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Introduction We consider in this paper a dynamical system
whose evolution in time is described by a second-order linear
differential equation in a complex Banach space = u , Vyea.

u't(t) = Mu(t) + Bf(t) (1)

Here A 1is a linear, possibly unbounded operator with domain
D(A) € E and range in ® , B a bounded operator from another
Banach space F to E ., We shall assume fD(A) s the resolvent
set of A to be non-void, i.e. there exists a A such that R(7} ;A)
= (AI - mt exists and is bounded. The state of the system at
time t is given by the pair (u(t) , u'(t)) of elements of % ;
the F-valued function f£(+) is the input or control by means
of which we govern the system.

The problem of complete controllability consists, roughly
speaking, in selecting a control f in a given class J: in such
a way that the systems evolutions from a given initial state to
the vicinity of a given final state. If the initial state is taken
to be (0 , 0) then the problem is that of null controllability .
We introduce in Section 1 some results on the theory of the
equation (1) and apply them in Section 2 to show that the problem
of complete controllability of the system (1) can be reduced to
the corresponding one for the first-order system u' = Au + Bf if
A satisfies a certain condition (Condition (2.6) . Finally, we
examine in Section 3 the relation between null and complete
controllability for first and second-order systems. An agpendix
refers a systems described by higher order equations u(n = Au + Bf ,
n =3 ., We shall use without proofs some results on controllability
of first order systems u' = Au + Bf ; we refer to (§) for proofs
and further details.

§1. Let g(*) be a E - valued, strongly continuous function
defined for t = O. We shall understand by a golution of

u't(t) = Au(t) + g(£) (1.1)

an E - valued function u(+) defined and with two continuous
derivatives in t > O , such that u(t) & D(A) _and FEg. (1.1)
is satisfied for all t= O. \, e

We shall assume that the Cauchy problem for the homogeno




equation
u''(t) = Ault) (1.2)

is uniformly well posed in t > O, i.e. we shall suppose that
(a) There exists a dense subspace D of F such that if
U, » U3 & D there exists a solution wu(.) of (1.2) with
u(0) =uy , u'(0) =vy . ,
(b) For each t > O there exists a constant K; < oo such
that

fu(s){ < K¢ (Ju(0)} + |u'(@)}) ,0<s <t

for any solution u(+) of (1.2)

Let u€ B, u(*) (resp. v(*)) be a solution of Fq (1.2)
with u(0) = u , u'(0) = 0 (resp., v(0) =0 , v'(0) = u ) ., Define

S(t)u = wu(t) (resp., T(t)u = v(t) )

By virtue of (a) and (b) S(t) , T(t) are well defined and
bounded for all t 2z O , at least in D. Thus they can be extended
to bounded operators in E that we shall denote with the same
symbols., It follows from a simple approximation argument that
S5(+) , T(+) are strongly continuous functions of t. We shall
call S , T the solution operators of Eq. (1.2)

We take from (4) , Section 4 the following properties
of A, R(QA34) , S(+) , T(+) . |

(¢) For each uc E, t=20

t
T(t)u = S S(s)u ds (1.3)
0
(d) There exist constants w< @ , K < oo such that

IS(t))SKeWt , }T(t)léKeWt t 20

?

(e) @ (Aa) , the Spectrum of A is contained in the
region{?\ Re A <w -(Im))/%w} and

R() 2 - ‘1g e~ Mt S(t)u at =

- X:e‘?‘t T(t)u dt (1.h)



for Red > W .

With the help of T(+) we can construct solutions of the
inhomogenous equation (1.1) . In fact, we have

1.1 IEMMA Let g(+) be continuously differentiable . Then

t
u(t) = fo T(t - s)g(s)ds (1,5)

is a solution of FEg. (1.1) with u(0) = u'(0) = 0
Proof: Let O L t< t' . We have

u(t') - ut) - 1 gt' T(t! ~ s)g(s)ds +
£ -t tt -t t ‘
s t T(t! = s) - T(t - s)
fo{ t - t' ]g(S)ds = hth

Using now Eq.-(1:3) ‘and the fact that |S(-)| is bounded on compacts

of [0, @) ( a consequence of the principle of uniform boundedness,
(1), Chapter I ) we see that |T(r)] = 0(r) as r—>0 and thus
I;~»0 as t' -t —> O . Making use again of (1.3) the integrand
in I, 1is seen to cenverge to S(t - s)g(s) as t' ~t—=0 3 by
the theorem of the mean of differential calculus is bounded in norm
by
sup | 8(r)g(s)]
0 <r =t

Thus u 1is continuously differentiable in t =0 and
t
ut(t) = [ S5t - s)g(s)ds (1.6)
0

Interchanging now s by t - s in Fq. (1.6) and proceeding
similarly as before we see that u'(+) is continuously
differentiable in t>= 0 and

t
w't(t) = S(t)g(0) + ‘gc S(s)g'(t - s)ds  (1.7)

Let us now compute Au(t) . Integrating the expression (1.5) by
parts we get

ut) = gz T(s)g(0)ds + yz (S

s

T(r)dr) g'(t - s)ds
0



Using now the fact that

v, = .(: T(s)u ds
is an element of D(A) for any u€ E and Av, = S(aJu ~-u
( (&) , Section 5 ) we see that u(t) € D(A) for all t= O and
Au(t) = u''(t) - g(t) as desired.

We close this section with another result on the equation (1.2) .
Let E* ={ u*, v* ,... | be the dual space of E ; denote
(u¥ , u) or{u, u*) the value of the functional u* at the
point ug E .

l.2 TLEMMA Let W be reflexive. Then the Cauchv problem for
the equation

(WF) T (8) = Aku(t) | (1.8)

is uniformly well posed. If S*(-) , T*(.) are the solution
operators of Fa. (1.8) we have S*(t) = (S(t))* , T*(%) =
= (T(t))* , where S , T are the solution operators of (1.2)

The proof is a consequence of the characterization of operators
A for which the Cauchy problem for Fq. (1.2) is well posed ((&),
Theorem 5.9) . We shall assume throughout the rest of this paper
that ¥ is reflexive so that Lemma 1.2 applies.

§2. Let W = ExE be the space of all pairs (uj , up)
of elements of ¥ endowed with pointwise operations and any of its
natural norms, for instance |(u, , wy)| = {ug} * |uy| . The

dual space (Ez)* can be identified algebraically and topologically
with the space (E*)2 , application of the functional u* =
= (u¥ , uf ) to the element u = (u, , uy) being given by

{u* , u) = (uX 5 uy) +<u‘1k ’ u1>
Let the linear control system
utt(t) = Au(t) + Bf(t) (2.1)

(we we shall denote by L. ) be given . We shall assume the class

JC of controls to consist of all F - valued infinitely differen-
tiable functions défined.in {0, &) . Call K, (L) , t> O the
subspace of e consisting of all the pairs (u, , ul) )

t t
uy = [ 1t - omr(sdas , wy o= [ 8- eBreas  @.2)
0 0
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In wiew of Lemma 1, Ki(L) can be described as the subspace of all
pairs (u(t) , u'(t)) , wu(s) a solution of ®qg. (2.1) with u(0) =

=u'(0) = 0 , f & or simply as the subspace of all possible
states of the system at time t - the initial state being (0 ,0)
for t = 0. We also define K(L) = \U, o Kg(L) . We shgll
say that the system T is null controllasble if C1 K(L) = E,
null controllsble at time t, 1if CL Ky (L) = 5 . It is a
consequence of the Hahn-Banach theorem that Cl K(L) = E- 1if and
only if K™ ={(u(’§ y u{) c (m*)° ) { (u¥, uf) , (ug u1)>‘ = _LO
for all (u, , W) € K(L)} = {o}, c1 K (L) = B if K (L) =

= 0, K,(L)' similarly defined.

Our first results are analogous to Proposition 2.1 and
Corollary 2.2 of (6)

2,1 LEMMA (uX , u]"i) = K(L)"L (Kt(L)L ) if and only if

B*(T*(s)ur + S*(s)uf) =0 , 0<s (0 <s < t) (2.3)

- L - P
Proof Assume (u} , uf) < K(L)™ . Then, for any f N

t t
0 = {ux¥, ‘{O T(t - s)Bf(s)ds> + <u3‘f , yo 5(t - s)Bf(s)ds) =

t
jﬁo ( BE(T*(t - s)ux + S*(t - s)uf) , £(s)) ds

Taking now f(s) = y(s)u , u any element of & , y(.) any scalar-
valued function we easily see that (2.3) holds. The reverse implica-
tion is clear. The proof is similar for K (L) .

Let us denote ,A.(A) the connected component of P(4)  that
contains the half-plane ReA > w> (w the constant in (d) )
Section 1 )

2.2 COROLLARY (u* , wf) ¢ K(L) Aif and onlv if

B*R(A ;A%)(ur + A%ﬁ{) = 0 for A¢€ P (4) (2.%)

(arg A® = % arg) , -7 < argl<wW

Proof: We obtain (2,4) for A real, 2% > w integrating
exp (-th)B*(T*(S)ug + 8*(s)uy) in (0, ) and applying
(2.3) and Lemma (2,1) . For /OO(A) the result follows from an
analytic continuation argument. The reverse implication is, as in (6),
Corollary 2.2 a consequence of uniqueness of Laplace transforms.

We shall also consider in what follows the first order system M,



u'(t) = m(t) + Bf(t) (2.5)

Now Kt(M) is defined as the subspace of E consisting of all
values (at time t) of solutions of (2.5) such that u(0) =0 ,
e, KM) , K(M) © y Kt(M)i' are defined in a way similar
to that for second-order systems (see (6) for more details)
2.3 THEOREM Assume A satisfies the condition
there exists a simple closed curve C
entirely contained in /PO(A) and such that (2.6)
the origin is contained in the interior of C
Then K(L) = { (u, , u) 5 uy, , yy € KO} s
Proof Obviously we only have to prove K(L)™ =
{.(u , ul pouk o, uwf ¢ K(M)l_} . We shall use the following
characterization of the elements of K(M) (see (8), Corollary
2.2 )3 u* K(M) if and only if B*R(A jA*¥)u* = O ¥
2 € p,(4) . This makes clear that if u¥ , uf e xun’ then
(u} , u*)(_ K(L)© Conversely, assume (u}¥ , uf) € K(L) .
Consider (2,4) for a given A& C . As A turns once around the
origin and returns to its original value, A? changes sign.
Adding up the two versions of (2.4) so obtained we get
B*R() ;4%)ux = 0 , B*R(] sA¥)Juf = 0 for A€ C 5 by analytic
continuation this holds as well for all WQU,O(A) , which ends
the proof.

ot COROLLARY Assume A ‘Batisfies Condition€2.6) . Then
the control svstem L is nvll controllable if and only if M
is null controllable

2,5 REMARK If Condition (2.6) is not satisfied then Theorem
2.3 may fail to hold. We construct in what follows an example
of this situation.

Let E = 1° = L;(—oo,oo) ={ u(y) , v(y) ,...} Recall that
the space H? of the upper half-plane consists of all those
functions in 1° that are boundary values of functions uly + if) ,

holomorphic in the upper half-plane and such that

SUP £ 5 o J“u(y + if)(2 dy < oo

(21l integrals hereafter shall be taken on (- ,00) ) By the
Paley-Wiener theorem ((2), Chapter 8 ) H° consists of all those



functions on L2 whose Fourier-Plancherel transform vanishes for
t >0, i.e. of those u(+) in 12 such that

A L
u(t) = (am) 2[ u(y) eiytdy =0 for tz O

We shall make use of the following
2.6 IFMMA Let m¢& L2 y m%z 0 , m# O. There exists u& H2
such that Ju(y)l = m(y) if and only if

f | 1og m(y)| (1 + ¥y 2) liy <« o

For a proof for B of the unit circle see (3), Theorem 7.33;

it can be adapted to the case of the half-plane by using the
results in (2), Chapter 8 .

2.7 COROLLARY Let {a;;(y){ , 1,j =1,2 bea?2x2
matrix of functions in L2 , Assume

g | log | det {aij(y)}{! (1 + y2)dy < o (2.8)

Then there exist vy , V, , both different from zero almost
everywhere and such that

_ _ .2
Proof Let wy(y) = b(y)(ay,(y) - a12(y)) y wy(y) =

= bly)(ayq - azl(y)) where b(y) = sgn det{‘aia(y)}
We have

wiayp toWpdip = Wydpy twpay, = det{ayy)

In view of Lemma 2,6 there exists ug H° such that

{det-{aij(y)}! = Ju(y)| Thus if we set vy =w; sgnu , i =1,2
vy » Vo satisfy (2. 9) )
Let us now pass to the example proper. Let E = L~ =

= L (o0, ) = { ulx) , v(x)yeee } , A, the (self adjoint)
Operator defined by

(Au)(x) = u''(x) + rulx) , (2.10)
D(A,) = 5\ u e 12 s ut' < 12 } (u'' understood in the sense
of distributions) , F = ¢ = {(y1s¥5) 5+, } two dimensional
unitary Space, f(t) = (fl(t), f2(t)) ) B(yi,YQ)(X) =

ylgl(x) + yo85(x) , g7 5 g elements of L° to be determined
later.



The Fourier-Plancherel transform u(x) «— u(s) defines an
isometric isomorphism of L2 onto itself under which the operator
A, transforms into the multiplication operator

(a,u)(s) = (-8 + puls) , (211)
D(A) = {ug 1.2 | s %u(s) € L } Thus we may consider E =
12 = 1f s(o,0) = {uls) , v(s) ...} A, _defined by (2.11) ,
B(y1,Y2)(S) = ylhl(s ) + Y2h2(S) 1 = gl L] h2 = §2 . The
adjoint of B is given by By = (yi(u) y ¥o(w))
y1(s) = ‘f u(s)k (s)ds , 1 =1,2

(where we have set ki(s) = Eﬁ(s)) « It is not difficult to see
that the Cauchy problem for u't = ATu is uniformly well posed
for any r , the propagators being given by

S,(tduls) = alr,s,t)uls) , T (t)u(s) = blr,s,tluls) ,

1

1 1
{ cosh (r -52)2t if r> O and Jsj< r® ,

a(r,s,t) = 1 1
cos (s - r)gt if r < 0 or if r> 0 and !sfa r°
(r - §2) 281nh (r ~ s2)%t  if r$ O and Is)s r?
(s -r) 2sixll (s -r)%t ifr<Oorif r>2 0

and |[s] > r? .
The spectrum of A, consists of the half-line (-c0, r] ;
thus if r < 0 condition (2.6) is satisfied. By Theorem 2.3 the
system
ut'(t) = Au(t) + Br(t) (2.12)

is null controllable if and only if
u'(t) = Au(t) + Bf(t) (2,13)

is null controllable. For r = O the system (2.13) has been
considered in (5) , Section 43 it is null controllable if and
only if

hl(S)hg(“S) h hl(—S)h2(S) # 0 QL (2.14)

It is easy to see that the same result holds for any r (null
controllability is “translation—invariant" for first-order
systems) . Condition (2.14) holds for instance when gl(x) =



=exp ( -|xl) , g, = exp ( - Ix&l} 3 then hy(s) = 2(1 +2)71
hy(s) = 2 exp (~is) (1 + s 21 and the expression on the left-
hand side of (2.14) reduces to 8i(1 + s°)~° sin s .

Let us now examine (2,12) for r > 0, with the same choice of

g1 9 8 - Let ug , uy & Li o It is plain that Eq. (2.3) will
hold for them if and only if

[(a(r,s,t)ul(s) + blrys,thu(s))k (s)ds =0 , £t 2 O (2.15)

It 1s easy to see by means of simple changes of variable that the
part of the integral in the left-hand side of (2.15) extending

over |s| =2 r® can be written
[ Cos v& () + vy Yot v (0 () (k) (lay (2.16)

where Kr is the isometric isomorphism of L (|8 >-r%) onto
L? given by

(Kru)(y) = |y{%(y2 + r)'% u((y2 + r)% sgn y)

If u (y)/y is summable at the origin we can write (2,16) as
follows:s

%_{ eiyt(vl(y)ﬁi(y) + vz(yﬁii(—y))dy , (2,17)
vl(y) = ul(y) - iu o ¥y vz(y) =% (~y) iﬁ (-y)/y (here
we have written Uy = K P kJ Kk, ) » Call now ay (y) =

kg ((-1)%y) , 1.3 = 1.2 . The matrix|{ ajj} so defined satisfies
the assumptions in Corollary 2.7 and thus there exist vy , Vv,
in 1.2 y V4 # O such that

: 2
Viasy + Voas, € BT, 1= 1,2 (2,18)

It is plain that (2.18) holds as well for wy(y) = v (y) (1 + y)-l ’
i = 1,2 . If we now define ﬁl(y) = 3 (wl(y) + wy(-y)), Ez(y) =

= %iy(wl(y) “ wy(-y)) thenu; , u, € L° and (2. 1731: a fortiori
(2,16) - vanishes for £z 0 . Taking now wu; = K "u; which

are defined for is]>.r and extegﬂing them to the entire real
line by setting u; =0 in Isi< r® we obtain two non-vanishing
elements of l‘-g such that (2.15) holds, which shows that the

system (2.12) is not completely controllable for r > O .
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2.6 REMARK Our results on density of K(L) generalize to

other topologles in E x ¥ . We show briefly in what follows
how this can be done.
Let E, , By be Banach spaceswith norms I*! I+ly such

that E,C E , B C F (no relation between the topologies of
E, B , E2 is postulated) Let m > O ; introduce in D(A™) , the
domain of A" the topology given by the norm lulp -

lulg + |& ulE or the equivalent one {u)D(Am) = l(\ - A)mulE )

A any element of /O(A) We shall assume that:

DA™ T ®, , DU Ty
both inclusions being continuous (we shall always consider D(A™)
endowed with the topology given before, D(A™L) with the similar
topology obtained repacing m by m-1 )j; moreover we suppose

B(F)  D(A%Y) , s(¢)m; S B, , T(IE; S B, , 20 , 1= 0,1

S(+) , T(+) are strongly continuous functions in the topologies
of By 4 Ese Under all this conditions it is easy to show that
if wu(s) 1is a solution of (2.1) with u(0) = u'(0) =

u(t) € DA™ , w'(t) & DA™L) for all t> 0 . It is then

natural to ask when K(L) will be dense in Ey X Byy 1.e. when

the system (2.1) will be null controllable in the topology

of E X El'
Let Eo 3 E{ be the dual spacesof E, , E; , application

of a functional uicg E{ to an element uiEE By being indicated

Assume (2,1) is not null controllable in E, x E; and let
(u , up) € K(L)™" . Then we have, in view of (1.5)

t t
(ut fo T(s)Bf(s)ds) o + (uf , fo s:(s,)Bf(s)ds}1 =0 (2,19)

L —
for all t7 0 , £ € . Setting f£(s) = exp (-¥s)u , uc F,
A% > w (w the constant in (d) , Section 1) and letting t-—> oo

we get from (2.19) that

¢ur , R(A;M)Bu) | +{uf , APR(A;0)Bup, = O



- ) ) ‘ 11
for A > W and a fortiori for-all A€ Folh) « Assume now

A gsatsfies Condition (2.6). Then, by using the same trick in the
proof of Theorem (2.3) we can show that

{uf y RCA30)Bu) , ={u¥ , R(A;4)Bu), =0 (2.19")

for all A & Po(4) . Assume now the first-order system M is
null controllable., Then, if B*R(} ;A*)u* = O for some u*& ®*
and all A€ p,(4) , u* = 0 or, what amounts' to the same thing,
the subspace of E generated by all elements of the form

R(A ;4)Bu (2.20)

ug F, % €R(A) is dense in E. Let us see that the same thing
happens with the subspace of  E generated by the elements

(p - &)™ RO 54)Bu (2.21)

M a fixed element of /O(A) , u€ F, ?\epo(A) . In fact,
assume this is not true. Then there exists u*<¢ E* such that

(wx, (- &) RO sA)Buy = O (2.22)

for all u€ F ;% ¢ p,(4) . Adding up (2.22) for two different
elements A  , A, of Po(A) and using the first resolvent
equation we get

{u* , (po- A" R(A j30R(A 34)Buy =0 (2.23)
Differentiating (2.23) with respect to A; m-1 times we get
{u* , (- A" R(A 3R() 50 Bu) = 0
for allugc F , A, € FO(A) . Then
B*R(?\O;A*)(/‘*- A)PR(A 3a0)™u* = 0
which, in view that. M is completely controllable, implies

(A= a%)™R(A1358%) = 0 ,

a fortiori, u* =0 ,

Let us observe next that to assert that the subspace generated
by all elements of the form (2.21) is dense in E is equivalent
to assert that the subspace generated by all elements of the form



. 12
(2,20) is dense in D(A™). But then it will also be dense in F_ 3

thus; in wiew of (2.19') , u* = 0 . The second :kerm in (2,19')
can be tmated in the same way than the first. Collecting all
our observations we have _

2.7 THEOREM Let EO ’ El be Banach spaces satisfying all the
conditions in Remark 2,6. Assume the first-order control system
(2.5) is null controllable, and assume A satisfies Condition
(2,6) . Then the system (2.1) is null controllable in the
topologv of F X E1

§3. Let us call the system (2.1) completely controllable
if, given u, ule D, Vo 9 vlt:_- E, € > 0 there exists f < dC
such that the solution of ®gq. (2.1) with u(0) =u, , u'(0) = u;
satisfies

o
fu(t) - v <€, |ut (t) ~ vl €€

for some t > O, It is plain that complete controllability of L
implies null controllability. The reverse implication is also trues
this follows from the fact that the solutions of Eq. (2.1)

can be translated and inverted in time, i.e. if u(+) is a solution
of (2.1) for some £(+)€ L then v(t) = u(a - t) is also a solution
of Bq., (2.1) for g(t) = f(a - t) « Thus to steer the system from
(u, » uy) to the vieinity of (v » v,) we only have to steer first
to the viecinity of the origin (using null controllability and the
inversion property just mentioned) and then from the origin to the
vieinity of (v, , vl) .

The situation is diferent for first-order systems; in fact a
first-order system may be null controllable without being
completely controllable. There are, however, two important
particular cases where the equivalence holds; these are (a)
the case where A generates an analytic semigroup and (b) the
case where A generates a group and PO(A) = Fb(~A) , this last
condition meaning that we can unite the points +oco and - of the
real axis by means of acurve that does not meet the spectrum of A.

§4, Problems similar to the ones we have considered for the
systems u(n) = Au+Bf ,n=1, 2 may also be considered for
n » 3. However, the interest of these generalizations is limited
by the fact that the assumption of well posedness of the homogenous
problem u(n) = Au implies the boundedness of A ((&), Section 3),
thus - precluding applications to partial differential equations. The
results are as follows: if L is the n-th order system
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u(n)(t) = Au(t) + Br(t) (2.24)

and M, as usual, 1is the first-order system
u'(t) = Au(t) + Bf(t) (2.25)

then the four notions, null controllability, null controllability
at time t, , complete controllability, complete controllability
at time t, are equlvalent for*the system L and equivalent to the
corresponding notions for the system M, The proof is a consequence
of the fact that the solution operators of Fq. (2.24%) - and also
of equation (2.25) - are analytic when A is bounded.
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