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THE  RESPONSE OF A SIMPLY  SUPPORTED  PLATE TO TRANSIENT  FORCES 

PART 11: THE EFFECT  OF  N-WAYES AT OBLIQUE INCIDENCE 

By Anthony Craggs 
I n s t i t u t e  of Sound and Vibration  Research 

University  of Sout hampt on , England. 

SUMMARY 

A numerical method i s  used t o  compute the  response  of a simply 
suppor ted   p la te   to   an  ' N '  wave a r r iv ing  at  oblique  incidence. The 
factors  influencing  the  response under these  conditions are: ( i)  t h e  
r a t io   o f   t he   pu l se   du ra t ion   t o   t he  fundamental  period  of t h e   p l a t e  and 
(ii) the  convection  forcing  terms which a re   d i f f e ren t   fo r  each mode. 
Also, asymmetric modes are excited,  which  do  not make any contribution 
when t h e  wave i s  at normal incidence t o   t h e   p l a t e .  The computed results 
show that  both  the  convection  terms  and  the  asymmetrical modes  make a 
s igni f icant   cont r ibu t ion   to  t h e  form of the  response  for  the  displacements,  
ve loc i t i e s  and accelerat ions,   though  their   effects   are  more dominant . i n  
the   acce le ra t ions   than   for  any other  parameter. 

INTRODUCTION 

In   t he  first par t  o f  t h i s  study  the  response of a p l a t e   t o  a 
normally  incident  transient  pressure  loading was computed. This work 
i s  now extended by considering  the  response  of a s t r u c t u r e   t o  a t r ave l l i ng  
wave, which i s  more representative  of  the  general   case of  sonic boom 
excitation,  than t h e  normal incidence  case.   In  particular , the   repor t  
considers  the  response  of a simply  supported  plate t o   t r a v e l l i n g  ' N '  waves 
and the  re la ted  loading  of  'N' waves a r r iv ing  a t  oblique  incidence. 

Even f o r   t h i s  elementary  system  the problem i s  a complex one 
t o  solve by conventional  analytical  techniques. When a normal mode 
approach i s  adopted  the problem i s  complicated by the   na ture  of t h e  
generalised  forces.  For t r ave l l i ng  waves these  forces  are functions,  
not  only  of  the  pressure  t ime  history  that  would be  measured at a s ingle  
point , but a l s o  of  the  convection  velocity and p la te   d imens ions   in   the  
direct ion  of  traverse. Because the re  i s  a t ime  delay  in  the  loading of 
each  point  on  the  structure  the  shape of t h e  normal modes influences  the 
magnitude  of the  generalised  forces  and,  consequently,   the time dependence 
of each  of  the  generalised  forces i s  d i f f e r e n t .   I n   t h i s   s i t u a t i o n  it is 
more convenient t o  use  numerical  techniques  rather  than t o  look for  
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a d f i i c a l   s o l u t i o n s .  There i s  then   the  added  advantage t h a t   a r b i t r a r y  
t rans ien t  wave forms can  be  used i f  required.  The method i s  a simple 
extension t o   t h a t   o f   p a r t  1, r e f .  1. 

An ana ly t ica l   so lu t ion  has already  been made by CHENG . * 
However h i s   f i n a l   a n a l y s i s  w a s  considerably  simplified by resorting  only 
t o  the  fundamental mode and a single  speed  of  traverse  corresponding t o  
a convection  frequency term equal t o   t h e  fundamental  frequency  of t h e  
p l a t e .   In   t h i s   r epor t   t he  f irst  four modes which are  excited  are  used 
and a range   of   t race   ve loc i t ies  are considered,  although  the  duration  of 
the   pu lse  i s  kept  constant  such  that it i s  equa l   t o   t he   pe r iod  of t h e  
fundamental mode. Three  response  parameters  are computed for  each  normal 
mode: (i) the  generalised  displacement, (ii) veloci ty  and (iii) acceleration. 
Thus a c lear  estimate of   the  contr ibut ion of each mode  may be made f o r   t h e  
various  loading  conditions. 

Although the  convection  velocity  parameters  considered  are a t  t h e  
lower end of   the  scale  which  occur in   p rac t i ce ,   t hey   a r e   u sed   i n   t h i s  
analysis  since above t h i s  range  the  plate  would effectively  respond as 
though the  loading was at   noma1  incidence.  

SYMBOLS 

m ,n integer mode su f f i ces  

'mn 

%n 

(9)  generalised  displacement  array 

normal mode 

generalised  displacement 

P p la t  e density 

h plate   thickness  

1-I Poisson ' s   ra t io  

V c r i t i c a l  damping r a t i o  

w mn natural  frequency of  (m,n)th mode 
ohw?, n2 

* Unpublished work submitted  by D. H. Cheng, City  College of the  City 
University  of New York, prepared  during  temporary  assignment a t  NASA 
Langley  Research  Center. 
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x 
A t  
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S 

d i   s p l a c  ement 

displacement  array 

time 

pressure 

impulse  response  array 

integrat ing  matr ix  

ove ra l l   p l a t e  dimensions 

b/a 

maximum s t ruc tu ra l  dimension in   d i rec t ions   o f  

t raverse  

duration  of wave 

period  of  fundamental mode 

velocity  of wave 

wavelength 

time  increment 

width  of segment 

convection  frequency 

number of   plat  e segments 

angle  of  inclination of t h e   p l a t e  

convection  frequency  ratio for fundamental mode 

stresses i n  x and y-direction 
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THEORY 

When a plane.wave  travels  over a p l a t e ,   t h e   t o t a l   t i m e   t h a t   t h e  
wave is on t h e   s t r u c t u r e  i s  given by: 

- ( A  + L )  I 
V 

where A i s  t h e  wavelength, L i s  t h e  maximum dimension  of  the  structure 
in t he   d i r ec t ion  of t raverse  and v is  the   ve loc i ty  of t raverse .  The 
manner i n  which the  plate  responds depends  whether A i s  greater   than L,  
or   v ice   versa ,  and how t h e  terms (A/v) and  L/v a r e   r e l a t e d   t o   t h e  funda- 
mental   period  of  the  structure T1. If A i s  much grea te r   than  L and 

h / v  i s  o f   t h e  same order as T1, t he   s t ruc tu re  w i l l  e f f ec t ive ly  respond 

as though  the wave was at normal incidence. If L i s  much grea te r   than  
h t h e   p l a t e  w i l l  then  respond as though  the wave was a moving l i ne   fo rce .  

In   pract ice ,   a l though A i s  probably  greater  than L ,  t h e  
convection  term L/v i s  of   the  same order as t h e  fundamental  period and 
t h e   t r a v e l l i n g   e f f e c t  i s  then  important.  In what follows  these  conditions 
are  considered  for  an 'N' wave moving over a simply  supported  plate. 

For a plate   loaded by a forcing  function  p(x,  y , t ) the  equation 
of motion for  the  transverse  displacement,  w, may be wr l t ten  i n  terms of 
t h e  normal modes $i and the  generalised  coordinates 9i as 

m 

The equation  of  motion of each  generalised  coordinate i s  tha t   o f  a s ingle  
degree  of freedom system: .. 

Qi + 20. V d i  + ai qi - - - 8.. (t ) 
1 P h  1 

When t h e   p l a t e  i s  simply-support ed t h e  normal modes have t h e  form : 

$m = s i n  - mrx 
a . s i n  b 

0 0  

Thus, having  found Q, the   so lu t ion  i s  found by solving a s e t  
of equations of the  type (2), and then   subs t i tu t ing   for  q i n  (1). In 
ref. (1) it was shown t h a t  when Q was a complicated  function it was 
convenient t o  break it up i n t o  a f i n i t e  number, ns,   of  rectangular 
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impulses of equal  width, A t ,  and s tore   the  values of   the  ordinates   in  
an array CQ). When this has been done the  response  array,  {q)  given 
at t h e  same time  . intervals may b.e w i t t e n  down i n  the 'matr ix  form: 

{q} = A t  [R] {&I (41 

where [R] i s  a square,  lower  triangular matrix of order ns x ns ,   the  

non zero  elements  of  the.nrth column containing  the first (ns  - n r  + 1) 
terms of the   un i t  impulse  response  array  {r), which is  computed from 
the  equation ; 

-u v t  mn 
r ( t)  = e s i n  (umn -1 mn u h 7 - 7  mn 

The Approximation  of t he  Forcing  Array I&) fo r  a  Simply 
Supported P la te  due t o  a Wave Travel l ing  in  a Direction 

P a r a l l e l   t o  One  Edge 

The d e t a i l s  of  the  plate  loaded by a pressure wave on one face 
only  are shown in  Fig.  1. To idealise  the  forcing  function  the  plate i s  
f irst  divided  into a number of  equal  rectangular segments  which are normal 
t o   t h e  convection  direction. If the  width of  each segnent i s  small com- 
pared  -with  the  overall   length  of  the wave, then,  for  each segment, t h e  
forcing  function may be assumed t o  b e   a s   i f   a t  normal incidence. Under 
these  conditions  the  generalised  force  for a mode $ i (x ,   y )  i s  given by: 

Qi(t) = d - p ( t ) { l   $ i ( ~ ,  2)dx d + d . p ( t )  H ( t  - ;) q x ,  ? ) d x  3d + . . . 
a d r  

0 a 0 .b ,a 

where H ( t  - t ) is  the  Heaviside  shift  term which means t h a t   t h e   M c t i o n  

p is  zero  unt i l  t 2 tl; it then  has  the form as  though t was s t a r t i ng  

from zero. For  a s ingle  mode the  generalised  force i s  given  by: 

1 

where N i s  t h e  number of segments. Substi tuting  for $mn for  a simply 

supported  plate  gives: 
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The .generalisea  force  array  can  then  be  evaluated at 

equal   intervals   of  time and the   ne t t   response   bu i l t  up by  summing t h e  
contributions from a l l  t h e  modes. Thus, at a poin t   (x ,   y )  on the   p l a t e :  

The main difference between the normal incidence  and a t r a v e l l i n g  wave  may 
be deduced  from equation . (  5 ) .  A t  normal incidence  the  shir t  term t i s  1 
zero and 

.b 

When the wave t r a v e l s  over t h e   p l a t e ,   t h e   s h i f t  t e r m  causes   the mode 
shape t o  have some influence on the  t ime  his tory  of   the  forcing  funct ion.  

The force  act ing on t h e  ith segment i s  mult ipl ied by a harmonic term 

s i n  - )v(--).  The convection  frequency  for  the  (m,n)th mode is  

then : 

nr   (2 i  + 1 d 
b 2 

- - -  nv 
fmn 2b 

The convection  frequency  ratio i s  defined by 

s = Rll/Wll 

For a simply  supported  plate  the  convection  frequency term i s  deduced 
naturally  because  the mode shapes  are  sine  functions.  It should be 
noted, however, t h a t  a similar term w i l l  ex is t   for   o ther  boundary con- 
d i t i ons  and the  frequency may be defined as Rc = .rrv/L. 

Oblique  Incidence 

The so lu t ions   o f   the   t rave l l ing  wave and  oblique  incidence  problems 
are v i r t u a l l y   t h e  same. The d i f f e rence   l i e s   so l e ly   i n   t he   i n t e rp re t a t ion   o f  
t h e  results. I n   t h i s   a n a l y s i s   t h e  wave i s  specif ied by i t s  durat ion  ra ther  
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than i ts  wavelength; so t h a t   f o r  a t r ave l l i ng  wave the e f f e c t s  of d i f fe ren t  
speeds  uould  involve  altering  the  duration as w e l l  as the speed  of  traverse. 
A t  oblique  incidence  the  duration of the pulse  remains  constant  but the t r a c e  
veloci ty  i s  increased t o  v sec 8, a e r e  0 is  the  angle  of incidence  of 
the p la te   ( see   F ig .  1). 

DETAILS OF THE COMPUTATIONS 

The theory  of  the  previous  sections  has  been  used  to compute t h e  
response  of a simply-supported p la te   wi th   aspec t   ra t io  , B = 1.5. The 
description  of  the  loading term measured at a point  in  space was given by 

The duration  of  the wave, T , was kept  constant and equal t o   t h e   p e r i o d  
of  t h e  fundamental mode and t h e  wave t rave l led   in   the   y -d i rec t ion .   In  
making an  accurate  estimate  of  the  response a su f f i c i en t  number of modes 
should  be  used. The  number of modes depends upon t h e   r a t e  of  convergence 
for   the  general ised  coordinates .   This  convergence is dependent on t h e  
spa t i a l   d i s t r ibu t ion  and t h e  frequency  content  of  the  forcing  pressure 
p(x ,   y ,  t ) .  In   par t  1, it was shown t h a t   f o r  normal incidence  the  dis-  
placements  and stresses were  dominated by t h e  fundamental mode, but t h i s  
was mainly  because some of   the modes wi th   f requencies   c lose   to   the  funda- 
mental were not  excited. The accelerat ions,  however, were s igni f icant ly  
influenced by the  higher modes. A s  a general   rule ,   wi th   t ransient   loads,  
it i s  the  lower modes which contr ibute  most t o   t h e  response. For t h i s  
work a f ixed number of modes were  used with  the  object of  studying  the 
contributions from each one under  various  loading  conditions  rather  than 
evaluating  an  accurate  estimate of the  response at a point on t h e   p l a t e .  
For the   par t icu lar   p la te   cons idered ,   the   o rder   in  which t h e  f irst  9 modes 
occur i n   t h e  frequency  scale i s  (1, 11, (1, 21, ( 2 ,  l), (1, 31, (2 ,  21, 
(2 ,  3), (1, 4) ,  (3,  l), (2,  4 ) .  However, the  general ised  forces   for   the 
(2 ,  11, (2 ,  21,  (2, 3 )  and (2,  4) modes are  zero when t h e  wave  moves i n  
the  y-direction. Here only  the first 4 ac t ive  modes were used, i .e. t h e  
(1, l), (1, 2 ) ,  (1, 3) and (1, 4). O f  these   the  (1, 2 )  and (1, 4 )  modes 
are not  excited  under normal incidence  conditions. 

For good accuracy  the number of  segments t h a t   t h e   p l a t e  i s  broken 
into  should  be  large and the   s t ep  s i z e ,  A t  , should  be small. I n   t h i s  
work t h e   p l a t e  was divided  into 20 s t r i p s ,  so tha t   t he re  were f i v e   s t r i p s  
per   half  wave of   the  (1 , 4)  mode.  The s t ep   s i ze  was such that there were 
320 s teps   in   the   dura t ion   of  the fundamental  period. 

The application  of  equation (4) gives  the  displacement  response 
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array  only. The veloci ty  and acceleration  arrays w e r e  found by a nu- 
merical  differentiation  procedure which was based on a 5 point  difference 
formula, t h e  details of  which. are given  by IIILDEBRAM), r e f .  (2) This 
was  much  more economical on computer t ime  than  the  superposit ion method 
used in r e f .  (1). I 

A range  of the convection  fkequency  parameters which occur i n  
pract ice  are given  in TABLE 1 below.  These were fo r  a veloci ty  of t raverse  : 

vect  ion  frequency , Pl1, was eva lua ted   r e l a t ive   t o   t he   l a rges t  dimension. 
- o f  ll00 Ft/sec. and g lass  windows that were simply  supported. The con- 

! 

TABLE 1 - RANGE FOR  CONVECTION  FREQUENCIES 

fil 4 s  S fill c/s  

Large Glass Window  240'' x 84" x it' 

! 2.9 610 210 Small Window lotf x 8" x 

8.5 184 22  Medium  Window 36" x 24'' x t" 

> 3.5 27 8 

I 
! 

For th i s   s tudy  S was  varied from 1 t o  8 and the   pe r iod   r a t io  r / T  was 
kept  constant at unity,  corresponding t o  t h e  worst  possible  condition. 
Maintaining  the  period  ratio  constant and increasing S corresponds t o  
a s ingle  'N' wave s t r ik ing  the p l a t e  at different  angles  of  incidence. 
It i s  convenient t o  make S = 1 equivalent t o  8 = 0' , then  the  other  
values computed S = 2, 4 arid 8 a re   equ iva len t   t o  e = 60' , 75' and 8 3 O  
respectively.  

RESULTS 

A s  it was d i f f i c u l t   t o  make a clear  estimate of the ef fec t  of 
each mode from overall  response  curves the generalised  forces and responses 
were evaluated  separately.  Fig. 2 shows the   genera l i sea   forces   for   the  
first 4 modes. Fig. 3 shows the  generalised  displacement which has  been 
normalised by dividing by the maximm displacement fo r  the (1, 1) mode only 
under a uniform wit- s t a t i c  pressure. 

i.e. 

The corresponding  normalised  velocities  and  accelerations are shown i n  
Figs. 4 and 5. Here t h e  first 3 modes are shown as the response i n   t h e  
4th mode was usually  too small. The overall.  responses at a point on t h e  
p la te ,  which i s  snscept ib le   to  the first three modes, a r e  shown on a 
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phase  plane  diagram i n  Fig. 6. 

The var ia t ions  of  the generalised  forces,   with angle of  incidence, 
for  the respect ive modes are shoun i n  Fig. 2. It appears t o  be at t h e  lower 
values  of S (or smal l  angles of incidence)  that   the  convection  term w i l l  be 
of most importance as i t s  duration is l a rge r  and  consequently more energy 
w i l l  be  imparted t o   t h e  mode. It is i n t e r e s t i n g   t o   n o t e   t h e  manner i n  which 
the  general ised  forces   for   the (1, 2)  and (1, 4) modes behave. The osc i l -  
lating  convection  terms show  up c l ea r ly  a t  the  beginning and end of t h e  
forcing  function  corresponding t o   t h e   p u l s e  moving  on and o f f   t h e   p l a t e .  
A t  the   intermediate   s tage  there  is a constant  negative  term. As t h e  
angle  of. incidence  increases  the  convection  effects become shorter  and 
t h e  magnitude  of the  constant  term  diminishes. 

Figs. 3, 4 and 5 compare each  of  the  generalised  displacements, 
ve loc i t i e s  and accelerations  with  varying  angles  of  incidence. As expected 
the  contr ibut ions from t h e  (1, 2)  and (1, 3)  modes fo r   t he   ve loc i t i e s  and 
accelerat ions are larger  than  they  are  for  the  displacements  because of the  
lower rates  of  convergence. 

A summary of   the maximum values of the  generalised  coordinates 
i s  given i n  Table 2 below fo r  S = 2 and v = 0.02.  Although none of t h e  
s t ress   t ime  h i s tor ies  were computed the  maximum generalised stress co- 
e f f i c i e n t s  were estimated from t h e  maximum generalised  displacements 
using : - 

The  maximum values  for  each of t h e  modal parameters do not a l l  
occur a t  t h e  same time , and the   ove ra l l  maximum at a point on t h e   p l a t  e 
w i l l  only  be  obtained by summing the  responses from all of   the  modes. 
Some overall  response  diagrams  are shown on the  phase  plane  (x ‘L 2) and 
(2 ‘L %) i n  Fig. 6. The e f f e c t s  of the  higher modes a r e  shown by a com- 
parison  with similar plots  obtained by using  only  the  fundamental mode. 

The overa l l  maximum values  for  different  angles  of  incidence and 
damping f ac to r s   a r e  shown i n  Table 3. These converge t o   t h e   v a l u e s   f o r  
normal  incidence as (3 increases.  - 
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DISCUSSION 

In  the  preceding  sections it has  been  pointed  out  that  the  prin- 
c ipa l   e f fec ts   o f   t rave l l ing  waves are tha t   the   genera l i sed   forces   for   the  
excited modes each  have  different  t ime  histories,  and fur ther  asymmetric 
modes are brought  into  action which are  not  excited  under normal incidence 
conditions. The  computed r e s u l t s  show t h a t   t h e  asymmetric modes  make a 
s igni f icant   cont r ibu t ion   to   the   overa l l   response  and therefore   they w i l l  
need t o  be considered when making similar response  calculat ions,   i .e .  a 
single  degree  of freedom model i nvo lv ing   t he   f i r s t  mode only i s  insuf f ic ien t .  
It i s  important t o   no te   t ha t   t he   e f f ec t s   o f  the  convection  fYequencies 
considered  are  independent  of  the  period  ratio '/T1 ; and t h e  results 

quoted  here,  primarily  interpreted t o  understand  the  effect  of  an 'N' wave 
at oblique  incidence,   can  be  interpreted  in the i r  own r igh t .  Their impor- 
tance would then depend upon whether or not  the  range  of S used was 
significant  for  practical   purposes.  However, the  range  does  cover  the 
estimated values   for   plate   glass  windows  shown i n  Table 1. 

The inf luence  of   the  osci l la t ing  convect ion  forces   for  a pa r t i -  
cular mode  may be  important i f  a condition  occurs where the  frequency 
matches up with the natural   frequency  of  the mode. It should be noted 
t h a t  as the  convection  frequencies  are  different it is  poss ib l e   fo r   t h i s  
isochronous  condition t o   e x i s t   i n  more than  one mode a t  t h e  same time ; 
and because  of  the  larger number of cycles  of  the  convect  ion terms f o r  the 
higher modes (c.f .   Fig.  2a  and Fig.  2d) their  contributions w i l l  become 
increasingly  important. 

The t rend  of t h e  m a x i m u m  values shown i n  Table 3 differ somewhat 

10 



f'rom those   g iven   in  =G*, who assumed tha t   the   wors t   t rave l l ing  con- 
dit ion  occurred when S w a s  equal t o  one,  and only used the fiundamental 
mode  when evaluating  the  response. The worst  possible case.then occurred 
when the !N wave was at normal  incidence.  Table 3 shows t h a t   f o r  a l i g h t l y  
damped system ( u 6 .02) t h e r e  i s  a maximum betweep 8 = 0' on  IT/^ (normal 
incidence)  corresponding t o  S = 2. Apart from the contributions f'rom t h e  
(1, 2) and (1, 3)  modes t h e r e  is possibly  another   reason  for   this .  I n  
ref. 1 it was shown that when the   pe r iod   r a t io  w a s  about 1 then   t he  ampli- 
f i ca t ion   f ac to r  was strongly dependent upon t h e  rise time, and t h e  maximum 
occurred when t h e  rise time was 2 of  the  fundamental  period. For t h e  
t r ave l l i ng  wave although  the  peak  value  of  the  generalised  force  for S = 2 
is  less than  it is  f o r  normal incidence when S = 03 (Fig.   2a)   the rise time 
is about 2 of  the  fundamental  period, and t h i s  i s  probably  the dominant 
effect..  

CONCLUSIONS 

A simple computer or ientated method has  been  presented  for 
determining  the  response of p l a t e s   t o   t r a v e l l i n g  waves. The method has 
been applied t o  eva lua t ing   the   e f fec ts   o f  ' N ?  waves a t  oblique  incidence 
on a simply-supported p l a t e  and the  contr ibut ions made by t h e  asymmetric 
modes. The results show that   the   general ised  forces   are   considerably 
modified by oblique  incidence  loading. The contributions f'rom t h e  
asymmetric modes vary  with  the  response  parameter , i .e. displacement, 
veloci ty  or accelerat ion and a convection  frequency term given by 
- BV 
L and i n   t h e  range  of  convection  frequencies  considered, which  were 

prac t ica l   va lues ,   the   cont r ibu t ions  were s ign i f icant   espec ia l ly   for   the  
accelerations.  
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TABLE 3 - VARIATION  OF M A X I "  VALUES OF  RESPONSE WITH S 

DAMPING  FACTOR v a t  (t = 0.25) (t = 0.5 1 
. . . . . . . 

1 

1.166 9991 

8 4 2 

1.232 1.215 

~. 

W 
- 
- 
G 99356 8319 .8373 9 7835 - 
W 
.. 

.9840 1 *570 1 439  1.26 
v = 0.2 

. ". - 

1 - 1  1 8  

W 
- 

1 773 1 *925 1.961 1 992 - + 
2.134 2.258 2 578 2.131 5 
1.760  1.477 1 577 1.508 

v = 0.02 
- 

\ parameter 1 

1.910 

1.635 
2.438 

v = 0.002 

. . .  ~. 

2 

2.138 
1.706 
2. goo 

. - "" 

4 

2.087 

1.591 
2.407 

1 
2 I . .  

W 
- 

1 925 2.101 2 -153 
G 
iF 2.423 2.941 2.472 

- 
1.649 1.603 1.720 

v = 0.0002 
- . . . "  

8 

2.036 
1.910 
2.191 

- . 

8 

2.048 

1.927 
2.196 
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PRESSURE WAVE 

Fig.1  Plate  loaded by travelling  wave 
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Fig. 2a  Variation of general  ised  force  for (1,l) 
mode with  d i f ferent angles of incidence. 
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Fig.  2b  Variation of generalised  force  for (1,2) 
mode  with  different angles of incidence. 
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Fig. 2c.  Variation of the  generalised  force for the 
(1,3) mode, with  angle of incidence. 
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Fig. 2d. Variation of the  generalised  force for the 
(1 ,4 )  mode with angle of incidence. 
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Fig. 3 General ised  displacements. , 
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F i g .  5 General  ised  accelerations. ii 
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F i g . 6  Phase  plane  diagrams.  Response  to'N'  wave 
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