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PARAMETER PLANE ANALYSIS OF FORCED
NONLINEAR OSCILLATIONS
# 3

. : : ' #k¥
D. Siljak . J. Moore

Summary. This paper presents an application of the parameter-
plane method to the analysis of forced oscillations and jump-
resonance phenomena in nonlinear systems subject to periodic
forcing signals. The approximate anslysis procedure utilizes
the describing function technique. The advantage of the
procedure lies in the fact that only one parameter plane
.diagram is necessary to investigate the effects of different _ o
forcing signals. If the amplitude of the forcing function is ot T
fixed, a modification of the proposed procedure enables an
analysis of the jump-resonance phenomensa for different non-

linear characteristics. The stability énd sensitivity of forced
nonlinear oscillations are also discussed.

The procedure is illustrated by examples.

INTRODUCTION

4

So far, mostly free nonlinear oscillations were considered in the

paremeter plane [1-4], and the right side of differential equations

describing the systems was identically equal to zero. The only

cases when an external forcing signal was present have been analyzed
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in reference [U] in connection with asymmetrical oscillations. The

analysis, however, w
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performed under the assumption that the external

forcing function is either constant or a slow-varying function of time | 209 WiOd ALTOVS

with respect to the correspbnding periodic solution. In other words, o
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the frequency of the external signal has been sufficiently lower than the
frequency of the existing ‘.liinit cycle. This assumption greatly simplified
the analysis and‘gave>rise toluseful practical applications.

When no restrictiocé are imposed on the frequency of the external signal,
‘the oscillations can become complex'even in the case of second-order systems
[5-7T]. Several new phenomena can occur which could not take place in a free
nonlinear system. In this section, however, attention will be focused on

the jump resonance phenomena which is of importance in a number of nonlinear

engineering problems.

The Jump resonance phenomena in high-order nonlinear systems has been
long under consideration in connection with the evaluation of the closed-loop
frequency response of feedback control systems containing a nonlinearity [8-20].
These methods cxclusively apply the Gescribing function technique. This
application of the describing function to nonautonomous systems has been based
upon intuition and remained suspected until recently when the more exact
conditions under which such application is correct have been developed [21-2k].

The methods of Levinson [8] and Prince [9] involve the definition of
an equivalent gain whicp approximatesvthe given nonlinear characteristic. The
methods are convenient for certain single-valued limiting nonlinearities,
but can hardly be adapted for more complicated nonlinear characteristics.

This concept, however, has been successfully extended by Booton [25] to
nonlinear systems with stochastic signals. West and others [10,15] applied the
dual~input describing fuqctiop to dctermine the condition of the Jjump

resonance to take place in systems with a polynomial nonlinearity. The
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exﬁension to other kinds bf>non1inearitieé is limited by the labor involved in
calculating the'corresponding dual-input describing function, Ogata and Hopkin's
analytic'techniques [11,13] are limited to relay characteristics, or, perhaps,
saturating ﬁonlinéarities, since the output wave'shape of the nonlinearity

should be assumed. Considerable work is required 'to make a proper éssumption

"~ in cases other than the ideal relay characteristic, Stein and Thaler [12]
proposed a trial-and~error procedure to calculate the closed-loog frequency
response by using the Nichols chaft. A similar concept has been used with some
modifications in reference [17] by McAllister,

The idea of finding conditions under which the jump resonance occurs and
then designing the liﬁear part of the system to avoid that‘as proposed by
West and others [10] has been successfully applied along with the common
describing function in references [15,16,18], The methods, however, cannot
give an insight into the frequency response of the ciosed loop systems.
Moreover, the procedufes are extremely cumbersome when applied to the simplest
multi-valued nonlinearitieé or nonlinearities with the frequenéy dependent
. describing functions.,

The frequency response can be analyzed by a different approach proposed Ey
Gibson [19], which has some apparent édvantages over the previously presented
procedures, It enables’infﬁtmati;nyto be readilv obtained about the effectsiqé_"
the frequency response of varying the nonlinear parameters., In addition, it
does not rcyuire the analytical expression of the describing function and
can thus be applied.foﬁeéperimentally obtained data, The procedure, however,
has to be repeated each timé the amplitude of the forcing periodic signal is

changed, This can be circumvented by the technique of Popov and Palitov (141
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at the expense that the h;nlinearity cannot‘be varied without recalculating
all the necessary curves,

In this paper, the separate ideas of the references mgntioned in the
preceding paragraph will be employed using the parameter plane concept, The
proposed analysis is directed fowards the consideration of jump phenomena in
high-order nonlinear systems;.‘In addition, the stability and sensitivity

of the periodic oscillations is briefly discussed om the basis of reference [3].

Periodic Solutions. Jump-Resonance.

Consider again the nonlinear differential equation

B(s)x + C(s) F(x,sx) = H(s)f , "'8 Z E%' "
where, at the right hand side, the forcing function f = f£(t) is
f=A_ sin (th -¥) ' @

£
and B(s), C(s), and H(s) - are polynomials in s ., C(s) and H(s) are
polynomials with degrees less than that of the polynomial "B(s) . The function
F(x,sx) represents the nonlinearity, The basic problem is to determine the
conditions under which equation (1) has a periodic solution x = x(t)

sufficient.y close to

x = A sin (ﬁft) | (3)

where the frequency & is ‘the known frequency of the forcing function f£(t) in

f .
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(2); and thén fo.évalﬁate‘thg uﬁknowp values of the amplitude A and
the phase-shift ¢ ,

. By a suitable transformation, the above problem can be reduced to
that of free symmetrical oscillations considered in references [1=3].

To do this, note that the function f cankﬁe related to x by deriving

f = A_ cos ¢ sin (th) - A, sin ;;cos (th)‘ ’

f f

from (3), and noting that

X = A Qf cos (th),

one finally has

A .
f = K£ (cos ¢ = §%E—2L s)x,
v T e

By substituting this expression of f into equation (1), one obtains

%
A

sin ¥

R

(cgs P - 8)1x + C(s) F(x,sx) =0 ,

[B(s) - H(s)

Therefore, the nonhomogeneous differential equation (1) is reduced to
a homogéneous one. by kndwing the forcing function £ = f(t) and by
assuming the form of the solqtion x = x(t) , To determine the amplitude A
and the phase-shift ¢ of the solution x(t), the methods for the analysis
of symmetrical se.f-excited oscillations as outlined in [1~3] can be used with

minor mocifications.
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The nonlinearity :'F‘i(x,sx) can be harmonically linearized as

Y
F(x,sx) = N.x + = s8x
S S

where the coefficients Nl = Nl(A, Qf) and N, = NZ(A’ Qf) are the

2
describing function coefficients,

1 (2n o
N, == Io F(A sin 9, A Q. cos §) sin @ ¢
N, = f?'" F(A sin @, A Q_ cos §) cos @ df
2 WA o ’ f
and § = Q.t, The standard tables of reference [16] may be used for
calculating Nl and N2 e

The linearized differential equation has the form

A N ,

[B(s) - H(s) -f- (cos # = SBL ) 4 c(s) @, + 5-2- §lx =0 (&)
f f

and the corresponding characteristic equation is

A N

B(s) - H(s) Zi» (cos v = 2L ) 4 c(s) (, + 53 8) = 0 (5
f f

?

. The periodic solution x =A sin (th) with the frequency . can be

f
determined from (5) by, substituting s = jQ p and using the condition

that the summation of reals and imaginaries must z¢ to zero independently,

Thus, by certain simple algebraic manipulations, one obtains

B.A - H.A cos?-HZA

1 1A¢ sin}{’-i-?AN—CANnO

£ 171 272

6)

B,A + HiA. sin® - HyA

2 cos P + C

AN, + C_AN., = 0

f 172 271
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where B, = Bl(ﬂf), B, = Bz(ﬂf), etc., are given as

o n
B, = kZ‘ by X B, = L b Y, etc,
o _ k=0

The functions Xk and Yk are calculated using the recurrance relationships

[see reference 26]

S,
Ll ¥ X =0

where Xo 21, X, 0,Y =0, Y =0, Due to the gbove recurrence
relationships, the f = 0 curve which determinesAtherstability region in. the
parameter plane [1,2], can be readily plotted using a general

digital computer program for n~th order characteristic polynomials.

By denoting

o = Af cos

M

B= A, sin ¢

f
equations (6) may represent two equations in two unknowns, &« and 8 which

can be solved for o and ‘B as

. A_Hl(xs\1 +CNp = C,N,)) + Hy(B, + C N, + CyN;)
= ~ 2 2
B + H
(8)
e H (B, + C N, + C,N) = Hy(B; + C;N; = C,N,)
5t + ¢

1 2
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In the aB-plane; equations;(S) may be interpreted as equations of the
z = 0 curve as defined in reference [2], The: solution procedure starts with

the plotting of a family of ¢ = 0 curves for different values of the

£
of (8). The unknown amplitude A, which enters both explicitly and as an

frequency Q_. appearing in the coeffjcients, Bl’ BZ’ Cl’ CZ' Hl’ Nl and N2

argument of Nl and 'Nz in (8), is interpolated along the ¢z = 0 curves.,

The loci of the point M(a = A_ cos ¥ 3 B = A_ sin 97)( are concentric circles

f f

with a radius ‘Af and the phase-shift < interpolated along the circles,
 Once the ¢ and M~point loci are plotted in the oB ~-plane, the amplitude A,

frequency Q_ and the phase-shift ¢ of the possible periodic solution

f
x = A sin (th) ,are determined at their intersections. The stability
‘df the periodic solutions is determined graphically from the obtained plot in
a straightforward manner as shown in the following example*.

Consider a control system with the block diagram shown on Fig. 1. The

related differential equation has the form
s(s+0,5) (s+2) (s+10)x + 10(s+1)F(x) = s(s+0,5) (s+2) (s+10) £ (9)

where the varisble x = x(t) represents the error signal e(t), and the
forcing function f = £(t) is the input =r(t) .
For the sinusiodal input function r(t) = AF sin(QFt;—“P) _the charaéteristic_

equation or the correéponding,linearized system is

sin ¥

R

s(s+0.5)(s+2)(s+10)[A -'Af(cos P - s)] + 10(s+1) ANl(Aj =0 ° (10)

°

* . .

This example has been treated analytically in reference [13] whereby, for
every set of values' (Af,nf), at least one transcedental equation has to be
solved, - '
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.where the solution e(tj Eof,equation (9) is assumed as e(t) = A sin (th) .
After the substitution

aaAf_'cos‘P, B =4, sin v

and s = jﬂf into equation (10), one obtains the equation (8) of the

g = 0 curve as

a = a(A,Qf)

N B = B(A,Qf)

For the specific equation (10), equation (7) of the M-point loci and
equations (8) of the ¢ = 0 curve are plotted on Fig., 2 for different values
of the amplitude Af and the frequency Qf, respectively, as family parameters,
The diagram of Fig. 2 is interpreted in.the usual manner, For example,

if the aﬁplitude and frequency of the forcing signal f(t) are Ag - 5 and
Qf = 2, then the related point is Mo'for which the periodic solution'x(t) has
the amplitude A = 9,3 and the phase-shift ¢=«19° ,

V: It is of particﬁlar sigﬁificance to note that if the frequency Qf is

increased up to Q = 5, the same M locus -inter-

£ 1,4 rad/sec, and keeping Ay
sects the 7 = 0 curve at three points, Ml’ MZ' and M3, which corresponds to
three different periodic solutions with the same frequency Qf = 1.4 rad/sec,

This is due to the so-~called jump resonance which can be better understood by

. plotting the frequency response characteristics from the diagram of Fig. 2.
In Fig. 3, the closed-loop frequency résponse relating the input and
output of the s&stem under investigation is plotted by an analog computer for
the input amplitgde Af = 5, The jump resonance is indicated in between the_T

frequencies Q

£ = 1 and Qf = 2, When the frequency Q. of the input signal is

f
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gradually increased, the first part Oab of tﬁe gain curve %{jﬂf) is obtained
on Fig. 3. When the f?equency Qf is increased at the point b, the system
output changes abruptly reaching the point c¢. With a further increase in the
input frequeney, the continuous part cd is obtained. If the procedure is
reversed and the frequency ié decreased graduaily from a higher wvalue,

the part dcb' of the gain curve is plotted. When the point b' is reached,

a decrease in Qf causes the output -amplitude to drop discontinuously to the

point a and then follows the part a0 as the frequency i, decreases to 2zero.

f

The corresponding phase characteristic follows the discontinuous jumps in the
amplitude as shown in the same ﬁig. 3.
The three points 1, 2, 3 on the gain characteristic of Fig. 3 cérrespond

to the points Ml’ M2, M3 in the. diagram of Fig. 2. The lower point 1 and the

point 2 is unstable and is not observed in the system simulaticas or experiments.
The jump resonance obtained by'the computer, checks the results aveilable on:

the diagram of Fig. 2. For example, the ¢ = 0 curve for Q_, = 1.3 1s targent

£

to the M locus plotted for A, = 5. This corresponds to the points a and b’'.

£

By interpolating between the 7 = 0 curves.plotted,for Qf = 1.4 and nf = 1.5, the

frequency of the jump bc can be evaluated. (Note that the diagram of Fig. 2
relates the input r(t) and the error signal e(t), while the plot of Fig. 3
relates r(t) and the output c¢(t). This is of ho essential importance since
relationship e = r-c holds.)

Another observation of the jump resonance can be made if the input frequency

is held cons.cnt but the input amplitude is varied so that A, varies while

Qf is constant. By using again the diagram of Fig. 2, it is not difficult

to show that if Q_ is chosen to be 1.« and A

N is varied, a diagram of Fig. L

f

can be calculated from that of Fig. 2. Once again there is a range of values

.
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of Af for which three valueé of A are possible. For Af = 5,  there are
three values, Al, AZ“ A3, of the amplitude A which correspond to the
’three points Ml, MZ' M3 of Fig, 2, The lowef A1 and upper A3 correspond
to stable solutioms, while A2 is unstable and cannot be obtained experi-
mentally. The corresponding phase daigram is shown in Fig. 5,

It is of interest to note that all diagrams of Figs, 3, 4 and 5 are

obtained for specific values of either the amplitude A_ (Fig. 3, Ag = 5) or

f

the frequency Q_. (Figs. 4 and 5, 9. = 1,4), If these values are changed, all

£ £
the diagrams have to be xeplotted again since they cannot be normalized
with respect to the input és is possible in‘linear systems, The effects

on (A,¢) of changing (Afo), however, can be studied directly from the
diagram of Fig. 2. Furthermore, the presented procedure can be applied
equivalently to single—vaiued and common multi~valued nonlinearities as
well as to nonlinearities with the frequency-dependent describing functions.
In certain cases, the proceduge can be extended to the analysis of the

jump phenomena in nonlinear sYstems with two nonlinearities provided the

applicability conditions of the. describing function are satisfied,

Stability andé Sensitivity of the Periodic Solutions.

In general, the jump phénomena can be more complex than that examined
in the previous section, It may contain more than one curl and, :hus, more
than thre. periodié solutions are possible, After thése solutions are
determined, the stability problem arises to separate the stable from the
unstable solutions,

The unstable solutions are related to the case when an increase in the "
input amplitude A_ results in a decrease of the amplitude A of the corres-

f

ponding periodic solution} By examining Fig. 4, onme may conclude that the
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unstable solution amplitudes are located along the part of the curve for
which the slope is negative, The stability ‘can now be checked from -the
parameter plane daigram. So, for an increase in the amplitude A along

“the curve Q_ = 1.4 at the point M there is an increase in the

£ 1

anplitude A ‘and the related solution is stable, The sane reasouning

f.

reveals that the point MZ is unstable, but .M3 is again stable,

The stability of periodic solutions can be checked anqutically by
de;ermining the éign of the derivative BA[BAf . Thig derivative is calcu-
lated from equations 6_f6r'the'case when the frequency Qf is considered
consfant and the amplitude A and phase ¢« are assumed to be functions
of the amplitu&e Af_,.

sensitivity analysis of self-excited nonlinear oscillations presented in

‘This is quite similar to the procedure of the .

reference [3]. Thus, it ié'left to the reader to derive the derivatives

aA/BAf and 3¢/ A, from equations 6; then, to apply the obtained expressions

f
to the system investigated in the preceding section,

Likewise, the sensitivity.analysis is related to the stability problem and
the concept of sensitivity analysis of small parameter variations in self-
excited oscillations developed in reference [3] can be extended to the
forced oscillations. The c@efficients of the polynomials B(s), C(s), and H(é)

in the characteristic équation

N

P 2
: ) + C(s) (N1 +~§; ) =0 (5)

sin
Q

AL ’
f
= (cosip =

B(s) - H(s)
cas be con¢*dered'as functions of u  linear parameteré 94 (L= 2, 2, eoey W

The describing function N = Nl.+ sz can be considered as a function of A,

Qf9 and v mnonlinear parameters pj’ (3 =1, 2, ves, V). Then the sensitivities
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can be calculated by differeqtiating equations (6) with respect to either 9y

or pj . The obtained sensitivity values indicate how the steady-state values

of the amplitude A and phase ¥ are affected by tﬁe‘small parameter variations,
It is of intefest.to note that the possibility of the jump resonance to

take place can be indicated by the coﬁdition that the derivative BA/BAf = oo s

i.e., aAf/BA =0 ., This condition has been examined entirely in references

[16,17] whereby a graphical procedure has been proposed to check the condition

being satisfied, The procedure of referencé'[l7} is convenient for

adjusting the linear part of the system so that jump resonance is avoided

either entirely or for some range of input amplitudes, *

Variation of Nonlinear Characteristic,

In the case of single-valued nonlinear characteristics when the nonlinear

differential equation has the form

B(s)x + C(s) F(x) = H(s) £
and the forcing functioni‘fAQ‘f(t) is

£(t) = A si‘n(szft"—"np) ' | (2)
the analysis of the ée;iodic solution x = x(t)

' x(t)yw A sin (th) ‘ . . (3)
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can be performed by.é different approach pfoposed by Gibson [19]., This
approach is convenient for the analysis of the'effecfs on jump resonance
of varying tﬁe ponlinear chéracteristic; i,e,, the nonlinear parameters,
Moreover, the approach cén be advantageous in cases when the nonlinear
single~-valued characte:isticlis found experimentally and the describing
function is determined graphi;ally, Of course, it may be applied to situations
when the describing fuﬁction of the nonlinearity is plotted experimentally
or by using computers, The approach will be generalized by the parameter
plang concept,

To describe the approach, note that the same harmonic linearization

presented in the preceding section if applied to equation (10) yields

A , .
[B(s) + H(s) 5= (cos ¢ - ZEL5) + ¢(e) N Jx = 0 (11)
f
where Nl = Nl(A) » Equation (11) can be obtained from equation (4) by

assuming N2 £ 0, which is true for a single-valued nonlinearity F(x) .

The corresponding characteristic equation can be written as

sin ¥

X

B(s)A + C(s) AN

+ H(s) A (cos @ - §) =0, (12)

1

After substituting s = jﬂf into (12), one obtains two equations in two

unknowns, a and B8 ', Thus,

Bja + CroB + HiA; cos @ f HyA. sin Y =0
. (13)
Bza + CzaB - HlAf sip‘P + HzAf cos ¢ . = 0
where

a = A

=)
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Equation (13) can be solved for a and B to obtain

(C2H1'.- C1H2) cos p + (C2H2 + ClHl) sin

o
Af N . . 32C1 - Blcz
, (14)
e (B,H, - ByH;) cos ¢ - (B,H, + ByH;) sin ¢
(CZH1 - ClHZ) cos ¢ + (C2H2 + ClHl) sin ¢
Now, for a given value of the forcing input frequency Qf, the
coefficients Bl’ L Cl' Cz, Hl, and qu which are functions of Qf only,

are evaluated numerically, TFor different values of the phase shift ¢ , the
corresponding values o and B8 are calculated from (14), Thus a locus

with constant frequency Q. can be plotted in the af plane where the

f

scale factor along the o axis is given by A On the other hand, the

f L ]
M locus is simply the describing function curve itself, Any change in the

nonlinear parameters affects only the ¥ locus while any change in the Af

input amplitude simply effects the scale along the o axis of the @B plane
for the M locus only. |

To illustrate the analysis procedure, consider the same example of
the previous section. Applying the outlined procedure, one obtains ﬁhe

parameter piane diagram shown in Fig., 6., The diagram is plottéd for A_. =5 and,

£

therefore, it can be compared with the computer simulation diagram of Fig, 3
to indicate the accuracy. The points 1, 2, 3 of the intersections of the M

locus with the Q. = 1.4 correspond to the points 1, 2, 5 of Fig. 3. The

corresponding values of the phasé shift p are read on the {_. curves,

£
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Any change in theiamplitude Af can be interpreted merely as a shift
of the M locus relative to the anconstant curves of Fig., 6. Thus, a
slight modification of the M locus should be made each time the amplitude

A 1is changed,

Conclusions,

It has been shown that forced nonlinear oscillaiiqns, and in particular
the jump resonance.phenomena may-be conveniently considered using the
parameter plane concept., Either a parameter plane may be plotted for a
specified nonlinearity and the.effects of varying the forcing signal
amplitude and frequency may be considered, or a parameter plane may be
plotted such that the effects of varying the nonlinear characteristic may be
investigated at the expense of ease of interpretation for input amplitude
changes. The advantage of usiﬁg the parameter plane approach is that the
required design information is given conveniently on the one diagram,

The method can be extended directly to the analysis of subharmonic

resonance by using the dual-input descfibing function as proposed by

West [15].
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