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FOREWORD

The computer programs described in this report were developed for
NASA/MSC under contract NAS 9-4358. Many parts of this final report
are taken or summarized from reports previously published under the
contract. In each instance, the original reference is given. The tasks
of analysis, programming, and writing have been performed by many
persons as indicated below. V. Quan coordinated the final efforts and

edited the program document reports and this final report for the contract.

J.R. Kliegel initiated the efforts in developing the programs and
served as program manager since the contract beginning in June 1965
until his leave from TRW Systems in December 1966. V. Quan succeeded
Kliegel as program manager until the completion of the contract in Sep-
tember 1967. The original NASA/MSC technical monitor was W.R. Scott

and the technical monitor at contract completion was R. Kahl.

The engineering analyses for these programs were performed by
J.R. Kliegel, V. Quan, S.S. Cherry, and P.I. Gold. The computer
programming was performed by H. M. Frey, J.E. Melde, and G.R.
Nickerson. In addition, T.J. Tyson, C.T. Weekley, T.J. McCarron,
R.W. Burnett, and P.C. Hanzel have made significant contributions to
the completion of the programs. Other staff members have also provided
support in various ways. For their infinite patience, ready cooperation,
and dedicated effort, all of which enabled the contract to be brought to
completion, the program manager would like to express his sincere
gratitude. He also wishes to acknowledge the helpful discussions with

the former program manager, J.R. Kliegel, in preparing this final report.
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NOMENCLATURE#*
a Reaction rate parameter, also nozzle area
b Reaction rate parameter
c Specifies mass fraction
CDi Particle drag coefficient
CP Heat capacity of gas phase at constant pressure
Cppi Heat capacity of particle at constant pressure
f Derivative
fpi Drag coefficient ratio, CDi/(CDi)Stokes
&pi Heat transfer coefficient ratio, Nu’i/(Nui)Stokes
h Enthalpy, also integration increment
H Total enthalpy
k Reaction rate parameter, also variable increment
K Equilibrium constant
m Reaction rate ratio
m  Molecular weight
mpi Particle bulk density
M Mach number, also third body reaction term
n Reaction rate parameter, also summation or iteration index

Nu, Particle Nusselt number
P Pressure

Pr Gas Prandtl number

T Radial distance

r . Particle radius

*The nomenclatures are different in Sections 2, 3 and 4. The symbols
in those sections are either appropriately defined there or self explana-
tory. Also, symbols not defined in this list are defined as they appear.
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NOMENCLATURE (Continued)
Nozzle throat radius
Gas constant
Nozzle wall radius of curvature at throat
Temperature
Particle melting temperature
Velocity in x-direction
Velocity in r-direction
Flow velocity
Axial distance
Dependent variable
Dependent variable
Partial derivative
Partial derivative
Partial derivative
Ratio of specific heats
Nozzle expansion ratio
Flow angle, also nozzle cone angle
Gas viscosity
Density
Particle density in gas phase
Particle stream function
Species mass production rate

Particle to gas mass flow ratio

Subscripts

i

Refers to ith species or equation
Refers to jth reaction or variable
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NOMENCLATURE (Continued)

1 Refers to particle liquid state
pi Refers to ith particle size group
8 Refers to particle solid state
‘ Superscripts
|
| * Refers to throat condition or sonic condition
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1. INTRODUCTION

This report contains a summary of the computer programs de-
veloped by TRW Systems Group for NASA/MSC under contract NAS
9-4358, Improvement of Analvtical Predictions of Delivered Specific

Impulse.

The objective of this contract was to develop a family of our

computer programs to calculate inviscid, one-dimensional and axisym-

metric nonequilibrium nozzle flow fields accounting for the nonequilib-

rium effects of finite rate chemical reactions between gaseous combustion

products and velocity and thermal lags between gaseous and condensed

combustion products.

The four programs developed under this contract are:

The One-Dimensional Reacting Gas Nonequilibrium Per-
formance Program, which calculates the equilibrium,
frozen and kinetic performance of propellant systems
having gaseous exhaust products containing the elements
carbon, hydrogen, oxygen, nitrogen, fluorine and chlorine.

The One-Dimensional Two-Phase Reacting Gas Nonequilib-
rium Performance Program, which calculates the equilib-
rium, frozen and kinetic performance of systems having
gaseous and condensed exhaust products containing the
elements carbon, hydrogen, oxygen, nitrogen, fluorine,
chlorine and one metal element, either aluminum, beryl-
lium, boron or lithium.

The Axisymmetric Reacting Gas Nonequilibrium Perform-
ance Program, which calculates the kinetic performance of
propellant systems having gaseous exhaust products con-
taining the elements carbon, hydrogen, oxygen, nitrogen,
fluorine and chlorine. This program contains an option of
considering either the expansion of a uniform mixture (the
ideal engine case) or of a two-zoned mixture (the film
cooled engine case).

The Axisymmetric Two-Phase Perfect Gas Performance
Program, which calculates the performance of propellant
systems having both gaseous and condensed exhaust products.
The program considers only the expansion of a uniform
mixture (the ideal engine case) of constant specific heat
ratio.

The first three programs differ in a number of ways from previous

programs developed to calculate nonequilibrium nozzle expansions. In

particular:



program.

The programs are completely self-contained requiring
specification of only the propellant system (elemental com-
position and heat of formation), relaxation rates and nozzle
geometry to run a case.

The chemical species considered by the programs have been
selected to allow accurate equilibrium, frozen and kinetic
performance analyses of cryogenic, space storable, pre-
packaged, hybrid and solid propellant systems of current
and projected operational use.

All dissociation-recombination and binary exchange reac-
tions between the gaseous species present in the exhaust
are considered by the programs allowing complete kinetic
expansion calculations.

The programs utilize TRW Systems implicit integration
method which allows rapid integration of the chemical and
gas-particle relaxation equations from equilibrium chamber
conditions.

The axisymmetric program allows analysis of the perform-
ance loss associated with film cooling in propellant systems
having all gaseous exhaust products.

The one~-dimensional two-phase program allows simultaneous
consideration of both chemical and gas-particle relaxation
losses in propellant systems having condensed exhaust
products.

The one-dimensional programs allow equilibrium, frozen,
and kinetic performance calculations to be performed
during a single machine run,

The programs are written in machine independent language
(FORTRAN 1IV) allowing their use on all standard computers.

The fourth program considers the velocity and thermal lags (for
ten particle groups) between the gaseous and condensed combustion
products (when they are present in the chamber), but it does not consider
nonequilibrium effects of finite rate chemical reactions between gaseous
and combustion products. This program utilizes standard explicit in-

tegration methods, and is an updated FORTRAN IV version of an earlier

In addition, the major components of an Axisymmetric Two-Phase
Reacting Gas Nonequilibrium Performance Program were programmed.

These components were not combined into a functioning program,




however, since the size of the resulting program would cause extremely
long running time per case.

In Section 2 of this report, the results of the study to determine the
chemical species and chemical reactions of importance in the propellant
systems are summarized. - Section 3 describes the implicit integration
method used in the programs. Section 4 describes the transonic analyses
which are used to construct the initial lines for the characteristics cal-
culations in the axisymmetric programs. A general description of the
functions and analysis of each of the computer programs is given in Sec-
tion 5, and the general limitations of the programs are given in Section 6.
Sample results using the programs are given in Section 7, and the con-

cluding remarks are presented in Section 8.
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2, CHEMICAL SPECIES AND CHEMICAL REACTIONS STUDY

The study performed to determine the significant chemical species
and chemical reactions, which need to be considered in nonequilibrium
performance calculations for typical propellant systems containing the
elements of carbon, hydrogen, oxygen, nitrogen, fluorine and chlorine,
and one metal element, either alurninum, beryllium, boron or lithium,
has been described in a previous report by Gold and Weekley, '"Chemical
Species and Chemical Reactions of Importance in Nonequilibrium Per-
formance Calculations. nl The following description is taken from that

report.

The significant chemical species were defined in the contract as
those which must be considered to determine the equilibrium of the pro-
pellant systems under investigation to within 0.5 second of specific im-
pulse at an area ratio of 40. The selection of the significant chemical
species in typical propellant exhaust mixtures on the basis of equilibrium
performance calculations does not, however, insure the validity of the
selection for all nonequilibrium performance calculations, If the signifi-
cant chemical species selection is valid for both equilibrium flow (infinite
reaction rates) and frozen flow (zero reaction rates), however, the selec-
tion will also be valid for nonequilibrium flows having finite reaction rates.
Thus, an additional restriction was imposed on the significant chemical
species selection and the significant chemical species were defined as
those which must be considered to determine both the equilibrium and
frozen specific impulse of the propellant systems under investigation to

within 0,5 second at an area ratio of 40.

After determining the significant species, all possible dissociation-
recombination and binary exchange reactions between these species were
studied, Those reactions having an energy barrier due to the fact that
they cannot occur in the ground state (the so-called ""'spin forbidden' re-
actions) were identified, and those reactions, which while stoichio-
metrically possible were highly improbable due to structural or steric

factors, were identified and eliminated from consideration, A literature



rate survey was performed to determine the status of rate data for the
chemical reactions of interest.

These studies are described in the following sections.
2.1 CHEMICAL SPECIES STUDY

A number of propellant systems containing the elements: carbon,
hydrogen, oxygen, nitrogen, fluorine and chlorine, and one metal ele-
ment, either aluminum, beryllium, boron or lithium, were selected as
representative of typical liquid rocket cryogenic, space storable and
prepackaged storable propellant systems, hybrid and solid rocket pro-
pellants. The propellant systems selected for study are given in Table
2-1. These propellant systems are representative of current and pro-

jected operational propellant systems.

The number of chemical species in the exhaust mixtures of these
propellants for which JANAF thermochemical data exists is over one
hundred. The number of chemical reactions between these species which
are stoichiometrically possible is naturally immense. It is clearly
undesirable to attempt to account for all possible chemical species and
chemical reactions in nonequilibrium performance calculations since it
is known that relatively few of the total possible species and reactions

are of engineering importance in nozzle and plume expansions.

The approach taken in this study to determine the minimum number
of species which must be considered in nonequilibrium performance cal-
culations was to consider equilibrium and frozen expansions as the limits
of nonequilibrium expansions. Thus, by determining the significant
species which must be considered to accurately calculate the equilibrium
and frozen performance of these typical propellant systems, the signifi-
cant species which must be considered in calculating the nonequilibrium
performance of these and similar propellant systems can be determined.
For the purpose of this study, the significant chemical species were de-
fined as those which must be considered to determine both the equilibrium
and frozen specific impulse of the propellant systems studied to within

0.5 second at an area ratio of 40.



Equilibrium and frozen performance calculations were performed
for the propellant systems listed in Table 2-1, at two chamber pressures,
100 psia and 1000 psia, considering all species for which JANAF thermo-
chemical data exist and are present in the exhaust mixtures. These cal-
culations were used as the reference calculations for comparison with
calculations performed considering fewer species. Those molecular
species, appearing in only trace amounts (less than approximately 10-3
mole percent) in the reference calculations, were neglected and the cal-
culations repeated to determine the effect of neglecting trace species on
the calculated equilibrium and frozen performance of these propellant
systems. After a series of such calculations considering different chem=
ical species present in the various exhaust mixtures, it was determined
that the significant species present in these exhaust mixtures are those
given in Table 2-2. The significant species present in each propellant
system studied are given in Table 2-3. Comparisons of the equilibrium
and frozen performance calculated considering all species present and
only the significant species present are given in Tables IV through
XXXVI in Appendix A of Reference 1, for all propellant systems studied

and are not repeated here.

From Tables IV through XXXVII, Appendix A of Reference 1, it
can be seen that for the nonmetallized propellant systems the maximum
performance difference between the calculations considering all species
present and only the significant species present is 0.49 second of specific
impulse at an area ratio of 40, This difference occurs in the frozen per-
formance calculation of the Chlorine Trifluoride/86% Monomethyl Hy-
drazine +14% Hydrazine system at a mixture ratio of 3.2 and 100 psia
chamber pressure. In the metallized systems, the maximum perform-
ance difference is 0. 38 second of specific impulse at an area ratio of 40
which occurs in the frozen performance calculation of the double base-
beryllium-ammonium perchlorate system for 100 psia chamber pressure.
It is seen that the neglected chemical species have little effect on the cal-
culated performance of the propellant systems studied. Thus, perform-
ance calculations performed considering only the significant chemical
species given in Table 2-2 present in the exhaust mixture will allow the
accurate determination of the equilibrium, frozen and non-equilibrium

performance of these and similar propellant systems.
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Although the significant chemical species given in Table 2-2 were
determined from studying specific propellant systems, the utility of non-
equilibrium performance programs based on this species selection is not
limited to these specific propellant systems, but is equally valid for
chemically similar propellant systems. In studying similar propellant
systems, the applicability of the significant species selection can be
simply established by comparing equilibrium and frozen performance
calculations considering all species present and only the significant
species present. For chemically nonsimilar systems, the above methods
can be readily utilized to determine the significant chemical species in

these systems.
2,2 CHEMICAL REACTION STUDY

Having identified the significant chemical species in the above pro-
pellant systems, all possible recombination-dissociation and binary ex-
change reactions between the significant species present in each propellant
system were studied. Those reactions which, although stoichiometrically
possible, were highly improbable on the basis of structural or steric
factors were eliminated resulting in the identification of those reactions
given in Tables 2-4 through 2-9 as those reactions of possible chemical
significance in nonequilibrium expansions of the propellant systems
studied.

Those reactions eliminated due to steric and structural arguments
(listed in Table VII, Appendix B of Reference 1) involve the breaking and
formation of a number of chemical bonds and molecular rearrangements
which are highly improbable compared to other reactions which can occur

between the same species.

Although arguments can be given that some of the reactions identi-
fied to be of possible chemical significance in the nonequilibrium expan-
sion of the propellant systems studied can be of little significance due to
concentration considerations or possible activation energy considerations,
current lack of rate knowledge precludes their elimination at this time.
This approach of retaining all possible chemical reactions in nonequilib-
rium calculations which cannot be eliminated due to steric consideration

insures that future rate measurements which may change the relative
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importance of various chemical reactions will not affect the nonequilib-

rium computer programs developed by TRW for NASA,

2,3 CHEMICAL REACTION RATE STUDY

A literature survey was performed to determine the status of rate
data for the chemical reactions given in Tables 2-4 through 2-9. Those
reactions for which rates have been reported are given in Table 2-10.
In addition, those reactions having an energy barrier due to the fact that
they cannot occur in the ground state (the so-called ''spin forbidden' re-
actions) were identified and are listed in Table VIII, Appendix B of

Reference 1.

Order of magnitude rate estimates can be obtained by statistical
mechanics and kinetic theory for those reactions for which rate data are
not reported. When rate constants are represented by an Arrhenius
equation, k = AT® exp (-E/RT), where T is the absolute temperature,

R is the gas constant, A is the frequency factor, E is the activation
energy, and n determines the pre-exponential temperature dependence,

order of magnitude approximations can be made as follows: 2
a) Exothermic, trimolecular reactions

16 T-O.S

B+C+M=BC+M , k-=3xl0

b) Exothermic, bimolecular reactions with triatomic transition
states
11 0.5
B+CD=BC+D , k=5x100"T exp |- E/RT

where E = 5. 5% of the CD bond
energy (Hirschfelder Rule)

c) Exothermic, bimolecular reactions with transition states

of more than three atoms

0.5

BC+DE = BCD+E, k= 1x10ll T exp l- E/RTI

where E = 5.5% of the DE bond
energy

2-5



d) Exothermic, bimolecular, binary exchange reactions

BC+DE =BD+CE , k=1x10' 195 exp |- E/RT]

where E = 28% of the sum of
the BC and DE bond energies
The reaction rates for the '"spin forbidden'' reactions can be similarly
estimated if the rate constants are corrected by Boltzmann factors for

the fact that these reactions do not occur in the ground state.



Table 2-1. Propellant Systems Studied at Chamber Pressures
of 100 and 1000 psia to Identify Significant
Chemical Species

Oxidizer/Fuel Mixture Ratios
Oxygen/Hydrogen MR =2.0, 4.0, 5.0, 6.0, 10.0
Fluorine /Hydrogen MR =13.0, 7.0, 10.0, 13.0, 20.0
Oxygen/RP-1 MR =10, 2.2, 2.6, 3.0, 5.0
Nitrogen Tetroxide/Hydrazine MR =0.5, 0.9, 1.1, 1.3, 2.0
Compound "A''/ Hydrazine MR=1.0, 2.3, 2.5, 2.7, 5.0
Nitrogen Tetroxide/Monomethyl MR =0.5, 1.5, 1.8, 2.1, 3.5

Hydrazine
Oxygen Difluoride/Monomethyl MR =0.5, 1.5, 1.8, 2.1, 3.5
Hydrazine
Perchloryl Fluoride/Monomethyl MR =0.5, 1.5, 1.8, 2.1, 3.5
Hydrazine
Hydrazine/Diborane MR = 1.15, 1.25, 1.35

11.
12,

13.

14.

15.

Oxygen Difluoride/Diborane
Oxygen Difluoride/Lithium Hydride

Chlorine Trifluoride/86% Monomethyl
Hydrazine+14% Hydrazine

Chlorine Trifluoride/49% Monomethyl
Hydrazine+8% Hydrazine+
43% Aluminum

Chlorine Trifluoride/43% Monomethyl
Hydrazine+7% Hydrazine+
50% Boron

Chlorine Trifluoride/43% Monomethyl

Hydrazine+7% Hydrazine +
50% Beryllium

-7

MR =2.4, 3.2, 4.0
MR =2.5, 3.0, 3.5
MR =2.4, 2.8, 3.2
MR =2.5, 3.0, 3.5
MR =4.0, 5.0, 6.0
MR =3.5, 4.5, 5.5



16,

17.

18.

19.

Table 2-1. Propellant Systems Studied at Chamber Pressures
of 100 and 1000 psia to Identify Significant
Chemical Species (Continued)

Oxidizer/Fuel Composition
Ammonium Perchlorate/ PBAA— Aluminum 14 percent Organic Fuel
16 " Aluminum
1"
70 NH4CIO4
Ammonium Perchlorate/ PBAA— Beryllium 16 " Organic Fuel
13 " Beryllium
'
71 ' NH‘}CIO4
Ammonium Perchlorate/Double Base— 69.4 " Double Base
Aluminum 19.8 " Aluminum
10.8 " NH,Cl10
4 4
Ammonium Perchlorate/Double Base— 81 " Double Base
Beryllium 10 " Beryllium
9 " NH 4ClO4




Table 2-2,

Performance Programs

Species Selected for Use in the TRW/NASA Nonequilibrium

Basic Species for C, H, N, O, Cl, and F Propellant
Systems Having Gaseous Combustion Products

C Cl F H N @)
CO Cl, F, H, N, 05
CO, ClF H,0 NO OH
HF
HCl
) Additional Species  Additional Additional Additional Additional
for Propellant Species for Species for Species for Species for
Systems Having Propellant Propellant Propellant Propellant
Condensed Carbon Systems Systems Systems Systems
as a Combustion Containing Containing Containing Containing
Product Aluminum Boron Beryllium Lithium
C(S) Al B Be Li
C; AlO B(L) BeOH LiH
CH Al>O B(S) BeOzH; LiOH
CH> Al,03(L) BO BeO LiO
CHj Al,03(S) BO; BeO(L) LiZO
CHy AlOCl1 BF BeO(S) LiCl
C2H; AlOF BF; Bez0O LiF
CF AlCl BF3 BeCl LipF;
CoF» AlCl, BC1 BeCl) Li»Cl,
CN AlClj BCl; BeF
CICN AlClF BCl3 BeF;
FCN AlCl1F; BCIF BeClF
HCN AlCl1>F BCI1F
AlF BClF;
AlF, BOF
AlF3 BOC1
BN
BN(S)
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Table 2-3, Significant Species Considered
in Each Propellant System

Propellant System (Table 2-1)

O,/H, F,/H, O,/RP-1 N,0,/H,H, A/N,H,
Species
H H C H Cl
Hz Hz C(s) HZ Cl2
HZO HF co HZO ClF
O F co, N F
OZ FZ CZ NZ FZ
OH CH NO H
CH.2 (o] HZ
CH3 O2 HF
CH4 OH HCI1
CZH N
H NZ
H,
HZO
(o]
0,
OH
Total Number of
Species Considered
In Each Case
6 5 16 9 11



Table 2-3. Significant Species Considered in Each
Propellant System (Continued)

N204/MMH OFZ/MMH ClO3F/MMH NZH4/BZH6 OFZ/BZH6
Species
C C C B B
C(S) C(S) C(S) B(L) B(L)
CO CO CcO B(S) B(S)
CO.2 CO2 CO2 BN BO
CN CN CN BN(S) BO2
CZ C2 CZ BF
CH CH CH HZ BFZ
CHZ CHZ CHZ N BF3
‘ CH3 CH3 CH3 NZ BOF
|
‘ CH4 CH4 CH4 F
CZHZ CZHZ CZHZ FZ
CF CF H
HZ CZFZ CZFZ HZ
HZO F Cl HZO
HCN FZ Cl2 HF
N FCN CICN O
N2 H C\F O2
NO HZ F OH
HZO FZ
O2 HF FCN
OH HCN H
N H,
N; H,0
NO HF
O HC1
0, HCN
OH N
N,
NO
(e}
)
OH

Total Number of
Species Considered
In Each System

21 27

32 9

2-11
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Table 2-3. Significant Species Considered in Each
Propellant System (Continued)

CTF/49% MMH CTF/43% MMH CTF/43% MMH
CTF/86% MMH 8% I\;zH‘} 7% l\;-ZH4 7% I‘Tzl—l‘;
OF ,/LiH 14% ;ZH‘} 43%+Al 50%+B 50%+Be
Species
F C C C [}
F, C(S) C(s) C(S) C(S)
H C, C, C, C;
H, CN CN CN CN
H;0 CH CH CH CH
HF CH; CH, CH, CH;
Li CHj3 CH3 CHj3 CHj
LiH CHgy4 CHy CHy CHy
LiOH CyH, C,H, CzH;, C2H,
LiC CF CF CF CF
Li;0 C2F, CF;, C.F; C2F,
LiF Cl Cl (03} o3}
LiyF; Cl, Cl; Cl; Cl,
[¢) CICN CICN CICN CICN
O; CIF ClF ClF ClF
OH F F F F
F, F, F, F,
FCN FCN FCN FCN
H H H H
H; H;, H; H
HF HF HF HF
HCl1 HC1 HC1 HCl1
HCN HCN HCN HCN
N N N N
N2 N N2 N
Al B Be
AlC1 B{L) BeCl
AlCl; B(S) BeCl;
AlF BF BeF
AlF; BF;, BeF,
AlFq BF; BeClF
AlCl, BN
AICIF BN(S)
AlCIF, BCl1
AlCl,F BCl,
BCl;
BCLIF
BCIF
BCIF,
Total Number of
Species Considered
in Each System
16 25 35 39 31
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Table 2-3. Significant Species Considered in Each
Propellant System {Continued)

AP/PBAA-Al AP/PBAA-Be AP/DB-Al AP/DB-Be
Species

C [on C C
C(s) C(s) C{s) C{8)
[of0)] Cco CcO co
CQO, CO;, CO; CO,
CN CN CN CN
C2 Cz o) Cz
CH CH CH CH
CH, CH,; CH CH;,
CH3 CHj3 CH3 CH3
CHy CHg CHg CHg4
C,H; C2H, CpH, CH,
Cl Cl Cl Cl
Cl, Cl, Cl, Cl,
CICN CICN CICN CICN
H H H H
H, H, H, H;
H,0 H;0 H;0 H;0
HC1 HC1 HC1 HCI1
HCN HCN HCN HCN
N N N N
N, N, N, N,
NO NO NO NO
(o] [¢] o (0]
0; 0, 0, 0O,
OH OH OH OH
Al Be Al Be
AlO BeOH AlO BeOH
Al,0 BeO,H; Al 0 BeCyH;
Al,03(L) BeO Al203(L) BeO
Al,03(s) BeQ(L) Al203(S) BeO(L)
AlC1 BeO(S) AlCl BeO(S)
AlCI; BeCl AlCl1; BeCl
AlOC1 BeCl;, Al0C1 BeCl,
AlCly Be,O AlCl3 Be,0

Total Number of
Species Considered
In Each System

34 34 34 34
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Table 2-4,

Chemical Reactions of Importance in Nonmetallized

Propellant Systems Containing Carbon, Hydrogen,
Oxygen, Nitrogen, Fluorine and Chlorine Having
Gaseous Combustion Products

Chemical Reaction

CO, + M= CO+0+M
I-IZO+M:: OH+H+ M
CO+M=2C+0+M
C12+M.—.> 2Cl+ M
FZ+M:: 2F+ M
HCl+ M=H+Cl+ M
HF+M=2H+F+M
H +M=2H+M

2

N2+M.-: 2ZH+ M
NO+M2N+O+M
OH+M=0O+H+M
OZ+M.—: 20+ M
CIF+M=2Cl+ F+M
COZ+HzCO+OH
COZ+O.—: CO+O2
HZO+C1 = OH + HC1
HZO+H.—: OH+I—I2
HZO+OZZOH
CO+ CO= COZ+C
CO+H=2C+ OH
CO+N =2C+ NO
CO + NO .—_~C02+N
CO+ 0O .-_*C+O2

HCl1 + Cl = I-I+C12
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Chemical Reaction

HCl1 + HC1 :*.HZ +C1Z
HCl1+ O= OH+ Cl
HF + Cl 2 HC1+ F

HF+F:—‘H+F2

HF+H.—:H2+F

HF+HF—.:H2+F2

HF + O= OH+ F
HF + OH = HZO+F

H2+C1=HC1+H

H2+O 2Q0H+H

H2 + O2 = 20H

NZ+O 2= NO + N

N2+02:: 2NO
NO+H= N+ OH
NO+O= N+O,
OZ+H.-:OH+O
Cl+CIF = Cl, + F
F+ClF= Cl+F,
HF + Cl = CIF + H
HCl + F= CIF + H
HCl + HF= CIF + H,
HF + CIF = F, + HCl
HF + Cl, = CIF + HCl

ClF + C1F 2 F‘2 + Clz



Table 2-5,

Additional Chemical Reactions of Importance in Propellant

Systems Containing Condensed Carbon As a Combustion

Product

Chemical Reaction

C2+M 2C+C+M
CH+M=~ C+H+M
CH2+M,-_. CH+H+ M

CH +M2CH2+H+M

3

CH,+ M= CH3+H+M

4
C,H,+ M= CH+ CH+M
CN+M=2C+N+M
HCN+ M= CN+ H+ M
CNCl+M=CN+Cl+M
CNF+M= F+CN+M
CF+M=C+F+M
C,F,+ M= CF+CF+M
HCN+ M= CH+ N+ M
CNF+M=CF+N+M
F+CF =F,+C
C+H,® CH+H

C + H,0 = CH + OH
C+HF = CH+F
C+HF=CF+H

C + HCl=CH + Cl1
C+N,® CN+N
O+CN =2NO +C
C+OQOH=CH+O0

Cl+CF =ClF +C
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Chemical Reaction

CO+F=2CF+0
CO+H=CH+O
CO+H2.—:CH+OH
CO + HF = CF + OH
CO+ N=2CN+O

CO+ N, = CN+ NO

2
CO+QH= CH+OZ
C+CO= C2+O
CO+CO= C2+02
F + CNC1l = CN + ClF
HCl + CNF = HCN + Cl1F
HF + CNC1 # HCN + C1F
ClF + CNF= CNC1 + FZ
Cl2 + CNF = CNCl1 + C1F
C+ HCN= CH+ CN

C+ CNF = CF + CN
C+CH3 = CH+ CH2
C+CH2 = CH+ CH
CH+ HCN= CN + CHz
HCN + CF = CNF + CH
CH4+C::CH3+CH
HCN + CH2 = CH3 + CN
HCN + CH3-‘-‘ CH4+ CN

CH, + CH= CHZ + CI-'IZ

3



Table 2-5. Additional Chemical Reactions of Importance in Propellant

Systems Containing Condensed Carbon As a Combustion
Product {Continued)

Cl'l4 + CH= CH3

CH3 + CH3 = CHZ + Cl-l4

+ CHZ

Cl + HCN = CN + HC1
Cl+ HCN= CNCl1 + H
Cl + CNF = CN + C1F
Cl+ CNCl =#CN + Cl2
CF+CF= C2+F2

HF + CNF # HCN + I-"Z
HCl + CNC1 = HCN + Cl2
H+C2
H+CN =2CH+ N

=C+ CH

H+CF=2CH+F

H+ HCN =2 CN + HZ

HF + CN= CNF + H
H+ CNF # HCN + F
H+ CNCl1 2 CN + HCl1

H2+CH.—: CH2+ H

H+ CH3.—: CH2+H2

H2 + CH3

H + CZHZ.—: CH + CH2

F+C2 =CF+C

.—:CH4+H

F+CN=CF+N
HF + CN2 HCN + F
F+ CNF 2CN + FZ
Cl+ CNF= CNCl+ F

HF+CH.—:CH2+F
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I-IF+CH2 =CH3+F

HF+CH3 =CH4+F

H2+Cz.-: CH+ CH

H, + CF = CH+ HF

2

HF + HCN= CNF + H2

HCl + HCN = CNC1 + HZ

HZO + CH = CHZ + OH
OH + HCN = CN + HZO
HZO + CHZ = CH3 + OH

HZO + CH3 = CH4 + QH
HF + C2 =CH+ CF
HF + CF = CH + ]?2
HF + CNCl= CNF + HCl1
HCl + CH= CH2 + Cl
HCl1 + CF » CH + CIF
Cl + CH3 = CHZ + HC1

HCl1+ CH, =CH, + Cl

3 - 4
C+CN 7—’C2+N
N2+C27—’CN+CN
CN+ CO= C2+NO
OH + HCN =CH2+NO
N+ CO= CN+O

O+ HCN= CH + NO
O + HCN = CN + OH
O + CNF = CF + NO

OH+ CH= CHz + 0



Table 2-5.

Additional Chemical Reactions of Importance in Propellant

Systems Containing Condensed Carbon As a Combustion

Product (Continued)

O+CH3:’CH2+OH

3 -‘—‘CH4+O

NO + CO ~‘-’CN+OZ

OH + CH

CH+CO™ C, + OH

OH + CN = CH + NO

OH + HCN = CH2 + NO
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H + HCN ~'—‘CH2+N
N2+CH =HCN+ N
NZ+CF 2CNF+ N
N+ CZHZ = CH + HCN

N+ CZFZT-‘ CF + CNF



Table 2-6. Additional Chemical Reactions

Containing Propellant Systems

Chemical Reaction

AlO+M = Al+ O+ M
A120+M::A1+A10+M
AlICl+ M =2Al+Cl+ M
A1C12+M= AlCl1+Cl1+ M
A1C13+M7-' A1C12+ Cl+ M
AlF+M =2Al+ F+ M
A1F2+M.—: AlTF+ F+ M

A1F3+M = AlF, + F+ M

2
AlOCl+ M = AlO+Cl+ M
AIOF+ M = AlIO+ F+ M
AlClIF+ M = AlF+Cl+ M
AICIZF+M .—:AICI2 +F+M
A1C1F2+M7—‘A1F2+C1+M
AlOCl+ M =2 AIC1+ O+ M
AlIOF+ M= AIF+0+M
AlClIF + M = AlC1+ F+ M
A1C12F+ M= AICIF + Cl+ M
A1C1F2+M:’ AlClIF+ F+ M
A1+COZ:! AlO + CO

Al + CO = AlO + C

Al + NO =2Al0+ N
A1+OZ<'—’A10+O

Al + Al1OC1 = AIZO + Cl
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of Importance in Aluminum

Chemical Reaction

Al + AIOCl1 = AlO + AlC1

Al + A1OF 2A120+ F
OH + AlF =HF + AlC
O + AlF = F + AlO
AlO + H = Al + OH
AlO + AlF .-:A120+ F

AlOF + Al =AlF + AlO

AIZO + C1 =AlO + AlCl1
AlZO + O = AlO + AlO
AlCl + CO = AlOCl1 + C
AlCl + HC1 = A1C12 + H
AlCl + NO = AlOCl1 + N
AlCl + OH = AlO + HC1
AlCl + C1 =Al + ClZ
AlCl + H =Al + HCl1

AlCl + O = Al0+ Cl

AlCl + AIC1 =Al + A1C12
AlCl + A1OC1 .-—’AIZO + Cl2
AlCl + AlOC1 = AlO + A1C12
AlCl + AIOF = AlF + Al1OClt
AlClZ + C1 = AlCl + Cl2
AlOCl + CO = AlC1 + CO2

AlOCl + HC1 = AlClZ + OH



Table 2-6,

Additional Chemical Reactions of Importance in Aluminum

Containing Propellant Systems (Continued)

AlOCl1 + C1 =2AlO + ClZ
AlOCl + C1 = AlCl2 + O
AlOCl1 + H 2 AlO + HC1
AlOCl1 + H =# AICl + OH
AlOC1 + O ®AlCl + O2
AlF + AlF =Al + AI}F‘2
AlF + HC1 = AlCl + HF
AlF + HF = AlF2 + H
AlF + NO = A1O0F + N
AlF + Cl1 =AICl1+ F
AlF + F = Al + F2

AlF + H = Al + HF

AlF + AIOF = AlO + AIF2
AIFZ + F 2 AlF + FZ
AlOF + HC1 = AlOC1 + HF
AlOF + HF = AIF2 + OH
AlOF + Cl= AlOCl1 + F
AlOF + F = AlO + FZ
AlOF + F .-:AIF2 + O
AlOF + H = AlO + HF
AlOF + H = AIF + OH
AlOF + O = AlF + O2

Cl + AlF = C1F + Al

F + AlCl =ClF + Al

C + AIF = CF + Al
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CN + AlF = CNF + Al

CN + AlICl # CNCl1 + Al
All“z + AlF = AlF3 + Al
AlCLF + AlCl 2A1C12F + Al
AlF + AlCl2 = AICIZF + Al
AlF + AIC1F = AlClF2 + Al
Cl + AIOF = C1F + AlO

CO + ALF = CF + AlO

C + AIOF = CF + AlO

CN + AIOF = CNF + AlO
CN + AlQOCl = CNC1 + AlO

A1F2 + AIOF = AlF, + AlO

3
AlOCl + AICL, = AICl, + AlO
AlOF + AICl = AICIF + AlO
AlF + Al10OC1 = AICIF + AlO
AlOF + AICL, = AICLF + AlO
AICIF + AlOCl = AICLF + AlO
AICL, + AIOF = AICL,F + AlO
AlF, + AlOC1 = AICIF, + AlO
AICIF + AIOF = AICIF, + AlO
AlOC1 + AIF = CIF + Al,O
AlCl + AIOF = CIF + AlL,O

2

ClF + AIF = F2 + Al1Cl

F + AICIF = F2 + AlC1

AlCl + HF = AlCIF + H



Table 2-6. Additional Chemical Reactions of Importance in Aluminum
Containing Propellant Systems (Continued)

Cl, + AIF = CIF + AICI

Cl + AICIF =CIF + AlCl

C + AICIF = CF + AICl
CNCl + AIF = CNF + AICl
AIC1 + CNF = AICIF + CN
AIC1 + AICL, = AICL, + Al
AIC1 + AIF = Al + AICIF
AICIF + AIF = AlF, + AlCl
AIC1 + AlF; = ALF, + AICIF
AICl + AICl, = AICI, + AICL,
ALF + AICl, = AICIF + AICI
AIC1 + AICL,F = AICl, + AICIF
AIF + AICl, = AICL,F + AIC
AIC1 + AICIF, =AIC, + AIF,
AICLF + AIF= AICIF, + AlC
AICI + AICIF, = AICIF + AICLF
Cl + AICl, = Cl, + AICl,

AICL, + F = AIClL + CIF

Cl + AICIF = F + ALCl,

F + AICL,F = F, + AICl,

Cl + AlIC1F, = FZ + AlCl2

2

HC1 + AIC1lF == HF + AlClz
A1C12 + HF = AICIZF + H
A1C12 + HCl = AlCl3 + H

F+ A1C13 = C1F + AlCl2

ClZ + AIC1F = CI1F + AlClz
Cl+ AlClZF = CIlF + AlClz

C + AICL,F = CF + AlClz

CN + AlCle = CNF + AlClZ
CNC1 + AICIF = CNF + AlClz
AlCl-Z + CNC1 = A1C13 + CN
AlCle + AlF = Ale + AlCl2
AlClZ + Ale = AICIF + AlICIF
AICIZ + AIQOF = AlOCl + AICIF

AlCL, + AlF, = AIFz + AlClZF

3

AlClz + A.IF3

AlCl3 + AlF = AICIF + AlCl2

= AICLF + AICIF2

AlClZ + AICIZF = AlICl, + AICIF

3
AlClZ + AICIFZ.-: AIFZ + AlCl3
AlClz + AlCle = AICLF + AlClZF
AlOCl + F = AlO + ClF

AlOCl + F = AICIF + O

C1F + AlOF = FZ + AlOCl1

AlOCl + HF = AICIF + OH

Cl2 + A1OF = CIF + AlOCl1

CO + AICIF = CF + AlOCl1

AlCLF + A1OF = AIFZ + AlOC1
AlClI:"2 + AIOF = AIF3 + AlCCl1
AlCl, + AIOF = AlCle + AlOC1

3
A1C12F + AIOF = AICIFZ + AlOCl




Table 2-6. Additional Chemical Reactions of Importance in Aluminum
Containing Propellant Systems (Continued)

Cl + AICIF = Cl, + AlF
AIF + HCl = AICIF + H

Cl + AIF, = CIF + AIF

F + AICIF = CIF + AlF
CO + AIOF = CO, + AIF
AIF, + C = AlF + CF

ALF + CNF = AlIF, + CN
CNCl + ALF = CN + AICIF

AlF + AlF, = AlF2 +A1F2

3
AlF + AlCle = AICIF + Al1CIF

AlF + AICIF2 = AlF2 + AlClF
AlF2 + Cl= AICIF + F

AIFZ + Cl, = AICIF + CIF

2

F+ AICIZF =2 Cl, + All?z

2
Cl+ AICIFZ: Cl2 + AIFZ

F+A1F3:2F +A1F2

2
H+ AlF3 = HF + AIF2

Ale + HC1 = AICIF + HF
AIF2 + HCl = AlClIF‘2 + H

F+ AICIFZz CIlF + AlF2

C+ A1F3 = CF + Al]?Z

CN + AIF3 = CNF + AIF2
AIFZ + CNC1 = AlClFZ + CN
AlCIF + AlClZF = A1C13 + AlF
AlF + AlCle 2 AICIF + AlF

2

2

AICIF2 + AICIF = AlClZF + AlF

A1F3 + AICIF = AICILF, + AIF2

2
AlOF + C1 = AlCIF + O

AlOF + HCl = AICIF + OH
Co + AIF2 = CF + AIOF
AlOF + CNC1 = Al1OCl + CNF
AlF3 +Cl = AIFZ + CIF

3
A1F3 + Cl2 = AlClI"‘2 + Cl1F

AlF, + Cl .—_'AICIF2 + F

A1F3 + HCl = AICIFZ + HF

AlF3 + ClF = AlClF2 + FZ

CNC1 + A1F3 = CNF + AlClFZ

AIF3 + A1C13 2

AlCl]:"2 + AICIF2 2 AlClZF + Al]?3

Cl+ AlClZF =F + AlCl3

ClF + AlCle = FZ + AlCl3

HCl + AlClZF = HF + A1C13

Cl2 + AlClZF = ClF + AlCl3

CNCl1 + AlClZFz CNF + AlCl3

A1C13 + AlClFZz AlCle + AlCl
Cl+ AlClZF = Cl2 + AIC1F

ClF + AlF, = F, + AICIF

2 2

F+ AlCl]F‘Z = F2 + AlICIF

H + AlClF2 = HF + AlCl1F

AICIF + HCl = AICIZF + H

2

AlClZF + AlClFZ

o F



Table 2-6. Additional Chemical Reactions of Importance in Aluminum
Containing Propellant Systems (Continued)

AICLF + CIF = A1C1Z tF,

F+ AlClZF:: C1F + AlCI1F

Cl + AICIF ClF + AlCIF

2"
CcC+ AlClF2 = CF + AICIF

CN + AICIFZ = CNF + AlCIF
CNC1 + .AIFZ # CNF + AICIF
AlCIF + CNC1 = AICIZF + CN

AlClF2 + Cl ::AlClZF + F
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AlCl.F.2 + Cl2 = AICIZF + CI1F

AIC].F2 + HCl = AICIZF + HF

AlClF2 + C1F = AlClZF + F2

A1C1F2+ CNCl1 = AlClZF + CNF

AlQOCl + C12 = AlCl3 + 0

o+ AICIF2 2 F2 + AlOCl

o+ AlClZF Z C1F + AlOCl1

AlF + CO = AIOF + C



Table 2-7.

Additional Chemical Reactions of Importance in Berylium

Containing Propellant Systems

Chemical Reactions

BeOH+ M 2 Be + OH+ M

BeOHOH+ M »BeOH+OH + M

BeO+M > Be+ O+M
BeZO+M= Be + BeO + M
BeCl+ M= Be+Cl+ M
BeC12+M -~ BeCl+Cl+ M
BeF+M=Be+F+M
BeF2+M=BeF+F+M
BeOH+ M =2 BeO+H+ M
BeClF + M= BeCl+ F+ M
BeClF+ M= BeF+Cl+ M
Be + Berz BeF + BeF
BeO + HZO = BeOH + OH
COZ+Be = CO + BeO
BeO + HCl = BeCl + OH
BeO + HF » BeOH + F
CO + Be = C + BeO
BeO + Cl= BeCl+ 0O
BeO + H= Be + OH
NO + Be = N + BeO
OZ+Be = O + BeO

BeO + BeF = BezO+F
Be20+ HZO= BeOH + BeOH

BeZO + HC1 = BeCl + BeOH

Chemical Reactions

BeZO + HF = BeF + BeOH
BeZO + OH = BeO + BeOH
BeZO + C1 = BeO + BeC(Cl
BeZO + H = Be + BeOH

BeZO + O = BeO + BeO

BeOHOH + Be » BeOH + BeOH

BeOH + Cl = BeO + HC1
BeOH + Cl1 = BeCl + OH
HZO + Be = H+ BEOH
BeOH + H = BeO + H,
BeOH + O = BeO + OH

Be + BeCl2 = BeCl + BeCl
BeCl + HZO = BeOH + HCI1
H+ BeClZT-’ HC1 + BeCl
BeCl + C1 = Be + Clz
BeCl + H= Be + HCIl

BeF + HZO = BeOH + HF
BeF + HC1 =BeCl + HF
BeF + OH = BeO + HF
BeF + OH =2 BeOH + F
BeF + Cl1 = BeCl + F

BeF + F = Be + F,
BeF + H=2 Be + HF

BeF + O+ BeO+ F
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Table 2-7.

Additional Chemical Reactions of Importance in Berylium

Containing Propellant Systems (Continued)

BeF2+ H = BeF + HF

BeOHOH + H 2 BeOH + H,O

2
Cl + BeF = C1F + Be

C + BeF = CF + Be

CN + BeF = CNF + Be

Be + CNC1 = BeCl + CN
BeF + BeCl = BeCIlF + Be
F + BeClF = F, + BeCl

2

Cl1F + BeF = FZ + BeCl

H + BeClF = HF + BeCl
Cl + BeClF = CI1F + BeCl
Cl2 + BeF = CI1F + BeCl

C + BeClF= CF + BeCl

CNC1 + BeF = CNF + BeCl
CN + BeCl2 = CNCI1 + BeCl
BeCl + Berz

BeF + BeClZ = BeClF + BeCl

BeClF + BeF

BeOH + C = BeO + CH

Cl + BeClF = F + BeClZ

ClF + BeClF = F2 + BeCl2
BeCl, + HF = BeCIlF + HCl

Cl2 + BeClF = CIF + B.tEClZ
CNCIl1 + BeClF = CNF + BeCl2
BeClZ + BeFZ 2 BeClF + BeClF
CO + BeF = CF + BeO

Cl + BeClF= Cl, + BeF

F + BeF, = F, + BeF

2 2
H + BeClF = HCIl + BeF

Cl+ BeF2 =

F + BeClF = ClF + BeF

CIF + BeF

C + BeF, = CF + BeF

2
CN + BeFZ.—: CNF + BeF
BeF + CNCl = BeClF + CN
BeFZ + Cl = BeClF + F
BeF2 + Cl2 = BeClF + C1F
BeF2 + HC1 = BeClF + HF
BeF2 + Cl1F= BeClF + F2
BeF2 + CNC1 = BeClF + CNF



Table 2-8.

Additional Chemical Reactions of Importance in Boron

Containing Propellant Systems

Chemical Reaction

BN+ M 2B+ N+M
BO+M=2B+0O0+M
BOZ+M:BO+O+M
BCl+ M =2B+Cl+M
BC12+M= BClI +Cl+ M
BCl3+ M = BCl,+Cl + M
BF+M2B+F+M

BF, + M= BF+F+M

2
BF, +M=2BF, + F+ M

3 2
BOCl+M=2BCl+O+M
BOF+M =2BO+F+M
BClF+M =BF+Cl+ M
BC12F+M.—_- BC12+ F+M
BOF+M= BF +0+M
BOCl+ M #BO+Cl+ M

BCIF+ M= BCl+ F+M

BC12F+ M =2BClF + Cl+ M

BC1F2+M2 BF2+ Cl+M
BC1F2+M:BC1F+F+M
B+NZ_-_»BN+N
B+ NO= BN+O
N+ BO =NO+ B

N2+B02NO+BN

Chemical Reaction

BO+BO7—‘B+BOz

CO-!~BO2 zCOZ+BO
BO+COT—’B+CO2
BO + CO = BO, + C
BO + HCl = BC1+ OH
BO + HF = BF + OH
BO + NO= BN+O2
BO + NO =» BOZ+N
CO+B=C+ BO
BO+ Cl= BCl+O
BO+F =BF + 0
BO+H=B+ OH
BO+ N =2BN+ O
BO+O .—_>B+O2
BO + BCl =2 B + BOCl
BO + BOC1 .—:BOZ+ BCl
BO + BF = B + BOF

BOF + BF, = BF, + BO

2 3
BO + BOF = BF + BO2
B02+ HF = BOF + OH
BO2 + Cl=+ BOCl+ O
BOZ+ H = BO + OH

BOZ+O .—:BO+O2



Table 2-8.

Additional Chemical Reactions of Importance in Boron

Containing Propellant Systems (Continued)

Chemical Reaction

BCl1 + BCl =B + BCl2
BCl + Cl =B+ Cl,
BCl+H =B + HC1
BCl+ N =#BN + Cl

BCl + BOF = BOCl1 + BF
BC12+ Cl = BCl +Clz
BC13+ Cl ~‘-’BCIZ+CIZ
BOCI1 + HC1 = BCl2 + OH
HCl1 +BO2 = OH 4+ BOC1
BOCl + Cl = B0+C12
BOCl +Cl = BC12+ o
BOCl1 + H #BO + HC1
BOCl1 + H =BCl + OH
BOCl + N = BCl + NO
BOC1 +0 = BCl + O2
BF + BF = B+ BF2

CO + BOF = C02+ BF
BF +CO= BOF +C
BF + HC1 = BCl + HF
BF + HF = BF2 + H

BF +Cl= BCl +F
BF+F =B+ F2

BF +H = B + HF

BF+ N=BN+F

Chemical Reaction

BF + BF, = B + BF

2 3

B]E"*‘BO]'.-".-:BO"’B.FZ
BFZ+ F = BF +F2
BF3+F=BFZ+ FZ

BF3+H=BF2+ HF

BOF+ BOF*® BOZ+ BF2
BOF + HC1 = BOCI + HF
BOF + HF = BF2+ OH
BOF +Cl = BOCI1 + F
BOF + F = BO + F2

BOF+F.-_'BF2+ o
BOF +H =2 BO + HF
BOF + H = BF + OH
BOF + O = BO, + F
F+ BCl=2ClF+ B
B+ CN= BN +C

C+ BF =2CF +B

B + HCN = BN + CH
CN +BF =2 CNF + B
B +CNF= BN +CF
CN+ BCl1= CNCl +B
BCl + BCl, = BCl, + B
BF + BCl = BCLF +B

BCl + BCIF = BCIZF +B



Table 2-8.

Additional Chemical Reactions of Importance in Boron

Containing Propellant Systems (Continued)

Chemical Reaction

BF + BCl, = BCL,F + B
BCl + BFé = BCIF, + B
CN + BO = CO + BN

CN + BF = CF + BN

F + BOCl = CIF + BO

CO + BF - CF+ BO

C + BOF = CF + BO

CN + BOCl= CNCI + BO
BCl + BOCL = BCL, + BO
BCl, + BOCl = BCl,+ BO
BF+ BOCI = BCIF+ BO
BCl + BOF = BCIF+ BO
BCl, + BOF = BCLF + BO
BCIF + BOCI = BCL,F +BO
BO + BCIF,= BOCI * BF,
BCIF+ BOF= BCIF, + BO
CO + BOF =CF * BO,
BOC1 + BOCl = BCl, + BO,
BOF + BOC! = BCIF +BO,
BF + Cl, = BC1 + CIF

Cl + BCIF = Cl,+ BF

BF + HCl = BCIF + H

F + BCIF =CIF + BF

BF +CiF .—:BC1+F2

27

Chemical Reaction

C+ BF2

BF + CNF = BF2+ CN

+ CF+ BF

BF + CNC1 = BCl+ CNF
B + CNCl1 # BC1F + CN

BF + BCl

2
BC13::

2 BC1F + BCl

BF + BC12+ BCIF

BF + BCIF = BCl + BF2

BF + BCIZF = BCl + BCIF

t

2

BF + BCIZFT—‘ BC12+ BF

2

BF + BCIZF < BCI1F + BClF

1

BF + BCIF, = BCl1 + BF

2 3

BF + BCIF2 = BCIF + BF2

BF2+C1 = BClF+ F

BF2

+ =
Cl BClF2 C12+ BF

+ Clz = BCIF + CIF

2

BF2+ HC1 = BCIF + HF

BC1F2+ H = HC1 *+ BF2

CIF + BF2

BF2+ ClF = F2+ BCIF

ClF + BF2

+ -
Cl BF3._

+ =
F + BCIF,

+
co BF2

+ CNCl1 = BCIF + CNF

= CF t+ BOF

BF2

C+BF, = CF + BF

3 2

CN+BF3 2 CNZI:"-!~B.‘E‘2



Table 2-8.

Additional Chemical Reactions of Importance in Boron

Containing Propellant Systems (Continued)

Chemical Reaction

CNCl1 + BF

CN+BC1F2 2 2

BC1F2+ BCI :BC]Z+ BF2

BF, + BCIZS BCIF + BCIF

2

BC1F2+ BCl2 = BC]3+ BF2

BCl,F + BCIF 2 B1’2+ BC13

2

BCI1F + BOF < BOCl] + BF2

BF3+ BCl = BCIF + BF2

BF, + BClZ 2 BCIZF + BF

3 2

BC1F2+ BCIF & BClZF + BFZ

2+ BF2

+
2 F

+ Cl2 = BCIl¥ 2 + CIF

BF3 + BCIF = BCIF

BF3

BF3

+ Cl gBCIF

BF, + HCl :BC1F2+ HFE

3

BF, + ClF & BC1F2+ F

3
BF3 + CNCl &

2
BCIF2 + CNF

BF3

BF3

BClF2 + BOF = BOCl + BF

|

BCIF + BClF2

BCIZF + BCIF‘2

+ BCl2 =

+ BCl3 =

3

BF3

BOF +Cl =BClF + O

BOF + Cl2 =BOC1 + C1F
BOF + HC1 = BClF + OH
BOC1 + FZ

BOF + CNCl1 = BOCI1 +CNF

BOF +CIF =

= +
+ BClZF BClF2 BClF2

28

Chemical Reaction

BOF + BClZ # BOCl1 + BCIF

€ BOCI + BCle

BOF + BCIZF = BOC1 + BClFZ

BOF + BCl3

F + BCIF :‘FZ+ BCl
BCl + HF « BC1F tH
BCl tHC1 = BC12+ H
F+ BCl2 & C1F + BCl

Cl + BCIF ¢ CIF + BCl
CO +BOCI1 = CO2 + BCI
C + BCIF & CF + BCl
BCl tCNF = BCIFt CN
BC1 + CNCl1 :’BCl2 + CN
BCl + BC13 =
BCl + BCIZF = BC12+ BCIF

BCl2 + BCIZ

BC1 t BClF2 = BCIF + BCIF

Clt+ BClF# F BCl2

CIF + BCIF= F_ + BC'.l2

2

F+ BCIZF = F, + BClZ

2

od +
Cl+ BCIF2 F2 BC12

HC1 + BCIF = HF + BCI2
H+ BCIZF = HF + BCl2

H + BCl, = HC1 + BCl

3
+ =]
F BCl3

2
ClF + BCl2

Cl2 + BCIF = CIF + BCl2



Table 2~8,

Additional Chemical Reactions of Importance in Boron

Containing Propellant Systems (Continued)

Chemical Reaction

Cl + BCIZF e ClF + BCI2

cC+ BCIZF 2 CF + BCI&

CNC1 + BCIF = CNF + BCI2
CN + BClZF = CNF + BCl2
BC12+ CNCl :!BC13 + CN
BCI.Z + BClF2 = BCIF + BCIZF

Cl+ BCIZF <= F+ BCl3

ClF + BClZF =F, +BCl

2 3

BCl2 BC13 + BCIF

HCI1 + BCIZF = HF + BCl3

+ BCIZF =

Cl, + BCIZF =CIlF + BCl3

2
CNC1 + BClZF & CNF + BCl3
BCIZF + BCIZF = BClF2 + BCl
BOCl + F 2 BCIF + O

BOCl + HF = BCIF + OH

CO + BCIF = CF + BOCI

3

Chemical Reaction

Cl+ BCIZF = Cl2 + BCIF

F + BCIFZT—' F, + BCIF

2

H+ BCIF2 = HF + BCIF
H + BCIZF & HC1 + BCIF
F+ BCIZF = ClF + BClF
Cl +BC1F2 = CIF + BC1F
C+ BCIF2
CN +BC1F2 = CNF + BCIF

= CF + BCIF

CN + BCIZF = CNCI1 + BCIF

-

Cl+ BCIFZ“ F+ BCIZF
HCI + BCl]E‘2 = HF + BClZF

C12+ BClet—' CiF + BCL,F

2

CNC1 + BCIF, = CNF + BCIZF

2
+ =2 +
ClF BClF2 FZ BClZF

BCl1 + CO= BOCl +C



Table 2-9,

Additional Chemical Reactions of Importance in Lithium

Containing Propellant Systems

Chemical Reaction

LiH+M aLi+ H+ M
LiOH+ M@ Li + OH+ M
LiO+M 2Li+0+M
Li,0+ Mg Li+ LiO+M
LiCl + Mz Li+ Cl+ M
Li,Cl, + M& LiCl + LiCl + M
LiF+ M2 Li+ F+ M
Li,F, + M& LiF + LiF + M
LiOH + Mz LiO+ H+ M

Li + H,0 = LiH + OH

Li + H,0 = LiOH + H
Li+ CO= LiO+ C
Li + HF = LiH+ F
Li+ H, = LiH+H
Li+ OH = LiH + O
Li+ OH = LiO + H
Li+ 0, = LiO + O
Li + LiOH = LiH + LiO
Li + LiOH= Li,O + H
HCl + Li = Cl + LiH
CO, + Li ¥ CO + LiO
Cl + LiOH = HCI + LiO
LiO + HF = LiOH + F

LiO + H, ¢ LiH + OH

2

Chemical Reaction

LiO + OH =& LiH + O2

NO + Li& N + LiO

LiO + LiOH & LiZO + OH
LiO + LiF = LiZO + F
LiOH + LiOH= HZO + LiZO
LiF + LiOH = HF + LiZO
LiZO + H2 = LiH + LiOH
LiZO + H = LiH + LiO

LiZO + O = LiO + LiO

HZO + LiCl = HC1 + LiOH
LiOH + H2 = LiH + HZO
LiOH + OH = LiO + HZO
OH + LiCl= Cl + LiOH

LIOH+ H =

!

LiH + OH

LiOH+ H = LiO+ H

2
LiO + OH

N

LiOH + O

i

LiOH + LiCl ¢ LiZO + HC1
LiF + HZO - LiOH + HF

LiF + HF+ LiH + F

2
LiF + I—I2 & LiH + HF
LiF+ OH > LIiOH+ F
LiF + OH =LiO + HF
LiF + Cl = LiCl + F

LiF+F:?I_.i+F2



Table 2-9.

Additional Chemical Reactions of Importance in Lithium

Containing Propellant Systems (Continued)

LiF + H = Li + HF
LiF+ H=LiH+ F
LiF+ O =LiO+ F
LiCl + HC1 ¥ LiH + Cl,
LiCl + HF =LiF + HCl

LiCl + H, 2 LiH + HC1

2
LiCl + OH = LiO + HC1
LiCl1+ Cl =Li+ Cl2
LiCl+ H =~ Li + HCl1
LiCl+ H = LiH+ Cl
LiCl1+ O = LiO + Cl
LiCl + LiO = LiZO + Cl
F+ LaCl = ClF + Li

Cl + LiF = ClF + Li
Li+ CH = LiH+ C

C+ LiF =CF + Li
Li+ HCN = LiH + CN
CN + LiF # CNF + Li

CN + LiCl = CNCl1 + Li

2-31

Li+ CI-I2 = LiH + CH

Li + CH3-'—’ LiH + CHZ
Li+ CH4 & LiH + CH3
HF + LiCl = C1F + LiH
CO + LiF = CF + LiO
HC1 + LiF = ClF + LiH
CH + LiF = CF + LiH
HCN + LiF = CNF + LiH
HCN + LiCl = CNC! + LiH
LiH+ CO = LiO + CH
LiOH + C = LiO + CH
LiOH + CH = LiO + CHZ
LiOH + CN = LiO + HCN

LiOH + CH, = LiO + CH

2 3

LiOH + CI—I3 = LiO + CH4

LiF + C12 = LiCl + C1F

LiF + C1F # LiCl + FZ

CNF + LiCl =CNC1 + LiF



Table 2-10,

Chemical Reaction

COZ+M:CO+O+M

HO+M2 OH+H+M

2

CO+M 2 C+0+M

HF+M 2 H+F+M

H,+M 2 2H+M

N,+M = 2N + M

2
NO+M = N+O0+M

OH+M = O+H+ M

0,+M » 20+ M

Co,+H = CO+OH

COZ+O 2

co+o,
HO+Hz OH+H

2

H,0 + 0O > 20H

€0 2 CO, +C

Chemical Reactions for Which Rate Constants
Have Been Determined

. *
Exothermic Rate Constant

0

3x 10207

3 x 1019.1.-1.0

2 % 1018T-1.0

1x10t% T

19..-1,0

10°°T

2 x 1018.1‘—1.0

2 x 10IST-I.O

2 x lolST—I.O

1x 1016,1,-0.5

3.2 x 1012 exp -

-1.0
ex)

-0.5

6300

o - (11393)

T

&7

5,.-1.0

3.58 x 1017

7x 1013 exp - (w)

2.5 x 1014 exp

2.11 x 10'6p7 1

-

0

RT

=)

Reference

Avramenko, L.I. and Kolesnikova, R.V,,
Izvest. Akad. Navk., S.S.8.R,, Otdel. Khim,
Navk., 1562 {1959),

Mayer, S.W., Cook, E,A,, Schieler, L.,
"Non-equilibrium Recombination in Nozzles, "
SSD-TDR-64-139, Aerospace Corporation, Los
Angeles, California, 18 Sept. 1964,

Wray, K.L.,, Avco Research Report 95 (1961),

8. W. Mayer, E, A, Cook, and L. Schieler,
"Nonequilibrium Recombination in Nozzles, " .
SSD-TDR-64-139, Aerospace Corporation, Los
Angeles, California, 19 Sept. 1964

W. E. Kaskan and W, G, Browne, "Kinetics of
the Hp/CO/O;, System, "' General Electric Docu-
ment No. 63SD848, 14 February 1964,

K.L. Wray, Avco Research Report 104 (1961},

K.L. Wray, Avco Research Report 95 (1961},

S. W. Mayer, E, A, Cook, and L. Schieler,
""Nonequilibrium Recombination in Nozzles, !
SSD-TDR-64-139, Aerospace Corporation, Los
Angeles, California, 19 Sept. 1964

§.W. Mayer, E. A, Cook, and L. Schieler,
""Nonequilibrium Recombination in Nozzles, "
SSD-TDR-64-139, Aerospace Corporation, Los
Angeles, California, 19 Sept. 1964,

W, E. Kaskan and W, G, Browne, "Kinetics of
the H2/CO/O; System, " General Electric Docu-
ment No. 63SD848, 14 Feb. 1964,

L.1, Avramenko and R. V. Kilesnikova, lzvest.
Akad. Navk. S.S.85.R., Otdel, Khim. Navk,.,
1562 (1959).

S. W. Mayer, E, A, Cook, and L. Schieler,
""Nonequilibrium Recombination in Nozzles, "
SSD-TDR~-64-139, Aerospace Corporation, Los
Angeles, California, 19 Sept, 1964,

5. W. Mayer, E, A, Cook, and L, Schieler,
"Nonequilibrium Recombination in Nozzles, "
SSD-TDR-64-139, Aerospace Corporation, Los
Angeles, California, 19 Sept. 1964

L.I. Avramenko, R.V. Lorentso, Zhur. Fiz,
Khim., 24, 207 (1950).

*
Three body recombination rates have the units cmé/gmolez-sec.

Bimolecular reaction rates have the units cm3/gmole-sec.
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Table 2-10.

Chemical Reaction

CO+H - C+OH
CO+N = C+NO

CO+NO 2 CO, +N

CO+0 2 C+O,

HF+H 2 H, +F

HF+0O 2 OH+F

HF + OH = H,0 + F

N,+0O = NO+N

+ O 2NO

NO + O

T

N+O

O,+H 2 OH+O

Chemical Reactions for Which Rate Constants
Have Been Determined (Continued)

Exothermic Rate Constant

1.»(1014 exp -(

—

[aY)

n

—

—

b

w

.44 x 10}

.47 x 10

011 x10110+3 e - (2129)

5429

6.-1.0

-

15_-1.0

-

.48 x 1013 exp - (2%)

e - (5259

x10Lp0e5 o (6000)

RT

T

0.5 o - (73%0)

12 5190)

e - {57

7x10'6 exp - (53Tooo)

16..-1

.5x10°°T

1752 eyp - (43})00)

T

Np-0.47 (1_;)19")
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23, 1072 (1955),
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36, 1509 (1962).
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34, 1271 (1961),

W.G. Vincenti, Stanford Univ. Dept. Aeronaut.
Engr. Rept. 101 (1961),

W. E. Kaskan and W. G, Browne, "Kinetics of
the H/CO/O, System, " General Electric Docu-
ment No, 635D848, 14 Feb. 1964.



3. IMPLICIT INTEGRATION METHOD

In both of the one-dimensional programs developed under the con-
tract, an implicit integration method has been used in solving the governing
equations, This method is also used in solving the chemical and particle
relaxation equations in the axisymmetric nonequilibrium programs as dis-
cussed in later sections of this report. The implicit integration method

was developed by Tyson3 and is described below.

It has been shown by Tyson3

that in the numerical integration of re-
laxation equations in near equilibrium flow regions (such as the chember
and nozzle inlet in rocket engines), explicit integration methods are un-
stable unless the integration step size is of the order of the characteristic
relaxation distance of the relaxation equations. Since the characteristic
relaxation distance is orders of magnitude smaller than the characteristic
physical dimensions of the system of interest (such as the nozzle throat
diameter and length) in near equilibrium flow regions, the use of explicit
methods to integrate relaxation equations in these regions results in ex~
cessively long computation times. Implicit integration methods were
shown to be inherently stable in integrating relaxation equations in all flow
situations (whether near equilibrium or frozen) and can thus be used to in-
tegrate with step sizes of the order of the physical dimensions of the sys-
tem of interest throughout the integration reducing the computation time
per case several orders of magnitude., Since it has been demonstrated that
there are significant advantages in using implicit rather than explicit in-
tegration methods for integrating relaxation equations, a second order

implicit integration method has been chosen for use in the present program.

3.1 STABILITY CONSIDERATIONS

The numerical considerations leading to the above conclusions can

be illustrated by considering the simple relaxation equation

dy _ . (3-1)

which represents the relaxation toward equilibrium of chemical reactions,

gas particle lags, etc. In this equation, y_ is the equilibrium condition
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and T is the characteristic relaxation distance of the equation. In the
equilibrium limit, T is very small compared to the physical dimensions
of the system of interest while in the frozen limit, 7, is very large com-
pared to the physical dimensions of the system of interest. The math-
ematical behavior of solutions to the above equation can be found by con-
sidering the simple case where T is constant and

Ye =y + af(x - Xo) (3-2)

eo
which is equivalent to terminating the Taylor series for y, after the first
term. The exact solution of Equation (3-1) for this case can be shown to
be

y(x0 +h) = y(xo) t Voo~ y(xo) - a'r] [l - e-h/Tl + ah (3-3)

where y(xo) is the initial value of y and h is the integration step.

It is seen that the solution consists of two parts, a term which varies
slowly with x and a term which exponentially decays with a relaxation
length of T, the characteristic relaxation length of Equation (3-1). Thus

after a few relaxation lengths
~ >> -
yix) ~ Veo + ah, h T (3-4)

which is independent of y(x,) the initial condition. Since explicit integra-
tion methods construct the solution of Equation (3-1) as a Taylor series
about the initial condition y(x,), the above example indicates that explicit
integration methods should be limited to step sizes of the order of a few

relaxation lengths.

That this is indeed the case can be shown by explicitly integrating
Equation (3-1) using Euler's method. The explicit finite difference form

of Equation (3-1) is then

y(x, +h) - y(x ) vix,) = yoo
h S (3-5)

which yields the truncated Taylor series
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Y'(x0+h) = Y(XO) (1 -%> + Yeo l—;' (3-6)

when solved for y(xo + h). After n integration steps, it is found that

n n -n-i
y(xo+nh)= y(xo) [1 -%} + z [yeo'l-(i-l) a.h] [I-L‘;:,
i=1

S 12

(3-7)

Examination of this equation shows that the dependence on the initial con-
dition y(x,) will decay only if |1 - h/T| <1, otherwise y(x, + nh) will
oscillate with rapidly increasing amplitude. Hence the calculation will be
stable only if h/T < 2. Similar results are obtained for other explicit in-
tegration methods. (The stable step size for Runge-Kutta integrations is
h/T <5.6.) Thus the stable step size for explicit integration of relaxa-
tion equations is of the order of the relaxation distance which explains

the large computation times associated with explicit integration of re-
laxation equations in near equilibrium flow regions. As shown below, the
use of implicit integration methods allows the integration of relaxation

equations on a step size which is independent of the relaxation length.

Implicitly integrating Equation (3-1) using Euler's method, the finite

difference form of Equation (3-1) is

y(xo + hh)l - y(xo) o y(x0 + h)T- Veo - ah (3-8)

which yields

h
y(x ) +(y_,, +ah)Z
ylx, +h) = —2——=2 1 (3-9)

l+;

when solved for y(xo + h). After n integration steps it is found that



y(x) y +iah
vlx_+nh) = — % + eo = h (3-10)
o 1 +£ h n+l-i T
[ T =1 1 +7_

Examination of this equation shows that the dependence on the initial con-
dition y(x,) always decays, regardless of the step size. Hence the
implicit calculation will always be stable. As an extreme example, con-
sider one integration step, h = x - x;. From Equation (3-9), it is seen
that

y{x) = Yeo +ah, h>r7T (3-11) .

when the step size is large compared to the relaxation length and

ylx) = yix) (1-2) +y B+- -, n<<r (3-12)

when the step size is small compared to the relaxation length.

It is seen that in the equilibrium limit (T small, h/T large) the ex-
act solution and the implicit integration of the relaxation equation go to
the same limit which is independent of the relaxation distance and de-
pends only on the rate of change of the equilibrium condition. In the
frozen case (T large and h/7T small) the implicit and explicit methods are
essentially the same (terminated Taylor series). Thus, implicit nu-
merical integration methods can be used to integrate relaxation equations
using step sizes of the order of the physical dimensions of the system of
interest in all flow situations whether near equilibrium or near frozen.
For a complete discussion of the numerical integration of relaxation

equations, see Reference 2.

In choosing a numerical integration method, the primary items of
concern are the stability, accuracy and simplicity of the method. As

3

shown by Tyson~ and discussed above, implicit methods are to be pre-

ferred for numerically integrating relaxation equations due to their
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inherent stability. Having chosen the basic integration method for stabil-
ity reasons, the order of the integration method is determined by accuracy
and simplicity considerations. In general, the higher the order of the in-
tegration method, the more complex the method becomes requiring more
information in the form of past values or past derivatives of the function
being integrated. Second order methods (accurate to h2 with error of
order h3) have the advantage of simplicity and flexibility since they re-
quire only one past value of the function while retaining sufficient accuracy
to allow the use of reasonably economical step sizes. For these reasons,
a second order implicit numerical integration method was chosen for use
in the present program. A complete derivation of this numerical integra-

tion method is given in the following section.
3.2 DERIVATION OF NUMERICAL INTEGRATION METHOD
Consider the coupled set of first-order simultaneous differential

equations.

dy.
1 .
'& = fi(X-YI."'.YN) , i=1,2,--+,N (3'13)

It will be assumed that the equations are not singular and that a solution

exists which may be developed as a Taylor series about the forward point

2 3 4
Lntl — dxl 0 axlly 4w 2 ax'x +h dx¥'x +n 2t
n n n n
P (3-14)

where ki n+l is the increment in Y; and h is sufficiently small. For

equal integration steps

2 3
y dy; 47y n’ 47y n3
TRV T - e 2 o |
x_+h x_+h
n
4
d v; h4
- 16 ) 32 + . (3-15)
dx




Solving these equations for the derivative at the forward point, it is
found that

3
dy; 3kintl "X, 4V n’
1! = 2 + a2 ... (3-16)
T |, o 7h 3 3
*n x_+h

Expanding the function f;(x, y, *-+, yy) as a Taylor's series about the
back point (x,), it is found that

ay; N JEN
t =f, 4o h+ > g ko +dy B (3-17) -
x +h 1, y 1 ‘ + o2 J,n dx
n i=1 x
where
fi = fi(xl Y:""sYN) (3-18)
afi
o, = 3% (3-19)
afi

and the subscript n refers to the functions f;, a; and Bi,j evaluated at

the point x,. Since

a3 a3 at
_!3 - _13 - .__Y4 h+ ... (3-21)
dx b'4 dx x_+h dx x +h
n n n
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and

at at
_14 = _E - e, (3-22)
dx dx

X, x_+th

n n

Equation (3-17) can be rewritten as

dyi N d3yi hZ
—_ =f., +a h+ E B. . k. + — - (3-23)
dx i,n i,n i, j,n j, ntl 3
x_+h . dx
n j=1 xn+h

Equating the two expressions for the derivative at the forward point
[Equations (3-16) and (3-23) ], it is found that

3k

2h T i,n 0‘i,n i

or

N
1 7y p3
ki nt1 =3[k nt 2 G0t B 00t Z B; 5,055,nt1) 2 +—d 3] o9 (3-25)
N X
j=1 x +h

Neglecting the third order derivative term and solving the set of N linear

nonhomogeneous algebraic equations

N
2 1
'<1 3 Bi,i,nh> LTS 2“ = 65,3985, 5,05,n+1 =3 {ki,n vty toy hhy (3-26)
=1

where 6; ;j is the Kronecker delta thus yields a second order implicit
solution of the above set of coupled first order simultaneous differential

equations.
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For unequal step sizes, it can be similarly shown that solving the

set of N linear nonhomogeneous algebraic equations

2

1 - hn+1+hn 8 h K _ h n+l z(l
2h +h  "i,i,n n+l)i,n+l (Zh +h )h
n+l n

i,j ,J,nkJ n+l

2
h n+l hn

o en | n T n T % nPar)) 57 (Bor YR (3-27)
n+l n'"n n+l

yields a second order implicit solution of the above set of coupled first

order simultaneous differential equations.

In Equation (3-24), the third derivative term was neglected which

resulted in an integration error of

3 3
- k.(c) = 4y ho ... (3-28)
i d3 3
%X |x_+h
n

where ki( ) is the correct (true) value of the increment k;. Thus the ratio

of the neglected third derivative term to the first derivation terms in

Equation (3-24) can be used to determine the allowable integration step
size. Since

a3y _Kyntr m a3ty bt (3-29)
3 = 3 2 A

x _+h % |x +h

n n

the absolute value of the ratio of the neglected term to the remaining
terms in Equation (3-24) is
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ki, nt+l = Zki, n + ki, n-1

3ki nt1 ~ K 0

1
3

Since this ratio varies as the step size squared, doubling or halving the
step size will change this ratio by a factor of four. In order to maintain
this ratio within prescribed limits without doubling or halving each step,
the prescribed limits must differ by at least a factor of four. Thus in the

programs, the integration step size is calculated from

b ., = 2h intl ” %50 P Nnn1) 6 (3-30)
n+2 n+l ? 3k, - k. 10
i, ntl i,n
k. - 2k, + k.
1 i, ntl i, n i, n=1 _
botz = 2041 o k. L - K >0 (3-31)
i, ntl i,n
k. -2k, +k,
_ b i, n+l i,n  i,n-1 _
btz T Panr 0 To S| 3k K, 6 (3-32)
i,n+l - "i,n

where 6 is the maximum allowable ratio of the neglected term to the re-

maining terms in Equation (3-24),
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4. TRANSONIC ANALYSES

Transonic analyses of uniform and two-zone expansions were de-
veloped to construct initial data lines for the characteristics calculations
and are based on the assumptions pertaining to a perfect gas. Their
application to the axisymmetric reacting programs is described in the
program document reports and also in Sections 5.3 and 5.5 of this report.
The transonic analyses have been described in detail in a report by

Kliegel and Quan4, and the analyses are summarized below.

4,1 UNIFORM EXPANSIONS

The equations governing the inviscid isentropic expansion of a

perfect gas through a convergent-divergent nozzle are

- pl-o21,2)2u -yl xl ) ~x1.2 2]%
(l u 7+1v>ax+(1 v 'y+1u)3y+[1 7+1(u + v©) Y

uw — = 0 (4-1)

ov ou _ -
i (4-2)

where the velocities have been normalized with respect to the throat

sonic velocity and w equals 0 or ! depending on whether the nozzle is
planar or axisymmetric. In seeking solutions of the above equations, it

is desirable to choose a set of non-dimensional cocrdinates such that the
various velocity derivatives are independent of the nozzle scale. For
large values of the normalized throat wall radius of curvature, the flow
velocities asymptotically approach those obtained from the one-dimensional
channel flow equations. It can be shown from the channel flow equations
(see Appendix A of Reference 4) that for choked flows

- wtl 1 x
u =14+ Wﬁ—y-;'l"" (4-3)



at the nozzle throat, where x is the distance from the throat plane, y* is
the throat half height, and R is the normalized throat wall radius of
curvature. Examination of this equation reveals that the axial nozzle
coordinate x must be normalized with respect to the distance \/i—y* in
order for the dimensionless axial velocity gradient to remain of order
one at the nozzle throat independent of the nozzle scale. Since the nozzle
scale perpendicular to the nozzle axis is set by the throat half height y*,
it is apparent that the perpendicular coordinate y should be normalized
with respect to the distance y*. Thus, solutions of the above equations

should be sought in terms of the normalized coordinates

z = ’I.l{ ';{a—k (4-4)
% (4-5)

rather than in the x, y coordinate system for large values of the normalized

throat wall radius of curvature.

The above axial coordinate choice differs from Hall's5

\ /%% R, since the axial coordinate used by Hall is

- wtl X N
Zyp = /_'y+1 R 7 (4~ 6)

As shown in Reference 4, the above choice results in the present solution

by a factor

being uniformly valid for all (subsonic, transonic and supersonic) nozzle
flow regimes, while Hall's choice limits the validity of his solution to the

transonic throat region.

In the r, z coordinate system, the above equations become

'/1__2-3*-_12ﬁ - 2.2l 2\ ov Jxyl 2 2wy
R(l u y+1v)62+(l v 7+1u)ar+ll ‘y+1(u +v7) p

Py uwv =— = 0 (4-7)



1 3v du _ -
\/;s o =0 (4-8)

The boundary conditions are

V(O, Z) =0 (4-9)
and
vir ,z) dr
\ud Y R, (4-10)
ulrw,zs R dz
At the nozzle throat,
x2
r, = 1 +ﬁ +.-
2
= 1+5 +... (4-11)
dr

dzw are 0(l) at the throat and v

). This suggests that the velocity components can be ex-

for all throat sections. Thus, both u and
must be O(R“]’/2

pressed as expansions in inverse power of R, i.e.,

ul(r, z) uz(r, z)
u = uo(r, z) + = + 5 + ... (4-12)
R
vilr,2z) v,(r,z)
v =\/-1% [vo(r,z)+—1T- +—7‘R—2— +] (4-13)

Substituting into Equations (4-7) and (4-8) and equating powers of rR™!

separately yields two sets of equations:

du v wv
B S LA R
(1 u 35z + \1 vy u, 5T + —/= 0 (4-14)
auo
= ° 0 (4-15)



du ov wv au
z) n ( y1 z)( n n) 4 i
(1 “uy /gt y+1 Yo 5 T T y+H Yo Vo or '¢ n2l (4-16)

an_l bun
—32 - St =0 (4-17)
where
. (Zu . 1 2) ou, ( 2 )a"o
1~ 1 'y-l-l Yo oz v+l or
wv «
.tl( 2) o _
+ v .?.uou1 +vQ = (4-18)
(2 + +22%1 ) 2% + |2 + 212
¢2 = u u, +u,y Vi1 vovil 5z vV Y1 u u,
2 Vo y-1 ( wv,
+u1 )] ar+‘y+1 Zuu +u1 +2vv1 e
du v
y1 z) 1 ( 2, 1 ) 1
+ (Zuoul + v+1 Yo oz + Vo +2 v+l Y"1/ Br
wv ou
r_l( ), & (o, )_1 )
+ v+l Zu‘oul +v° r v+1 +ul o/ or (4-19)

From Equations (4-9), (4-10), (4-12) and (4-13), it is found that the
boundary conditions are

vn(o, z) = 0 n> 0 (4-20)




and

dr

= 4 -
vn(rw, z) = un(rw, z) P n >0 (4-21)

Equation {4-15) shows that uo(r, z) is a function of z alone. Thus,

uo(r, z) = ao(z) (4-22)

Equation (4-14) is satisfied if vo(r, z) is of the form,

v (r,z) = a (z)r+ wa3(z)r'1 +(1- w) ag(2) (4-23)

From the axis and wall boundary conditions [ Equations (4-20) and (4-21)],
it is easily shown that

a drW
3) Tr 4az (4-24)
w
a; = 0 (4- 25)
ag = 0 (4- 26)

Substituting the above results into Equation (4-14) yields

( 2 dao 1 2\ % dr
l-ao)-a-; +(w+l)(1--z-—1ao)—v: I - 0 (4-27)

€

R

which is the one-dimensional channel flow equation. The solution of the
above equations defines the one-dimensional velocity distribution (uy, and
Vo) through the nozzle. Since the one-~dimensional solution is valid for
all (subsonic, transonic and supersonic) nozzle flow regimes, the present
solution will also be valid for all nozzle flow regimes. The one-

dimensional throat boundary conditions are that



ao(O) =1 (4-28)
a;(0) = 0 (4-29)
for both planar and axisymmetric nozzle flows, since
drW
P = 0 (4-30)
o
at the nozzle throat.
The first order equations are
- 2\ du ov wv du
(1 uo> 1+(1_y_-1u>( 1 1)_4uv
oz v+l "o dr r vtl o' 0o or
ou ov
_ -1 z) o ( 2.yl > o
- (Zuoul + y+1 Vo / 3z tlvg +2 y+1 Yo®1/ Tor
wv
z1 ( 2) o ]
+ v ZuOu1 + vy = (4-31)
Bvo aul
az - —-—r— - 0 (4-32)
From Equations (4-23) and (4-32), it is easily shown that
u, = b(z) + b (z)rz (4-33)
1 o 2
where
da
1 1
b2 52 @ (4-34)
From Equations (4-20), (4-31), and (4-33), it can be shown that
v, = b,(z)r+b (z)r3 (4-35)
1 1 3
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where

db da
(1 - aoz)-ﬁ +w +1) (1 - L3 aoz) b, = Zaobo[-?zg+-yt+%(w+ 1)a1] (4-36)

]

—

db
- 2) 2 ( -l 2) 8
(1 3/ 3z tlw+3) 1 v+l 2 b3 1 a'oa'lbz

da
o

(4-37)

+1 ] 2[-2':1 dal+1+1"—1 ]
Zilw+la il dz FUHgT @3

Zaob2 ’)""1

From the wall boundary condition [ Equation (4-21)], it can be shown that

3z b3 r (4-38)

The solution of the above equations defines the first order velocity com=

ponents (“1 and v;) through the nozzle.

Examination of Equations (4-36) and (4~37) reveals that they are
singular at the nozzle throat (where a, = 1). Thus, the above equations
are algebraic at the throat and can be solved directly for b (0), b}(0) and
b3(0), yielding

1
bo(o) = -3 (4-39)
1 1
b (0) = -Z¢/5" (4- 40)
1 1
by(0) = 3 3%— (4-41)



for axisymmetric flows and

1
b (0) = - % (4-42)
by(0) = - ¢ Vol (4-43)
by(0) = 7 yHl (4- 44)

for planar flows, From Equations (4-24) and {4-34) it can be shown that .

1
by(0) = 5 (4-45) -

for both axisymmetric and planar flows.

The above first order throat conditions are identical to those ob-
tained by Sa.uer6 and Ha115. The two results differ away from the throat
plane, however, due to the different functional dependence of the coef-

ficients on the axial coordinate.

Examination of Equation (4-16) reveals that it is also singular at
the nozzle throat (where u, = 1). Thus, the boundary conditions for all
orders are set at the nozzle throat, and the various order throat condi-
tions can be determined directly. The fact that the boundary conditions
are set at the throat for all orders is mathematical proof that the nozzle
throat plane sets the choked flow through the nozzle.

Examination of Equations (4-24), (4-34) and (4-37) shows that b,

2 3 3
d L d o, d Ty
depends on > and b3 depends on 3 - Thus, if 3 is discon~

dz dz dz

tinuous, the first order solution will be discontinuous. Thus, in general,
d2n+1r

if the wall derivative _.m"i is nonanalytic, the nth order solution of
dz

the above equations will be discontinuous. The complete solution of the

above equations will be analytic only if the wall is analytic.



The second order solutions can be similarly obtained and are given
in Reference 4. A discussion of the second and higher order solutions

and a comparison with other analyses are also contained in this reference.
4.2 TWO-ZONE EXPANSIONS

Since most rocket engines operate with a cool ''barrier' zone near
the wall to protect the thrust chamber from the hot '"core' gases, the ex-
haust gas expansion through rocket engines can generally be represented
as a two-zone expansion. In order to simplify the analysis, the barrier
-zone is assumed to be confined to an annular ring. Thus the flow is
axisymmetric in both zones. (The analysis is also applicable to two-

dimensional nozzle flows in which the outer zone is planar.)

The equations governing the inviscid isentropic expansion of two

perfect gases through a nozzle are

2 -1 2} du 2 1 2\ ov 1,2 2, wv
(l-u -Lv)—+(l-v -%u)?&{- 1-%(u +v7) v

vy uv =— = 0 (4-46)

v ou _ _
ox " dy - 0 (4-47)

in the inner zone and

(1-92- 237 2152 2L :2)§+[1 - XL @ avh| e
y+1 y+l v+l 7

- AW % = 0 (4-48)
v+l y
dv _ du _ )
% vy - 0 (4-49)



in the outer zone where the velocities have been normalized with respect

to the appropriate throat sonic velocity and w equals 0 or 1, depending on
whether the nozzle is planar or axisymmetric, As in the previous analysis,
we shall seek solutions of the above equations in nondimensional coordinates
chosen from the channel flow solutions such that the various velocity de-
rivatives are independent of the nozzle scale for large values of the nor-
malized throat wall radius of curvature. It can be shown from the two-

zone channel flow solutions (see Appendix A of Reference 4) that for

choked flows
u=1+,/-‘-°y{-%§% $oen (4-50)

PR (4-51)

at the nozzle throat where x is the distance from the throat plane, y¥ is
the throat half height, R is the normalized throat wall radius of curvature
and k is a dimensionless constant of order one. Examination of these
equations reveals that as in the previous analysis, the axial nozzle co-
ordinate x must be normalized with respect to the distance \/R_ y* in order
for the dimensionless axial velocity gradients to remain of order one at
the nozzle throat independent of the nozzle scale. Similarly, since the
nozzle scale perpendicular to the nozzle axis is set by the throat half
height y*, the perpendicular coordinate y should be normalized with re-
spect to the distance -y¥*, Thus, solutions to the above equations for
large values of the normalized throat wall radius of curvature should

again be sought in terms of the normalized coordinates

- /1 x -
Z—\/;y* (452)

r = -3’; (4-53)

rather than in the x, y coordinate system.
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In the r, z coordinate system, the above equations become

1 2 1 2} du 2 1 2\ 3 1,2, 2| wv
\/—;(l-u --ﬁ_—l-v)$+(l-v -%u)a—:+[1-%;—l(u +v )]-r—

(4-54)

1 dv ou _ -
\/R 3z > - 0 (4-55)

VR B & (-9 B [ B2 @7y €
y+1 y+1 v+l
4 — du
- y—+i- uv -a—r = 0 (4-56)

1 av du _ _
‘/i$'¥'° (4-57)

The boundary conditions on the axis and at the wall are

in the outer zone.

v(io,z) = 0 (4-58)
vir_, z) 1 dr
— = id—zw (4-59)
lr, 2)
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Since the flow angle and pressure match at the streamline dividing the two

zones, the boundary conditions at the dividing streamline are

v(rs, z) ;(rs, z) 1 drs
7__” r .z b —— = —R dZ (4" 60)

s E(rs, z)
71
P* -‘%1 [1 -%(u(rs, z)2 + v(rs, z)z)”
2
3al S 2 .- =
= P* L;l[l -%(u(rs, z)2 + v(rs, z)Z>J} (4-61)
v+

where rg is the radial position of the dividing streamline.

The sonic pressure is equal in both zones (see Appendix A of Ref-
erence 4) since this condition maximizes the mass flow through the nozzle
and the throat plane then sets the flow through the nozzles. There are
other families of solutions to the above equations for different pressure
conditions {such as the total pressure in both zones being equal). In these
solutions, the flow is not set at the throat plane but is set elsewhere in
the flow system. These solutions (which correspond to nozzle flows with
controlled external bleed such as occur in jet engines or ducted rockets)

will not be considered.

dr dr
Since u, u, sz's' and dzw are 0(1) at the throat, v and v must both
be O(R-I/Z). This suggests that the velocity components in both zones can

be expressed as expansions in inverse power of R for large values of the
normalized throat wall radius of curvature. The procedure and the re-
sulting system of equations are identical to those governing a uniform
expansion. Thus, the solution for the inner zone is identical to the solu-
tion previously derived except that the dividing streamline boundary con-
dition replaces the wall boundary condition. As was shown earlier [Equa-
tion (4-23)], the complete solution of the above equations for v, is of the

form
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vy(r,z) = a) (2)r + wa3(z)r'1 + (1= W) ag(2) (4-62)

where the functions a3(z) and a5(z) are identically zero in uniform ex-
pansions and in the inner zone. In the outer zone, however, a3(z) and
aS(z) are not identically zero but are determined from the dividing stream-
line boundary conditions. Thus, the outer zone solutions contain additional
terms dependent on a3(z) and as(z) which do not appear in the inner zone
solutions. Since planar two-zone expansions were not of primary interest

in the study, only the axisymmetric solution has been obtained.

Be expanding the position of the dividing streamline r in inverse

powers of R, i.e.,

r ,(z) r_ ,(z)
rlz) = r_ (z) + Sli + :"2 P (4- 63)

expanding the velocity components about rg, using Taylor series, sub-
stituting the resulting expansions into Equations (4-60) and (4-61) and
equating inverse powers of R, one obtains the dividing streamline boundary
conditions for the various order solutions. The various order axis and
wall boundary conditions are the same as in the uniform expansion case.
The dividing streamline throat boundary condition is related to the ratio of

mass flows through the two zones.

The one-dimensional, first-order, and second-order solutions are
obtained in a manner similar to the uniform expansion case. They are
shown in detail in Reference 4. Due to the lengthy expressions for the

solutions, they are not repeated here.
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5. PROGRAM ANALYSES

A documentation report containing a complete engineering and pro-
gramming description has been published separately for each of the pro-
grams developed under the contract. A summary of the analysis for each

of the programs is given below.
5.1 ONE-DIMENSIONAL REACTING GAS PROGRAM'

This program calculates the inviscid one-dimensional equilibrium,
frozen and nonequilibrium nozzle expansion of gaseous propellant exhaust
mixtures containing the six elements: carbon, hydrogen, oxygen, nitrogen,
fluorine and chlorine. The computer program considers the 19 significant
gaseous species (listed in Table 2-2) present in the exhaust mixtures of
propellants (listed in Table 2-1) containing these elements and the 48
chemical reactions (13 dissociation-recombination reactions and 35 binary
exchange reactions as listed in Table 2-4) which can occur between the
exhaust products. In order to reduce computation time per case to a
minimum, the program utilizes a second-order implicit integration method
(described in Section 3). Typical run time is 3 minutes per case for this
program on an IBM 7094 Mod II computer. The program analysis is

given below.

In this program, the solutions for frozen and equilibrium flows are
obtained by solving the simultaneous set of algebraic equations of con-
tinuity, energy, state, and entropy. For nonequilibrium expansions, the
conservation equations governing the inviscid one-dimensional flow of
reacting gas mixtures have been given by Hirshfelder, Curtiss and Byrd, 8
Penner? and others. The basic assumptions made in the derivation of

these equations are:
° There are no mass or energy losses from the system,
® The gas is inviscid.

L) Each component of the gas is a perfect gas.

° The internal degrees of freedom (translational, rotational
and vibrational) of each component of the gas are in
equilibrium.



The conservation equations are presented here in the form used in
the present analysis. These equations are integrated using the second-

order implicit method described in Section 3.
For each component of the gas the continuity equation is

< (p, Va) = wr*a (5-1)

where the axial coordinate (x) has been normalized with the throat radius.
Summing over all components of the mixture, the overall continuity equa-

tion is obtained

& (ova) =0 (5-2)

By use of the above equation, Equation (5-1) can be rewritten as

dci wir*
dx T pvV (5-3)
The momentum equation is
dv dP
PVax T ax =0 (5-4)
The energy equation is
1.2
h+5 V" = Hc (5-5)
where
h = z c;h, (5-6)
i=1
and
T
h, =j C .dT + h, (5-7)
i pi io
o




For each component of the gas, the equation of state is

P, = p,R.T (5-8)

Summing over all components of the mixture, the overall equation of state

is obtained

P = pRT (5-9)
where
R = 2 ¢;R, (5-10)
i=l

Since the expansion through a nozzle can be specified either by the
expansion process or by the nozzle geometry, two forms of the above

equations are of interest,

If the expansion process is specified and the pressure is known as

a function of distance through the nozzle, the above equations become

dci wir*
= - A (5-11)
%}‘?’ = - 31.\7 % (5-12)
do . [_711_, & . A] o (5-13)
%:[%}-%%-B]T (5-14)

while if the nozzle geometry is specified, the above equations become

dc. wir*

(5-15)



dx x M2 -1
14 m°
%P'" —_dj-A] ) TALP
X a dx M2 -1

P = pRT
where
- X* w Bl
A PV z 1R1T Y z wihll
i=1 i=1
- Y-l r*
B 5 BV w;b;
i=1
M = v
yRT
C
y = —_P
C - R
p
and

CcC = z c.C .
P i pi
i=1

(5-16)

(5-17)

(5-18)

(5-19) .

(5-20)

(5-21)

(5-22)

(5-23)

(5-24)

The first set of equations is completely specified at the sonic point

while the second set of equations is singular. Thus, if the expansion

through the nozzle is specified by the pressure distribution, the equations
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governing the expansion can be directly integrated through the sonic point
without mathematical difficulty. The expansion from the chamber through
the sonic point is specified by the pressure distribution in the present pro-
gram in order to eliminate numerical difficulties at the sonic point. In
the expansion section downstream of the sonic point, however, the area
variation is specified and the second set of equations is integrated through

the supersonic expansion section.

In specifying the nozzle pressure distribution from the chamber
through the sonic point, rather than the known area distribution, a question
naturally arises regarding how accurately the calculation represents the
flow through a specified nozzle geometry. It has been shown by Braylo
and others that the pressure distribution through a nozzle is essentially
identical with the equilibrium pressure distribution up to the freeze point
which generally occurs downstream of the throat (or sonic point). Thus,
the difference in the expansion and predicted performance caused by
utilizing the equilibrium pressure distribution rather than the nozzle
geometry to specify the expansion from the chamber to the sonic point is
negligible. If a case does arise in which the equilibrium pressure distri-
bution is not an adequate representation of the expansion, the pressure
distribution can be iterated to obtain the correct pressure distribution.

Experience has shown that this is rarely if ever required, however,

The net species production rate, wj, for each species considered by

the program is calculated from

- 2
w = Pl Y Wl - vy X, (5-25)
j=1

where the net production rate for each reaction (Xj) considered by the

program is calculated from

1
V.. lli.
X, = |K, 7 oc, Uep o I M. k. (5~ 26)
for the dissociation-recombination reactions and
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Vij VlJ
X. = |[K. 7 c - ;r c, kRj (5-27)

for the binary exchange reactions.

The stoichiometric coefficients (vij and Vi'j) appearing in the above

equations are defined by the generalized chemical reaction equation

J— b | J—
z v; My = 2 vi; M (5-28)
=1 i=1

where K-'Ii represents the ith chemical species.

Since each dissociation-recombination reaction has a distinct reac-
tion rate associated with each third body, the net production rate for each

dissociation-recombination reaction should be calculated from

UIJ VIJ
X, = z K, 71 oc; =pwocg e kpy (5-29)
k=1 i=1 i=1

rather than Equation (5-26). Benson and Fueno11 have shown theoretically
that the temperature dependence of recombination rates is approximately
independent of the third body. Available experimental recombination rate
data also indicates that the temperature dependence of recombination rates
is independent of the third body within the experimental accuracy of the
measurements. Assuming that the temperature dependence of recombina-
tion rates is independent of the third body, the recombination rate as-

sociated with the kth species (third body) can be represented as

-n. ~k./T
Kn.. = a, . T 3 J

kj e (5-30)

where only the constant ay; is different from different species (third

bodies). From Equation (5-29) it can be shown that
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v 29 -n, -k /T
X. = |[K. m c J-p T oc, 9 y a,.c, T e !
J J 21 B j=1 @ L kjk
k=1
1
29 v, a,. -n., -k./T
=|K. 7c. "-p mc. Y —Llcla,. T Je (5-31)

i i i| "k
Ji=1 i=1 o) ki J

Thus the recombination rates associated with each third body can be con-
sidered as in Equation (5-26) by calculating the general third body term
(Mj) as

M, = Z mj,ici (5-32)

where mj is the ratio (aij/akj) of the recombination rate associated with
the ith species (third body) to the recombination rate associated with the
kth species (third body) which is the reference species (third body) whose

rate [in the form of Equation (5-30) ] is specified in the program input.

The computer program subroutines which include the computation
of performance parameters such as specific impulse, characteristic

velocity, etc. are given in detail in Reference 7.
5.2 ONE-DIMENSIONAL TWO-PHASE REACTING GAS PROGRAMI?Z

This program calculates the inviscid one-dimensional two-phase
equilibrium, frozen and nonequilibrium nozzle expansion of propellant
exhaust mixtures containing the six elements: carbon, hydrogen, oxygen,
nitrogen, fluorine, and chlorine and one metal element, either aluminum,
beryllium, boron or lithium. The computer program considers the 79
significant gaseous species and eight significant condensed species, liquid
or solid (listed in Table 2-2), present in the exhaust mixtures of propel-
lants (listed in Table 2-1) containing these elements. The program con-
siders the 763 gas phase chemical reactions (84 dissociation-recombination
reactions and 679 binary exchange reactions as listed in Tables 2-4

through 2-9) which can occur between the exhaust products, The program



also considers the velocity and thermal lags (for up to five particle groups)
between the gaseous and condensed combustion products (when they are
present in the chamber). The program does not consider mass transfer
(only momentum and energy transfer) between gaseous and condensed com-

bustion products, except in the equilibrium option.

In order to reduce computation time per case to a minimum, the
program utilizes a second-order implicit integration method (described in
Section 3). The machine run time depends to a large extent on the number
of chemical reactions involved and on whether or not condensed phase
exists in the case. Typical run time varies between 5 and 30 minutes per
case on an IBM 7094 Mod II computer. The program analysis is given

below.

In this program, the solution for frozen and equilibrium flows are
obtained by solving the simultaneous set of algebraic equations of con-
tinuity, energy, state, and entropy. For nonequilibrium expansions, the
conservation equations governing the inviscid one-dimensional flow of a
two-phase reacting gas mixture can be simply derived utilizing the follow-

ing assumptions:
° There are no mass or energy losses from the system.

° The gas is inviscid except for its interactions with the
condensed particles.

° Each component of the gas is a perfect gas.

° The internal degrees of freedom (rotational and vibrational)
of each component of the gas are in equilibrium.

® The volume occupied by the condensed particles is negligible.

°® The thermal (Brownian) motion of the condensed particles
is negligible.

° The condensed particles do not interact.

° The condensed particle size distribution may be approxi-
mated by groups of different size spheres.

. The internal temperature of the condensed particles is
uniform.

® Energy exchange between the gas and the condensed particles
occurs only by convection.
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® The only forces on the condensed particles are viscous
drag forces.

) There is no mass transfer from the gas to the condensed
phase during the nozzle expansion.

These assumptions have been previously used in all studies of re-

8 13

acting gas® and gas-particle”~ nozzle flows,

The conservation equations are presented here in the form used in
the present analysis. These equations are integrated using the second-

order implicit method described in Section 3.

For each component of the gas the continuity equation is
< (p,Va) = wr*a (5-33)
dx ‘i i

where the axial coordinate (x) has been normalized with the throat radius.
Summing over all components of the mixture, the overall continuity equa~

tion for the gas is obtained

£ (pVa) = 0 (5-34)

By use of the above equation, Equation (5-33) can be rewritten as

dc. w.r¥*
i i

Tx T BV (5-35)
For each particle size group the continuity equation is
L (p.V .a)=0 (5-36)
dx *"pi pi

since there is no mass transfer from the gas to the condensed phase.

The overall momentum equation for the mixture is
d d dP (5-37)
\% E =
dx (pVaVv) + dx (i:lppivpiavp)+ 2dx 0
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which becomes
dv .

dv
Vo + —P
PY ax i=zl ppivpi dx

through use of the continuity equations.

Similarly, the overall energy equation for the mixture is

dh
dh , vdV i
=— +——+ —p!
PV (dx dx ) igl ppivpi ( dx tv
where for the gas phase
h = Z Clhl
1=1
and
T
h, =f C_.dT + h,
o Pi io
while for each particle group
h 'pi
pi o Cppi dT + hpio» T
and
e [
. B .
pi o Cppi dT + hpio + AHpi s

For each component of the gas, the equation of state is

Pi = piRiT

+ 9P _

dx

pi

pi

0

dv

—p1
dx

<T

Tpi > Tomi

pmi

%

(5-38)

(5-39)

(5-40)

(5-41)

(5-42)

(5-43)

(5-44)

Summing over all components of the mixture, the overall equation of

state for the gas is obtained

P = pRT

5-10
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where

R = Z CiRi (5-46)

The particle drag equation is

dvpi 9 pfpir*

' =3 (V-v.) (5-47)
pi dx 2 m .rZ‘ pi
pt p1
and the particle heat transfer equation is

dh_. 3 .r¥ C

v  —PL - _ pg}’% P (T .-T) (5-48)
pi dx m_.r_ . Pr Pt
p1 p1

for each particle group.

Since the expansion through a nozzle can be specified either by the
expansion process or by the nozzle geometry, two forms of the above

equations are of interest.

If the expansion process is specified and the pressure is known as

a function of distance through the nozzle, the above equations become

dci w,.r¥

A (5-49)
dPpi _[1m®-1ap ) (5-50)
dx vP MZ dx i] "pi
av 1 [dP (5-51)
& T PV [dx +C]
d { dP
Exe = I:—Y? = ] (5-52)
dT _[y-1 1 dP B] T
x |y P dx (5-53)

while if the nozzle geometry is specified, the above equations become

dc. w, r¥
e (-5



dp_.
—pi_ _[Lda : 5-55
Ix [adx Fi]ppl (5-55)
dv [1 da ] \' -56
L2 2 _E|] —— - V(E - A) (5-56)
dx a dx MZ 1
dp 1 da M2 5
= - — — ettt s '57
dx [adx ]M2_1+AP (53=57)
2
aT _ | [L_d_a_ ]( - UM L g\ (5-58)
dx a dx 2
M™ -1
P = poRT (5-59)
where
=YLl Xy ¥ Mhi vy )
- Pv \.& “iti T L Ppi|2 2(_p1)
i=t i=1 m .r_.
p1 p1
3ug . C
+__§.El_ _Pg (T . - T) (5-60)
I‘Z pr p1
pi pi
A=5y L wR,T-B (5-61)
i=1
9 pf |, r*
C = p .= = (v-v_) (5-62)
L Vpi 2 2 pi
i=1 m .r .
pPr p1
E:A+—§-z- (5-63)
pVv
pf .r¥ (V_.v
F, = _2 pl ( pl) (5-64)
2 m .I'Z.
pt pi P2




D.=E-F, (5-65)

1 1
M= —Y (5-66)

vyRT

__CL 6
Y = C R (5" 7)
P
and

C - c.C . (5-68)

T

The first set of equations is completely specified at the sonic point
while the second set of equations is singular. Thus, if the expansion
through the nozzle is specified by the pressure distribution, the equations
governing the expansion can be directly integrated through the sonic point
without mathematical difficulty. The expansion from the chamber through
the sonic point is specified by the pressure distribution in the present pro-
gram in order to eliminate numerical difficulties at the sonic point. In
the expansion section downstream of the sonic point, however, the area
variation is specified and the second set of equations is integrated through

the supersonic expansion section.

In specifying the nozzle pressure distribution from the chamber
through the sonic point, rather than the known area distribution, a ques=-
tion naturally arises regarding how accurately the calculation represents
the flow through a specified nozzle geometry. Experience has shown that
by itcrating on the inlet pressure distribution, the difference in the ex-
pansion and predicted performance caused by utilizing the inlet pressure
distribution to specify the inlet expansion process rather than the inlet

nozzle geometry is negligible.

The net species production rate w; for each species considered in
the program is governed by the same equations as those for one~dimensional

reacting gas case (see pages 5-5 to 5-7).

The computer program subroutines, which indicate the computation
of performance parameters such as specific impulse, characteristic

velocity, etc., are given in detail in Reference 12.
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5.3 AXISYMMETRIC REACTING GAS PROGRAM!*

This program calculates the inviscid axisymmetric nonequilibrium
nozzle expansion of gaseous propellant exhaust mixtures containing the
six elements carbon, hydrogen, oxygen, nitrogen, fluorine and chlorine.
The computer program considers the 19 significant gaseous species
(listed in Table 2-2) present in the exhaust mixtures of propellants (listed
in Table 2-1) containing these elements and the 48 chemical reactions (13
dissociation-recombination reactions and 35 binary exchange reactions as
listed in Table 2-4) which can occur between the exhaust products. On
option, this program calculates either the expansion of a uniform mixture
(the ideal engine case) or of a two-zone mixture (the film~cooled engine

case).

The initial data line required to start the characteristic calcula-
tions is obtained from the transonic analyses described in Section 4.
The characteristic equations governing the fluid dynamic variables are
integrated using a second-order {modified Euler) explicit integration
method while the chemical relaxation equations are integrated using a
first~order implicit integration method to insure numerical stability in
near equilibrium flows. Typical machine run time for this computer pro-
gram is 10 minutes for a uniform expansion case and about 12 to 15

minutes for a two-zone case. The program analysis is given below.

The conservation equations governing the axisymmetric inviscid
flow of reacting gas mixtures have been given by Hirshfelder, Curtiss
and Bird, 8 Penner9 and others. The basic assumptions made in the
derivation of these equations are:

[ There are no mass or energy losses from the system

) The gas is inviscid

° Each component of the gas is a perfect gas

° The internal degrees of freedom (translational, rotational,
and vibrational) of each component of the gas are in

equilibrium.

The conservation equations are presented here in the form used in the

present analysis.



-

For each component of the gas, the continuity equation is

1 *
(piu) + T (rpiv) = wir"
X r

(5-69)

where the coordinates (r, x) have been normalized with the throat radius.

Summing over all components of the mixture, the overall continuity equa-

tion is obtained

By use of the above equation, Equation (5-69) can be rewritten as

wir*
u(c,) + v(c.) =
! X 1 T p

where

and

(pu)x + —ll_—(rpv)r =0

The momentum equations are

p(uux + vur) + Px =0

p(uvx + er) + Pr =0

The energy equation is

1, 2 2, _
h+-2-(u +v)—HC

h = igl Cihi

(5-70)

(5-71)

(5-72)

(5-73)

(5-74)

(5-175)

(5-76)




For each component of the gas, the equation of state is

P, = p,R;T (5-177)

Summing over all components of the mixture, the overall equation of

state is obtained

P = pRT (5-78)

where

R= igl iRy (5-179)

By standard methods, 15 the characteristic relationships for the

conservation equations can be shown to be

dr _
‘d_)(‘ =tan 0 (5_80)
2
\s dP _
d—5 +—5 =0 (5-81)

cos O dx (5-82)

Y P T ~Cos © (5-83)
dc, = ————— dx (5-84)

along streamlines,

dx

ar - cot (68 + a) (5- 85)
dP in ©
—§=G[(A-—-—51: )F dr - dO:I (5-86)
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along left running characteristics, and

% = tan (0 - a) (5-87)

‘},—p = -G [(A - iir—n—e)H dx - de] (5-88)

along right running characteristics, where

ol _y -1 5-89
. A=pv (iZI oRT - .Zl “’ihi) (5-89)
= i=
. ~Ir*xy -1 5-90
‘ B=pv % Lo (5-90)
i 1/2
Y V = (uz + vz) (5-91)
0= tan-l(ﬁ) (5-92)
a= sin-l(—hl—d) (5-93)
M = —V—rﬁ (5-94)
(yRT)
S
Y = C - R (5'95)
P
: 5-96
Cp igl Cicpi (5-96)
F =cos 9 -sin8 cot(6 + a) (5-97)
Gz —X (5-98)

sin a cos a

H = cos 6tan (6 - a) -sin 8 (5-99)

(%]
1
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The above form of the characteristic relationships remains determi-
nant when the stream line is horizontal, when the left running character=-
istic is vertical, or when the right running characteristic is horizontal.
Rarely (if ever) will the inverse of the three situations occur in nozzle

flow field calculations.

The net species production rate w; for each species considered in
the program is governed by the same equations as those for the one-

dimensional reacting gas case (see pages 5-5to 5-7).

To solve the preceding equations, one can, in principle, use pertur-
bation methods to obtain asympotic expansions for the subsonic and "
transonic flow fields as has been done for nonreacting gas flows. 4 Such
solutions are extremely complex for nonequilibrium flows however, and

-

it is doubtful if more than one term of the expansion can be determined.

An alternate method of constructing nonequilibrium initial lines for
characteristic calculations is to determine the effect of nozzle curvature
on the gas flow field using an average expansion coefficient to approximate
the nonequilibrium expansion process through the throat region and to
then calculate the effect of the altered gas flow field on the relaxation
processes. This method (which is the equivalent to the first step of a
relaxation process) has been successfully used by Kliegel and Nickerso'n16
in two-phase flow nozzle studies to predict nozzle inlet angle and throat
curvature effects. It was chosen for use in this program because of its
relative simplicity and proven accuracy. The calculations performed in
constructing the nonequilibrium initial lines used as starting lines for

the characteristic calculations are summarized below.

For uniform expansions, a one-dimensional calculation is per-
formed from the chamber to the throat for the propellant system and noz-
zle geometry of interest using the One-Dimensional Reacting Gas Pro-
gram7 and tables of flow properties (€, V, T) and species concentrations
(c;) are constructed as a function of pressure starting at the throat. An

average expansion coefficient in the throat region is calculated from

= ——ﬁ—ln (Pao/Py) (5-100)
v = ln (pzo pl)



where the subscripts 1 and 20 refer to the first and last table entries.
An axisymmetric uniform expansion transonic flow field is constructed
for the nozzle of interest using this average expansion coefficient and the
second order analysis of Kliegel and Quan (Reference 4 and Section 4).
The pressure, location and flow angle variation along the constant pres-
sure line originating at the throat wall are determined. The remaining
flow properties (€, V, T) and species concentrations (Ci) along the con-
stant pressure line are determined by interpolation on pressure from the
tables previously constructed with the One-Dimensional Reacting Gas

Program.

For two-zone expansions, a one-dimensional calculation is per-
formed from the chamber to the throat for the propellant system and
nozzle geometry of interest for the inner zone using the One-Dimensional
Reacting Gas Program and tables of flow properties (¢, V, T) and species
concentrations (cj) are constructed for the inner zone as a function of
pressure starting at the throat. An average expansion coefficient in the

throat region is calculated for the inner zone from

- In (P,,/P)) (5-101)
v = In (pzo;pl)

where the subscripts 1 and 20 refer to the first and last inner zone table
entries. A one-dimensional calculation is performed from the chamber

to the throat for the propellant system and nozzle geometry of interest

for the outer zone using the One-Dimensional Reacting Gas Nonequilibrium
Performance Program. The stagnation pressure of the outer zone is
adjusted by the ratio of the outer and inner zone throat pressures and
another one-dimensional calculation is performed from the chamber to

the throat for the outer zone and tables of flow properties (€, V, T) and
species concentrations (c;) are constructed for the outer zone as a func-
tion of pressure starting at the throat. An average expansion coefficient

in the throat region is calculated for the outer zone from

—  In(P,/P) ]
7 T AN (5-102)



where the subscripts 1 and 20 refer to the first and last outer zone table
entries. An axisymmetric two-zone transonic flow field is constructed
for the nozzle of interest using these average expansion coefficients for
each zone and the second-order analysis of Kliegel and Quan. The pres-
sure, location and flow angle variation along the constant pressure line
originating at the throat wall are determined. The remaining flow prop-
erties (€, V, T) and species concentrations (c;) along the constant pres-
sure line in each zone are determined by interpolation on pressure from
the tables previously constructed for each zone with the One-Dimensional

Reacting Gas Program.

The above method of constructing initial lines for nonequilibrium
characteristic calculations accounts for the dominant curvature effects
through second order and ignores the curvature effects which would cause
a constant pressure line, chosen as the initial starting line, not to be a
constant property line. By comparing the above method of constructing
nonequilibrium initial lines with a rigorous expansion method, it can be
shown that the two methods are equivalent through first order (the effect
of curvature causing departure from constant property lines being of
order R'3/2). The great advantage of the current method is its simplicity
in accounting for the dominant curvature effects and the fact that the flow
field varies smoothly across the initial line (i. e., there are no sudden
energy release changes or flow field adjustments downstream of the in-
itial line caused by incompatibilities between the gas and chemical prop-
erties along the initial line). Thus inaccuracies in the initial line con-
struction used in the present program do not cause physically unreal
expansions, compressions or shocks in the characteristic calculations.
This later advantage is extremely important since experience has shown
that even small incompatibilities between the gas and chemical properties
along the initial line can cause very large, physically unreal, flow field

adjustments downstream of the initial line.

After constructing the initial data line, the reacting gas character-
istic relationships [Equations (5-80) through (5-88) ] are integrated.
Characteristic equations are generally integrated using second-order
explicit methods. It has been shown in Section 3, however, that implicit
integration methods are superior to explicit methods for integrating chem-

ical relaxation equations. Thus, in the present program, the fluid
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dynamic equations are integrated using an explicit modified Euler method
while the chemical relaxation equations are integrated using a first-order

implicit integration method.

In numerically calculating flow fields using the method of character-
istics, only two (previously calculated) known points are directly usable in
calculating a forward point. In perfect gas flows, only two known points
are required to calculate a forward point and the calculation is straight-
forward and unambiguous. In nonequilibrium flows, however, more than
two known points are required to calculate a forward point so that a choice
must be made as to which points in the flow field will be used directly and
which will be interpolated. Since even small interpolation errors in spe-
cies concentrations are known to cause serious stability and accuracy
problems in the numerical integration of the chemical relaxation equations,
the back streamline point and one characteristic point were chosen as the
known points. This choice avoids interpolation for the species concentra-
tions in that only fluid dynamic properties (velocity, pressure, etc.) and
the total entropy production term due to all nonequilibrium effects need
be interpolated at one of the back characteristic points. Since these
quantities are all slowly varying across the characteristics mesh, they
can be interpolated quite accurately. Experience has shown that this
choice of numerical integration methods and known data points is optimum
for reacting gas characteristics calculations. A complete derivation of

the numerical integration methods used in the program are given below,

Consider the flow field shown in Figure 5-1.

The fluid dynamic equations are integrated as follows. Between

points 3 and 4 the streamline characteristics relationships are integrated
as

1
r3 = r4 + tan [7(94 + 93)] (x3 - x4) (5_103)
Y RE
P P
s 2, 2N 4 73 .
e e Tl (2) 00



1 RIGHT RUNNING
CHARACTERISTIC

STREAMLINE 3 (POINT TO BE CALCULATED)

LEFT RUNNING
CHARACTERISTIC

2
Figure 5-1. Flow Field Calculation
L)
2y V3
Py 1{ 24 Ay
P3 = p4(ﬁ—) exp |- 3105 @, ' Cos © (x5 - x4)| (5-105)
4 4 3
1 Y4‘1 +Y3‘1
2\ vy Y3
Py 1 Ba By
T3 = T4(_P—) €XP |"2\cos © + cos © (x3 - x4) (5-106)
4 4 3
where
P
4
= ——— (5-107)

The integration formula (5-103) relating the coordinates of points 3
and 4 was chosen because it is exact if the streamline is a circular arc

between points 3 and 4. This is an excellent approximation over one



one mesh step. In integrating the momentum equation to obtain Equation
(5-104) it was assumed that P varies as pN along the streamline. In in-
tegrating the energy equation and the perfect gas relationship to obtain
Equations (5-105) and (5-106), the coefficients [yl, A/cos 6, (y- 1)/,
and B/cos 0] appearing in these equations were assumed to be equal to
their average value between points 3 and 4. The streamline integration
formulas (5-104), (5-105), and (5-106) are exact for nonreacting, constant
gamma flows, (note that in this case N equals ¥ and that A and B are
zero), Since much of the supersonic portion of the flow fields is non-
reacting (frozen) and approximately a constant gamma flow, these integra-
tion formulas are believed to be the best choice for supersonic reacting

gas flow field calculations.

Between points 1 and 3 the right running characteristics relation-

ships are integrated as

_ 1
r,=r, +tan [E(el +8;-4a - u3)J (x3 - %) (5-108)

_ 1
P3 = P_l exp - -Z(AIGIH + A,G H3)(x3 - xl)

I
1 GlHl sin 91 . G3H3 sin 93 n - %)

2 r, T, 3 1

1 -
-5(G; + G )65 - 8)) (5-109)

The integration formula (5-108) relating the coordinates of points 1
and 3 was chosen because it is exact if the right running characteristic is
a circular arc between points 1 and 3. This is an excellent approximation
over one mesh step. In integrating the right running characteristic rela-
tionship to obtain Equation (5-109) the coefficients (AGH, GH sin 6/r, and
G) appearing in Equation (5-88) were assumed to equal their average value
between points 1 and 3. This is an excellent approximation over one mesh
step. If point 3 is an axis point then r3 and 63 are zero and the indetermi-

nate quantity sin 83/rj3 appearing in Equation (5-109) is approximated by



sin 63 tan 61

ry = r +Tx3 - xl) tan 91 (5-110)

Equation (5-110) is obtained by extrapolating for the ratio sin 8/r on the
axis, assuming that the flow near the axis is a source flow.

Between points 2 and 3 the left running characteristics relation-

ships are integrated as

_ 1
X3 = X, + cot [2(62 + 63 + a, + a3):|(r3 - rz) (5-111)

_ 1
P3 = P2 exp —2-(A2G2F2 + A3G3F3)(r3 - rz)

= +
2 r, ry

N

1 GZFZ sin 62 G3F3 sin 93 ( )
T3~ T
- l(G + G,)(6 2]
2 2 3 3 - 2) (5'112)

The integration formula (5-111) relating the coordinates of points 2

and 3 was chosen because it is exact if the left running characteristic is

a circular arc between points 2 and 3. This is an excellent approximation
over one mesh step. In integrating the left running characteristic relation-
ship to obtain Equation (5-112), the coefficients (AGE, GF sin 0/r, and G)
appearing in Equation (5-86) were assumed to equal their average value
between points 2 and 3. This is an excellent approximation over one mesh
step. If point 2 is an axis point, then r, and 6, are zero and the indeter-
minate quantity sin 6,/r, appearing in Equation (5-112) is that quantity

previously calculated for the axis point using Equation (5-110),

o
1
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Equations (5-109) and (5-112) can be combined to yield

1 (Pz) 1 1
9. = In(=2| +3(G, +G.)8, + (G, + G,)0
3 G3+%(G1+GZ) F,) T2'%1 T G318 * 321G * G3)9,

1
+ —Z—(AZGZFZ + A3G3F3)(r3 - rz)

2

1 GZFZ sin 92 G3F3 sin 93
+ (r, -r,)
r, ry 3 2

1
+ E(AIGIHI + A3G3H3)(x3 - xl)

G,H, sin 6 G,H. sin 6
1( 171 %10 P Sa 3)(x3_x1) (5-113)

1'1 1‘3

In the calculations for the various points in the flow field, Equation
(5-113) is solved for 83 and either Equation (5-109) or (5-112) is solved
for P3, depending on whether or not point 1 or 2 is the known data point.
Experience has shown that the above choice of integration equations is

optimum for reacting gas characteristic calculations.

It can be verified that use of these integration equations results in
an error or order h3 where h is the integration increment (mesh size).
Since these integration equations involve the flow properties at the un-
known point (point 3), they must be solved by iteration. The modified
Euler iteration method is used to solve these equations, and various point

calculations are described in detail in Section 5.3 of Reference 14,

In integrating the chemical relaxation equations, it is advantageous
to employ an implicit method as discussed in Section 3. A first-order
implicit integration method was chosen for use in the present program to
integrate the chemical relaxation equations. The derivation of the integra-

tion formula is described below.

The chemical relaxation equations are a coupled set of first order

simultaneous differential equations of the form
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dc.
i

ax = f1 (Cl' CZ’ R CN’ Yir Yo Y3n Y4) i=1,2,---, N (5-114)
along the streamline where y), y,, y3, and y, refer to the fluid dynamic

variables V, p, T, and 6, respectively. Assuming that the equations are
not singular and that a solution exists which may be developed as a Taylor

series about the forward point, one obtains

I = de; h (5-115)
i dx .
X
n+h
where k; is the increment in c; and h is sufficiently small. The first coef-

ficient of the Taylor series may be calculated as

dc.
—dTl- =£i(cl' CZ vt CN» Yy’ YZ» Y3' Y4) (5-116)

Expanding them as a Taylor series about the point x , it is found that

dci N i 0[ hZ ]
— =f. + .. k. + . . AQAy. + -
dx i,n 'Zl ﬁl,],n j -=1¢1.),n yJ (5-117)
X )= J
n+h
where
8fi
= — 5-118
pitJ C. ( )
J
of.
_ i
9,57 Y, (5-119)

and the subscript n refers to the functions f;, B; . and ¢i,j evaluated at

i’ j
the point x .

Substituting the above derivative into Equation (5-115) and neglecting
the second-order error and derivative terms yields the integration formula

for the increment ki




N 4
k; = [fi,n+j§:1 Bi,j,n Xy +j§=:1 % . in ij] h (5-120)

The computer program subroutines which include the computation
of performance parameters, i.e., specific impulse, characteristic
velocity, etc., are given in detail in Reference 14.

5.4 AXISYMMETRIC TWO-PHASE PERFECT GAS PROGRAI\&17

This program calculates the inviscid axisymmetric nozzle expan-
sion of propellant systems having both gaseous and condensed exhaust
products. The program considers the velocity and thermal lags (for up
to ten particle groups) between the gaseous and condensed combustion
products (when they are present in the chamber). It does not consider
mass transfer (only momentum and energy transfer) between gaseous and
condensed combustion products. It also does not consider nonequilibrium
effects of finite rate chemical reactions between gaseous and combustion
products. This program utilizes standard explicit integration methods.
Typical computer run time is 5 minutes per case. This program is an
updated FORTRAN IV version of an earlier program. The original
16

analysis has been published previously, and is summarized below.

The conservation equations governing the inviscid axisymmetric
flow of two-phase mixtures have been previously derived utilizing the

following assumptions:13
. There are no mass or energy losses from the system.

° The gas is inviscid except for its interactions with the
condensed particles,

° The gas is a perfect gas of constant specific heat ratio.

° The volume occupied by the condensed particles is
negligible.
° The thermal (Brownian) motion of the condensed particles

is negligible.
] The condensed particles do not interact.

° The condensed particle size distribution may be approxi-
mated by groups of different size spheres.



. The internal temperature of the condensed particles is

uniform.

] Energy exchange between the gas and the condensed particles

occurs only by convection.

® The only forces on the condensed particles are viscous

drag forces.

° There is no mass transfer from the gas to the condensed

phase during the nozzle expansion.
The resulting conservation equations are:

Gas Continuity Equation

Particle Continuity Equation

1
(ppi upi)x + T (rppi Vpi)r =0

Momentum Equations

“bp
(uv +vu)+z ——R——L—(u-u)+P
mr.
i=1 p pi
Y
p (uv +vv)+z —-LL—(v-v)+P
_ mr.
i=1 P pi

Energy Equation

9 BpP .
uP_+vP_- yRT (up_+vp_) - z 3 —g-p—E-— (y-1)
i=1 mprpi
C
_ 2 Bpi P _ i,

(u-u

2
pi)

(5-121)

(5-122)

(5-123)

(5-124)

(5-125)

-



Perfect Gas Law

P = pRT (5-126)
Particle Drag Equations

9 [T ir*

upi (upi)x + vpi (upi)r =3 m—L—r .2 (u - upi) (5-127)
p p?

- g H f;T*

u.(v..)y + v_.(v)) = L B (v-v ) (5-128)
pi pi'x pi pi'r 2 2 pi
p p?

Particle Heat Transfer Equation

+ 5 MEpi T °p T .-T) 5-129)

Upi (hp), FVpithp)y =72 T Br Ui (
p pi
where
h .-h ,
T. =T + B2 P~ h.>h, (5-130)
pi pm Cpsr pi — 'p
T. =T h
> > -
pi pm pl hpi— hps (5-131)
h_.

T . = & h > h. (5-132)
pi CPs ps pi

By standard methods, 14 the characteristic relationships for the above

conservation equations can be shown to be

dr
dx

S i<

(5-133)




p(udu+vdv) +dP = - z Z

i=1

f %
WPy Er

mr.
P P!

[(u - upi) dx+(v - vpi) dr] (5-134)

P dp N9 HPpilpi™ D) | -
P yp‘ZZmr.z (u u)+(V'V)
p pt
. C
2 8
+-3--f—EP—P(Ti'T)] dx (5-135)
pi p .
along gas streamlines,
dr _uv+ yRT VM%-1 _
= ° ) (5-136)
u - ¥ RT
r*
(W - v) IE" (y-l)[(u—u) + (v - v )
pi
C
s 25 2P 0
3f.ﬁ—(Tpi T)] dx - u dP
pi
+ ¥ RT z 9___P_.L_ (u-u )dr-(v-vpi) dx]
pi
d .
+p[vdu-udv-¥ (udr-vdx)]+dpd—;l= 0 (5-137)




along gas Mach lines,

dr| _ pi 5-13
dzl. - u.. (5-138)
1 pi
9 y.fir*
u . du_. =—2-—p——2(u-u.)dx (5-139)
pl pl m r . p1
p pi
9 ufir*
vidv1=-z——L7(v-vi)dr (5-140)
p p m r .
p pi
pueg . r*¥C
w.dh . = -3—2L _ _Pp _T)ax (5-141)
pi pi mr.z Pr Pi
p pi
d:ppi = 0 (5-142)

along particle streamlines where the particle stream function ¥ ; is
defined by

—
©
1]

rp . u ,(zp

oi)r oi -rp_. V. . (5-143)

pi x pi pi

It is seen that all the characteristics of the equations governing the
flow of a gas-particle system are real if the flow is supersonic (M>1).
Using Equations (5-133) to (5-143), the supersonic flow of a gas-particle

mixture may be computed using the method of characteristics.

It is interesting to note that one of the characteristic directions of
Equations (5~133) to (5-143) is identical with the gas Mach lines and is

independent of the presence of the particles. This result is similar to
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the situation found in reacting gas mixtures " in which one of the



characteristic directions is also identical with the gas Mach lines and is

independent of chemical reactions occurring in the flow.

To solve the equations governing the transonic flow of a gas=~particle
mixture is an extremely formidable task. For perfect gas flows, approxi-
mate transonic solutions can be obtained by taking perturbations about the
sonic velocityé. This method is applicable for perfect gas flows because
the throat conditions are essentially determined by the nozzle geometry in
the immediate neighborhood of the throat and are quite insensitive to the
nozzle inlet geometry. This is not true for gas-particle flows, because
the throat conditions are determined by the nozzle inlet geometrylg. Thus
to obtain initial conditions to start a characteristic calculation for a gas-
particle system, the equations for the complete subsonic and transonic

flow field in the nozzle inlet and throat regions must be solved.

It is evident that only approximate solutions to the equations governing
the transonic flow of a gas-particle system can be obtained. In order to
reduce the complexity of the calculations, the nozzle inlet and throat
geometry considered in this study consisted of a conical inlet section
joined smoothly to a constant radius of curvature throat section. It is
believed that this simplified geometry adequately represents the inlet and

throat geometry for nozzle configurations of interest.

The following method was used to obtain approximate initial condi-
tions for the characteristic calculations. In the conical inlet section, the
flow was assumed to be a one-dimensional sink flow. The equations
governing the one-dimensional flow of a gas-particle system were solved
to obtain the flow properties on the sink line. The gas properties in the
throat region were approximated by the perfect gas relationships similar
to those developed for the nonequilibrium programs. The particle trajec-
tories were calculated through the throat region to determine the particle
properties along the initial line. An average expansion coefficient was
used which approximated the gas-particle expansion, including the effects

of gas-particle nonequilibrium1 9.

The initial conditions thus determined were self-consistent as was
evidenced by the fact that the characteristic calculations proceeded
smoothly away from the initial line. Comparison of the nozzle weight

flows obtained by the above method with those obtained by one-dimensional
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calculations shows that the two-dimensional weight flows are slightly less
than the one-dimensional weight flows. This agrees with the results ob-
tained?? for perfect gases. In addition, the above method of obtaining
the gas-particle flow properties along the initial line is exact for the case
of gas-particle equilibrium. It is concluded that the gas-particle flow
properties determined along the initial line by the above method are an

adequate representation of the true flow properties for nozzle calculations.

The gas-particle characteristic relationships [ Equations (5-133)
through (5-143) ] are integrated using standard second-order explicit
methods. In numerically calculating flow fields using the method of
characteristics, only two (previously calculated) known points are directly
usable in calculating a forward point. In perfect gas flows, only two known
points are required to calculate a forward point and the calculation is
straightforward and unambiguous. In nonequilibrium flows, however,
more than two known points are required to calculate a forward point so
that a choice must be made as to which points in the flow field will be
used directly and which will be interpolated. In the present program, both
characteristic points are chosen as the known points and the required gas
and particle properties at the back streamline points were determined by
interpolation as shown in Figure 5-2. Experience has shown that the

above integration method yields accurate results.

1

RIGHT RUNNING GAS

DATA MACH LINE

LINE

PARTICLE STREAMLINE

3
(POINT TO BE COMPUTED)

\—— GAS STREAMLINE

LEFT RUNNING GAS
MACH LINE

Figure 5-2. Two-Phase Mesh Calculation

5-33




The computer program subroutines which include the computation of
performance parameters, i, e., specific impulse, characteristic velocity,

etc., are given in detail in Reference 17.
5.5 AXISYMMETRIC TWO-PHASE REACTING GAS ANALYSIS®!

The study described in this section was performed to initiate the de-
velopment of an additional computer program. The program consists of
three major parts: the one-dimensional two-phase reacting gas part which

is the One-dimensional Two-Phase Reacting Gas Progr:«.u'n12

, the axisym-
metric two~phase transonic part, and the axisymmetric two-phase char-
acteristics part. These parts have been programmed, but have not been
combined into a functioning program since the large size of the complete
program necessitates an excessive number of overlays during program

execution causing extremely long computer time per case.

A program based on the present effort may be put into operational
form when larger computers become available. Upon completion, this
program will calculate the inviscid axisymmetric nonequilibrium nozzle
expansion of propellant exhaust mixtures containing the six elements:
carbon, hydrogen, oxygen, nitrogen, fluorine, and chlorine and one
metal element, either aluminum, beryllium, boron or lithuim. The com-
puter program will consider 79 significant gaseous species and eight
significant condensed species (listed in Table 2-2) present in the exhaust
mixtures of propellants (listed in Table 2-1) containing these elements
and the 763 gas phase chemical reactions (listed in Tables 2-4 through
2-9) which can occur between the exhaust products. The program will
also consider the velocity and thermal lags (for five particle groups) be-
tween the gaseous and condensed combustion products (when they are
present in the chamber). The program will not consider mass transfer
{only momentum and energy transfer) between gaseous and condensed
combustion products. The program will calculate only the expansion of

uniform mixtures (the ideal engine case),

In the program, the initial data line required to start the character-
istic calculations is obtained from an appropriate transonic analysis which
utilizes the results of the one-dimensional two-phase reacting gas pro-

gram. The characteristic equations governing the fluid dynamic variables
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are integrated using a second order (modified Euler) explicit integration
method while the chemical and particle relaxation equations are integrated
using a first order implicit integration method to insure numerical sta-

bility in near equilibrium flows. The program analysis is given below.

The conservation equations governing the inviscid axisymmetric flow
of a two-phase reacting gas mixture can be simply derived utilizing the

following assumptions:
e There are no mass or energy losses from the system.

. The gas is inviscid except for its interactions with the
condensed particles.

° Each component of the gas is a perfect gas.

° The internal degrees of freedom (rotational and vibrational)
of each component of the gas are in equilibrium.

° The volume occupied by the condensed particles is
negligible.

° The thermal (Brownian) motion of the condensed particles
is negligible.

° The condensed particles do not interact.

] The condensed particle size distribution may be approxi-
mated by groups of different size spheres.

° The internal temperature of the condensed particles is
uniform.

° Energy exchange between the gas and the condensed particles
occurs only in convection.

° The only forces on the condensed particles are viscous
drag forces.

° There is no mass transfer from the gas to the condensed
phase during the nozzle expansion.

These assumptions have been previously used in all studies of

13

reacting gas8 and gas-particle”” nozzle flows.,



The conservation equations are derived here in the form

used in the present analysis.
For each component of the gas the continuity equation is
1 =
(piu)x + ?(rpiv)r = wir* (5-144)

where the axial coordinates (r, x) have been normalized with the
throat radius. Summing over all components of the mixture, the

overall continuity equation for the gas is obtained

(pu) + Hrpv)_ = 0 (5-145)

By use of the above equation, Equation (5-144 can be rewritten as

wir*
u(ci)x + v(ci)r = 5-146
For each particle size group the continuity equation is
(ppi upl)x + ( L pl)r =0 (5-147)
since there is no mass transfer from the gas to the condensed
phase.
The overall momentum equations for the mixture are
(uu + vu )+ . 7o, = -
p ) 1'21 Poi [Upilpiy * 'vpl(upli)r +P_=0 (5-148)
+ + . = -
p(mvx vvr) 12=1 ppl [p( pl)x+ v (Vpi)r] + Pr =0 (5-149)

The overall energy equation for the mixture is
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p [uhx + Vhr + u(uux + vur) + v(uvx + er)]

+2.p {u (i) + voslho )+ [u laps) +v oyl )r]

ji=1 P1 pi
(5-150)
+ v, [u Av )+ v _.(v .)]}:0
pi| pi' pi'x pi' pi'r
where for the gas phase
h = c.h, (5-151)
i=o '
and
T
h, = f C_.dT + h, (5-152)
i pi io
o]
while for each particle group
Tpi
and
Tpi
hpi =L CppidT +h 4 AHpi, Tpi >Tpmi (5-154)
For each component of the gas, the equation of state is
P. =p.R,T (5-155)
i i

Summing over all components of the mixture, the overall equation

of state for the gas is obtained

P = pRT (5-156)
where
R =2 cR, (5-157)
i=1



The particle drag equations are

9 i
upi(upi)x + vpi(upi)r =3 ;H‘ (u - upi) (5-158)

29 i
upi(vpi)x + vpi(vpi)r = Z:LZ' (v - vpi) (5-159)

and the particle heat transfer equation is

3 ke
u (hp1 ot vpi(hpi)r ——z— 1§(T . - T) (5-160)
i pi

(15)

By standard methods, the characteristic relationships for

the conservation equations can be shown to be

&=tan9 (5-161)
V¢ 4P C

—-— = -1
d— t o “Tos g & (5-162)
Yﬂg-%ﬁzco‘:edx (5-163)
.L;:I'_%E-%.T:E;?de (5-164)

wir*
de; = 5o dx (5-165)
along streamlines,

dx _ cot(o + ( )
T - °° ) 5-166
9p13= G[ ] (5-167)

along left running characteristics,
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a—- = tan (0 a)

% )Hax - do

-15- = -G (E -
along right running characteristics,

dr_.
H—E = tan 0 i
xpi )
9pf Tk
u.pi dupi = z;L-z-(V cos 0 - u ) dxpi
pi pi
9 p.f ;T*
pi -z——z-(V sin @ - v ) drpi
P1 P1
3ug

- i C
un dhp; = - ;—rg— = (To; - T)axy,
Pt pt
g ;=0

along particle streamlines, where

1/2
V = (uz + VZ)

= ta 'H%)
a = sin_l(]lw-)

RT)17 2

=C§;€LR
C =) c
P~ &

F = cos @ - sin 0 cot (0+a)

=Y
Slina cos a
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(5-171)

(5-172)

(5-173)

(5-174)

(5-175)
(5-176)

(5-177)
(5-178)

(5-179)

(5-180)

(5-181)

(5-182)



H = cos 0 tan (0 -a) - 8in 0 (5-183)

1/2

V.. =(u .2+v .2) (5-184)

P p1 p1

v .
0. =tan"! (B} (5-185)

pi u_.

p1
K.=V .(cos 9_.cos 0+ sin0_, sin 0) (5-186)

p1 228 p1 Pl

A= waRT B (5-187)

1 S
_ Y'l rk - 9 1 2 Z_
Bl pr{Z e X Ppi[z —Eg VRV -2VE)

3}13
—FP—(T .-'r)]} (5-188)
Pl
pi’ pi
r*% I"'fl
C=-22% p , —E— (V-K_,) (5-189)
P i=] plm . T p
pi”pi
- r* 9 *fpi 1 Ve 0 .-8in0 cot(0+ﬂ}
D=A*3v. Ppiz—E—z‘{ - pleos0p;-sindy; Y
i=1 m_.r_. (5-190)
pi pi
r* 2 p'fi M 0 .tan(0-~y)-sin0@
E=A+ﬁi=1ppiz—1’-—z{1-ﬁ;[cospan -¥ J}(s 191)

m_.T_.
pi pi

and where the particle stream function wpi is defined by

r .p.,V
pi pi pi"pi pi
The above form of the characteristic relationship remains
determinate when the streamline is horizontal, when the left running
characteristic is vertical, or when the right running characteristic
is horizontal. Rarely (if ever) will the inverse of the three situations

occur in nozzle flow field calculations.
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The net species production rate w, for each species considered
in the program is governed by the same equation as those for the one-

dimensional reacting gas case (see pages 5-5 to 5-7).

To solve the preceeding equations, one can, in principle, use
perturbation methods to obtain asympotic expansions for the subsonic
and transonic flow fields as has been done for nonreacting gas flows. (4)
Such solutions are extremely complex for nonequilibrium flows however,

and it is doubtful if more than one term of the expansion can be

determined.

An alternate method of constructing nonequilibrium initial lines
for characteristic calculations is to determine the effect of nozzle
curvature on the gas flow field using an average expansion coefficient
to approximate the nonequilibrium expansion process through the throat
region and to then calculate the effect of the altered gas flow field on
the relaxation processes. This method (which is the equivalent to the
first step of a relaxation process) has been successfully used by Kliegel
and Nickerson  in two-phase flow nozzle studies to predict nozzle
inlet angle and throat curvature effects, It was chosen for use in this
program because of its relative simplicity and proven accuracy. The
calculations performed in constructing the nonequilibrium initial lines

used as starting lines for the characteristic calculations are summarized

below,

For the gas flow field, a one-dimensional calculation is performed
from the chamber to the throat for the propellant system and nozzle
geometry of interest using the One-Dimensional Two-Phase Reacting
Gas Pr—ograrniz and tables of filow properties (€, V, T), species
concentrations (ci) and particle properties (Vpi' Tpi) are constructed
as a function of pressure starting at the throat. An average expansion

coefficient in the throat region is calculated from

1 P
:11f:ﬂ!1_il. (5-193)

<
1

In (p,4/py)



where tne subscripts 1 ana 20 refer to the first and last table entries.

An axisymmetric uniform expansion transonic flow field is constructed

for the nozzle ot interest using this average expansion coefficient and

the second order analysis of Kliegel and Quan (Reference 4 and Section 4).
The pressufe, location and gas flow angle variation along the constant
pressure line originating at a specified wall point are determined. The
remaining gas flow properties (€, V, T) and species concentrations

(ci) along tne constant pressure line are determined by interpolation on
pressure from the tables previously constructed with the One-Dimensional

Two-Phase Reacting Gas Program. '

For the particle flow field, the particle flow angle variation along

the above constant pressure line is calculated from the constant fraction -

lag relationsnip

8 Mpi’pf dv
a -1 Jl + § -II-F—rr cot Opi a;z -1
u pi

Ix J > tan® =1 (5-194)

8 MpiTpi du

1+7~7u ¥ dx -1
pi

where %}E‘ and % are the gas velocity derivatives along the particle

streamlines. These derivatives are calculated from

da db db dc dc
du _ v 1 o, 1 ° ., 2 1_2 + 1 o ., 2 r2
dx dz T R \dz~ dz— ;2 dz @ T dz

3 de (5-195)
+ 4 4 +1— 2b.r + 1 2c.r + 4c¢ r3 tan® }
i az r R 2 R 2 4 pi
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a a
dv _ 1 [9 .1 db, +db3 3,1 (S, N
xR\ T TR\ Tt T )2\ qz

o

+C55 +1 + (b +3br)+ (c+3cr2+
Iz T =3 R _Z 3
i \/'ﬁ

csr J}tan Opi (5-196)

where the coefficients a. Y bi’ and c, are those derived by Kliegel and

(4)

Quan.

The particle velocities and temperature along the constant

pressure line are calculated from

u_. =V _.(0) cos 0 . (5-197)
pl pl pl

v_.=V_.(0) sin 0 _. (5-198)
pl p1 pl

T .=T_.(0) (5-199)
p1 o2

where the values on the initial line axis [Vpi(O) and Tpi(O) are
determined by interpolation or. pressure from the tables previously
constructed with the One-Dimensional Two-Phase Reacting Gas

Program.

The axis particle density p pi(0) is evaluated by integrating the
particie continuity and drag equations along the axis using Kliegel and
Quan's second order analysis for the gas velocity and relating the axial
particle velocity to the gas axial velocity through the constant fractional
lag relationships. The particle densities along the constant pressure

line are then calculated from

p _.=p_.(0) (5-200)



The constant pressure line is then integrated to determine the gas

mass flow m where

wall
m =2w _/ rpV(cos 0dr - sinf@dx) (5-201)
axis
and the particle limiting streamline location is determined from

the particle continuity relationship across the initial line
limiting
streamline
mW_ . =27 rp .(u_dr-v_.dx) (5-202)
p1 p1 p1 p1
axis

where Wpi is particle to gas mass flow ratio for the ith particle

size group.

The above method of constructing initial lines for nonequilibrium
characteristic calculations accounts for the dominant curvature effects
on the gas and particle flow fields through second order and ignores
the curvature effects which would cause a constant pressure line,
chosen as the initial starting line, not to be a constant property line.
By comparing the above method of constructing nonequilibrium initial
lines with a rigorous expansion method, it can be shown that the two
methods are equivalent through the first order (the effect of curvature

—3/2)'

The great advantage of the current method is its simplicity in accounting

causing departure from constant property lines being of order R

for the dominant curvature effects and the fact that tne flow field varies
smootnly across the initial line (i.e., there are no sudden energy
release changes or flow field adjustments downstream of the initial line
caused by incompatibilities between the gas and chemical properties
along the initial line). Thus inaccuracies in the initial line construction
used in the present program do not cause physically unreal expansions,
compressions or shocks in the characteristic calculations. This later
advantage is extremely important since experience has shown that even
small incompatibilities between the gas and chemical properties alorig
the initial line can cause very large, physically unreal, flow field

adjustments downstream of tne initial line. The present method also

5=y




conserves energy across the initial line which is only approximately

conserved in other methods.

The above method of constructing the particle properties makes
use of the constant fractional lag relationships to relate the gas and
particle flow fields. These relationships can be simply derived from

the particle drag equations along particle streamlines.

du N 9 p.f .r*
WL Tz — B (w-uy) (5-203)
pi m .1 P
p1 pi
dv_. pf .r*
pr _9 pi -
) = v-v.) (5-204)
Upi dx Z m T 2( pi
P1 p1
These equations can be rewritten as
dK, f .r*
2 du i 9 Ml 5-205
Kext¥va ‘ir'n"?r_z - K) ( )
pi pi
dL, f r* 1-L
dv i_ 9" ipi i 5-206
Lisxtax = 2 2 g— @0l ( )
m_.r_. i
P1 pi
where
u_.
K, = P (5-207)
i
L, =2 (5-208)
1 v
u

d Ki vdlL,
In the throat region of a nozzle, the terms T and I L are

negligible compared to the other terms. Neglecting these terms the

above equations can be solved for Ki and Li where

f r*x -1 r2
9 Ml du 8 Mui'ni 4d
K. = 8 pipi du_ (5-209
77— Ix Ity g1 &} )
pi pi P
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g b E;T* aw\ ! 8 Mpi” f dv (5-210)
Li_z_L"Ztangpi H§> 1+§ ﬁ;;L*COtgpia_i-l

Since
Li
= 5-211
tan Opi -R: tan @ ( )

one obtains by use of the above relationships

\/ 8 mpirpir dv
- _— - 5-212
du <dv> 1 1+ I Ipir* cot 0pi dx 1 { )

dx \dx, tan 6 =1
/ 8 m ir f du
l+§- “——F—%-pir I -1

which is Equation (5-194)

After constructing the initial data line, the reacting gas character-
istic relationships (Equations (5-161) through (5-174)) are integrated.
Characteristic equations are generally integrated using second-order
explicit methods which are generally simpler than implicit methods. It
has been shown in Section 3, however, that implicit integration methods
are superior to explicit methods for integrating chemical relaxation
equations. The particle properties are also governed by equations of the
relaxation type. Thus, in the present program, the fluid dynamic equa-
tions are integrated using an explicit modified Euler method while the
particle and chermical relaxation equations are integrated using a first

order implicit integration method.

In perfect gas flows, the flow is isentropic along streamlines and
the streamline relationships can be integrated in close form. Thus, in
calculating supersonic perfect gas flow fields using the methods of
characteristics, only the Mach line relationships need be numerically
integrated to construct the flow field. In the calculation of supersonic
reacting -gas flow fields, the flow is nonisentropic along streamlines
and the streamline relationships must be numerically integrated as well
as the Mach line relationships. In two-phase flows, the condensed phase

does not follow the gas streamlines due to particle inertia and the
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calculation becomes even more complicated since a separate particle

streamline must be considered for each particle present in the flow.

In numerical calculating flow fields using the method of character-
istics only two (previously calculated) known points are directly usable
in calculating a forward point. In nonequilibrium flows, however, more
than two known points are required to calculate a forward point so that
a choice must be made as to which points in the flow field will be used
directly and which will be interpolated. Inthe reacting gas program, (14)
the back streamline point and one characteristic point were chosen as
the known points since even small interpolation errors in species con-
centrations will cause serious stability and accuracy problems in the
numerical integration of the chemical relaxation equations. This choice
avoids interpolation for the species concentrations in that only the fluid
dynamic properties (velocity, temperature, etc.) and the total entropy
production term due to all nonequilibrium effects need to be interpolated
at one of the back characteristic points. Since these quantities are all
slowly varying across the characteristic mesh, they can be interpolated
quite accurately. In the present two phase reacting gas nonequilibrium
program, the same basic numerical methods are used by choosing as
known points the gas streamline point and one characteristic point and
interpolating for the other characteristic point and the particle stream-
line points. A complete derivation of the numerical methods used in

the program are given below.
Consider the flow field shown in Figure 5-3.

The fluid dynamic equations are integrated as follows. Between
points 3 and 4, the gas streamline characteristic relationships are

integrated as

r3 = r4 + tan[zl(e4 + 93)]()(3 - x4) (5-213)
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Figure 5-3. Flow Field Calculation

P P, N-1 C C 1
4,2 2N P4 n-k 4 3
Vi © {V4 R S FZ [1 - (f”f) ] *<:os 6 4+cos 93) (x3-x4)}-2-

(5-214)
L)
2lvy V3
I34 1 A4 A3 (5-215)
P3 = 94(5—) €XP |~ 2 lcos 0 * cos 0O (x3 - x4)
4 4 3
1fvart vao!
p 2\ Yqg Y3 B
B
- 3 1 4 3 (5-216)
T, =T,|= -— -
3 4(P ) exp 2\lcos O + cos 0 (x3 x4)
4 4 3
where
Py
In{== (5-217)
Py



The integration formula (5-213) relating the coordinates of points
3 and 4 was chosen since it is exact if the streamline is a circular arc
between points 3 and 4. This is an excellent approximation over one
mesh step. In integrating the momentum equation to obtain Equation
(5-214), it was assumed that P varies as pN along the streamline.
Equations (5-215) and (5-216) are obtained by using the energy equation
and the equation of state. In obtaining formulas (5-214), (5-215), and
(5-216), the coefficients ‘)’-1, (y-1)/Y, Alcos 6, B/cos 6, and
C/cos 6 | appearing in these equations were assumed to be equal to
their average value between points 3 and 4. These integration formulas
are exact for nonreacting, one-phase, constant-gamma flows (note that

in this case N equals ¥ and A, B, and C are zero).

Between points 1 and 3 the right running characteristic relation-

ships are integrated as

1
r3=rl+tan[z(61+63 -al —03):](x3-x1) (5-218)
1
P3 = }?1 exp - -Z—(ElGlHl + E:‘}G3H3)(x3 - xl)
1 GlHl sin 91 G3H3 sin 63
"2 ¥ t—= (x3 - x))
1 3
1l . 5-219
- 3Gy + G308, - 0)) ( )

The integration formula (5-218) relating the ccordinates of points
1 and 3 was chosen since it is exact if the right running characteristic
is a circular arc between points 1 and 3. This is an excellent approxi-
mation over one mesh step. In integrating the right running character-
istic relationship to obtain Equation (5-219) the coefficients (EGH, GH
sin 8/r, and G) appearing in Equation (5-169) were assumed to equal
their average value between points 1 and 3. This is an excellent
approximation over one mesh step. If point 3 is an axis point then T,
and sin 93 are zero and the indeterminate quantity sin 93/r3 appearing

in Equation (5-219) is approximated by
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3 tan 91

r; T T+ (X3 = %) tan 0 (5-220)

Equation (5-220) is obtained by extrapolating for the ratio sin 6/r on the

axis, assuming that the flow near the axis is a source flow.

Between points 2 and 3, the left running characteristic relationships

are integrated as
1
x3 =x2+cot[z(62+63+az+a3)](r3 - 1'2) (5-221)
1 -

1 GZFZ sin 92 G3F3 sin 03
-3 + - (r3 - rz)
r2 3

1 -
- 3(G, + G,)(8, - 8,) (5-222)

The integration formula (5-221) relating the coordinates of points 2
and 3 was chosen because it is exact if the left running characteristic is
a circular arc between points 2 and 3. This is an excellent approximation
over one mesh step. In integrating the left running characteristic rela-
tionship to obtain Equation (5-222), the coefficients (DGF, GF sin 6/r,
and G) appearing in Equation (5-167) were assumed to equal their average
value between points 2 and 3., This is an excellent approximation over one
mesh step. If point 2 is an axis point, then r) and 8, are zero and the
indeterminate quantity sin 8,/r, appearing in Equation (5-222) is that

quantity previously calculated for the axis point using Equation (5-220).
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Equations (5-219) and (5-222) can be combined to yield

1
- 1
G3 +-2(G1 + G

P\ 1
63 ) ln(P—) + E(Gl + G3)e1 +E(GZ + G3)62
2

1

1
+= -
3(D,G,F, + DiGyFy)ry - 1))

272 2 3
r, * ry )(r3 - x-Z)

2

1(Gl-" sin 6 G3F3 sin ©

1
+3(E G H) + E;GiH ) x; - x))

G,H, sin 6 G,H, sin 6
1
( 1r1 1, 93 3) (xy - %)) (5-223)

v

1 T3

In the various point calculations, Equation (5-223) is solved for 83
and either Equation {(5-219) or (5-222) is solved for P3, depending on

whether point 1 or point 2 is the known data point.

It can be shown that use of these integration equations results in an
error of order h3 where h is the integration increment (mesh size).
Since these integration equations involve the flow properties at the un-
known point (point 3), they must be solved by iteration. The modified
Euler iteration method is used to solve these equations, and the various
point calculations are similar to those described in Section 5. 3 of Rei~

erence 14,

In integrating the chemical relaxation equations, it is advantageous
to employ an implicit method as discussed in Section 3. A first order
implicit integration method was chosen for use in the present program to
integrate the chemical relaxation equations. The derivation is identical to
that shown on page 5-26, with Equation (5-120) being the resulting integra-

tion formula.
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To integrate the particle flow equations, the following procedure is
used, The equation relating the coordinates of an ith particle streamline
[(Equation (5-170)] can be integrated using second order explicit method.

The integration formula is

1
r3 =Tyt tan[? (opi4i * gpi3i)] (x5-%y,) (5-224)

which relates point 4i to point 3 (see Figure 5-3).

In calculating the particle density Ppi from Equations (5-174) and
(5-192), it is convenient to use an integration formula obtained by making
a mass balance between mesh points. By equating the mass flow between
points 4i and 2 to the mass flow between points 3 and 2 (there is no mass
flow of ith particles between points 4i and 3 since these points are the ith
particle streamline points), one obtains an integration formula for the

density of the ith particle group at point 3.

2 2 -1
Ppi, - [“pi3(r3 - Tp) - Vpi, (x5 = xp)ry + rz’]

2 2
- - - .+
{ppi4i [upi4i(r4i rp) Vpiy, (xg;-%, ) gy rz)]

2 2 +
— v (x, b x,) (T, T T,)
+ Ppiz [upiz(r‘}t1 r3) pi, 41" *2 4i 2

Vi, (xg - x,) (ry 4 rz’]} (5-225)

For the particle velocities Upi and v_: and the particle enthalpies

pi
hpi' the governing equations [ Equations (5-171) to (5-173)] are of the re-
laxation type. Hence the implicit method employed in integrating for the

chemical species is also used in integrating for upi’ v and hpi; Letting

pt’
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f .r*
'J. .
4 =% —E (5-226)
m .r' . u .
Pt p1 p1

g; 2
1 C i (5-227)
rnpirpi upi ppi r
and using a formula parallel to Equation (5-115), one obtains
Au_, = [f(u-u )] Ax (5-228)
pi [1 pi pi
xpi +Axpi
av_. =[Tilv - v )] Ax (5-229)
pi [1 pi pi
xpi + Axpi
— 5-230)
= -T , T . #T (
ATp1 [gi(Tp1 EI . 4 A ax p pmi
pi pi
= g .- T ax ., T . =T .
Ahpi [Cppigi (Tpml )] x . +8x .xpl pi pmi
po B (5-231)

Equation (5-230) is used when the particle temperature is changing, and

Equation (5-231) is used when the particle is in the state of solidification.
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6. PROGRAM LIMITATIONS

To operate any of the four computer programs developed, one should
be thoroughly familiar with the Program User's Manual which is written
as a separate section in the documentation report for the program. The

general limitations of the programs are summarized below.

e The species and reactions considered in the programs
have been verified only for the propellant systems and
mixture ratios listed in Table 2-1. For other propellant
systems, one should verify that the significant chemical
species and reactions are included in those considered
by the program.

e To run a nonequilibrium case, one must first determine
(either by making an equilibrium run or from some other
source) whether condensed phase (liquid or solid) exists
at the initial point between the chamber and the throat.
In the one-dimensional two-phase program, the amount
of condensed phase is internally determined by the pro-
gram and is equal to the equilibrium value at the initial
point. In the axisymmetric two-phase program, the
amount of condensed phase must be input.

e In the one-dimensional two-phase program, only one
metal element can be considered in a propellant system.

e In the axisymmetric two-phase program, the gas is a
perfect gas of constant specific heat ratio.

e If one runs extreme physical cases (such as extremely
large on small particles or physically unreal kinetic rates),
the program integration step size and mesh control parame-
ters may have to be adjusted from nominal values to insure
accurate calculations.

® Accurate chemical reaction rate inputs are required for
the non-equilibrium runs. The thermochemical data are
semi-permanent, i.e., they have already been input, and
are taken from the December 1966 revision of the JANAF
Tables. These data should be updated when better informa-
tion becomes available.

e The nozzle walls should be smooth and not have
discontinuities.

e The nozzle inlet geometry needs to satisfy the relation VEC
<1+ (R* + RI) (1 - cos 81) where EC is the contraction ratio,
R* is the normalized throat wall radius of curvature, RI is
the normalized inlet wall radius of curvature, and 61 is the
inlet angle.



e In the axisymmetric programs, the normalized throat
wall radius of curvature R which is used to generate
the transonic initial data line should have a value not
less than 2. 0, since the transonic solution becomes
inaccurate for smaller values of R.

e The proper integration step size depends on the nozzle
geometry and propellant system. In general, an optimum
initial integration step size is about 0. 025 and the fractional
incremental error input should be of order 0. 001.
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7. ILLUSTRATIONS OF RESULTS

The results of the four programs developed are illustrated in Fig-
ures 7-1 through 7-14 and Table 7-1.

Figures 7-1 through 7-6 compare the equilibrium, frozen, and
kinetic results using the One-Dimensional Reacting Gas Program.7 The
case corresponds to the propellant system of NZO4/A50 at a mixture ratio
of 2.0 and to a nozzle of typical geometry. It is seen that the kinetic re-

sults fall between the equilibrium and frozen solutions in general.

Figures 7-7 through 7-10 illustrate the results obtained from the
One-Dimensional Two-Phase Reacting Gas Progra.m.12 The case cor-
responds to a propellant system with liquid A1203 particles in the chamber.
It may be noted from Figure 7-10 that the kinetic performance is below the
frozen performance calculated for gas- particle equilibrium; this is due to

the performance loss caused by particle lag,

Figure 7-11 illustrates the two-zone results of the Axisymmetric
Reacting Gas Progra.m.14 The case corresponds to the propellant system
of NZO4/A50 at an overall mixture ratio of 1. 6. It is seen that the perfor-
mance varies significantly with the outer-zone stagnation temperature,
which is a function of the outer-zone mixture ratio, and with the fraction

of mass flow in the outer zone.

Figures 7-12 to 7-14 and Table 7-1 pertain to the Axisymmetric Two-
Phase Perfect Gas Program17 and are taken from Reference 13. Table 7-1

is a summary of the measured and calculated nozzle efficiencies of six

conical nozzles. In Figures 7-12 to 7-14, Isne is the ideal specific impulse.

Figure 7-12 shows a comparison of the experimental and calculated effect
of changes in nozzle throat geometry. For Figure 7-12, the nozzles con-
sisted only of a convergent section; the nozzle inlet geometry was fixed
and the wall radius of curvature upstream of the throat was varied. Fig-
ure 7-13 shows a comparison of the experimental and calculated effect of
changing the nozzle inlet angle. For this figure, the nozzles had identical
throat and exit cone geometries and the wall inlet angle from the chamber
wall was varied. Figure 7-14 compares the experimental and calculated

effects of nozzle contouring. For this figure, the nozzle inlet and throat
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section were identical; the exit cones were the same length and had the
same expansion ratio but different wall contours. From these figures
and Table 7-1, it is seen that the calculated, heat, friction, and expansion

losses reasonably account for the observed efficiency losses.
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8. CONCLUDING REMARKS

Four computer programs have been developed for the analytical
predictions of delivered specific impulse under NASA/MSC contract NAS
9-4358. These programs are the One~-Dimensional Reacting Gas Non-
equilibrium Performance Program, One-Dimensional Two-Phase Reacting
Gas Nonequilibrium Performance Program, Axisymmetric Reacting Gas
Nonequilibrium Performance Program and Axisymmetric Two=-Phase
Perfect Gas Performance Program. For each of these programs, a
two-volume program documentation report containing a complete engineer-
ing and programming description of the program has been issued (Refer-
ences 7, 12, 14, and 17).

Three analysis reports have also been issued. They pertain to the
study of chemical species and chemical reactions (Reference 1), the
transonic analyses (Reference 4), and the axisymmetric two-phase
reacting gas nozzle flows analysis (Reference 21). Based on the analysis
of Reference 21, the major components of an axisymmetric two-phase

reacting gas program have been programmed also

To operate any of the computer programs developed, one should be
familiar with the appropriate program documentation report which in-

cludes the user's manual and a sample case,
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