numbers of

failures, the appropriate estimates are obtained and compared with the hypothesis.

For example an estimated lower one-sided confidence limit of 302 hours for mean life

e at 90% confidence is adequate basis for accepting the hypothesis that e = 300 hrs.

if the risk of making a wrong decision is allowed to be as high as 10%. If, however,

the risk is allowed to be only 5%, then insufficient evidence exists to either

accept or reject the hypothesis. One then either allows a greater risk or collects

more data.

A less direct approach is characterized by the question: "Given the hypothesis

to be tested, what observations do I need to make in order to accept or reject it?"

This approach requires development of some sampling plan which specifies such

factors as sample sizes, allowable numbers of failures, and test durations which are

adequate to test the hypothesis. Suppose for example, that it is desired to demonstrate

a mean life e of 300 hours (i.e., test the hypothesis that 0 = 300 hrs.) such that

the risk of erroneously accepting a true mean life of less than 300 hours is not

greater than 10%. If, say, the available test time is limited, a time-truncated test

may be used. A sampling plan can then be developed using basic statistical formulas

for estimation. This consists of determining for the given test time the number of

samples and the maximum number of failures during the test which will satisfy the

hypothesis. The only test results required thenare the observed number of failures;

the demonstration is successful (i.e., the hypothesis is accepted) if the observed failures

'183



do not exceed the allowable number, and conversely, is unsuccessful (i.e., the

hypothesis is rejected) if the observed failures do exceed the allowable number.

There has been much emphasis on the use of sampling plans for reliability

demonstration. The basic concepts of sampling and sampling plans are discussed in

Sec. A. IO of the Appendix. Lloyd and Lipow [Ref. 14-2] give a good treatment of the

theory. To eliminate much of the repetitive effort in developing sampling plans for

each separate sampling problem, a number of standard sampling plans have been developed.

Such standard plans consist of tabulations and OC (operating characteristics) curves

for relationships of such factors of probability of acceptance (or rejection),

sample size, acceptance criteria, acceptance parameter values and test duration.

Note that plans can be developed for practically any test or measurement situation

and for any assumed form of the statistical distribution of the parameters to be

measured. Some emphasize the consumer's risk; some, the producer's; some may

uniquely specify either or both; and some may allow a wide choice of risks. Some

plans allow more flexibility than others in selecting factors such as risk levels,

sample size, etc.

Two of the earlier plans promoted specifically for widespread reliability use

were those recommended by AGREE [Ref. 14-1] in 1957. Both plans were developed

primarily for demonstrating life; both were based on the exponential distribution

for time to failure; and both employed a sequential testing procedure. They allowed

only limited flexibility since the risks, test truncation times (relative to the

mean life requirement), and allowable numbers of failures were fixed values.

A number of documents have been published which tabulate sampling plans for

various testing approaches and different assumptions concerning the distribution of

measurement parameters. Table 14-2 identifies several of these developed primarily

for military procurement. A number of sampling plans appearing in the general

literature prior to 1962 can be identified in Ref. 14-3. Also, many industrial

organizations have extensive tabulations of sampling plans (see Ref. 14-4 for example).

Whereas the motivation for many existing tabulated plans was for quality control

work, they often apply directly or are readily adaptable to reliability problems.

The only limitation is the ability to treat the equations and functions involved;

simulation with computers has aided this significantly.

These terms, the consumer's and producer's risks, are explicitly defined in

Sec. A.IO of the Appendix.

The two plans were developed for separate application to preproduction and

production items. The specific recommendations of these AGREE task groups for these

plans are summarized in Ref. 14-7.
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For example as noted in Table 14-2, MIL-STD-IO5D could be used to demonstrate per

cent success (or failure) at fixed time T by using a time-truncated test of duration

T. An adaptation of the use of MIL-STD-IO5D for testing for any duration and extra-

polating results to time T is described in Ref. 14-5; this requires, of course,

assuming a distrlbution for time to failure and the Weibull distribution (for which

the exponential is a special case) was chosen in that work.

Many reliability demonstration problems can be treated with established sampling

plans. When they do, in fact, fit the problem at hand, their use is highly reco_mnended

as a time-saver. However, each new problem should be treated individually. A simple

design change may require a new plan if for example it changes the predominant mode

of failure. Sometimes the more direct approach mentioned above using data from

other tests may be suitable.

Test Specimens

Generally it is desirable that the fabricated models of the proposed design

serving as test specimens be as near final operational form as possible, but it is

also desirable to maintain a certain degree of flexibility so that the design can be

modified if the evaluation of test results indicates this is necessary. The form of

the test specimens is influenced to a large extent by the stage of evolution of the

design and the level of assembly of the hardware.

For off-the-shelf items such as piece-parts and certain components which are

produced in large quantities and over long periods of time, the design maturity of

the item has often progressed well into the production phase before specific relia-

bility requirements of a particular customer are known. Even though the manufacturer

may have already demonstrated reliability for certain application environments, the

customer will typically purchase samples and conduct his own reliability demonstration

tests as a part of his parts qualification program. Further reliability demonstration

of such items may even be done as a part of formal acceptance testing by sampling

from procured lots during incoming tests. Rejection of the product by either indicates

to the manufacturer that he must make modifications in order to remain as a supplier.

Most often, a modification of the assembly or quality control procedures in his

production process are all that is needed. In other cases it may entail more basic

changes in the design or the material used.

At the equipment level reliability demonstration has been traditionally set up

in most programs as a special phase of testing performed after formal qualification

The term, acceptance test, is often used in the literature to denote any accept-

ceject testing procedure; the discussion in Sec. A.10 employs it with this meaning.

as used above, however it refers to the formal area of acceptance testing as defined

In Sec. 13.4.
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testing with special prototypes or with early production models. Conductedin this
manner,reliability demonstrationhas servedas adjunct to qualification testing to
provide further verification that the designmeetsall the requirementsthus including
reliability before full-scale production proceeds. Morerecently there hasbeenmuch
emphasison integrating it with other tests suchas qualification or developmentas a
meansof increasing over-all testing efficiency.

At the large systemlevel there is the usual limitation of available test
specimens. Coupledwith this is the cost anddifficulty associatedwith generating
appropriate test conditions. Togetherthese preclude the useof the traditional,
direct approachto reliability demonstration. Combinationof results of tests
conductedon lower level parts of the systemis one practice being employedto
overcomethis. Useof Bayesianmethodsas illustrated in Figure 14-1 is another.

Theseproblemsand practices are only a samplingof thoseassociatedwith many
modern-daysystemsand items of hardware. Further discussion of special problems
is presentedin 14.1.3.

14.1.2. Traditional Reliability Demonstration
Threegeneral categories of reliability demonstration, life, strength, and

simple attributes/variables wereintroduced in Table 14-1. Theapproachesassociated
with the life category are the mostcelebrated forms of reliability demonstration
in the traditional sense. Whereasmanyliterature articles treat life as the
reliability demonstrationproblem,approachesassociatedwith the strength and simple
attributes/variables categories are also frequently important. In somecasesa
single approachmaynot be adequate,and the total reliability demonstrationmay
require somecombinationof two or moreapproaches.

Within all three of thesecategories there are certain factors to consider in
detail in

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(s)

(9)

preparation for demonstrating reliability.

accept-reject criteria,

test approaches,

hypothesis test procedure,

statistical distribution assumptions,

sample size,

sampling plan selection,

test duration,

levels of risks, and

costs.

Typical of these are

w
By "traditional" we mean those approaches where there are generally enough test

specimens, test facilities, test time, etc. available to provide ample data for

making required accept-reject decisions at reasonably low risks with classical

statistical techniques.
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In some cases certain factors may be fixed by the situation at hand; for example,

program pollcy may specify a sequential testing approach and use of the exponential

assumption for times to failure. In some cases there may be constraints imposed by

certain factors; for example, program schedule may not allow the time for investiga-

tion of better sempling plans. Most often there is some flexibility available in the

selection of characteristics of the demonstration and trade-offs are possible.

Trade-offs often include cost as an important factor and are usually aimed at

minimizing cost subject to the constraints at hand.

In later discussion on each of the three reliability demonstration categories

of llfe, strength, and simple attributes/varlables, cost is treated as the common

denominator for practical considerations because of its importance. It is assumed

that a simple cost model of the form

applies where

C

C T

%

C = CT+ CE

= total cost of demonstration

= inmlediate cost of the test including such factors as

manpower, test specimens, facilities, and

= cost of making an erroneous decision from the test results.

This simple model admittedly permits only gross qualitative consideration; however,

is adequate for the purpose at hand. More sophisticated models might provide a

detailed breakdown of these terms with interrelationships of the various factors and

might include other terms such as the cost of not testing.

Note that the model may be the same in form (at least for this simple version)

for both the customer and producer. In particular the latter term might be expanded

(in certain cases) into the form

CE = PRG CRG + PAB CAB

where the subscripts RG and AB denote events of rejecting good items and accepting

bad items respectively, P is probability and C is cost. Now if this represents,

say, the customer's error model, CAB will typically be larger than CRG. CAB might

represent costs due to added maintenance effort, jeopardlzatlon of the mission,

creation of safety hazards, or necessity for more spares which results from the

failures of bad products accepted. There are also many cases where CRG can be

significant to the customer if, for example, it means loss in the customer's

schedule. Note especially that the values of CRG and CAB are essentially

independent of the test itself; however, _ is dependent on the test through PRG and

PAB which are functions of the true reliability and the producer and consumer risks.
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Generally, the larger the samplesize the lower the risks in the demonstration.

An increase in samplesize increases the in_aediatecost of the test (the CT term in
the aboveexpression) but decreasesthe cost of makinga wrongdecision (the _ term
in the aboveexpression) by decreasingPRGandPAB" A logical balanceof sample
size with risk is thus determinedby thosevalues whichminimize the total cost.
In the event that the available numberof specimensfor test is limited, the sample
size servesas a constraint. This is characteristic of special problemswith many .
modern-dayhardwareitems andis explored in later discussion.

It is usually less expensiveto ask questions first and test later; however,
the available information on cost and underlying statistical distributions may be

so limited that only gross considerations are possible. If a statistical distribu-

tion can be assumed beforehand, sampling plans can help tremendously in this process

by providing the designer of the test with much of the trade-off information he

needs to maximize efficiency. Sampling plans also allow the advantage of being able

to assess the risks before testing. Whereas sampling plans are usually developed

assuming complete ignorance of the true value of the demonstration parameter, there

may be some knowledge of the value which even if qualitative may provide an advantage

in sampling plan selection leading to cost savings. For example, a conventional

OC family of curves might indicate that a sample size of ten is needed to satisfy

a given risk; whereas the sample size might be decreased if there is a strong degree

of belief that the true reliability is much greater than the reliability requirement

to be demonstrated. Additional worthwhile discussion on cost considerations in

sampling plan selection is presented in Ref. 14-6.

As previously recognized, there are two major risks to be considered: the

consumer's and the producer's. It is traditional to explicitly specify the

values of the demonstration parameter at which the risks are to be discussed. For

example, a demonstration of mean life 0 may specify an unacceptable level e I below

which the customer wants a low probability _ of acceptance and an acceptable level

above which the producer wants a low probability _ of rejection. In formal procure-

ment specifications e I and 80 (and similar respective dual levels for other

demonstration parameters) have come to be associated with the minimum acceptable

If such prior knowledge can be used explicitly for developing the sampling plan,

this falls into the realm of Bayesian sampling plans as discussed later in this

section. Lloyd and Lipow [Ref. 14-2] include some discussion related to use of

such knowledge from the traditional demonstration point-of-view.

These two levels are illustrated in Sec. A.10 of the Appendix.

J

190



reliability requirementand the designgoal reliability respectively and the customer's
and producer's risks are usually associatedwith these levels. Theratio of the two

levels (00/01 in this case) is typically knownas the discrimination ratio and is one
of the major factors involved in selecting samplingplans. Reference14-7 describes

in a general mannerhowas 00/01increase, less testing is required to makean accept-
reject decision. Someinteresting relationships betweenthe discrimination ratio and
ether factors suchas test time, probability of acceptance,and allowable numberof
failures are presentedin Ref. 14-8 andprovide muchinsight into the effect of this
parameter. It is well to rememberto not insist on makingthis parameterlower than
neededsince for given risks it canonly increase testing costs.

Life
Typical parametersand basic test types appropriate for life demonstrationare

listed in Table 14-1. Thedifferent parametersare essentially equivalent measures
of reliability (pursuant to the underlying assumptions);however,conventionhas
established in manycaseswhich of these are used. For example,MIL-STD-690(see
Table 14-2) is oriented mainly towardpiece-parts and small componentsandspecifies
a time-truncated test for demonstratingfailure rates. MIL-STD-781,however, is
oriented mainly toward equipmentsandrelies mainly on sequential testing for demon-
strating meanlife.

Theuse of the different test types in life measurementswasdiscussedin Sec. 8.1
andmuchof that discussion emphasizedreliability demonstration. As noted previously,
the life category hasbeentreated extensively in the reliability literature. Good
basic treatment is provided by Lloyd andLipow [Ref. 14-2]. Application procedures
are well described in Ref. 14-9 and gooddiscussion of the practical facets is
presentedin Ref. 14-10. Eachof these include someeconomicconsiderations in test
plan selection. Dellinger [Ref. 14-6] treats the cost problemmoredirectly.

Oneof the most controversial subjects in traditional life demonstrationconcerns
the underlying distribution for times to failure. Theexponential distribution
correspondingto a constanthazardrate is the form mostoften assumedmainly because
of simplicity. Somediscussion concerningthis waspresentedin the summarypart of
Sec. 8.1. Ryerson[Ref. 14-10] notes that from the customer'sviewpoint the assumption
is generally safe if the product passesthe test in that a samplingplan basedon the
assumptionis morelikely to reject the product if the hazardrate is increasing.
Myers[Ref. 14-9] takes a totally opposite standwith correspondingstatementscon-
cerning the error. Actually, the risk of using a plan basedon the exponential
assumptionwhenanother applies varies from plan to plan. An investigation by Zelen
[Ref. 14-11] using plans basedon the exponential assumptionfor all three basic
testing approachesverifies this for the specific casewhenthe actual distribution
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is Weibull with shape parameters greater than unity If there is reasonable justi-

fication that the underlying distribution of a population is exponential (or near

exponential), then the error will generally be small in either direction. There is

no clear-cut alternative of what to do when there is doubt about whether the exponen-

tial assumption is valid. Recommendations are often made to first verify the assumption;

this is usually easier said than done, however. Use of a distribution-free procedure

is a possibility; however, this increases the immediate cost of testing. There is

definitely a need for further investigation for rationale concerning the appropriate-

ness and adequacy of the exponential distribution. Until then, each situation must

be treated on its own merit.

Strength

As indicated by the list of demonstration parameters and basic test types in

Table 14-1, there are several ways of demonstrating reliability in this category.

The concept of strength as an important reliability characteristic and its measure-

ment were discussed in Sec. 6.1. From the point-of-view of reliability demonstration

one wishes to demonstrate with a given confidence that the probability that strength

is greater than the severity of applied stress is greater than some required level,

the reliability requirement.

A sketch of overlapping probability density function for stress severity and

strength (see Fig. 6-3) is commonly used to depict the concept and the region of

overlap defines a variable (stress minus strength) the properties of which determine

the reliability. Calculations and test design based on this model often assume for

simplicity and tractability that both stress severity and strength (or perhaps

certain transformations of these) are normally distributed which means that their

difference is also normally distributed. Lloyd and Lipow [Ref. 14-2] describe this

approach in detail and illustrate lower one-sided confidence limit computations fo_

reliability estimated from separate measurements of stress and strength. Whereas the

assumption of a normal distribution is often used and is often adequate, many other

distributions such as the log normal, gamma, and the Weibull are frequently mentioned

as applicable types.

Since the overlapping distributions emphasize the values of stress and strength

in the tails of the distribution for which occurrences of measured values in these

regions with small samples are extremely rare events, there are inherent inaccuracies

involved with the use of any distribution. For this reason safety margin is commonly

used as the parameter to be demonstrated. Several ways of defining safety margins

Weibull shape parameters greater than unity are analogous to increasing hazard rates.
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were presented in Sec. 6.1; their introduction as reliability indices is generally

attributed to Lusser [Ref. 14-12]. Note that the mere use of safety margin parameters

does not circumvent the inherent inaccuracies resulting from events in the tails of

overlapping distributions. If demonstrated to be large, however, (interpreted as

large separation between stress and strength distributions), this adds confidence

that the probabilities resulting from overlap of the stress severity and strength

distributions is small. Some reliability demonstrations thus emphasize the direct

use of safety margins as demonstration parameters and specify the accept-reject

criteria in terms of demonstrated levels of these. Good examples of this approach

using both stress-to-failure and sensitivity testing are described in Ref. 14-13.

Note that if the form of the distributions are known, the specific level of

reliability or probability of success demonstrated corresponding to the demonstrated

safety margin can be determined (at least in principle). Bombara [Ref. 14-14] presents

a good description of how this is done when both distributions are normal. In that

paper, tables are included which permit with given measurements of stress and strength

a determination of the demonstrated reliability at various levels of confidence. It

also illustrates the use of these for test design to achieve a given level of confidence.

More often, the emphasis _s on demonstrating the safety margin without attempting

to relate it to a specific level of probability of success. Generally, the safety

margins achieved are large enough so that acceptance of the product is confidently

assumed to represent essentially certainty of success during application.

Demonstration with other strength distribution parameters such as mean,

standard deviation and percentiles, are, in effect, equivalent to the above approaches.

Whereas the emphasis in these appears to be primarily on strength, the accept-reject

criteria would typically be influenced by the operational stress severities and,

similar to those for safety margin, would be specified more on the basis of achieving

certainty of success rather than a specific level of reliability to be demonstrated.

One other approach is to use the proof testing method and base the demonstration

on per cent surviving at a fixed stress level. For example, if the operational

stress is known to be fixed at level S, then the per cent surviving is the estimate

of reliability. The lower one-sided confidence limit can be obtained per usual

methods. If the operational stress was not fixed but was varying, then the selection

of a specific level, say the maximum working stress or the product's rated stress,

could be selected as the test condition and a conservative demonstration of reliability

performed. One major advantage of this approach is its amenability to an attributes

sampling plan (MIL-STD-IO5D plans for example). On the basis of statistical theory,

one could argue that it is a less efficient procedure. That it would typically
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require a larger samplesize is true; however,it has the additional advantagethat
items surviving the test are not damagedandwill with certainty be suitable for
application. With the increasedemphasison reliability in modernsystems,this is
nowoften doneona 100%basis in whichcase it is one form of screening.

Of the samplingplans listed in Table 14-2, MIL-STD-105DandMIL-STD-414are
the moreappropriate onesfor this category of demonstration. But rememberthat
there are other standard plans available. Having decided the demonstration para-

meters and test approach to use it may well be worthwhile developing a plan to assist

in planning a more efficient test.

Simple Attributes/Variables

The procedures for reliability demonstration in this category are considerably

simpler than for those discussed above since the effects of stress and time on

individual items does not have to be treated. Reliability for products treated in

this category is simply the probability of the event success; estimates of reliability

are obtained simply as the per cent success when the results are attributes measure-

ments or as the proportion in-tolerance when the results are variables measurements.

As noted in Table 14-1, the bulk of the data for demonstration is achieved with

simply measurements. Sec. 5.1 illustrates measurements of this type. Many applica-

tions and approaches can be found in the quality control literature.

Sampling plans are employed extensively in this category and MIL-STD-105D and

MIL-STD-414 (see Table 14-2) are frequently cited as applicable. Numerous other

sampling plans are presented in Sec. A.10 of the Appendix.

14.1.3 Special Problems

Whereas the traditional approaches to reliability demonstration are still

adequate for many products being designed, certain features of some modern-day

systems and hardware items introduce special problems for which there is no simple,

straightforward solution. Typical features causing this are:

(i) extremely high reliability (long life) requirements,

(2) high cost and limited availability of test items,

(3) tight program schedules, and

(4) large size and complexity of systems.

The problems are further compounded when several of these features apply simultaneously

in a program.

The most outstanding examples of such problems are found with many NASA systems.

How does one, for example, approach the reliability demonstration of a spacecraft

having the following characteristics and requirements:
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and demonstration problem considerably by providing more emphasis on the reliability

data needs. As a result the data for reliability demonstration will often be

derived from several areas of testing such as development, qualification, and

acceptance testing. It also introduces the problem discussed below of combining

the results of test on separate components and different levels of assembly.

References 14-15 through 14-17 give descriptions of one organization's approach to

the use of integrated testing in the reliability demonstration of a system. This

also incorporates several other techniques and practices introduced above. Meaning-

fulness and compatibility of data from the different sources are the major problems

in relying on integrated testing. Good planning and allocation of effort can alleviate

many of the difficulties.

Combinin$ Results of Tests on Separate Items

The problem here can be stated as one of combining demonstrated component

reliabilities at different or identical confidence levels to determine a system

reliability at a chosen confidence level. A number of literature articles are

available on this problem, see for example, Refs. 14-18 through 14-20. Any procedure

requires a system model for combining the element reliabilities. The problem

rapidly gets complex with increasing complexity of the system. Interface and

interaction effects are thus often neglected. There must be considerable discretion

in the interpretation and use of the combined results.

Combining Data from Different Lots

This practice is mostly applicable to piece-parts and is posed in Ref. 14-10

as one of several alternatives for dealing with long-life requirements. As noted

there the 38,000 series of military specifications employs this. Inherent problems

here result from lot-to-lot variation.

Lowering the Confidence

In some cases the customer may be willing to accept the higher risk of accepting

bad products. Potential loss to the customer should be assessed with cost models as

discussed in Sec. 14.1.2. As noted in Table 14-2, MIL-STD-781 includes some provision

for high risk demonstration. Reference 14-21 recognizes the advantage of lowering the

required confidence during the early phases of a program when decisions should not

be too rigid. In so-called "New Look" test plans described there, new decision

points are defined as testing continues and the risk at each is computed independently

of previous decision points.
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(i) MTBFrequirementof 8,000 hours,
(2) spacecraft not reusable after a mission or flight test,
(3) three spacecraft allotted for testing, and
(4) different functions required for eachmission?

Traditional approachesare obviously not possible with sucha system. Translation
of theseMTBFrequirementsdownto one of the manypiece-parts might typically reveal

_that years of total test time wouldbeneededto demonstratethe required reliability
at the stated confidence.

A numberof practices and techniqueshaverecently beendescribed in the
literature in an attempt to circumventsuchproblems. Someof the popular key
wordsand phrasesusedto designate these are:

(I) integrated testing,
(2) combiningresults of tests on separate items,
(3) combiningdata from different lots,
(4) lowering the confidence (henceincreasing the risks),
(5) modifying the accept-reject criteria,
(6) Bayesianmethods,
(7) accelerated testing,
(8) overstress (proof) testing,
(9) reliability screening,

(I0) reliability growth, and
(ii) reliability physics.

Nosingle oneor combinationof thesehas provedto be a panaceafor verifying high
reliability requirements. As per the usual purposeof reliability demonstration,
one ideally wantsenoughinformation to makean accept-reject decision on the basis
of satisfying or not satisfying someexplicitly stated criteria. Someof the procedures
associatedwith the practices and techniqueslisted abovedo attempt to provide the
evidencein a form so that decisions canbe clear-cut or automaticas in the tradi-

tional approaches. For example,combiningthe data from different lots mayallow
doing this. (Seelater discussion on this procedure). In this case there has to be
someengineering judgmentabout lot to lot variation, hencethere maybe someactual
loss of confidencewhich is not reflected in the statistical confidence. Hencethere
is often emphasison supplementingstatistical confidencewith engineeringconfidence.
Someproceduresmust rely heavily on this; somealmost totally.

Integrated Testln_

Whereas the initial motivation for integrated testing was mainly _r improvement

in efficiency in the overall testing of a program, it has aided the reliability test
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Modifying the Accept-Rgject Criteria

This is not intended to imply changing the reliability requirements but

establishing the goal in a form more easily verified; yet, just as meaningful and

sometimes better. A simple example is change from a probability of success criteria

to one stated in terms of a safety margin. Also, repeated cycling of an item for

the mission duration under simulated mission conditions to demonstrate a per cent

success could provide a more meaningful approach than, say, continuing to test for

long periods to demonstrate an MTBF. Some have suggested (see for example Ref. 14-10)

that criteria be tied to either the consumer's or the producer's risk but not both.

Even replacement of quanti_atlve criteria with qualitative criteria might sometimes

be a more rational approach. There are often ntmmrous alternatives in specifying

criteria. Some may require relying more on engineering Judgment than others.

Bayesian Methods

There are a number of recent attempts to use Bayesian methods as a means of

circumventing the small sample data problem. Prior knowledge in one form or another

may be used in conjunction with designing the test or with improving the results.

This is illustrated in Fig. 14-1. Reference 14-22 gives an example of making use of

prior experience on success of design groups in developing sampling plans. References

14-23 and 14-24 discuss the use of reliability prediction results in planning

demonstration tests. Most often the prior information is concerned with a distri-

bution associated with the prior information. A major problem has been in the lack

of good methods for quantifying the prior information. The reader is encouraged to

search the literature for further applications as Bayesian methods have shown

significant promise.

Accelerated Testin K

There is much emphasis in using this to shorten test time. It is generally

more appropriate for parts and small components than for equipments or systems.

There are many inherent problems caused whenever there is an attempt to speed up

aging. Whereas accelerated testing readily provides large amounts of data for

statistical analyses, it should be remembered that there may be big differences

between the statistical confidence achieved and the true confidence due to the

underlying assumptions regarding the validity of the acceleration. The subject of

accelerated testing is treated in more depth in Sec. Ii.
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Overstress Testing

This consists of applying conditions at severities above the normal operating

or rated levels and determining whether the product is capable of withstanding them.

It is not a way of demonstrating reliability at a given confidence level in the formal

statistical sense. It is concerned more with achieving engineering confidence and

is based on the premise that if the product works successfully at the higher than

normal severities then there is negligible risk of it failing at normal levels.

It is conservative with the degree of conservatism depending upon the severity of

the higher-than-usual severities--are you merely proof testing the item or are you

causing accelerated aging? Presence of accelerated aging does not necessarily

invalidate the procedure but does complicate the picture of knowing what meaning the

results have, especially when failures occur. Sections 5 through 8 should be

consulted by readers not generally familiar with such differences. A good example of

using overstress testing for demonstration purposes is described in Ref. 14-25.

Reliability Screening

Screening refers to testing and inspection of 100% of the items. The term

generally refers primarily to piece-parts; however, it is certainly applied almost

always in some at higher levels of assembly. When failure is caused by stress

severity exceeding strength, a proof testing approach is appropriate. Typically,

the tests are conducted at maximum severity levels of normal conditions or at rated

conditions. If failures of this type were the only ones the product could have,

then the procedure could be considered an adequate substitute for reliability

demonstration since there is essentially 100% confidence that all items passes the

test will perform satisfactorily. When failures result from aging effects, screening

is required. Whereas this type of screening enhances the reliability, it is not

itself a direct substitute for reliability demonstration. It is possible, however,

that data for reliability demonstration can be obtained in connection with burn-in

tests. More discussion on reliability screening is presented in Sec. 14.2.

Reliability Growth

The motivation for reliability growth analyses is basically different from

that for reliability demonstration per se in that its major purpose is to indicate

the trend in achieved reliability. Calculations of specific points for the relia-

bility growth curve may employ data from single tests or from various sources such as

items, and combining data from different lots. If the reliability growth curves

include appropriate confidence levels then the results can be used for making accept-

reject decisions. A good discussion of the relationship between reliability growth

and demonstration is presented in Ref. 14-26. Further discussion of reliability growth

is presented in Sec. 14.3.
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Reliability Physics

Reliability physics is concerned with the more fundamental behavior of materials

and the causes of failure which contribute to unreliability. There has been much

emphasis on relying more heavily on this for achieving high reliability. A very

strong argument for more use of basic studies is presented by Gollovin [Ref. 14-27].

It is yet very far from being able to provide the adequate prediction models and

data on which to base decisions about fabricated hardware. Thus its role, and a

valuable one, will continue to be as a supplement to other practices. Some further

discussion of reliability physics is presented in Sec. ii.

Other Practices

Many other practices which, while not a part of formal reliability demonstration

per se, do contribute much toward the achievement of engineering confidence that

reliability goals are adequately met. Reliability prediction, design reviews,

incentive contracting, and failure mode investigations, are only some of these. The

achievement of high reliability, especially in the presense of constraints limiting

the resources for experimentally verifying it, demands a concerted effort of all

practices capable of contributing.

14.2 Screening

Screening pertains to testing every item of a particular type intended for

application for the purpose of eliminating those which are defective or which poten-

tially have shorter life than required. It is fundamentally intended to provide

a supply of reliable components for fabrication of higher levels of assembly. The

designation most often applies to piece-parts and small components as part of an

acceptance testing program; however, practically all higher levels of assembly

are subject to some type of screening test before application.

A complete screen of an item may involve a single test or two or more tests in

sequence. Each test is basically a go, no-go test; items which pass a test are

accepted for application or are subjected to further tests whichever is appropriate

and items which fail are rejected. Some screening tests are designed to reject only

those items which are damaged or destroyed; others are designed to merely make a

value judgment of good or bad. Some tests are designed to cause the actual failures;

some are designed only to reveal differences in characteristics that serve as

indicators of weakness.

Screening has become a very popular practice as a way of achieving high relia-

bility. Screening per se does not, however, provide quantitative measures for

reliability; however, in an integrated test approach some tests may be designed to

serve a dual role of screening and providing useful data for estimation. Some basic

screening approaches such as proof testing may also serve as a demonstration of reliability.
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14.2.1 Basic Approaches

There are several basic approaches to screening. Descriptions given below

are brief as most of the underlying concepts have been presented in earlier sections.

Simple Attributes Measurements

Some items can be simply judged good or bad on the basis of a simple attributes

measurement as in a visual inspection or an electrical parameter test. Measurements

of this type are described in Sec. 5.1 and the uses of such measurements for making

accept-reject decisions on individual items was discussed in Sec. 6.3. In this

approach items are not generally damaged or aged. In some cases the characteristic

being measured may be selected to serve as an indicator of stress or aging dependent

failure modes and mechanisms. Measurements may be aimed at detecting physical

flaws or an out-of-tolerance condition of some parameter. Special nondestructive

techniques of the type described in Sec. 9 are often employed in order to measure

items by this approach.

Proof Testing

In this approach items are purposely stressed to reveal a deficiency in strength.

The concepts of proof testing are described in Sec. 5.3 and its uses for making accept-

reject decisions of individual items was discussed in Sec. 6.3. Briefly, stresses

are applied at some fixed severity level less than the strength the item is designed

to have for application. Items that pass the test are not damaged and have a strength

greater than the severity of the applied stress. Examples of this approach are

centrifuge and pressure tests of components. Note that these tests do not age items.

The criteria for failure may be either damage to the item or an out-of-tolerance

condition. Stress levels for the test most often correspond to those representing

maximum severity during normal operation or to rated levels; however, some screening

tests of this type are known to employ severities above and below these levels.

Further discussion of the rationale for selection of the severity level is presented

in Sec. 5.3.

Burn-in and Bake-in

Burn-in refers to power-on aging; bake-in to power-off aging. The approach

involves aging items to purposely induce failures in those which have the shortest

lives. It is based on the premise that the hazard function for the items tested

possesses an infant mortality region in which the probability of failure is higher

than that for the period of application. Major problems to be considered consist of

test conditions and test duration. Such problems were discussed in Sec. 8.2. Vol. IV -

Parts of this series also discusses this subject.
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Run-in or Break-in

Screening is only a secondary purpose of this technique. The major purpose is

improvement of items by purposely aging. It is based on the premise that certain items

can be improved, i.e., increased in strength, made to have a longer life, or simply

made to perfor M better, by preconditioning them under controlled conditions. A very

familiar example is break-in of an engine. Some piece-parts and small components can

be improved by preconditioning; for example, moisture in sealed components may be

driven off by heating or operating them. The technique was further discussed in

Sec. 8.2. Measurements made during or at the end of the test might be used for

screening. For example, if improvement from preconditioning fails to occur the item

might be rejected.

Parameter Drift

This approach is based on the premise that parameter behavior observed during

the early life of an item can reveal inherent weaknesses or potential unreliability

in later life. The basic measurements of this type are described in Sec. 8.4. Of

most importance is recognition of the difficulty and danger in extrapolating incipient

effects to later time. For this reason the criteria for rejecting an item when using

this approach should generally be based more on the nature, instability, and departure

from the norm of the behavior rather than on the net drift during the test. Whereas

such erratic behavior does not strictly imply early failure in application, experience

has shown that wariness of such differences is well justified. Additional discussion

of these types of measurement for screening is given in Vol. V - Parts.

Discriminants

The term discriminant generally refers to a mathematical expression providing

a criteria for the behavior of another more complicated relation. Extending the

concept to screening, it simply means that the results of separate measurements on

two or more characteristics of an item are combined by some mathematical model or

discriminant function to obtain some figure-of-merit (FOM) which is used to judge the

item good or bad. The method of discriminants is usually associated with an empirically

determined function. For example, one may have reason to believe that the failure of

a particular item is related to some combination of power dissipation, rise time and

output noise level, and may wish to first model a FOM in terms of these test parameters

and then use it in his screening program. If a linear discriminant function in these

Whereas the statistical literature usually infers that the expression is a linear

combination of variables, the broader interpretation used above (and obtained from

Webster's Seventh New Collegiate Dictionary) is preferred since functions other than

linear combinations can be used.
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parametersis assumed,the modelingeffort consists of observing the test parameters
andwhetheror not the item fails, then determiningthe coefficients that minimize the
proportion of misclassification of goodandbad items. Thecorrelations between
parametersare automatically consideredin the procedure; seeSec. 6.3 for further
discussion of the method. Oncethe discriminant function is obtained, the screening
procedureinvolves only makingthe measurementsandcalculating the value of the
discriminant function FOM.

If on the other handa discriminant function is available, no preliminary
testing is required. A simple exampleof this approachis using the value of the
gain-bandwidthproduct of a transistor computedfrom separatedmeasurementsof gain
and bandwidthas a basis for determiningwhether it is goodor bad. Existing per-
formanceof modelsof various types suchas transistor h-parametermodels,gyro
transfer functions, andcircuit equationsmaybe quite adequateas discriminant
functions. Thusthe theoretically baseddiscriminant assumesthat one knowsthat
failure is correlated with a certain interval of values of the FOM,andif the test
parametersfor an item result in a FOMin this region it is rejected, otherwise accepted.

In principle there is no limitation on the degreeof complexityof the discrim-
inant function. In practice they are usually not very complex,especially if they
have to be determinedempirically. Thepreliminary testing required to determinethe
empericaldiscriminant function is an obviousdisadvantageof this approach. Even
the approachwith theoretically basedfunctions finds limited use becauseit generally
addslittle improvementover using individual parametermeasurementsfor making
separatedecisions in sequence. Themethodis advantageousonly whenan overall FOM
obtained by combiningindividual measurementsis moreeffective andefficient for
determiningweaknessesthan using individual measurements.

14.2.2 Planning a Screen
As noted earlier, a completescreenof a particular item mayinvolve a single

test or a sequenceof several tests. Mostoften it is the latter. Desirable features
of a screen are effectiveness andefficiency. Thedesignof a screen to achieve
these qualities requires muchattention to detail. Typical factors to consider in
planning a screen are:

(i) intended useof the item,
(2) failure modesandmechanisms,
(3) test methods,
(4) whento screen,
(5) order of tests, and
(6) cost.
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The following discussion gives brief treatment to these to illustrate typical

considerations in planning a screen.

The most important requirement for developing an effective screen of an item is

a thorough knowledge of the failure modes and mechanisms. The intended use of the

item dictates which failure modes are important. These can be determined with a

conventional failure modes and effects analysis. Furthermore, if the relative

probabilities of occurrence of the different failure modes are known it may be

acceptable to neglect those having a low probability. Standard screening procedures

developed for specific or generic component types generally attempt to account for

all failure modes that can be reasonably treated.

The problem of understanding the failure mechanisms causing the failure modes

is another story and it is really these that screening procedures must emphasize.

In some cases a failure mode may uniquely determine the failure mechanism. There are

numerous cases, however, where several failure mechanisms can cause the same failure

mode. For example, posslble failure mechanisms of electrical contacts failing to

conduct adequate current could be wear, corrosion, erosion, burrs, etc. In developing

a thorough screen it is necessary to consider all of the failure mechanisms even

though those with known very low probabil_ties of occurrence could be neglected. As

for failure modes, standard screening procedures generally attempt to include most

known failure mechanisms that can be reasonably treated.

Thus the aim of a screen is to reveal those components which, on the basis of

their failure mechanisms, are weak. A major problem in developing screening pro-

cedures then is how to determine which components of a given type have poor failure

mechanism characteristics. For this one must rely on some test (or measurement) and

much of the further effort in development of a screen consists of selecting the

appropriate test method.

Generally, the simpler a test for this purpose the better. In terms of the

testing approaches described in Sec. 14.2.1, a proof test test approach or a simple

measurement approach would be preferable if applicable for either of these generally

do not require aging. Usually some form of these such as electrical parameter tests,

x-ray scanning, and centrifuge tests are appropriate for certain failure mechanisms;

however, they rarely suffice for screening high reliability electronic parts." If

nonaglng methods are not adequate, then there is no alternative but to resort to

aging approaches such as burn-ln, bake-ln, and parameter drift.

The distinction is noted here between methods which attempt to cause failure or

activate behavior indicative of failure and those which rely on observing some static

The difference between failure modes and failure mechanisms was described in Sec. 2.1.4.
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property hopefully revealing failure mechanisms if they exist. Proof testing, burn-in,

and parameter drift approaches are representative of the former. A major problem with

methods of this type concerns the test conditions. Generally, severities above rated

levels are not employed for screening for fear of harming the component. Some screening

is even done using conditions representative of normal use. However, the problem with

test conditions is more than selecting severity levels. It is possible, for example,

that a particular failure mechanism can be excited by two different external conditions,

say high temperature and load. One may thus have a choice of either or may want to

employ both if there is uncertainty of equivalence.

When the screening relies on observing static properties, one is dealing only

with simple measurements. Note however that it is possible that aging dependent failure

mechanisms can sometimes be treated with nonaging methods. For example, measurements

of current noise and infrared emission profiles have been explored for possible use as

preindicators of later failure. A survey of such techniques for electronic components

is described in Ref. 14-28. Don't be mislead into thinking that "tried-and-true" pur-

posely aging is necessarily preferable to such preindicator techniques if the latter

have proven successful in removing infant mortality components. When screening to

remove early failures, any aging is consuming some useful life. _n the face of uncer-

tainty about the true nature of the hazard function, you may be taking less risk by

assuming it to be increasing. Prior experience with similar components may aid in

making Judgments about whether purposely aging is beneficial.

If test methods are not available for screening certain mechanisms, the screen

may have to be complemented with appropriate destructive tests on a sampling basis.

A good illustration of the reasoning leading to such a decision for one component type

is presented in Ref. 14-29.

The order of the different tests in a screen can be important. Table 14-3 repro-

duces the order of measurements and tests specified in a recently developed screening

program for digital integrated circuits [Ref. 14-30]. Typical rationale for ordering

the test might be as described below.

Efficiency is generally higher when the simpler tests are conducted first in that

items that are rejected do not have to be subjected to more expensive testing later.

Also, the nondegrading tests such as electrical parameter tests and x-ray scanning can

generally be in any order.

To maximize effectiveness high temperature tests should generally precede mechanical

tests since weakening of structure and other effects may occur. Also, the leak of

hermeticity tests should usually follow all environmental tests to insure that damage

to hermetic seals have not occurred.

Another problem associated with screening is concerned with when to screen.

There are different schools of thought and obvious advantages exist for each approach.
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Table 14-3

Test Sequence For Screening Digital Integrated Circuits [Ref. 14-30]

Internal Visual Inspection (before Sealing)

Marking Requirements

External Visual and Mechanlcal Inspection

Marking Permanency Test

Stabilization Bake

Electrical Tests

General

Noise Margin

Fan-Out (Loading) and Fan-In

Detail Parameter

Dynamic Parameter

Thermal Cycling (Shock)

Mechanical

Centrifuge

Vibration (Variable Frequency Monitored)

X-Ray

Burn-ln (With Variables Data)

Hermetlcity Tests

Final Electrical

Lot Provision
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In-process screening provides the opportunity to prevent more defects from being built

into the items. End-ltem screening has the obvious advantage of providing a more final

check of some effects that in-process screening cannot treat. Screening after assembly

!nto higher levels of equipment provides a verification closely related to application.

This latter procedure may involve a burn-ln and debugging period for the equipment,

however, if many component failures occur it could be a very inefficient procedure.

Most high-reliabillty programs now employ some form of screening in all three opportuni-

ties mentioned.

The total costs of screening including penalties and risks for not screening are

mot easily assessed. A good discussion on screening costs is presented in Ref. 14-31

which also includes some interesting comparisons of several hardware programs. There

are a number of tradeoffs possible among the various factors discussed above and these

can often be beneficial in decreasing costs. Screening costs cannot be minimized,

however, to the exclusion of other factors in the program. Generally, one is seeking

some optimum compromise among cost, reliability, schedule, and supply of components.

There are many papers in the literature on screening. References 14-32 through

14-37 represent a sampling of these. Vol. V - Parts of this series also contains

some discussion on screening.

14.3 Other Problem Areas

Reliability demonstration and screening were discussed in Secs. 14.1 and 14.2

as two major areas of reliability treated by testing. This section briefly considers

other areas for contributions of testing.

14.3.1 Reliability Estimation

Reliability estimation refers to the straightforward problem of obtaining

numerical indices for reliability. It can consist of point estimation or interval

estimates. Testing is the major source of data for this. Usually the program reliability

evaluation plan will require that a best estimate be available for assessment purposes.

The estimates may also serve as a basis for making accept-reject decisions for formal

reliability demonstration purposes as described in Sec. 14.1. Estimates may also

provide the points on reliability growth curves (See Sec. 14.3.3).

Various reliability indices and models appropriate for reliability estimation are

found in Vol. IV - Prediction of this series. Examples of reliability estimation were

presented in Secs. 6.1 and 8.1. More general discussion on estimation is given in

Secs. A.5 and A.6 of the Appendix. Lloyd and Lipow [Ref. 14-2] give excellent treat-

ment of reliability estimation from a fundamental viewpoint.

14.3.2 Reliability Growth

Reliability growth pertains to the relationship of achieved reliability versus

stage in the evolution of a product. The earlier tests in a program usually reveal
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design andfabrication discrepancies. As these are eliminated the failures per unit
of equipmentoperating time typically becomeless frequent andhopefully the reliability
increases to or abovethe original reliability goal. Theinputs to the reliability
growthanalysis canbe derived from any test, formal or informal, that gives appro-
priate failure-time information. Reliability growthanalysesare sometimesusedin
connectionwith reliability demonstration(seeSec. 14.1.3). Theyare often based
oRa plannedreliability auditing or monitoring program. It provides a valuable
indication of howthe reliability of the evolving hardwareis progressing andthus a
goodmeasurefor control. Thereare varying degreesof emphasisand importanceplaced
on it amongdifferent programs. A thoroughtreatment of reliability growthis outside
the scopeof this report. Thereare a numberof recent paperson the subject. Many
of these cite Lloyd andLipow [Ref. 14-2] for modelsof reliability growth.

14.3.3 Investigation of ModesandMechanismsof Failure
This consists of testing to isolate various causesof failure. As a reliability

tool, its use relies on the premisethat reliability improvementcan result from
knowingthe causesand eliminating them. In somecasesitems are purposely tested in
a mannerto causefailure andpermit the investigation while in others the investiga-
tion maybe conductedadjunct to tests for other purposes. In qualification testing,
for example,all failures are usually analyzedin detail to determinewhat corrective
action is needed. This problemarea wasalso discussedbriefly in Secs. 6.2 and 8.2.
Various reliability engineeringtexts suchas Refs. 14-38and14-39 contain discus-
sions on this subject.

14.3.4 PerformanceVariation

Changesin performancedue to stresses andaging are important in reliability
since they canaffect whether items performsuccessfully. In certain reliability tests
suchas those for demonstration,estimation, andscreening, performancedegradation
maybe accountedfor by the definition of failure including out-of-tolerance conditions.
Specific testing for performancevariation is often doneto identify neededdesign
improvements.Typical measurementsmight involve parametersensitivities, relationships
betweenparameterbehavior and stresses, aging dependencyof parameterbehavior, and
statistical distribution characteristics of parameters. Performancemeasurements
werediscussedin Secs.6.4 and8.4. Examplesof applications of performancetesting

Literature on reliability growth canbe readily located in Reliability Abstracts and
Technical Reviews(RATR).

Vol. I - ParameterVariations Analysis of this report series describesvarious
analytical approachesfor treating performancevariations; one section is devoted
exclusively to a discussion of the useof physical models.
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to resolve specific reliability problems in design can be found in Refs. 14-40 and 14-41.

In some cases the results of tests for performance variations can be used in reliability

prediction. This procedure is discussed in more detail in Vol. IV - Prediction of this

Reference 14-42 gives a good description of the application of thisreport series.

approach.
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APPENDIX

Statistics of Testing

Theengineerattempts to build systemswith as muchdeterminismandcertainty
as possible. In testing andoperating these systemsvariability anduncertainty
becomecommonplace.Typical sourcesof this are:

(i) inability to build items identical,
(2) lack of precision and accuracyin measurements,
(3) variability of an item during repeatedobservations,
(4) lack of control of operating conditions, and
(5) inability to modelandaccountfor all real-world conditions.
Throughdesign andapplication it is usually possible to rendermanyvariations

anduncertainties negligible in importance. Tolerancesand specifications play a
large role in controlling this. However,the engineeroften has to live with someof
the variability anduncertainty. It is thus important in either case to determine
which are important and assessthem. Testing, of course, plays a large role in this.

Mathematicalandstatistical techniquesare provided in this section to aid
in planning tests, analyzing the data, andsubsequentlyinterpreting the test results.
Theextent andapplication of these formal proceduresdependsuponthe factors
introduced in the maindiscussion of the report. All three activities canbe performed
with a wide rangeof degreesof sophistication. For example,analysesmayrange
from simple tabulations andplots to complexcalculations with formal statistical
techniquesfor estimation of unknownparametersor testing hypothesesconcerningthese
parameters. Thedegreeof the complexity of the analysis dependson suchfactors as
the requirementsof the customer,expenseof the item, expenseandformality of the
test procedures,and the degreeand importanceof the variation of the test data.
Similar complexities apply to planning andinterpretation of results.

In order to makethe written material as brief as possible summarytables have
beenpreparedto cover specific topics suchas continuousvariables, Booleanalgebra,
calculus of probabilities, interval estimation, samplingplans, etc. Supportingeach
of these tables are cited references, discussion andexamplesdemonstratingthe
techniquesin the correspondingtable. Thediscussion will briefly treat someof the
morefrequent problemareaswhich are often treated poorly in the reliability litera-
ture. Typical topics of this type are the meaningof confidenceinterval estimates,
the difference betweenengineeringand statistical confidence,and the useof the
randomfailure law.
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A thorough treatise on statistics of testing would normally begin with an

introduction to the calculus of probabilities as background theory. For brevity we

have chosen to start in_nedlately with application to random variables and proceed

quickly to topics such as estimation and sampling more pertinent to testing. A summary

treatment of basic probability concepts is given in the appendix of Volume IV - Prediction.
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A.I ContinuousRandomVariables and Distributions
A continuousrandomvariable is typically one that can take on anyvalue in an

interval. For example,the lifetime of a transistor under a certain set of test
conditions could be any time greater than zero. For a very large population of
transistors onewouldexpect the lives to be scattered or distributed over a large
interval of time. Continuousdistribution functions are usedto describe such
statistical behavior. Table A.l-i summarizesbasic conceptsconcerningcontinuous
randomvariables and their distributions. A summaryof several commondistributions-

is presentedin Table A.I-2. Givena density function p(x) the characteristics can
be evaluated by application of the formulae in Table A.l-l.

Central Limit Theorem

One of the most important results in statistics is the central limit theorem (CLT)

which states that if Xl, x2, ..., Xn are independent random variables al_ having the

same distribution function F(x) with mean _ and standard deviation o, then the sum

n

S = _ X.
l

i=l

is asymptotically Normally distributed with mean n_ and standard deviation o_nn, i.e.,

so

I 1_ 1 exp{ _ (s - n_)2}ds
P(s < so ) 2_ o_n

--oo

for n sufficiently large. This result is true under very general conditions on F(x);

if all variables have the same distribution then it is sufficient that the second

moment of x be finite. A more general form of the CLT and additional discussion of

the above case appear in Ref. 52.. An important aspect of the theorem is how large

n must be before the normal approximation applies. Clearly this dependence on n is

conditioned by the shape of the distribution. Sums of variables having highly

skewed distributions would tend to Normality more slowly than for those having

symmetrical or more nearly Normal distributions. In the latter case sums of variables

with n larger than 25 or 30 are very closely approximated by the Normal distribution.
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Table A. i-i

Continuous Random Variables And Distributions

x is a random variable (r.v.) having density function p(X) and

(cumulative) distribution function F(x).

X

F(x) = fp(t)dt (t is a dummy variable) and

p(x) = dF(x)
dx

3°

4.

Property: F(-=) = 0; F(_) = i.

Specifically for the range R over which x is defined

f p(x) dx = i.
R

a

5. Probability: P(x < a) = fp(x)dx = F(a)
--oo

b

P(a < x < b) = fp(x)dx = F(b) - F(a).

a

6. Expectation: For any function g(x),

7,

E[g(x) ] = fg(x) p(x) dx.

R

Mean of x (first moment about the origin):

8°

E(x) = fxp(x)dx = _1"
R

Mean square of x (second moment about the origin):

E(x 2 ) = fx 2 p(x) dx = v2"
R

9. k-th moment of x with respect to the origin:

E(xk) = fxk P(X) dx = _k"
R

In precise mathematical notation, X is used to denote a random variable, then

F(x) = P(X ! x), and for a continuous variable p(x)dx = e(x ! X ! x+dx).
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i0. Variance of x (second moment about the mean):

ii.

E{[x-E(x)]2} = °2(x) " /[x-E(x)]2p(x)dx = _2"
R

k-th moment of x about the mean:

E{[x-E(x)]k} " f[x-E(x)]kP (x)dx = Bk"
R

12. Relationship between the first four moments:

_0 " _0 " i

_1 " 0

_2 " _2 - v_' vl " mean value of x

_3 " _3 - 3v2_i + 2_

_4 " v4 - 4_3vi + 69291 - 3_.

13. Truncated distribution, FT(X), of F(x):

FT(X) . { F(x)/F(T) x <__T1 x> T.

Example

Let x be a random variable with density function

p(x) - _e-_x, _ > 0, x _0.

This is the well-known Weibull density function with e - i/_ and k = i

or the negative exponential density function.

Distribution: F(x)
:x ( 0, x<O

,, f_e-_tdt -
_X6 l-e , x > 0
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Probability:
_le-lXdx -2_P(I < x < 2) = = e -_ - e

i

or

-_ -2_
F(2) - F(1) = (l-e -2A)- - --(1-e-l ) = e - e

Mean:

oo

f_xe-AXdx F(2)E(x) = = _ -
0

l (r(k) = (k-l)').
_,

Variance: _2(x) = f(x - i/_.)2_e-lXdx = _ •
0

k-th moment about the origin:

oo

_k :: fxk Re-lXdx =
0 X k
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A.2 Discrete Random Variables and Distributions

A discrete random variable is one that takes on a finite or a countably infinite

number of values. For example, a binomial variable takes on two values corresponding

to a success or a failure, such as tossing a coin and the occurrence of a head being a

success. On the other hand, the number of telephone calls on a given line for a

specified time may be approximated by a Poisson variable for time intervals of

"constant density". The number of calls might be considered to take on any one of a

countably infinite number of values, O, i, 2, ..., etc.

Table A.2-1 summarizes the definitions and notation for the characteristics of

distributions of discrete random variables. Table A.2_2 contains some of the common

discrete distributions and the means and the variances. Ref. 53 contains a complete

discussion of many discrete random variables and the pertinent characteristics.

Example

Suppose that it is desired to obtain the probability of three or fewer

failures in a time interval of length t where an item upon failure is

replaced by a new item. Suppose further that the exponential failure

time distribution is applicable. Let the failure rate be _ = O.Ol/hour
and the time be 200 hours.

From the above information the mean or expected number of failures is

2 items. Furthermore the probability of x failures is given by the

Poisson formula and thus for three or fewer failures the probability

is expressed as

e-220 e-221 e-222 e-223

P(x ! 3) = O! + I! + 21 + _'

= 0.8569.
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A.3 Multivariate Distributions (Emphasis on Bivariate Case)

Consider the situation in which two or more measurements on a part are being

obtained, e.g. the equivalent h-parameters of a transistor. These two measurements

would have a joint probability density function (pdf) p(x, y), say, where x and y

denote the respective measurements. If the two variables are statistically independ-

ent then

p(x, y) = Pl(X) p2(y),

and hence the joint density functions can be written down knowing the individual pdf's.

If the variables are not independent the multivariate density function can be obtained

by assuming a particular form such as the Normal density function and estimating the

unknown parameters from available data.

Most of the properties of bivariate (two-variate) distributions are straight-

forward generalizations of the univariate distributions given earlier. The new

concepts are those of conditional and marginal distributions, covariance and correla-

tion. The generalization of these results to multivariate distributions is easily

made and one should see Ref. 51 for these results.

Independent Random Variables. If two variables x and y are independent then

the covariance of x and y, denoted by Coy(x, y) is

Coy(x, y) =//(x-E(x)) Pl(X)(y-E(y)) p2(Y)dxdy = 0.

However the inverse is not true, i.e. two variables may have zero covariance (or zero

correlation i.e. p(x, y) = 0) but not be independent. For example, suppose that

u and v are independent variables, and let x = u + v, y = u - v. Then

E(xy) = E(u 2) - E(v 2) = O, E(y) = 0, and

Cov(x, y) = 0 and p(x, y) = O.

However, x and y are dependent. See Ref. 17 for additional examples. Thus £he

correlation is not a general measure of dependence but rather a measure of linear

dependence of two variables in physical terms; the correlation coefficient is a

dimensionless covariance.
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Table A. 3-1

Bivariate Distributions

Let x, y be a pair of random variables having the Joint distribution function

F(x, y) and density function p(x, y).

f/p(x, y) dxdy = i, where R is the region over which x and y are defined.
R

_ 7p(u, v)dudv = F(x, y).

4. F(-_,-_) - 0, F( _, _) _ i.

5.

So

_F(x, y)
p(x, y) =

_x_y

db

P(a < x < b, c < y < d) " J J' p(x, y)dx dy

c a

= F(b, d) + F(a, c) - F(a, d) - F(b, c).

7. E(g(x, y)) - ffg(x, y) p(x, y)dxdy.
R

8. E(x) = /fxp(x, y)dxdy.
R

96 If x and y are independent random variables (r.v. 's) then

i0. E(xy) ,,

p(x, y) = Pl(X) p2(y) and

E(x) = fx Pl(X)dx and E(y) = fy p2(Y)dy.

/fxy Pl(X) P2 (y) dxdy
R

E(x) E(y) if x and y are independent r.v.'s.

ii. E(x - Z(x)) 2 -- o2(x), E(y - E(y)) 2 = 02(y).
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12. E{(x -E(x))(y - E(y))} = Cov(x, y) -- Covariance of x and y

= ff[x - E(x)][y - E(y)] p(x, y)dxdy.

13. Correlation of x and y

where

= p{x, y} = Cov(x, y)/o(x) o(y)

o(x) = [o2(x)] I/2 and o(y) = [o2(y)] I/2

14. Marginal distribution of x is given by

15.

Pl(X) = f P(x, y)dy.
R
Y

The conditional distribution of y for given x is given by

p(yJx) = P(x, y)
Pl (x)

= p2(y) if x and y are independent r.v.'s.

Example

Let x and y have a bivariate density function

1 1
p(x, y) - exp{-

2_ -_ 2(i-c 2 )

First of all note that

P(X, y)dxdy = i

since by completion of the square of the exponent

p(x, y) - 1 ffexp{
2_i-fTZ

i

2(i-c 2)

(x 2 - 2cxy + y2)}.

(x 2- 2cxy + c_ 2)

(cz - l)
+ 2(i_c 2) y2}dxdy •

If the variables are transformed as follows:

u = (x - cy)//ir7z

v = y
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then

1 ffexp{-( u2 v2
p(u, v) = _ _-+_- ))du dv,

(A.3-1)

using the fact that the Jacobian of the transformation is given by

l/

_u _u

_x _y

_v 8v

_x _y

= 1/

(A-3.1) can be written as the product of the integrals

u 2 v 2

2_ -®

l/,/i-:_ -c//ir_

0 1

Since each is the integral of the standard Normal density function the above product

is unity.

Next the marginal distribution of y is given by

P2 (y) -- fp(x, y) dx

i
exp{ -_-- }

2

Hence the conditional distribution of x given y is

= 1 (x - cy)2)p(xly) p(x, y) _ 1 exp{- 2(i_c2) •
P(Y) /27(l-c2)

Mean, Variance and Covariance Formulas

Let x I, x 2, ..., Xn be n random variables with means _i' _2' "''' _n and

variances o_, o_ .... ' °2n respectively and correlations PI2 (= 0(Xl' x2))' 013 .....

The following results are true independent of the distributions of the
Pn-l, n" ----

variables. Let y be a linear combination of the variables given by

= X .

Y Co + ClXl + c2x2 + "'" + Cn n
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Then the mean and variance of y are denoted by _y and c 2y and are given by

= c o + + c2u 2 + + =_y Cl_ 1 -.. CnU n

n

c o + [ ci_ i
i=l

02 = 2 2 + 2 2 + + C202
y Cl°l c202 "'" n n

+ 2P12ClC2OlO2 + ... + 2Pn_l,nCn_iCnOn_lO n

or

n

o 2 =

Y i=l ciOi22 + 2 _i<j_ CiCjPijOiOJ"

where o i is the standard deviation of the i-th variable. The above formulas are true

in general and one notes that the mean _y of y does not involve the correlations.

Now if the variables are uncorrelated (if they are independent as indicated

previously) the formula for the variance reduces to

02 = 2 2 + 2 2 + + c2o2
y Cl°l c2°2 "'" n n"

Now consider two functions

= x
Y Co + ClXl + "'" + Cn n

w = £0 + £1Xl + "'" + £nXn '

then the covariance of y and w is given by

n n

Cov{y, w} = ClElO _ + ... + c £ 0 2 + I _l£jCi°j°iPij •
nnn j=li

If the functions are not linear it is often possible to use a Taylor series

expansion of the function f(x) and then apply the mean and variance computations

to this form. These formulas must be used with care, e.g. by checking the magnitude

of the errors which may result in using them. Thus if

y = f(m)

then

1 _2f _ Ax2Y = f(9_) + _ _-_i ___
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1 _2f __

and hence using only the first order terms

where

fly -'= f(_

y

E = (_i' U2' "''' _n )'

and where 8____fI denotes [he evaluation of the derivative at _ •

_Xl IE

The above results are summarized in the following table.

Table A.3-2

Mean, Variance, and Covariance Formulas

General Case for Single Function.

If y =

then _y =

and (_2

Y

co + ClX 1 + c2x 2 + +• .. CnX n ,

co + ClP 1 + c2_ 2 + ... + Cn_ n = cO + _ ciui
1

= cic i cicj°icj Oij •
i ij

Variables Uncorrelated.

n

_y co + ClP I + ... + Cn_ n co + ci_ i

n

o2 _ 2 2= cic t •
Y 1
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General Case for two functions.

and

If y = co + [ cix i

w = _0 + X _jxj

then

Cov(y,w)

n n

i=l J i I j i jpij

If x i and xj are uncorrelated, i.e. PiJ = 0 for i # J, then

Cov(y, w) = [ ci£io_2.

General Case for single nonlinear function.

If y = y(x), x = (xI, ..., xn)

then using only a first order approximation

and

Uy = Y(_' _ = (Ul .... , Un ), vector of means,

02 = [ ( _ v) 2Y 8x i _ °2"
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A.4 Sample Statistics

The basic statistics which describe a sample selected from a distribution or

population are briefly sunnnarized in Table A.4-1.

Table A.4-1

i. Mean = x = [ xi/n ,

x. - i-th observation.
i

n number of observations in sample.

2.

Standard Deviation = s = {_ {x i - _}2/(n-i)}i/2,

n - i is the number of degrees of freedom associated with the

standard deviation.

3. x(j) is the j-th order statistic of the sample - the j-th smallest observation.

4. Range -- X(n ) - X(l ) where

X(n ) is the largest observation of the sample,

X(l ) is the smallest observation of the sample.

5.

Sample distribution function is the proportion of the sample observation

at or below a given value plotted as a step function related to the observed

values of x, i.e.,

number of observations < x
F (x) =
n n

See Figure A.4-1 for an illustration.
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The arithmetic mean x of the sample is a measure of location or central tendency

of the observations and the standard deviation s is a measure of the spread or dis-

persion of the observations. Thus s is a measure of precision of the method of

measurement or of the instrument used. The accuracy of the measurement technique is

the deviation between the sample mean for an infinitely large sample and the actual

or true mean. The range is also a measure of dispersion and is frequently used in

quality control as an index for identifying lack of adequate control in a process.

It is an efficient estimate of dispersion when the underlying distribution is Normal

and the sample sizes are small, i.e., when the number of observations is about four

or five. For most problems involving one variable or measurement, the mean and

standard deviation are adequate to describe the sample observations. However, higher

order moments would be required in fitting particular distributions or series approxi-

mations by the method of moments.

The sample distribution function is frequently plotted on probability paper

which has an appropriate scale transformation on the ordinate (or abscissa) in order

that the graph connecting the points (x, FN(X)) will be a straight line if the

particular distribution is the correct or true distribution. For small samples

considerable variation of the plotted points from a straight line is expected.

However, for reasonably large samples the graph paper is very useful in discriminating

between possible distributions. In lieu of using probability paper it is possible to

use the tables of expected values of the order statistics. The r-th order statistic

is the r-th smallest value in the sample of observations.

Example

Suppose that 15 observations on the performance of a system are obtained

by constructing 15 systems and measuring their performances. The results
in n sec are as follows:

59.2 61.2

50.6 81.5

57.8 61.2

51.1 68.0

63.6 78.7

48.9 73.7

51.0 68.6

81.3.

The characteristics of this sample of measurements are summarized by the

following statistics.

Mean = x = 63.76 n sec

Standard Deviation = s = 11.25 n sec

Range = w = 81.5 - 48.9 = 32.6 n sec.

The sample distribution function is given in Figure A.4-1.
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A.5 Point Estimation

The primary problem of interest in point estimation is that of obtaining a

function of the sample observations which estimates the parameter(s) of interest.

For example, a sample mean

x = _ xi/n = g(_)

is an unbiased estimate of the mean of the distribution of x. Three methods are

given for the derivation of the function g(_). The problem is summarized in

Table A.5-1. All methods are frequently used, and in some examples some of the

methods may be equivalent i.e. yield the same estimator g(_). The desired properties

are somewhat obvious after examination, and much of the literature on estimation

deals with these properties with respect to particular estimators.

Table A.5-1

Point Estimation

i. Let f(x; 0) be a probability density function of x with a single parameter 0

which represents some characteristic of the distribution such as the mean.

2.
g(x I, ..., Xn), a function of the sample observations, is an estimator

of 8.

3. = g(_) may be obtained by one of several methods, three (3) of which are

given:

(a) Maximum likelihood - Form the likelihood function of the sample, take

its natural logarithm, differentiate, and equate to zero.

L(x I, ..., Xn; 8) = f(xl; e) f(x2; 0) ... f(Xn; 0)

_nL

20
- 0 yields 0 = g(x)

(b) Least squares - Form the sum of squares of deviations, differentiate with

respect to the parameter and equate to zero.

Let S = _ (Yi - f(xi' 8))2

then

_S = 0 yields 0 = g(x).
D0

(c) Method of moments - Equate a convenient number of sample moments to

the corresponding moments of the distributions which are functions

of the unknown parameters.
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Desired Properties of Estimators

i. Unbiasedness: E(0) = 8

2. Consistency: 0 converges in probability to 8, that is, for any e ! O,
n

Is -81 > e) ÷ 0 as n + =.P( n

3. Sufficiency: 0 summarizes all the relevant information in the sample with
n

respect to the parameter 8. See A-5 for a mathematical definition of sufficiency.

4. Efficiency: 0 is an efficient estimator if it has minimum variance, i.e.

E(0 - e) 2 is a minimum.

Example

Point Estimation by Method of Maximum Likelihood

Let x be a random variable having the Normal or Gaussian probability density

function

f(x, 8_) - 1 exp{- (x-_)2/2o2}.

2_7o

In this example 8_ = (o, _) and it is desired to estimate o and _ with appropriate

functions of the sample observations based on the method of maximum likelihood. For n

samples, the likelihood function is

n
1

L(x I .... , Xn;8 ) = N
i=l 2/_0

-- exp{- (xi-_)2/202}.

(2_)

n

2 -n

0 exp {-[ (Xl-_) 2/2o2},

and

£n L(x I, ..., Xn;e) =
n £n 2w - n £no - i

- _ 27 [ (xi-")2"

The partial derivatives of £n L with respect to o and to _ are

£n L n [ (xi-_)2

_ _ + 03_o o

£nL 1
X 2(xi-_)(-l).
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A.6 Interval Estimation andConfidenceLimits

Oneof the mostimportant problemsin statistical inference is that of obtaining
an interval estimate of someparameterof an assumeddistribution. For example,it
maybe desired to estimate the probability of successfor a given event whenthe
numberof successeshas a binomial distribution, or to estimate the meanlifetime of a
particular item whenlifetime hasa Weibull distribution. To obtain an interval
estimate, the usual procedureis to use the distribution of the estimator for given
values of the parameterbeing estimated, (SeeTableA.6-1). For example,in the
caseof the Normaldistribution with unknownmean_ andknownstandarddeviation o
the statistic

x -__
Z --

old-_'n

where n is the sample size and x is the sample mean, has a normal distribution with

mean 0 and standard deviation i.

limit can be obtained for _ by

Hence a i00(i-=), 0 < _ < i, percent lower confidence

- Zl_= _ITn,

or the corresponding inference is expressed as

> x - Zl_ a clv_n,

where Zl_ _ is the value of the standard normal deviate below which I-_ proportion of

the values of the distribution fall. This is a one-sided interval estimate of _ in

that the interval is (_ - Zl_ _ o/_nn, =) and it is of infinite length. A two-sided

interval can be obtained by a similar procedure and thus one infers that the mean

falls in the interval

x - z ol/fn< _ < x + z ol/fn
l_a_ __

2 i- 2

with 100(l-a) percent confidence. This interval is finite in length and its end

points are symmetrical with respect to the sample mean x the center of the interval.

It is also based on the underlying assumption that the n measurements are an independ-

ent sample from the same Normal distribution.

The notion of a confidence interval is simple, but it is often confused in the

literature. If one constructs a 95% confidence interval estimate of a parameter based

on a certain set of data, and repeats this for another set of data obtained independ-

ently, etc. for many times, then over the lo__qn_Krun 95% of the statements made will be
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Equating the abovederivatives to zero yields

^

_2 = [ (xi__) 2/n

= _ xi/n = x.

Note that the maximum likelihood estimates are not necessarily unbiased and that in

particular

hence

E{o 2 } = (n-l)o2/n,

is an unbiased estimate of o 2 .

S 2 = [ (xi-x)2/(n-l)
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correct as stated and5%will be incorrect. A statementis correct if the parameter
doesactually fall in the interval as claimed. For example,in the casedescribed
aboveit is claimed that

> x - 1.645o/_n,

wherez0.95 = 1.645. This statementwouldbe correct 95%of the time that the
procedureof taking a sampleandmakingthe aboveinference from the sampleis
repeated. Thefollowing table gives a brief mathematicaldescription of the interval
estimation procedure.

Example

Confidence Interval Estimation

Let x be a random variable (r.v.) having the Normal distribution. Suppose

a sample of i0 items are selected at random from the Normal population, and

a 95 percent confidence interval estimate of _ is to be obtained using the

following data on survival time in hours of a certain item being tested.

1357, 1474, 1542, 1499, 1429, 1492, 1574, 1331, 1466, and 1547.

In order to obtain a confidence interval estimate of _ we use the fact that

t = x -__

s/_

has a t-distribution (see Table A.2-2) with n-i degrees of freedom. Then

using the procedures of Ref. A-6 a one-sided 95 percent confidence interval

for _ is given by

(x - t0.95(n_l ) s/_n, _).

Using the above data

x = 1471.1 hours

s = 79.6 hours,

and

to.95(n_l ) = 1.83

and thus

1517.2 > _ > 1425.0

is a 95 percent confidence interval for _. This particular interval either

is correct, that is it includes _, or is not correct. In the long run 95

percent of such statements would be correct if the 95 percent confidence
level is used and if the statements are made on the basis of independent

sets of data.
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Table A.6-1

Interval Estimation

ConfidenceIntervals

Let f(x; e) be the probability density function of a randomvariable x and let
it be desired to estimate the parameter8 by a confidenceinterval with the property

that the interval will include 8 a certain proportion of the time (fixed in advance).

'If the upper and lower confidence limits (end-points of the interval) are 8L

and eU then let

P(e L ! 8 ! 8U) = Y,

where 7 is the level of confidence. 8L and 8U are functions of the sample observations,

gL(_) and gu(_) respectively.

One-sided intervals can be obtained in either one of the forms,

P(8 L ! 8) = y or P(8 ! 8U) = Y"

These intervals can be obtained by means of the distribution of 8, the

estimator of 8. Let this distribution be

h(8; 6).

Then the lower limit is obtained by finding 8 = 8L such that P(0 _ 8d18 = 8L) = _I'

where 8 d is the value of 8 obtained from the data.

Similarly the upper limit 8 is obtained from the following relationship.

P{0 ! 8d18 = eU} = _2'

where i - (al + =2 ) = y is the confidence level.

It is not necessary that the problem be of the same type as the example given above.

In conclusion the percent confidence attached to the interval statement is the

percentage of time that such a statement is expected to be correct or more simply

interpreted as one's statistical confidence in the statement.
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Engineering Significance Versus Statistical Significance

Suppose that a standard technique or process for making a particular device has

yielded devices with a mean performance measure of 50 units. Let a new process be

evaluated, a sample of measurements made, and suppose that the inference is made that

the mean performance is 54 units and the lower 95 percent confidence limit for the

mean is 51 units. One would thus conclude from a statistical viewpoint that the new

process is an improvement over that of the standard technique. However the engineer

must look more carefully into the inference and its meaning to him. For example, does

the improvement of 4 units result in an increased profit? If the profits can be

improved as a result of the small increase in quality, it is of advantage for a change

to be made provided the change-over costs are not too great. Thus statistical

significance does not automatically imply an engineering significance and that such

decisions as the above can and should be carefully considered by the engineer in all

such problems. It should be pointed out that the considerations of what magnitude

difference in the means which is considered of importance to the engineer should

reflect in the size of the sample or number of observations to be made. Clearly the

detection of large differences, say 10% of the mean, requires very few observations

relative to the number required to detect small differences, say, of the order of

2 or 3% change in the mean. Some of these concepts are treated in the subject of

testing hypotheses in standard statistical tests.

Tolerance Interval

Another interval estimate frequently used in reliability problems is that of a

statistical tolerance interval. Such an interval also has an attached confidence

level associated with it but the interval is to include a certain desired proportion

of the "population" sampled rather than just a particular parameter such as the mean.

In the example given above a constant k can be determined from tolerance limit table

[Ref. A-6] for which the statement that "a certain proportion of the population is

included in the interval

(x - ks, x + ks)"

is correct with a given level of confidence and a prechosen level of the proportion.

The confidence has the same interpretation as above, that is, the expected proportion

of statements which are correct in the sense that the interval contains at least the

stated percentage of the population.
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A.7 HypothesisTesting
Thetreatment of hypothesis testing parallels that of estimation. However,the

question as to howlarge a sampleshouldbe taken is usually treated in hypothesis
testing rather than in estimation. This question of samplesize is usually the primary
one askedof the statistician; the answeris not immediatebecauseit is necessaryto

knowprecisely what is desired. For example,supposethat the hypothesisH0 to be
tested is that the meanlifetime 8 of an item is larger than or equal to 1,000 hours,
i.e.

H0: 0 _ 1,000 hours.

The question of how large a sample size should be taken to test this hypothesis is not

meaningful until it is stated further what one wishes to accomplish. Suppose that it

is desired to re_ H 0 if e < 500 hours with high probability, say at least 0.90.

The error associated with accepting H 0 when in fact it is not true is the 8 error or

Type II error as shown in Table A.7-1. Assume further that the exponential distribution

is an acceptable description of failure times of the item under consideration. Now

there are two types of error associated with testing hypotheses, namely, the probabili-

ty of rejecting H0 when it is true, i.e., when e _> 1,000 hours. This error is referred

to as the s error or Type I error. The following diagram illustrates the situation for

this example.

^{ 1 _ i

| 0 _

500 1000

e = Mean Lifetime in Hours

Figure A.7-1 PA Versus e
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Some further questions must be answered prior to determination of the number of items

to be tested. What type of life test is to be used? For example, n items may be

tested until failure, n items may be tested until f failures occur, n items may be

tested for a test time Tt, or items may be tested sequentially one-at-a-time until

failure, etc. S_ction 8.1 on Life Testing in Volume 3 describes various test designs

and gives references to the appropriate analyses. For this example, assume that it

- is desired to test n items until all items fail; then it is known from Ref. A-7 that

X 2 = 2__.T_T
O'

where T is the total test time and X 2 has the X 2 distribution with 2n degrees of

freedom. Now if 8 = 1,000 hours (or larger), then the probability of rejection should

be 0.05 (or less than 0.5). Thus for e = 1,000

2T

1,000 - X_.05

or the rejection region is given by

T = 500×_.05(2n).

If 0 = 500 the probability of rejection should be 0.90 and hence

(A.7-1)

X2 2T- 500 _ X290(2n).. (A.7-2)

Equating the above expressions for T the following equation is obtained where 2n is

the number of degrees of freedom or twice the sample size. Thus

500×_.05(2n) : 250X_.90(2n)

or

2×_.05(2n) : X_.90(2n)

and hence n = 19 items to be tested. This result can be obtained from a X 2 table by

observation. The ratio of ×_.90 to ×_.05 is found where it is near 2; then the

smallest value of n is located in the table such that for 2n degrees of freedom the

ratio is larger than 2. The important point to be made concerning the testing of

hypotheses is that to determine the appropriate sample size other considerations such

as allowed cost of testing, allowed error probabilities, etc. have to be taken into

account.
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Twocurvesare shownto indicate the effect of samplesize. The_ errors are assumed
to be identical for eachcurve; however,the 8 or TypeII errors are different as

indicated B(n0) > 8(nI) for no < nI. Note further that B is a function of the
deviation of the true 8 from the hypothesized8, 8 = 80.

PA
'I

i-
= Type I error

o|1"'o n = no

*J = n I > n O

O
o
u

_o>_ __Type II error

"_ -- -- e
X_

T el
O

m e = e 0

True Value of 0

Figure A.7-2 Probability of Accepting H 0 Versus e

Usually, one-sided tests of hypotheses are given and the curve of PA versus 8

is referred to as the operating characteristic (OC) curve. The values of a and B

are indicated at 0 -- O0 and 8 = 0I, respectively. In the terminology of sampling

is referred to as the producer's risk and g as the consumer's risk.

O

4..I
O_

O
(J
<_

q-4
O

4J
"H

.r4

O
e -- e 0 18 = eI

True Value of e

Figure A.7-3 Operating Characteristic (OC) Curve
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TableA.7-1

HypothesisTesting

Supposethat it is desired to test the hypothesisH0 that the value of a
parametere is equal to a specified value e0,

H0: e = e0

against an alternative hypothesis Ha that e # 80 ,

H a: 8 _ 8 0 •

Let P be the probability of rejecting the hypothesis H0, andr

P be the probability of accepting the hypothesis H O-a

The hypothesis is rejected if the estimate e of e falls in a critical region determined

to satisfy desired properties.

The following tabulation gives all combinations of outcomes for the testing of

the hypothesis H0. Two types of error are possible as shown below.

Hypothesis H 0

Decision Concerning H 0 True False

True No error

False Type I error

= _ error

Type II error

= B error

No error

The size of the errors can be controlled by altering the sample sizes. A curve

which depicts the relationship between the probability of accepting (PA) the hypothe-

sis H 0 versus the actual parameter value (8) is shown below. This curve assumes a

two-sided test; that is, the hypothesis H 0 is rejected if the estimate of 8 differs

significantly from 80 on either side of e0. The a or Type I error is shown at

8 = 80 and it is the difference between the probability of acceptance at e = 80

and unity. Thus

a = 1 - P (accepting H01e = e0)

or

= P (rejecting H01e = 80).
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Example

HypothesisTesting

Supposethat the life of an item to be tested canbe assumedto havethe
exponential distribution and that i0 items are tested until failure. The
observedlifetimes are

2030, 812, 1870,4650, 272, 1830, 45, 107, 305, and 734.

ThehypothesisH^ to be tested is that the meanlife time is less than or
u

equal to 700 hours versus the alternative hypothesis H that the mean life

time is greater than 700 hours, a

The appropriate test procedure is given in Ref. A-7 The statistic

2re/8 = 2T/e

is distributed as a X 2 distribution with 2r degrees of freedom, where T is

the sum of the life times of the items tested and r is the number of failures,

which in this example is the number of items on test. Then,

2p = 2T/e = 2(12655)/700 = 36.2X r

and the probability that this value of ×2 is exceeded is given in the table

in Ref. A-8 to be = .015, so H is the preferable hypothesis.
a
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A.8 Least Squares

Many problems involving curve fitting with one independent and one dependent

variable are solved by eye-fitting a curve to the observed set of data points. For

many purposes this prDcedure is adequate, but it yields little in the way of quantita-

tive information concerning how well the curve fits the data. If there are two or

more independent variables one must use an analytical method for fitting.

In order to answer specific questions concerning the adequacy of a proposed

relationship to estimate the dependent variable a model is first hypothesized or

assumed. Then it is necessary to obtain the related statistics which describe the

goodness-of-fit of the assumed model.

Of primary importance is how one selects the model to fit the data. Ideally

the engineer would be able to derive a model, which, with the exception of not knowing

certain constants, relates the dependent variables to the pertinent independent

variables. However, in many situations it is not possible to derive the model but

one has in mind a general behavior of y for given _ which might be described by a

specific function. This function may satisfy certain desired limit properties, but

otherwise have no physical basis. In other cases it may not be possible to specify a

functional form from a knowledge of the behavior of y; and hence a polynomial in the

x's or their reciprocals is fitted to the data with the understanding that it repre-

sents an interpolation function and is not valid outside the range of the observations.

Such a function may be considered as a Taylor series approximation to the real but

unknown function. In any case let the model be denoted by

y = n(_x) +

where

and

n(_) is the mean value of y for given x = Xl, ..., x k

e is the deviation between the observed y and the mean value of y

predicted by the model _(_).

Having decided on a particular form of the model the unknown constants

(parameters) may be estimated on the basis of one of several criteria. Two analytical

procedures are given in Table A.8-1, viz., least squares and Chebyshev, the former

being most widely used and hence described more completely in Table A.8-2.
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Themethodof least squaresassumesthat the ci, i = i, ..., n, are independently
distributed with meanzero (0) and a variance o2 (independentof x). If it is desired
to test a hypothesisconcerningthe unknownparametersof the modelit is necessaryto
assume,in addition to the above, information about the distribution of the E.. It isi
usually assumedthat the distribution is Gaussianas the theory is well-knownfor this
distribution. It shouldbe emphasizedthat manycomputerprogramsare available to
perform the required computationsand that whatmayappearto be a complexanalysis
canoften be donein little time on a moderndigital computer. Theprimary problem
to the user then becomesthe interpretation of the results of a computerprintout for
several statistical descriptions are used to assessthe goodness-of-fit of the model.

Assumethat a given set of data has beenfitted to a prescribed modelby the
methodof least squaresand that the prediction equation for the meanresponse
(performance)for given values of _ is

y = b0 + blfl(x) + ... + b f (x).-- p p--

If fi(x) = xi then a simple linear prediction equation results, that is,

(A.8-1)

y = b0 + blXI + b2x2 + ... + bpXp.
i

Similarly one mayconsider fi(x) = x and thus a polynomial in x,

y = b0 + blx + b2x2+ ... + b xp.P

Oneother exampleshouldbe sufficient to showthe generality of the general linear

prediction equation (A.8-1). Let fi(x) = i/xi, then

y = b0 + bl/XI + b2/x2 + ... + b /x .P P

All of the above examples are considered to be linear in the coefficients and the

coefficients can be obtained by the method of least squares. Some attention will now

be given to the interpretation of results of such a model and the associated statistics.

First of all it is important to obtain an overall measure of dispersion of Yi' the
^

observed values of y, from their respective predicted mean values Yi" This dispersion

is estimated by
^

Z(y i - yi )2
s 2 =

n- (p+l)

where n is the number of observations on y and p+l is the number of estimated

parameters, and hence n - (p+l) is the number of degrees of freedom associated with the

estimate s 2 of 02 . All other measures of precision are given as multiples of 02 and

the estimates by the corresponding multiples of s 2. If the standard deviation s, the
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square root of the variance, is small relative to Yi and to the variation of Yi over

the region in which the predictions are being made, then the predicted values are

considered to be good. A usual test of goodness is made by comparing the sum of
^

squares of deviations _(Yi - Yi )2 with a measure of the variation of Yi corrected only

for the mean value, i.e.,

^ ^

Z(y i _ yi)2 Z(y i _ _)2
R 2 = 1

E(y i _ y--)2 Z(y i _ y-_2

where R 2 is the proportion of the total variation (corrected for the mean) which is

explained by the prediction equation. A large value of R (near unity) does not

necessarily imply that the equation is a good fit. For example, it is possible to

increase R by increasing the number of parameters in the model and consequently

decreasing _(Yi - Yi )2" The same does not hold true for s2, as it contains the number

of degrees of freedom n-p-i in the denominator. Hence as p, the number of parameters

increases s2 will eventually start to increase as unimportant terms are added to the

prediction equation. Thus s 2 is a more important overall measure of precision of the

prediction equation.

Other measures of precision which can be obtained from the fitted equation are

those for:

(1)

(2)

(3)

(4)

The individual regression coefficients, bi, i = i, ..., p,
^

The estimated mean y of q,

The estimate of an individual observation Yi' and

Combinations of the above.

Ref. A-10 gives the procedures for estimating the above measures of precision and for

obtaining related confidence limits. Let us consider here the problem of interpreting

the results. The precisions of the individual coefficients s(b i) can be used to obtain

a confidence interval of the form

b.l - t[s(bi)] --< 8i --< bi + t[s(bi)]

where t is the value of Student t for the appropriate number of degrees of freedom,

n-p-l, and the desired confidence level, see Ref. A-8 for a tabulation of t-values.

Such an inference can be made for a particular coefficient. One can also obtain a

confidence region for a selected set of all of the coefficients. See Ref. A-10 for

the appropriate procedure for this computation.

Another important inference which can be made is that of obtaining a confidence

interval for ni using Yi' the estimate of hi, and the estimated standard deviation
^

of Yi" The width of the interval increases as one moves away from the mean point,

that is, as the following distance increases,
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l(fl(_i), f2(_i), ..., fp(_i )) - (_i (x)_, -'-, _p(_))l"

A confidenceregion for a future observedvalue is obtained in a similar mannerto
that for the predicted meanvalue with the exception that the variance of the single
value includes the variance of the predicted meanandthe variance of the deviation of
an individual observation from its mean.

Extrapolation of results beyongthe region of investigation is donewith
considerable risk. Although the abovemethodscanbe usedoutside the region of
observations it is obvious that only prior technical knowledge can serve as a guide

concerning the validity of the extrapolation. There are no statistical tests for this

and the engineer must exercise due care. Theoretically derived models can be extra-

polated and the appropriate measure of precision included in any inferences made on

this basis.

Table A.8-1

Analytical Methods for Curve Fitting

lJ Least Squares Fit - minimize the sum of squares of the deviations of the

observations from their corresponding predicted mean values given by the

hypothesized equation (model) of the curve or surface, i.e., compute

estimates of the unknown parameters, 8j, j = i, ..., p, such that

Z (Yi " qi ) 2

is minimized, where

Yi

• = f 61, 62, 6p)n I (xi; --., ,

6j is the J-th parameter, j = 1 ..... p, and

is the observed response, i = I, ..., n.

2o Chebyshev Fit - minimize the largest absolute deviation between the

observations and the corresponding predicted value, i.e., compute the

estimates of the parameters such that

maxly i - nil

is minimized.
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Table A.8-2

Method of Least Squares

Linear Models

Suppose that Yi' i = i, ..., n, is estimated by means of a function linear in

the unknown parameters to be estimated

Yi = 80 + 81fl(_i) + 82f2(_I) + "'' + Bpfp(_i) + _i

= n i + ei, i = i, ..., n.

where

fj(xi ) is a function of the independent variables Xl, ..., Xk,

(J = 1 ..... p)

8j(j = O, ..., p) are the unknown parameters to be estimated

from the data,

e.1 is the deviation between the observation Yi and its mean given

by qi where

H i = 80 + 81fl(_) + ... + 8pfp(_i) , and

= (Xli, x2i .... , Xki) the i-th values of each of the

independent variables used in the model.

The e. are assumed to be independently distributed with mean 0 and constant variance
i

02 . If the variance a 2 is some function h(x__, it is necessary to perform a weighted

least squares computation. If h(_) is known in form only and certain constants of

h(_) need to be estimated the problem becomes one in non-linear least squares. Such

problems are treated in the following section. In the linear, non-weighted case the

estimates b i of 8 i are obtained by solving the following system of equations given

in matrix form:

(F'F)B = F'Y,
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where

m --,

bo 1

bl I

• I

B = Y =
• I

1_Up_

Yl

i
i

Yn

F _'_

i fl (Xl) "'" f (xi)p--

i fl (X-_n) "'" fP (_n)

and F' is the transpose of the F matrix. The j-th equation corresponding to the

matrix form of the equations as given above is

Efj(_i) b0 + b I Efl(_. i) fj(_i) + ... + bp Efp(_Xi) fj(_i )

= lfj(_i ) Yi' j = 0 ..... p.

Many computer programs are available to perform the solution of the above linear

equations and obtain the associated measures of precision of the estimates, for

example, see Ref. A-II. The least squares prediction is obtained as

y = b0 + blf I + b2f 2 + ... + b fpp'

where fj is some specified function of the x's, j = i, 2, ..., p.
X jmight be

xj, i/xj, £n xj,
etc.

For example, f.
J
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The above remarks on inferences assume that the observations have a Gaussian

distribution and are independent. These assumptions can be tested by computing the
^

individual deviations Yi - Yi and plotting their sample distribution function on

Gaussian (Normal) probability graph paper and making a subjective decision concerning

the linearity of the transformed distribution function. Sometimes it is desirable to

make certain tests for possible correlation of successive test data. Chapter 3 in

Ref. A-10 gives several such tests.

Nonlinear Models

• A model is nonlinear when the response or performance measurement is a nonlinear

function of the parameters to be estimated, as in the following expression,

f(xi, 8_ = 81 exp{- 82x i} + 83 exp{- 84xi}.

The system of least squares equations obtained for a nonlinear model are nonlinear in

the unknown constants to be determined, and iterative methods of solutions are

required. The program NOLLES [Ref. A-II] was written for such problems. Another

useful program given in the literature is a SHARE program - SDA-3094 [Ref. A-9].

Measures of precision similar to those for linear models can be made here;

however, the results are approximations and the adequacy of the approximations must

be considered.
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A.9 The Failure-Time Distribution and Hazard-Rate Function

Failure-Time Distribution

Suppose that a large number of items are tested until failure and the life-

lengths recorded. These failure-times can be ranked from the smallest value to the

largest value and a sample distribution plotted as indicated in Appendix A.4. For

convenience the data may be grouped according to appropriate time intervals or per-

centage points and only a few points plotted. It is usually preferred to plot the

failure times corresponding to fixed percentage points, say 5%, 10%, 15%, ..., 100%.

Similarly one can plot an estimate of the probability density function by means of a

histogram. These techniques are illustrated in the first example to be given below.

In order to describe these results it is convenient to use an appropriate

continuous function and fit it to the observed frequency distribution or to estimate

the unknown parameters of the function which "best" fit the observations. The sense

in which "best" is defined has been treated in many statistical texts and will not be

discussed here except for a particular application.

Suppose that one suspects that the data can be described by a negative exponen-

tial distribution, then the continuous frequency function is defined by

-Xt
f(t) = Xe , 0 < t < _,

where t is the time in hours and X is a constant or parameter which is to be estimated

It can be shown that the estimator having the desiredon the basis of the data.

properties is given by

n 1
X -

Et _ '

where n is the number of observations and thus Et/n is the mean life time _.

often the frequency function is written as

Ve ry

1 e-t/O,
f(t) = _ 0 _ t <

where 8 is the mean time between failures and hence

^

8 = t,

that is, the estimate of 0 is the mean life time t as one would expect.

A hypothetical set of data, based on random exponential failure times, is

summarized in Table A.9-1 below. These data will be used throughout this section for

the sample computations.
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Table A.9-1

Observed Distribution of Failure Times

Time Intervals

Failure

Frequency

Cumulative

Failure Frequency Survival Frequency

0 - 50 77 77 123

50 - i00 46 123 77

i00 - 150 38 161 39

°150 - 200 13 174 26

200 - 250 7 181 19

250 - 300 9 190 I0

300 - 350 3 193 7

350 - 400 3 196 4

400 - 450 0 196 4

450 - 500 2 198 2

500 ÷ 2 200 0

Hazard Function

Another function of interest in reliability problems is the hazard function

which is the ratio of the probability of failure in a small interval (t, t+At) given

that the item has survived time t to the probability that the item survives time t.

Actually the hazard function is an instantaneous conditional failure rate. Thus

f(t) f(t)
h(t) -

i - F(t) t

i - I f(t)dt

0

If f(t) = le -It then

-At
F(t) = I - e ;

and hence

le-lt
h(t) = = _,

1- (l-e -lt)

or a constant when the frequency function is the exponential function. This hazard

is the probability of failure on the condition that the item has survived. The

function is important from the standpoint of checking for the form of the frequency

function which one might use.
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Example 1

Suppose that a large number of items such as transistors, electron tubes,

car tires, or electric light switches, are placed on test under specified

conditions until failure. Then one can obtain a sample distribution of

times till failure such as that indicated below. The sample distribution

function can be plotted as a function of time as follows using the hypo-

thetical set of data given in Table A.9-1. One observes that seventy-

seven (77) is the number of failures which occurred at or below 50 hours,

hence 77/200 or the proportion 0.385 can be plotted as the ordinate versus

the abscissa value of 50 hours. Similarly the relative cumulative frequen-

cies can he plotted corresponding to all times at the upper end points of

the respective intervals, (see Figure A.9-1).

1.00

o 0.90

o.8o
0.70

0.60

0.50

0.40
u 0.30

_" 0.20

0.i0

0 50 i00 150 200 250 300 350 400 450 500

(hours)

Figure A.9-1 Observed Sample Distribution

The frequencies may also be plotted as a histogram by constructing rec-

tangles of height equal to the frequency of relative frequency, as
desired on each interval as shown below.

O

=

m
o"

>
-r4

50 i00 150

Figure A.9-2

200 250 300 350 400
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Observed Sample Histogram

|
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Example 2

The hazard rate is estimated for the data in Table A.9-1 for At = 50 hours.

The following figure contains a graph of the function.

N

m_

1.00 _,_

O. 80

0.60

0.40 -

0.20 -

I

0 5O

J

i00 150 200 250 300 350 400 450 500

Figure A.9-3 Hazard Function (At = 50 hours)

From the figure it can be reasonably inferred that the hazard function is

essentially a constant. There are test procedures for testing this hypothesis,
see Ref. A-12.

In general, however, many authors have implied that the hazard function is

a "bath tub" shaped curve as shown below.

x_

Period of Increasing

X Decreasing Hazard

Hazar_ _ Wea_rou/

Period of Constant Haza_

I

L, i i

Figure A.9-4 Typical Hazard Rate Curve

The early high hazard rate is a result of manufacturing defects and removal

of these from the collection of items results in a more uniform collection

of items which have essentially a constant failure rate and then finally all

items begin to reach a wear-out stage near the end-of-life. There iB a

strong parallel between the above curve and the instant mortality curve

for human beings.

Much literature has evolved around the above curve or the subject area of

increasing failure rate (IFR) and decreasing failure rate (DFR). For

example, burn-in is often used in screening components for use in missile

systems because of the early high hazard rates relative to those in the

period of constant values. The question is to decide how long to test,

assuming that sufficient information is available to infer the decreasing

failure rate.
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Random Failure Law

One of the most common misconceptions appearing in the reliability literature is

the implication that the random failure law and the exponential failure law are one

and the same. Assuming that the random failure law simply assumes that failures occur

randomly over time then there can be several failure laws depending upon whether the

log-normal, the Welbull, the gamma or some other distribution is assumed to best

describe the distribution of failures. The difficulty is that random failure and the

Polsson law are considered equivalent by many authors and thus the exponential law

with constant hazard rate is assumed the only random failure law.

Table A.9-2

Hazard - Rate Function and Failure-Time Distribution

1.

2.

3.

4.

Let t be the time to failure (llfe length or survival time)

Assume t has the probability density function f(t) and the distribution function

F(t), where t

F(t) = ff(x)dx

0

or

f(t) - d F(t).
dt

and zero (0) is assumed to be the threshold or location parameter.

The reliability R(t) is given by i - F(t).

The hazard-rate h(t) is the instantaneous failure rate and is given by

lim F(t+At) - F(t) 1 f(t)
h(t) = At_O 8t R(t) = R(t)

5o

It can also be expressed as follows:

-R' (t) d£n R(t)
h(t) -- = -

R(t) dt '

where R'(t) is dR/dt.

The distribution of life,length can be expressed as

t

F(t) = i - exp{ - /h(x)dx}.

0
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Example 3

Hazard-rate Function and Failure Time Distributions

Suppose that the time to failure has the gamma density with shape parameter

n and scale parameter 8, i.e.

f(t) = tn-lexp{-t/8} / r(n)O n, for t > O.

The distribution function F(t) is the following integral

F(t)

t

= fu n-1 exp{-u/e}du / F(n){) n

0

and

R(t) = 1 - F(t) = 7u n-I exp{-u/8}du / r(n)8 n.

t

The hazard rate is

h(t) =
(t) --

R(t)

tn-I exp{-t/O} / r(n)8 n

fu n-I exp{-u/O}du / F(n)O n

t

n-1
t exp{-t/8}

un-I exp{-u/8 }du

t

The curves for the hazard function are given in the figure below for n = i

(exponential case), n = 1/2 (decreasing hazard-rate function), and n = 2

(increasing hazard-rate function). For n = 1 the hazard rate is a constant

and equal to _ = i/8.
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n = 1 (exponential case)

Time (t)

Figure A.9-5 Typical Hazard-Rate Functions for Gamma Density Function
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A.lO SamplingandSamplingPlans
Samplingandsamplingplans is usedin this section primarily in connectionwith

acceptancesampling. A long list of definitions is given in Table A.IO-I with this
point of view in mind. Thebasic purposebehind acceptancesamplingis to provide a
checkof incomingmaterial or outgoing material (dependinguponwhetheryou are the
consumeror supplier). A sampleof the material is selected to be evaluated and
dependingon the results of this samplethe entire lot of incomingmaterial is either
rejected, accepted,returned for rework, etc. This samplingprocessimplies that the
material is being supplied in a sufficiently large amountthat a samplecanbe
selected at randomandevaluated. If the items of the sampleare destroyedin the
measurementprocessit is clear that the cost per item must not be excessiverelative
to the value of the information to be obtained by the samplingprocess. If the
measurementprocess is non-destructive then the samplecan, in the limit, include all
of the items in the lot. This wouldbe moreappropriately called screening rather
than acceptancesampling. Veryoften a combinationof screening andsampling(less than
i00%of the items in the lot) are usedjointly in evaluating the incomingmaterial
wherethe measurementprocess is expensivefor somecharacteristics of interest and
cheapfor other characteristics of interest.

Thereare a very large numberof samplingplans dependinguponthe assumptions
onemakesconcerningthe distribution of the measurement.Thereare "distribution
free" plans which assumelittle or nothing concerningthe distribution andparametric
plans in which the distribution is assumedandits parametersor characteristics are
hypothesized. TableA.10-2 contains a partial summaryof manyplans tabulated by
distribution form assumed,by whether the measurementis an attributes (discrete) or
variables (continuous) measurement.Specific features of the various plans are
also tabulated alongwith the reference.

It shouldbe pointed out that samplingis also usedin manyother applications.
For example,in quality control the manufacturerattempts to control or check-ona
production process to detect departures from an acceptableprocess. Hemayselect a
sampleevery hour, shift, dayor appropriate period of time, measurethe pertinent
characteristics, plot theseon a chart or graph to detect anyshifts in processlevel
of defectives, meanlevel, dispersion level, etc.

Similarly the word samplingis usedin connectionwith experimentaldesigns.
Oneexampleis that of nestedsamplingin whichone is estimating the sourcesof
variation of a process. If a processmaybe subdivided into stages it is often possible
to estimate the variation at eachstageby meansof standardanalysis of variance
techniques. At eachstage a samplingof the items is madeand the desired measurements
madeon eachof the items.
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Theselast two types of samplingare not treated in this section of the appendix
but are mentionedto give a better overall perspective of the problem.

Example

Suppose that it has been conjectured that the proportion defective of a

certain production item is less than or equal to 0.02. A sample of ten

items is selected from the production and one item is found to be defec-

tive. What is the probability of observing one or more defectives if

the conjecture is correct? Would the observed result be in contradic-

tion to the hypothesis that the proportion defective is 0.02?

P(x > i) = 1 - P(O defectives)

10
= i - ( 0)('02)0 (0"98)10

= i - .81707 = 0.18.

Thus the probability of occurrence of a result as bad or worse than that

observed in the sample is not rare and one would not reject the hypothesis

as stated on the basis of this evidence.

Table A.10-1

Acceptance Sampling Plans

Definitions:

i. Random Sample - a sample of n items from a population of N items is said to be

random if each sample of n items has an equal chance of being selected. Thus

a sample of every lO0-th item from a production of lO,O00 with the first item

being selected at random from the first i00 items is not a random sample for

such a sample cannot contain more than one item from the first i00 items or any

subsequent group of i00 items.

2. a - Producer's Risk - the probability that a samplin_ plan will reject material

of acceptable quality. For example, if a mean failure time 6 of 3,000 hours is

specified to be an acceptable value, then a is the probability that a particular

material having this mean failure time will be rejected by the sampling plan.

3. B - Consumer's Risk - the probability that a sampling procedure will accept

material of unacceptable quality. Conventionally B = 0.i0.

4. AQL - Acceptable Quality Level - the quality of the material that a sampling

plan is designed to accept with probability l-a or reject with probability a.

5. LTPD - Lot Tolerance Percent Defective - the lot quality that a sampling plan

is designed to reject with probability I-B.

6. OC - Operating Characteristic - a graph of the probability of acceptance versus

the quality level of the material being sampled.
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8.

9.

"i0.

ii.

12.

Samplfng by attributes means that the items are classified as failures (defects)

or non-failures (non-defectlves), and thus decisions are based only on the number

of failures among the items tested.

Sampling by variables means that the quality of the items is measured by a

continuous variable such as the time to failure, current gain of an amplifier,

breaking strength of an item under test, etc.

The phrase with replacement implies that the items sampled are returned to the

sample before the next item is selected; or if a destructive test, with

replacement implies that the failed item is replaced.

Single Sampling Plans - a single sample of specified size is selected from the

lot for testing, and the decision on the lot acceptance is based on the results

of the single sample.

Multiple Sampling Plans - a specified number of samples (usually of different

sample sizes) are selected one-at-a-time at random for testing, and the decision

procedure is such that at the completion of testing of the i-th sample, one can

either reject the lot, take another sample, or accept the lot. At the completion

of testing of the last sample the decision is either to accept or reject the lot.

Sequential Sampling - items are selected one by one (or may be selected in

groups of r items each) and the decision is made at the end of the test on the

i-th item to either reject or accept the lot of material being tested or take

another item for testing. These procedures may be either truncated or not

truncated.
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A.II Statistical Design of Experiments

Experiments are planned to estimate or to test a particular hypothesis con-

cerning unknown constants or parameters of a model. For example, sampling plans

are selected to accept good material with high probability and reject poor quality

material with high probability.

The primary statistical problems here are the selection of the number of items

to test and test plan considerations such as how to terminate the test (failure-

terminated or time-terminated) and whether failed items are replaced. On the other

hand, an environmental test may be planned to estimate the effects on the item of the

environment to be expected in application. For example, it may be desired to estimate

the effect of temperature on one or more performance measures. In such cases the

considerations are what temperatures to use and how many items to test at each tempera-

ture. If several environmental factors are considered simultaneously, then some

specific tools in the statistical design of experiments are useful in the selection

of the test levels and the number of items to be tested at each level.

In order to evaluate or compare experimental plans it is necessary to have the

form of the model in mind; the model may be linear, sum of two exponentials, second

degree polynomial, etc. Knowing this model form, the relative precisions of the

estimates of the unknown constants or of the predicted mean performance can be

determined before the actual running of the experiment.

The precisions of the estimates are given by the product of the unknown

variance of the performance measures with respect to the model, which describes their

relationship to the independent variables, and a constant dependent on the test plan,

the relative precision. Hence in order to compare the experimental plans it is usually

assumed that the variances are constant, independent of the test plan and of the values

of the independent variables (environmental test levels). In reality the variance

would vary from one plan to another and in some cases would depend on the environmental

levels, but in practice these variations would not alter appreciably the test plan

selected as "best" on the basis of the relative precisions of the estimates.

The following table gives a brief description of some important points to con-

sider in statistical design of experiments. It would be hopeless to treat each of the

various types of designs or experiments considered in the statistical literature.

However, a single reference on this subject is Ref. A-13 which contains a bibliography

of ii0 more recent papers on the subject. Several types of designs and/or experiments

are listed for familiarizing the reader with the "jargon" if he has not already been

exposed to same.

Following the table a discussion on the special topic of matrix testing is given

as an example of some of the considerations to be made by an engineer in a particular

type of experiment which is used in reliability testing.
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Table A.II

Statistical Design of Experiments

Objectives:

To estimate unknown constants or parameters of a hypothesized model form,

To test particular hypotheses concerning the parameters or the model form.

Some Criteria for Selection of Best Design:

Precisions of the estimates of the constants,

Precision of the predicted mean performance based on the model,

Quality of material being accepted on the basis of an acceptance sampling

plan and OC curve, and

Ability to discriminate between (or among) hypothesized model forms.

Factors Considered in the Selection:

Number of items to test,

Methods for truncating the test,

Whether or not to replace failed items,

Number of levels of the environments to select and how many tests to be

made at each level,

Hypothesized model for relating performance measurements to pertinent

independent variables,

Which hypothesis is to be tested, and which alternatives are appropriate,

Magnitude of Type I and Type II errors,

OC curve,

Average sample number (ASN) and maximum number of items which may be tested

in the case of a sequential experiment, and/or

The difference in performance measures which is of practical significance.

See Ref. A-13 for a list of references on the following.

Types of Experiments:

Response surface design,

Random balance experiments,

Factorial experiments,

Latin Square design,

Screening designs,

Fractional factorial experiments,

Evolutionary operation (EVOP) designs,

Sequential designs, and

Incomplete block designs.
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Matrix Testing (Environmental testing with two or more factors)

Suppose that an item is being designed to operate in an environment in which

the temperature may range from 25°F to 125°F, the input voltage is 28 volts dc±10

percent, and the mission time is 200 hours. If one suspects that the item is

sensitive to changes in temperature and/or input voltage in that certain performance

characteristics change or that the failure rates change, then it is necessary to

assess the effects of these environmental changes and determine the resulting

implications with respect to the item design.

Often one is concerned about more than one output characteristic or response;

however, for convenience in the discussion which follows we will treat only one

response variable, say y. In addition, the environmental factors will be called

.. assuming that
inputs and their respective levels will be denoted by x I, x2, ., Xp,

there are p such inputs, i.e., independent variables, under consideration. Most

often one is interested in the behavior of y for various combinations of levels of

the inputs, e.g., one set of such combinations is high temperature, low input

voltage, and various times of operation under these conditions.

A test procedure may be planned in which several items are selected from the

available collection of items and placed on test at several levels of the input

conditions and observed for the behavior of the response y. The questions remain of

how to select the number of levels to use for each independent variable and the

number of observations to be made at each level. A test of the type considered here

is referred to as a matrix test, that is, a test procedure which treats simultaneously

several input and/or environmental factors, each at two or more levels. For example,

the following figure illustrates a possible selection of testing conditions as

indicated by x's.

v (volts)

30.8

28.0

25.2

x x x

x x x

x x x

R I J_ T, °F
25 75 125

Figure A.II-I A Selection of Test Conditions
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In this examplethree levels of temperature(T) and three levels of voltage (V) are
selected as conditions underwhich the tests are to be run. Dependingon prior
information and the objective of the test or experiment,onemaywish to select
either two, three, or four levels. Very seldomare morethan four levels needed.
Theuseof two levels is often adequatefor a monotonicfunction, i.e., onewhich
is non-decreasing(Seefigure below) or non-increasing.

f (X)

Figure A.II-2

J I m X

Typical Example of Non-Decreasing Function

Mathematically a non-decreasing (non-increasing) function f(x) is expressed as one

for which x 2 _ x I implies f(x2) _ f(xl) , (f(x2) _ f(xl)). If in a matrix test the

response increases and then decreases over the interval of interest, it is necessary

to select a minimum of three levels of the particular variable. Such a situation

can occur in testing an item designed for optimum operation at a nominal level,

in which case the performance often degrades with a deviation of an input variable

in either direction from the nominal value. In many situations one does not know

the best combination of levels to use in the design, and the test conditions are

to aid in identifying the "optimum combination" within a reasonable order of precision.

By optimum we may mean either that the characteristic of interest will fall within

given bounds or that it will exceed a given value.

A part of the planning of the test is the consideration of what type of an

analysis is to be made. For example, one may wish to observe or identify the worst

case condition or to estimate the optimum condition. To accomplish what is desired

may or may not require a formal mathematical model to relate the response of interest

to the independent variables being considered. The model may be a simple polynomial

approximation to some real world model which is unknown to the experimenter, or it

may be a theoretical or analytical model derived by means of physical laws and

reasonable approximations resulting from plausible assumptions. The use of a model
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suchas the latter facilitates the estimation of worst casevalues or the estimation
of the location of the optimumcombinationof the variables. For example,contours
of constant responsemaybe approximatedon the basis of a fitted modelwith the use
of an appropriate computerprogram. Thefollowing figure showsa situation in which
an optimumis a high value of responseand the worst case is a low value.

30.8

28.0

25.2

Optimum

_- WorstCase

l J i
25 75 125

w

Temperature

Figure A.II-3 lllustration of Use of Contours

Many approaches are possible with respect to selecting the best allocation of

the experimental or test runs to obtain the desired information for an analysis.

Possible approaches are given in papers with titles pertaining to: optimal design's

for regression, response surface methods, factorial design of experiments, fractional

factorial designs, analysis of variance, etc. For example, see Ref. A-14 through A-17.

Interaction

One of the primary reasons for considering a test procedure as described above

is to answer questions concerning the effect of the simultaneous exposure to changes

is two or more input or environmental variables. For example, it may be that the

effect of one environment on the response is altered by the level of another variable.

The diagrams below give examples of interacting and non-interactlng variables. The

interaction is equivalent to non-additivity of variables; in mathematical form the

model in the case of interaction contains effects which might be described by products

of two interacting variables. In general the interaction model is described by some

function of the variables which cannot be reduced to an additive form involving the
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same variables. It may be possible to transform the variables to obtain an additive

model in the new variables.

The presence or absence of interactions is usually determined by fitting an

approximating model of polynomial form, or by an analysis of variance which breaks

down the total variation of the response into that due to each of the variables and

to the combined effect of the variables taken two-at-a-time, three-at-a-tlme, etc.

See, for example, Ref. A-18 through A-20.

An example of when interactions may be important is that of life testing at

each of several stress combinations. That is, suppose that an item is subjected to

several stresses simultaneously and one wishes to know the mean life as a function of

the stress levels. This corresponds to the problem of testing the effects of drugs

in protecting an animal from death due to a certain type of bacterium or virus. A

great deal of literature has evolved over the years on this problem and is of value

in the estimation of mean life or the mean failure rate vs. a function of stresses

such as thermal, electrical, and radiation.

¢)

0
0.,

0

,--I

>
,-..]

Figure A.II-4

--_x 2 = i0

----x2 = 20

_-- x2 = 30

i I 1

140 160 180

Example of Non-lnteracting Variables

_- x Iy

0

_J

'4.-I
0

,--I

_J
>
QJ

x2 = i0
x2 20

= 30

I I I _ Xl
140 160 180

Figure A.II-5 Example of Interacting Variables
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A.12 Combinationof A Priori Information andTest Results

Experiencewith similar equipmentandsubjective engineering information is
valuable in the analysis of proposednewequipmentdesigns. Twowaysby which this
canbe accomplishedare described in this appendix.

Thefirst approachis to usea modelfor reliability growth as the equipment
design evolves from early modelsto advanceddesigns. For example,it maybe
assumedthat the equipmentreliability is at least as goodnowas that of all previous
designs. Another approachis to assumethat reliability increasesaccordingto a
given functional relationship betweenreliability andthe numberof designsor number
of equipmentsthat havebeenproduced. SeeRef. A-21 for a discussion of such
techniques.

Anotherapproachis to use Bayesiandecision modelswhichusepast experience
to postulate prior distributions of the parametersunderconsideration. For example,

the true failure rate maybe assumedto havea probability density function, p0(%),
with a meangiven by that observedfor similar equipment. Thereis also an empirical
Bayesiantechniquewhich uses the prior information to estimate the density function
directly with observedrelative frequencies andwithout assumingan a priori density
function. SeeRef. A-22 for a discussion of this procedure. Theempirical Bayesian
techniqueis not discussedin this section as its use requires large samples.

In order to comparethe techniquesof using prior experiencewith standard
techniqueswhich useno prior information, a simple examplewill be employed.

Example i

Suppose that ten (i0) equipments have been constructed and tested for

hours and that no failures have occurred. Furthermore, assume that
_ several stages in the design cycle 20 similar equipments have been

tested under the appropriate environmental conditions and that one (i)

item failed. What is the reliability of the equipment?

First Solution: Use only the most recent test results on the equipment

to be used.

The estimated relative frequency of success is I and a 95% lower confidence

interval limit is 0.741. This lower limit e can be obtained by using the

formula given in Ref. A-18, (page 698).

x0

= x0 + (n_x0+l)v2"_ = 0.741
2

where

fl = 2(n-xo+l)'

f2 = 2x0'

x0 = number of successes observed,
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n2 = numberof trials made,and

VP2 = the tabulated value of the variance ratio forwhich the probability is P^ of not exceeding,z
for fl and f2 degreesof freedom.

Second Solution: Use the reliability growth technique which assumes that

the reliability at the last stage is no worse than it was at any previous

stage.

In this case all 30 items can be treated as though they were from the same

batch of items and the resulting conservative confidence interval estimate

is given by the same procedure as above (ist solution) with one (i) failure

and n = 30 items tested. Hence the lower limit is given by 0.850. This

limit is conservative (under the assumption) in the sense that the confidence

is at least as large as 95%.

Third Method of Solution: Using Bayesian method.

In this case assume that the prior density function is given by the beta

function,

i Ri-I(I_R)J-I '
P0 {R} - B(i,j)

where i and j are positive integers and may be chosen to be consistent with

the prior information. From previous tests it is known that the estimated

reliability is

R = 19/20 = 0.95.

The above distribution has a mean

_{R}

i

R i Ri-i= B(i,j) (I-R) J-ldR

0

= i/(j+i) = 0.95 say,

where

r(i) r(i) (i-l) [ (j-l) !
B(i,J) = =

F(i+j ) (i+J -i) !

Assume i = 19, j = i then the prior density function is

1 RI8(I_R)0
P{R} - B(19,1)

The a posterior density function of R given r observed successes in n

trials is given by

P{R[r} = P{R} p{r[R} / f P{R} P{r[R}dR

RI8+r(I_R) n-r

B(18+r+l, n-r+l) "
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Themeanof the a posteriori distribution is

^ r+19
_B - n + 20 '

which is the Bayesestimate of the reliability. Nowin the exampler = i0,
n = i0, andhence

^ 29 - 0.9667._B - 30

A lower 95%confidenceinterval estimateof the reliability canbe obtained
using the Bayesiantechniquegiven in Ref. A-23andit is 0.902.

Theresults of the three solutions indicate that reliability growth and
Bayesianapproachesyield shorter confidenceinterval estimatesas a
result of having assumedmoreinformation. But it is necessaryto assume
prior information or someother relationship amongthe reliabilities at
the various stages. However,the previous test experienceshouldbe used
to the extent that it is reasonable. For better use of prior information
it wouldbe desirable to define criteria for deciding whento use test
results from similar equipment. Onewouldalso be interested in how
dependentthe a posteriori estimates are on the a priori assumptions. See
Ref. A-23with respect to this question.

Example 2

For a second example, suppose that tests have been made on a new transistor
and that 0 failures have been observed in 105 hours. Assume that 5 failures

were observed in 106 hours. Furthermore, assume the hazard rate is constant.

Estimate the failure rate and obtain the a posteriori distribution assuming

an a priori gamma distribution

f(_)

r0 -%toro-i
tO e

F(r O)

A 100y percent confidence interval estimate of % may be obtained by

XU

P{XL < x < XU } = /fl (x)d_ = Y"

XL

Consider the problem of obtaining a 100 percent one-sided confidence

interval estimate, In this case let the lower iimit be zero and the

upper limit be determined by the solution of _U in the equation,

jf l(X dX =
0
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It canbe shownthat the aboveequation canbe expressedin termsof the
X2 distribution as

P{x 2 i 2xU (t+to)} =

where X 2 has a X 2 distribution with 2(rO+Y) degrees of freedom.

for r0 = 5, to = 105, to = 106 , y = 0 one obtains

2 = 2% U (t+t0)Xy

or

2
Xy _ ii.i

_U -
2(t+t0) 2(I.i × 106 )

Hence

= 5.045 x i0 -6.

The choice of the prior distributions is primarily for mathematical

convenience. However, there is considerable freedom in the choice and

depending upon the quality of the prior information one can select a

distribution with a large or small variance. See Ref. A-23 with respect

to further discussion pertaining to this problem. One should also refer

to Ref. A-24 for an application of Bayesian decision models to a problem

which considers the desirability of accepting a fixed price contract to

build and maintain a system of N devices for a period of T years. In

addition, a problem is posed for selecting the size of an experiment

(number of devices to place on test) for obtaining profit larger than

zero, subject to the prior information about the failure rate _. The

mean and variance of A having the above distribution are

E{I} = r0/t 0

Var{X} = ro/t _ -- E{X}/t O.

Solution:

The a posteriori distribution of _ given y failures in t hours is

Hence

fl(Xly)

f0(%) e-lt(_t)VY!

r0

to -It 0 r0-1

0

fl (_ IY) = D

y! e (_t)Y]d%

fo(%) e-lt(xt)Yy!
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where

D =

r0
to ty P(ro+Y)

r(r0)Y! (t+t0)r0_y "

Thus

-k(t+t0) - r0+Y
e Xr0+y l(t+t0 )

fl(Xly) = F(r0+Y )

For the example, let tn = 106 hours and r0 = 5, to correspond to the

observed number of failures in i0 ° hours of testing, then

-X (t+t 0) rO+Y-i

e [%(t+t0)] (t+t 0)
, with r0 = 5, t o = 106

fl(X) = r(r0+Y )

and where y is the observed number of failures in the life test on the

new transistor.

The mean of the a posteriori distribution is the Bayes estimate,

r0+Y 5 + 0 = 4.54 x 10 -6 .

{i - t+t 0 i.i × I0

This compares with the prior estimate of

^ -6

X 0 : 5 x i0
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A.13 RandomProcesses

Supposethat an experimentconsists of measuringthe deflection of a structural
memberduring a dynamictest. A continuousrecording of sucha measurementmight
appearas the function X(t) shownin Fig. A.13-1. This type of behavior is usually
called a randomprocess, also frequently called a stochastic process. The independent

variable does not always have to be time; it could, for example, represent distance

"along the length of a bar with X(t) representing a measurement of thickness or

width as a function of distance.

One of the simplest forms for the random process X(t) is a constant in time

but random in value. For this case the process thus reduces to a random variable, x,

methods of treatment for which are given in previous sections. A step above this in

complexity would be the introduction of more complex time functions having a known

form but random in the values of the parameters which define it. Such random processes

are called deterministic random processes and are typified by X(t) = xI + x2t ;

X(t) = xI cos(x2t + x3) , etc. where the xi parameters are random variables. Given a

functional form containing random variables Xl, ..., Xk, the process can be uniquely

specified by the k-variate distribution F(x I .... , Xk)-

As the time variations increase in complexity and lose all semblance of functional

form, the random process becomes an entirely rando__m_mprocess. The function illustrated

in Fig. A.13-1 is such a process. One form of representation is to assume it adequately

approximated by a finite set of values corresponding to k closely spaced real numbers

dispersed over the interval of interest (0, T). Let this set of values be denoted

by numbers Xl, ..., xk where x i = X(ti). This in effect represents a sampling of

the function X(t) and the collection of values represents a random series, often

referred to in statistical literature as a time-series. Random series also appear

frequently in practice and in general can have different forms. For example, they

can have random values occurring regularly in time, fixed values occurring randomly

in time, or random values occurring randomly in time. The Poisson process is one

type of random series in which events or impulses occur randomly in time.

Now suppose the test is repeated and a new sample of X(t) taken as described

above. In appearances the new X(t) would be the same, but closer observation would

reveal the individual xi's to have different values than previously. Repeating the

test many times would reveal that each x i can be treated as a random variable. In

concept then the process can be described by a k-variate distribution F(x I .... , Xk;

tI, ..., tk) where the ti's are included to denote the time dependency. If the

normal process. Processes having other distributions could similarly be designated.
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Figure A.13-1. Illustration of Random Process

280



Table A.13-1

Definitions of Characteristics of A
ContinuousStationary RandomProcess

Legend

X(t) = a continuous stationary random process

t = time

xi = X(ti)

f(x i) = probability density function of xi

E{x} = mathematical expectation of x

_(T) = autocovariance or autocorrelation function of X(t)

P(m) = power spectral density function of X(t)

m = mean of X(t)

= mean square of X(t)

o 2 = variance of X(t)

= frequency in rad./sec.

Mean of X(t)

Ensemble: m = E{x i} = E{x.}
3

Time:

Mean Square of X(t)

Ensemble:

Time:

F (xi)= x i f dx i

m = lim i fT xT->_ _ (t)dt

-T

= E{x_2} = E{x2.}
3

dxi= x f(xi)

1 fTx2(t)d t= lim _

-T

Other: _/
0t = _(T) T= 0 + m2 = _(0) + m2

= 2 (0_)d_ + m 2

Note indicated by a/ appears at the end of table.
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Table A.13-1 (Continued)

Variance of X(t) a/

Ensemble:
02 = E{(xi-m)2} = E{(xj-m) 2}

Time: a 2

= I(xi-m)2 f(xi)dxi

--co

I= Lim _- [X(t)-m]2dt
T--_

-T

Other: 0 2 = #(T) IT=0 = #(0)

--oo

Autocovariance or Autocorrelation Function of X(t)

}b/,
Ensemble: #(_) = E{(xi-m)(xi+z-m) -- • T = 0, i, ..., k

E{ (xj-m) (xj+-m) };

= I_ I(xi-m) (xi+T-m)

--o0 --too

1 ITim______e: 0(T) = Lim _ X(t) X(t-T)dt
T--_

-T

ioOther: O('r) = P(_) cos _'r d_.

Power Spectral Density of X(t)

P(_) = 2_ ¢(T) cos _T d_.
--Co

: 0, I .... , k

f(xi,xi+T)dx i dxi+ T

!/Note that the autocovarlance and the power spectral density are defined in such a

manner as to exclude the steady-state constant component. This affects the way that

the latter two mean square and variance formulae are stated. Some texts may treat

this slightly different. Note, however, that periodic components in X(t) are still

included if present.

_/Note that in this indexing scheme T, the time unit, is an integer. The duration At

of T is defined by At = T/k where k is the total number of intervals of equal length

At into which the total interval (0, T) is divided.
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In passing, one would expect there to be correlation between the xi's depending

upon the spacing between them and the rates of fluctuation of the waveform. This

correlation is, of course, automatically accounted for in the joint distribution

F(x I .... , xk; tI ..... tk).

Consider now the characteristics of samples taken from a different interval

(t, t+T) of X(t). Again a k-multivariate distribution isappropriate for description.

If the distribution is the same for all such intervals for all t, then the process is

a stationary random process.

There are "weaker" definitions of stationarity than that described above which

are more useful in the practical sense. For example, a flrst-order stationary random

process means that only F(xi; ti) must not change over time. Definitions of any

higher order stationarity are similarly permissable. In reality there is no such

thing as a stationary process since everything must have a beginning and end. The

concept is still very useful in practice, however, since many processes behave near

enough like stationary processes long enough for us to perform an analysis.

The general treatment of nonstationary random processes is much more difficult

than for stationary processes. It may be possible to transform some nonstationary

processes to stationary ones, for example by subtracting out a linear trend or by

multiplying by a time-varying function. Some investigations of a special class, viz.,

the integral of a normal stationary process, are described in Ref. A.27.

The remaining discussion is intended to provide further perspective on the

treatment of random processes in practice. For brevity, the discussion treats only

one general class, viz., continuous stationary random processes. Even though some

of the concepts apply only to this class, the discussion provides appreciation for

types of problems encountered in treating other classes.

Typical things done with random processes in practice are:

(i) measuring their characteristics,

(2) modifying their characterisitics by filtering,

(3) testing them for stationarity, and

(4) comparing them under different conditions.

Table A.13-1 lists some useful mathematical definitions of characteristics of

continuous stationary random processes which are commonly employed in their treatment.

Note that a distinction is made between ensemble averaging and time averaging; however,

This merely treats the process as if the population associated with a particular

x_ represents the collection of values of X(t i) taken simultaneously from a large

n_mber of sample functions or realizations of X(t) at time ti.
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these are equivalent if er_odicity can be assumed and it usually is. Note especially
**

that power spectral density and autocovariance (or autocorrelation ) are related to

each other by Fourier (cosine) transforms. The power spectral density (or power

spectrum ) is a very practical concept much used by engineers to represent how the

power is distributed over the possible range of frequencies. The designation, power,

evolved because of the analogy to power dissipated in a resistor if X(t) represented

an applied voltage. Note, for example, that the variance 02 of X(t) is equivalent

to the total power, i.e., the integral of P(m) over all possible values of m.

Note that the covariance expressed by the autocovariance definition is concerned

only with two points of the same function displaced in time. It is very simple in

concept but serves a very useful role as a step in measuring and computing the power

spectrum for a waveform X(t). Prior to development of the concept, the measurement

of power spectra relied upon Fourier harmonic analysis techniques. The concept is

credited primarily to Norbert Wiener.

The relationship of autocovariance and power spectral density is illustrated in

Fig. A.13-2 with rough sketches of measured and smoothed functions for a waveform

X(t) containing both random and a periodic component. Note that the low frequency

oscillation of period 2_/_ 0 in the autocovariance function gets transformed to a peak

in the power spectrum. Furthermore, the peak of the autocovariance function centered

at the origin indicates that a large portion of the waveform amplitude is contributed

by the random component. Note that in the power spectrum there is significant

distribution of power of higher frequencies. With the definitions in Table A.13-1

it can be discerned that the narrower or sharper peaks in the autocovariance function

generally indicate higher frequency content in the random component, and conversely,

the wider peaks synonymous with longer correlation times indicate lower frequency

content. The distribution of power at the various frequencies thus become eviden_

in the power spectrum.

* Because of the many subleties involved in the concept, there is no attempt to

explain ergodicity. It pertains to the nature of the time behavior of X(t) and more

specifically in terms of the resulting values achieved by a single realization X(t)

in comparison with those of'the population for x. over the ensemble. The equivalence
z

of ensemble averages and time averages for stationary processes follow from ergodicity.

Reference A-28 gives some clear, interesting discussion of the concepts.

Whereas most engineering texts refer to _(T) as the autocorrelation function,

statisticians seem to prefer to call this autocovariance function and designate

_(T)/_(0) as the autocorrelation function (see for example Ref. A-29). The distinc-

tion could be very important in calculations or in interpretation of results; however,

in our discussion they are used interchangeably without fear of misinterpretation

since their meanings in concept are so similar.

Comments similar to those given in the previous footnote can also apply to the

relationship between power spectral density and power spectrum.
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I
(z)_ Autocovariance P(m Power Spectral Density

11

0
T -_ 0 _0 "=_

Figure A.13-2. Relationship Between Measured Autocovariance

and Computed Power Spectral Density
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Any practical treatment of random processes almost always involves some measure-

ment of its characteristics. Most often these measurements are aimed toward eventual

estimation of characteristics more directly associated with the power spectrum than

with the autocovariance function since engineers traditionally think in terms of

power and frequency. Measurements are usually made from a finite time sample of a

continuous record of the process and usually assume ergodlcity.

Both analog and digital computing techniques have been developed for measure-

ment. Analog techniques treat the process on a continuous basis. Some still employ

Fourier harmonic analysis procedures by passing the waveform through a bank of

individual, narrow bandpass filters each tuned to a separate frequency. The power

output of each is proportional to the power contained in the frequency range of the

filter and a plot of the outputs versus center frequency of the filters yields a

measure of the power spectrum. One of many problems here concerns the scaling to

get realistic absolute measures. Some analog techniques also involve measuring

autocovariance and transforming to power spectral density.

Digital computing techniques must make use of discrete data obtained by

sampling the continuous waveform. This sampling generates a time-series from which

the autocovariance function is typically estimated over a range of lag time _ and then

converted to a power spectrum. Ref. A-29 is devoted entirely to describing the

measurement of power spectra by this general approach. An excellent summary of the

measurement problem is given in Ref. A-30 and is a good supplement to Ref. A-29

since it discusses some points of controversy. In addition to the problems with

sampling variations and biases in the usual statistical sense, some practical

problems associated with this approach are concerned with selecting:

(i) the sampling interval At,

(2) the total lag time in computing ¢(T), and

(3) the spectral window in computing P(m).

In the selection of At it must be remembered that no useful information about

the frequency content of X(t) is available between the data points once they are

specified; for example, one cannot distinguish between sinusolds having half-wave-

lengths of At, (I/2)At, (i/3)At, etc. since with proper choice of phase all of

these can pass through the same two points. This effect is called aliasing and

results in the power at these higher frequencies being erroneously added to the

lower frequencies. Ideally, one would want to select At to correspond to the half-

wavelengths of the sinusoid at the highest frequency of interest, i.e., if _h is the

highest frequency (in radians per second) of interest, then ideally At = w/_ h.

The frequency w/At corresponding to the longest of these is called the Nyquist

frequency.
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Ref. A-30 suggests, however, that one should select At on the basis of the frequency

beyond which the total contribution of power is only 1% - 2% if it is known within
P

any reasonable accuracy. This eliminates any problems with aliasing since the

aliased power will contribute only a small amount. Even if _ < _h then there is
P

no significant loss of information since the power spectral density at frequencies

greater than _ will be too small to have any practical significance. If _ is much
P p

larger than _ then an alternative to avoid unnecessary computing is to choose At on
i

the basis of the mean frequency, _ (_p+_h). All of the aliasing of the spectrum,

essentially a folding back of the outer end, would thus occur at frequencies beyond

_. The resulting spectrum would then be truncated at _h for any further use.

In selecting the total lag it is suggested in Ref. A-30 that computations for

autocovariance always be carried out to lags equivalent to 25% - 30% of the total

length of the sample. Examination at that point may reveal that more are needed.

Rationale for the decision is given in Ref. A-30. Generally, it must be based on

the relative contributions of autocovariance at higher values of lag since this

affects the precision of the power spectral density. It is noted that Ref. A-29

states that the truncation point for lag should be about 5% - 10% of the total sample

length. The controversy is noted and clarified in Ref. A-30 however.

The spectral window is analogous to the cos _T term in the Fourier transform

defining the power spectral density (see Table A.13-1). It is described in Ref. A-30

how "smudging" or distortion of the power spectrum occurs due to sampling variability

even when the autocovariance is known exactly. As summarized in the discussion there,

much theoretical consideration has been given to trying different spectral windows in

an attempt to decrease distortion. Unfortunately, less distortion is achieved at

the expense of an increase in variance of the estimates. The relationship between

these is complex and is discussed in detail in Ref. A-30.

The above discussion merely illustrates several of the practical problems in

power spectra measurements of random processes. The reader attempting to undertake

such measurements is advised to depend on the many texts and reports on this subject

as it is impossible to summarize all of the important aspects of such a complex

subject in a few pages. One should remember, however, that not all problems are

associated with the statistical procedures. Along this vein it is appropriate to

quote from Jenkins [Ref. A-30]: "In the last resort, if it is different to make

sense of the spectrum from a physical point of view, then the more refined statistical

considerations are irrelevant. In particular, if taking the two halves of the same

series gives widely differing answers or if the next experiment produces a different

spectral shape, then one has far greater problems than statistical ones."
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