
COWTROLABILITY OF H I G m R  ORDER 

LINEAR SYSTEMS 

I 

'GPO PRICE $ 

by CSFTI PRICE(S) $ 

Hard copy (HC),, 

Microfiche (MF) - H. 0. FATTORXNI" 

' ff 653 July 65 
I 

Consejo Maci<Pna.l de Investigaciones Cientificas y Tecnicas 

and University of Buenos Aires, Buenos Aires, Argentina 

Now at Brown University, Division of, Applied Math~matics, 

Providence, 1-2. I. 
I 

0 
3 
9 
c 
3 
-I 

ii 

Presented in the Conference on the Mathematical Theory of 

Control, January 30 to February 1, 1967, University of 

Southern California, Los Angeles, California 

* 
This research was supported i n  par t  by the  National Aeronautics and Space 

Administration under Grant No, NGR-40-002-015 
Office of  Sc ien t i f i c  Research, Office of Aerospace Research, United S ta tes  
A i r  Force, mder AF-AFOSR Grant No, AF-AFOSR-693-66. 

and i n  part by the  A i r  Force 

https://ntrs.nasa.gov/search.jsp?R=19680024262 2020-03-12T06:27:40+00:00Zbrought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/85243745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction We consider i n  th i s  paper a dynamical system 
whose evolution i n  time i s  described by a second-order l inear  
d i f fe ren t ia l  equation i n  a complex Banach space R = u v,... 

Here A i s  a l inear ,  possibly unbounded operator with domain 
D(A) 5 E and range i n  R B a bounded operator from another 
Banach space F t o  E . We shall  assume P(A) , the resolvent 
s e t  of A t o  be non-void, i.e. there exis ts  a 2 such tha t  R ( >  ;A)  
= exis t s  and i s  bounded. The state of the system at  
time t i s  given by the pair  (u( t )  u ' ( t > )  of elements of 3 ; 
the F-valued function f(*) i s  the i n m t  or control by means 
of which we govern the system. 

(11 - AI-' 

The problem of complete controf labi l i tv  consists, roughly 
speaking, i n  selecting a control f i n  a given class i n  such 
a way tha t  the systems evolutions from a given i n i t i a l  s t a t e  t o  
the vicini ty  of a given f i n a l  s ta te .  If the i n i t i a l  s t a t e  i s  taken 
t o  be (0  , 0 )  then the problem i s  that  of null control labi l i tv  
W e  introduce i n  Section 1 some results on the theory of the 
equation (1) and apply them i n  Section 2 t o  show tha t  the problem 
of complete control labi l i ty  of the system (1) can be reduced t o  
the corresponding one for  the first-order system u t  = Au + Bf 
A s a t i s f i e s  a certain condition (Condition (2.6) . Finally,  we 
examine i n  Section 3 the relat ion between nu l l  and complete 
control labi l i ty  fo r  f i r s t  and second-order systems. An a pendix 
refers a systems described by higher order equations u cnP= Au f Bf 

n 2 3  . We shall use without proofs some resu l t s  on control labi l i ty  
o f  f i rs t  order  systems u t  = Au + Bf ; we refer  t o  
and further detai ls .  

defined for  t 2  0, We shall understand by a solution of 

if 

(6) fo r  proofs 

$1. L e t  g ( * )  be a E - valued, strongly continuous function 

an F - valued function u(-) defined and w i t h  .two continuous 
derivatives i n  t 3 0 such that u ( t )  E D(A)  and F 
i s  sa t i s f ied  for a l l  t 2  0. 

We shall  assume that  the Cauchy problem 



equation 

is  uniformlv w e l l  Dosed i n  

uo , u1 E D there exis ts  a solution u(.) of (1.2) with 

t &  0, i.e. we sha l l  suppose t h a t  
(a) There exis ts  a dense subspace D of such tha t  i f  

u(0) = uo 9 u ' to )  = u1 
(b) For each t 7 0 therm exis ts  a constant Kt 4 co such 

t h a t  
/u(s)\ 5 K t  ( [ ~ ( o ) )  + \u'(O)/) 3 0 5 s  I t  

f o r  any solution u ( * )  

with u(0) = u , ~ ' ( 0 )  = 0 (resp. v(0) = 0 , ~ ' ( 0 )  = u 

of (1.2) 
Let u E E , u(0) (resp. v ( * ) )  be a solutioa of Eq (1.2) 

Define 

S( t )u  = u ( t )  (resp, T ( t h  = v ( t )  ) 

By vir tue of (a> and (b) S ( t )  , T ( t )  are well defined aid 
bounded for a l l  t 3 0 , a t  least i n  
t o  bounded operators i n  E tha t  we shall denote with the same 
symbols, It follows from a simple approximation argument tha t  
S ( * )  , T(.) are strongly continrious functions of t. We sha l l  
c a l l  S , T the solutio-n omrators of Eq, (1.2) 

of A R ( A  ;A) , S ( * )  T(-)  

D, Thus they can be extended 

We take from (k)  Section 4 the following properties 

(c) For each u E  E , t r, 0 

r t  
T(t)u = j o  S(s)u ds (1.3) 

(d) There ex i s t  constants w < co K 4 co such that  

(e) G ( A )  , the spectrum of A i s  contained i n  the 
c_ w2 - (Im> I*/ 4w2] and region { 1 ; Re 

J O  
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for  Re3  7 w 

inhomogenous equation (1.1) . In f ac t ,  we have 
With the help of T ( * )  we can construct solutions of the 

1.1 LEMMA Le,t g(* )  be continuouslv differentiable - Then 

P t  

Proof: 

+ l: 

L e t  0 g t < t' W e  have 

t' - - f T( t t  - s > g ( s ) d s  + 
u ( t ' >  - u ( t )  

t' - t t f - t  t 

T(t '  - SI - T ( t  - "'1 g ( s ) d s  = I1 + I2 I t - t' 
Using now Eq;-C1;3) ' k d  the f ac t  t ha t  I S ( * > \  

of 10 , co 
(hl9 Chapter I we see that  I T ( r > [  = O ( r )  as r - 0  and thus 

i s  bounded on compacts 

( a consequence of the principle of uniform boundedness, 

11*0 as t' - t 
i n  12 is seen t o  
the theorem of the 
bY 

- 0 . Making use again of (1,3> -the integrand 
converge t o  S ( t  - s)g(s)  as t t  - t -0 5 by 
mean of d i f fe ren t ia l  calculus i s  bounded i n  norm 

Thus u is  continuously differentiable i n  t 3 O  and 

Interchanging now s by t - s i n  Tq, (1.6) and proceeding 
similarly as before we see that  u t ( * >  is  continuously 
differentiable in  t 2 0 and 

t 

0 
u l l ( t )  = S(t)g(O) + 5 S ( s ) g r ( t  - s)ds  (1.7) 

Let us now compute Au(t) Integrating the expression (1-5) by 
parts we g e t  



4 
pa now the f a c t  tha t  

element of D ( A )  f o r  any u-E F, and Ava = S(a)u - u 
, Section 5' WQ see tha t  u ( t >  E D(A) fo r  a l l  t'Z"/ 0 and 
- - u " ( t )  - g ( t >  as desired. 

close t h i s  section with another resu l t  on the equation (1.2) . 
Let E* = { u* , v* ,... 1 be the dual space of E ; denote 
( u *  u) or { u , u*) the value of the functional u* a t  the 

point u E  F: . 
the eauation 

1.2 LEMMA F: be reflexive. Then the C2auchv Droblem for  

(u*)"(t) = A*u*(t) (1.8) 

i s  uniformlv well Dosed. If S * ( . )  , T*(.)  are the solution 
o w r a t o r s  of Rq, (1.8) we have S * ( t )  = (S ( t ) )*  T * ( t )  = 
= (T( t ) )*  , where S , T are the solution operators of (1.2) 

A fo r  which the Cauchy problem for  Eq. (1.2) i s  w e l l  posed <&>, 
Theorem 5.9) . We sha l l  assume throughout the rest of t h i s  paper 
t ha t  X i s  reflexive so tha t  Lemma 1.2 appl-ies. 

of elements of F endowed with pointwise operations and any of i t s  
natural  norms, f o r  instance l(uo , u l> /  
dual space (E2> * can be ident i f ied algebraically and topologically 
with the space (E*)2 , application of the functional 
-= (u: UT t o  the element u = (uo u1) being given by 

The proof i s  a consequence of the characterization of operators 

2 
$2. Let '4 = E x E be the space of a l l  pairs (uo u1> 

= \uol + lull a The 

u* = 

Let the l inear  control system 

(we we sha l l  denote by L ) 

t i ab le  functions clefined-in io, 8, + C a l l  Kt(L) t 3 0 the 
subspace of E consisting of a l l  the pairs (uo u,) 

be given . W e  sha l l  assume the class 
$, of controls t o  consist of a l l  F - valued inf in i te ly  differen- 

2 

t t 

0 0 
= [ T(t - s>Bf(s)ds  u1 = S ( t  - s)Bf(s)ds ( 2 , 2 )  uo 
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In  wiew of Lemma 1, 
pairs (u ( t>  uf (t))  , u(*) a solu-tion of Eq. (2.1) with u(0) = 
= u' ( 0 )  = 0 , f or simply as the subspace of a l l  possible 
s t a t e s  of the system at t i m e  t - the i n i t i a l  s t a t e  being (0 ,O) 

fo r  t = 0 b We also define K(L) = ut, K (L)  . We sha l l  
say that  the system L is  pull controllable i f  C l  K(L) = E*, 
~ u L l  controllable a t  time to if C1 ECt,(L) = E2 , It i s  a 
consequence of the Hahn-Banach theorem that  Cl K(L) = E2 i P  and 

fo r  all (uo , ul) K ( L ) )  = { O ]  , C 1  Kt(L) = R if Kt(L) = 
= 0 Kt(L)' s imilarly defined, 

Corollary 2,2 of (5) 

Kt(L) can be described as the subspace of a l l  

*I E (E*) 2 1 ((ug, u p  , (uo , u,)>' = 0 
' ul 1 

only i f  K(LP = { (uo* 

O u r  f i r s t  resu l t s  are analogous to  Proposition 2 , l  and 

2 , l  LEMlvlA (uz , ui) e K(L)- (Kt(L)' 
I 

i f  and only if 

B*(T*(s)u;S + S*(s)uf) = 0 , 0 4 s  (0 5 s 5 t )  (2,3) 

- Proof Assume (ug , ut) E K(LlL Then, f o r  any f E d:. 
t 

T(t  - s )Bf(s )ds)  + {uf i', S ( t  - s)Bf(s)ds) = 

Taking 
valued 

now f ( s )  = y(s)u , u any element of E y(e) any scalar-  
function we easi ly  see tha t  (2.3) holds. The reverse implica- 

t i o n  i s  clear. The proof i s  similar f o r  

contains the half-plane Re/? > w2 (w the  constant i n  (a>  
Section 1 1 

Kt(L) , 
Let us denote ,Do(A) the connected component of , o ( A )  tha t  

2.2 COROLLARY (u; , uf)  f K ( L )  i f  and onlv i f  

B*t;R(l ;A*)(dg + 2%:) = 0 f o r  ; \ G f o ( A )  ( 2 e W  

( a r g A +  = Q a r g l  , -T < argA(  n e 

exp (-ATt)B*(T*(s)u* 0 + S*(s)uf) i n  (0 , a>) and applying 
(2.3) and Lemma ( 2 , l )  For po (A)  the r e su l t  follows from an 
analytic continuation argument , The reverse implication is ,  as i n  (6) 
Corollary 2,2 a consequence of uniqueness of Laplace transforms. 

We sha l l  also consider i n  what fol lows the first order system M, 

Proofs Ide obtain (2,4) f o r  f\ rea l ,  J *  > w integrating 
1 
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Now Kt(M) i s  defined as the subspace of E consisting of all 
values ( a t  time t) of solutions of (2.5) such tha t  u(0) = 0 , 
f M ( M )  , M(M) Kt(M) are defined i n  a way s i m Z l a r  
to  that  for  second-order systems (see ($1 f o r  more details)  

L 

2-1 THEOREM Assume A 
there ex is t s  a simple closed curve C 
ent i re ly  contained in  po(A> and such that ( 2 , 6 )  
the o r ig in  i s  contained Ln the interior of C 

Then K(L) = { (uo u1> ; u0 , ul K(M)} 
JI 

LI_ 

Proof Obviously we only have t o  prove K(L) = 
{ (u;T UT) ; ug uf E K(M)’ ] . We shall use the following 
characterization of the elements of K ( M f  (see (61, Corollary 
2.2 1; u* IC(M)L i f  and only i f  B*R(A ;A*)u* = 0 
1 Ep0(A> e This makes clear that  i f  u: u l  e K(M)- then 
(ug uf)  E IC(L)- , Conversely, assume (ug ut) re‘ K(L) 
Consider (2.4) for  a given 1 E C .- A s  2 turns once around the 
o r i g i n  and returns t o  i t s  o r ig ina l  value, 3’ 
Adding up the two versions of (2,4) so obtained we get 
B*R(?\ ;A*)u;S = 0 B*R(l ;A*)uf = 0 for 3 E C ; by analytic 
continuation th i s  holds as well for  a l l  2 C= Do(A) 

the proof. 

t 

t 1 

changes sign. 

which ends / 
. .  

2.4 COROLLARY Assume A ‘p8tisfies Conditit&*(2,6) Then, 
the control svstem L is null controllable i f  and onlv i f  M 
i s  nul l  controllable 

2.5 R E I W  If Condition (2 ,6 )  is  not sa t i s f ied  then Theorem 
may f a i l  t o  hold, We construct i n  what follows an example 2.3 

of t h i s  si tuation, 
Let E = L2 = L (-m,m> = f_  u(y) v(y) ,...] Recall that 

the space €I? 
functions in L tha t  are boundary values of functioas u(y + if) , 
holomorphic i n  the upper half-plane and such tha t  

2 
Y 

of the upper half-plane consists of a l l  those 
2 

lu(y + dy < 00 
(a l l  integrals hereafter sha l l  be taken on (-a ,m) 
Paley-Wiener theorem ((219 Chapter 8 H2 consists of a l l  those 

sup f 7 0 

By the 
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2 functions on L whose Fourier-Plancherel transform vanishes for 

t 5 0 i ,e. of those u ( * )  i n  L2 such that  

;( t)  = (2Tf )'* 1 u(y) eiYtdy = 0 fo r  t 3 0 

We shall make use of the following 

such tha t  Ju(y)l = m(y> 

2 2 2.6 LVMMA && m E  L m 3  0 m f 0, There exis ts  u E  H 
i f  and onlv i f  

2 -1 f 1 log m(y)\ (1 + y dy 4 00 

For a proof fo r  H2 of the u n i t  c i rc le  see (21, Thearem 7.33; 
it can be adapted t o  the case of the half-plane by using the 
resul ts  i n  

2.7 COROLLARY && [ ai j (y))  
matrix of functions i n  L2 Assume 

(z), Chapter 8 , 
i , j  = 1 9 2  be_ a 2 x 2 

Then there ex is t  
everywhere and such that  

vl ? v2 both different from zero almost 

- Proof L e t  wl(y) = b ( ~ ) ( a ~ ~ ( y )  - a12(y>) w,(y) = 
= b(y)(all - a21(y)) where b(y)-' = sgn det { aij(y)] 
We have 

w1all + w2a12 = ~~a~~ + w2a22 =? det aij  

In view of Lemma 2,6 there exis ts  u E  H2 

V l  ' v2 sa t i s fy  (2.9) 
L e t  us now pass t o  the example proper, Let E = L2 = 
2 = L,(m co) = { u(x) v (x )9* , .  } % the (self adjoint) 

operator defined by 

such that  
I de t  aij(y>}I = 1 U ( y >  I Thus i f  We set  vi = wi sgn u i = 1 , 2  

2 D(%) = { u L2 ; uf I  E L 1 (ufl understood i n  the sense 
of distributions) 
unitary space, f ( t )  = ( f l ( t ) 9  f 2 ( t ) )  B(yl,y2)(x) =: 

ylgl(x) + y2g2(x) 
l a t e r  

F = C2 = {(yl,y2) ,,.. ] two dimensional 

gl g2 elements of L2 to be dptermfned 
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The Fourier-Plancherel transform u(x) 6-3 G(s> defines an 

isometric isomorphism of L2 onto itself under which the operator 

Ar transforms into the multiplication operator 

(where we have set 
that the Cauchy problem for uft = A p  

ki(s) = Ei(s)) , It is not difficult to see 
is uniformly well posed 

for any r the propagators being given by 

Sr(t>u(s> = a(r,s,t>u(s> Tr(t>u(s) = b(r,s,t)u(s) 

2 J -  * cosh (r - s  )2t if r 2  0 and ISIS r I 

cos (s2 - rITt 
(r - s2>-*sinh (r - s l2t 

and / s /  3 r* 

* a(r,s,t) = [ 1 
if r < 0 or if r 3 0 and Is13 r 

2 2  L 
and I s t s  r2 if r 3  0 

b(r,s,t) = 2% 

The spectrum of % consists of the half-line (-a rJ ; 
thus if r < 0 condition (2.6) is satisfied, By Theorem 2.3 the 
system 

utt(t) = Aru(t) + Bf(t) (2,221 

is null controllable if and only if 

is nul1 controllable, 
considered in (5) ? Section 4; it is null controllable if and 
only if 

hl(s)h2(-s) - hl(-s)h2(s) 0 a,e. (2.14) 

For r = 0 the system (2.13) has been 

It is easy to see that the same result holds for any 
controllability is "translation-invariant" for f irst-order 
systems) , Condition (2.14) holds for instance when gl(x) 

r (null 

= 



2 -1 9 
= exp ( -lx\> g2 = exp ( - Ix+l))  
h2(s) = 2 exp (-is> (1 + s2)-' 
hand side of (2,141 reduces t o  8i(l + s 1 sin s 

2 
gl 9 g2 e L e t  uo 
hold for  them i f  and only if  

; then hl(s) = 2(1 fs 1 , 
and the expression on the left- 

2 -2 

Let US now examine (2,121 for r a  0, with the same choice of 
u lE  Ls It is plain tha t  Eq, (203)  w i l l  

f ( a ( r , s , t )u l ( s )  + b(r,a, t>uo(s>)ki(s>ds = 0 t 2 0 (2.151 

It is easy t o  see by means of simple changes of variable tha t  the 
p a r t  of the integral  in the left-hand s i d e  of (2.15) extending 
over 1 s 13 r+ can be written 

[ (cos y t  (Krul>(y> + y-lsin y t  (K,uo)(y))(Krk,)(y)dy (2.16) 

where K, i s  the isometric isomorphism of L 2 ( I s i 2  r h 1 onto 

L; given by 

( K ~ U > ( Y )  = iy$(y2 + r >  -+ u((y2 + sgn y> 

If u,(y)/y i s  summable a t  the origin we can write (2.16) as 
follows : P 

N nl 

v,(y) = ul(y) - iGo(y>/y , v2(y> = ul(-y) - iGo(-y)/y (here 
w e  have written %i = Krui , kj = K k .  r 3  
ki((-l)jy) , i.j = 1,2 b The matrix{ a i j  3 so  defined s a t i s f i e s  
the assumptions i n  Corollary 2.7 and thus there exist v1 9 v2 
in  L vi # 0 such tha t  

N 

b C a l l  now aij(y) = 

2 

(2.18) 2 
5 " 2 1  + v2a2,-& H , i = f , 2  

It i s  plain tha t  (2.18) holds as well for  wily) = vi(y)(i  + y1-l 
i = 1,2  e If we  now define Gl(y) = 9 (w,(y) + w2(-y>), Zz(y1 = 
= *iy(wl(y) 4. w2(-y>) then ul , %E L2 and (2.17) - a f o r t i o r i  
(2,161 - vanishes for  t 3 0 , Taking now ui = K, ui which 
are dcfined f o r  1s I 8 rT 
l i n e  by set t ing 
elements of I2 8 
system (2.12) i s  not completely controllable for  

-Lw 
1 

and extending them t o  the en t i re  real z 
ui = 0 i n  \ s i <  r2 
such tha t  (2,15) holds,  which shows tha t  the 

we obtain two Don-vanishing 

r 3 0 
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2,6 FEMARK Our resu l t s  on density of K(L) generalize t o  

other topologies i n  E x q . We show br ie f ly  i n  what follows 
how this  can be done. 

that  EoC_ FJ 
F , El , % 
domain of Am the topology given by the norm \ulD(Aml 
lulE + \amulE or the equivalent one /ulD(A,) = \ ( A  - ~ > % l ,  , 

L e t  E, , El be Banach spaceswith norms I I o  , I * / ,  such 
%& E (no relat ion between the topologies of 

is  postulated) Let m) 0 ; introduce In D(Am> the 

- - 1 

1 any element of pCA) We sha l l  assume that: 

both inclusions being continuous (we sha l l  always consider D(Am> 
endowed w i t h  the topology given before, D(Am’”) w i t h  the similar 
topology obtained re$acing m by m-1 1; moreover we suppose 

s (*> 
of El 

i f  u ( * >  
u ( t ) E  D(Am> for  a l l  t p , O  It i s  then 
natural  t o  ask when K(L)  
the system ( 2 e 1 )  w i l l  be nul l  controllable i n  the toDolom 

T ( * )  are strongly continuous functions i n  the topologies  

is  a solution of (2.1) w i t h  u(0) = ~ ‘ ( 0 )  = 0, 
R2’ Under a11 this conditions it is easy t o  show that  

u t ( t ) E  D(Am”’> 
w i l l  be dense i n  E, x El, %.e. when 

a Eo x El’ 
Let E: E$ be the dual spacesof Eo El application 

of a functional “$2 ET t o  an element uiE Ei being indicated 

Assume 
(uZ; , u t )  E K(L) 

(2.1) i s  not n u l l  controllable in  Eo x El and l e t  
1. 

e Then we have, i n  view of (1.5) 

1 
for a l l  t a  o , ~ E S ,  e Setting 

> w (w the constant i n  (d)  , Section 1) and l e t t i n g  t-+ 00 
f ( s )  = exp ( - ~ 2 s ) u  , U E  F 

1 

we g e t  from (2.19) tha t  
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for 1- 2 w2 
A 
proof of Theorem (2.3) we can show that 

and a f o r t i o r i  f o r  all x f o ( A )  -w 
sa tS ies  Conditfon (2.6). Then, by using thc same tr ick in  the 

for a l l  ?I po(A) . Assume now the first-order system M i s  
n u l l  controllable. Then, if 
and a l l  3\ 
the subspace of 

B*R(> ;A*)u* = 0 for  some u*€ E* 
po(A) , u* = 0 or ,  what amounts 5 t o  the same thing, 

E generated by all elements of the form 

R(% ;A)Bu (2.20) 

ue F , 1 Ep0(A) 
happens w i t h  the subspace of E generated by the elements 

is  dense i n  E, L e t  us see that the same thing 

p a fixed element of P(A) , u E  F , lEp,(A) . In f ac t ,  
assume this i s  not t rueo  Then thpre exis ts  u*E G* such that  

for a l l  u e  F 
elements 2 
equation we g e t  

1 f p , ( A )  . Adding up (2.22) for two different 
of P O ( A )  and using the f i rs t  resolvent , 1, 

{ u* , (p- A)m R( > , ; A > R ( I  ,;A)Bu} = 0 (2.23) 

Differentiating (2.23) w i t h  respect t o  l1 m-1 times we get 

which, i n  view that M i s  completely controllable, implies 

( 2  - A + > ~ R ( ? ~ ; A * )  = o 
a f o r t i o r i ,  u* = 0 

by a l l  elements of the form (2.21) is  dense i n  E i s  equivalent 
t o  asser t  that  the subspace generated by a l l  elements of the form 

Let US observe next tha t  t o  assert that  the subspace generated 
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(2,20)' i s  dense i n  D(Am>, But then it w i l l  also be dense i n  Eo ; 
thus5 i n  wiew of (2.19') , ug = 0 The second ;term i n  (2.19' ) 
can be taated i n  the same way than the first.  Collecting a l l  
our observations we have 

conditions i n  Remark 2,6, Assume the first-order control system 
(2.5) i s  nul l  controllable, and assume A s a t i s f i e s  Condition 
(2.6) . Then the system (2.1) 

2,7 TKEOREM && Eo , El 

topologTr of Eo x 
$3. Let us c a l l  the system (2.1) SomDletelv controllable 

i f ,  given uo 
such that  the solution of Rq. (2.1) w i t h  u(0) = uo , ~ ' ( 0 )  = ul 
s a t i s f i e s  

u l ~  D , vo , V ~ E  E , E z o there ex is t s  f E L 

I u W  - vo( 5 G 9 l u ' ( t )  - V I 1  ,r f 

f o r  some t > 0. It i s  plain tha t  complete control labi l i ty  of L 
implies nu l l  controllabil i ty.  The reverse implication i s  also true; 
t h i s  follows from the f a c t  that  the solutions of R q .  ( 2 , l )  
can be translated and inverted i n  time, i.e. i f  u(.)  i s  a solution 
of (2.1) f o r  some f ( * ) E  6: 
of Tq, (2.1) for  g ( t >  = f ( a  - t )  Thus t o  steer  the system from 
(uo , ul) t o  the v ic in i ty  of (vo v,) we only have t o  s teer  f i rs t  
t o  the v ic in i ty  of the origin (using nul l  control labi l i ty  and the 
inversion property jus t  mentioned) and then from the Origin 
v ic in i ty  of (v, , vl) . 
first-order system may be nu l l  controllable without being 
completely controllable. There are,  however, two bnpor'tan't 
particular cases where the equivalence holds; these are (a) 
the case where A 
case where A generates a group and 
condition meaning that  we can unite the points +oo and -mof the 
r ea l  axis by means of a curve tha t  does not meet the spectrum of 8. 

systems u(~) = Au + Bf 
n 3 3*  However, the in*erest of these generalizations i s  limited 
by the f a c t  t ha t  the assumption of well posedness of the homogenous 
problem u (n) = Au 
thus.precluding applications t o  pa r t i a l  d i f fe ren t ia l  equations. The 
resu l t s  are as follows: i f  L i s  the n-th order system 

then v ( t )  = u(a - t )  is a l so  a solution 

to  the 

The s i tuat ion i s  diferent fo r  f irst-order systems; i n  f ac t  a 

generates an analytic semigroup and (b) the 
p o ( A >  = po(-A> , t h i s  l a s t  

Problems similar t o  the ones we have considered f o r  the 
n = 1 , 2 may also be considered for  

implies the boundedness of A ((4) , Section 31, 



and M, as usual, i s  the first-order system 

then the four notions, n u l l  control labi l i ty ,  nu l l  cont ro l lab i l i ty  
a t  t i m e  to , complete control labi l i ty ,  complete control labi l i ty  
a t  time to are equivalent for5the system L and equivalent t o  the 
corresponding notions fo r  the system M. The proof i s  a consequence 
of the f a c t  that the solution operators of R q ,  (2,241 - and also 
of equation (2.25.) - are  analytic when A i s  bounded, 
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