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A B S T R A C T  

I n  t h i s  r e p o r t  t e c h n i q u e s  a r e  d e r i v e d  f o r  r e a l i z i n g  Bayes 

o p t i m a l  l e a r n i n g  s y s t e m s  i n  a n a l o g u e  d e l a y - f e e d b a c k  fo rm for f i l -  

t e r i n g  a s a m p l e d  s t o c h a s t i c  p r o c e s s  i n  t h e  p r e s e n c e  of a n  u n -  

known o r  random p a r a m e t e r  when t h e  o p t i m a l  f i l t e r  f o r  known 

p a r a m e t e r  v a l u e  c a n  be  r e a l i z e d .  T h e  unknown p a r a m e t e r  may t a k e  

on a bounded b u t  c o n t i n u o u s  r a n g e  of r e a l  v a l u e s ,  a n d  b e  e i t h e r  

a n  unknown a n d  random c o n s t a n t  o r  a Markov random p r o c e s s .  Ex- 

a m p l e s  of t h e  t e c h n i q u e s  a r e  g i v e n  f o r  b o t h  c o n s t a n t  a n d  t i m e -  

v a r y i n g  p a r a m e t e r s .  
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OPTLMAL ADAPTIVE FILTER REALIZATIONS 

FOX SAMPLZD STOCHASTIC PR.OGESSES WITH 

AN UNKNOWN PARAMET.ER* . 

o$irnal 

In this paper, the problem is 

ada;j;ive filter for a sampled 

relevant probability . .  densit ies are not 

treated of realizing 

stochastic process, 

completely known. 

the Bayes 

where the 

Specifically 

the fianctionai forms are known and would'be fully specified by knowledge 

of a single parameter, such that given the parameter, an optimal 

(conditional mean) filter could be constructed, Such problems can arise, 

for example, in the observation and control of systems subjeet to model- ' 

. .  

ing uncertainty or random parameter variations. or in communication 

or sounding over rand.orn or partially 'unknown channels. 

t- 

rDr 
This wozk was also partiaily supported by the Joint Services Electronice 
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REPRODUCIB IL ITY  OF T H k  OKJGINAL P A G E  I S  POOR 

Magill [ 1 ] investigated the Baye s optimal adaptive estimation of a 

sam21ed Gauss-Markov process with a constant unknown parameter vector, 

restricted to take on a known finite set of possible values. The resulting 

estimation system was shown to be realizable as a linear combination of 

linear-recursive (i. e. , Kalman [2] fi l ters (one for each parameter value), 

whose out2uts a re  each weighted by the corresponding a posteriori proba- 

bility of the parameter value, given all data. 
, .  

If the finite parameter space is actually an approximation to a 

continuous .?apgz of values, the complexity and storage requirements f o r  

digital computer implementation increase with the fineness of the quantiza- 

tion. The purpose,of this paper is to show how in some situations, the 

optimal adaptive filter can be dirzctly implemented by simple analogue 

processing even though the parameter space is continuous. This is done for 

processes'where only a single (scalar) parameter is unknown, and may be 

either a constant o r  a realization of a Markov sequence, satisfying a first- 

order difference equation. 

II. BAYES OPTIMAL ADAPTIVE FILTER 

a Let %= X(tk), k =  1,2,. . be a sequence of state or signal(co1urnn) 

vectors which are to be sequentially estimated from statistically related 
. .  * A  observation vectors Zk= Z(tk), k =  1,2, . Let \ denote the collection 

1 of data '[Z,, Z2,  .Z,] . If %, is a n  estimate, of 3, the optimal estimate 
iL 

A - 
is defined as that % which minimbes the quadratic performance index 
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where E( I ' \] is the conditional expeccatiowoperation, given X Q is k' 

any Tositivc definite synzmetric rxatrix, a d  prime denotes transpose. It 

/s 

is  well known that the optirnd estimate X,_ in this generalized least mean 
A 

sqtiare error. sense is conditional mean E { S ~  X. j : 
x 

on some para:ecer 8 , i. e . ,  p(X..,l a, 'a) is knovx, then p(X, ';X. ) n . 3 ~  be 

found by writing' 

r C K  

Ccnaiiiy pial  (&yes estination).  Assurniq the intqrchangeability of ozder 

of integratisr., ;Z; CLS ;ow be. rewritten iis 

where 

. . .  h 
Wl- Liiat is, s i x c  1,' ' ( ? ;  i 3  tho optinr.al.estimate of 3 given 9, is obtained 

A b  ' 

by averagi1-i; ~ i i 2  output o f  a filter designed for a - knowr* 2arameter over the 

are well ksown - in principle. 
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h 

If, for  sxample, the processes given 0 are normal, X.(0) is z 
linear even though the overall estimate 3 is nonlinear. Cgses where 

,%(€I) is nonlinear, but easily realizable should not, however, be ruled out. 

are used ib alace of 0 for In the following, the symbols a and k 

constant and time-varying parameter 6, respectively. Even though the 

constant parameter is a special case of the time-varying karameter,, the 

. two cases will be treated separately.because of the greater importance and 

applicability of the constant unknown parameter case. 

iII. CONSTANT UNKNOWN PARAMETER 

In the followhg; it is assumed that (i) the conditional filter i$p 
can be constructed so that i ts  output can be varied as a function of a, 

(ii) the value of the conditional prediction density p(Z la, 5 - )  can similarly ' 

be generated as a function of a ( . is, in a given realization, fixed) and 

.(iii) all apr ior i  knowledge of a is expressed by a density function p(a) 

k -1 

xk 

defined over 'some finite interval [a , a 3. 1 2  

With these. assumptions, p(al\) can be written in the recursive 

form 

A *  . .  
Substituting (6) into (4) with a replacing 8 gives where p(alX ) = p(a). 

0 
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k t i  tk If some portion (say all) of the (constqnt) sample inlrerval T = t 
' is used f o r  processing, then equations ( 6 )  and (7) suggest the real-time 

implementation of FiGure 1, where a is periodically (with period T )  ''swept" 

lineariy from a to Q ~ ,  and the input Z,k is assumed to be constant over the 1 

sample interval. The symbols 0 x and @ denote zero-memory multip!.ier 

and divider devices, with nume'rator'and denominators oi the dividers in*.- 
* 

cated by ttnff and t!dlf respectively. The samplers are operated at  the end 

of each sweep cycle, and the integrators a re  then reset  to zero for the next 

cycle. 

Figure 1. Optimal Ada$ive Zilter, Constant Parameter Case. 
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The memory of the learning part of this adaptive system is pro- 

vided by the delay line with tae,changing shap.e of the pulse representing 

pic+ .) characterizing the learnia ,f a. When convergence is possible, 

the pulse p(al\ ) idealiy narrows down to an impulse l'fuqctionll 6(a-aQ), . -1 

where a is the actual value of a. Practically, the bandwidth of the delay 

line will limit.th~'sharpneosl'-of the pulse. The Mdwidth of the system 

should therefore be wide enough to provide adequate llresolutionll for the 

K-A 

0 

* *  . 

problem. It should be noted that the bandwidth of the delay line is roughly 

equivalent to the fineness of quantization of a needed to use the solution of 
6 

Finally, it is well known that from the martingale nature of con- 

ditional probability sequencesp p(a/\) wi l l  converge to b(0-a ) with 
0 

probability one whenever (i) p(a) > 0 in a neighborhood of ao, and 

(ii) fiere exists any sequence of statistics %(\), (p2(b2), . . . converging 

to a with proba3ility one [3]. Then, in this case %+ %(a ) with proba- 
0 0 

bility one, so that the rystem operates in the limit with exact knowledge 

of the parameter a. 

Example 1:' Suppose 5, k=l ,  2, . . . is a sequence of independent, zero 

mean, gaussias sigmis (maximum entropy' signals) transmitted over a 

channel with unknown gain where 0 < 4 < a < a2 < .o. Let independent, 

sero mean, gaasskz aoise be added to each received signal. That is 

0 -  

= LX i (all scalar). 'k M 
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2 2 u cr and aNare the signal and noise powers or variances, then . x  
A 
Xk(a) is linear ia % and given by 

The 

depend on 

conditional density p(Z,Ia,\ ) is gaussian, and does pot -1 
. .  

- 

&t 

The 

and 

F W y ,  ir'ali that is known aboizt G is at%, then 

is switaed in for p ( a I ~  f o r  t < t < tZ' 2-51 0 1- - is, the constant I/(a 

part of the system, shown cnly a s  the blocks generating p(\l a, \-l) 
A 

(a)(i= Figure-l), is shown for this example in Zigure 2. 
A!i-  

Example 2 : . sow suppose %= m5-k sa where 

normal sequence with variance Q -and 5 is .no longer- 

is an independent 

' 2  
hi 

bpt is a . .  

bdarkov process satisfying the difference equation 

2 where u. is .a Gero.meaa, variance 0 
K U normal sequence. (Example -1 is a 

special case of this example when c p ~  0. ) Suppose that any one of the quantities 

2 
rnW ax] is the unknown parameter, A recursive linear filter [Z) then . 

2 
€9 c+J 

can be built for % (e). with ihe Unllcaowa element left as a variable and swept 
& 



Figure 2, Conditionai estimate/predictioa density function generator 
for Example 1. 



linearly over the sample perio8.. Suppressing a in the notation, we have 

'where 

A 

The system for  generating p(Z 1 a, \ ) and X (a) can then be constructed k -1 K 
.2 .  2 _ .  

as shown in Figure 3. Tben the unknown element of [a u' 9 ON D m ]  is 

swept periodically from 4 to. a2. 
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nt. TIME-VARYING PARAMETER 

Now suppose the unknown parameter can vary from sample to 

sample. 

the difference equation 

Specifically, Bk is assumed to be a' Markov process satisfying 

* . , % c r ~  V. is aI'r independent sequence with known density p (V ) which is 
K v k  

zero outside a finite interval. , If this finite range assumption is not strictly 

true, such an approximation is normally possible with probability arbitrari ly 

close to  one. To make the process stable, i. e. bound the range, lq\ must . 

be less than one. For definiteness, let cp be non-negative. In addition to 

... assumptions (i - i n )  for a, B is assumed to affect 2 llcausaXy*lr i. e. k k 

The conditional density p(# 'r 1A.J can then be written recursively 

as follows: 

where 

.But from the model (8) 
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A C  

Thus 

P p  * 

Equation (13) can be implemented by feeding p(f3 k-1 I xk-1) through a gain. 

of - , then a h e a r  time scale compression of q), and f ina l ly  through a 1 
cp 

. linear filter with impulse response p (T). To accomplish the storage for 
V 

P(&-l I'K.~) and make these systems realizable, a delay of ( 1 - cp) is added 

to  the time scale change and a. delay of cpT to the response pv. 

f2 

A. 

The time scale change can be tkought of as a sliding tap delay line 

linear sweep 

of total length T(1- P)/q seconds, &h the tap periodically sliding linearly 

from t;'i; - ~$9 to 0 over the sample intervals, its cutput being sampled 

' fro= k(1- a)T to kT. Such a time-varying delay can be realized by a tapped 

delay line with appropriate swL:ching and smoothing, or in  various non- 

r mechanical equivalents. (See ~ 4 , 5 3 .  ) 

The total system impleaenting (13) plus delays is shown in Figure 3 

and denoted by'the time-varying impulse response h(~, t). 

T 

Figure 4. Time-varying Linear .System h(T, t)  
. .  
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Then, using (13) and the fact that 

the optimal adaptive.system can be implemented as shown in Figure 5. The 

memory of the system is implicit in h(7, t).' It is interesting to note, that 

if Vk' 0, Le.  p (V ) = 6(V ) J  acd cp-1, h(T,t)-t6(-;-t), that is a delay of 

length T and Figure 4 reduces to Figure 1. At the other extreme, if cp=O 

v k  k 

(Bk an independent sequence) h( T, t)  = p' (T - t ) .  
V 

p( 8,) initially 

Figure 5. O?timal Adaptive Filter, time-varying parameter case. 



Example 3 :  Suppose Zk= B ) i i tNk ,  where 

sequences as in Example 1, and Pk satisiies 

measurement gain. Suppose the process k 

$ and N are white normal 
k 

(8). 8, is a time-varying 

is in  steady state and /3 is k 

normally distributed with mean 0 and variance 1. Then the range of . k  

can be very accurately approximated b y  truncating p(@ ) to the [G, 101 k 

interval. Then 

and 

and 

2 
'k'x 

/r 
The system for generating s(f3,) and p(Z \ A  ) is identical to  k k-1 

%%) that ,shown in' Figure 2, and the outputs of this system 'replace the 

and pCZ,-Icr, X, ,) blocks 0.5 Figure 5. 
. .  

A (truncateagaussian pulse for p(p 1 ) 
A 6- A 

must be generated for the first, cycle. 

V. CONCLUSIONS 

Real time analogue techniques have been utilized to realize Bayes 
, 

. optimal ada-,:lve f i l ters  in the presence of &in unknown and random parameter, . 

The systems w.ere fol;nd for both constant and tirne-varying parameters, and 

show, to  be realizable in  delay-ieedback form whenever the parameter cop- 

ditional filters and observation densities are realizable as functions of the 

unknown parameter. . .  
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