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ABSTRACT

In this report techniques are derived for realizing Bayes
optimal learning systems in analogue delay-feedback form for fil-
tering a sampled stochastic process in the presence of an un-
known or random parameter when the optimal filter for known
parameter value can be realized. The unknown parameter may take
on a bounded but continuous range of real values, and be either
an unknown and random constant or a8 Markov random process. Ex-
amples of the techniques are given for both constant and time-

varying parameters.
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VERRODUCIBINITY OF THE ORIGINAL PAGE IS POOR

OPTIMAL ADAPTIVE FILTER REALIZATIONS
FOR SAMPLED STOCHASTIC PROCESSES WITH
AN UNKNOWN PARAMETER*

i. INTRODUCTION

In this paper, the problem is treated of realizing the Bayes
-optimal adaptive filter for a sampled. stochastic process, Awhere the
- relevant probab:i'lity .d'ensities are nc;t cbmple;ely known. Specifically
the functional éorms are kaown and would be fully specified by knowledge -
of a single parameter, such that given the parameter, an optimal |
(c.onditional megn) fiite;' ~cou1<'i~ be constfucted. Such problems can arisie,‘ ‘
| for example, in tl.xg. observation and ;:optz"ol of systems subject to model- '
i-ng ur'xc'ertainty or random paramebgz; variations.of in commun‘icvation

‘or sounding over random or partially unknown channels.

This work was also partiaily supported by the Joint Services Electronics
Program. under Grant AF~-AFOSR-766-66.
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Magill [1] investigated the Bayes optimal adaptive estimation of a
sampled Gauss-Markov process yvith a constant unknown parameter vector,
restricted to take on a known finite set uf possible values. The resulting
estimation system was shown to be realizable as a linear combination of
linear-recursive (i.e., ‘Kalman [2] filters (one for each parameter value),
whose outputs are each weighted by the corre Spoﬁding a posteriori proba-
bility of the parame.f.e.r' "value, given all data.

If the finite para;n'eter space is actually an approximation to a
continuous range of values, the complexity and storage requirements for
digiﬁal compute.r implementation increase with the fineness of the quantiza-
tion. The purpbse,of this paper is'to show how in some situations, the
optimal adaptive filter c.a.n bg directly implemented by Simple analogue
processing even though the parameter space is continuous. This is dpne for
processes where onij a sin'glé ('scé.lar) paraméter is unknown, and may be
either a constant or é-realizatiOn of a Markov sequence; satisfying a first- -

order difference equation.

./II. BAYES OPTIMAL ADAPTIVE FILTER
Let Xk'-:A X(tk), k=1,2,... be a.séquence of state or signal (column)
v'ec't‘ors which are to be sequentially estimated from statistically related

observation vectors 'Zk=A Z(t k=1,2,... . Let kk denote the collection

k)’
“of data {Zl, Z,, .o Zk} . I ':Ek is an es:.ima.te- of xk, the optimal estimate

f(k' is defined as that SZk which minimizes the quadratic performance index |

Sk~ E{()&-ikﬁq(xk-,‘.ik” Ml ()
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where E{ l )».k} is the condxtxonal expectation operation, given k Q is

any positive definite symmetric matrix, and prime denotes transpose, It

» oY » . 2 - . -

is well known that the optimal estimate X, in this generalized least mean
&N

square error sense is the conditional mean E{Xk‘l )‘k} :

“ .
X =\ X X A jaX . 2
S Vi M) < ()

<
I the density P(Xk“';\k) is not exactly known, bu: actually depends
o i - !
on some parameier §, i.e., p(XK; 9, kk) is knovm, then p(Xk'i}\k) m.ay be

found by writing:
pIX In 0 = (ko a0 pis]x)de, (3)

-

where to {ir. tac¢ conciiiona. density p;e,:\k; of 8, all priur xnowie¢ge of 6,
even if it is in scme cases not Yrandom', is expressed as a probabilily

Bayes estimation). Assuming the interchangeability of order

-

acnsily pio

of integraticn, (2, can now be rewritten as

X =,§ X (6) p(9}), ) d8, (4)
where |

R 8) = S'x&p(xkie,kaxk
That i‘s, siace o .5, is the optimal estimate of Xk given 0, ﬁk is obtained

i

by averagian_ tnd output of a filter designed for a know:i parameter over the
conditional or ‘learaningz’' distribution p(el)\k) of the parameter. These facts

are well known -~ in principle.



If, for example, the processes given § are riorn-;al, fci(e) is

© linear eyen though the overall esti-matg ik is nonlinear. Cases where

'f{k(e) is nonlinear, but easily realizable should not, however, be ruleq o.ut.
In the followipg, the symbols a ah& Bk are used in place of § for

constant and time-varying parameters, respectively. Even though the

constant parameter is a.‘ sPecialncva.se of the time-varying Larameter, the

. two cases will be treated separately because of the greater.importance' and

applicability of the constant unknown parameter case.

iII, ,CO'NSTANT UNKNOWN PARAMETER
In the following,: i.t is assumed that (i) the conditional filter }?k(o.)
can be constructed so that its output can be varied as a function of a,
'(ii) the value of the conditional prediction dgnsity p(Zk[a, )“k-l) cah similarly
be generated as a function of a ()"k' is, in a given realization, ﬁxed) and
.('iii) all apriori knowledge of a is expressed by a density function p(a)
defined over some finite inte“.rval, [al, az].
With these ;ssumptiéns, p(.é.});k) car;.be written in the recursive
form | .
| ‘P(Zkl a, )"k-l) P(alkk;l)
p(ar) = o ' , (6)
{ Pz fak prlalr )de
a '

where p(a[)\o) & é(a). Substitutiﬁg (6) into (4) with a replacing @ gives )
. ' : a ' '

24 | |
{ "X @ipizlen inteny ) da |
xk = _:; — ‘ ' (7) -
) Pl ey ) .
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It s'ome.lportion (say all) of the (constant) sample int_ervgl Ts= tk+1-. tk
' | i5 used {for proceésing, thein{équatiolns (6) a:nd (7) suggest thé real;time
implementa.tiori of Figure 1, whgré o is periodically (with period T) "'swept“‘
| to ;'1.2', and the input 2, is assumed to be .co‘nsta.nt over the
sample interval, The symbbls@and @ denot‘e zero-memory 'rnultiplier

lineariy irom a

and divider devices, with numerator and denominators of the dividers indi-
cated by 'a" and "dv respectively. The samplers are operated at the end
of each sweep cycle, and the integrators are then reset to zero for the next

cycle.

p(a) initially

‘‘‘‘ 'T? P(“P\k_‘l)
Y
z' R E — 1 Delay T L
p( kla" k_l)-' ay -
1‘\d
}
Zk ! . '
X r,Q N Hold

d o
o ) Xk
G AT ()

Figure 1. Optimal Adajiive Filter, Constant Parameter Case.
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The memory of the learning part of this adaptive system is pro-
vided by the ¢.ielay line with t.h'e‘changing shape of the pulse representing .
p(c.;kk_l) characteriz‘ing t3e leérniaf )f a. Wken convergence is pos;ible,
the pulse p(alxl'(_l) idéally narrows down to an impulse “function" G(o.-ao), .
Qhere a is the actual value of a. Practica;lly, the bandwidth of the delay
line will limit the''sharpness' of the pulse. The bardwidth of the systetx;
.sljzou-ld therefc;fe be wi;Ie enough to provide adequate '"resolution" for the B
probiem. It shoul@ be noted that the bandwidth of the delay ‘line is roughly
eq:xivalent to the fineness of quant'ization of a needed to use 'the solution of |
- Magill [1].°

Finally, it is well known that from the martingale nature of con- -
d'iti:onai érobability_ sequences, p(a| A, ) will converge to 6(a-a_) with
prbbability one whc_a‘n.ever.(i) pl(a) > O in a neighborhood of a and
(ii) tkere exists any sequence of statistics cpl()..l), @Z(LZ), ... converging
. to 'a.'o with probabil?.ty one {3]. Then, in.this case ik_’ ik(“o) with pgopa-
- bility one, so that the rystem .operates in the limit with éxact knowledge

of the parameter a. .

Example 1: Suppose Xk', k=1, 2, ... is a sequence of independent, zero
mean, gaussian signals (maximum entropy signals) transmitted over a - .
channel with unknown gain a, where 0 < e < a 5'0.2 <o, Let independent,

zero mean, gaussiaa noise be added to each received signal. That is

' Zk = “‘£a+ Nk (all scalar).
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2 ! :
If g and ailare the signal and noise powers or variances, then

f(k(o.) is linear fm Z.k and given by

2

Lad . aox
Xe) = 57 4
GN+0. o
. X -

The conditional deasity p(Zk[a, Lk-l) is gaussian, and does not

depend on );k-;lz-

) 2, 2 2
. exp --%- {Zk / (GN+0.20 )}
P(Zy o ) = Tz T
k ~ N2 (6 +a cx)—i

Finally, if ali that is known about ¢ is a1< a< ays then

p(d) = 1 <a<a
_ 0.2-'01 01— - 2
that is, the _é:onst#nt 1/ (a.Z-al) is switched in for p(a]ko) for t <t<t

1 2°

. The part of the system, shown cnly as the blocks generating p(Zkla, L)

_aﬁd fg‘(_a)(in Figure 1), is shown for this example in Figure 2.

Example 2:. Now suppose Z,=mX +N, where N_is an independent

" normal sequence with variance Oy and xk is no longer ‘‘white' but is a

Markov process satisfying the difference equation

K1~ oK+ Uy

where Uk is a zero mean, variance 0., normal sequence. (Example lis a

U
special case of inis example when @z 0.) Suppose that any one of the quantities
{o oé. m, ol\z:} is the unknown parameter. A recursive linear filter [2] then

. can be built for X (a). with ihe unknown element left as a variable and swept



() 6202 1
x d

R : n .
a w = S‘ckr(;)

. Figure 2. Conditional estimate/prediction density function generator
for Example 1. '

=
.1 °N >
d
& 1 2
A
z
K £(-,*) p———m
Pz e )
Delay T —
X (a)

o fe—

¥
3

Figure 3. Conditional estimate/prediction deansity function generator
for Example 2. S
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linearly over the sample perioc. 3Suppressing a in the notation, we have

ik= OX 1t iiZy- m“’f'k-l)’

where . Pk cpz 02
o ——— - N
Wtz 2z 0 Pt 5 W
> k ¥] N

A 2 2
where P, = E{(X -¢X __.;"}.  Leto_ = Var{zk])j(_l}, and let

Zk-‘- Zk" m@f(k_la thén

(WY

.l'ﬁ
2

.‘(Zklat H("l) = €
-'Jero

Q
et

v

£ 16, %)

where
- Z —

2
N-.-m Pk.

The system for gexierating p(Zl'(ln, )“k-l) and f(x(o.) can then be constructed
as show_n in Fig'ure 3 Then the unknown element of {dg, (/8 O:I' m} is

swept periodically from @, to.a,.
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IV. TIME-VARYING PARAMETER

Now suppose the unknown parameter can vary from sample to
sample. Specifically, Bk is assumed to be a Markov process satisfying

the difference equation

B = @Bt Vi (8)

x-.hc.r.: Vk is an independént sequence with known de_nsf.ty pv(Vk) which is
zero outside a finite interval. If this finite range assdmption is not strictly
true, such an approx_imatiop is normally possible with probébility arbitrarily
close to one. To make the érocess stable, i.e. bound the range, lcp| must
be less than one. For definiteness, let ¢ be non-negative. In addition t'ov '

assumptions (i -iii) for a, Bk is assumed to affect Zk "causally', i.e.

P08 B = PO B a B) L G2 (9)
The conditional density p'(sk l )j() can then be written recursivlélyr

as follows:

Pz BN )R8 [N ) .
PN = kS , (10) |

A iz lme R Iy sy
b, . '

where

b2
PBLIN ) = g P(B, |8y )P(B_ [Ny DB 1o (D)
S 1

" and [bl’ b2] is thg range of By -
-But from the model (8)

PR 1B, ). = P (B -wB, ). (12)
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Thus

b

pB Ny = (e -wn e 1N B o G3)
' b
1

Eguatiﬁn (13) can be implemented by feeding p(Bk_llkk_l) through a gain -
of c_lp » then a linear time scale compression of ¢, and finally through a
: linear filter with impulse response pv('r). To accomplish the storage for
_ P(Bk;-ll)“x-l) and rg;ke these systems realizable, adelay _of (1-o)is added
to the time scale change _and a delay of T to the response P,*
The t’ime-scale change calr# be thought of as a sliding tap delay line

- of total length T(1- ép)/ ¢ seconds, with the tap periodically sliding lineariy
froxﬁ - cg)/cp. to 0 over the sample.interva.ls, its cutput being sample.d'
- from k(l-o)T to kT. Sucha timme-varying dehlay can be realized by a tapped
_del._‘s.y line wi.fh appropriate sAwitching and smoothing, or in various non- |
mechanical equiva.iénts. (See [4,5].)

- The total system- implementing (13) plﬁs delz;,yé is shown in Figure.3

and denoted by the iiine-ira.rying impulse response h(T,t).

R T | = Delay 2 . ‘.
1. T-g)o ™ > PV(T) f—

linear‘ sweefs -~
(period T)

N
U '
" T K(1-9)T <t < kT

sample for

1-oT T

Figure 4. Time-varyihg Linear System h(T,t)
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Then, using (13) and the fact that

A L N LN LR LT
R ICAENS NN ICH W

% = (14)

the optimal adaptive system can be.implemented as; shown in Figure 5. The
memory of the .system. is implicit in h(f, t). It is interesting to note, that
if Vks 0, i.e. pv(vk) = 5(Vk), and @1, h(1,t)~6( ~t), that is a delay of
le'ngth T and Figure 4 reduées to Figure 1. At the other extreme, if cp.= .0

(ﬁk an independent sequerice) hiT, t) = pir(T- t).

p(Bl) initially

n -
TP e B /d
= Hold |— .

Fa)

‘ —»ka(ﬁk)

Figure 5. Opiimal Adaptive Filter, time-varying parameter case.
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Example 3: Suppose Zk= Bk Xk+ Nk' where Xk and Nk are white normal

sequences as in Example 1, and Bk satisfies (8). B, is a time-varying

k
measurement gain. Suppose the Bk process is in steady state and Bk is
~normally distributed with mean 0 and variance 1. Then the range of Bk

can be very accurately approximated by truncating p(ak) to the [0,10]

interval. Then ) 2

8, o
A k'x
%P = T A
cy Bk ox
and 1 2 2 2 2
e--z Zk/(cy-%-Bkcx)
PZy BN ) = 2 .2 2
| N/ZTr(cy+ B Oy )
and 1 [Vk-(l-q;)S]Z
-5 .
e 1-(:0

V) = ;=51 @) V- (- g) <5(-g0).

N2l - o)

L ’ - A - 3 -
| The system for generating Xk(Bk) and p(Zklkk_l) is identical to
-that shown in Figure 2, and the outputs of this system replace ihg S\Lk(Bk)
and p{Z, |a, kk_,) biocks of Figure 5. A (truncated)g_aussién pulse for p(sl)

must be generated for the first cycle.

V. CONCLﬁSIONS
Real time analogue techn;que.s hé.ve bgen utiliized to realize Bayes
optima;l ad p:ivé filters in the pre sence of an unknown and random para,rrx‘efer.'
-The systems were found for both constant and time-varying pa.ra.meterls,, and
. sho%. to be realizable in cielay'-.i';eedback form whenever the parameter. q'pn-'
glitior;al filters apd .q‘t;.servation d'ensit‘i‘es are réalizable aé functions of ti;e

unknown parameter. -
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