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INVESTIGATION OF METHODS FOR PREDICTING
THE AERODYNAMIC CHARACTERISTICS
OF TWO~LOBED PARAWINGS

By M. R. Mendenhall, S. B. Spangler,
and J. N. Nielsen
Nielsen Engineering & Research, Inc.

SUMMARY

The present study seeks to develop accurate methods for predicting
the longitudinal aerodynamic characteristics of two-lobed conical para-
wings with leading-edge booms for high aspect ratios and high slackness.
For prediction purposes, the assumption was made that the booms and can-
opy can be considered separately. The canopy was then considered to have
a known shape for purposes of determining its aerodynamic performance.
Various theoretical methods were studied for determining canopy aerody-
namic characteristics, including profile drag. Force increments due to

the leading-edge booms were studied both analytically and empirically.

Comparisons were made between theory and data for rigid wings of
known shape with no leading-edge booms to check the canopy prediction
methods. For approximately triangular wings of aspect ratios 3 and 4,
good agreement was obtained for 1lift and moment within the range where
no separation exists. The predicted drag was less than measured values,
with the difference being small at moderate 1lift coefficients and increas-

ing with increasing l1ift coefficient.

Comparisons were made for flexible wings of triangular and NASA plan-
forms with leading-edge booms for overall evaluation of the methods. The
canopy shape assumption was checked by comparison with earlier slender-
body results, and the aerodynamic performance was found to be insensitive
to small shape differences. Analytical estimates of the boom force in-
crements, based on section data, were too small. Comparisons of data for
rigid wings (with no booms) and flexible wings indicated the boom force
and moment increments to depend on boom size and taper, and on method of
canopy attachment to the booms. 8Systematic force and moment increments
were found empirically in some cases. The major sources of differences
between the primary prediction method and either data or more accurate

theoretical methods are viscous effects and chordwise variations of induced

downwash and loading.



INTRODUCTION

A large amount of research has been conducted on parawings with rigid
leading edges, primarily at the Langley Research Center, NASA. Most of
the work has been experimental in nature and has considered wings of mod-
erate to high aspect ratio with relatively high slackness. The Office of
Naval Research has sponsored a theoretical investigation of parawing aero-
dynamics (refs. 1 through 4) for parawings of low aspect ratio, small
slackness, and no leading-edge booms. Polhamus and Naeseth (ref. 5) have
predicted the lift and moment of conical and cylindrical parawings with
high slackness using lifting-surface theory in connection with an analyt-
ical assumption for the canopy shape. Nielsen and Burnell (ref. 6) have
considered such effects as profile drag, leading-edge booms, keel inci-
dence, and bolt ropes, but these were treated primarily in an empirical

fashion.

The purpose of the present investigation is to develop rational,
analytical methods for predicting the longitudinal aerodynamic character-
istics of two-lobed parawings of high slackness and high aspect ratio
with leading-edge booms. The methods are developed for incompressible
flow. The general approach is to prescribe an analytical shape for the
canopy rather than attempt to solve simultaneously for shape and loading,
as was done in reference 2. The experimental observations of the NASA
work (refs. 5 and 7, for instance) form the basis for thé shape selection.
For the known shape, 1lift, induced and profile drags, pitching moment,
center of pressure, and luffing angle are predicted. The leading-edge
booms and basic canopy are considered separately, and their forces and
moments are added to obtain overall values for the parawing. Experimental
results on rigid conical parawings with no léading-edge booms are used to
verify the basic canopy prediction methods. The final methods are com-
pared and evaluated using flexible wing data obtained principally at the
Langley Research Center.

SYMBOLS
A aspect ratio, bZ/s
b wing span
c wing chord



4 section drag coefficient, based on c¢
cg section profile-drag coefficient, based on ¢
p
Sy section lift coefficient, based on c
ck equivalent wing 1ift coefficient, eguation (7)
<y section lift-curve slope, per radian
a
Sn section moment coefficient for zZero section lift, based on ¢
o
Cr root chord
Acd incremental section drag coefficient due to camber, based on ¢
Ac, incremental section lift coefficient due to camber, based on ¢
CD wing drag coefficient, based on S
Ch wing induced-drag coefficient, based on S
i
S wing induced-drag coefficient at zero wing lift, based on S
1o
Ch wing profile-drag coefficient, based on S
p
CL wing lift coefficient, based on S
CL wing lift-curve slope, dCL/da, per radian
a
Ch wing moment coefficient taken about designated center of
moments, based on S and Er
Cn wing moment coefficient at zero wing 1ift, based on S and Er
o}
Cm wing moment-curve slope, dcm/da, per radian
a
d diameter of leading-edge booms
D' profile drag parameter, (ccdp/Zb)
£ maximum ordinate of the mean line for circular arc camber,
figure 4 (a)
Gv loading parameter for 1lift, (ccl/2b)v
Gy value of Gv for no local leading-edge suction
v
2 trailing-edge length of inflated parawing in planform, AC' 1in
figure A-4
4! canopy trailing-edge length of inflated triangular parawing,
figure 8




2 distance from wing apex to a point on the trailing edge in
uninflated state (Appendix A)

4 trailing-edge length of uninflated parawing, AC in figure A-2
4. reference length
Zo -2 :
7 slackness ratio, equation (A-21)
4' - 2s . . )
5s triangular wing slackness ratio
L distance from wing apex to a point assumed on trailing edge
of wing in the inflated state, equation (a-18)
m number of control points across the span in the Weissinger and
Multhopp methods
M& pitching-moment parameter for zero section lift,
(Cm ) cva
o
- v
2b
n number of control points across chord in Multhopp method
a free-stream dynamic pressure
r radius of base of right circular cone, figure A-3
R slackness ratio, equation (A-21), also used to indicate root
stall in the figures
Re Reynolds number based on chord, pV&c/u
Re4 Reynolds number based on leading-edge diameter, pV&d/u
semispan of triangular wing
wing planform area, inflated
T spanwise fabric tension per unit chord, also.used to indicate
tip stall on the figures
v, free-stream velocity
Xeom distance from wing apex to the center of moments
xcp value of x at the wing center of pressure
X, V2 wing axes, figure 1
Xy Yes2Zy value of x,y,z at trailing edge

X51Yer 20 cone axes, figure A-1

X »Y;,2, rotated cone axes, figure A-1

y¥,z* Y/x’ z/x
a wing geometric angle of attack measured relative to the root
chord



cam

ex

luff

geometric angle of attack for zero wing lift, measured relative
tc the root chord

angle of zero lift of local airfoil section due to camber as
calculated by reference 9

half the angle subtended by the lobe trailing edge, figure 1

polar angle measured from x-axis for uninflated planform,
figure A-2

semiapex angle of inflated planform, 90° - A
revised twist to account for camber, €, - (ag),
angle between chord line at 2z, and the plane of the leading

edge and keel, positive if increasing €, increases local
angle of attack

fractional semispan, z/(b/2)

spanwise location of center of pressure

specific value of 1, n, = cos (E#%FT

semiapex angle of one wing panel in inflated state, figure 1
semiapex angle of one wing panel in uninflated state, figure 1
leading-edge length; also tension parameter of reference 2,
T/ (4 sq tanZe¢)

sweepback angle of leading edge of inflated wing

sweepback angle of leading edge of uninflated wing

sweepback angle of quarter-chord line of inflated wing
A= Ay

absolute viscosity

integer indicating the spanwise control point in Weissinger
method, 1 < v < m

coordinates parallel and perpendicular to local chord, respec-
tively, figure 2

free-stream density

angle between X, and X, axes, figure 1

angle between x and x, axes, figure 1; also, transformed
spanwise distance, ¢ = cos—1q

Subscripts

camber
experiment
denotes value of D' at 3j'th spanwise station, equation (5)

denotes condition of canopy luffing



M Multhopp

n denotes value at n'th chordwise station, equations (A-25)
- and (A-26), 1 { n 13

th theory

W Weissinger _

v denotes specific Weissinger control point along span

BASIC APPROACH TO THE PREDICTION METHODS

Prediction of the aerodynamic characteristics of a parawing with
leading-edge booms requires consideration of a number of inviscid and
viscous phenomena. The approach taken here is to predict as many of the
effects as possible on a rational basis. The remaining effects, which
are expected to be a small part of the overall characteristics, are then

treated on an empirical basis.

It is assumed initially that the leading-edge booms and the basic
canopy ‘can be considered separately for purposes of computing parawing
aerodynamic characteristics. This assumption implies that the boom size
be relatively small compared to a characteristic canopy dimension, such
as root chord. The basic canopy aerodynamic characteristics are predicted,
and force and moment increments due to the leading edge are added to

obtain overall parawing performance.

The basic approach of reference 5 to the preaiction of the canopy
1lift and moment was selected for the present study. The assumption is
made, on the basis of experimental observations, that each lobe of the
canopy forms a portion of the surface of a right circular cone, with the
root chord and leading edge lying along the slant heights of the cone.
With this assumption, the coordinates of any point on the canopy and the
camber and geometric twist distributions can be predicted. The canopy
lift, moment, and induced drag are computed using the Weissinger method
(ref. 8). Since this method does not account directly for camber, the
Pankhurst method (ref. 9) is used to compute the section angles of zero
lift, which are added to the geometric twist angles to obtain an effective
twist distribution. In this manner, the twisted, cambered canopy is re-
placed by an equivalent uncambered, twisted wing. A correction to the
Weissinger zero-1lift pitching moment must be made to account properly for
camber. The correction is made using the section zero-1lift pitching
moment from reference 9.



The profile drag of the canopy is computed using a strip-theory
approach and section data for thin plates with circular-arc camber. Sev-~
eral methods for using the section data were investigated. Where these
methods require local 1ift coefficients or local angles of attack, the
values obtained from the Weissinger results are used. The section drag
coefficients are integrated over the span to obtain the wing profile drag.

The force and moment increments due to addition of the leading-~edge
booms are examined from both analytical and empirical points of view.
Proper treatment of leading-edge booms involves consideration of a number
of variables, including Reynolds number, diameter-to-chord ratio, taper
of the leading-edge booms, location of the attachment of the canopy to
the booms, and method of attachment (pocket versus wrap attachment). The
analytical approach makes use of section data for a thin flat plate
attached to the top of a cylindrical leading edge, together with local
flow conditions obtained from the Weissinger program. The empirical
approach consists of examining the differences between data or theory
for rigid wings with no leading edges and data for flexible wings with

booms to deduce the force and moment increments due to the booms.

An investigation was made to determine the limitations on the pre-
diction methods. The limitations are associated with large slackness
ratios, induced camber and chordwise loading, canopy luffing, and flow
separation at high 1ift coefficients. These are discussed in detail in

the appropriate sections of this report.
ANALYSIS

Canopy Shape Theory

It is assumed in the present work, as in reference 5, that the can-
opy of each lobe of the parawing is part of the surface of a right-
circular cone, with the root chord and the leading edge lying along the
slant heights of the cone. The shape of the configuration is specified
in terms of the root chord length, the leading-edge length, and the sweep
angles of the uninflated and inflated parawing, as illustrated in figure 1.
The details of calculating the surface coordinates are given in Appendix A.

The flow directions at a local spanwise station are shown in figure 2.



Basic Canopy Aerodynamic Theory

The method used to obtain the basic canopy aerodynamic performance,
except profile drag, is the Weissinger theory adapted to account for cam-

ber.

Weissinger method.-~ The form of the Weissinger lifting-surface theory

presented in reference 8 was programed and run on an IBM 7094 digital com-
puter. In this method, the wing is considered to be twisted, but uncam-
bered. A lifting line is placed at the quarter chord. Its spanwise 1ift
distribution is computed by satisfying the condition of zero flow through
the wing at the three-quarter chord due to the combined effects of the
free~stream velocity and the velocities induced by the lifting line and
trailing vortex sheet. Camber is taken into account, insofar as 1lift is
concerned, in the manner of reference 5 by adding to the geometric twist
an additional twist given by the local angle of zero lift. The results
of this computation are wing basic loading parameters, such as Ag and
Cmo (which must be corrected for camber), and additional loading param-—
eters, such as CLa’ de/dCL, the spanwise center of pressure, and the

spanwise variation of loading.

For use with a cambered and twisted wing, the Weissinger -method
requires a knowledge of the section angles of zero 1ift at several span-
wise stations. These angles were obtained using the Pankhurst method
(ref. 9) in the fashion used in reference 5. Pankhurst presents a rela-
tion for (ao)V in terms of the camber ordinates at a number of speci-
fied chordwise stations. The chordwise stations corresponding to Spac-
ing (4) of table 1 of reference 9 were used. The camber ordinates were
obtained as described in Appendix A. The section effective twist angle
used in the Weissinger method is then

(€eff)v =€ - (ao)v (1)

The Weissinger method satisfies the zero-flow boundary condition at
several discrete points along the span at the three-quarter chord line.
For most of the results presented herein, 7 points across the span were
used, based on the good agreement with data and with other analytical
methods. Several comparisons were also made between 7- and 15-point solu-~
tions which verified the accuracy of the 7-point calculations for the

wings of interest here.



The Weissinger method uses as input the values of wing chord at the
spanwise stations for which the boundary conditions are satisfied. For
parawings having large twist angles at the tip, the actuwal chord is con-
siderably larger than the planform chord. Use of the actual chord rather
than the planform chord helps account for nonplanar wing effects as shown
by comparisons with data. Consequently, the actual chord distribution was

used for all the results presented here.

Pitching moment due to camber.- The zero-lift moment determined by

the Weissinger method for the equivalent, twisted, uncambered wing does
not include the moment due to camber. The latter was determined by a
strip theory approach. The pitching moment on the section at zero sec-
tion 1lift (a pure couple) was determined and integrated over the span to
get the wing moment due to camber. This moment is additive to the moment
computed from the Weissinger method. Certain effects are ignored in this

approach, and these are discussed in Appendix B.

The pitching moments for zero section lift were computed using the
Pankhurst method (ref. 9) and the camber coordinates determined from the
canopy conical shape fit. The chordwise coordinate spacing and constants
of Spacing (4) of table 4 of reference 9 were used. The integration over

the span is based on the following equation

b2 (Cmo>vcv2 z
(Cmo> 7.5 55 d <b/2> (2)

cam

1

-1

Using the quadrature formula, equation (A-15) of reference 8, equation (2)
becomes
(m=-1)/=
1 '

- _TA ' .
<Cmo) " m T 1 7; M(m+1)/2 + 2 MV sin (l)v (3)

cam
v=1

Multhopp method.- The Weissinger method does not account for varia-

tions in induced downwash along the local chord lines due to the vortex
system. This downwash effect is accounted for by the Multhopp method,
which satisfies the normal flow boundary condition at various stations

along each local chord. A modified Multhopp lifting-surface method was



applied to several wing configurations for which Weissinger results were
available in order to evaluate the effect of induced camber and chordwise
loading neglected in the Weissinger method. Calculations were run on an
IBM 7094 computer with NASA LRC Program No. A0313.%! Generally, 6 chord-
wise stations were used, and the number of spanwise stations were then
selected according to a relation dependent on aspect ratio given in the

instructions on use of the program.

Profile-Drag Calculation

Profile drag generally is not predictable theoretically. The method
of this report uses section data locally along the span in a strip-theory
approach to estimate wing profile drag. The available section data are
described below together with the several methods investigated for esti-

mating wing profile drag from section data.

Section data.- The basic airfoil section chosen to represent the

canopy ‘of a parawing is that of a thin, cambered plate with semicircular
leading edges, since data on rigid parawings using this section are avail-
able. Since section data for such an airfoil are unavailable over a wide
angle of attack range, the section characteristics were approximated as

described in the following paragraphs.

Section 1lift and drag data on a flat plate with a sharp leading edge
are available in reference 11 and are shown in figure 3. In figure 3(a)
the 1ift curve for the thin two-dimensional plate with a sharp leading
edge is compared with those for NACA 0006 and NACA 64-006 sections from
references 12 and 13, respectively. The differences in the nonlinear
1lift range are due to Reynolds number effects on the separated flow.
These differences were neglected, and the smooth lift curve for the flat

plate was adopted.

Some concern is expressed in reference 11 about the reliability of
the drag data, shown in figures 3(b) and (¢), at a ¢ 20° where leading-
edge shape would have an important effect on profile drag. Data at low

angles of attack for a thin plate with semicircular leading and trailing

lThis program is a modified Multhopp lifting-surface program. The modifi-
cations include the extension to higher-order chordwise loading terms
as developed by van Spiegel and Wouters (ref. 10) and refinements in
the numerical procedure by John E. Lamar of the Langley Research Center.

10



edges were taken from reference 14 and are plotted on figures 3(b) and
(c). The smooth curve was faired between the two sets of data to produce
a section drag curve for a wide range of angle of attack.

No section data were found for cambered plates with semicircular
leading and trailing edges but some data were found in reference 15 for
wings using such a section. These data, shown in figure 4, are for a
plate of aspect ratio 5 with semicircular leading and trailing edges,
circular arc camber, and a taper ratio of one. These data were used to
obtain lift and drag coefficient increments due to camber which were then
added to the two-dimensional flat-plate data, as follows. The lift coef-
ficient increment due to camber, Acﬂ, was obtained from figure 4 (a) as
the difference between the lift coefficient of the plate with camber and
that without camber at the specified angle of attack. The drag coeffi-
cient increments due to camber, Acd, were obtained in a similar manner,
using figure 4(b). However, the drag data were corrected to infinite
aspect ratio before the differences were taken. This correction, made by
removing the induced drag, CLE/WA, from each curve in figqgure 4(b), is
very small. Some effect of finite aspect ratio probably still exists in
both Acz and Acd.

The section data used for all profile-drag calculations were obtained
by adding the smoothed camber increments to the flat-plate data of fig-
ure 3. The resulting set of curves is shown in figure 5. Linear inter-

polation was used between the camber values shown in this figure.

In figure 5(a), it is interesting to note that the section 1ift
curves become nonlinear at the same angle of attack for every camber
value. The increments due to camber in the range 0° to 10° angle of
attack in figure 4 (a) are reasonably smooth. When these increments are
added to the flat-plate curve of figure 3(a), all the resulting curves
indicate the characteristic break at 8°. The stall characteristics shown
in figure 4(a) for wings of aspect ratio 5 may occur at angles of attack
higher than 8° as a result of the relieving effect of finite aspect ratio.

It is also of interest to note from the cambered plate data that
neither the theoretical lift nor the theoretical moment due to camber is
developed experimentally. The table below indicates, for two values of
camber, the theoretical values of the section-lift coefficient at o = 0
and the section moment at zero lift as determined from Pankhurst (ref. 9),
together with the experimental values of the quantities from reference 15.

11



c c
Camber £ _ m
Fraction a=o -2
Theo. Exp. Theo. Exp.
0.05 0.63 0.31 -0.16 -0.07
.10 1.26 .60 - .32 - .08

It is apparent that about half of the predicted 1lift is actually developed
and less than half of the moment is developed. Since the finite aspect
ratio influence is not sufficient to account for these differences, vis-

cous effects are probably the main cause.

The angle of attack range -8° < a ¢ 8° is defined as the "linear
range" of the section data and will be referred to without gquotation
marks hereafter. The camber and twist distributions of parawings cause
large variations in local section-lift coefficient across the span of the
parawing so that some sections of the wing may operate in the linear
range of the section data while others may not. Questions arise in how
to apply section data to spanwise sections operating in the nonlinear
range. Several methods of applying section data to the calculation of
wing profile drag were investigated to shed light on this question and
on the question of the importance of induced camber effects on drag.

cy-method.~ At the local 1lift coefficient, Chyo given by the
Weissinger method, the corresponding profile-drag coefficient, Cdp,, s was
found in the section data of figure 5(c¢) for the actual cambered section.
These values were then integrated over the span according to the follow-

ing equation

()
Cp = l)si l;b" d (b%) (4)

b
-1

to obtain the wing profile drag coefficient.® The integration was per-

formed using the trapezoidal rule with 22 points across the semispan,

2This approach implies the use of the free-stream direction as the refer-
ence direction for section 1ift and drag. An alternate approach is to
determine a local flow direction from ¢y and cy,, to obtain the lift
coefficient normal to the local direction from ¢y and cdj, and to
use this 1ift coefficient with section data to determine profile drag.
While the alternate approach may have merit, it was not used because of
its complexity compared to that of the present approach.

12



21

DJ'._l_l + D'.>
CDp = 2A / ‘_——J'z (le+1 - TIJ> (5)
J=1

The points were chosen as follows to give a good sampling of the root or
tip regions in cases of root stall or tip stall.

n = 0(0.02)0.2; 0.2(0.1)0.8; 0.85; 0.9; 0.95; 0.99; 1.0

Computation of local values of Cdp, requires simultaneous values of
local lift coefficient and local section camber. The local values of
c, were obtained from the Weissinger Fourier series representation of
cye
ing the intermediate values of camber. Instead a 5-parameter polynomial

A similar Fourier series was not found accurate enough for estimat-

was used which matched the known cambers at the Weissinger stations and

vielded zero camber at the wing tip and root as well.

An interesting point arises in applying the foregoing analysis at
high section-1ift coefficients. With reference to figure 5(c), near a
1ift coefficient of 0.85, a reversal occurs in the drag curve for zero
camber and the drag coefficient becomes a multivalued function of 1lift
coefficient. However, the local lift coefficient predicted by the
Weissinger method increases monotonically with «o. Therefore, the drag
was assumed to increase discontinuously as shown by the dashed line.
When the section-lift coefficients at the spanwise points of the drag
integration are equal to those for which discontinuities occur in the
section drag curves, discontinuities are introduced into the wing drag
curve. Since many spanwise stations are used, these discontinuities have
a negligibly small effect, and a continuous wing drag curve results. The
method also has the property that it estimates where wing stall first

occurs and how it spreads as angle of attack increases.

No adjustments were made to the two-dimensional profile-drag coef-
ficients to account for leading-edge sweep effects in either the Cy= Or
a-methods. It might be possible to develop an adjustment means using
the work of Polhamus reported in reference 16. He showed that for a
given wing-1ift coefficient, the leading-edge suction force increases as

the aspect ratio decreases for a given planform type. For wings of

13



triangular or NASA planform,3 a decrease in aspect ratio corresponds to

an increase in leading-edge sweep angle. Thus, for such wings, the suc-
tion force would increase with increasing sweep angle. If the assumptions
are made that all leading-edge suction is lost due to leading-edge flow
separation and that the lost suction force appears as profile drag, then

a theoretical variation of this profile drag with leading-edge sweep angle
can be obtained. This reasoning would indicate that the profile drag
should increase with increasing sweep angle. No attempt was made to
develop such an approach as an adjustment to the strip methods described

herein.

a-method.- The local section profile drag is found as a function of
local section angle of attack in this method. The local streamwise sec-
tion angle of attack is determined in accordance with the Weissinger
method as follows
Ny
% = (%), * 5, ©

€y
Q

with Cﬂa = 2T.

The local angle of zero 1lift, (ao)v, appears in equation (6) because,
in the use of the Weissinger method, camber is converted to an equivalent
twist. A 5-parameter polynomial was used to estimate the intermediate
values of a,- The local profile-drag coefficient was found from fig-
ure 5(b) for the actual cambered section at angle of attack a,, and the
total wing profile-drag coefficient was obtained from equation (5) as
before. It is noted that the drag coefficient is a single-valued func-
tion of a so that no discontinuities arise in this case as in the case
of the cz—method. Neither the cz—method nor the a-method include any
effect of chordwise loading or induced camber.

Polhamus method.- In reference 16, Polhamus was able to correlate

the profile drag due to lift for rectangular wings (having leading-edge
separation) when induced camber effects are large. The application of
the method to uncambered and untwisted wings with swept leading edges is
possible with the assumption of elliptical span loading. The basic

method yields an equivalent airfoil 1ift coefficient, cb, for which the

A NASA planform wing is defined as a wing having a root chord and lead-
ing edges of equal length.

14



section profile drag is equal to that for the wing acting at a lower lift

coefficient, C The following result for ck is taken from reference 16,

1/2
o= (3-3) g

a

1,°

Using Weissinger results for cLa’ ck is computed from equation (7) and
CDp is read from the uncambered section data curve in figure 5(c). The

total wing drag coefficient is then

Cp=Cp +Cp (8)

where Cp; is the induced-drag coefficient from Weissinger.

Since the effect of induced camber on profile drag becomes more
important as aspect ratio decreases, it is desirable to know for a given
planform what the lower limit ot aspect ratio is at which induced-camber
drag achieves a certain value. The induced-camber effects were evaluated
by the calculated differences in wing drag coefficient estimated by the

a—- Or cﬁ—methods and the Polhamus method.

Effect of Leading-Edge Booms on Wing Characteristics

Leading-edge boom effects on wing forces and moments were investi-
gated from both the empirical and theoretical standpoints. The empirical
approach consists of evaluating differences in force and moment data
between flexible wings with leading-edge booms, and conical rigid wings
having the same aspect ratio, planform, and slackness but no leading-edge
booms. The differences are interpreted as leading-edge effects, although
there may possibly be some differences due to canopy shape. The results
are discussed in a subsequent section. The theoretical approach consists
of using two-dimensional data on plates with cylindrical leading edges
in an attempt to gain an understanding of the three-dimensional boom
probkem. The methods are discussed here, and the results are discussed

in a subsequent section.

The only systematic section data found for plates with cylindrical
leading-edge booms are unpublished Langley Research Center data (here-
after called splitter-plate data). The data used are for a flat plate
tangent to the top of -the cylinder, as shown below.
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Data were obtained for diameter-to-chord ratios of 0.083, 0.222, 0.333,
and 0.444. The data exhibit a critical Reynolds number, much as a cylin-
der does, the value of which is about that of a cylinder alone (4x10°,
based on boom diameter). Lift and drag data for Reynolds numbers of
about 1.4x10° and 4.9%x10° were taken to be representative of subcritical
and supercritical Reynolds numbers, respectively, and are shown in fig-
ures 6 and 7, together with the flat-plate data of figure 3. The lift
data at small d/c (figs. 6(a) and 7(a)) are very similar for both
Reynolds numbers and indicate a loss in lift coefficient at a given angle
of attack due to the addition of the booms. There is a much greater
effect of d/c on lift for subcritical than for supercritical Reynolds
number. The drag data (figs. 6(b) and 7(b)) are quite different for the
two Reynolds numbers. Generally, the minimum drag coefficients are less
for the supercritical case. In particular, at high angles of attack,

the supercritical drag coefficient is less than that of the flat plate,
whereas for the subcritical Reynolds number, the drag coefficient is
higher than that of the flat plate. It appears that the leading-edge
booms act to delay leading-edge separation for supercritical Reynolds
numbers but not for subcritical Reynolds numbers.

These data were used as follows. The model flexible wing data used
for comparison purposes correspond to the subcritical Reynolds number
case. Thus, the data of figure 6 were used in the analytical leading-
edge boom investigation. Lift and drag increments due to the leading
edge were formed by taking the difference between the flat-plate values
(d/c = 0) and the values at the various d/c ratios. The results are
sets of curves of ACE and Acd versus a and d/c. The leading-edge
booms were considered to have a local effect on the flow near the (swept)

leading edge. Consequently, sweep theory was used in applying the section
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data to a parawing calculation.®* 1In order to use the section data, it
was necessary to define a chord and an angle of attack. Using sweep
theory, the local chord may terminate directly at the trailing edge or
may intersect the keel before terminating at the trailing edge of the
opposite wing panel. In this latter case the chord line was taken as the
distance from the leading edge to the keel. The angle of attack in a
plane normal to the leading edge may be considered as the angle between
the local flow direction and either the chord or the tangent to the lead-
ing edge of the analytical canopy shape, as shown below.

tangent

(\“) chord o

local flow direction

Both cases were considered in the calculations. The local flow direction
was obtained from the Weissinger section-lift coefficient, a lift-curve
slope of 27, the section twist angle and angle of zero 1lift, and the
leading-edge sweep angle. It should be noted that this approach does

not permit any effect of chordwise downwash variation (induced camber)

to be included. The resulting incremental 1ift and drag coefficients
were resolved into a free~stream axis system and integrated over the span
to get wing coefficients, which were then added to the basic canopy coef-
ficients.

Iterative Nonlinear Lift Prediction Method

An aerodynamic prediction method was developed to attempt to account

for nonlinearities in 1lift. The approach used is a combination of certain

“The use of sweep theory for subcritical flow over a swept cylindrical
leading edge is suggested by the results of reference 17 for a yawed
infinite cylinder, which tend to indicate that the "normal" drag coef-
ficient based on velocity and force normal to the cylinder is constant
with sweep angle.
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features of the Weissinger method and strip theory. The resulting method
is applicable to any wing for which section data are available. The
results of the method agree with those of Weissinger-Pankhurst in the
linear range of wing lift. However, it became apparent that additional
work would be required to produce reasonable agreement with data in the
nonlinear lift range, and this work could not be carried out within the
scope of the investigation. The method is discussed herein to indicate

the approach. Results are presented in a subsequent section.

For an initially assumed angle of attack distribution along the
semispan (obtained from a Weissinger-Pankhurst solution), section data
(for instance, figs. 5(a) and (b)) were used to determine the lift nor-
mal to the local angle of attack. This 1ift was resolved into 1lift rela-
tive to the free-stream direction, and the span loading was determined.
The Weissinger theory was then used to determine the downwash at the
three-quarter chord due to the known span loading which, together with
the local section characteristics, allowed the local flow angle to be
determined. This new angle of attack distribution was used and the pro-
cess repeated until convergence was obtained. The profile drag was then

obtained by the cg—method, as described in the previous section.

Luffing Boundary

Luffing occurs on a flexible parawing when the wing angle of attack
is reduced to the point where, at some spanwise station, the leading-edge
suction goes to zero, and the section 1lift is produced by camber alone.
Zero suction corresponds to the condition where the stagnation point
moves from the lower surface to the leading edge. Since the canopy aero-
dynamic analysis yields information on section lift along the span, an
analysis was undertaken to predict the luffing angle from the Weissinger
results. Three approaches for estimating the luffing boundary were in-

vestigated.

In the first approach, the slender-wing luffing criterion developed
in reference 2 for triangular two-lobed parawings was used. This analy-
sis, which neglects leading-edge booms, consists of determining a value
of a canopy tension parameter for no leading-edge suction, with which is

associated an unique value of the slackness parameter. Thus,
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L' - 25 _ sin OLluff)
5 — = 0.6744 <;EEE—55~— (9)

From equation (9), the luffing angle, A uEE can be determined for a
parawing of arbitrary planform, provided the slackness ratio is calcu-
lated in a cross-flow plane. The theory implies that all stations along
the leading edge luff simultaneously for a conical lobe whether the
trailing edge is swept forward or not.

In the second approach, the Weissinger results were examined to
find the wing angle of attack for which zero leading-edge suction occurs
anywhere along the span. Typically, as a is reduced, the lift coeffi-
cient at the tip station (n = 0.924) goes negative first. The angle of
zero 1lift of the tip station was computed using the Pankhurst method, as
previously described. The section lift coefficient corresponding to the
condition for which all section lift is due to camber was computed as
the product of the section angle of zero lift and the section lift-curve
slope, 27. The results for the local section lift coefficient calculated
by the Weissinger method were then examined to find the wing angle for

which this tip section 1ift coefficient occurs.

The third approach is based on the result that the Weissinger method
gives good agreement on gross wing aerodynamic characteristics for con-
ditions where the local section lift coefficients are known not to be
accurately predicted. The method consists essentially of computing an
"average" wing-lift coefficient for zero leading-edge suction. The local
section lift coefficients for zero leading-edge suction were computed,
as in the second approach above, for the stations along the span. These
were integrated over the span using the quadrature formula, equation (A-15)
of reference 9, to get an "average" wing lift coefficient for zero

leading-edge suction, (CL)luff' Thus,

(m-1)/2
+ 2 (Go)v sin ®,, (10)

v=1

_Ta
(CL)luff m+ 1 (GO)(m+1)/2

The wing luffing angle was then computed as the sum of the wing angle of
zero lift and an angle given by (CL)luff/Zv.
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RESULTS

Accuracy of Lifting-Surface Methods

The accuracy of the results calculated by the Weissinger method
were evaluated in two ways. The 7-point Weissinger results were com-
pared with 15-point Weissinger results and with Multhopp results for a
range of wing configurations. For the comparisons with the Weissinger
method using different numbers of control points, 7-point solutions were
calculated for several wings for which 15-point solutions were available
from reference 18. The wings selected for the comparison were Nos. 421,
521, 621, 531, and 631 of reference 18, all of which have zero taper

ratio. Their characteristics are shown in the following tabile:

Wing No. 421 521 621 531 631

a 3 3 3 6 6

o o o o 0
A1/4 30 45 60 45 60

The solutions were compared for no camber and twist, and for no camber
and a linear twist distribution having a maximum twist at the tip of one
radian. The values compared were lift-curve slope, induced drag, and
spanwise center of pressure. With the exception of the results for Wing
No. 631, all values agreed to within 1 percent. For Wing No. 631, which
represents an extreme case from a parawing standpoint, the 7-point 1lift-
curve slope was low by 1.4 percent, the induced-drag coefficient was low
by 6 percent, and the spanwise center of pressure was high by 1 percent.
Span loadings were also compared. For all wings, the planar wing span
loading differences were within the accuracy with which the curves of
reference 18 can be read. The twisted-wing span loadings showed compar-
able accuracy outboard. At the root, the span loadings from the 7-point
solutions ranged from about 2 to 10 percent lower than those from the
15-point solution for the highly-swept arrow wings which are lightly
loaded at the root. On the basis of these results, the use of 7 span-
wise control points in the Weissinger method is considered satisfactory

for the parawing calculations of this study.

The differences between the calculated aerodynamic parameters from
the Weissinger and Multhopp theories will be termed "chordwise effects"
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for reasons which will now be explained. The Weissinger method represents
the chordwise loading by one bound vortex and satisfies the normal flow
boundary condition at one point per chord, the three-quarter chord point.
The Multhopp method can represent the chordwise loading by several Fourier
components of bound vorticity and at the same time satisfy the boundary
condition at several chordwise positions. As such, it accounts simultan-
eously for chordwise variations in induced downwash and loading. The
chordwise variation of induced downwash produces a curved streamline flow
over the chord length which, on the basis of linear theory, is equivalent
to a cambering of the airfoil in a uniform flow. The term "induced cam-
ber" is used to describe this effect, which is important at low aspect
ratios where the wing chord is not small compared to the span of the
trailing vortices. The term "chordwise loading" is used to denote the
loading due to geometric camber. Since this loading is concentrated near
the half chord rather than the quarter chord, its effect is important

for conical parawings of high slackness, where a substantial fraction of

the total 1lift is due to camber, regardless of aspect ratio.

Seven-point Weissinger results were compared with Multhopp results
for a number of wings in order to verify the accuracy of the Weissinger-
Pankhurst calculation method and to evaluate chordwise effects neglected
in the Weissinger method. The results and discussion are presented in
Appendix B. It was found that the Weissinger calculations agreed very
closely with the Multhopp calculations made using 7 spanwise stations and
1 chordwise control point per station, a result which verifies the cor-
rectness of the Weissinger method. For a wide range of aspect ratios,
slackness, and planform shapes, the Weissinger results for lift-curve
slope, induced drag, and center of pressure agreed very well with Multhopp
results obtained using 6 chordwise and 21 spanwise control points. For
C

the quantities o and Cma’ significant differences between

3 M ?
Weissinger and Muithop; results were obtained in some cases because of
chordwise effects. Induced camber and chordwise loading effects are
both significant for a,- At low aspect ratios, where induced camber
effects are important, the Weissinger method overpredicts ag by as
much as 4° for an aspect ratio of 1 and 2B = 149°. For high slackness,
where chordwise loading effects are important, the Weissinger method
underpredicts age. The chordwise loading effect becomes significant for

28 > 120°. For Cmo’ systematic differences also exist. The differences
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can be as large as 0.0l to 0.02 for wings of this study. For Cma’ the
differences for a given planform are greatest at low aspect ratio. For
the wings of this study with aspect ratios of 2 to 3, the differences in
Cma are as large as 0.02.

On the basis of these comparisons, it was concluded that the 7-point
Weissinger method can be used for parawings with aspect ratio greater
than 2, which is the range of interest, to predict CLa’ CDi’ and center
of pressure with good accuracy. The values of Qg s Cmo’ and Cma are
less well predicted. Nevertheless, the Weissinger-Pankhurst values are
used in the prediction method and the comparisons with data of this

report for reasons which are discussed in a subsequent section.

Canopy Shape Studies

Two methods have been used to specify canopy shape in past work:
the slender-body theory of reference 2 which accounts for canopy flexi-
bility, and the method of reference 5 based on assuming the lobes of the
canopy to lie on right-circular cones. The sensitivity of the calculated
parawing aerodynamic characteristics to canopy shape can be assessed by
applying the Weissinger method to shapes calculated by both methods.
Since the slender-body theory of reference 2 is applicable only to tri-
angular parawings, a triangular wing of aspect ratio 4 was used for the
comparisons. The canopy shape computed by the right-circular cone tech-
nigque of Appendix A assumes that the trailing-edge is straight in the
uninflated state, so that a straight trailing edge is not obtained in
the inflated state. It is nevertheless easy to construct an inflated
wing with a triangular planform using Appendix A since all lateral cross

sections are similar in the right-circular cone techniques.

Slender-body trailing-edge shapes were computed for the aspect ratio
4 triangular wing for two values of tension parameter; one value at the
theoretical luffing boundary (A = 0.21), and the second at a high lift
condition (A = 1.0). The trailing edge from the right-circular-cone
method was calculated for the same slackness ratio. These trailing-edge
shapes are shown in figure 8. Since the largest differences in shape
between the cone method and slender-body theory occur when A = 1.0, the
aerodynamic characteristics of these two wings were compared on the basis
of the Weissinger method. The calculated results indicated that the d4dif-

ference between the two shapes has very little effect on the aerodynamic
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characteristics. The predicted angles of zero lift for the canopies are
different by O.2°.or approximately 1 percent. The predicted moment at
zero wing lift for both canopies agree within 10 percent. Since the plan-
forms are identical, lift-curve slope and moment-curve slope are the

same for both wings.

It is possible to show the effect of the shape assumption on induced
drag in a simple way. On the basis of the results of reference 2, the
induced drag of two-lobed triangular parawings can be correlated by the

dimensionless parameters

C
Di CL

; and
tan%(L.;.ﬁ) 7' < os
S ————
2s

tan?e

for any aspect ratio or slackness ratio. The theoretical curve from
slendex-body theory is shown in figure 9. The induced drags calculated
by the Weissinger theory for several triangular wings whcse shape is
given by the right-circular-cone method are also shown in figure 9.
These results agree very well with the slender-body curve; therefore, it
was concluded that the induced drag from the Weissinger method for the
triangular wings with shapes obtained by the cone method is virtually
the same as the induced drag from slender-body theory for wings of the
same aspect ratio and slackness ratio. For this correlation the slack-

ness parameter was evaluated in a plane normal to the root chord.

Based on systematic calculations from the Weissinger method, a cor-
relation similar to that for triangular wings in figure 9 is shown in
figure 10 for NASA planforms. The results show that for a fixed aspect
ratio, all slackness ratios fall on a single curve. The slender-body
theory result for triangular planforms is shown on the same figure for
comparison. Since the NASA planform approaches a triangular planform as
aspect ratio decreases, the correlation curves for NASA planforms with

low aspect ratio approach the slender-body theory.

Comparison Between Experiment and Theory
for Rigid wings

Systematic data available.- Systematic data are available for a

series of rigid wings with 50° swept leading edges and canopy surfaces
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formed from right-circular cones.® These data consist of lift, drag, and
pitching moment over a large angle of attack range as well as photographs
of tuft surveys. Since the wing shapes are known exactly and since there
are no leading-edge booms, these data were taken to represent the aero-
dynamic characteristics of the basic canopy. The geometric character-

istics of the wings are presented in table I.

Lift.~ The lift data for the rigid wings are compared with the
Weissinger theory in figures 11, 12, and 13. The theoretical results
for the angle of zero lift and the lift-curve slope are in good agree-
ment with the data in every case. The linear range for the wing is shown
on all of the figures. With reference to figure 5(a) the wing linear
range is exceeded when at any spanwise station the local angle of attack

calculated from egquation (6) exceeds iﬁo.

Agreement with experiment is good both inside and outside the linear
range and even on wings without a linear range; for example, Wings No. 1
and No. 2 as shown in figures 11l(a) and (b). The good agreement of pre-
dicted gross wing-1lift coefficient is surprising in view of the fact that
the Weissinger theory often predicts local lift coefficients greater than

2.0 in the range of good agreement.

The iterative nonlinear lift prediction method using the section
data of figure 5(a) was applied to the rigid wings. The results for the
aspect ratio 3 and 4 wings are shown in figures 14 and 15. For the flat
wings (figs. 14(b) and 15(b)), the predicted and measured lift values
agree very well, For the cambered and twisted wings, the lift-curve
slope is predicted very well, but the angle of zero 1lift is high by
about 2°. The agreement outside the linear range is as good as that
within the linear range. However, the data do not show sufficient non-
linear behavior to serve as a good check on the method. The trend, how-
ever, is indicated by the upper end of the curve of figure 14. The pre-
dicted curve tends to break rather sharply when one section stalls. This
break is due to the small number of semispan stations (4) used in the

method, which results in a large influence of stall at one station on

SThese data are unpublished results obtained from the Langley Research
Center, NASA. The rigid wings have the same planforms and slackness
ratios as the flexible wings of reference 19. Reference is made fre-
quently to these data in the following text and the figures. Such
reference will be denoted by the term "rigid wing data."”
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wing lift. No attempt was made to increase the number of span stations
in the method, which was dropped in favor of the Weissinger—-Pankhurst
method.

It was noted in connection with the discussion of the section data
of figure 5(a) that not all the lift due to camber is developed experi-
‘mentally. Since the lift results of the iterative method are low, as
noted above, the cambered section data of figure 5(a) were shifted upward
until their o, values matched those predicted by Pankhurst, and the
shifted section data were used in the iterative method. In this case,
the 1ift results for the cambered and twisted wings of figures 14 (a) and
15(a) agreed exactly with Weissinger results for the linear range, as
would be expected. The agreement serves as a check on the iterative
method.

Drag.- The a- and cg—methods for profile-drag prediction were
applied to all of the rigid wings. The results are shown in figures 11,
12, and 13. The total drag is obtained as the sum of the profile drag
and the induced drag computed using the Weissinger method. For the total
drag obtained using the og-method, the agreement is poor for the highly
cambered and twisted wings having no linear range of lift coefficient
(figs. 11(a) and (b)). For the remaining rigid wings, the o-method
slightly underpredicts profile drag at the lower end of the linear range,
where maximum lift-drag ratio occurs, and considerably underpredicts the

profile drag at higher 1ift coefficients.

The photographs of the tuft studies in the rigid wing data give
some indication of a reason for the discrepancy between theory and data
at high 1lift coefficients. The photographs indicate extensive separation
on the upper surface of the wings at high lift coefficients. If a pre-
diction is being made in this region, the angle of attack determined
from equation (6) will be low because the lift-curve slope (27) is too
high for separated flow over a section. Thus, the predicted value of
section profile-drag coefficient will be low. For this reason, the a-
method would be expected to underpredict wing drag at high 1lift coeffi-

cients.

With the cg—method, it was possible to predict stall. At the upper
end of the theoretical drag curve is the symbol R to indicate root
stall, the symbol T to indicate tip stall, or both symbols to indicate
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simultaneous root and tip stall. The stall in this connection indicates
that the local c, as obtained from the Weissinger method lies between
the end of the linear range and the maximum lift coefficient. It was not
possible to apply the cz—method for the wing with highest slackness
(fig. 11(a)) because at any angle of attack some local 1lift coefficient

exceeded the maximum (or minimum) 1lift coefficient from the section data.

In the linear range the cﬂ—method yvields about the same drag as
the a-method, but outside the linear range it yields a higher drag.
While this trend is in the right direction, the cz-method still under-
predicts the measured drag in the nonlinear range. The accuracy of pre-
diction increases as the aspect ratio and slackness ratio decrease. It
is noted that tip stall is also associated with low aspect ratios and
low slackness. Tip stall should cause less separation drag than root
stall, since tip chords are small and the area subject to spanwise flow
is less. Thus, the cE-method should be more accurate with tip stall
than root stall.

The cz-method is based on local 1lift coefficients calculated from
a linear lifting-surface theory and profile-drag coefficients from non-
linear section data. It thus does not account for any nonlinear effects
on section-lift coefficient. Even though the Weissinger method predicts
gross wing 1lift quite accurately under conditions of extensive flow
separation, the local predicted lift coefficients under such conditions
are sometimes much greater than the maximum 1ift coefficient of the air-
foil section. Accordingly, it is probable that the section-lift coef-
ficients are not accurately predicted by the Weissinger method near the
stall. The nonlinear iterative lift prediction method was an attempt to
account for nonlinear section-lift effects on the wing span loading in
order to improve drag prediction. If further efforts result in a satis-
factory nonlinear method, the prediction of drag by the cﬂ—method

should be improved.

The profile drag was computed by the Polhamus method (ref. 16) for
the flat rigid wings of figures 11, 12, and 13. Combination with the
Weissinger results for induced drag gives the predicted total drag, which
is compared with experimental results in figure 16. The agreement is
very good. The Polhamus method and the cz—method give drag results

which are nearly identical for the linear range of lift coefficients.

26



T B

In order to assess the effects of induced camber on drag, the
Polhamus method was compared with both «a- and cg-methods for flat NASA
planform wings with varying aspect ratio. These results are shown in
figure 17. At aspect ratios less than 2.0, the Polhamus method predicts
higher profile-drag coefficients than do either the cy= or a-methods.
This difference is attributed to induced camber. At aspect ratios of 2
or greater, all methods are in good agreement in the linear range. 1In
the nonlinear range the cz-method predicts somewhat more drag than the
Polhamus method. These comparisons with the Polhamus method are intended
to illustrate the differences between a gross wing prediction method
which includes induced camber and a strip-theory method which does not
include induced camber. Improved accuracy of the Polhamus method might
be obtained by adapting the method to account for variations due to cam~

ber across the span.

An estimate was made of the effect of Reynolds number on the profile-
drag predictions. The cambered section data of reference 13 cover a
Reynolds number range from 10* to 6x10°, based on chord. Thus, the skin-
friction portion of the section drag is primarily that for a laminar
boundary layer. The Reynolds numbers for the model parawings used for
comparison herein are of the order of 10°, based on root chord. An esti-
mate of the skin-friction drag was made for a rigid wing of aspect ratio 3.
Flat-plate skin-friction laws for laminar and turbulent boundary layers
were used with an assumed transition Reynolds number of 5x10°. Reynolds
number variations across the span were taken into account. The resulting
skin-friction drag coefficient was approximately 30 percent of the mini-
mum profile-drag coefficients or about 10 percent of the total drag at a
1ift coefficient of 0.4. Based on this result no corrections were made
to the section drag data to account for variation of skin friction with

Reynolds number.

Pitching moment.- The moment-curve slope, de/dCL, and the moment

at zero wing lift of the equivalent uncambered and twisted wing were com-
puted by the Weissinger method. The moment due to camber was computed
from equation (3) and added to the above moment at zero lift to give the
wing Cmg+ The results for the rigid wings are compared with experimen-
tal data in figures 11, 12, and 13.

Good agreement between theory and experiment is obtained on moment-
curve slope for all the flat wings. These wings have cmo values of
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zero. The agreement for the aspect ratio 3 and 4 cambered and twisted
wings is also good for both moment-curve slope and Cp,, although the
predicted Cm, value for the aspect ratio 4 wing is somewhat high. The
agreement on dcm/da and Cmo for the aspect ratio 5.45 cambered and
twisted wings is poor except at low slackness ratios. It is probable
that upper surface separation on the high aspect ratio wings is responsi-

ble in part for the disagreement.

At least four effects occur which are not reflected in the pitching-
moment comparisons of figures 11, 12, and 13. Two are theoretical defi-
ciencies of the Weissinger-Pankhurst method. First, incorporation of
chordwise effects neglected by the Weissinger method tends to raise the
predicted Cmg and increase the magnitude of Cmy»> @S shown in Appendix B.
Second, incorporation of nonplanar effects in satisfying the wing boundary
condition would probably change the moment predictions, although the
direction of the changes is difficult to predict. The other two effects
are viscous. The first is the aforementioned inability of highly-cambered
sections to develop their predicted 1ift and moment. Incorporation of
this effect would reduce the (negative) moment contribution due to camber,
resulting in a higher predicted Cm,, - The second is the moment due to
drag acting above the root chord plane. This effect was estimated to
determine its significance. The moment due to drag was computed for sev-
eral wings having 2B values of 103°, 131°, and 158°. At the lowest
slackness, this moment is less than 10 percent of the moment due to cam-
ber and thus has a very small absolute value and a negligible contribu-
tion to the total moment. At the higher slackness values, the moment due
to drag is an appreciable fraction of the moment due to camber and is
thus large compared to the net Weissinger-Pankhurst Cmo' Since the
moment due to drag is positive, its incorporation would yield a higher
predicted Cmg - Consequently, three of the four effects just noted tend
to increase the predicted moments over those given by the Weissinger-
Pankhurst method.

The predicted moments for the cambered and twisted rigid wings
either agree well with data (figs. 11(d) and 13(a)) or are high (figs.
11(a), 11(b), 11(c), and 12(a)). Thus, the moment effects just noted do
not explain the differences in the data correlations, and it is apparent
that the nonplanar influence or some unrecognized effect is compensating

for the three effects noted to provide satisfactory agreement on moment
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with the Weissinger-Pankhurst values for moderate.aspect ratio. Conse-
quently, these moment effects are not included in the moment predictions
for flexible wings.

Effect of Leading-Edge Booms on
Wing Characteristics

In comparing either the predicted Weissinger-Pankhurst canopy per-
formance or rigid wing data with data for flexible wings, differences
can be attributed not only to leading-edge booms but to other sources as
well. One such source is change in canopy shape. The shape comparisons
for low slackness indicated the predicted aerodynamic performance to be
insensitive to the differences between the theoretical slender-body
shape and the conical shape. However, no canopy shape measurements have
been made at large slackness to check the conical shape assumption.
Other sources of differences might include canopy weight, porosity, and
seam effects; trailing-edge flutter; viscous effects; and nonplanar theo-
retical effects. Il was felt, however, that leading-edge booms are the
major source of differences, and ror the sake of simplicity in the fol-

lowing discussion, the differences will be attributed to boom effects.

Analytical investigation.- The analytical investigation to determine

the applicability of splitter-plate section data to a three-~dimensional
wing with leading-edge booms was carried out for a NASA planform wing
with Ay = 450, A = 50°, and a leading-edge boom of d/cr = 0.012. For
the case using the chord line as the reference direction for determining

local angle of attack, the following results were obtained:

a 16° 229 300
acy 0.001 -0.034 -0.042
ACh .016 .004 .001

The incremental wing coefficients computed using the leading-edge tangent
as the reference direction are similar in magnitude and sign to the above.
The measured values of CL and CD for this wing (ref. 20) and the pre-
dicted values for the canopy using the Weissinger-Pankhurst method (with-

out adjustment) are shown in figure 25(d4).
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The predicted incremental lift coefficients are negative at the
higher a values, since the splitter-plate section data (fig. 6(a))
indicate a negative increment at positive o due to the addition of the
leading edge. A comparison of the above values with the results of fig-
ure 25(d) indicates first that ACL is less than half of the difference
between measured and predicted values (without adjustment) and, second,
that a negative increment is predicted whereas a positive increment is

required to cause better agreement.

The incremental drag coefficients noted above are positive, in
accordance with the splitter-plate data of figure 6(b). Furthermore,
their magnitudes are of the same size as the difference between measured
and predicted drag at moderate a. At high a, however, the predicted
increment decreases, whereas the required increment for good agreement

increases rapidly.

An interesting observation on the applicability of the splitter-
plate drag data can be made on the basis of the comparison between rigid
and flexible parawing data of figures 18 through 20. These data show
that the flexible wing generally has a higher drag than the rigid wing
(with no leading-edge booms) at moderate o but a lower drag at high «a.
It is very likely that the leading-edge booms act to increase the
leading-edge radius and delay leading-edge separation on the flexible
wings. Thus, it is apparent that three-dimensional booms act much like
supercritical two-dimensional booms (fig. 7 (b)), even though their

Reynolds number is subcritical.

On the basis of these comparisons, it is evident that two-dimensional
splitter-plate data are not applicable to the determination of three-
dimensional boom effects in flexible parawings, although the data do pro-

vide some understanding of three-dimensional effects.

Empirical investigation.- The empirical investigation of leading~

edge booms made use of data for both flexible and rigid wings and theory
for the basic canopy. The data were taken from references 19, 20, and
21, and the rigid wing results. The quantities examined were g dCL/da,
Cps and dcm/da.

Results for angle of zero 1lift of NASA wings with constant-diameter
booms are shown in figure 21(a). The curves indicate difference between

canopy theory and wing data for two sets of wings with different d/cr
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ratios and two different canopy attachment methods. These data are con-
sistent in that the Weissinger method is indicated to yield too large

an a, by 2° to 4°. oOn the basis of these results, constant empirical
adjustments of 2° to 4° were made to the theory for all subsequent com-

parisons with the wing-l1ift data of references 20 and 21, respectively.

It should be noted that these adjustments probably contain not only the

leading-edge boom effects but other effects as well.

Results for Aao for tapered leading-edge booms are shown in fig-
ure 21(b). Since data for only one boom size are available, the results
are shown as a function of 28. The results are consistent and show an
increasing Aao with increasing 2B. The aspect ratio effect, shown by

the variation in the values at 2B = 103°, is small.

Results for the ratio of experimental-to-theoretical lift-curve
slope for NASA wings with constant-diameter leading-edge booms of two
d/cr ratios are shown in figure 22(a). There is no systematic boom
effect in the results, and there is no direct manner in which any leading-
edge effect can be extracted, since there are no comparable data for
rigid wings of NASA planform. Since the deviations between experiment
and theory are not systematic and generally lie within a +10 percent
band for 28 < 1800, it does not appear that an adjustment to the
Weissinger calculation for lift-curve slope is necessary for two-lobed

parawings with constant-diameter leading-edge booms.

Results for the ratio of experimental-to-theoretical 1lift-curve
slope for tapered leading-edge booms are shown in figure 22 (b). Similar
ratios for rigid wings are shown in order to assess the effect of the
leading edge. The effect is systematic and serves to reduce the 1lift-
curve slope by an amount which increases slightly with increasing slack-
ness. The aspect ratio effect at a constant value of 28 = 103° can be
obtained by comparing the values for the aspect ratio 3 and 4 wings with
values of (£ - £)/4 of 0.113 and 0.085, respectively, with that of
the aspect ratio 5.45 wing having (ﬂo - 4)/4 = 0.054. As is the case

with Aao, there is essentially no effect of aspect ratio.

The effect of canopy attachment method on lift for constant-diameter
booms is illustrated in figure 23 for a NASA planform wing for which

five sets of data are available. The significant effect on lift is a

variation in a, that is of the same magnitude as the change in ag
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due to the addition of the leading edge to the basic canopy, as shown

in figure 21.

The possibility was investigated that an empirical adjustment could
be made to drag to account for the presence of the leading-edge booms.
No simple adjustment was found as for the angle of zero 1lift because of
the more complicated influences of the leading-edge booms in this case.
The effects of the booms can be seen directly from the data of figures 18,
19, and 20, which compare rigid-wing data with flexible-wing data for the
same aspect ratio and slackness ratio. All of the flexible wings for
the comparisons had tapered leading-edge booms. Almost without exception
the flexible wings show lower rate of drag rise with lift coefficient
than the corresponding rigid wings. As indicated previously, leading-
edge booms tend to delay leading~edge separation at large angles of
attack. The canopy attachment means are also significant, as shown in
figure 23. The attachment means that have lowest drag at low o tend
to have highest drag at high «a.

With regard to pitching moment, the data of figures 18, 19, and 20
show a decrease in Chn for a given lift coefficient as a result of add-
ing leading-edge booms. For wings which do not have very large slackness
ratios, the slope dcm/dCL is not significantly changed. The addition
of the leading-edge booms causes positive lift and negative moment for a
given angle of attack. Thus, the main part of the 1ift is added behind

the wing center of moments.

As a result of the comparisons noted above, the leading-edge boom
effects were found to depend on the diameter-to-chord ratio, the taper
of the leading edge, and the method of attachment of the canopy to the
boom. Insufficient systematic data are available either to develop an
analytical prediction method or to separate in an empirical fashion the
influence of the various effects on wing performance. However, empirical
correlations were obtained for angle of zero lift for the case of small,
constant-diameter leading-edge booms with pocket attachment and for the
case of large, constant-diameter leading-edge booms with front attachment.
For the case of tapered leading-edge booms with front attachment, syste-~

matic empirical corrections were found for a, and dCL/da;
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Comparison Between Experiment and Theory
for Flexible Wings

Systematic data available.- The flexible wing data chosen to test

the prediction methods are for two-lobed parawings with rigid leading-
edge booms and rigid keel booms. The geometric characteristics of these

parawings are presented in table II.

The first set of data (ref. 19) is for flexible wings having plan-
forms identical to the rigid wings discussed previously. These wings
have tapered rigid leading-edge booms with the canopy attached at the
front of the boom. The second set of data (ref. 5) is for a conical
parawing of aspect ratio 5.45. This high aspect ratio wing is identical
to one of the wings from reference 19 and has tapered leading-edge booms
with a front canopy attachment. The third set of data is for the tri-
angular wings of reference 4. These wings have very low slackness ratios
with front attachment and constant-diameter leading-edge booms. The most
extensive and systematic data available for NASA planforms are those from
reference 20. These data cover a wide range of aspect ratio and slack-
ness ratio for constant leading-edge diameter booms using pocket canopy
attachment. The effect of leading-edge diameter is studied as is the
effect of canopy attachment method. The data of reference 21 for NASA
planforms with constant aspect ratio and a wide range of slackness ratios
are for parawings with large rigid leading-edge booms with front attach-

ment.

It should be noted in the following discussion that differences
between the flexible wing data and either rigid wing data or theory for
the basic canopy were considered to be due primarily to leading-edge
effects rather than to any effects due to departure of the flexible can-
opy from a conical surface. This position was adopted on the basis of
the shape comparisons discussed previously. Some uncertainty still
exists, however, concerning the effects of canopy shape, particularly for

high slackness cases where data for shape comparisons are unavailable.

Lift.- In figures 18, 19, and 20 the flexible wing 1lift data from
reference 19 are compared with the rigid wing data and the predicted
results from the Weissinger method. The high-slackness, high-aspect-
ratio wings which have no linear range exhibit some difference in angle
of zero 1lift and lift-curve slope between the rigid and the flexible
wings. At low 1ift coefficients above the luffing boundary, the leading
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edge has the general effect of increasing the gross wing-lift coefficient
at a given angle of attack. At low slackness ratio (AN < 5°%) the 1ift~
curve slope is approximately the same for both rigid and flexible wings
for all aspect ratios. The deviations between experiment and theory for
these wings have already been shown in figures 21 (b) and 22(b) on a sys-—

tematic basis.

The aspect ratio 5.45 flexible wing data from reference 5 are also
shown in figure 18 (c). The two flexible wings are identical and the
1lift curves are closely the same. However, the flexible wings exhibited
less separated flow than the rigid wing without leading-edge booms. For
an angle of attack where the rigid wing exhibited general separation with
reversed flow over the rear of the wing, the tuft photographs of the
flexible wing exhibited strong spanwise flow but no reversed flow.

The aerodynamic characteristics of the flexible triangular parawings
of reference 4 are shown in figure 24 together with the Weissinger
results. For these wings, which have constant-diameter leading edges,
the Weissinger method without any correction for leading-edge booms gives
good lift prediction. It is noted that these wings are of very low slack-

ness ratio and use front attachment of the canopy to the booms.

The NASA planform data of reference 20 are shown in figure 25 for
all the wings which have values of 2f less than 180° for the theoreti-
cal conical canopy. The predicted 1lift is shown for the Weissinger
method with and without the empirical leading-edge adjustment for e
from figure 21(a). The single adjustment of 2° works well for all the

wings of figure 25.

Data from reference 21 for NASA planform parawings with large-
diameter leading-edge booms are shown in figure 26. Again the
Weissinger method with and without the empirical leading-edge correction

is shown. As before, the single correction works well for all wings.

Drag.- Drag comparisons between theory and experiment can be made
for four groups of flexible wings to deduce the effects of various sizes
and types of leading edges and methods of canopy attachment. Comparison
can also be made between data for wings with and without leading-edge

booms to show the experimental boom effects on drag.

A significant factor in drag comparisons is the difference between

methods for correcting the data for tare drag. 1In some cases, tare

34



measurements were made with the spreader bar and balance housing in the
free stream while in others, tare measurements were made with the spreader
bar and housing in the'presence of a cylindrical canopy. Any effect of
the spreader bar on the wing has been neglected in experimental evalua-
tion of the tares. Also, differences between the influence of cylindri-
cal and conical canopies on tares are not available. These comments
indicate the difficulties that arise and care that must be taken to

obtain accurate drag data for use in evaluating a prediction method.

For the wings of table II corresponding to references 4, 5, and 19,
the drag data as presented include a correction for the drag tare due to
the spreader bar. For the wings of references 20 and 21, the drag data
contain no allowance for spreader-bar drag tares. Accordingly, a theo-
retical spreader-bar drag correction was applied to the latter sets of
data on the assumption that the spreader bar is a cylinder in subcritical
normal flow with a drag coefficient of 1.2. Data are available on the
drag of a parawing with and without a spreader bar (ref. 21). The
measured spreader-bar drag tare was approximately constant for all angles
of attack, but it was only about 7U percent of the theoretical spreader-
bar drag. The full theoretical spreader-bar drag tares were found to
check measurements of the tare presented irn reference 4. It was decided

to apply the full tare corrections to the data of references 20 and 21.

In figures 18, 19, and 20, the rigid wing data are compared with
corresponding flexible wing data from reference 19 and with theory for
the basic canopy. At low lift coefficients, the flexible wing drag is
higher than both the rigid wing data and theory, which is in accord with
the results shown by the splitter-plate data. At high 1ift coefficients,
the flexible wing drag is lower than the rigid wing data. Thus, the
addition of a leading-edge member tends to delay separation on the wing
at high angles of attack. These results are for tapered leading-edge

booms and front canopy attachment.

Drag comparisons between measured values and predicted values using
both the a- and cz—methods are shown in figure 24 for triangular flex-
ible wings with constant-diameter leading-edge booms and front canopy
attachment. In this case the data are slightly above the theory in the
linear range. The cg—method does not extend far into the nonlinear
range because of tip stall and is still in good agreement with experiment.

The g-method lies under the experiment at high angles of attack.
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The experimental drag data for the NASA planform parawings of refer-
ence 20 are compared with predicted results in figure 25. These wings
have constant-diameter leading edges and a pocket canopy attachment;
therefore, the leading edge has a fairing on the top and bottom surfaces.
The experimental drag lies slightly above the theoretical drag over most
of the linear range. At the upper end of the linear range and in the
nonlinear range, the data usually lie well above the aq-method prediction.
In this region, the cz—method prediction is slightly below the experi-
mental drag for moderate leading-edge sweep angles (40° to 50°), but the
tendency to underpredict increases with leading-edge sweep angle. The
tendency of the cz—method to underpredict is thought to be caused by
the same effect as for the rigid wings: a region of separation which can-~

not be predicted.

The type of stall (tip or root) has been indicated on the curves of
figure 25. Systematic examination of the type of stall shows root stall
to be associated with high aspect ratio and high slackness ratios just

as in the case of the rigid wings.

In figure 25(g) the appearance of tip stall at ¢y, = 0.93 in the
cz—method drag curve occurs well within the linear range, as noted on
the upper part of the figure. The upper limit of the linear range
(CL = 1.05) is found from the Weissinger method assuming that the limit
occurs when the local angle of attack corrected for upwash exceeds 8°
regardless of camber. In the Weissinger method as used herein, the
Pankhurst method is used to predict the angle of zero lift due to camber,
and it is known that the Pankhurst method overpredicts the camber effect
for large cambers. If a prediction of the linear range is made using
section-1ift coefficient (i.e., fig. 5(a)) rather than angle of attack,

a wing-lift coefficient of 0.92 is found as the upper limit of the linear

range.

Drag results for NASA planform parawings with large, constant-
diameter leading-edge booms and front attachment are shown in figure 26.
The data are from reference 21. Both the cz—method and the oa-method
predicted values are shown and agree with each other in the linear range.
The measured drag is considerably higher than values predicted for the
basic canopy at high slackness but is of the same order for low slack-
ness. The delay of wing separation at high 1lift coefficients due to the
presence of the leading edge is evident from the measured results, which
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behave more like the a-method predictions than the cz—method predic-
tions. The experimental spreader-bar drag on these wings is approximately
30 percent smaller than the theoretical correction; however, for the

worst case (fig. 26(e)), the resulting uncertainty in the theoretical
correction for spreader-bar tares is about 10 percent of the minimum

drag of the wing.

The results of these four sets of comparisons indicate that the
leading edge generally increases the drag over that of the basic canopy
at moderate lift coefficients. The increment is small for small leading
edges and pocket attachments, and increases with d/cr ratio. The pres-
ence of the leading edge delays wing flow separation to higher 1ift coef-
ficients such that at high 1lift coefficients the drag of the parawing
with leading-edge booms is lower than the canopy drag without leading-

edge booms.

Pitching moment.-~ The wing pitching-moment coefficients for flexible

and rigid wings of aspect ratios 5.45, 4, and 3, and various slacknesses
are shown in figures 18, 19, and 20, respectively. A comparison of the
differences between the rigid and flexible wing data in the linear range
indicates that generally the moment-curve slope is not changed greatly
by the addition of the leading-edge booms, but that a fairly constant
negative increment between 0.035 to 0.045 is added by the booms to the
moment curve for each wing. An exception to this case occurs in fig-
ure 18(d) where a nonlinear effect arises before the end of the linear
range. Outside the linear range the comparisons are influenced by separ-
ation to which pitching moments are very sensitive. No systematic dif-
ferences between the pitching-moment curves of the rigid and flexible

wings were noticed in the nonlinear range.

Since the theory predicts the moment curve for the basic canopy with
good accuracy in the linear range (except for fig. 18(c)) the negative
moment increments noted above should be applicable as a simple adjustment
to the theory. Thus, it is possible to adjust the prediction method to
include boom effects by applying a negative increment of 0.035 to 0.045
to the moment curve in the linear range. This correction would be applic-
able to small, tapered leading-edge booms with canopy attachment at the

front of the boom.
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Pitching-moment results for the flexible NASA planform parawings
with small leading-edge booms of constant diameter are shown in figure 25.
Figures 25(a), (b), and (c) for the A = 35° series show that in the
linear range the effect of the leading-edge booms is to decrease Cm by
a nearly constant amount ranging from 0.015 to 0.020. Just the opposite
effect is shown for the Ay = 45° series in figures 25(d) and (e) where
C, 1is increased by about 0.007 to 0.010. For the A = 55° series,
figures 25(f) and (g) show both positive and negative increments in Co-
These experimental deviations between experiment and the canopy theory
can be used as adjustments to the theory even though they are not as

systematic as those for the tapered booms.

Pitching-moment results for the flexible NASA-planform parawings
with large-diameter leading-edge booms are shown in figure 26. By com-
parison with theory, it appears that the large-diameter booms cause
large negative contributions to Cmo and also change the-magnitude of
de/dCL. Thus, a simple AC correction for the large booms cannot be

made as for the small booms.

Luffing boundary.- The theoretical methods for predicting the luff-

ing boundary can be evaluated using data from reference 20. The experi-
mental luffing angle is taken as the lowest wing angle of attack for
which lift data are presented and may contain some uncertainty. The
data are for wings with a leading-edge diameter of 0.015 of the root
chord and pocket canopy attachment.

The comparisons between the predicted and experimental luffing
angles of attack are shown in figure 27. The solid lines show the
slender-body predictions. For the lowest aspect ratio (/\O = 559) and
low slackness, which conditions are most consistent with the assumptions
of the theory, the agreement is good. Otherwise, the method considerably

overpredicts measured results.

The results for the second approach, zero leading-edge suction at
the tip station, are shown by the long dash curves. This method con-
sistently overpredicts the measured luffing angles for all aspect ratios
and slackness. Part of the difference can be attributed to neglect of
leading-edge booms in predicting the luffing boundary. For a given 1lift
coefficient, the predicted angle of attack for the basic canopy exceeds
by about 2° the values measured for the flexible wings. The differences
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in figure 27 are considerably greater than 2°, however, and cannot account
for the difference between theory and experiment. For wing angles equal
to the measured luffing angle, the Weissinger method indicates that the
outboard quarter semispan is operating at a negative 1lift coefficient.

The reason for this result is not apparent, except that the Weissinger
method may not be accurate at the wing tip for the extreme twist distri-

butions typical of conical parawings with large slackness.

The third approach is presented as an engineering prediction method.
The short dashed curves indicate zero average leading-edge suction and
are seen to give reasonably good agreement with the data. The difference
is largest for the lowest aspect ratio wing, where the method predicts
too low a luffing angle by about 2° to 3°.

Limitations of the Theoretical Methods

Slackness ratio.- Since the assumption is made that the flexible

canopies in the inflated state lie on the surface of a right-circular
cone, the shape-calculation procedure is limited to canopies that are
half-cone (2B = 180°) or less. The slackness ratio of canopies wrapped
about a half-cone varies with planform shape; however, for NASA planforms
the upper limit of slackness ratio is approximately 0.45 for all aspect
ratios. Above this value the canopy must have some shape other than part

of a circular cone.

As the slackness ratio increases, the parawing becomes more non-
planar. Since the Weissinger theory is based on a planar wing, the ques-
tion arises as to how far the parawing can depart from a planar configu-
ration and still be withir. the range of the Weissinger method. To shed
light on this guestion, the ratio of experimental to theoretical 1ift-
curve slopes are compared in figure 22 as a function of slackness ratio.
For slackness ratios less than 0.45, the agreement for the NASA plan-
forms shown in figure 22(a) is within +10 percent with one exception.

It is noted that the use of the true chord rather than the projected
planform chord tends to increase the theoretical value of dCL/da and
helps in the correlation. For slackness ratios greater than 0.45, the

theory considerably underpredicts the measured lift-curve slope.

As slackness ratio increases, camber and twist also increase. A

NASA planform near a slackness ratio of 0.45 may have the tip twisted
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70° with respect to the root chord. Lifting-surface theories would not
be expected to give reliable results for such extreme twist distributions
because the local sections are operating in the nonlinear angle of attack
range. It is nonetheless noteworthy that the theoretical 1lift-curve
slopes and angles of zero lift are in good agreement with experiment for

these extreme cases.

Section data.- One of the basic difficulties encountered in develop-

ing the present prediction methods is the shortage of appropriate section
data. The section profile-dray data used for basic canopy drag predic-
tion are a combination of two-dimensional data for sharp-edged, flat
plates and data for a rectangular wing of aspect ratio 5 and a round-edge
circular-arc section. There are no other data to indicate trends or
accuracy of the data used. 1In particular, there are no other data to
verify the loss of 1lift and moment at high camber on thin plates indi-
cated by the data of reference 15. Furthermore, there are no measure-
ments éf flexible canopy section shapes for high-slackness parawings to
indicate the accuracy of the circular-arc camberline assumption used in
the profile-drag calculation. For prediction of leading-edge boom
effects, there is a lack of data on sections with cylindrical leading
edges with various attachment means of the section to the cylinder,
various cambers of the section, and various sweep angles. Such data

would lead to better understanding of boom effects.

Linear lift coefficient range.- Each wing with moderate slackness

has a certain range of angle of attack over which the entire wing can
operate with local section-1ift coefficients inside the linear range for
the airfoil section. Inside the linear range for the wing, the profile-
drag coefficient and other quantities can be computed with some degree
of confidence from section data. Outside the linear range, local lift
coefficients exceeding the maximum lift coefficient of the section are
predicted by either the Weissinger or Multhopp theories and make strip
profile-drag calculations unrealistic. A lifting-surface theory using
nonlinear section data and yielding local 1lift coefficients not exceed-
ing the maximum 1ift coefficient of the airfoil section could be useful

in extending this limitation of the current method.

Viscous effects.- Viscous effects are generally neglected in the

methods described herein, except for the computation of profile drag.
Their effects and/or their limitations on the methods are important to
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recognize, however. FPirst, the photographs of the tuft study in the
rigid wing data indicate that all of the twisted and cambered wings have
some spanwise flow near the upper end of the linear range and ultimately
separation at high angles of attack. Present prospects for an aero~
dynamic prediction method to account for these phenomena are not good.
However, linear methods based on section data give an indication of
separation, and a nonlinear method should provide some prediction capa-
bility for conditions of small separated regions. It is noted that the
maximum lift-drag ratio falls within the linear region and should be

predictable with a linear theory.

It was noted that the camber data of reference 15 indicate that
highly cambered sections do not achieve all of their predicted 1lift and
moment because of viscous effects. Nevertheless, the Weissinger-Pankhurst
method, which utilizes theoretical camber lift and moment increments,
agrees very well with rigid wing data (figs. 12 and 13), at all slackness
ratios. 1In this case, a better prediction method is obtained by neglect-
ing these viscous effects on camber 1ift and moment because of other

compensating effects also neglected.

On parawings having high twist and camber, a drag force considered
to act at the section center of pressure can cause an appreciable nose-
up moment, as noted previously. To the extent that part of the drag
(profile drag) is due to viscous effects, this moment is a viscous effect.
Incorporation of this effect into the moment predictions for wings where
the effect is significant (2B > 103°) would cause the agreement to be
worse (figs. 11(a) and (b)), since the Weissinger-Pankhurst moment over-

predicts data without consideration of moment due to drag.
CONCLUDING REMARKS

Various methods of predicting the aerodynamic performance of two-
lobed conical parawings were compared with each other and with experimen-
tal data in an effort to determine the best prediction means. Several
methods were investigated for determining canopy shape, for calculating
the basic canopy theoretical aerodynamic characteristics, for estimating
the profile drag of the canopy, and for estimating its luffing boundary.
The effect on the basic canopy of the addition of leading-edge booms was

also studied.
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There exist two means for estimating the canopy shape of a parawing:
the slender-body theory of reference 2 and the assumption of reference 5
that the lobes of the canopy can be formed from the surface of a right-
circular cone. Comparison of the cross-sectional shapes of two-lobed
parawings of moderate slackness obtained from the two methods show slight
deviations between the two. The differences in the predicted aerodynamic
characteristics by the Weissinger method due to these deviations are

negligible.

The canopy lift, moment, and induced drag without leading-edge booms
can be predicted by the Multhopp method or a combined Weissinger-Pankhurst
method. Comparisons of calculated wing characteristics based on these
methods showed that the 7-point Weissinger method combined with the
Pankhurst method to approximate camber effects gives sufficiently accu-
rate results for wings of NASA planform except in certain special cases.
These special cases involve the moment-curve slope Cma’ the wing angle
of zero 1lift Qg and the wing moment at zero 1lift Cmg - The value of
Cmy is predicted to within 0.02 for aspect ratios greater than 2. The
Qs value is well predicted for 28 less than 120°. For larger 2B,
the a, value is lower than the Multhopp value by an amount which in-
creases with increasing aspect ratio. The values of Cn, are consis-
tently underpredicted by amounts up to about 0.02, with the largest dif-
ferences occurring for high slackness and low aspect ratio. The major
source of difference between the two methods is attributed to chordwise

variations of induced downwash and loading.

Several methods were investigated for estimating wing profile drag
from section data. Strip-theory methods include an a-method, based on
the use of estimated local section angles of attack, and a cg-method,
based on the use of local section-lift coefficients. In addition, a
gross method of Polhamus for flat swept wings was used which accounts
for induced camber. For flat rigid parawing models without leading-edge
booms, all three methods were in good agreement for aspect ratios of 3
or greater, which indicates that induced-camber effects are negligible
in this range. For aspect ratios of 0.5 and 1.0 the Polhamus method pre-

dicted a larger drag due to significant induced-camber effects.

The ability of the lifting~surface and profile-drag methods to pre-
dict parawing aerodynamic characteristics without boom effects were

evaluated from data for a series of nine rigid parawings of known shape.
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The lift curves were accurately predicted for all wings even though the
predicted section-lift coefficients exceeded the maximum section-1lift
coefficient at all wing angles of attack in one case. For the range of
wing angle of attack in which the section-lift coefficients were within
the linear range, good agreement was obtained between the predicted and
experimental moment curves. Both the a- and cg—method combined with
the Weissinger method tend to underpredict total drag in this linear
range. Outside the linear range the cﬂ—method predicts the drag better
than the a-method but both underpredict the drag at higher 1lift coef-

ficients.

It is noted that a number of effects occur which are not predicted
by the Weissinger-Pankhurst method. From the standpoint of using the
Weissinger-Pankhurst method as a prediction technique, no correction for
these effects should be included for best results because the effects
tend either to offset one another or to offset some effect which has not
been recognized or estimated properly. Included in these effects are
the difference between predicted and actual lift and moment developed by
camber, the moment due to drag for highly-cambered and twisted wings,

chordwise effects on ag and Crug» and nonplanar lifting-surface effects.

The investigation of the effect of leading-edge booms on parawing
aerodynamic performance indicated that the 1ift increment added to the
canopy by the booms is much larger and of opposite sign to that predicted
using section data. The drag increment added is somewhat larger and of
the same sign as that predicted with section data. The force and moment
increments depend on ratio of boom diameter to root chord, method of
canopy attachment, and boom taper. For wings of NASA planform with
tapered booms and top attachment, the addition of the booms affects both
lift-curve slope and ag- The boom addition causes an increase in drag
at low 1lift coefficient and a decrease in drag at high 1lift coefficient
The latter is associated with a delay in leading-edge separation due to
increased leading-edge radius, which is characteristic of supercritical
splitter-plate section data but not subcritical data, to which the model

Reynolds number corresponds.

For NASA planforms with small booms of constant diameter and pocket
attachment, it was found that the boom causes a parallel shift of the
1lift curve for all angles of attack and a nearly parallel shift of the

moment curve for angles of attack in the linear range. The a~ and
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cﬂ—methods of drag prediction were in fairly good agreement with the
measured drag up to the point of maximum 1lift-drag ratio, but underpre-
dicted the drag at higher 1ift coefficients. For large booms a parallel
shift of the lift curve occurred, but nonlinear differences between the

drag and moment curves precluded simple correlation of the boom effects.

For triangular wings of small slackness with small constant-diameter
leading-edge booms with front attachment, no adjustment to the 1lift
curves to account for the booms was necessary. Both the g- and )=
methods of drag prediction were in good agreement with the drag curves
in the linear range since the added boom drag appears to be small. 1In

the nonlinear range both methods underpredicted the drag.

With regard to drag prediction in general, increased drag in the
nonlinear range was generally due to tip stall for the rigid wings or
the wings of NASA or triangular planform at low to moderate aspect ratios
and slackness ratios. However, for combinations of large aspect and
slackness ratios, root stall occurred for the rigid wings and wings of
NASA planform. The tuft photographs of the rigid wing data generally

confirmed the predicted onset of separation.

A prediction method for a luffing boundary was developed which cor-
related well with the minimum angles of attack at which wind tunnel data

were taken.

The prediction methods presented have limitations with regard to
their range of applicability. The value of slackness ratio is limited
to that attainable under the right-circular cone assumption (28 = 180°).
For angles of attack at which the local 1lift coefficients from linear
lifting-surface theory exceed plausible values, a 1lifting-surface method
using nonlinear section data is desirable. An attempt to develop such a
method reported herein seems worthwhile continuing. The tendency of the
cg—method to underpredict the drag in the nonlinear range suggests join-

ing it here to a theory based on little or no leading-edge suction.

It is noted that maximum lift-drag ratio usually occurs in the linear

range where the accuracy of drag prediction is best.

Nielsen Engineering & Research, Inc.
Palo Alto, California
December 1, 1967
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APPENDIX A

CALCULATION OF CAMBER AND TWIST DISTRIBUTIONS FOR A
PARAWING LOBE FORMED FROM A
RIGHT-CIRCULAR CONE

Specification of the parawing canopy shape is equivalent to finding
the coordinates of a point on the canopy surface in the =x,y,z coordinate
system shown in figure A-1l. From this information the coordinates of the
trailing edge can be determined, and the twist distribution can be
obtained. The chordwise surface coordinates can be obtained at a given

spanwise location, and from these coordinates the camber can be found.

Equation of the Parawing Surface

The desired equation of the canopy surface is of the functional form
y = v(x,2) (a-1)

where the x-axis lies along the root chord, the =x-z plane is the root
chord plane (the plane formed by the root chord and the leading edge),
and the vy-axis is perpendicular to the chord plane. The equation of
the surface is most easily obtained in the X5rYg1 24 coordinate system,
where the xo—axis is the axis of the cone, as shown in figure A-1l.
These results are then transformed first to the X »Y,52) coordinate
system by a rotation about the 2z -axis, and then transformed to the

X,y,2 coordinate system by a rotation about the yl-axis.

The transformation from the X53Yer 2o system to the X ,Y,,%2, Sys-

tem is by a rotation ¢ such that

2 2
. 'Vbos 6 - cos“¢
Sl =
no cos 6
(A-2)
cos g = £98 ¢
cos 6
The coordinate transformation is
Xy = X,c08 0 - y sin o
Yo = ¥,8in 0 + y,cos @ (A-3)
2o = 2,
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The transformation from the X sY, 52, system to the x,y,z system is a

rotation & about Yys such that

X = x cos & + z sin 9
Y, =Y (A-4)
z = X sin 6 - 2z cos O

The equation of the cone in the Xqs Yo 2Zg system is
2 2 2 2\ . _
X tan<¢ ~ (yo + oz ) 0 (A-5)

Substitution of eguations (A-2), (A-3), and (A-4) into equation (A-5)

permits the cone equation to be written as

o 1/2
y* = cos cos ¢ (1 + z* tan 9){cos®9 - cos2¢>
cos?0 - cos®¢ - cos®9 cosZ¢

- Bl + z* tan 6)Z(cos®g - cosZp)

1/2
—z*{z* - tan 20) (1 - tan®8) (cos®0 cos®p - cos®9 + cos2p) .}
(r-6)

where

v* = y/z
(a-7)
z*¥ = z/x

Determination of the Trailing-~edge Coordinates

The trailing edge in the uninflated state can be specified by the

polar equation

Ei = «Zl ('Y) (a-8)

as shown in figure A-2. For a straight trailing edge®, the coordinate,

4. can be expressed as
l,

®While the analysis is not limited to a straight trailing edge, the com-
puter program used in the analysis is so limited, because it uses equa-
tion (a-9).
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2 1.2
cos v i cosely -— 1 - -.k_ﬂ_l-
2. A2sin®e
i o
= = - (A-9)
r 1 - kZ2sin®y
2o i
A<sin 90
where
k2 = A2 ¢ cr2 - 2¢c_)\ cos 26 (A-10)

The sign convention on the radical of eguation (A-9) is as follows:
positive for c,. < A cos 260

negative for c, > N cos 290

In order to obtain a relation between the cone semiapex angle, ¢,
and the angles 6 and 90, imagine that the uninflated planform is a
circular sector, as shown dashed in figure A-2. When the canopy is
wrapped around the cone, the trailing edge will be along the circular
arc ﬁE, as shown in the end view, figure A-3. The length of this arc

may be expressed as

—

BC = ZQOX = 2rf = 2(\ sin ¢)B (A-11)
from which
e
1 —_— £ = -—2 -—
sin ¢ = 5 B (A-12)

The ratio of the arc length BC to the chord BC is

= sin B 2\ sin 6 sin 6

Since eo and 6 are specified quantities, equation (A-13) can be used
to obtain B, which can then be used in equation (A-12) to obtain ¢

and r.

It is now necessary to obtain a relation between a given direction
v in the uninflated planform, figure A-2, and its associated angle in
the chord plane of the inflated planform, say tan~! z* in figure A-4.
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In figure A-3, the angle BOP' is given by Ay/r. Then the following

length relationship can be written

BE =BD - DE = r sin f - r sin (B - ;gi) (A-14)
The quantity z* can be written in terms of BE as
BE co
gk = cos 9 (A—lS)

A - BE sin ©

or using equation (A-14)

r [sin g - sin< —7\—:)} cos 6

z* = Y (A-16)
X—rsine[sinﬁ—sin(B—T)J
Solving for v vyields first
. AYY_ . zZ* N
51n.(B - j;-)- sin B - T(cos 6 + 2% 5in 9)
and finally, making use of equation (A-11),
. . I . z*
v =B sin ¢ - sin ¢ sin sin B - Sin ¢ (cos 6 ¥ z* sin 0) (A-17)

The determination of the trailing-edge coordinates is now done in a
trial and error process using the above relationships. Basically, a
spanwise station =z 1is chosen and x 1s varied until the length ﬁi
to the trailing edge, figure A-2, is equal to that measured along the
cone surface to the trailing-edge point. Let =z be the spanwise station
at which the trailing-edge coordinate is required. Form z* by division
with a trial value of the trailing-edge coordinate, Xy. From this value
of z*, a value y* 1is computed from equation (A-6). Then the length
I, from the apex to the trailing edge can be computed from the relation

L = xt\/i + y*2 4 z*2 (a-18)
From z* and equation (A-17), the angle + of the uninflated parawing

can be obtained. The trailing-edge shape [f(y) then yields a value of

zi for comparison with L. If the two are not sufficiently close, a
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new value of Xe

vergence is obtained.

is selected and the calculations repeated until con-

A slackness ratio can be defined for the type of planform shown in
figure 1, although it does not have the same significance as in the tri-
angular inflated planform case. In that case, the slackness ratio is
defined as the difference between the canopy trailing-edge length and
the inflated semispan, divided by the inflated semispan. This definition
can be carried over to an arbitrary planform by defining the two lengths
as the canopy trailing-edge length and the distance from the aft end of
the leading edge to the aft end of the root chord measured in the in-
flated state. The former is the length AC of figure A-2, and can be

expressed as

e — 2 .2 _ 2 _
AC = ﬁ sin®20_ + (A cos 26 - c) (A-19)

The latter is the straight-line distance between A and C' in fig-

ure A-4, say AC', where

ACT = \/7\2sin229 + (N cos 26 - c)? (A-20)

The slackness ratio, R, then is

R =2C - AC. (a-21)
Ac”

where AC and AC' are obtained from equations (A-19) and (A-20).

Twist and Camber Distribution

With the trailing-edge coordinates known, the determination of the
twist distribution is straightforward. Let z, be the spanwise station
at which the twist and camber are desired. The other coordinates of the
trailing edge, computed as in the previous section, are Yt, and Xt,, -

The local chord, .o joining the leading and trailing edges has as its

length
= _ 2 2 2 _
c, 1v/<xt X, ) + vy + oz {(p-22)
v v v v

where the leading-edge coordinates are given by
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=z, ctn (29) Y, = 0 z, = 0 (A-23)

X
ZV Vv v

The geometric twist angle is then

€ = - sin~? = v (A-24)

The coordinates for the camber determination are illustrated in fig-
ure A-5. The desired camber distribution is the variation of the C/cv
of the canopy surface with g/cv. Since the canopy surface coordinates
are known in the x,y,z system from equation (A~6), these may be trans-
formed into the ¢(,£ system for a given 2z to obtain the desired camber
variation. Rather than doing this, however, an iterative approach was

used in a computer program, and this is described below.

It is desired that the camber be known at 13 specific g/cV values
since the Pankhurst method is used later to compute the angle of zero
lift of the local section and its zero-lift pitching moment.” For the
nth g/cv station, an initial value of x is selected and the quantities
Ya and y, are computed as shown in figure A-5. The quantity Yy is
the coordinate of the surface as given by equation (A-6). The guantity

is computed from the following expression

(£)er xox,

_ v
Y, = 5in € ~ Tan € (A-25)
v v

Yy,

The values of Ya and Yy are compared, and if they do not agree within
a specified limit, the value of x is changed and the Yg and Yy Te-
computed and compared. This process is repeated until agreement is
obtained, which will occur when x = X . Then the camber can be obtained

by the relation

Cn = y,cos €v - (Xn - xzv) sin € (A-26)

This is done for each of the 13 chordwise stations at every spanwise

station of interest.

7“The values of g¢/c, correspond to "Spacing (4)" of tables 1 and 4 of
reference 9.
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Figure A-1.- Coordinate axis systems for parawing
conical surface.

z 4
C
/\
A

Figure A-2.- Parawing planform in the
uninflated state.
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K/

Figure A-3.- End view along cone axis of the
inflated parawing.

ZA

Figure A-4.- Parawing planform in the
inflated state.

Figure A-5.- Camber coordinates.
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APPENDIX B

COMPARISON OF WEISSINGER AND MULTHOPP METHODS

Comparisons were made for a number of wings between the aerodynamic
characteristics computed using the Weissinger-Pankhurst method and those
computed with the Multhopp method. The purpose was twofold: first, as
a check on the accuracy of the Weissinger-Pankhurst calculative method;
and second, as an evaluation of the magnitudes of the effects neglected
or approximated in the Weissinger-Pankhurst method. These effects are
generally associated with chordwise variations of induced camber and
loading and any sweep effects on Cmo which the Weissinger-Pankhurst

method is unable to take into account.

The first consideration is the difference in chord distribution
between the Weissinger and Multhopp calculative methods. The chord
lengths used with the Weissinger method are computed from a conical fit
to the canopy shape which considers the canopy trailing edge to be
straight in the uninflated state. Thus, the inflated canopy trailing
edge is curved, and its projection onto the root chord plane is curved.
The Weissinger computer program can also be run with a planform chord
distribution for a straight planform trailing edge, and this was done
for some check cases. The Multhopp program computes a chord distribution
based on a straight planform trailing edge. For numerical computation
reasons, however, the Multhopp program fairs a radius to any discontinuous
slope change in a constant percent chord line, such as occurs at the root
section. An example of the differences in the chord distributions for a
high slackness wing is shown in figure B-1. The Multhopp curve, with 21
control points across the span, illustrates the fairing at the root chord
with a linear variation for n > 0.14. The 7-point Multhopp results in
the figure indicate a somewhat larger deviation from linearity over the
span. The maximum difference between the Multhopp and conical canopy

chords occurs near 1 = 0.2 and represents about a 10 percent difference.

A comparison of predicted aerodynamic performance for the wing of
figure B-1, illustrating the influence of both chord distribution and
chordwise effects, is shown in table B-I. Four cases were computed.

The first two cases are based on Weissinger calculations using first the
actual (cone fit) chord and then a linear chord variation (straight plan-

form trailing edge). The last two cases are based on Multhopp calculations
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first with 21 span and 6 chord points and then with 7 span and 1 chord
points. The latter case should correspond most closely to the Weissinger
run with a linear chord variation since, with only one chord station, the
Multhopp flow model is that of an uncambered twisted wing. The two
Weissinger and the 7-point Multhopp cases agree very closely, except for
the Multhopp lift-curve slope. The reason for the high CLa value for
Multhopp is not known. It should be noted that these three Cmo values
do not include the effect of the moment due to camber. A comparison of
the 2l-point Multhopp case with the other three indicates the magnitude
of the chordwise effects neglected in the Weissinger method. The greatest
difference occurs in Qg With the relatively high camber of this wing
(up to 10 percent), the loading due to camber cannot be considered as
concentrated at the quarter chord, as assumed in the present application
of the Weissinger method to cambered wings. The Weissinger method, how-
ever, gives a good estimate of the lift-curve slope, induced drag, center
of pressure, and moment-curve slope, as well as Cmo when the Pankhurst

correction for moment due to camber is added.

Comparisons of Weissinger and Multhopp predictions for a number of
wings are given in table B-~II. The Weissinger results were obtained
using the actual chord distributions from the cone method. The Multhopp
results were obtained using 21 spanwise and 6 chordwise control points.
The first three wings have NASA planforms and the same 28 value, and
illustrate the effect of aspect ratio on the agreement between the two
methods. The major differences occur in 255 Cmg» and Cma' The
Weissinger method overpredicts a, and Cma at low aspect ratio and
underpredicts the two at high aspect ratio. The Cmo values of
Weissinger, which include the correction for camber, are consistently
low, but the difference decreases with increasing aspect ratio. The next
series of three wings, also NASA planforms, illustrates the slackness
effect at a constant, moderate aspect ratio. For low slackness, the
methods agree well, except for Cmo' The agreement remains good to high
slackness, except for a_. It should be noted that the Cpg calculation
of the Weissinger method requires taking the difference between two num-
bers which are large compared to their difference. Thus, small inaccura-
cies in either one will affect their difference considerably. The last
three rigid wings of moderate to high aspect ratio and moderate slackness

were used as the basis for drawing conclusions on the basic canopy
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aerodynamic prediction methods. The agreement is good for all values
except Cma’ where the maximum difference is about 14 percent.

The results of the Weissinger-Multhopp comparisons for o, are sum-
marized in figure B-2. The upper and lower sets of curves contain the
same results and differ only in the manner of presentation. These results
indicate two simultaneous chordwise effects occurring that are neglected
in the Weissinger method. The first effect is associated with induced
camber produced primarily by the trailing vortex system. This effect
becomes significant at low aspect ratio. Figure B-2 indicates that the
Weissinger method overpredicts a, by as much as 4° for a NASA planform
of aspect ratio 1 and a high slackness. The second effect is associated
with the chordwise loading due to high camber at high slackness. In this
case the chord loading is concentrated further aft than the quarter chord,
and the Weissinger method underpredicts a,- For a given aspect ratio,
the difference increases with increasing slackness and can attain a value
of -4° at aspect ratio 3 and 28 = 150°.

The results of the Weissinger-Multhopp comparisons for Cmo are sum-
marized in figure B-3. The values predicted by the Weissinger-Pankhurst
method in figure B-~3 consist of the sum of the moment at zero wing lift
on the equivalently twisted (and uncambered) wing and the moment due to
camber. The latter is evaluated by using the Pankhurst method to obtain
Cmg values at the 7 Weissinger span stations and integrating these over
the span using equation (3). The results of figure B-3 indicate that the
Weissinger-Pankhurst method underpredicts Cmo by an amount that increases
with increasing slackness and decreasing aspect ratio. The differences
represented in figure B-3 are differences between two theoretical, inviscid
aerodynamic prediction methods and are due primarily to chordwise effects,
which the Weissinger method is unable to take into account, a sweep effect
neglected in the Pankhurst method in obtaining the moment due to camber,
and possibly some inaccuracy due to the integration method. In addition
to these differences, there are viscous effects on Cm, which are dis-
cussed in the RESULTS section. It should be noted that the results of
figure B-3 can be used as a correction to the Weissinger-Pankhurst method

for NASA planform wings, in the absence of the Multhopp computer program.
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TABLE B-I

COMPARISON OF PREDICTED AERODYNAMIC PERFORMANCE FOR A NASA
PLANFORM WING OF ASPECT RATIO 2.57, ‘A = 509, and 2B = 158°

g xtpuaddy

Welissinger Multhopp
Planform Chords Circular Cone Chords m=2l, n=6 m=7, n=
cp 2.7365 2.7223 2.7196 2.8023
a
C, -.1654 ~-.1685 -.1735 -.1667
a
¢, /c.2 .1252% .1247° .1265% .1249%
i _
a 18.463 18.569 21.820 18.541
c, .0645° .06591° - .00580 .0698%
(o]
Tep .4091 .4114 .4025 .3935
cp/cr .4611 .4623 .465 .461
S/cr2 .643 .643 .643 .643

3These values are for a flat wing of the appropriate planform and aspect ratio and were
used only to evaluate the differences between the theoretical methods.

b

for camber,

No correction added for moment at zero wing lift due to camber.

With the correction
the value for the Weissinger method with circular cone chords is -0.0138.
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COMPARISON OF

TABLE B-IT

WEISSINGER AND MULTHOPP RESULTS

c
. a,b a 2
Wing Theory G Cmo CLa Ch CDi/CL Nep xcp/(b/2)
(deg) a

A=1, AN = 5° W 6.37 -0.0177 1.261 -0.114 0.318 0.421 2.204
28 = 149° M 2.51 - .0001 1.332 - .185 .319 .410 2.326
A =2, Ah = 10° w 12.94 - .0159 2.269 - .195 .160 .416 1.012
28 = 149° M 13.64 .0027 2.284 | - .214 .161 .407 1.036
A =3, AA = 15° W 20.09 - .0199 2.984 - .131 .108 .405 .554
28 = 149° M 24.21 - .0237 2.989 - .118 .110 .398 .551
A= 2.5, AAh = 3° W 7.47 - .0126 2.677 - .le6l .129 .410 .745
2B = 850 M 7.31 - .0037 2.670 - .181 .130 .403 .755
A= 2.5 AN = 8° W 12.74 | - .0156 2.673 - .16l .129 .411 .746
28 = 125° M 13.24 | - .0051 2.670 - .181 .130 .403 .755
A = 2.5, AA = 15° W 18.31 - .0125 2.673 - .166 .128 .412 .748
2B = 1599 M 21.43 - .0043 2.670 - .181 .130 .403 .745
Rigid Wing No. 3 W 12.66 .126 3.360 - .464 .0604 .400 .588
A = 5.45, 28 = 103° M 13.72 .127 3.480 - .497 .0613 .394 .589
Rigid Wing No. 6 w 11.51 .044 3.174 - .309 .082 .404 .631
A =4, 28 = 103° M 12.07 .0513 3.203 - .362 .083 .397 .639
Rigid Wing No. 8 W 10.50 .00 2.910 - .208 .1l08 .407 .684
A =3, 28 = 103° M 10.70 .0088 2.913 - .239 .109 .401 .693

8The reference quantity for Cp, and C is the mean aerodynamic chord, and the moment rg

center is at the quarter mean aerodynamic chord. g

5

bThe Weissinger values include the correction for moment at zero wing lift due to camber &

calculated by equation (3). %

@

CThese values are for a flat wing of the appropriate planform and aspect ratio and were used
only to evaluate the differences between the two theoretical prediction methods.
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Figure B-~1.- Comparison of theoretical chord distributions
for a NASA planform parawing.
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3 NASA planforms
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(a) Aspect ratio effect at constant slackness.
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(b) Slackness effect at constant aspect ratio.

Figure B-2.- Summary of comparisons of Multhopp and
Weissinger predictions for angle of zero lift.
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Figure B-3.- Summary of comparisons of Weissinger-Pankhurst
and Multhopp predictions for wing moment at zero lift of
NASA planform wings.
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TABLE I

GEOMETRIC PARAMETERS FOR RIGID WINGS

AN AN

€9

A = 5.45 A=4.0 - A= 3.0
Inflated canopy planforms

nggg Ref;(x;ence A Ay A ?r _x .b by - 2B "{Gm z’.:ef
. . (deq) (deqg) (in.) (in.) (in.) ] (degq) (in.) (in.)
1 8 5.45 35.0 50 23.57 50 64.28 0.167 157.8 16.70 15.71

2 40.0 .110 135.1

3 45.0 .054 102.9

4 47.5 .027 79.2
5 5.45 50.0 23.57 0 0 16.70 15.71
3] 4.0 45,0 32.14 .085 102.9 18.16 21.44
7 4.0 50.0 32.14 0 0 18.16 21.44
8 3.0 45.0 42.80 .113 102.9 19.90 28.55
9 3.0 | s0.0 \ 42.80 # v 0 0 19.90 | 28.55




174°)

TABLE IT

GEOMETRIC PARAMETERS FOR FLEXIBLE PARAWINGS

. Canopy
W;gg Ref;;ence A Ag A Cy b él- Lo - 2B Xem 2 Attach-
: - (deg) | (deq) (in.) (in.) r J) (deg) (in.) (in.) ment
11 19 5.45 | 35.0 50.0 23.57 ) 64.28 0.021a 0.167 157.8 | 16.70 { 15.71 F
12 40.0 .110 135.1
13 45.0 a .154 102.9
14 5.45 1 47.5 23.57 .021a .027 79.2116.70}| 15.71
16 4.0 45.0 34.14 .016a .085 102.9 } 18.16 ] 21.44
18 3.0 45.0 42.80 .012 .113 102.9119.90 } 28.55
23 5 5.45 1] 45.0 50.0 23.57 | 64.28 .021a .054 102.9115.70] 23.57 F
AR2-2.07 4 2.0 61.23 ] 63.43 | 36.0 36.0 .021 .059 74.2 | 22.8 24.0 F
AR2-2.10 2.0 60.73 ] 63.43 36.0 .094 90.3 | 22.8
AR3-2.04 3.0 51.45} 53.10 54.0 i .038 68.9 1| 21.8

2Phe value shown is an average, the leading-edge diameter is tapered from 0.75 in.

0.25 in. at the tip.

F - front
P - pocket

bCanopy attachment:

at the root to




TABLE II

CONCLUDED
. c Canopy
W;gg Ref;gence A A A ?r b él Lo = 4 26 fcm £y Attach-
: . (deg) { (deg)| (in.) | (in.) r ) (deg) | (in.) | (in.) mentP
35-40 20 3.06 | 35.0 40.0 50.0 76.60 ] 0.015 | 0.0926 98.8 | 25.0 50.0 P
35-45 2.83 45.0 70.71 .207 130.5
35-50 2.58 50.0 64.28 . 350 157.8
35-55 2.30 55.0 57.36 .536 -
35-60 2.00 \ 60.0 50.0 .784 -
35-65 1.69 65.0 42.26 1.133 -
45-50 20 2.58 ] 45.0 50.0 50.0 64.28 .015 .119 102.9 1 25.0 50.0 P
45-55 2.30 55.0 57.36 .273 141.1
45-60 2.00 60.0 1 50.0 .479 -
45-65 1.69 ] 65.0 42.26 .768 -
45-70 1.37 70.0 34.20 1.204 -
55-60 20 2.0 55.0 60.0 50.0 50.0 .015 .162 133.91 25.0 50.0 P
55-65 1.69 65.0 42.26 . 389 159.0
55-70 1.37 70.0 1 34.20 1 .733 - 1 l 1
55-75 1.04 75.0 25.88 1.305 -
52.5-55 21 2.30]| 52.5 55.0 39.3 45.07 .07 .069 80.9 | 19.6 39.3 F
50.0-55 50.0 .137 106.8
47.5-55 47.5 .205 125.8
45.0-55 45.0 .273 141.1
42.5-55 42.5 .339 153.8

S9

CFor NASA planforms, canopies having ({g - £)/£4 > 0.45 cannot lie on the surface of a right
circular cone.
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circular cone.

Figure l.- Parawing lobe as part of the surface of
a right circular cone.
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Figure 2.- Flow directions at local
spanwise station.
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Figure 3.- Section data for uncambered thin airfoils.
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Drag coefficient, cq

2.4

Flat plate airfoil, Reference 11
Reference 14 ||
2.0 — Faired drag curve used in profile- Aff"”q :
drag calculations, see Figure 3(c) L~
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(b) Drag coefficient versus angle of attack.

Figure 3.- Continued.



Drag coefficient, Cq
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(c) Drag coefficient versus angle of attack; low angle

of attack range.
Figure 3.- Concluded.
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Lift coefficient, <,
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(a) Lift coefficient versus angle of attack.

Figure 4.- Section data for cambered rectangular plates of aspect ratio 5.

60

70




L

Drag coefficient, cq
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(b) Drag coefficient versus angle of attack.

Figure 4.- Concluded.
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(a) Lift coefficient versus angle of attack.
Figure 5.- Constructed section data for cambered plates.
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Drag coefficient, Cyq
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(b) Drag coefficient versus angle of attack.
Figure 5.- Continued.
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(a) Lift coefficient versus angle of attack.

Figure 6.- Section data for a splitter plate with top attachment
for a subcritical Reynolds number.
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(b) Drag coefficient versus angle of attack.
Figure 6.- Concluded.
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(a) Lift coefficient versus angle of attack.

Figure 7.~ Section data for a splitter plate with
top attachment for a supercritical Reynolds number.
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Figure 7.~ Concluded.
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Right-circular-cone method, AA = 10°

«— =—— — Slender-body theory, Reference 2
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Figure 8.- Comparison of triangular wing trailing-edge shapes given by slender-body
theory and the right-circular-cone method.
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Induced-drag correlation for triangular two-lobed parawings.
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Figure 10.- Induced-drag correlation for two-lobed parawings
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(a) Rigid Wing No. 1, A = 359, 28 = 157.8°.

Figure 1l.- Comparison between experimental and predicted characteristics
of aspect ratio 5.45 rigid wings, A = 50°.
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Figure 11l.-Continued.
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Figure 1l.- Concluded.
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(a) Rigid Wing No. 6, A, = 45°, 28 = 102.9°.

Figure 12.- Comparison between experimental r?md predicted
characteristics of aspect ratio 4.0 rigid wings, A = 50°.
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Figure 13.- Comparison between experimental and predicted
characteristics of aspect ratio 3.0 rigid wings, A = 50°.
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Figure 16.- Comparison of measured drag for swept
uncambered untwisted wings with drag predicted by
the Polhamus method.
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