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ABSTRACT

Th1s report describes the definitions of the variables and the

works which conta1n nodes of the EXCLUSIVE-OR type and branches which
have both a probability and a time associated with them. The time
associated with a branch can be a random variable. The program calcu-
lates the probability, the expected time and the variance in the time
to go from each source node of the GERT network to each sink node.

Programs have been written in FORTRAN II and FORTRAN IV and
have begn‘exergised on the IBM 1130, GE 225 and CDC 3400 computers.
This;;épOkt details the methods used in these programs. Emphasis has
been placed on storage conservation. Methods for determining the
loops and paths of a network are described. The equations necessary
to calculate the values associated with the topology equation from
loop and path values are presented. Flow charts and FORTRAN listings
are given for each subprogram. An analysis of the size of each array
is made and the relationships between dimensioned variables is discus-
sed. A method for obtaining results for large networks by segmenting
the network is presented at the end of this report.

The program described in this report has been submitted to

COSMIC.
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DEFINITIONS AND PROCEDURES EMPLOYED
in the

GERT EXCLUSIVE-OR PROGRAM

S ST T Introduction

Purpose

A digital computer program which analyzes GERT networks contain-
ing only EXCLUSIVE-OR nodes was developed at the RAND Corporation. (1,
pp. 81-95). A user's manual (2) for a modified version of the GERT
EXCLUSIVE-OR node program details the operational procedures involved
in using the program. This report presents the definitions and computer
procedures used to analyze networks with EXCLUSIVE-OR nodes.

The modified program exists in three functionally identical
versions: a FORTRAN II version which has been run on the GE 225 computer,
a FORTRAN IV version (without logical variables) which has been run on
the IBM 1130 computer, and a FORTRAN IV version which has been run on
the CDC 3400 computer. The basic version that will be discussed here
is the IBM 1130 version since it differs from the GE 225 version only in
the input-output statements and from the CDC 3400 version only in the
logical transfer statements.

Background

The GERT EXCLUSIVE-OR program determines the source nodes, the
sink nodes, the paths connecting the source nodes to the sink nodes, and
the loops of a network. The standard output from the program includes
appropriate problem identification headings, the paths and loops of the

network, the probability of realizing a sink node from any source node,
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and the mean and variance of the time to realize a sink node, given that
the sink node is realized and given an initial source node. The options
exist to: 1) delete the Toop and/or path output for large or complex

networks; 2} delete Toops with low probabilities of being realized; and

3)766fﬁ$1§2;;£62 odgbﬁf;%f"1oops are deleted.

Input to the program includes appropriate problem identification
information and the branches of the network. Information concerning
each branch includes the start node and end node for the branch, the
probability of realizing the branch, and a label to identify a moment
generating function (M.G.F.). The M.G.F. is described by a three-let-
ter code and the parameters of the M.G.F. The program determines all
paths and loops of the network and their associated values based on the
input information.

The values associated with the loops and paths of the network to
obtain the desired output statistics are:

1. the probability;

2. the mean time; and

3. the second moment of the time.

The probability associated with the loop or path is the product of the
probabilities of the branches comprising the loop or path. The expected
time to traverse a loop or path is the sum of the expected times of the

branches of the loop or path. The second moment of the time to traverse

a loop or path is given by the following equation: (1, p. 83)
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where

= second moment of L where L represents the loop or path;

expected time to traverse L (first moment of time to traverse

Ui = second moment of time for loop or path i comprising L; and

ielL  indicates that the summations are over all branches comprising L.
The above three values associated with each Toop or path are then combined
through the topology equation (3) to obtain the equivalent w-function,

wE(s), between the two nodes of interest for a given path A as follows:

n.
WA(S) 1+ Z (-])1 Z'I WI(-_')(S)
w(s) = ik 1k A(s) B(s) _ N(s)
E A D(s) 0(s)
1+ z (-1 z wEJ) (s)
J=1 v=l v

where wA(s) = product of the values of all branches in the path considered;

H

(1)
ka (s)

product of the values of i disjoint loops having no nodes
in common with path A;

n. = the number of loops composed of i disjoint Toops;

wfj)(s) = product of the values of any j disjoint loops;

n. = the number of loops composedof j disjoint loops;

and A(s), B(s), D(s) and N(s) are direct substitutions. If there is more
than one path, then the w-functions associated with each path would be
summed. For convenience, consider the one path case. The output

statistics can be computed from the following equations:
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S , etc., evaluated at

In the above equations the values of y
s

s=0, are obtained from the previously compiled values of ML and My as
follows:

Since N(s) = A(s) B(s),

we have
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Organization of the Report

The next section presents a description of the overall program
operation using a set of general flow charts. The third section defines
the program variables and details the subprograms. For the main program
and each of the eight subroutines, the following will be presented:
(1) a description of what the program segment does, (2) a detailed flow
chart, and (3) a program listing. The fourth section presents a discussion
of the arrays of the program. This discussion enables a user to determine
the size of the arrays and to change them depending on his machine storage

availability and the particular network under study.



Description of Overall Program Operation

The GERT EXCLUSIVE-OR program is composed of a main program and
eight subroutines. The eight subroutine names in the basic order in
which they appear in the program are: INPUT, IL, IP, LV, CL, CLP, PV,
and PRP. The main program is primarily a subroutine-calling program
and directly calls five of the eight subroutines. The other three--
CL, CLP, and PRP--are called by other subroutines.

A general flow chart of the program is shown in Fig. 1. The
following description is given to amplify a few of the operation des-
criptions of the flow chart. The names shown in parentheses are the
names of the subroutines where the described actions take place. The
starting point for the GERT program is the main program, but the only
program exit point is in subroutine INPUT. An EXIT occurs when a
negative value is obtain in field 1 of a data card. The first error
message indicated is one that says that a bad input code was detected
in the input data. The entire input network will be read in,(so that
other input errors may be detected), but due to the error, the network
will not be analyzed. The next network is then considered. The
second error message is printed if the number of entries in the dimen-
sioned variable LOOP(:) exceeds the size of LOOP. The remainder of the

general flow chart is self-explanatory.
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10.

Detailed Description of the Program Components

The detailed description of the program will be given by first
defining the program variables followed by a detailed flow chart, program
listing, and description for the main program and each of the eight sub-

routines.

Definition of the Program Variables

Some of the variables have more than one meaning. Where this
situation exists, all definitions will be given and the subroutine where
each definition applies will be named. In some cases rather than giving
several definitions for a given variable or set of variables, only the
general function of the variable will be described. For dimensioned
variables, the number shown in parentheses indicates the array size of
the variable for both the GE 225 and the IBM 1130 versions.

B(8) = Probabilities and times on the input cards (INPUT); also used to
ca]éu]ate loop or path values in subroutine CLP where B(1) is used
for the probability calculation and B(2), B(3), and B(4) are used
to calculate mean and variance of the traversal time.

D= Product of probability and time for discrete distribution (INPUT);
later set to zero in subroutine LV to indicate that we are looking

for loops when we use subroutine CLP; just prior to exit from sub-

routine LV, it is set equal to the algebraic sum of the probabilities

of all loops (or = 1 if there are no loops). Since D is then non-

zero, it indicates that we no longer need the loop printout on sub-

sequent entries into subroutine CLP.
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D1 = Algebraic sum of the 1§L-moments of the times to traverse all
Toops (LV).
D2 = Algebraic sum of the ZDg-moments of the times to traverse all

loops (LV).
DEL = Value of the deletion probability for higher order loops; for

DEL = 0, no loops are deleted; for DEL > 0, all loops whose

probability of realization is < DEL are deleted. (CLP).
F = Sum of probabilities for a branch with a discrete distribution

of time (INPUT); used (in LV) to accumulate the algebraic sum of

the probabilities of all loops ( = 1 if there are no loops ); used

(in PV) to calculate the probability of traversal of a path.
Fl

Numerator for calculation of the first moment of the time to traverse
a branch having a discrete time distribution (INPUT); used (in LV)

to accumulate the algebraic sum of the first moments of the times

to traverse all loops (= 0 if there are no loops); used (in PV) to
calculate the first moment of the time to traverse a path.

F2

Numerator for calculation of the second moment of the time to traverse
a branch having a discrete time distribution (INPUT); used (in LV)
to accumulate the algebraic sum of the second moments of the times

to traverse all loops (= 0 if there are no loops); used (in PV) to

calculate the second moment of the time to traverse a path.

F3(50)
Egéggg =Used to accumulate probabilities and times for loop and path

F6(50) calculations (CLP).
G(50)
G1(50)7= These variables are used to accumulate the probability and the
G2(50)
values needed to compute the mean and variance of the time for the

equivalent branches of the network (PV).
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Probability of realization of a path through the network--as such

it is also used as the denominator for the calculation of the first
and second moments of time to traverse a path (PV); later used for
the probability of realizing a given equivalent branch of the

network (PRP).

Numerator for the calculation of the first moment of time to traverse
a path through the network (PV).

Numerator for the calculation of the second moment of time to
traverse a path through the network (PV).

Sum of the probabilities for all equivalent network branches

emanating from a given source node (PRP).

I1 through 19 =

I8

I9

I1

J(9) =

Used throughout the program as indexing variables to aid in the
identification of loops and paths and for calculating the loop and
path values. In addition, the following two special uses should

be noted.

Used in INPUT to indicate whether an input code error has been
detected so that appropriate action may be taken upon return to the
main program. I8 < 0 indicates input is all right; I8 > 0 indicates
that a bad code was detected.

Used in IP to indicate whether the problem has become too large.

I9 < 0 indicates that the problem is all right while 19 > 0 indicates
that the problem is too large.

Used only as the index for a DO loop (INPUT).

An alphabetic array containing the distribution code letters "ABDEGNOPU"

for comparison with the codes in the input data (INPUT).
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JCOR = Correction option for loop deletion: if JCOR > 0, the probabilities
and times for the equivalent network branches are adjusted so that
the probabilities for all equivalent branches emanating from a given
source node sum to one.

Jd
SE}= Used only as index adjusters; used in INPUT, IP, LV, PV, respectively.

JM

JND = Dummy variable used in each input network control card because the
program checks the first four columns of each card for a -1 to end
the computer run. JND is always equal to zero in the control card.

K(3)

An alphabetic array into which the input distribution code letters

are read for comparison with the J(*) array. (INPUT).

L(100) = Used in IL to identify each node appearing in a first order loop
and in IP to identify each node appearing in a path; also, in sub-
routines LV, CL, CLP, and CLP it is used to keep track of where to
start lnoking for the next loop or path after finishing with the
loop or path being considered.

LE(100) = End node for a branch in the input network (INPUT).

LLO = Used in IL to save the last index number for LOOP(:); this index
number will be one larger than the number required for saving

the node numbers for nodes appearing in first order loops and will
tell subroutine IP where to put the first path node.

LOOP(1000) = An array used to save the node numbers of all nodes appearing
in first order loops or network paths. A LOOP(-) value of zero

separates each loop and each path.

LPO = Used in IP to save the last index number for LOOP(-); this index will

be one larger than the index for the last path.
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LS(100) = Start node for a branch in the input network (INPUT).
MON = Part of problem heading information: month of the year (INPUT, PRP).
N(100) = Part of the accounting system for locating branches in the input
network (INPUT). N(i) corresponds to node i; the value of N(i)
tells which subscript of NL(:) to begin the search for branches

containing node i.

N1 = Used in INPUT for reading in the start node for an input branch;
later becomes the start node of a particular path through the
network (PV); finally is used to print out the start node of an
equivalent branch of the network (PRP).

N2 = Used in INPUT for reading in the end node of an input branch; later

becomes the end node of a particular branch through the network
(PV); finally is used to print out the end node of an equivalent
branch of the network (PRP).

NAME(6) = An alphabetic array used to read in and print out the program
user's name.

NCRD = Applies to the IBM 1130 and the CDC 3400 FORTRAN IV versions only
and is the number of the card reader.

NDY = Day portion of date (INPUT, PRP).

NE(50) = End node for an equivalent branch of the network (PV,PRP).

NJOB = User's identification number for a particular problem (INPUT, PRP).

NL(200) = Part of the accounting system for locating branches in the input
network (INPUT). The NL(-) value tells where to locate a particular
node in the input network: it gives the subscript for LS(-) of

LE(+) for node i and is positive for end nodes, LE(1), and negative

for start nodes, LS(*).
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The number of branches in the input network (INPUT).
Print option for loops: NLP > 0, no loop printout; NLP < O, loops

are printed out.

NN(100) = Part of the accounting system for locating branches in the

NNO
NPP =

NPRT =

NS(50)

NYR =
P(100)

input network (INPUT). NN(i) tells how many times node i appears
in the input network; if NN(i) = 1, then node i is a source or a
sink node (the positive or negative sign for the associated NL(*)
value tells which it is). A source or sink node may, however,
appear more than once in the input network.

The largest node number appearing in the input network (INPUT).
Print option for paths: NPP > 0, no path printout, NPP < 0, paths
are printed out.

Appiies only to the FORTRAN IV versions and is the number of the
printer.

= Start node for an equivalent branch of the network (PV, PRP).
Year portion of the date (INPUT, PRP).

= Probability associated with each branch of the input network
(INPUT).

First moment of the time to traverse a path through the network
(PV); also, the first moment of the time to traverse a equivalent

branch of the network (PRP).

T1(100) = First moment of the time to traverse an input branch of the

network (INPUT).

T2(100) = Second moment of the time to traverse an input branch of the

VT =

network (INPUT).

Variance of the time to traverse an input branch of the network
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(INPUT); variance of the time to traverse a path through the net-
work (PV); and the variance of the time to traverse an equivalent
branch of the network (PRP).

The Main Program

The detailed flow chart for the main program is shown in Fig. 2.
At statement 100, the indexing variables are initialized and the main
program calls the appropriate subroutines to read and analyze the input
network. The two decision blocks represent the situations when errors
have occurred and the appropriate action is to return to statement 100,
re-initialize, and start on the next network. The FORTRAN statements com-
prising the main program are shown in Fig. 3. To facilitate conversion
to other machines all input and output statements use the variables
NCRD = 2 for the card reader and NPRT = 3 for the printer.

Subroutine INPUT

Subroutine INPUT is the largest of the program subroutines. INPUT
initializes arrays and reads the data that describes the network. An
echo check is printed out for each branch of the network. INPUT then
determines the probability, mean, and variance of each branch and prints
this information. INPUT also sets up an accouﬁting system or map for

locating the nodes of the network.

The flow chart for subroutine INPUT is shown in Fig. 4. In describing
the activities taking place in various portions of the flow chart, Example 1
from the user's manual will be used. The network is shown in Fig. 5. The

input data corresponding to the network of Fig. 5 is shown in Fig. 6. The
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Fig. 2 Flow Chart of the Main Program



*JOCS(CARD91132 PRINTER)

<

CHx*##GRAPHICAL EVALUATION AND REVIEW TECHNIQUE
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CexxnTHIS PRCGRAM HAS BEEN REVISED TO RUN ON THE IBM 1130

CHxexnPDATED VERSION AR Gm] 28 XHHR
C
COMMON T1eI2013914915916317918919,
1 NNCOsNLOsLLOILPCONLPINPPINCRDINPRT 9 JCOR
2F9sFleF29F3(50)9F&4(50)sF5(50)¢FE(50)4P(100)
3 DeD1sD2sN19N2 oGP sGRLIGP29TsVTy

GTI(10CHeT20100)9LS(100) oLECIO0) sN(100)sNN{L1OO) sNL(200)9L {100}
COMMON LOCP{1000) oNS(50) oNE(S50)9G(50)9G1(50)9G2(50)9K(3)9B(8B)
LIIDVsNAME (S ) o NJOB(2) sMONSNDY sNYRODEL
59 FORMAT(9Al)
NCRO=2
NPRT=3
READINCRD»99) J
C
CoenxnINITIALIZE PROGRAM INDEXING AND CQONTROL VARIABLES
c .
100 Il=v
12 =
13 =
14 =
15 =
16 =
17 =
=

18

OO0CCOOO0O0O0O

CALL INPUT

IF(18)110s110+100
110 CALL IL

CALL IP

IF(I9)11591159100
115 CALL LV

CALL PV

GO TO 100

END

FEATURES SUPPORTED
ONE wWORD INTEGERS
10Cs

CORE REQUIREMENTS FOR .
COMMON 3184 VARIABLES 0 PROGRAM 96

END OF COMPILATION

Fig. 3  FORTRAN Listing of the Main Program

GERT
GERT
GERT
GERT
GERT
GERT
GERT

GERT
GERT
GERT
GERT
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GERT
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GERT
GERT
GERT
GERT
GERT
GERT
GERT
GERT
GERT
GERT
GERT
GERT
GERT
GERT
GERT
GERT
GERT

190

200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
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Fig. 4 Flow Chart for Subroutine INPUT
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NL(T)) = I3 o
! Il= YTi+! |
I |
‘5 o 1S (T3) -T2
27 NN(T2)= NN(T2)+] <o
NL(ID = -13 >0
Ii= Ttle)

280 c¢onTinuvg

[ 280 CONTINUVE

| 1 =1

-

¥
y
<

300  WRITE (NPRT, 600)
WRITE (NPRT, 560)

i

[ Do 320 I2 = I, 49

o>, 0«

]

395 VT =TZ(X)-THIN * TI(T)

WRITE(NPRT, S10) LS(IN),
LE(X), POXO, THIN, VT

[ —

\LS( Ii)

=0

&)

l‘aao WRITE(NPRT, b0 9) w

RETURN

I 320 CONTINUE

L

Fig. 4

(Concluded)

21.
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card numbers are included for explanatory purposes only and are not a part

of the input. The "ABDEGNOPU" card is numbered 00 because it is read in
by the main program. Card 0 is the heading and control card. Each branch
of the network of Fig. 5 is represented by one card as shown in cards 1
through 10 in Fig. 6. An number of branches can be read in subject to

the storage limitations of the machine. A blank card indicates that there
are no more branches for the network and a card with a negative value in
columns 1-4 indicates that there are no more networks to be analyzed.

The flow chart of Fig. 4 will now be described in terms of the data
given in Fig. 6. First the important arrays and variables are zeroed. The
second block shows the reading of the variables on the heading and control
card (card number 0 of Fig. 6.). A check on JND is made to see if another
network is to be read in since JND = 0 at this time, the heading for the
echo print of the input network is printed. Card number 1 of the input
network is then read in and a check is made to see if it contains a node
number, a zero or a negative value. A zero would indicate that all branches
have been read for the network and a negative value would indicate an
illogical condition. In the latter case, the program would make a normal
exit at this point.

Since card number 1 is a valid branch, it is echo printed and the
start and end node for the branch are set equal to LS(1) and LE(1), respect-
ively. The program then compares the time distribution code for the
branch, K(12), to the code contained in the program, J(I3), until it
determines the distribution type of the branch. On the second page of the
flow chart at point A, the distribution has been determined and transfer

is made to the appropriate equations for calculation of the first and
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second moments of the time distribution. If an input code error is dis-
covered, transfer is made to point F of the flow chart where an error
message is printed. The code variable, I8, is set to 1 to flag the main
program. When I8 = 1, the complete network is read in and echo printed
but problem execution is terminated.

Since card number 1 has a valid input code, transfer is made to

statement 160 (when I3 = 3) to make the proper calculations for the discrete
distribution of time. After the calculations are completed, the program
transfers to statement 250 (point C on the second page of the flow chart)
where the largest node number in the input network is determined. Another
card is then read in and the process is repeated until a blank card (card
number 11) is read in. The echo print of the input network is then complete
and appears as shown in Fig. 7.

When card number 11 is read in, the code, I8, is checked to see
whether all input distribution codes were acceptable. Since they were for
this input network, transfer is made to point D on the third page of the
flow chart. The portion of the flow chart from the box containing statement
260 to the one containing statement 290 establishes the accounting system
or map that is used later to locate any node in the network. The values
established for the data given in Fig. 6 are shown in Table 1. The subscripts
on the variables N(i) and NN(i) correspond to the node numbers in the network.
The value of N(i) states the cell number in array NL(-) where predecessor
nodes and successor nodes of node i can be determined. The value of NN(i)

is the total number of predecessor and successor nodes to = node i. The

values of NL(j), j = N(i), N(i) + 1, ..., N(i) + NN(i) - 1, specify the

card number of the input network. If NL(j) is negative, node i is a start
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node;otherwise,it is an end node. Since the subscripts of LS(-) and
LE(*) are card numbers, predecessor and successor node values can be
obtained by use of NL(-), LS(:) and LE(+). For example, for node 4 the
card numbers on which node 4 occurred are stored in NL(j), j = N(4), ...,
N(4) + NN(4) -1 orj=7, .. .,10. Since NL(7) = 2, node 4 is an end
node on card 2. Since LS(2) = 2 there is a branch from node 2 to node 4.
Since NL(8) = -5, there is a branch from node 4 to node LE(5) = 5.

The last portion of the flow chart calculates the variance for
each branch of the input network and prints out the input network as
shown in Fig. 8. The FORTRAN statements comprising subroutine INPUT are
shown in Fig. 9. The comment cards included in the 1isting should aid in

relating the FORTRAN 1isting to the flow chart and discussion.

Subroutine IL

Subroutine IL is called by the main program to identify and record
all first order loops. It uses the accounting system or map established
by subroutine INPUT for Tocating the network nodes. It checks to see
whether a given node number appears in the input network more than once--if
so, the associated branches are checked for a series of branches that lead
back to the node number where the search began. A first order loop is
identified as such a series, and the nodes involved in the loop are
recorded. The program continues to check branches until all loops related
to a particular "first node in a loop" are located. The program then continues
through the input network until all nodes in the network have been considered
as the first node of a loop.

The flow chart for subroutine IL is shown in Fig. 10. In order to

describe the activities represented by the flow chart, the simple first
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Table 1 Variables Used to Define a Map for Locating of Nodes of the Network

N(1) =1 NN(T) =1 NL(1) = -1

N(2) = 2 NN(2) = 1 NL(2) = -2

N(3) = 3 NN(3) = 4 NL(3) = 1; NL(4) = -3; NL(5) = -4;
NL{6) = 7 )

N(4) = 7 NN(4) = 4 NL(7) = 2; NL(8) = -5; NL(9) = -6;
NL(10) = 8

N(5) - 11 NN(5) = 4 NL(11) = 3; NL(12) = 5; NL(13) = -7
NL(14) = -9 :

N(6) = 15 NN(6) = 4 NL(15) = 4; NL(16) = 6; NL(17) = -8
NL(18) = -10 1

N(7) = 19 NN(7) =1 NL(19) = 9

N(8) = 20 NN(8) = 1 NL(20) = 10

n, card number] 1 2 3Ta4715]16 71819 (10 |

LS(n) 1 21313445615 6 | 0

}E(n) 3 |a|s5]6 |56 (3417 8 |0

1IRf—PRcﬁtﬁw-wer————r—fﬁh—aﬁ+t~+sﬁM*Et»9A¢£-5+~22+-196&n

PUT NETWORK

' i 30 1+000 09000 0 000049000 Gﬁﬁe“ﬁrﬁﬁﬁ—weeﬁ—eﬁ&e——*(
2 4 D 1,000 06000 04000 0000 0000 0000 0000 04000 :
3 5D U500 2+ 000 T 000 O 00C CF000 e 00— O 00—+ 00 0———

l 3 6 D 04400 44000 0«00V Ce00C UeQUO 04000 OeVQU 04000
G 5 D TTTTUGIU0 54000 09000 CR0UT U0l 0000 600 ——Cs 00—
4 6 D Qe700 24000 0e00C 06000 0e00GC 0e00QC Q+00C Qe 20C

. 53 D 0+200 T%000 — 0e000 07000 —0¢000 0w 0000008 0+0S¢ -
] 4 D 04300 64000 04000 04000 04000 04000 Cs 000 Ce 000
> D Ve80T U 00T U000 Ce 00U 000 " 0000 o gegure; 300

' 6 8 D 0e¢700 04000 04000 0000 0Q00 Qe00C0 04000 C«000 4

Fig. 7 Echo check of the Input Network of Table 1
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INPUT NETWORK

NODES AND PROBABILITY OF SELECTION WITH ™
MEAN AND VARIANCE OF TIME FOR EACH LINK

FROM T0 PROB MEAN VAR
i 3 14000 0000 U000
2 4 1,000 0.000 04000

3 5 06600 2009  0.000
3 6 0e400C 44000 04000
4 ) 0e300 54009 =-0+000
4 6 Qe700C 24000 04000
5 3 0e¢200 T+000C =0s000
6 4 04300 60090 =06,000
5 7 0800 04000 "~ 040CO
6 8 06700 0.000 06000

Fig. 8 Calculation of Branch Parmaeters




SUBROUTINE INPUT INPT
C
CoennnREAD INPUT CARDS AND ARRANGE DATA INPT
C
COMMON 1191291301 49159169171189190 INPT
1 MNOSNLOSLLOSLPO JNLP sNPP +NCRDsNPRT s JCOR s INPT
2FoFLsF29oF3(50)sF4(50)9F5(50)9F6(50)4P(100) INPT
3 DsD1sD29NLaN29sGPsGPLIGP2eTsVTy INPT
4T1(100)9T2(100)sLS(100)4LE(100) sNI100) sNN(1OO)sNL(200}sL(100) INPT
COMMON LOOP(1000) +NS(50) oNE(50) 9G(50)+G1(50)+G2(50)9sK{(3)sB(B) INPT
1J(9) o NAME(6) ¢yNJOB(2) sMON s NDY s NYRsDEL INPT
<
ConrxeuB =BIN=BINOMIAL PsNyl=@ N(1=Q) N(1=Q) (N+Q=NQ) INPT
CruwxnD =DIS=DISCRETE PoTeP,sT (PT+PT)/(P+P) (PT*T+PT%T)/ (P+P) INPT
CuexnnE =EXP=EXPONENTIAL PsA 1/A 2/A/A INPT
CurxntGAZGAM=GAMMA PsAsB 8/7A B(B+l)/A/A INPT
Cex#x#GE=GEO=GEOMETRIC Pyl=Q 1/(1=Q) (14Q)/(1=G)/(1=Q) INPT
CHitwnuNB=NB =NEGe BINOMs PoRyl=Q RQ/(1=Q) RQ{1+RQ)/(1=Q)/(1=Q) INPT
CouxnnuNO=NOR=NORMAL PsMyS M M*M+S#S INPT
CoxuxuP =POl2POISSON Pal L*L Lil+l) INPT
Cen#exy zUNI=UNIFORM PrAsB (A+B)/2 (A*A+ARB+B*B) /3 INPT
<
700 FORMAT (l4s1Xsl491X93A198F743) INPT
600 FORMAT (1H1) INPT
500 FORMAT (10Xs13HINPUT NETWORK// INPT
1 1X939HNODES AND PROBABILITY OF SELECTION WITH/ INPT
2 1X939HMEAN AND VARIANCE OF TIME FOR EACH LINK// INPT
3 5X94HFROM33X 92HTO 95X e 4HPROB ¢5X s 4HMEAN »5X 9 3HVAR) INPT
510 FORMAT (5Xsla91lXelte2X9FBe391X9FB8e391XsF8e3) INPT
5§20 FORMAT ({1Xs13HINPUT NETWORK} INPT
530 FORMAT {1Xsl4s1lXslbslXs3A118FBe3) INPT
540 FORMAT(1496A292A2921291492129F10e8912) INPT
550 FORMAT(18H GERT PROBLEM NOe« 92A2s6H BY ¢6A2¢6H DATEs13slH/» CINPT
11391M/915/77) INPT
550 FORMAT(/20X928HBAD INPUT CODE IN ABOVE CARD/) INPT
DO 99 11=14+200 INPT
99 NL(I1) =0 INPT
DO 100 11=14100 INPT
N(Il)=0 INPT
NN(I1)=0 INPT
LE(I11=0 INPT
LS(I1)=0 INPT
L(il)=0 INPT
100 CONTINUE INPT
DO 101 II=191000 INPT
101 LOOP(111=0 INPT
NLO=0 INPT
NNO=0Q INPT
WRITE(NPRT +600) INPT
¢
Coxux#READ INPUT NETWORK HEADING CARD INPT
c
READINCRD #540) JND#¢NAME »NJOB sMONSNDY sNYRsNLP s NPP o DEL 9 JCOR INPT
C
CHxnunHAVE ALL INPUT NETWORKS BEEN READ IN INPT
«
IF(IND)11493409340 INPT
C
Cxx%n%PRINT HEADING FOR ECHO PRINT OF THE NETWORK INPT
C
340 WRITE(NPRT$550) NJOB»NAME sMONSNDY sNYR INPT
WRITE(NPRT#520) INPT
11=1 INPT
C
ConnnaREAD A CARD OF THE INPUT NETWORK INPT
C
110 READINCRDs700) N1sN2e(K(I12)9123193)9(BII3)s13=198) INPT
C
CHu#a®]lS THIS THE LAST CARD OF THE INPUT NETWORK INPT
C
IF(N1)11494109111 INPT
410 IF(18)2604260+330 INPT

Fig. 9 FORTRAN Listing of Subroutine INPUT

10
20
30

50
60
70
80

100
110
120
130
140
150
160
170
180

190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450

460
470
480
490
500
510
520
530
5640
550
560

570
580

29.



<

ConunnlS NOT LAST CARD###ECHO PRINT INPUT CARD

<

111 WRITE(NPRT#530) N1sN2s(K(12)912%103)+(BlI3)913x148)

LS(I1)=N1
LE(11)=N2
P(Il1)=8(1)

C

CrurnsaCHECK FOR TIME DISTRIBUTION AND PERFORM CALCULATIONS

o
DO 130 12=143
DO 120 132149
IF(K(12)=J113))12091409120C
120 CONTINUE
130 CONTINUE
GO TO 400
140 GO TO (400+15091609180+190+210040092309240)913
C
CoxnenBAD DISTRIBUTION CODE IN INPUT CARD
<
400 WRITE(NPRT9560)
8=}
GO TO 110
C
Conun®BINOMIAL DISTRIBUTION
C
150 T1(I1)=B(2)%B(3)
T2(IL)s(TI(I)=BI3)+140)#T2{ID)
GO TO 250
(o
CounnuD]ISCRETE DISTRIBUTION
<
160 F=0e0
Fl=040
F23040
DO 170 14214892
F=F+8(14)
JJala+l
D=B8(lalxB(JY)
Fl=FleD
F2aF2+D#B(JJ)
170 CONTINUE
PtIl)=F
Ti(I1)=F1/F
T2(I1)=F2/F
GO TO 250
(«
Cox#n®EXPONENTIAL DISTRIBUTION
<
180 T1(11)=B(2)
T2(11)=220%B(2)%8(2)
GO TO 250
C
CounnsCHECK FOR GAMMA QR GEOMETRIC DISTRIBUTION
C
190 12=12+1
IF(12=3)191+1914110
191 IF(K({12)=J(131192»2000192
192 IFIK{I2)=J(4))1909193+190
C
Cunnn®GEOMETRIC DISTRIBUTION
C
193 T1(11)=10/B(2)
T2(11)=(2.0=R(2))/B(2)/B(2)
GO TO 250
C
CoxunnGAMMA DISTRIBUTION
C
200 T1(11)=B(31*B(2}
T2(11)=TLl(I2)#(B(3)+1s0)#B(2)
c GO TO 250

CownneCHECK FOR NORMAL OR NEGATIVE BINOMIAL DISTRIBUTION
C
210 l2=12+1
IF(12=3121152114110
211 IF{K({12)=J(2)1212+2209212
212 IF(K(I2)=J(7)12109213+210

Fig. 9  FORTRAN Listing of Subroutine INPUT
(continued)

INPT

INPT
INPT
INPT
INPT

INPT

INPT
INPT
INPT
INPT
INPT
INPT
INPT

INPT

INPT
INPT
INPT

INPT

INPT
INPT
INPT

INPT

INPT
INPT
INPT
INPT
INPT
INPT
INPT
INPT
INPT
INPT
INPT
INPT
INPT
INPT

INPT
INPT
INPT
INPT

INPT

590

600
610
620
630

640

650
660
670
689
690
700
710

720

730
740
750

760

770
780
790

800

8lo
820
830
840
850
860
870
880
890
900
910
920
930
940

950
960
970
$80

380

INPT1000
INPT1O010
INPT1020
INPT1030

INPT1040

INPT1050
INPT1060
INPT1070

INPT1080

INPTLO9O
INPT1100
INPT1110

INPT1120

INPT1130
INPT1140
INPTL1150
INPT1160

30.



<
CannxetNORMAL DISTRIBUTION

213 T1{l1)=B12)
T2(I1)eBl2)#B(2)+B{3)#B (3}
GO TO 250
z _
CununuNEGATIVE BINOMIAL DISTRIBUTION
C

220 T1l(I1)1aB(2)%(140=B(3))/B(3)
T2(I1)2TI(I1l)#({T1(11)+140/B(3)}
GO Tu 250
C
CunnenPOISSON DISTRIBUTION
C
230 T1(Il)=B(2)
T2(11)1=B(2)+B(2)%B(2)
GO TO 25¢C
C
CrnaxrUNIFORM DISTRIBUTION
<
240 B(8)=B(2)+B(3)
T1(11)=B(8)/240
T2(I11=(B(21%B(B1+B(3)#B(3)) /3.0
C

ConnxaFIND LARGEST NODE NUMBER IN THE INPUT NETWORK

C

250 11=11+1]
IFIN1=NNO)25192519252

252 NNO=N1
251 IF(N2=NNQO)25342534254
254 NNO=NZ2
253 GO TO 110

C

CexnawAlLl. BRANCHES OF THE INPUT NETWORK HAVE BEEN READ IN
CunuueuSET UP ACCOUNTING SYSTEM FOR IDENTIFICATION OF LOOPS AND PATHS

C

260 NLO=Il=1l
11=1
DO 290 12=1sNNO
N(l2)=11
DO 280 I3=1eNLO
IFILE(LI3)=]12)2T7002659270

265 NN(12)=aNN(12)+1
NL(I))=]3
11=11+1

270 IF(LS(13)1=121280+2714280

271 NN(I2)=NN(]12)+1
NL(Il}=a=13
Il=]1+1

280 CONTINUE

290 CONTINUE
I1=1

300 WRITE(NPRT+600)
WRITE{NPRT 4500
DO 320 12=1449
IF(LS(I1))30593109205

C

CunnunCALCULATE VARIANCES AND PRINT OUT INPUT NETWORK

C
305 VT=T2(I11)=TL(I1}#TL(IL)

WRITE(NPRT»510) LS(I1)sLECIL)oP(IL)oTIIIL)oVT

310 11=11+1
IF(11=NLO)320+320+330
320 CONTINUE
GO TO 300
330 WRITE(NPRT 600}
RETURN
114 CALL EXIT
END

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR INPUT
COMMON 3134 VARIABLES

END OF COMPILATION

Fig. 9 FORTRAN Listing of Subroutine INPUT

10 PROGRAM

1250

(continued)
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order loop consisting of nodes 3 and 5 of Fig. 5, will be used along with
the information from Table 1 and Fig. 6. First, IL initializes three
important variables: LOOP(:) will be the permanent storage location for
node numbers contained in first order loops; L(+) will be the temporary
storage location for node numbers that are being checked as candidates for
being in loops; and I2 is the index for the subscript of LOOP(-). A
glance at the first few steps in the flow chart and the values for NN(i)
in Table 1 shows that node number 3 is the first candidate for being a member
of a loop. Also, by the time NN(3) is reached, the temporary node storage
value, L(1) = 3. The program sets up some temporary index values at
statement 111 and checks for branches where node number 3 is an end node
at statement 120. A glance at Fig. 6 shows that card number 1 is the first
such branch so that L(2) = 1. The transfer statement following statement
121 shows that node 1 is not a satisfactory candidate for the loop so the
search continues to card number 7 which is the next card in which node 3 is
an end node. L(2) then is set equal to 5 which is the start node for that
branch. The branches associated with node 5 are then checked until it is
found that L(3) = 3 and the loop has been discovered. The nodes in the loop
are recorded at statement 150 and a LOOP(:) value of zero is inserted to
separate this Toop from other first order loops or from paths if there are
no more loops. At this time the node numbers in the loop have been recorded
as: LOOP(1) = 3, LOOP(2) = 5, and LOOP(3) = 0. The process continues until
all first order loops have been located. When all Toops have been located,
the last value of I2 is recorded as LLO at state
is used later as the first storage location for path nodes.

The FORTRAN statements comprising subroutine IL are shown in Fig. 11.

Comment cards are included to indicate important operations.



C

SUBROUTINE IL

Cexux%IDENTIFY LOOPS

C

C
Cuuan

C

100

110

120
121

122
130
131

132

140
C
CHann

C
150

C
Caxes

C
151

160

170

181

190
191

200
201
210

C

Cunne#SAVE INDEX NUMBER FOR RECORDING OF FIRST PATH NODE

C
il

~n

212
213

COMMON 119120139149 15916917918919

1 NNOSNLOSLLOSWLPOSNLPsNPPsNCRDsNPRT»JCORS
2FoFL1sF24F3(50)9sF4(50)9F5(50)9F6(50)4P(100)>»
3 DoD1oD2sN19sN29GPIGPLIGP2eTeVT

4T1(100)9T2(100)sLS(100)sLECL100) sN(L10O)sNN(100)sNL1200) st (100)
COMMON LOOP(1000)sNS(S50)9sNE(S0) 9GI50)9GL(50)eG2(50)sK(3)9Bi8)

1J(9)sNAME(6)9yNJOB(2) sMONSINDY sNYRDEL
#IDENTIFY AND RECORD ALL FIRST ORDER LOOPS

LOOP{1)=0

Ltl)=]

12=1

13=]

Il=L(1)

13=]13+1
IFINN(I1)=1)170s1709111
T4=N(I1)

I5=NN(I1)
IFINL(I4))16091600121
IesNL(]4)

11=LsS(16)

Li131=11
IF(11=L(1))16091409122
162]3=]
IFILLT6)I=11)131916041312
[6=]l6=]
IF(16=1)132+132+130

GO TO 110

17=13

*RECORD NUMBERS OF NODES CONTAINED IN THIS LOOP

LOOP(I2)=L(17)
12=12+1

17=17=1
IF(I7=11151+1519150

*A LOOP(I2) VALUE CF ZERO SEPARATES THE LOOPS

LOOP(12)=0

12=12+1

Ta=l4+]

15215=1
IF(I5)1709170,120
[32]3=2
IF(13)21092104181
11=L(13)

TaaN(]l)

I5aNN(11)

I3=13+1
IF(NL{I4))2004+2009191
I6=NL(14&)
IF(LS(I6)=L(]13))2000160+200
fa=la+]

[53]%=1
IF(15)20192019190

GO TO 170

Lil)=L(1l)+1
IF(L(1)=NNO)1009100s211

Lilo=i2
IF(LLO=11213+212+213
LLO=2

RETURN

END

FEATURES SUPPORTED

ONE

CORE

WORD INTEGERS

REQUIREMENTS FOR L

COMMON 3184 VARIABLES 4 PROGRAM 336

END OF COMPILATION

Fig. 11 FORTRAN Listing of Subroutine IL
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Subroutine IP

Subroutine IP is called by the main program to identify and record
all paths through the network. The accounting system established by
subroutine INPUT is used to help locate the nodes appearing in paths through
the network. The subroutine starts by identifying a source node. It then
proceeds from node to node through the network until it reaches a sink
node without returning to any node. A path then identified as the sequence
of nodes from source node to sink node with any node of the path only
appearing once in the sequence.

To explain the process further, the flow chart shown in Fig. 12 will
be utilized together with Fig. 5 and the accounting system of Table 1.

At the start of the subroutine the indexes are initialized with I8 being
set to the subscript for LOOP(-) that will be used to store the first node
in the first path. This is the LLO value that was saved in subroutine IL.
At statement 100 the program starts to check the first node with the check
on I5 being inserted to assure that the node appears in the input network
[NN(i)>0]. The set of statements from 110 to 115 are used to locate a
source node which is a node which is not an end node for any branch. The
node is then recorded at statement 120. The node is again checked to verify
that it does indeed appear in the input network, and at statement 121, the
program prepares to start from the recorded node to find the next node in
the path. At statement 130, a check is made to see whether the recorded
node is a start or end node. If the node is a start node, then transfer is
made to point "A" on the chart where the search is made for the end node of

a branch emanating from the recorded node. The check at statement 140 to
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see if the end node being examined has already been recorded as a member

of the path (the situation where L(17) = I3). If the node has not already
been recorded, then the routine returns to statement 120 where the new node
is recorded and the process continues. If the check at statement 130
indicates that the node is an end node, then transfer is made to point "C"
on the chart where the indexes are incremented and checked. Depending on
the value of I5, the program may return to 130 or go on to 151. If it goes
on to 151, the last recorded node was a sink node. If the variable 17 is 0
at statement 151, then the path nodes are recorded and a check is made to
see that the subscript for LOOP(:) has not become too large (I8>1000). If
the subscript is acceptable, then transfer is made to statement 170. The
purpose of this portion of the subroutine is to back down the path node at
a time from the sink node to the source node and search for other paths
from that point to a sink node. To illustrate this process for the network
of Fig. 5, the first path through the network contains nodes 1, 3, 5 and 7.
The second path consists of nodes 1, 3, 6, 4, 5 and 7, and the third path
contains nodes 1, 3, 6 and 8. After locating the first path,'the subroutine
has to back all the way to node 3 before an additional path was identified.
After the second path was recorded, the subroutine only had to return to
node 6 before finding the third path. On the fourth such attempt, however,
no path could be found even after returning to node 1, so transfer was made
to point B on the flow chart and then back to statement 100 to seek a
different source node. Exit from the subroutine occurs at point B on the
flow chart when the next node number to be checked is larger than any node

appearing in the input network. The last index number for LOOP(:) is recorded
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and specifies the end of storage for paths. Since paths are loops without
a closing branch, LOOP(-) can be used to store both. This eliminates a
need for allocating storage between loops and paths and reduces storage
requirements. Program control is then returned to the main program.

The FORTRAN statements comprising subroutine IP are shown in Fig. 13.

Subroutine LV

Subroutine LV is called by the main program to calculate the values
for all Toops in the network. It first checks to see whether there are any
first order loops. If first order loops exist, the loop values are
calculated and then all higher order loops associated with a given first
order Toop are identified and their values are calculated. This process
is repeated until all first order loops have been examined. Program control
then returns to the main program.

The flow chart for subroutine LV is shown in Fig. 14. The first box
contains the initialization of the variables for calculating the probabilities
and times to traverse the loops. The check on the variable LLO is to deter-
mine whether there are any first order loops (the situation where LL0O>2).

If there are no first order loops, the values for D, D1, and D2 are
established and control is returned to the main program. If there are first
order loops, then the program is directed to statement 100 which tells where
to start the search for a first order loop. Subroutine CLP is then called
to make the actual loop calculations and to print the loop values. Upon
return from CLP, a check is made for higher order loops associated with the
first order loop under consideration. The section of the subroutine from

statement 110 down to the check on "I1-1" is devoted to the search for higher

* Note that LOOP(:) is used to store node values and if storage is
critical several node values can be packed into a word i.e., LOOP(-) is

a good candidate for packing.



SUBROUTINE [P

C
CrennIDENTIFY PATHS
C
COMMON 110120130164 15516017418019
1 NNOsNLOSLLOSLPOINLPsNPPsNCRDINPRTJCOR Y
2FoF1eF20F3(50)sF4{50)1sF5(50)9F6(50)4P(L100)
3 DoDleNZaN1oN2sGPIGPLsGP2eT VT
4T10100)#T2010019LS(200) sLECL1QO0) »sN(10D) sNN(L20) sNLL200)sL(100)
COMMON LOOP(10C0O) oNSI501 sNELS5014G(5019GLIS01+G2(50)sK{21s8(8)s
1JU9 ) osNAME(6) ¢ NJOB(2) +sMONSNDY sNYR$DEL
4

Coax22DENTIFY AND RECORD ALL PATHS THRU THE NETWORK
[«
11=1
[8=LLO
100 l4=N(]1l)
I5eNNITIL)
IF115)11002209110
110 IFU(NL(T4))IL21191114220
111 loe=]a+l
15=]15=}
IF{I5)115+1154110
11% 12=1
13=11
120 L(I2)=13
12=12+1
IF(NN(TI3))12192204121
121 17=0
Ta=N(13)
I5=NN(13)
130 IF(NL(I4))13101500150
131 lé==NL(14])
I2=LE(l6)
17=1
100 IF(LEIT)I=13)14141500141
141 17=17+1
IF(I7=12)140s1429142
142 60 TO 120
150 l4=1a+]
15=2]4%=1
IF(15)151+1519130
151 IF(171160+200016C
160 I2=12=1
IF(I2 = 1) 22042209170
170 JUK=l2=1
13=L(J4K)
T4=N([3]}
I5=NN(13)
180 IF(NL(1I%))18191904190
181 Jé==NL(l4)
17=LE(16)
IFCIT=L(12))19091500190
190 l4=l4+]
15=15=1
IF115)119141924180
191 GO TO 160
200 l4=]
C
C#nuxuRECORD NUMBERS OF NODES CONTAINED IN THIS PATH

210 LOOP(IB)=L (14}
l4=14+]
I18=18+1
1F{13=10001215+2154218
21% IF(la=12121092119211
C
Conxaup LOOP(IB) VALUE OF 2ERC SEPARATES THE PATHS
C
211 Loor(iBl=¢
I18=18+1
IF(I8=10031170+1704218
C
Con#x2DIMENSION CF LOOP(18] IS TOO LARGEs TERMINATE PROBLEM EXECUTION
[
218 wRITEINPRT»500)
500 FORMAT{(//20Xs17THPROELEM TOO LARGE//)
19=1
GO TO 300
220 11=11+1
IF(I1=NNO)100+1009221

C
CoxnunSAVE THE LAST VALUE OF J8====T HELPS LOCATE THE LAST PATH
C
221 LPO=]8
300 RETURN
EnD

FEATURES SUPPORTED
ONE wWORD INTEGERS

CORE REQUIRFVENTS FOR IP
COMMON 3184 VARIABLES 4 PROGRAM 392

END OF COMPILATION

Fig. 13  FORTRAN Listing of Subroutine IP
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order loops. In this section, if additional first order loops

exist, then subroutine CL is called to see if any of these additional loops

are disjoint from the first order loop under consideration. If such

disjoint or higher loops are found, then CL calls subroutine CLP to

calculate and print out the loop values. Then return is made from CLP to

CL to LV. After all such higher order loops are found, the subroutine

moves on eventually to the check on "L(1) - LLO," which is a check to see

whether all first order loops have been examined. If not, the program

returns to statement 100 and repeats the above process. If all loops

have been examined, then the values of D, D1, and D2 are saved for use in

the calculation of path values and control is returned to the main program.
The FORTRAN statements comprising subroutine LV are shown in

Fig. 15.

Subroutine CL

Subroutine CL is called both by subroutine LV and by subroutine PV
to locate disjoint or higher order loops. When called by LV, subroutine
CL checks all remaining first order loops besides the basic 6ne consider-
ed by LV to see whether any of the remaining loops are disjoint from the
basic one. A loop is disjoint if it has no nodes in common with the
basic first order loop. When called by PV, subroutine CL checks all first
order loops to see whether there are any that are disjoint from the path
being considered. Again, a loop is disjoint from a path if it has no
nodes in common with the path. If a disjoint loop is discovered, subroutine
CLP is called to calculate the values associated with the loop. Subroutine

CLP then returns to CL which returns to the ca]]ing subroutine. If a



SUBROUTINE LV
C

. Cexxxs OOP VALUE

C
COMMON 119129130140 15916917918919
1 NNOsNLOSLLOSLPOSNLPyNPPINCRDINPRT 9 JCOR Y
2FsFLloF29F3(50)9F4(50)19FS(50)sF6(50)sP(100)
3 DoD1sD29N1IN29GPeGPLIGP29TeVTy
4T1(100)9T20(200)9LS(100)sLECL100) oNI100)sNNLLCOsNL(2C0)»L{200)
COMMON LOOP(1000)sNSI{SO)sNE(S501+G(50)9GL(50)+G2(50)1sK(3)sB(8)
1J(9) oNAME (6) 9 NJOB(2) sMONSNDY o NYR9DEL
<
Cunnx®INITIALIZE VARIABLES FOR CALCULATION OF LOOP VALUES
C

D=040
F=le0
Fl=040
F2=0.0
11=1
Ltl)=1
<
Conxx#CHECK TO SEE IF THERE ARE ANY LOOPS {LLO GT 2)
C
IF(LLO=21150+1504100
100 I1=1
C
Conuxal (1) TELLS WHERE NEXT FIRST ORDER LOOP STARTS
C
12sL (1)
C

Con#xu 00F CALCULATIONS AND PRINTOUT OCCUR IN SUBROUTINE CLP
C
CALL CLP
I11=2
110 IF(LOOP(12}))12091114120
111 12=12+1
C
CenxxxHAVE ALL ASSOCIATED HIGHER ORDER LOOPS BEEN FOUND
C
IF(12=LL0)112+1309130
<
Co#xxxSUBROUTINE CL CHECKS FOR DISJOINT LOOPS ASSOCIATED WITH THIS
Cexnxn#FJRST ORDER LOOP##%]F MIGHER ORDER LOOPS ARE THUS FOUND»
Crxneu5UBe CLP IS CALLED FROM CL TO CALCULATE AND PRINT OQUT THEIR VALUE
C
112 CALL CL
120 I2=12+1
GO TO 110
120 JL=11~1
12=L(JL)
11=[1=1
IF(I1=1)131»1314110
131 [1=L(1)
140 IF(LOOP(I11)114141500141
141 I1=11+1
3¢ TO 140
150 L{l)=11+1
<
CH#x%uHAVE ALL FIRST ORDER LOOPS BEEN EXAMINED
C
IF(L(1)=LLO)100+151,4151
C
Cexun®SAVE SUM OF PROBABILITIES AND TIMES FOR ALL LOOPS
C
151 D=F
D1=F1
D2=F2
RETURN
END

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR LV
COMMON 3184 VARIABLES 2 PROGRAM lee

END OF COMPILATION

Fig. 15 FORTRAN Listing of Subroutine LV
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common node is found, CL returns to the calling subroutine without
calling CLP.

The flow chart for subroutine CL is shown in Fig. 16. The variable
I4 is used to keep track of the order of the disjoint loop. The variable
I5 is the index for checking the nodes in the basic first order loop
while the variable I6 is the index for checking the nodes of the remaining
first order loops against the nodes in the basic one. At statement 120,
the check is made to see whether a common node exists. If not, the program
goes to statement 121 where it increments the index of the 1oop being
checked to compare the next node. If LOOP(I6) = 0, then the end of the
loop has been reached and the program goes to statement 122 to increment
the index for the basic loop. This process continues until a common node
is found or until all nodes in the basic loop have been compared against
all nodes in one of the remaining Toops. At that point, a disjoint loop
has been found and the value of 14 is incremented at statement 123. The
variable I4 is compared against I1 to see whether a loop of the desired
order has been located. If so, L(I1) is set equal to the subscript
required to locate the new loop and subroutine CLP is called to calculate
the loop values. Upon return from CLP, the variable I1 is incremented (to
indicate what order loop to seek upon the next entry into CL) and return
is made to the calling subroutine.

The FORTRAN statements comprising subroutine CL are shown in
Fig. 17.
Subroutine CLP

Subroutine CLP is called by subroutines LV, CL, and PV to calculate
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Fig. 16 Flow Chart of Subroutine CL
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SUBROUTINE CL

C
Caxnn2COMPOUND LOOPS
C
COMMON [19129139149154916917918419
1 NNO oNLOSLLOILPOSNLPsNPPINCRDINPRT 9 JCOR Y
2FoF1oF2eF3(50)9F4(50)9F5(50)sF6(5C)sP(10D)
3 DeD19D2sN1sN2oGPsGPLleGP29T VT
4T1(100)9T2(100) oL S{100) sLECLI00) sN(100) sNN{10OC)sNL(20C)sL (100}
COMMON LOOP(1000) sNS(50)eNE(50)9G(50)9G1{50)9G2(50)sK(3)sB(8B)y
1J(9)osNAME (6) s NJOB(2) sMON9NDY sNYR s DEL
C
CoxuxxSUBROUTINE CL SEARCHES FOR DISJOINT LOOPS
C
14=1
100 [5sL(14)
110 lé6=12
C

Crenxn]F A CCVMMON NODE 1S FOUNDs THE LOOP IS NOT DISJOINT
C
120 IF(LOOP(IIS)I=LOOP(1I6))121+13C 121
121 16=16+1
IF(LOOP(16))12041224120
122 15=15+1
IF(LOOP(15))110+1234110
123 l«=lb+]
IF(14=11)10091249124
124 L(IL)=]2
C
CornrewWHEN A DISJOINT LOOP IS FOUNDy» SUBe CLP IS
CrxnxuCALLED TO CALCULATE THE VALUES
C
CALL CLP
I1=11+1
130 RETURN
END

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR CL
COMMON 3184 VARIABLES 2 PROGRAM 100

END OF COMPILATION

Fig. 17  FORTRAN Listing for Subroutine CL

cL

CcL
cL
cL

cL

CcL
CL
cL
cL
cL
cL
cL
L

CcL
CL

CL

cL
cL

10
20

30
40
50
60
70
80
99

100

110
120
130

140

150
160
170
180
190
200
210
220

230
240

250

. 260

270
280
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47.

the values associated with a first order loop, higher order loops, and
paths, respectively. The probability associated with a loop or path is
the product of the probabilities for each branch of the loop or path.
The first and second moments of time to traverse a loop or path are the
times associated with the branches of the loop or path combined in the
manner discussed in the first part of this report. If loop values are
being calculated for the first time, then subroutine CLP prints them

out unless the option to delete loop printout is exercised. Once the
program has begun to calculate path values, however, the section of CLP
dealing with the loop printout is no longer used even though CLP is used
for the calculation of lcop values for loops disjoint from the path being
considered.

The flow chart of subroutine CLP is shown in Fig. 18. The calcula-
tion of loop or path values is carried out in the same way with the
exception that printout of loop values occurs the first time they are
calculated. The first box of the flow chart contains the initialization
of the variables used to accumulate the probabilities and times for a
loop or path. At statement 100 a check is made to see whether all nodes
of the loop or path have been considered. If all nodes have not been
considered, then the present node number is saved by statement 101 and a
check is made on the next node number. If that node value is zero, then
the node number is saved by statement 103. At this time, I6 is the start
node for the branch and I7 is the end node. I8 tells at what value of
NL(-) to start the search and I5 tells how many times the start node, I6,
appears in the input network. A check is then made on I5 to see if it

is equal to zero. It can only become equal to zero if at statement 102
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the start node was the start node for a path. In that situation, there
will be no branch looping back on the start node and I5 will eventually
be reduced to zero by the indexing at statement 120. If I5 becomes equal
to zero, then transfer is made to point "A" of the flow chart where the
path calculations are made. If a loop is being considered instead of
a path, then the proper branch between nodes 16 and I7 will be located
before I5 becomes equal to zero and the program will continue to statement
130 to make the calculations for a branch. If, in the case of either a
loop or a path, the program had not reached a node value of zero before
reaching statement 110, then it is in the midst of a loop or path and
will discover the proper branch before I5 becomes equal to zero. Again,
the program will continue to statement 130 to make the branch calculations.
After making the branch calculations, the program returns to statement
100 to check the next path node. If there is a node left to examine,
then the program goes to statement 101 and repeats the process that was
described above. If the node value is zero at statement 100, then transfer
is made to point "A" of the flow chart where the 1oop calculations are
made. Thus if the transfer to point "A" is made from statement 100, the
calculations will be for loop values, and if the transfer is made from
statement 110, the calculations will be path values.

The appropriate variables are initialized at statement 140 and
the calculations are made at statement 150. The check of I3 versus Il is
pertinent primarily to higher order loop calculations and is a check to
see that all compound loop products have been calculated. At statement
202, the program checks to see whether a higher order loop is being

considered. If not, the final loop or path calculations are completed at
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statement 151. If the loop is a higher order loop, however, its

50.

probability is checked against the deletion probability which is a user

input to the program to see if the loop should be considered or not.

If it is not to be considered, program control is returned to the calling

subroutine. If the higher order loop is to be considered, the final loop

calculations are completed at statement 151. A check is made on D

to see whether to print the loop values. If D = 0, the loop values are

If loops are to be printed, a check is made on NLP at statement 152 to

see whether the user wants the loops to be printed. If he does, then the

section of the program from point "B" on the flow chart down to the

return statement accompiishes the loop printout. The loop printout for

the network of Fig. 5 is shown in Fig. 19,

: l to be printed while if D # 0, control is returned to the calling program.

LOOP OF ORDER 1 W(0)= 04119999

WtOT=0eTI99 + NODES 3 — 5

02
W{0)= 061199 » NODES 3 ?
WtOTr= 052099 7 NODES — 6

\

TO0P OF ORDER 1 WO r=0+00719
WlO)= 00071 » NODES 3 6 4 5

LOOP OF ORDER 1 W(0)= 0209999

Fig. 19 Loop Printout for Network Given in Fig. 5

The FORTRAN statements comprising Subroutine CLP are shown

Fig. 20.

I WIOT® Ue2099 3 NODES G4 )

in



SUBROUTINE CLP

<
CaaeexCOMPOUND LOOP PROPUCTS
<
COMMON T1912913034915016017918019s
1 NNOoNLOSLLOILPOSNLP sNPPoNCRDsNPRTJCOR»
RF oFLeF29F3(50)oF4 (501 9F5(50) sF6(50) 9P (1CO1
3 DsDL1sD2eNLINZoGPGPL1oGP2sTevTy
T10l0019T20 20019t 5(1COIILECLICOIoNILICOY s NNILOC)INLE2CO) 9L (L0
COMMON LOOP(1000) sNS(SO)NELS0) +G{50)9GL(5019G2(50) sK{3)9B(8)
1J(9) sNAME (6) yNJOB (2} sMONINDY sNYR 9 DEL
C

ConnnasyBe CLP CALCULATES THE PROBABILITIES AND TIMES ASSOCIATED

CoaaunaW][TH ALL BRANCHES IN THE LOOP

[4
F3(1ll)=lqe0
Fa{ll)=040
F53(l11=040
F6(I1)=040
Ta=]2
100 IF(LOOP(141)101+1409101
101 16=LO0P(I4)
I5=]4e]
IF{LOOP(15)1)10391024103
102 [5=12
103 17=LO0P(IS)
18=N(]6)
15aNN(16)
110 IF(15)14091409211
111 IFINLI13))112412209120
112 13a=NL(18)
IF(LE(I3)=17)120+1320+120
120 18=18+1
15515«]
GO TO 110
130 F3(I1)=sF3(11)#P(13)
Fatll)aF4l1l)+T1(13)
FS(I1)=F5(T1)+T1(13)#T1({[3)
FO(IlI=F6(11)1+T2(I3)
lam]os]
GO TO 100
140 I3=]
B8(1)=1e0
Bl2)=040
B{3)1=060
Bt4)=2,0
150 B(l)z=RBi1)#F3(13)
Bt2)=B(2)+F&(]3)
B(3)=aB(3)+F5(13)
B(4)aB(4)+F&(13)
13=13+]
IF(I3=11)1%0+1%04202
202 IF{I1=1)151+1514205
205 IF(B(1))2104220422C
o
Conwn#lF DEL IS GT ZEROs LOOPS WITH PROBe LT DEL ARE DELETED
C
210 IF(=B(1)=DEL)230+230+151
220 IF(B(1)=DEL)2304+2309151
230 1l=11=1
GO TO 200
151 F=F+R(1)
Fl=Fl+B(1)#B(2)
F2=F2+B8(1)*(B(2)#B(2)=B(3)+B(4)})
500 FORMAT(1HO#1Xe13HLOOP OF ORDERsI4s5Xs5HW(0)=4FIe6)
510 FORMAT(9XsSHW(O)=sF 76448 » NODESs1515)
<

Consen]F D = Oy LOOPS ARE BEING EXAMINED AND PRINTOUT OCCURS

CLP
cLp

cLP
CLP
CLP
CLP
CLP
CLP
cLp

cLe
CLP

cLe
cLp
cLp
CLP
cLP
CLP
CLP
Lp
cLpP
CLP
CLP
cLe
cLP
CLP
P
CLP
cLe
CLP
CLP
CLP
CcLpP
cLp
CLpP
cLp
CLP
CLP
CLP
CLP
CLP
cLp
cLp
CLP
CLpP
CLP
CLP
e
CLP
cLp
CLP

CLp

CLP
cLp
CLP
cLp
cLP
cLe
CLp
cLp
cLp

CLP

Consun]lF D |S NOT ZEROs PATHS ARE BEING EXAMINED AND PRINTOUT [S OMITTEDCLP

C
IF{D)200+152+200
C
Counu®[F NLP 1S GT ZEROs LOOP PRINTOUT IS SUPPRESSED
C
152 IF(NLP115391539200
153 IFIB(111154415591%5
154 B(l)i==B{1)
155 WRITE(NPRT+500) 1198(1)
l4=1
160 I5=L(14)
170 IF(LOOP(1511171¢1804171
171 I5=]5+1
GO TO 170
180 I6=iL(14)
17=15=1
WRITE(NPRT 9510) F3(14)+{LOOP([B)e]8=]1691T7)
l4=lb4]
[F(Je=11116001609200
200 RETURN
END

FEATURES SUPPORTED
CNE WORD INTEGERS

CORE REQUIRFMENTS FOR CLP
COMMON 3184 VARIABLES 6 PROGRAM Sus

END OF COMPILATION

Fig. 20 FORTRAN Listing of Subroutine CLP

CLp
CLP

CLP
CLpP
CLP
e
CLP
CLP
CLP
cLpP
CLP
CLP
P
cLP
cLpP
CLP
CLP
CLP

10
20
30

50
60
70
eo
99

120
110

lac
120
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
3lo0
320
330
340
350
360
370
380
392
400
410
420
430
440
450
460
“70
480
490
500

520
530
540
550
560
570
580
590
600

610
629

630
640

650
660
670
630
699
700
710
729
730
740
750
760
770
780
790
800

51.
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Subroutine PV

Subroutine PV is called by the main program to calculate the
path values for all paths through the network. It first calculates the
values associated with the branches of a path and then calculates the
values for all loops that are disjoint from the path. The values are
then combined through the use of the topology equation to compute
the equivalent values for the path. These values are then printed out.
The values are also accumulated by this subroutine to aid in the
calculation of the equivalent branches of the network which is done by
subroutine PRP.

The flow chart for subroutine PV is shown in Fig. 21. The
initialization shown in the first box in the chart tells where to
locate the first node, L{1), for the first path and the number of
equivalent branches in the network, I9. The checks on NPP and NLP
are merely to determine whether it is necessary to slew a page and
whether to print the path values. At statement 95, the heading for
the path printout is printed unless the user option not to print paths
is exercised. The portion of the flow chart from statement 100 to the
check on NPP following statement 131 represents the actual calculation
of path values. The remainder of the subroutine is used to accumulate

the values needed by subroutine PRP for calculation of the values for

the equivalent branches of the network. Path values are calculated after

statement 100. CLP is called and calculates the values associated with
the branches in the path. By repeatedly calling CL, the value of

disjoint loops are included in the calculation where nedessary.
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54. |

One should recall that subroutine CL calls subroutine CLP to make the
actual calculation of values associated with the loops. Following
statement 131, the loop and path values are combined to compute the
equivalent values for the path. These values are then printed out by
statement 134 unless the option to delete path printout has been
exercised.

The portion of the subroutine from statement 136 on is devoted
to accumulating values for calculation of the equivalent branch values.

The transfer statements from statement 140 to 142 check to see whether

the source and sink node for the path just examined are the same as
those for the immediately preceding path. Paths are grouped so that
all paths with the same source and sink nodes are stored consecutively.
If they are both the same, then statement 160 continues to accumulate the

values for the equivalent branch. If either node is found to be

different, then a new branch is started at statement 170 and the number

of equivalent branches, 19, is incremented by one. If fewer than 100
equivalent branches have been Tocated, then the program continues to
statement 180 where a check is made to see whether all paths have been
located. If not, return is made to statement 100 and the process described
above is repeated. If all paths have been found, then subroutine PRP

is called to calculate values for the equivalent branches of the network.

Upon return from PRP, program control is returned to the main program.

The printout of path values adjusted for loop considerations
for the network of Fig. 5 is shown in Fig. 22. The FORTRAN statements

comprising subroutine PV are shown in Fig. 23.
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‘ NE PRUB LR 2L
* 7 06551162 344926 1947059
7 04041860 1846191 4142408 !
8 04406976 746191 4142409 *
o 8 04026418 1946191 4142409 i
7 04348837 Beb6191 4142409 ?
8 06626744 4e3919 2846892 K
4 4 6 8
) Legend:
: Symbol Definition
NS Source node of path
NE Source node of path
| PROB Probability of going from NS to NE
MT Expected time to go from NS to NE
VT Variance of the time to go from NS to NE
ijkl Path with NS = i, NE = 1 and intermediate nodes j, k

Fig. 22 Printout of the Paths for Network of Fig. 5

------ﬂ---




SUBROUTINE PV

C
CounnupaTH VALUES
C
COMMON I191291391491581€691T7s18019
1 NNOSNLOSLLOSLPOSNLPINPPINCRDsNPRT s JCORY
2FoF1oF29F3(50) sF4(50)9F5(50)sF6(50)sP(100)
3 DeD1sD2sN1sN29GPsGPLIGP29TsVT
4T1(100)sT2(100)9LS{100)sLE(I00)sN(100)sNN(L1OO0)sNL(200)sL(100)
COMMON LOOP({1000)sNS(50) oNE(50)+G(50)9G1(50)¢G2(50)+K(3)9B(8)
1J(9 ) oNAME(6) o NJOB(2) yMONSNDY oNYRDEL
500 FORMAT (4Xe2HNS9»4Xs2HNE 93X 94HPROB» 7X93HM TsTX93HV T)
510 FORMAT (1XsIS01Xsl591XeFS¢691XoFFebslX9FIe4)
520 FORMAT (44&4X9l1515)
600 FORMAT(1lH1)
o
CouexxnINITIALIZE PATH SEARCH
C
L{l)=LLO
19=0
IFI(NPP)E80980s100
80 IF(NLP)I90+90+95
90 WRITE(NPRT9600)
95 WRITE(NPRT$500)
100 I1=1
C
Connnul (1) IS THE FIRST NODE IN A PATH
C
lexL (1)
F=0e0
Fl=060
F2=040
C

Con%®aCLP |5 CALLED TO CALCULATE VALUES FOR THE BRANCHES IN THE PATH
C
CALL CLP
[1=2
12=1
C
CunnnsClL 1S CALLED TO LOCATE DISJOINT LOOPS*##IT CALLS CLP TO
CunnuenCALCULATE VALUES IF DISJOINT LOOPS ARE FOUND
C
110 CALL CL
120 12=12+1
IF(LOOP{I2)1120s1214120
121 12=12+1
IF(12=0LL0)110s1225122
122 JM=]l=1
12=L(JM)
[l=[l=1
IF(11=11123+1234120
123 11=L(1)
I2=11
N1=LOOP(12)
130 12=12+]
IF(LOOPI12))13091314130
<
CaxnnapATH VALUES ARE CALCULATED AND PRINTED OUT
C
131 L(1)=]2+]
2zle=1
N2=LO0P(12)
Fz=Ff
Fl==F1
F2==F2
GP=F/D
GP1=(F1=GP#D1)/D
GP2= (F2=GP#D2~240%GP1%D1)/D
T=GP1/GP
VT = GP2/GP=T#T

Fig. 23  FORTRAN Listing of Subroutine PV

PV
PV

PV
PV
PV
PV
Pv

PV
PV
PV
PV
PV

PV

Pv
PV
PV

PV
PV
PV

PV

PV
PV
PV
PV

Pv
PV

PV
PV

10
20

30
40
50
60
70
80

100
110
120
130

140

150
160
170
180
190
200
210

220

230
240
250
260

270

280
290
300

3l0
320

330
340
350
360
370
380
390
400
410
420
430
440
450
460

470

480
490
500
510
520
530
540
550
560
570
580

56.
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C
CanunslF NPP IS GT ZEROs PATH PRINTOUT IS SUPPRESSED
C
IFINPP)134491349136
134 WRITE{NPRT»510) N1sN2sGPsTVT
WRITE(NPRT$520) (LOOP(I3)el3=I1yl2)
136 l4=]
140 IF(14=19)14141419170
C
Ca»nxaDETERMINE START AND END NODE FOR THE PATH
C
141 IF(N1=NS(I&4))15091429150
142 IF(N2=NE(14))15091605150
150 l4=]o+]
GO TO 140
C
CounuuSTART AND END NODE ARE THE SAME AS A PREVIOUS PATH###CONTINUE
CrunnuTO ACCUMULATE VALUES FOR PATHS WITH THESE SAME NODES
C
160 Gl14)=G(14)+GP
Gl(l4)=eGl{14)+GP]
G2(l4)mG2{14)+GP2
GO TO 180
C
ConnxuSTART OR END NODE 1S NOT THE SAME AS THE PREVIOUS PATH®##*BEGIN
ConunuTO ACCUMULATE THE VALUES FOR THE NEW SET OF NODES
C
170 NS(14)aN]
NE(14)=N2
G(l4)=GP
Gl(l4)=GP1
G2({4)=GP2
19=]9+1
IF(I9=100)180+1714171
171 CALL PRP
WRITE(NPRT»600)
19=0
WRITE(NPRT»500)
180 IF(L(1)=LP0)100»181,s181
181 IF{19)182+190,182
C
Craxenpl L PATHS HAVE BEEN EXAMINED
C

182 CALL PRP
190 RETURN
END

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR PV
COMMON 3184 VARIABLES 6 PROGRAM 476

END OF COMPILATION

Fig. 23 FORTRAN Listing of Subroutine PV
(continued)

PV

PV
PV
PV
PV
PV

PV

PV
PV
PV
PV

PV
PV

PV
PV
PV
PV

PV
PV

PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV

Pv
PV

PV
PV

590

600
610
620
630
640

650

660
670
680
690

700
710

720
730
740
750

760
170

780
790
800
810
820
830
840
850
860
870
880
890
900

910
920

930
940

57.
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Subroutine PRP

Subroutine PRP is called by subroutine PV to calculate and print
the values for the equivalent branches of the network. It is within PRP
that loop values may be deleted and normalization of the final values may
take place.

The flow chart for subroutine PRP is shown in Fig. 24. Initializa-
tion occurs in the first box of the chart. If either DEL or JCOR are
zero or less, the printout is not adjusted. If DEL is greater than zero,
then there is a possibility that the sum of the probabilities for the
equivalent branches emanating from a particular source hode may not equal
one. In this situation, the user can specify by the use of JCOR whether
or not he wishes these probabilities to be adjusted to sum to one. If
the option is exercised, then the adjustment for an equivalent branch
probability is simply 1/GT where GT is the sum of the probabilities for
all equivalent branches emanating from a given source node. The branch
times are adjusted by the same amount.

The situation will first be considered where the values are to be
left unchanged. The checks on NPP and NLP are for page control and
heading printout control. The problem heading is printed by statement
100 if NLP < 0. A DO loop is used to print 50 equivalent branches to
a page of output. For the no adjustment case, I1 is always less than I7
and transfer is made to statement 60 where the equivalent branch values
are computed and printed. The above process is repeated until all
branches have been printed. Program control then returns to the calling

subroutine which was subroutine PV.
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60.

For the normalization case, I7 is set equal to zero at statement
20. The process continues as stated above down to check on IT1 versus
I7. 11 represents the number of the branch to be computed and printed and
I7 is one greater than the number of the last branch emanating from a
given source node. When I1 < I7, transfer is made to statement 60 to
calculate and print the branch. When I1 > I7, a new source node is to be
considered and the probabilities for the branches are summed by the
portion of the subroutine from statement 30 to statement 40. At state-
ment 50, the starting branch number for the next source node is saved.
The program then goes on to statement 60 to compute and print the branch
values. As before, the process is repeated until all equivalent branches
have been printed. Program control then returns to subroutine PV.

The equivalent branches for three modu]es.of the network of
Fig. 5 are shown in Fig. 25 for the cases: 1) no loop deletions;
2) loops with probability less than .0001 deleted; and 3) loops with
probability less than .0001 deleted and final outputs normalized.

The FORTRAN statements comprising subroutine PRP are shown in Fig. 26.
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GERT PROHLEM NO 1A BY PHIL ISHMAEL DATE 6/ 11/ 1968

LOCF DELETION VALUEs DEL = 0400000000

FOUIVALENT RRANCHES OF THE NETWORK

L ENTRY. _ AN L ol ANCE
1 27  Ue4593EIF GO  Qel77158E 02  Oel27568E 03

2 78 "e545194F 00  0e179425E 02 Cel25641E 03
2 27 DG LS LEIQE 00 Oel SV o1 20 ] 17

a) No Loop Deletions

AERT PRORLEM NT. 10 By PHIL ISHWAEL DATE 6/ 11/ 1968
LOOR DELFTION VALUEs DEL = 54007010200
EQUIVALENT RANCHES OF Tul MNETNORK
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Fig. 25. Final Outputs From GERT Program



SUBROUTINE PRP

C
CuunnnPRINT PATHS
C
COMMON T19129139164s15016017918419
1 NNOsNLOSLLOPLPO 'NLP sNPPINCRDsNPRT+JCOR
2FsFLloF29F3(50)9F4{50)sF5(50) sF6(50)9P{100)
3 DeD1sD29N1oN2sGPsGPL1IGP2eT VT

4T1010019T2(100)sLS(200)sLE(LQ0)sN{L100) s NN(100)

sNL(200) 9L (100}

COMMON LOOP(1000) sNS(50)sNE(S501sG(50)+G1(50)+G2(50)sK(3)9B(8B)

1J(9) oNAME(6) s NJOB(2) sMONSNDY o NYRsDEL

50C FORMAT (1X+5HENTRY $2Xs4HEXIT #3Xs11HPROBABILITY»5X99HMEAN TIMEs6X

1 8HVARIANCE)
510 FORMAT (1XsI591X91593E1546)

520 FORMAT(18H GERT PROBLEM NOe 92A296H BY 96A2+6H DATE#13s
11H4/91391H/915//11X926HLOOP DELETION VALUE» DEL =sFlleB8///

212X +34HEQUIVALENT BRANCHES OF THE NETWORK/)
600 FORMAT (1H1)
I11=1
GT=1le
I5=1
17=50
IF(DEL)TD970910
10 IF(JCOR)T0s70920
C

Cru#xn]lF DEL AND JCOR ARE BOTH GT ZEROs FINAL EQUIVALENT BRANCHES wILL
Cox%xnBE ADJUSTED SO THAT PROBSe ASSOCIATED WITH START NODES SUM TO ONE

C
20 I7=0
73 IF(NPP)S0+90980
83 [F(NLP)S0+50,100
90 WRITEINPRT9600)
100 WRITE(NPRT$520) NJOBsNAME sMONINDY s NYRWDEL
WRITE(NPRT 5000
DO 111 [3=1450
I+ (11=17160+30,30
30 GT=0
DO 40 [6=15450
I7=16+1
GT=GT+G(16)
IFINS(I6)=NS(I7)150940940
40 CONTINUE
50 15=17
C
Cranx®CALCULATE AND PRINT ALL VALUES FOR THE EQUIVe
C
60 T=Gl(I11)/G(I1)
VT=(G2(I1)/G(I1)=T*T)/GT
T=7/GT
N1=NS(1I1)
N2=NE(T11)
GP=G(11)/GT
WRITE(NPRT9510) N1sN2sGPsTHVT
11=11+1
IFtI1=19111191119120
111 CONTINUE
WRITE(NPRT+600)
GO TO 100
120 11=1
RETURN
END

FEATURES SUPPORTED
CNE WORD INTEGERS

CORE REQUIREMENTS FOR PRP
COMMON 3184 VARIABLES 8 PROGRAM 354

END OF COMPILATION
Fig. 26 FORTRAN Listing of Subroutine PPP
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Relationships Between the Dimensioned Variables

The relationships between the dimensioned variables will be discussed
wifh regard to two conditions: across-the-board program sizing and tailored
dimensioning. For across-the-board sizing, the primary consideration is to
establish a set of variable dimensions that accommodate the largest possible
problem for a given computer. For example, it is not considered feasible to
attempt to accommodate an input network in excess of 100 branches for the
GE 225 and the IBM 1130 in the Arizona State University computer center.
However, it might be possible to tailor the program dimensions to accommodate
specific networks with more than 100 branches. Such tailoring would depend

on the configuration of the input network.

Across-the-Board Program Sizing

To be able to read into the program and manipulate a 100-branch
network, the following variables must be dimensioned at 100:

LS(100) P(100) T2(100) NN(100)

LE(100) T1(100) N(100) L(100)
These dimensions are required since:

1. LS and LE contain the start and end node for each branch;

2. P, T1, and T2 are the probability, first moment of time to
traverse the branch, and second moment of time to traverse

the branch, respectively.

3. N and NN corespond to each node number of the input network
(it is necessary tc use node numbers between 1 and 100, in-
clusive, for networks approaching 100 branches in size. As
is indicated in the user's manual, however, there is no
restriction on the order in which the node numbers appear

in the input network.)
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4, L is the greater of the largest number of nodes contained in
any first order loop plus one or the largest number of nodes
appearing in a path. L is dimensioned rather generously since
the largest subscript for L ever actually used by the program
cou]d.on1y qpproach 100 if all branches of the input network
were in series.

The only other dimensioned variable that is directly related to a
100-branch input network is NL(-) which is dimensioned at 200. The
dimension for NL must always be twice the size of the Targest allowable
number of input branches since there is an NL value for each end of the
branch.

The variables F3(50),F4(50), F5(50), and F6(50) are actually
related to the highest order loop that can be expected rather than the
number of branches in the input network. They are dimensioned rather
generously insofar as a 100-branch input network is concerned.

The variables NS(50), NE(50), G(50), G1(50), and G2(50) are related
to the number of possible equivalent branches that can be accommodated
by the program. If Ss represents the number of source nodes in the input
network and SE represents the number of sink nodes and if any sink node
can be reached from any source node, then the maximum allowable number of
such nodes must meet the following restriction: S  * S¢ < 50. For the
input network of Fig. 5 and Table 1, there are only two source nodes and
two sink nodes; therefore, the largest subscript for NS, NE, G, Gl1, and
G2 that was actually required for the example input network was four.

The dimensioned variable whose size is the most critical for an

input network of any appreciable size is LOOP(-) which is dimensioned as

1000. This variable is used to record each node appearing in all first
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order Toops and each node in each path through the network. LOOP(-)
values of zero separate each loop and each path. If an input network
has many possible paths and, in particular, if each path contains many
branches, then the dimension on the variable LOOP(+) can rapidly grow
large and may get larger than the specified dimension for the program.
Such a situation is described in the following discussion of tailored
dimensioning of the program.

Tailored Dimensioning

The term "tailored dimensioning" is used here to describe the process
of altering the GERT EXCLUSIVE-OR program to fit a specific input network.
The alteration is accomplished, for the most part, by varying the dimensions
of the variables that are in COMMON. Usually the reason that a problem
will not fit into the standard GERT program is that the dimension for the
variable LOOP(-) has become larger than is specified in the program. Thus,
the primary goal of tailoring the program is to enlarge the dimension for
LOOP(-) at the expense of other variables whose dimensions do not need to
be as large as they are in the standard GERT EXCLUSIVE-OR program.

To illustrate how such tailoring might be accomplished, a portion
of Example 1 from the user's manual (2) will be used. In that example,

a four-module problem was discussed where each module was like the network
shown in Fig. 5 of this report. The input network for the four-module
problem contains only forty branches, but the dimension on the variable
LOOP () grows to 2746, which is 1746 words larger than the standard GERT
IBM 1130 program can accommodate. Since there are only 40 branches, then

the variables LS, LE, P, T1, T2, N, and NN could be dimensioned at 40
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each which releases (7)(60) = 420 decimal words of storage. The

variable L could safely be reduced to a dimension of 25 which releases

75 more words of storage. Since there are only two source nodes and two
sink nodes, the variables NS, NE, G, G1, and G2 could each be dimensioned
at 4 which releases (5)(46) = 230 additional words of storage. Since

the highest order loop that is possible for the network is an eighth
order loop, the variables F3, F4, F5 and F6 could safely be dimensioned
at 15 which releases another (4)(35) = 140 decimal words of storage. At
the standard GERT program dimensions, there are an additional 258 decimal
words of storage available on the IBM 1130 which could also be used.
Thus, the number of additional words of storage that can be made available
by tailoring the standard program to fit the four-module network problem
is 1123. The largest dimension for LOOP(-) could be specified as 2123
which is still too small to handle the network. At this point, two
alternatives are available: 1. use a larger machine or pack the values
of LOOP(:); 2. analyze the network in segments. Alternative 1 is not
always a possibility. For alternative 2, one way of breaking the four-
module probiem into segments is to make a pass on the computer to obtain
the equivalent branches of the network for one module. The equivalent

branches for the network of Fig. 5 are shown below:

(0.593, 4.56, 6.019)
> S

(0.651, 4.962, 6.126)
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In the above network the numbers in parentheses associated with each
branch indicate the probability, the mean time, and the standard
deviation of time to traverse the branch. When segmenting a network,
the values of each segment can be inputted using a normal distribution
of time (if only two moments are used). By using two such equivalent
network modules and two modules Tike Fig. 5, it was possible to run
the four-module problem on the standard IBM 1130 GERT program.

th moment of the equivalent

As was stated previously, the n
network only depends on first n moments of the branches. By reducing
a complex network in segments (if this is possible) and describing
the reduced branches in terms of the first n moments, a large network
can be analyzed. The four-module network was run without segmentation
on the CDC 3400. As expected, the results from the IBM 1130 run and

the CDC 3400 run were identical.
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