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I INTRODUCTION AND PRELIMINARIES

1. Introduction

Since the turn of the century, the ''qualitative"
theory of differential equations.and systems has been
a major source of activity for the mathematician.

With the works of Lyapunov, Perron and Poincare

serving as the superstructure, a whole new system has
been devised for the purpose of determining the behavior
(stability, boundedness, etc.) of a solution of a

given differential system (or equation) without
explicitly finding that solution. This approach is
justified (if, indeed, being mathematics is not
justification enough!) since scientists and engineers
have found many of the results obtained to be quite
use=-able.

There are at present two major ways of answering
the questions of behavior of a given differential
system: conversion to an integral equation and con-
struction of a Liyapunov function. This paper will be
cohcerned with the first method only.

Chapter II deals entirely with algebraic properties
of linear systems and, for the most part, is

independent of the remaining ones. Here the question



is asked: If a given system has only solutions which
are bounded or tend to zero, then under what pertuba-
tions will the new system have the same properties?

In Chapter III, results similar to Lagrange's
variation of parameters formula are noted, and
examples are given. Some of these results are then
extended.

Finally, in Chapter IV, certain oscillation
theorems are presented because of their connection
with some of the results in Chapter IIT.

Chapter V is deveted to a summary and conclusions.

2. Preliminaries

Al]l necessary preliminary notations, definitions
and theorems are collected in this section, and,
unless stated otherwise, the assumptions made here
will prevail throughout.
Those differential systems and equations considered
here will meet the following two restrictions:
(1) They will involve real-valued functions
and/or matrices of a real variable, which here
will be denoted by +t. Furthermore, all the
elements of any matrix considered will be

continuous functions of +.



(2) BSolutions are assumed to exist.
Uniqueness will not be assumed unless stated
otherwise. It should be noted, however, that
the assumptions in (1) guarantee unique
solutions.for the linear systems (1.1) and
(1.2).

Capital letters will denote nXn matrices, while
small letters, unless stated otherwise, will represent
nxl vectors, 1xn vectors, and scalars; it will be
clear from context as to which use is being employed.

d

at and ' will be the usual differentiation symbols,
and !+l will denote any convenient norm.
Let
t
L(t_st) = {B(t): |, IB(s)ll ds < ]
o
and

t
Ll(to,t) = {f(t):_[tolf(s)l ds < ® }-

With respect to the systems
(1.1) x' = B(t)x

and

(1.2) y' = -y B(%),

the following sets are defined:
B = {B(t): all solutions of (1.1) are bounded}
B = {B(t): all solutions of (1.2) are bounded}
2 = {B(t): all solutions of (1.1) tend to zero

ds t =~ o }



28 = {B(t): all solutuions of (1.2) tend to zero

as t = o }.
The following definitions will be used in the
sequel.

A vector x(t) is said to be bounded if
there exists a real number M>0 such that
Wx(t) Il <M, t2t -

If &(t) is a matrix whose n columns are n

linearly independent solutions of an nth

order

differential system, then &(t) is said to be a

solution matrix for that system. If the system

is linear, then &(t) is said to be a

fundamental matrix. If &(t) is a fundamental

matrix and @(to) = I, then &(t) is said to be

the Fundamental matrix.

Finally, the following theorems will serve as s

guide in what follows.

Theorem 1.1: ILet u(t)>0, v(t), w(t)>0, and c

a positive constant. If
t
u(t) < c + _[t v(s) w(s) ds
¢

for all 'tzto, then

i
u(t) < c exp< J- S Z s) ds>.

t u
0o

be



Proof: Dividing both sides of the inequality by

(c + _[E v(s) w(s) ds), multiplying by lﬂﬁ%%gﬁl )

¢
and integrating from to to t yields

b ¢ Igs%wgsz
in [c + & v(s)w(s)ds] - 1n ¢ < ds.
u(s
o to

Hence, taking exponentials

c +-[ZOV(S)W(S>dS <ec exP<.fZOI£§%§§§l ds)

and the result follows.

If u(t) = v(t), then Theorem 1.1 reduces to the
" fundamental lemma "' of Bellman [1, p- 35]. This is

also known as '"'Gronwall’s Inequality."

Theorem 1.2: If Y(t) is a matrix of functions

satisfying
(1.3 Y' = B(v)Y

then det Y(t) satisfies

(1.4) (det Y)' = (tr B(t))(det Y)

n
where tr B(t) = Z b,.(t). Hence
i=1

(1.5) det Y(t) = det Y(to) exp {[E tr B(s) ds).
O

Proof. The proof can be found in Coddington and

Levinson [3, p. 28] and goes as follows. Let Is a0

b.. be the elements in the 1 OB row and jth column of

1d



Y and B, respectively. Then (1.3) becomes

(16) 71y = F o (6) 5 ().

The derivative of det Y is a sum of n determinants
1 1 .o 1
Y11 Y12 I1n

o-.y
(1.7)  (aet Y(t))' = |21 722 Z

In1 In2 " Inn

Y11 Y12 Y1n

Jo1 Yoo **° Jop

] 1
In1 Yn2 *°° Jnn

Using (1.6) in the first determinant in (1.7), that

determinant becomes

Zb, .y Zb. .y Zb.. ¥y

x 1k“k1 X 1kY k2 K 1k“kn
Jo1 J22 e Jon
In1 In2 Tt Inn

and this determinant is unchanged if from the first
row there is subtracted b12 times the second row
plus b15 times the third row up to bln times the

nth row. This gives



P11%311 P11¥12 tr P11T1n
I21 Jop vt Jon
In1 In2 e Ynn

which is b, det Y(t). Applying a similar procedure
to the remaining determinants in (1.7) gives (1.4).
A direct integration of (1.4) leads to (1.5), and the

proof is complete.

Hence, if det Y(to) # 0, then Y—l(t) exists

t
if and only if J— tr B(s) ds > -o .
t
o

Theorem 1.3: If Y(t) is a fundamental matrix for
(1.1), then Y 1(t) is a fundamental matrix for (1.2).
Proof. The proof can be found in Coddington and
Levinson [3, p. 70] and proceeds as follows. Y 1(t)
exists by Theorem 1.2, and
(1.8) 0 = (xvy b =y + vy L.
Substituting (1.3) in (1.8) yields
o=y + BOYL =yvx™ ) + B

Hence

(v = v Ine).

Since (det Y 1(t)) = (det Y())™% £ O, the proof is

complete.



Theorem 1.4: If B(t) € L(t_ ,® ), then B(t) € 8.
Proof. The proof is in Cesari [2, p. 37] and is the

following. Integrating (1.1) yields

t
x(t) =_[t B(s) x(s) ds + x(to)-
o)
Taking norms

(1.9)  1x(s) N <N x(6 ) 11+ _[E it B(s) I1- 1l x(s) lids.
(0]

Applying Theorem 1.1 to (1.9) gives

x(e) < 1x( ) 1 exp(j;tﬂ B(s) Il ds)
O

< i x(to) [l exp(j;DH B(s) N ds) < ®
o]

and the theorem is proved.

Theorem 1.5: (Lagrange's variation of parameters

formula) If X(t) is the Fundamental matrix for (1.1),

then any solution x(t) of
(1.10) x' = B(t)x + w(t)

satisfies

t -1
x(t) = X()x(t,) + [ X)X L(s)w(s) ds.
(0]

Proof. Since (X_l)'= —X—lB(t), it is clear from
(1.10) that
x o) = x 7 lw(e).

Integrating



¥

P
™
I

t -
Thx = x(6,) + j;o X H(e)w(s)ds,

x(t)

t
X(t)x(to) + J; X(t)X-l(s)w(s)ds.
o

Theorem 1.6: If X(t) is the Fundamental matrix for

(1.1), then every solution Jy(t) of
(1.11) y' = -yB(%) + u(t)

satisfies
_ t -
7(8) = 35 X + [, w(s)x()XH(k)as.
o]

Proof. For any solution y(t) of (1.11)
(yX)' = u(H)X.

Therefore

t
D) = GO + [, u(e)x(s) ds,

(0]

and

T
y(t) = y(to)X—l(t) + .j; u(s)X(s)X t(t)ds.
(]



IT TLINEAR SYSTEMS
1. Introduction

In this chapter, the linear differential system
(2.1) x' = B(t)x

is studied relative to the question: If the solutions
of (2.1) have certain properties, under what pertube-
tions of B(t) will the solutions of the new system

retain those properties?

2. Boundedness

The simplest results are obtained in the case

when B(t) = B, a constant matrix.

Theorem 2.1: If B is a constant matrix such that
B€® and C(t) € L(t_,o), then B+C(t) € B.
Proof. The proof is in Cesari [2, p. 37] and goes
as follows. Let X(t) be the Fundamental matrix for

(2.1). Then by Theorem 1.5, any solution x(t) of
x' = [B + C(t)Ix

satisfies

t -1
x(t) = X(t)x(to) + j; X(t)X ~(s)C(s)x(s)ds.
o

10



However, since B is a constant matrix, ()X L(s) =

= X(t-s). This follows since X(t-s)|g .4 = X(t)X—l(to)
o

and both are solutions of (2.1), by uniqueness, they

must be equal for all t;zto. Therefore
t
x(6) = X()x(s,) + J, X(t-)0(s)x(s) ds.
o
Applying norms

HWx(t) 1t < x(t) t-n x(to)ll +

j’t
+ tOnX(t—s)n cHUCc(s) » Nx(s)H ds

t
N x(t) I < Kllx(to)ll + f; K lnc(s)l-lux(s)ll ds.
O

By Theorem 1.1

4
N x(s) Il < KIIX(tO)H exp[K jﬁ I C(s) llds] < @
5
0]

and the result is showne.
This result is false, however, if B is allowed
to be a variable matrix, as can be seen from the

following example taken from Bellman [1, p. 4217.

Example 2.1: Consider the system

Xl ! -a 0 Xl
(2.2) X5 = 0 sin Int + coslnt - 2a X5

whose general solution is

11



-at

R

exp (t sinlnt - 2at

If a>%, every solution of (2.2) approaches zero as

t = ® (and hence every solution is bounded) since

et 51nlnt< etI51nlntI < et

for all +t>0. Choose as the pertubating matrix

0 0
C(t) = ( ) -
e_at 0

Then the perturbed system becomes

zl -a 0] zl
(2'5) = —at
z e sinlnt + coslnt -2a Z5

2

The solution of this system is

z c e @t
1 1
B t
z exp(t sinlnt - 2at)[c2+ le exp(-s sin 1n 9ds]
0]

1
e(2n-+2)n,

Let t = n a positive integer. Hence
t te_2n/5
f exp(-s sin 1n s)ds > exp(-s sin 1n s)ds
0 -T
te
and

12



-
5 > et_gat[c24-clt(e—zn/a-e-n)exp(gg—i)]

= c2et-2at+-clt(e-gn/E-e-“)exp([l-23-+§§—]t).
-7
Hence, if 1<2a and 1-—2a-+§§— > 0, i.e., if
=T
l<23<l+—2—-

then the solutions of (2.3) will be bounded if and
only if ¢y = O. Hence, not all solutions of (2.3)
are bounded.

For variable B(t) the following theorem, which

can be found in Bellman [1, p. 43], is easily shown.

Theorem 2.2: If B(t) € B, C(t) € L(to,an), and
t
lim j’ tr B(s) ds > -® , then B(t)+C(t) € 8.
t—® t
Proof. Let X(t) Dbe the Fundamental matrix for (2.1).

Then by Theorem 1.5 any solution x(t) of

(2.4) x' = [B(t)+C(6)Ix

satisfies

t
x(t) = X(t)x(to) + j; X(t)X_l(s)C(s)x(s) ds.
0

Therefore

Hx(t) N < nx¢sE) N -lIx(tO)H +

t
+ j;OHX(t)II'HX—l(s)H'IIC(S)H-le(s)Hds.

13



Since B(t) € B, there exists a positive real number

K, such that W X(t) 1l < K, for all t>t_ . Also,

1 1
there exists another positive real constant K2 such

that WX 1(t)Il < K, for all +t2%t_ since the elements

1
of X Y(t) are formed from the (bounded) elements of
X(t) times [det X(t)17L, and det X(t) # 0 for all

t > to by Theorem 1.2. Hence

t
I x(t)lh £ Kllkx(to)ll + j; K1K2IIC(S)H'|Ix(s)llds.
(0]

Applying Theorem 1.1
j't
W x(t) Il < Kllhx(to)ll exp[KlK2 tollc(s)llds] < ®

and B(t) +C(t) € B.
Actuslly, Theorem 2.2 is only a partial result

and can be obtained directly from the following theorem.

Theorem 2.3: If B(t) € 8N8_, and c(t) € L(to,a>),
then B(t) +C(%) € BNRB.

Proof. This theorem is due to Conti [19] and the
proof is the following. Let X(t) ©be the Fundamental
matrix for (2.1). Again, by Theorem 1.5 any solution

x(t) of (2.4) satisfies
t
x(t) = X(t)x(to) + j; X(t)X_l(s)C(s)x(s)ds.
o

Thus

14



Nx(s)Nl < IlX(t)'II'IIx(to)ll +

(t

+ L UEGE I s i) - nes) e nx(s) i as.
o}

By hypothoses, there exist positive real numbers Kl’

K, such that Il X(t) Il <K nx L) n o< K, for all

l,
t 2> to. Hence

t
Hx(e) it < K, Il x(to) I+ j:c K1K2||c(s)ll-ux(s).uds.
(0]
By Theorem 1.1
k.
I =x(t) I < K,lllx(to)ll explX X, tOIIC(s)IIds] < o

and B(t)+C(t) € 8.

By Theorem 1.6, any solution y(t) of
(2.5) y' = -y[B(%) +C(%)]

satisfies
-1 t -1
y(t) = y(to)X (t) - _[G y(s)C(8)X(s)X ~(t)ds.
(o]

Therefore, taking norms

y(e) 1< (e )X e +

t
+ ftony(s) Henc(s)l-Nx(s)u-nx"I(t)nas

t
I y(e) 1 g Nyl DNk + _[C Hy(s)i~lC(s) Il K Kyds.
O

Applying Theorem 1.1

15



£ )
Ny(t)l < Kllly-(to)llexp[KlK2 Ja.llc(s)llds] < o
' o

and B(t) +C(t) € ﬁa. Hence B(t) +C(t) € BfWﬁa,
and the proof is complete.
Theorem 2.2 follows from Theorem 2.3 since the

conditions that B(t) €8® and lim [ttr B(s)ds >
t=m Jt

together imply that B(t) € 8, Dby Theorems 1.2 and
1.3.

Corollary: If B(t) € BOB_, and C(t) -B(t) € L(to,co),
then C(t) € nannaa.

Proof. Writing C(t) in the form
c(t) = B(t) + (G(t) -B(t))
and the result follows from the above theorem.

These theorems appear to be completely theoretical

in nature, but the following remarks are in order.

Remark 1: When investigating a linear system, it
may be advantageous to add pieces which are absolutely
integrable and work with that system instead.

Remark 2: It may be possible to decompose B(t)
into two parts, Bl(t) and Bg(t), in such a way that
Bl(t) € BfWBa (or B, €8 if B is a constant matrix)

1 1
and Bg(t) € L(to,co ).

These remarks are illustrated by the following

example.

16



Example 2.2: Consider the systenm

(2.6) (X1) - ( L e (Xl) i,
S I
= o =21 % lys) o %5
-1 0
where V¢, ¢ € Ll(to,a)). The matrix By = ( 0 _2}6 8

since the general solution of

T e g
) (2

0 o(t)

The matrix B2(t) = (
v(t) 0

€ L(to,oo ) by

hypotheses. Therefore, Bl4-B2 € 8 by Theorem 2.1,
and the system (2.6) has only bounded solutions.
The major result of this section is the following

theorem.

Theorem 2.4: If B(t)E€EB® and Y(t) is a fundamental
matrix for (2.1) such that Y_l(t)C(t)Y(t) = H(t) € 8,
then B(t) +C(t) € 8.

Proof. Considering

17



™" = —x7iB(e)
and
(2.4) x' = [B(t) + ¢(v)Ix
it is clear that
(r™1n" = v7lex = H(5) (¥,
Since H(t) € 8, there exists a real positive number

1

M such that WY “xli< M<wo for all t>t%_,. But,

x = Y(Y"1x); +therefore

1

Hx(E)H < HYU-HY *xlIl < M- HYI < o

and B(t) +C(t) €B. The theorem is complete.

Corollary: If B(t)€ 8 is such that Y(t) is a diag-
onal matrix, then B(t) +C(t) €8 for any diagonal
matrix C(t) € 8.

Proof. If Y(t) is diagonal, then so is Y l(e).
Since diagonal matrices commute, Y T(£)C(£)Y(£)ZC(%)

€ B, +the conditions of Theorem 2.4 are satisfied, and

the result follows.

Corollary: If B(t) €8, and Y(t) is a fundamental
matrix for (2.1) such that
T4 (0(t) - B())Y (%) = H(t) € B,
then C(t) € 8.
Proof. The result is clear since C(t) = B(%)

+ (C(t) ~-B(t)) € 8 by Theorem 2.4.

Remark 1: Theorem 2.3 is easily obtained from

Theorem 2.4, since if B(t) € ﬁrwﬁa and

18



c(t) € L(tO,GJ), then

@® -1 ® -1
./; ny leyn 5_[ ny " Ltuencusuyi
(0] tO

®
< K-[ el < w
- t
o
and, hence, Y 1BY € & by Theorem 1.4.

Remark 2: Coddington and Levinson [3%, p. 70]
have shown that if Y(t) is a fundamental matrix for
(2.1), then every fundamental matrix has the form
Y(t)D for some non-singular constant matrix D.

It is easily seen that if Y(t) is a fundamental
matrix and D is a non-singular constant matrix,

then
(Y(£)D)' = Y(£)'D = A(t)(Y(£)D)

i.e., Y(£)D satisfies the system. Moreover, since
det(Y(£)D) = (det¥(t))(detD) # O

Y(t)D is a fundamental matrix. Conversely, if Z(t)
is another fundamental matrix for (2.1), define

W(t) = Y H(+)2(t). Hence Z(t) = Y(£)W(t).
Differentiating this equation gives Z' = YW' + Y'W.
Hence

AZ = YW' + AYW = YW' + AYY 1%.

This implies YW' = O, or since Y is non-singular,

19



W' = O. Therefore, W = D, a constant matrix. D is
non-singular since Y and 72 are.

Also, it is easily seen that B(t) € 8 if and
only if D IB(t)D €8 for every non-singular constant
matrix D. For, if B(t) €8 and
(2.7  z' = DiB(+)(Dz)
then

(Dz)' = B(t)(Dz)
and w(t) = Dz(t) is bounded. Hence z(t) = D—lw(t)
is bounded and D IB(t)D € 8&. Conversely, if
D™IB(t)D € 8, then applying the transformation
x(t) = Dz(t) +to (2.7) shows that B(t) € 8.

Hence, the second condition of Theorem 2.4 holds
either for all Y(t) or for nene of them. As a
matter of application then, it is enough to answer as
to whether Y T(t)C(t)Y(t) € B for a given Y(t).

The following example shows that Theorem 2.4 is

indeed a gtronger result that Theorem 2.5.

Example 2.3: Consider the system (2.1) with

-t 0
B(t) = ( ) .

o -1

Then
2

e_t /2 0
Y(t) = ( )

0 e—t

20



is a fundamental matrix, and
2
-1 eJG /2 0]
Y (%) = £ .
0 e
Tet C(t) ©ve any 2x2 diagonal matrix subject to the
further restriction that C(t) € L(to,a>)- By the

first Corollary to Theorem 2.4, B(t)+C(t) € 8.

Remark 1: Theorem 2.3 is not applicable since
B(t) £ B 5 i-e., Y-l(t) becomes unbounded as t - .

Remark 2: If the roles of B(t) and C(t) are
interchanged, then the first part of the hypothesis of
Theorem 2.3 is satisfied (by C(%)), but the second
part is not; i.e., B(t) £ L(to,q>)-

Theorem 2.5: If B(t) € B, and B(t)+C(t) € 8,
then Y ICY € 8 for any fundamental matrix Y(t) of
(2.1).

Proof. Considering (2.1) and
(2.8) x' = [B(t)+C(t)Ix

it 1is clear that

1

Let x = Yw. Then
w' = (Y-lCY)w

and Y 1x = w. Hence, w is bounded if Y 1 and x

are bounded; therefore, Y7 ley € 8.

21



Theorem 2.6: Let B(t) € BFWBa. Then B(t)+C(t)€B

if and only if Y_lCY € 8 for any fundamental matrix
Y(t) of (2.1).

Proof. If B(t) € BN&_ and Y 1CY € &, then
B(t)+C(t) € 8 by Theorem 2.4. Conversely, if

B(t) € BNB, and B(t)+C(t) € B, then Y 1CY € &

by Theorem 2.5.

th

Note: SBince the n order linear differential

equation

(n-1)

(2.9) u(n>+-al(t)u ...-+an_1(t)u'4-an(t)u =0

can be converted by the transformation

x; = u
X, = u’
q .
. (n-1)
X, = u

into the system (2.1) with

0 1 0 ... O Xl

(2.10) B(t) = 0 0 1 0 x =] %,
0 0 .o 1 Xn
%n "®n-1 T

the above results are applicable and easily give such

theorems as the following one due to Bellman [5].

22



Theorem 2.7: If the equation (2.9) with a; =0 has
only solutions, which together with their first (n-1)
derivatives are uniformly bounded for +t2>0, and if

aK(t) —bK(t) € Ll(to,oo ), then all solutions of

2.11) w1 p (@ e rp  (B)ut + b () = 0

are bounded, together with their first (n-1)
derivatives.
Proof. Since a, = 0, tr B =0, and the result
follows from Theorem 2.3.

The following example shows that the converse of

Theorem 2.4 is false.

Example 2.4: Consider the system (2.1) with

Then

e 0
- (0)
0 1

is a fundamental matrix with

t

(0]
1) = (e ) .
O 1

-1 - [1/%°] o)

Let

-t/2

5(o) - (
e 0
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Then

~1/4° 0
Y ire(t) -BIY = ( ) £ 8
et/2 0

and, hence, Theorem 2.4 is not applicable, while

C(t) € B.

3. BSolutiong Which Tend to Zero

The following theorems are extensions to the set

4 of the major results of Section 2.

Theorem 2.8: If B(t) € 2 and Y(t) is a fundamental

matrix for (2.1) such that Y 1CY = H(t) € B, +then
B(t) +C(t) € 2.

Proof. Considering (2.1) and

x' [(B(t) + C(t)Ix

]

it is clear that
(v ix) = v7lox = H(H) (v ix).

Since H(t) € 8, +there exists a positive real number

M such that HY lxll <M. But x = Y(Y_lx); therefore,
Hxl < WYH-uY Ixi < Menyn - o

and the theorem is complete.
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Example 2.4 shows that the converse of this

theorem is false.

Theorem 2.9: If B(t) € 7, and B(t)+C(t) € 8 or
if B(t) € B and B(t)+C(t) € 2 , then Yy lcyep
for any fundamental matrix Y(t) of (2.1).
Proof. Applying the transformation z = Y 'x +to the
system

z' = Y 1loyz

gives

(2.12) ("' = v7ilc()x.

Since Y }' = - YB(%), (2.12) becomes

x' = [B(t) +C(t)Ix.
But z = Y 'x; Uzit < UY li-uxli, and the results
follow.

There is no theorem for the set 2 which
corresponds to Theorem 2.6 since if B(t) € 2 , then

B(t) £ 7, as can be seen from the ineguality

1< UIH = nY(H)Y L) < vy n-ny s

for if WY(t)M = O, then MUY L1(t)ll = o«
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III NONLINEAR SYSTEMS

1. Introduction

Although relatively little is known for general
linear systems, there is even less general theory

concerning nonlinear ones. Here, the nonlinear system
(3.1) x' = B(t)x + £(t,x)

is studied relative to

(3.2) z' = B(t)z

and their '"'adjoint'" system

(3.3) y' = - yB(%).

2. Elementary Theory

The most important theorem concerning (3.1) is

the following one, which is a restatement of Theorem

1.5.

Theorem %.1: TLet Y(t) be the Fundamental matrix
for (3.2). Then every solution x(t) of (3.1)

satisfies

E -1
x(t) = Y(t)x(to) + f; Y(t)Y “(s)f(s,x)ds.
O
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Theorem %.2: If B(t) € Bf\ﬁa, and Wf(t,x)l <

< A(B)uxll with A(t) € Ll(to,oo) for all solutions
x(t) of (3.1), then all solutions of (3.1) are
bounded.

Proof. The following proof was taken from Bellman
[1, p- 91]. By Theorem 3.1

x(t)

5
Y(t)x.(to) + _[G Y)Y I(s)r(s,x)ds.
Q

Taking norms

Hx(t) < nyds)n - le(to)ll +

t -
+ j; nyde)n = ny 1(s)ll- Nf(s,x) Il ds.
o}
Hence
\ J’t
Nx(t> N < I%}lx(to)u + tOKl'K2X(s) Hx(s)l ds.
Applying Theorem 1.1
j’t
hx(t)n < Klllx(to)n expl[K K, £, A(s)ds] < @ -
The following theorem is a sort of converse to

Theorem 3.2«

Theorem 3.3: Let X(t) be a solution matrix for (3.1)
such that X (%) exists. Further suppose that
X(t) and X (%) are bounded by some real number m.

Under the above assumptions, if Hf(t,x)Il < A(E)Hx(t)N
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with A(t) € Ll(to,a)> for all solutions x(t) of
(3.1), then B(t) € 808 .

Proof. If y(t) satisfies (%.%), then
(yX)*' = y£(£,X)

where f(+,X) is a matrix. Hence

t
(yX) (%) = (FX)(6,) + j; y(s)f(s,X)ds
o

t
y(t) = (yX)(tO)X_l(t) + j; y(s)£(s,X)X 1(t)as.
o}
Therefore

Ny ()1l < uy(to)||-uX(to)n-||X'1(t)u +

t
+ j;oIIy(s)H-llf(s,X)Il-HX-l(t)H ds

Ny(s)n < Ily(to)H-IIX(tO)H' m o+

t
+ Ja Ny(s)l-Aa(s) NX(s)ll- m ds

0]

t

Hy(edn <y - NX(E )N m + JL Ny(s)-A(s) m-mds.
O

Applying Theorem 1.1 gives

2 [t

Ny(t)l < Hy(to)ll'HX(to)IlqneXp[m ]; A(s)ds]

O

< ®-.

Hence B(t) € ﬁa.
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It remains to show that B(t) €B. Since
(XX-l)' = 0, it is clear that x"1(t) satisfies
@' - —x7Ie(e) - x7Le(ew,x)x L.
Hence from (3.2)
x7 1) = - x71e(t, %)% Lz
-5
(x7Lz) (%) = (X—lz)(to) - JQ ¥ (s)r (s, X)X L(s)z(s)as.
o
Therefore
.-l t —1 -
2(t) = X(HE ~2)(t.) - j; X(6)X H(s) (s, X)X (s)z@as
0

hz(t) < WX - N E T2) (5 )0 +

t
+ j; HX(t)JI-HX—l(s)H-IIf(S,X)H~ HX—l(S)“°||Z(S>HdS
o

t

Hz(e) < mlI(X—lz)(to)ll + J; m-m-A(s) -m*mllz(@llds.
o

By Theorem 1.1

t
Nz(s)ll < ||(X"1z)(to)|l-mexp[m4 ]; A(s)ds] < @
(@]

Hence B(t) € 8, and the theorem is complete.

The following definition is now needed.

Definition: An nxl vector x(t) is said to be
bounded with respect to a 1lxn vector (&) if
there exists a real number m such that I(yx)(t)!I <m

for all t2> to'
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Theorem 3.4: If x(t) is a solution of (3.1) with

the property that Iyf(t,x)l < A(E)I(yx)(t)l with
A(t) € L(to,an) for some solution y(t) of (3.3),
then x(t) is bounded with respect to y(t).
Furthermore, under the above hypothesis, if
(yx}(to) = 0, then (yx)(t) = 0.

Proof. If =x(t) and y(t) are solutions of (3.1)

and (3.3) respectively, then

(yx)' = y£(t,x)

or

t
(yx)(t) = (=) (6 ) + j& y(s)f(s,x)ds.

o)

Hence

t
() ()1 < TG (6 )1 + j; 15(s)£(s,%) 1 ds
0]

T
H(yx)(E)) < l(yx)(to)l + J; A(s) 1 (yx)(s)lds.
o
Applying Theorem 1.1
t
F(yx) (B £ l(yX)(tO)l exp [ JL A(s)ds]
0

1y (5)1 < 1) (5.1 expl [P A(s)ds]
o]
< I(yx)(to)l-m

and the results follow.

Theorem 3.5: If If(t,x)1 < A (£)lx(£)Il  for all

solutions x(t) of (3.1), and
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Wyl H-x(e)l < A ()1 (yx)(t)1  for some solution
y(t) of (3.3) with A (%) - As(t) € I;(% - ), then
all solutions x(t) of (3.1) are bounded with respect
to y(t).

Proof. Clearly
(:YX>' = yf(t ,X>

(yx)(£) = (yx)(to) + _ftt y(s)f(s,x)ds.
o

Therefore

t
F(y)(8)V £ I(yx)(to)l + j; Hy(s)H-Nf(s,x) Nl ds
O

H(yx) (6)1 < 1) (5 )1 +.];t xl(s)lly(s)n-llx(sM|ds
O

t
O < 1RGO+ [y A (8a(e) () () 1ds.
O

Applying Theorem 1.1
t
H(yx) (8D < 1 () (s )1 expl j; Ay (s)hy(s)as]
0
< w .

Theorem 3.6: If there exists a solution y(t) of
(3.3) such that yf(t,x) = A(t)(yx)(t) for all
solutions x(t) of (3.1), then

t
Ny (e -1 x(5) 1 > 1 (yx)(E )1 exp ( j; x(s)ds).
O

Proof. Since

(yx)' = yf(t,x) = A(t) (yx)(¥)
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(yx) (%)

(yx)(5,) exP(LtMs)as).
O

Therefore

Ny n-x(E)Nn > Ny ()N = 1(yx)(E)1 =

t
() (£ )1 eXp( /;; X(s)ds}.
O

The following examples illustrate the uses of

the above theorems.

Example %.1: Consider the first order nonlinear

differential equation

(3.4) x' = a(t)x '+ (h(t) cos™x)x

where h(t) € Ll(to,a>) and n is a positive integer,

and its '‘adjoint'" system
(3.5) v' = - a(t)y.

Integrating (3.4) gives
x(t) = x(t_) + j’t[a(s)4—h(s)cosnxjx(s)ds.
o) to
Hence

t
Ix(E)1 < Ix(to)l + ft [la(s)l + In(s)111x(s)1 ds.
6]

Applying Theorem 1.1
t t

Ix(t)1 < Ix(to)lexp[j; Ia(s)ﬁs]exp[JQ In(s)tds]
0 o
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t @
Ix(t)) < Ix(to)l exp[j; la(s)ids] exp[jt ih(s)1ds)]
o o}

T
(3.6) Ix(t)1l < mlx(to)l exp[j; la(s)lds]
Y0

®
where m = exp[j; In(s)ids].
o

Applying Theorem 3.4 to (3.4) with f(t,x) =
= (h(t)cos™)x gives
i) (61 < 1(yx) (6 ) 1m.

In this particular case

t

y(t) = y(t ) exp( j; -a(s)ds>°
0

Let y(to) = 1. Then

t
Ix(t)1 exp< j; —a(s)ds) < mlx(t )|
o
or
T
(3.7) Ix(t)1 < mlx(to)l exp< j; a(s)ds).
o

Clearly, (3.7) is a much better bound than (3.6) for

the solutions of (3.1).

Example 3.2: Let f£(t,x) = diagf{a(t)Ix(t) in (3.1)

where
a(t) O ... 0
diagla(t)} = 0 a(t) ... 0
0 0 ee. ()
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If (yx)(to) # 0 for some solution y(t) of (3.3),

then the following remarks follow from Theorem 3%.6.
Remark 1. If B(t) € B , then

NHx(t)ll > m exp(_j;ta(s)ds>.
o

t
Hence, if 1im J; a(s)ds = @, then Hx(t)Il = @ .
t—w® o

t
Also, if 1im j; a(s)ds > ~®, then Hx(t)N is
t-® o]

bounded away from zero.

Remark 2. If B(t) € B , then
B(t) + diagfa(t)} = C(t) € B8 only if

t
lim _f; a(s)ds < m .
c

t—®

Example %.%: Consider the system (3.1) with
0 oa(t) Xl(t)

o |
0 B(t) x5(%)

fl(t,x)
f(t,x) = A(t) ( )

%o
Then

t
(3.8)  3(t) = (0, exp( ft ~B(s)ds))
O

is a solution of (3.3). TFurthermore

yE(t,x) = A(£)(yx)(+)
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Hence

4 .
Ny(s) i« x(E) > k exp ( j; K(s)ds)
o]

for any solution y(t) of (3.3). Using that y(t)

given by (3.8) gives
t
Hx(t)lh > k exp( /t (A(s) + B(s)]ds).
o

It should be pointed out that the idea of studying
the system (3.1) relative to (3.2) and (3.3) can lead
to direct integration if B(t) 1is ''reasonable"
enough. For instance, in the last example, using the

y(t) given in (3.8) yields

(O, exp( j;:—B(s)ds>>< z;> = (O,l)(z E: i exp(j’ KGsﬁs>.

Therefore

xg(t)exp( j;Z—B(s)ds> = X2<to)eXp< j;tx(s)ds>

(0]
t
x5(t) = x5(t,) exp<./;O[K(S)4-B(S)]dS>-

Depending on fl(t,x), it may also be possible to

integrate

xi(t) = a(t)x, () + x(t)fl(t,x)-
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3. Extensions

In this section several results obtained in the
last section are generalized. As a first stip in

this direction, consider the system
(3.9) w' = B(t)w + £f(t,w) + glt,w)

and the system (3.1). Suppose that there exists a
solution matrix X(t) of (3.1) such that X ‘(%)

exists for all 't21%f Clearly

X L)' = X e, w) - £(6, X)X tw+ g(t,w)]

t
T (8) = Xl (e) + f; X8I [£(s,w)~£(5, 0% tw
0

+ g(s,w)]lds.

Therefore

(3.10) w(t) = X(t)X'l(to)w(to) +

t
. jﬁ X(t)X—l(s)[f(s,W)—f(s,X)X_lW+g(s,Wﬂds.
t

O

Remark 1. If f£(t,w) =0 in (3.1), then X T(t)
exists by Theorem 1.3, and if X(to) = 1, then (3.10)

reduces to the usual variation of parameters formula.

Remark 2. If g(s,w) = 0, then (3.10) becomes
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(3.11)  w(t) = X(£)X 1(6 dw(t ) +

+t
+ .]; X(£)X L(s)[£(s,w) - £(s,X)X Lwlds.
(]

Hence, under the above assumptions, all solutions of

(3.1) satisfy (3.11).

Remark 3. If f(t,w) =0 = g(t,w), or if
g(t,w) = 0 and f(t,w) = B(t)w, then (3.10) reduces
to
(3.12) w(t) = X)X (s Iwlt,)
which is the usual result for linear systems.

Theorem %.7: Let X(t) be a solution matrix for
(3.1) such that X *(t) exists for all 25,
Further suppose that both X(t) and X 1(t) are
bounded and that

HE(s,w) - £(s,X)X Tw+ g(s,w)ll < ACE) Hwh

for all solutions w(t) of (3.9) with A(t) EIj(to,aa)
Then, all solutions of (3.9) are bounded.

Proof. Any solution w(t) of (3.9) satisfies (3.10)

w(t) = x(t>x‘1<to>w<to) +

t
* j;o X(t)X"l(s)[f(s,w)-f(s,X)X'lww-g(s,w)]ds.

Taking norms
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Hw(t)H < UX(t) - IIX—l(tO)II-IIW(tO)II +

4
jt HXCE) - WX L) - n£(s,w) - £(s,X)X Tw+ g(s,w) Iids
(e}

Nw(E) 1 < me WX T D0 Hw(s DN+

t
+ j; m'm-A(s) liw(s)Hl ds.

O

Applying Theorem 1.1
-1 o [
Hw(t)ll < m X (to)ll-llw(to)ll explm . A(s)ds] <
O

and the theorem is complete.

The following examples illustrate some of the

possible uses of the results of this section.

Example %.4: Consider the differential equation

(3.13) w' = w + < e’ T+ h(t))w

where h(t) € Ll(to,aﬁ_. Rewriting (3.13) gives
t

(3.14) w' =w + w2 + ( £ Tt h(t))w-w2
1-e
In this case, (3.1) becomes
v 2
(3.15) x' =x + x°.
et
Now, x(t) = T 1s a solution of (3.15). Since
l1-e
-1 1-¢°
x(t) <0 for all t2t,>0, x ° = te exists for

all t2t >0. By (3.10)
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t
t S s s
v | () ()P - v - w® + 2w+ n(s)wlas.
1 t c S
t

-e S 1-eS 1-e
o
Hence
t
t LN S
w(t) = k —= T J( ( = t>(l-g >h(s)w(s)ds.
1-e to 1-e e
et l--et
Therefore, since T and t are bounded for
l-e e
t2t0>0

t
lw(t)! < km + ft 2°1n(s) 1 tw(s)l ds.
7 70 .
Applying Theorem 1.1
> [t
iw(t)!l < km explm £ Ih(s)lds] < @
o

and all solutions of (3.13) are bounded. This also

follows from Theorem 2.3 since (3.1%) is linear.

Example 3.5: Consider the system (3.1) with

f(t,x) = h(x)x. TLet X(t) Dbe a solution matrix for
the above system with components xij(t), and let
th

xi(t) be the i column vector of X(t). Then
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[ ] 1 ]
%11 %12 * Xin
[ X X A
(3.16) (detx@®)) = | 2L "22 2n Ly
X1 *n2  *pn

*11 *12 X1n
1 Xp1 ¥pp Xon
an Xn2 TS Xnn

The first determinant in (%.16) becomes

1 ; 1 1
iblkxkl'kh(x )Xll Eblkxk24-n(x )x12 .o Eblkxkn+h6c)§n
X21 X22 o o @ X2n
Xn1 Xno e X nn

This determinant is unchanged if from the first row

there is subtracted b times the second row plus

12
b15 times the third row up to blrl times the nth
row. This gives
b, .x +h(xl)x b, .X +h(x1)x eee Dbo.x +h(xl)x
11711 11 11712 12 1171n 1n

X517 X5n .o Xsn
X1 X0 oo X 0

which is
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b.. det X(t) + n(xl) det X(%).

11

Applying a similar procedure to the remaining

determinants in (3.16) gives

(3.17). (et X)) = (tr B)aet X&) + .%lh(xi)detf'X'(t).
i=

Integrating gives

t n .
(3.18) det’X() = det' X ) exp< L[Er B(s) + = h(xl(s))]ds)
0

i=1
(If n(x) = 0, then (3.17) and (3.18) become (1.4)

and (1.5), respectively.) Hence, if

T n .
lim j;tﬁr B(s) + % h(x*(s))ds] > -® , then x ()
t~wo o) 1

exists for 'tzt%ﬂ and the results of this section

are applicable if X(t) 1is bounded.

Example %.6: Consider the first order nonhomogeneous

differential equation

y' o+ al®)y = p().
Let z(t) satisfy

z' = - q(%)z Z(to) = 1.

Then, by (3.10)

y(t) = z(t)y(to) +

t
* LOZ“)' -7y La(e)y - als)y + p(s)1ds.
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Since

z(t)

vy ()

+

exp ( j;t— q(w) du>
0

exp (—‘j;t q(u)du> [y(to> +
o

5
J;Z [p(s)exp(— toq(u)du>]ds}
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IV OSCILILATIONS

1. Introduction

This chapter deals with the zeros of wvarious
differential systems. There are two principal reasons
for considering these results here.

1. These results can give sufficient results for

a solution matrix Y(t) being unbounded; i.e.,

if UYTH () -0 as t - t%, themn NY(t)N - ®

as t - t*.

2. If X(t) is a solution matrix for the system

(3.1) x' = B(t)x + f(t,x)

then the question of the existence of X +(t)
reduces to the study of the zeros of u(t) =

= det X(t) if X(t) 1is bounded. Tet x- be

the i® column vector of X(t) and f, be the
x Ph element of f(t,x). Let
m
(4.1) o(t,X) = T det (X)
k=1

where (X)k = X, except for the k™ row which

has been replaced by fk(xi). Then by (3.17)

(4.2)  u' = (tr Bu + o(t,X).

Combining (3.1) and (4.2) leads to the (n+1)ST
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order differential system

x' B(t)x + f(t,x)
(4.3) '
u' (tr B)u + o(t,X)

Hence, if a solution of (4.3) has no zeros, then

the results of Section 3.5 may be applicable.

2. QOscillations

Following Butewski [16], a vector x(t) is said
to be gscillatory, if given T (0LT<® ), there
#
exists a finite t*>T such that Hx(t ) = 0.

Otherwise, x(t) is said to be non-oscillatory.

The first result applies to linear systems only.

Thegorem 4.1: Consider the system (2.1) where the
components bij(t) of B satisfy

(hon) .ble(t) >0 bil(t)>0 2<i<n
bij(t) >0 i# 3.

(The reason for this requirement is to insure that
there is at least one non-diagonal element in each
row which is strictly positive.) If =x(t) 1is a
solution of (2.1) such that xi(to)>(), 1<i<n,
then xi(t)>0, t2t, . Furthermore, if bii(t)_zo,
1<i<n, then xj!_(t)>0, t2t, -

Proof. Define
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t ,
(4.5)  y;(6) = x,; (%) exp(- j; bii(s)ds>
| o

t
(0]

iJ
1 i =
where ©O0.. = and let
1d 0 i J,
4.7) y' = s(®v)y.

Then (2.1) is equivalent to (4.7) with y; 8and sy
given by (4.5) and (4.6), respectively. -This is
easily seen, for since

- B R O AT e O
A = Sijyj = _E bijexp £ bjj—bii Xjexp iy bjj'

J=1 J=1 o] 0
JAi

then

[XieXP<' ftt

' n th
bii)J = I b, X, exo(- J, ©j3
o] ’2 (o]

Hence
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Let y(t) %be a solution of (4.7). Then
-yi(to) = xi(to) >0 by (4.4) and (4.5). By (4.4) and
(4.6)

[slg(t) > 0 sil(t) >0 i =2,...,n
(4.8) q sij(t) >0 i#A 3
‘sii(t) =0 1 <i < n.

Using these relations, yi(to) >0, 1<i<n.
Therefore, there exists an €>0 such that

yi(t) > 0
(4.9) Yi(t) s 0 t € [to,to+s).

Actually, (4.9 holds for all t>t_, for suppose the
contrary. Without loss of generality, it may be
assumed that yi(t) is the first of the y;(t) that
vanishes and that Tl is its first zero. Hence,
yi(Tl) = 0 and yi(t) >0 in [tO,le for 1<i<n.
However, by (4.7) and (4.8), yi(Tl) > 0, a
contradiction. Hence, Tl does not exist, and (4.9)
is valid for t2>t_. Finally, by (4.5) and (4.9),
xi(t) > 0, and the first assertion is provead.

The second half of the theorem is easily shown
by differentiating (4.5)

t

yi(6) = (xj=byux) exp(- Jﬁobii

Since yi(t) > 0
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'
X. s X
1 > -bll 1

and the theorem is complete.

Example 4.]1: Consider the nth

order equation (2.9)
where the ai(t)~<0, t2t_ - Transform (2.9) into

the system (2.1) with B(t) given by (2.10). Theorem
4.1 is now applicable; hence, any solution u(t) of

(2.7) which satisfies u(j>(to):>0, 0<j<n-1, also

satisfies u(j)(t):>0, t;;to. That is, under the
above assumptions, the solutions of (2.9) are non-

oscillatory.

Theorem 4.2: Consider the system

(4.10) x' = £f(t,x)

where the components fi of f are continuous for
t2t0>0 and —oo<xi< ®, 1<£i<n. Let a unique
solution of (4.10) pass through each point in (t,x)
space. Let x(t) be any nontrivial solution of

(4.10). If for each fixed i, 1<i<n

fi(t,x) A0 when Ix;1< ® and max Ix.| A0
1<j<n
JAL
and
f.(t,x) =0 when Ix.!1< ® and max Ix.l =0
i i 3
1<j<n
JA1

then the following statements are wvalid.
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i) If one of the x;'s is identically zero in
[a,B], then all of them are identically zero in («,B).
ii) If one of the x;'s is non-oscillatory, then
all of then are non-oscillatory.
iii) The zeros of each xi(t) are simple.
iv) The zeros of the xj,'lggjgrh separate one
another.
v) Each x,(%t) possesses only a finite number
of zeros in any finite interval [a,B].
Proof. 1) Suppose xl(t) =0 for t€I[a,B). Then

0 for +t€(a,B) implies that the remaining

xi(t)
x, (£)
ii) Suppose that xl(t) Z0 for t>T. Then

il

O for t€ (a,B)-

xi(t) = fi(t,x -,Xn) >0 for tt>T.

100

Hence, for 2<i<n, xi(t) is monotone for t>T.

iii) Suppose that x,(t) = 0 = x,(+*). If this
is the case, then X2<t*) = c.a = xn(t*) = 0. By the
assumption of uniqueness, this would imply that

x(t) = 0.

iv) Suppose that xl(tl) = X1<t2) = 0, and

1<t;<t2- By Rolle's Theorem, there

exists T, t1_<1?<t2 such that xi(T) = 0. Hence

xl(t) Z0 for +t

xi(T) = 0, 2<i<n. BSuppose that there exists two

zeros of some xj(t) between 6 and t, at the
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points T; and T, Then xj(Ti) =0, i=1,2. If
this were the case, then by Rolle's Theorem there
would exist T, tl < Tl <T<L T2 < t2, such t]:_lat
xé(T) = 0. Hence, fj(T,x) = 0, and xl(T) =0, a

contradiction.

v) Suppose that xl(t) =0 for tE€ {sv}C:[a,B].

Then, there exists s€ [a,B] such that s, ~ s. By

continuity, xl(s) = 0, and

xl(sv) - Xl(S)

S - S
AY

= 0.

Therefore, xi(s) = 0. Then by iii), =x(t) = 0, and

the theorem is complete.

Theorem 4.%: In addition to the hypotheses of the

previous theorem, further suppose that for some J # i

lx. |l <
* 1<k<n
fi(t,x)>0 for t2t0>0 and 0<%, <o
k)‘éiaJ
<x. <®
L9 =%
and
Ix. | <
1 1<k<n
fi(t,x)<0 for t2t0>0 and —® < %, <0 .
: k#i, ]
- < %j<0

Then the system (4.10) is non-oscillatory.
Proof. If xl(t) is non-oscillatory, then by ii) of

Theorem 4.2, the system (4.10) is non-oscillatory.

49



Hence, it may by assumed that given tzto >0, there

exist T, 2 t such that xl(Tl) = Xl(T2) = 0.

Ty
By Rolle's Theorem, there exists T, Tl<<T<<T2,
such that xi(T) = 0. Hence, by the above assumptions,

XJ.(T) =0 for 2<j<n.

Case 1. Let Xl(T):>O and Xj(T) = 0 for
2<j<n. Since xl(T) >0, it is clear that XS(T) >0
for 2<j<n. Hence, by continuity, there exists a

T>T such that

xk(T) > 0
\ for 1<k<n
Xk(T) > 0

Let Xi (t) be the first of the Xi(t) which
0

vanishes and TO be its first zero. Hence

,
'

Xy (To) =0

J XS?TO) > 0 j A,

.Xk<To> > 0 1<k<n.

But Xi (TO) = fi (To,x) > 0, a contradiction. Hence,
0 o

To does not exist and

xk(t) >0

xi(t) >0

Case 2. Let x,(T) <O and XJ(T) =0 for
2£j<n. The proof of this case is the same as that

for case 1 with xi(t) and xi(t) replaced by
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—xi(t) and —xi(t), respectively. Hence the

theorem is proved.

Application: Let X(t) Dbe a solution matrix for
(3.1), and consider the system (4.3). Let

B(t) 0
B (t) = :
0
O ... 0 tr B(t)
and
fl(t,w)
% t,w) = | .
fn(t,w)
o(t,X(%))

)St

Then (4.3) can be expressed as the (n+l order

system

(4.11) w' = B*(t)w + £%(t,w).

If (4.11) satisfies the conditions of Theorem 4.3,
then there is a T such that X—l(t) exists for

t> T, and the results of Chapter three are applicable
for the system (3.1)
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V SUMMARY AND CONCLUSIONS

1. BSummary

In this paper an attempt was made to secure a
comprehensive theory for linear and nonlinear
differential systems under most general conditions,
with the exception of Chapter four. Because of this
lack of specialization, some of the results obtained
may appear to be pathelogical; however, their
application to a specific problem should prove to be
quite fruitful.

In addition to the necessary preliminaries, a
generalized form of Bellman's ''fundamental lemma'
[1, p. 35] and the '"correct" proof of Lagrange's
variation of parameters formula were presented in
Chapter one.

In Chapter two, linear systems were studied with
respect to the sets B and 2 (see Chapter one).
Here an important necessary and sufficient theorem of
Conti [19] was generalized. Moreover, a stronger
sufficiency theorem was shown, even though one of the
original conditions was dropped. This allowed an
obvious extension to the set 2 , which was

unattainable via the original theorem.
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Nonlinear systems were studied in Chapter three
by means of their accompaning integral equations. A
converse theorem to a standard result was given (see
Theorem 3.3). The concept of one vector being
bounded with respect to another vector was introduced,
and a series of theorems concerning this definition
followed. ©Sharper upper bounds were obtained for
some cases, while heretofore unknown lower bounds were
derived. Finally, Lagrange's variation of parameters
formula was extended to a certain class of nonlinear
systemns.

Chapter four concerned oscillation theorems
which, though important in their own right, were
presented in order to strenghten Section 3%.3.

Throughout this paper, an effort was made to
illustrate the theory with simple, yet meaningful,

examples.

2. Conclusions

It seems unreasonable to expect to obtain a
strong theory for differential systems by way of the
methods used in this thesis. However, the following

remarks are in order.
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1. Although a generalization of Bellman's

" was given in Chapter one, only

" fundamental lemma
the weaker form was used. Perhaps sharper results
could be obtained through the stronger form. Bihari
[13] has given a different generalization of the

above theorem which also could be brought to bear on
the problemn.

2. Bellman [9, 10, 11] has obtained results which
guarantee the existence of a matrix of (bounded)
solutions for certain nonlinear systems. These
theorems, when used in conjunction with Chapter three,
should prove useful.

3. It is conjectured that a clever application
of some of the results of Chapter three (in particular,
see the proof of Theorem %.6) could lead to a direct
integration of the linear differential equation (2.9).
Some special cases have been solved, but the general
result is still unknown.

4. Finally, most of the results in this thesis
should carry over into the fields of differential-

difference equations and control theory.
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