on man seathering spectra of some

The Raman Spectra of PbTi03 and Solid Solutions of NaTa03-KTa03

C. H. Perry and N. E. Tornberg

Spectroscopy Laboratory# and Research Laboratory of Electronics*, Massachusetts Institute of Technology, Cambridge, Mass. 02139

The Raman spectra of PbTi0₃ and the mixed crystal systems $(Na_x:K_{1-x})Ta0_3$ where x=0,0.12,0.40 and 0.85 and $K(Ta_y:Nb_{1-y})0_3$ where y=0,0.25,0.65,0.89 and 1.0 have been studied over the temperature range $10-800^{\circ}K$.

Complimentary far infrared reflectance measurements over the same temperature range have been made on PbTiO $_3$ using polarized radiation and on some of the mixed crystal systems. The frequencies of the allowed $k \approx 0$ transverse and longitudinal modes were obtained from a

~	N68-3345	4
802	(ACCESSION NUMBER)	(THRU)
FORM	3	0
CILITY F	CR-96362	(coping
FAC	(NASA CR OR TMX OR AD NUMBER)	(CATEGORY)

GPO PRICE \$	
CFSTI PRICE(S) \$	
Hard copy (HC)	4020 ₀₀ 00
Microfiche (MF)	

[§] Present address: Dept. of Physics, Northeastern University, Boston, Mass.

[#] This laboratory is supported in part by the National Science Foundation, Grant No. GP 4923.

^{*} This work is supported in part by the Joint Services Electronics Program (Contract DA28-043-AMC 02536 (E)) and by NASA Grant No. 22-009-(237).

Kramers-Kronig analysis of the reflection spectra and provide a starting point for the interpretation of the Raman data.

PbTi0 $_3$ remains tetragonal below its Curie temperature at about 760° K. Above 760° K PbTi0 $_3$ exhibits a very weak second order Raman spectrum. Below 750° K a first order spectrum is superimposed and increases in strength as the temperature is lowered. In the tetragonal phase measurements were made at a number of temperatures between $20-750^{\circ}$ K. The bands observed at 760° K at about 70 cm^{-1} . 120 cm^{-1} 180 cm^{-1} and 495 cm^{-1} show considerable temperature dependence. These bands shift approximately 5 cm^{-1} , 4.5 cm^{-1} 7 cm^{-1} and 3.5 cm^{-1} for $\triangle T = 100^{\circ}$ K respectively to lower frequency as the temperature is lowered. The lowest frequency mode (70 cm^{-1}) is relatively the softest but the 120 cm^{-1} and the 180 cm^{-1} modes may also approach instability and contribute to the temperature dop endence of ϵ_0 . However they do not become unstable to the point of allowing a phase transition.

The (Na $_{\rm x}$:K $_{1-{\rm x}}$)Ta0 $_3$ system exhibits a second order Raman spectrum which for T > T $_{\rm c}$ and for x < 0.7 has the same general features as observed in KTa0 $_3$. Below T $_{\rm c}$ and for x > 0.7 (where the structure is no longer cubic) a first order spectrum is superimposed and there is good agreement between the zone center infrared and Raman frequencies. The second order spectra for each composition have been interpreted in terms of phonons at the edge of a psuedo-Brilloin zone.

The K(Ta_y:Nb_{1-y})0₃ system displays a considerably more complex Raman spectrum. For the K(Ta_{0.89}:Nb_{0.11}) 0₃ mixed crystal the Raman spectrum is similar to KTa0₃. At $\sim 125^{\circ}$ K and $\sim 80^{\circ}$ K phase changes occur and first order bands appear. For y = 0.65, 0.25 and 0 the cubic, tetragonal, orthorhombic and rhombohedral phase transitions have been observed. Marked hysteresis effects in the appearance and disappearance of bands take place at these transitions.

 $KNb0_3$ exhibits a spectrum whose temperature dependence is similar to that observed through the same phases in $BaTi0_3$. The first order lines observed in the ferroelectric phases show frequency shifts with composition and temperature and may also be related to the unstable modes above T_c .

We would like to thank Dr. A. Linz and Mr. T. G. Davis of the
---Materials Center, M. I. T. for the generous loan of the samples.