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SOLAR W I N D  DISTURBANCES ASSOCIATED W I T H  FLARES 

John M. Wilcox 

Space Sciences Laboratory 

University of California 

Berkeley, California 

Abstract 

The s t ructure  of the quiet solar wind and interplanetary 

magnetic f i e l d  i s  reviewed t o  provide background and per,spec- 

t ive  fo r  t he  discussion of solar wind disturbances associated 

with f l a r e s .  Corotating structures with a recurrence period 

of about 27 days must be distinguished from structures  d i r ec t ly  

produced by f l a r e s .  Flare-induced discontinuities have been 

interpreted as low Mach number shock waves; i n  one such event 

(which appears t o  be f a i r l y  typical)  the so la r  wind velocity 

increased from 340 t o  385 km/sec, the  density increased from 

9 t o  23 protons/cm3, and the average temperature increased 

from 3 x 10 

t a r y  magnetic f i e l d  strength increased from 12.2 t o  20.8 x loe5 
gauss, and the  r m s  deviation of the  orthagonal components of 

the f i e l d  approximately doubled. Many interplanetary shock 

waves appear t o  be decelerated as they expand and propagate 

through the  solar wind plasma. The most reasonable interpre- 

t a t i o n  appears t o  be i n  terms of a,n intermediate strength 

shock wave with an energy input i n  the range of lO3O t o  1032 

ergs. 

4 t o  8 x lo4 OK. I n  another event the  interplane- 
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During most of the interval  i n  which the interplanetary medium has been 

observed by spacecraft the sun has been near the minimum of i t s  11-year cycle, 

and the opportunities for  observing solar flare-induced disturbances have 

likewise been a t  a minimum. 

the interplanetary medium must  take into account i t s  highly structured nature. 

During most of the observations the large-scale structure of the interplane- 

tary magnetic f i e l d  can be characterized i n  terms of sectors having appre- 

ciable angular extent. Within each sector the average f i e l d  direction i s  

approximately along the Archimedes sp i r a l  direction, bu t  the sense of the 

f i e l d  i s  predominantly e i ther  toward the sun or  away from the sun. 

lu t ion  with time over an interval of several years of the interplanetary 

sector structure (1) i s  shown i n  Figure 1. 

sector the solar wind velocity tends t o  increase and i n  the following por- 

t ion  of a sector the velocity tends t o  decrease. 

there  occur discontinuous jumps i n  the direction of the interplanetary mag- 

ne t i c  f i e ld ,  and sometimes i n  other solar  wind quantit ies.  When an attempt 

i s  made t o  associate a particular disturbance i n  the interplanetary medium 

with a part icular  solar f l a r e  th i s  structured nature of the medium must be 

considered. 

the  sun, and are  not t o  be assrlciated with a par t icu lar  f l a r e  b u t  ra ther  

with some quasi-stationary structure on the  solar surface. 

(2) propose a model of the magnetic properties of s o l a r  streams, and make 

the following comments with regard t o  flare ident i f icat ion.  

t h a t  although the energy spectrum of the pa r t i c l e s  leaving the sun becomes 

tremendously more energetic during a f l a r e ,  the high velocity par t ic les  

emitted a t  tha t  time are  primarily not responsible for  the large-scale geo- 

magnetic event tha t  sometimes follows. Rather, as f a r  as i t s  relat ion t o  

A discussion of flare-induced disturbances i n  

The evo- 

In  the preceding portion of a 

A t  the sector boundary 

Many disturbances (some of them rather  abrupt) corotate with 

B a l l i f  and Jones 

“It i s  our view 
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geomagnetic ac t iv i ty  i s  concerned, the  f l a r e  i s  usually j u s t  an indicator of 

active regions. 

regions tha t  have the characterist ics necessary t o  produce the plasma stream 

responsible fo r  geomagnetic act ivi ty .  'I 

been incorrectly related t o  specific geomagnetic storms. There are almost 

always several geomagnetic storm-producing streams engulfing the earth on 

each solar rotation. No mtter where the  flare occurs on the  solar disk one 

need not w a i t  long t o  observe an earth disturbance of some sor t ."  

scale structure of the interplanetary medium has recently been reviewed (l), 

and we suggest t ha t  i n  the analysis of any flare-associated disturbance i n  

the interplanetary medium the large-scale structure obtaining a t  the pa r t i -  

cular time must be carefully considered. 

Some of these active centers are associated with unipolar 

"Very l i ke ly  many solar f l a r e s  have 

The large- 

We proceed now t o  a discussion of several spacecraft observations of 

flare-associated disturbances. 

change associated with a sudden commencement indicated the presence of a 

col l is ionless  shock i n  the interplanetary medium. 

the  propagation of flare-associated shock waves fo r  several cases. 

model of a b l a s t  wave (i.e. the energy i s  deposited i n  the medium i n  a time 

short  compared with the t r a n s i t  t i m e  t o  1 AU) the  interplanetary l i nes  of 

Gold (3)  first pointed out  t ha t  the  abrupt 

Parker (4) has discussed 

In one 

force are swept up by a high velocity plasma stream. 

have been given by Nishida ( 5 )  and Dryer (6). 

magnetic shock wave structure has recently been given by Colburn and Sonett 

(7). 

ated with a shock wave propagating through the solar wind, but can also be 

associated with a contact surface i n  the solar wind. There i s  a net flow 

of plasma through a shock, while there i s  no net flow of plasma through a 

contact surface. Thus a contact surface i s  a separation of two different 

Further discussions 

An extensive review of the 

These authors point out that  a geomagnetic impulse need not be associ- 
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plasma s ta tes ,  and i s  stationary in  the sense tha t  it does not propagate 

through the plasma. 

planetary medium contains many well-defined filaments with diameters of the  

order of 10 km t ha t  connect back t o  specific regions on the solar surface. 

The boundary of such a filament may be an example of a contact discontinuity 

tha t  can produce an abrupt change i n  the interplanetary medium. 

McCracken and Ness (8) have suggested tha t  the inter-  

6 

The first  observations of shock-like phenomena i n  interplanetary space 

by Pioneer 5 i n  1961 and Mariner 2 i n  1962 have been reviewed by Colburn and 

Sonett (7) and w i l l  not be further discussed here. 

observations obtained i n  the rising portion of the present sunspot cycle. 

We w i l l  discuss some 

Interplanetary disturbances associated with the July 7, 1966 f l a r e  have 

been studied by Lazarus and Binsack ( 9 ) ,  Ness and Taylor (10) and Van Allen 

Observations of t h i s  event were available from ear th  satel-  ' and Ness (11). 

l i t e s  and also from Pioneer 6 which was considerably removed from the earth.  

Figure 2 shows the re la t ive  positions of Pioneer 6 and the earth as well as  

the interplanetary sector structure prevailing a t  the start of July 7. Mag- 

ne t i c  observations from Explorer 33 during the  in te rva l  of in te res t  are  shown 

i n  Figure 3. Notice tha t  a sector boundary rotated past  the spacecraft ear ly  

on July 8 and was accompanied by a large increase i n  the  magnitude of the  

interplanetary f i e ld .  

t o  21 b at 2106 UT on July 8 is  associated with an interplanetary shock wave. 

A similar increase was observed on IMP-3 at the same time, and i n  f a c t  the 

observations by IMP-3 and by Explorer 33 agreed during the interval  under 

consideration a t  most times t o  within a 8 i n  magnitude and 5' - 10' i n  

a i rect ion.  Since both s a t e l l i t e s  observed the shock a t  essent ia l ly  the same 

t i m e ,  the l i ne  between the sa t e l l i t e s  lay i n  the  plane of the shock surface. 

Figure 

A discontinuous increase i n  f i e l d  magnitude from 12 

shows the  re la t ive  positions of the two s a t e l l i t e s  as well as the 
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t race of the shock surface and the directions of the observed f i e l d s  before 

and af'ter the shock. 

Parker (4) has pointed out that  the shock thickness of an interplanetary 

b l a s t  wave might be of the order of the ion gyroradius. 

(11) observed tha t  the increase i n  the magnitude of the interplanetary f i e l d  

associated with t h i s  disturbance occurs within a period of f ive  t o  t en  seconds. 

Thus, a t  a velocity of propagation of 950 km/sec, the apparent 

Van Allen and Ness 

thickness of 

the t rans i t ion  region at the  shock front  i s  < 1 x 10 4 km. This thickness i s  

4 100 gyroradii for  protons of the  interplanetary medium, 

A t  t h i s  time there were extended gaps i n  the' telemetry acquisition from 

A t  1822 Pioneer 6 so tha t  no observations were obtained on July 6, 7 and 8. 

UT on J u l y  10 the f i e l d  magnitude observed on Pioneer 6 increased from 9 

t o  22 8 , and Ness and Taylor (10) suggest a plausible association with the 

J u l y  7 flare. 

association somewhat uncertain. If t h i s  association i s  correct it would mean 

t h a t  Pioneer 6 observed the flare-associated shock wave considerably later 

than it was observed at the earth i n  sp i te  of the  f a c t  t ha t  Pioneer 6 was 

closer  t o  the sun. 

d i f f i cu l ty  i n  propagating across the sector boundary and tha t  the sector 

pa t te rn  a t  2102 UT on July 8 may have looked as shown i n  Figure 5. 

O f  course, the extended gaps i n  Pioneer 6 coverage make t h i s  

Ness and Taylor suggest t ha t  the shock may have had 

The solar wind plasma observations of t h i s  event by Lazarus and Binsack 

The i n i t i a l  increase i n  density (9 )  with Explorer 33 are shown i n  Figure 6. 

during the l a t e  hours of July 7 and i n  the ear ly  hours of July 8 i s  at t r ibuted 

t o  the  passage of a magnetic sector boundary, rather than being related t o  the 

f l a r e .  The jump i n  velocity and density a t  2106 UT on July 8, coincident i n  

t i m e  with the magnetic changes previously discussed, i s  a t t r ibuted t o  a mod- 

e r a t e  shock. The velocity increased from 320 t o  430 km/sec and the proton 
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density increased from 4 t o  8/cm 3 , according t o  revised values given i n  (12). 

The high velocity plasma which extends f o r  a period of three days following 

the shock i s  at t r ibuted t o  "pusher" gas emitted by the f l a r e  i t s e l f .  

plasma observations on Pioneer 6 are shown i n  Figure 7. 

The 

Lazarus and Binsack 

suggest t ha t  the fac t  t ha t  the velocity observed a t  Pioneer 6 became large 

only a f t e r  July 10, combined w i t h  a long period of observation of high velo- 

c i t y  plasma a f t e r  the shock of July 8 a t  Explorer 33, tends t o  argue tha t  

the f l a r e  material was not missed because of the poor telemetry coverage. 

Lazarus and Binsack suggest t ha t  the f l a r e  par t ic les  were forced t o  push 

on the denser plasma contained i n  the sector boundary, and were thereby 

much delayed i n  t h e i r  appearance a t  Pioneer 6 .  On July 11 Pioneer 6 observed 

a number density r a t i o  of alphas t o  protons of approximately 0.12, an unusu- 

a l l y  high value. 

observations also. 

We shall f ind  t h i s  intriguing feature  i n  other spacecraft 

It does not seem t o  be possible t o  arrive a t  an unambi- 

guous description of the interplanetary configuration t h a t  obtained a t  the 

t i m e  of these interest ing observations, but they cer ta inly i l l u s t r a t e  the 

necessity fo r  consideration of the large-scale interplanetary patterns i n  

the  analysis of flare-associated disturbances. 

A recent report by Ogilvie e t  a l .  (13) describes interplanetary distur- 

bances observed on Explorer 34 with a plasma detector t ha t  analyzes both 

energy per unit  charge and velocity, and with a flux-gate magnetometer. 

This analysis has the  considerable advantage tha t  inasmuch as both plasma 

and f i e l d  observations are considered it i s  possible t o  more closely define 

the  physical conditions associated with disturbances. 

events, Explorer 34 was within the magnetosheath before the event and then 

During some of the 

i n  the  interplanetary medium af te r  the event, the interpretation being tha t  

t he  interplanetary disturbance has compressed the magnetosphere and returned 
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the s a t e l l i t e  t o  the interplanetary medium. 

sonable interpretation; s t i l l  the poss ib i l i ty  of e f fec ts  re la ted t o  proximity 

This appears t o  be a very rea- 

t o  the magnetosphere must be considered. 

structure may be associated w i t h  interplanetary disturbances. 

tangential  discontinuities are observed. 

of helium i n  th'e plasma i s  variable and larger  than tha t  observed at quiet 

times. 

This experiment shows tha t  a complex 

Both shocks and 

In  some disturbances the proportion 

This i s  a most interesting observation, the physical significance of 

which i s  not understood a t  the present time; the helium could, fo r  example, 

be associated with a driver gas. Some of the resu l t s  of Ogilvie e t  al. are 

shown i n  Figure 8 which i s  a distance-vs-time representation of the plasma 

flow near 1 AU which displays plasma velocity (sol id  l ines) ,  wave speed 

(dashed l i ne )  and the time separation of events associated with a class 3 

solar  f l a r e  tha t  began a t  0525 UT on May 28, 1967. 

t o  t rave l  from the  sun t o  the earth i s  found t o  be 735 km/sec. 

es t ing  structures t ra i l  behind the shock front.  

\ 

A mean speed fo r  the shock 

Several in te r -  

A tangential  discontinuity 

t ra i ls  the shock by about 0.05 AU; behind th i s ,  a t  roughly equal intervals  of 1 

0.02 AU are a second tangential  discontinuity and the leading and t r a i l i n g  

edges of a helium-rich plasma. The bulk velocity of the helium ion i s  equal 

t o  the bulk velocity of the protons t o  within a few percent, as shown i n  

Figure 9. 

helium/hydrogen r a t i o  reached a value of 0.17, as compared with a typical  

About 5 1/2 hours a f te r  the commencement of disturbances the 

range during quiet  times of 0.02 t o  0.05. 

Gosling e t  al. (14) have given an analysis and interpretat ion of two 

interplanetary discontinuities observed with hemispherical p la te  electro- 

s t a t e  analyzers on the Vela 3 sa t e l l i t e s .  Both discontinuities have been 

interpreted as shock waves, and both have been associated with solar f la res .  

A n  interplanetary disturbance observed on January 20, 1966 i s  shown i n  
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Figure 10. 

385 km/sec, the density increased from 9 t o  23 protons/cm3, 

temperature rose from 3 x 10 t o  8 x lo4 OK. 
changes as being consistent with a low Mach number shock wave traveling a t  

a velocity of 70 km/sec through the ambient solar wind. They suggest t ha t  

the  most l i ke ly  association w i t h  t h i s  disturbance was a class  2b solar f l a r e  

tha t  began a t  3253 UT on January 18. 

s ize  during t h i s  period occurred a t  1032 UT on January 17. 

18 f l a r e  was the source of the interplanetary disturbance, the mean t r a n s i t  

velocity of the disturbance from the sun t o  the earth was 1670 km/sec, while 

if the January 17 f l a r e  was the source then the mean t r a n s i t  velocity was 

685 km/sec. 

cantly exceeded the  measured velocity of the shock past  the s a t e l l i t e  and 

the  earth. 

1965 and i s  shown i n  Figure 11. 

from 330 t o  380 km/sec, the density increased from 6 t o  13 protons/cm3, 

the temperature rose from 3 x 10 t o  7 x lo4 OK. 
consistent with the changes t o  be expected from a low Mach number shock wave. 

The authors propose a flare-association with a c lass  2+ f l a r e  tha t  began a t  

0946 UT on October 4. 

velocity of the disturbance from the  sun t o  the earth was 2500 km/sec, which 

great ly  exceeded the measured velocity o f t h e  shock wave past the earth. 

it appears t ha t  interplanetary shock waves are decelerated as they expand and 

propagate through the quiescent solar plasma. 

Across the discontinuity, the velocity increased from 340 t o  

and the average 

4 The authors interpret  these 

The only other f l a r e  of comparable 

If the January 

For e i ther  flare, the computed mean t r a n s i t  velocity s ignif i -  

A somewhat similar interplanetary event was observed on October 5, 

Across the discontinuity the velocity increased 

and 
4 Again t h i s  disturbance i s  

If the correct f l a r e  has been chosen, the mean t r a n s i t  

Thus 

I n  an e a r l i e r  paper Gosling e t  al .  (15) discussed several observations 

of discontinuities i n  the solar wind i n  which the velocity has no appreciable 

change. These are interpreted i n  terms of the tangential  discontinuities 
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reviewed by Colburn and Sonett (7), and are not specif ical ly  associated with 

solar f la res .  

Dryer and Jones (12) have analysed several of the flare-associated dis- 

turbances discussed previously i n  terms of c lass ica l  b las t  wave theory f o r  

an ordinary gas. 

of four, whereas the actual  measurements give a density increase of about 

two. This resul t  clearly shows the shock t o  be of intermediate strength. 

Dryer and Jones estimate tha t  the energy deposited i n  the solar wind by 

the events considered i s  of the  order of lo3' t o  

A strong shock would cause a density increase by a factor  

ergs. 

Hundhausen and Gentry i n  a recent investigation (16) used the standard 

one-fluid hydrodynamic equations, assuming spherical symmetry about the sun. 

The forces due t o  solar gravity and the pressure gradient were included i n  

the  momentum equation. 

of aa adiabatic exparishi, with 

The energy equation was handled by the assumption 

The steady s t a t e  solar wind a t  = 5/3. 
1 AU was assumed t o  have a velocity of 395 km/sec, a proton density of 12/cm 3 

and a temperature of 5 x lo4 OK. 
centr ic  distance of 18 solar radii .  

Gentry the shock wave was in i t ia ted  a t  the inner boundary with a density 

jump of 4 (strong shock f o r  i' = 5 / 3 )  and with a shock velocity ( in  a s ta-  

t ionary frame) of 2000 km/sec. The t o t a l  energy input was 1.6 x 1 0 3 ~  ergs 

over an interval  of 4 hours. 

The inner boundary was placed a t  a helio- 

I n  one case examined by Hundhausen and 

For these conditions the shock prof i le  a t  

4.3 hours i s  shown i n  Figure 12 (velocity vs heliocentric distance) and i n  

Figure 13 (density vs heliocentric distance). 

cen t r ic  posit ion of shocks of varying energy as a function of time. The 

shock shown i n  Figures 12 and 13 i s  the lefimost of t h i s  family. Probably 

most flare-induced shocks i n  the interplanetary medium would correspond t o  

conditions a t  the right side of Figure 14,  and would therefore have appre- 

c iable  t r a n s i t  times t o  t h e  earth. 

Figure 1 4  shows the helio- 
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It appears tha t  i n  a flare-induced disturbance i n  the interplanetary 

medium we may expect the proton density t o  approximately double ( typical ly  

from 5 t o  10 protons/cm3), the average temperature t o  approximately double 

(typically from 4 t o  8 x lo4 OK), and the velocity t o  increase by perhaps 

50 t o  100 km/sec (typically from 350 t o  425 km/sec). 

f i e ld  magnitude ;nay increase by approximately a factor  of two, and the 

deviations i n  the f i e l d  increase considerably &er the disturbance. 

most reasonable interpretation appears t o  be i n  terms of an intermediate 

strength shock wave tha t  i s  decelerated as it propagates through the quies- 

cent solar wind plasma. 

The interplanetary 

The 

?2he region a f t e r  the disturbance may have a r ich  structure including 

A t  the  present t i m e  tangential  discontinutties and a helium-rich region. 

too few flare-associated disturbances have been studied t o  permit a general 

description. We can anticipate i n  the coming year or  two a cwsiderable 

increase i n  our knowledge of this subdect. 

I thank D r s .  A. J. Hundhausen and M. Dryer fo r  discussfons of work 

i n  progress, and D r .  Hundhausen for the loan of the motion picture shown 

i n  Tokyo. This work was supForted by the  Office of Naval Research under 

Contract Nonr 3656(26), and by the National Aeronautics and Space Administra- 

t i o n  under Grants NsG 243 and NGR 05-003-230, and by the National Science 

Foundation under Grant GA-1319. 
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Figure Captions 

Figure 1. 

overlayed on the daily geomagnetic character index C9, as  prepared by the 

Geophysikalisches Ins t i t u t  i n  Gdttingen. Light shading indicates sectors 

with f i e l d  predominantly away from the  sun, and dark shading indicates sec- 

t o r s  with f i e l d  predominantly toward the sun. Diagonal bars indicates per- 

iods of mixed polarity.  

i s  indicated (Reference 1). 

Observed sector structure of the interplanetary magnetic f i e ld ,  

A n  assumed quasi-stationary structure during 1964 

Figure 2. 

f l a r e  as deduced from preceding 27 days of IMP-3 measurements. 

tude of the f l a r e  on the sun i s  marked by an arrow (Reference 10). 

The interplanetary sector structure a t  the time of the July 7 

The longi- 

Figure 3. 

magnetic f ie ld  as observed by Explorer 33 on orb i t  number 1 during 5-12 July 

1966. 

t i ons  are magnetosheath measurements. 

Geocentric solar ec l ip t ic  hourly averages of the interplanetary 

Gaps i n  data correspond t o  poor quali ty data reception. Dotted por- 

I$ i s  plot ted a t  the top (Reference 10). 

Figure 4. 

and 33 during ear ly  July l966,and average magnetopause and shock wave posi- 

t i ons  as observed by Explorer 28. 

wave interplanetary magnetic f i e l d  directions and the t race  of the shock 

wave surface associated with the  geomagnetic sudden commencement storm begin- 

ning a t  2102 July 8 (Reference 10). 

Projection on ec l ip t ic  plane of t ra jec tor ies  of Explorers 28 

Superimposed are the pre-and poseshock 

Figure 5. 

curveland sector structure a t  the time of the July 8 SC a t  Earth. 

t o r  boundary i s  shown distorted in  the way one might expect following a 

A possible configuration of the interplanetary shock (dashed 

The sec- 
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sudden increase i n  a localized area of solar wind f lux  (both density and 

velocity) (Reference 10). 

Figure 6. 

measured a t  Explorer 33. 

ia ted with the passage of a magnetic sector boundary. 

on July 8 corresponds t o  the  passage of the shock. 

wind velocity stays high f o r  several days afterwards (Reference 9). 

Hourly averages of preliminary values of plasma parameters 

The large density on July 8 i s  probably assoc- 

The velocity increase 

Note tha t  the solar 

Figure 7. 

are  times during which no data are available. 

points are l inear  interpolations and are dashed on July 10 t o  indicate the  

long time between measurements. 

by hand processing of f ract ional  spectra and error  bars are included t o  show 

the  uncertainty i n  the parameters. 

and f a l l s  almost completely into one energy channel of the detector. The 

thermal speeds are most probable speeds assuming an isotropic,  Maxwellian 

velocity dis t r ibut ion i n  a frame of reference moving with the plasma. 

Plasma data observed from Pioneer 6. The cross-hatched areas 

The l i nes  connecting the data  

The l a s t  data points on July 10 were obtained 

On July 11, the plasma i s  relat ively cold 

Angu- 

lar measurements North and South of the ec l ip t i c  plane are roughly quantized 

t o  5' intervals.  

f 1'. 

Angular measurements i n  the ec l ip t i c  are uncertain within 

No correction fo r  aberration has been made (Reference 9) .  

Figure 8. 

a non-zero flux, plot ted against the proton bulk speed V 

V, , the center velocity of the helium velocity channel showing 

deduced from curve P 
f ~ t t ~ ~ x  to data obtained ;t t5e S ~ C C  tifie, ~hgp~vt3d ~ i t i h  p a l c r e r  34 ( ~ , e f -  I 
erence 13). 

Figure 9. A kinematic diagram of conditions near 1 AU on May 30, 1967, 

observed with Explorer 34, i l lus t ra t ing  the variety of structures that  may 



be associated with a flare-induced disturbance. 

are labeled t a d. 

(Reference 13). 

Tangential discontinuities 

Note the helium-rich region following the shock front 

Figure 10, Plot of solar wind positive ion velocity, direction, density, 

and temperature on January 19-20, 1966, observed with the Vela 3 satellites. 

0' flow direction is for flow radial from the sun. The representative error 

bars shown are estimates of the relative uncertainties involved in the various 

determinations. 

Guam is shown in the lower part of the figure (Reference 14). 

A trace of the horizontal component of the earth's field at 

Figure 11. Plot of solar wind positive ion velocity, direction, density, 

and temperature on October 4-5, 1965, observed with the Vela 3 satellites. 

Oo flow direction is for flow radial from the sun. 

bars shown are estimates of the relative uncertainties involved in the various 

determinations. 

Guam is shown in the lower part of the figure (Reference 14). 

The representative error 

A trace of the horizontal component of the earth's field at 

Figure 12. 

text) calculated in Reference 16. 

Velocity vs heliocentric distance for a particular shock (see 

Figure 13. 

text) calculated in Reference 16. 

Density vs heliocentric distance for a particular shock (see 

Figure 14. 

lrlon of time (~erereiice 16). 

Heliocentric position of shocks of varying energy as a func- 

A. * -_- 
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