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FOREWORD

This final report is in four parts

Part 1: ADAPTIVE FILTERING

Part 2: COMPENSATION FOR MODELING ERRORS IN ORBIT

DETERMINATION PROBLEMS

Part 3 LIMITED MEMORY OPTIMAL FILTERING

Part 4: TEST-BED COMPUTER PROGRAM

The first three parts, describe several suboptimal filter concepts developed

under this Contract, A number of these filters have been simulated in the

rectilinear orbit problem. These simulations are described therein, In

order to provide a more realistic environment for testing there suboptimal

filters, a more general test-bed computer program is under development.

This program enables the simulation of real observation schedules and

combined effects of dynamical model errors in three-dimensional satellite

motion. This program is briefly described in Part 4.

The authors wish to express their appreciation for the active interest

and support of this work by Mr. R. K, Squires of Goddard Space Flight

Center. The contributions of Dr. H. Wolf and Mr. S. Pines are also gratefully

acknowledged.
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COMPENSATION FOR MODELING ERRORS
IN ORBIT DETERMINATION PROBLEMS

By

Stanley F, Schmidt

INTRODUCTION

Orbit determination is considered herein as the problem of processing tracking data

for purposes of determining the position ar:d velocity (orbit) of a spacecraft. The

problem considered is one in which only small time lags between the data acquisition

and the processed data (orbit) are permitted, Such orbit determination problems, which

are sometimes called estimation of state or filtering, occur in any real time system used

for command and control of spacecraft.

The orbit determination problem requires a dynamical model for use in calculating

the position and velocity time history from given initial conditions. A measurement

mo-lel is also required for use in calculating the estimated measurement, The orbit

is determined by calculating that set of initial conditions which cause the residuals

(differences between actual, and computed measurements) to be small in some defined

sense.

Factors such as computation speed requirements (which may force simplifications in the

model), computational accuracies, and lack of knowledge, cause errors to exist in the

dynamic and measurement models. The dynamic model error generally has the

characteristic of causing a divergence from error analysis predictions of orbit

determination accuracy. This divergence occurs when the fundamental error source

or sources cause a secular growth in the deviation between the real and computed

position and velocity vectors for identical initial conditions. The divergence is

* Senior Scientist, Analytical Mechanics Associates, Inc.
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displayed by the inability to compute initial conditions which provide small residuals,

Measurement model errors are generally not as serious as dynamic model errors.

This results from the fact that the measurement error is bounded. As a matter of

fact, meawurement Model errors tend to have less effect on orbit determination

accuracy as more and more measurements are processed,

The deleterious effects of modeling errors in Kalman filters when used for state

estimation or orbit determination problems have been reported by numerous authors.

(See, for example, References 1-5.) Methods for controlling the divergence are also

found in these references. Ths -̂ ,e methods vary in complexity from a somewhat

artificial increase in the a priori covariance matrix diagonal terms [8] to the more

sophisticated modeling of additional error sources which are included but not solved

for in the orbit determination process. This latter technique is described in [6j

and used in Ell,  [ 7], [ 9].

A. -somewhat different method of compensation which does not directly augment the a

priori covariance matrix is described in [2j and also considered here, This method

involves a deliberate design of a non-optimal filter which attaches more weight to the

most recent measurements. The method used in [5j is similar to [2] but is a more

sophisticated and complicated approach for forcing current residuals to remain small.

As a result of the equivalences between the Kalman filter, the maximum likelihood (ML)

and weighted least squares filters (WLS) [11] one would expect that dynamic model errors

would cause significant degradation in orbit determination accuracy for the ML and

WLS filters also.

-2-
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The existence of these degradations can be readily proven for the M L or WLS filters.

For reasons unknown to the writer they have never been widely publicized in the

engineering literature, even though ML and WLS filters have been used for many

more years than the Kalmaji filters, The ML and WLS filters, which are usually

equivalent in implementation, use algorithms which process batches of data (large

numbers of points) simultaneously. One may, by throwing out batches in the past,

force residuals to rernaiii reasonable for the orbit used for command and control

purposes. This readily implemented and obvious manual procedure which attains

reasonable results may be the reason why little has been publicized on accuracy

degradation in the use of ML and WLS filters,

Reference L41 describes ail implementation which is equally applicable to Kalman,

WLS and ML filters and which is, basically, the discarding of past data. This

moving window, or limited memory, filter is also referred to in Reference Lill,

which gives Reference 1121 as the originating source. The algorithm for deciding

when to discard past data is not covered, and presumably is a manually imple-

mented decision in Reference [4]. The present paper discusses some alternatives

which may be automated, based on the ideas of Reference 121.

A factor which should be recognized is that a strong difference exists between the real

time orbit determination problem and the post-flight analysis problem, In the latter

case we are interested in finding the dynamic model which predicts the orbit and fits

the measurements over the entire flight. It is the very existence of unexplained

residual behavior which provides the source of new information and discovery in the

post-flight analysis of a spacecraft mission.

The post-flight problem is basically a problem of model identification and the dynamic

model compemiation described herein is not applicable, since it can destroy the basic

information one is trying to obtain. See Reference [101 as an example of post-flight

analysis procedures for model identification,

-3-



The intent of this paper is first, to present the fundamental characteristics of dynamic

and measurement model errors In real time orbit determination systems.

Second, two fundamentally different techniques (which can give equivalent results)

for dynozaic model compensation will be described, Third, a review of the model

compensation algorithms for recursive 4(alman) type filters will be given. Fourth,

a discussion of the available implementation of algorithms for model compensation

in batch data (ML or WLS) filters will be described. Finally, an approach which

should lead to an automatic means of weighting out past information in batched data

filters will be discussed.

PROBLEM DEFINITION

The problem of orbit determination is defined here as

I.	 A true set of dynamical equations describing the motion of the spacecraft

is believed to be representable by a set of vector differential equations,

X = F (X, C, U, t)
	

(1)

We have an assumed set of equations describing the motion given by

A A

X = F(x ) C ) -U , t)
	

(2)

where

X = A 6-vector describing the assumed position and velocity

C = A vector describing assumed constants in the equations of motion, such
as planetary masses

WL
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U a A vector of forcing functions whose effect in terms of specific force
is theoretically measurable by onboard accelerometers. Fornes
created by drag, venting, thrust and gas leaks fall into this category,

t* w The independent -triable

2.	 A vector, Y, of tracking data measurements is available which we believe is

relatable to the spacecraft position and velocity by the form

I = G(X, V, t) + q (t)	 (3)

We have an assumed model of these measurements given by

A	 AA

Y = G(X,V,t) + q (t)	 (4)

where

A

V = .A vector describing assumed constants and/or time-varying states in
the measurement model,.

q = The assumed random error in the measurement.

Before proceeding further in the definitions some discussion of the notation and meaning

of the phrases "believed to be" and "assumed to be" is in order.

('Believed to be ll is defined as meaning: in conformance with such scientific Itnowledge

as we possess at the present time.

'	 Ephemeris time is considered herein as the independent variable. A. note of
importance is associated with the interpretation of this quantity when we are
dealing with measurements in which a different time base and propagation,
delay is involved. See Reference F101 for more details on this problem.

a
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"Assumed to be" is used in the context of known approximations, such as truncations

of infinite series representations, and so on.

The `` symbol on the functions F 	 and	 is intended to imply the approximation

involved because of our limited ability in describing reality in the form of mathematical

models,

n	 A	 IN
	 A

The A symbol on the vectors X , C , U, mid V is implied to mean our best estimate

of the quantities,

3.	 We may have an initial estimate of the position-velocity vector at a time t o which

will be defined as

A

X(to)	 o	 (>

4,	 tither initial conditions and time varying forcing functions which are assumed

are

C (to = co	 (6)

A	 A

V (to)	 O	 ()

U(to) = U 0 (t)	 (6)

As a result of our limited knowledge and known approximation in computations,we
may desire to consider a portion of U ( t) to be a random forcing function. This
will be discussed later in this paper as a possible means of dynamic model
compensation.
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5.	 The errors in the various assumed variables are considered as describable

by

n
E (X	 Xo ^ W 'C4 (Xp )	 0	 (91)

E (, x^	 Covariance Matrix a Po 	(10)

E[ q(t)]	 0	 (11)

E ( q! q-T )	 (t)	 (12)

E(C - Co )	 E(c o j	 0	 (1 )

"T)0(  CO c  ) 	 Co	 (14)

ECU(t) -Uo(t)] = EC u(t)] = 0	 (15)

E ( u` u ? T	 0(t)	 ( ^

E(V - o	 E(> w	 v)	 0 ( 17)

E { v v)	 V0	 {18}

The use of the expected value operator E in equations 9-18 requires some discussion.

Nominal usage of the operator implies an ensemble average. In equation (9) if errors in

X are considered as injection errors, we may consider the ensemble average Lo represent:

n infinite number of launch vehicles of the same type launched from the same location.

-7-



If the basic causes of injection errors are random in this ensemble, then statement (9)

irtay be justified,

It is far more difficult to justify equation (13) for we may need to consider an ensemble

as meaning the universe. It is perhaps better to consider the initial values as

estimates and the covariance matrix as confidence levels in these estimates, avoiding

the problems of defining the ensemble. This, in :Fact, will be how we will use these

quantities

,

The objective of the orbit determination problem considered herein is to find;

An algorithm for use in a given computer which processes the required tracking

data and provides an estimate of the position and/or velocity which is sufficiently

accurate for, e l time command and control purposes.

Factors which must be considered to this problem include

(a) Computer speed

(b) Computer memory availability

(c) Computer errors

(d) Tracking data availability

(e) Schedule of when the operating solution is required

as well as many other practical considerations.

Remarks

The factors given above are an attempt to state some of the practical considerations

which arise in any orbit determination problem. Theory is used to provide approaches

for findi-Zg a practical solution. By no means will this solution be optimal in the



theoretical sense. This is because exact mathematical models of all quantities,

as well as practical performance: indices which consider all the factors, are

not available.

17HEORETICAL CONSIDERATIONS

To obtain a practical solution of the orbit determination problem in any epecific

example, existing theory and practical experience is used to find algorithms for

the filtering. Known implementations will be briefly reviewed in order to show why

some form of dynamic model compensation is inevitably required. The algorithms

for estimation will be stated without proof since the theory on which they are based

has had wide publication. Before reviewing these algorithms, a few more h ndamental

definitions are required.

If the gradient of equation (l.) is taken with respect to X, C , and U we may obtain

a set of time-irarying linear differential equations

x	 F(t)x.(t)+ D(t) c _L D(t) u (t )	 (IS)

where

F(t) = V F(.X, C, U, t) I

i

X (') = X(t)

B (t) = V F(X, C, U, t)

C(t) = C(t)

D(t) = V F(X, C, U, t)

U(t) = U(t)

' Lower case letters are used as meaning small deviations from the corresponding
upper case value. That is, a vector Z is considered as Z	 Z	 z.

-9-
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Equation (19 ) is known as the variational equation and, since it is linear, the

general solution may be written in the form

t
x (t) = 0(t;t0 ) x(t0 ) + 0c (t; t0 ) G + j 0(t;T) D(T) U(T)dT

t
0

The transition matrix 0(t; t0 ) and the sensitivity to constant forces or control can

be found by solving

F (t)O	 4)(t0; t0 ) = 1

n

4^ c = F(t)4 + B(t)(1)	 ^ ( to ; to ) = 0

The integral term of equation (20) may be solved by considering u (t) as constant

over small time increments and using equation (22) in the form

^ = F(t) 0 + D(t) 1	 4? (t + nA; t + nA) = 0
U	 u	 u o	 0

Equation (23) will only be used for the "random" part of any unknowns in the forces

since constant forces may be represented by solutions of (22) .

It is usually convenient to consider an expanded state vector of form

X	 -- position and velocity

Z = C	 - constant terms in equations of motion

U 	 - constant forces

We may then write

t
(t) _	 ( t; to) z ( to ) +	 ^Z(t; T) D(T) u r (T) dT

t0

where u	 random forces.
r

(20)

(21)

(22)

(23)

(24)

-10-



The gradient of the measurement equation, (3) , is taken with respect to X and V

to find linear equations for the i-th measurement

yi=hix+giv+qi

where

hi — VX G(X, V, ti)

X(t) = X(t)

gi — vX G (X , V. ti )

V = V

We may desire to relate the vector of measurements to the vector, z o , at a fixed

epoch. This may be done by using (24) and (25) which we will define in the form

y=H zo+Gv+q

In (28) the vector of y may consist of measurements at different time points. The vector

z  can be at a fixed epoch or not, depending on how we formulate the filter equations.

This fact will be used in the algorithms described later.

As can be seen by referring to equation (28), it may also be desirable to consider

a further expansion of the state to include the measurement parameters, V. Then

* The random error in measurement is assumed to be small and therefore considered
to give a small random deviation from a noiseless measurement.

** The random variation of u (t) will be omitted here. If it exists, one may modify q to
include the effect.

R

a

(25)

(26)

(27)

(28)
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(28) would be written in the equivalent form

z
y= (H GO V 0 + q b H z 0 + q	 (29)

In the case where it is meaningful or necessary, we may write the equation for time

updating the covariance matrix Pz (t) in the form

P (t)- ^z (t; t0 ) P z ( t0 ) O 
z 

(t; t o ) + Ur	 (30)

The matrix Ur in (30) gives the added uncertainty caused by random forcing functions

it the time interval t - t .
0

The WLS Filter

One of the most widely used filters for orbit determination is the weighted least

squares (WLS) filter. In implementation, this filter is the same as the maximum

likelihood filter (ML) and no distinction will be considered herein.

The algorithm , as generally used,is written as an iteration equation in the form

Zn ^ 1 = Z
 + 

P -1 + H TQ -1 H	 En Q -1(Y - 
Yn	 o) + P 1 ( Z W Zd	 (3,L z	 —n	 n	 n	 z 

o	 o

Z + 4Zn	 n

The iteration may be terminated by various means of which the most obvious is when

41 Z  c E The vector E is set at a pre -determined tolerance level .

In equation (31) the partials H  are usually re -computed on each successive trial

so that th % linearization involved is about the trajectory (orbit) found by the preceding

trial.

-12-
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n('tX(t)	 X(t0 ) + J

t
0

X(T) dT
	 (32)

x

A

Equation (31) is given in the form where initial estimates of all the states, Z 

and the covariance matrix of errors in these estimates, z o , are assumed

available. If P 
_1 

is set zero and HTQ-1H is invertible, then if (31) converges,zo
an estimate of the state, Z, is obtained which is dependent only on the measurement

vector, X, Also involved for either case, however, are the assumed equations for

the models,

In practice the WLS filter is implemented either at a fixed epoch (fixed anchor point)

for the estimate, Z, or at an anchor point which shifts as later batches of data are

included. If a batch is defined as all the data from one pass of a given ground tracking

station, for example, then the moving anchor point might be taken as near the time

of acquisition of the spacecraft from the station. The anchor point could be made to

shift for each new batch and equation (30) used for updating the covariance matrix.

The moving anchor point WLS filter has obvious computational speed advantages over

the fixed anchor point system. Its disadvantages lie in the necessity of requiring P 

to be a meaningful quantity. This statement is made for a system designed such 	 0

that,once a batch is processed,the raw data in this batch is never reprocessed.

The Kalman Filter

The Kalman Filter is usually mechanized in a form which processes the measurement

at a given time point sequentially. The covariance matrix and the state are then updated

to the time of the next set of measurements.

The algorithm is conveniently stated in two parts:

1. Between measurements

-13-



P (t) = 0 P (te ) tT+ 	 Ur	(F33)

2, At measurements

Xam Xb +K (Y-Y)	 (34)

Pa = Pb - K H Pb	(35)

K = Pb H T (H Pb HT + Q)
-1
	(36)

In (34)-(36) the subscripts a and b mean after or before the measurement, respectively.

Equation (35) may also be written in the form

Pa [I - K H] [Pb JCl - HT KT , + KHQHT KT	(37)

The number of numerical operations in (37) is large by comparison to (35); however,

in (37) numerical errors should not cause the covariance matrix to become non-positive

definite [ Ill.

Alternate forms can be derived for (33) and (35) when the U r of (33) is non-existent.

For example, if one lets

WW T  ^ P	 (38)

then

W(t)	 4 W(to )	 (39)

i

-14-



and

Wb HT 1t Wb

Wa (t) = Wb ^ ..	
d

d = (HPHT + Q)I +—F—W v--ŴTT + Q

Equations (39)-(40) are only valid for processing measurements one at a time, This

formulation (38) to (40) is generally referred to as the square root matrix, It has

definite numerical accuracy advantages over the other methods [ 13 1 .

Many other variations are possible such as integrating a differential equation for

updating the P or W between measurements, etc.

As indicated in the discussion of the Kalman filter, no iteration is implied. There

are many different ways of implementing an iteration to aid in assuring that the

equations are used in a linear region about the desired solution.

The Kalman filter is normally used for onboard computations where computer memory

and speeds do not necessarily allow storage of a lot of past measurements. Iteration

is not possible in these applications and potential problems with the linearized equations

exist.

Batched Data Implementation

The Kalman filter may also be implemented in a form similar to equation (31). If

we let

z n	 cumulative deviation from Z 0 (t) for iteration No. n

Z - 00

(40)
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A = cumulative deviations as caused by the measurements

Then we write the equations iii two parts

1. Observation Processing

zxn +1 M zm 
+ Pin H (i~In P H + Q) 

_1 
YIn 

^ - H ( zm - zn )	 (41)

PM +I = Pm P  Hn (H11 Pm Hn + Q)-I H  Pxn	 (42)

m= measurement number, m j 1 . .. k

n = iteration number. Subscript n means evaluation for the trajectory

determined on the n-th trial.

2. Start of an iteration, in = 1

Zn^- l .^ 2n + z  - z 	 (43)

,.
z	

(44 )n + I	 zk 

Pm 	 P Z	 (45)
0

z - 4M

The logic in equations (41) to (46) is for incremental processing and accumulation of each

measurement contribution to the next nominal trajectory. In the WLS filter all measure-

ments are processed simultaneously.

(46)
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The Kalman formulation permits one to readily Implement a linearity test as described

below.

Let W = the three position elements of mz(mzn). The magnitude of w, I NV I 

then is the position deviation from the nominal trajectory at the m-th measurement,

By testing for and keeping

IWI <a R c

V	 where

R 
0 

= distance from central body

a = a. small tolerance number

one has a means of insuring the accuracy of the 4 matrix.

By testing for and keeping

Jw I < b R s

where

Rs = slant range vector to atracking station

b = a tolerance number

one has a means of insuring the accuracy of the H matrix.

In theory, the Kalman formulation for batch data processing, outlined above, should

give equivalent results to the WLS implementation for the case where P z is
0

AW

(47)

(48)
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defined, A possible advantage of the Kalman formulation is the ability to test

for possibilities of nonlinear effects early 
in 

the batch of measurements. Iteration

over these measurements to satisfy linearity tolerance is then performed before

proceeding to additional measurements. Matrix inversion is also avoided In this

mechanization. Studies are under way to determine whether or not some inherent

advantages of speed and convergence are possible with this approach.

DISCUSSION Or, PROBLEMS IN
REAL TIME ORBIT DETERMINATION

The previous section outlined some of the algorithms we have at our disposal

from theoretical considerations. In thc real-time problem we will inevitably desire

to minimize the number of un1mowns (state variables) in the formulation, This is

necessary from computational speed and memory considerations. Also, too many

state variables can cause potential difficulties, and time to review the implications

of each new solution is usually only available in post-flight analysis. For the balance

of this paper it will be assumed that these emsiderations lead to solving for position

and velocity vectors only. If such a constraint is imposed on.the number of state

variables, then it is easy to show that model err(? ,,r ^^, generally make it impossible to

find a solution for the position and velocity vectors which fits the actual data. This

can be seen by considering the WLS solution for initial position and velocity.

We have then assumed models

X = F(X I t)
	

(49)

Y = G (X, t)
	

(50)

-18-
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Equation (49) imposes a constraint, on the time history of the solution for x

if x 0 is given.

Equation (50) gives the functional relationship for computing the observation from
-N A

the of,-,timate of X. Tre real measurements obey reality rather than ( • 9) and (50).

Hence, if one uses equations (49) and (50) , a value of x for which the residuals
0

Y - Y are small and random about zero mean t over all time, implies there are no

errors In the model equation.

Since we are performbg a weighted least squares fit in this example, one can

hypothesize the typical residual behavior of the solution for errors in (49) and (00).

A pictorial representation is shoN%,n in Figure 1.

Dynamic	 Measurement

Figure 1. Characteristics of Residuals Resulting from Model Errors
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As shown in Figure 1, for a snort time arc, dynarnic model errors Lerrors in equation

(49)] will not prevent a solution for XO where residuals are essentially random with

zero mean. This can be seen by considering a Taylor series solution of (49), Let;

Xd = 3 position components at the beginning of a data arc. Then

A	 A
	 AA t - t 2

X (t- t0 ) - X  + 
Xo

(t - t o ) + u 2	 + ,	 ( 51)
4

A

A

In equation (51) X  and X o are free. Hence the constraining effect of the dynamic

model is not significant when (t - t 0) is 'mall.

The underlined terms of the infinite series (equation 51) are dependent on the dynamic

model; hence, errors in the dynamic me iel will become effective over long time arcs.
A	 ;

We therefore will not be able to find a value of XXand X o which fits, for example,

over a multiple puss. Dynamic model errors for data over long time arcs should

cause the effects shown in Figure 1b.

Measurement errors such as biases will also have only a small effect, for short time

arcs, as shown in figure 1c. Only when we deal with measurements of many different

types, over a short arc, should we expect to have biased offset residuals when measurement

model errors exist in processing. 'This latter results from the fact that no single
'%-:1

values of X  and X  can be selected which fit tnultiple measurements (more than 6)

in the presence of biases or other measurement model errors. This type of error, however,

is, in general, bounded. Hence, if we take a long data are over many stations, we can

expect these errors to cause residuals as shown in Figure 1d. Since the solution is

constrained to obey the dynamic model, measurement model errors will have less

and less effect on orbit determination accuracy as more data is processed.

-20-
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The real problem, of course, is comprised of all these effects. Dynamic errors may

have both periodic and secular effects on the residuals. Hence, Figure 1 can only

indicate trends to be expected. Also, in the real situation what is meant by short

are and multiple pass is ncit readily defined.

Figure 2 depicts general trends of the effects of measurement and dynamic nio^.4, errors

on orbit determination accuracy.

\.Lleasuremgnt

P	 Dynamic

w	 ^`

4
Total Time for all Measurements

Figure 2 Orbit Error Trends Resulting from Model, Errors

The figure is intended to indicate that dynamic errors cause an ever-increasing orbit

determination error as more data points, over a large time arc, are included. Measurement

errors have the opposite effect.

One would desire to have an algorithm which somehow gives the best balance between these

two effects. This will be called dynamic model compensation and will be discussed in

the next section. We should recognize, however, that both measurement and dynamic

model errors do exist and the resulting effect of the dynamic compensation can cause

the measurement errors to be dominant as far as their contribution to the orbit determina-

tion accuracy.
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DYNAMIC MODEL COMPENSATION

As was indicated in the previcus section, some means of preventing the orbit determination

errors from growing indefinitely is necessary. It should be reasonably obvious that one

way of preventing this growth is to totally remove or gradually reduce the influence of

past measurements in determining the orbit for current usage. Let us assume that

totally false measurements (outliers) caused by malfunctions can be removed. The

remaining measurements can then be trusted to give the theoretical value plus an

error term. It is reasonably likely that upper bounds may be placed on the error.

That is, the error which is caused by calibration, atmospheric effects, receiver noise,

and so forth, cannot be larger than some specified number. If this is the case, then

the error in the computed measurement should be no worse than this upper bound.

As an example, suppose we consider the measurement of the propagation delay of an

rf signal between transmittal, and reception from a spacecraft. It is reasonable to assume

that we can compute the two.-way range from this measurement and know the upper bound

on the error in this quantity. If the residual is greater than this error, one must

conclude that too much emphasis has been placed on past data in establishing the computed

orbit. The writer does not mean to imply that such "worst case" considerations are to

be used. These remarks are only made to give some reasons as to why we must impose

a reasonable degree of trust in the basic measurements or we will be unable to devise

any means of compensation.

Two different approaches are possible in obtaining a means of weighting out the influence

of past data in the determination of the current orbit. These both involve formulation

of the problem in a form where past data is included by using an a priori covariance

matrix which is associated with the a priori orbit. The two approaches are as follows:

1. Increase the a priori covariance matrix. Arguments for using this approach

are as follows
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Equations of motion which are invalid have been used to update the estimate

of state. One should therefore increase the a priori covariance matrix in

accordance with the errors involved in the time-updating of the estimate.

The difficulties in using this approach lie in defining the real error sources.

Their formulation can also become extremely complex. Hence, for practical

usages, '"It is perhaps better to say that pseudo-errors are introduced to

cause an increase in the a priori covariance matrix. These pseudo-

errors can be of two types:

a. random forcing functions

b. errors attributed to inaccuracies of constants in the equations
of motion.

2. Overweight the most recent data. In this approach it is also recognized

that the a priori covariance matrix may be overly optimistic.. This matrix,

however, is not modified on the basis of adding the effects produced by pseudo-

errors in the dynamic model. Instead, a non-optimal filter .algorithm is

adopted which attaches a greater significance to the recent observations

than the optimal filter does. The a posteriori covariance matrix is modified

to conform with the non-optimal algorithm.

Either of these basic approaches has many variations to suit any specific problem. Although

the philosophy is different for the two, they both should have the desired. effect of reducing

the error in the current estimate of the orbit.

Figure 3 shows the expected results with and without using compensation. Also shown

is the optimum solution which theoretically is attainable if modeling and computational

errors were nonexistent.

-23-



0

P
0

H
W

s

'I ime

Figure 3 Expected Trends in Orbit Error

Figure 3 is intended to imply that compensation, if properly applied, can give

smaller orbit errors than a mechanization which assumes that the dynamical model

is perfect. It also should be recognized that improper application of compensation

can give poorer results.

Dynamic Model Compensation for Sequential (Kalman) Falters

The examples which will be given here for model compensation are for the approach

which over,,.eights the most recent data.

If we consider the sequential filter given by equation. (32)-(36), then to implement this

approach we consider modifications of the equations for treating measurements (34)-(36).
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One such modification is shown below. This modification is only valid for processing

observations one at a time.

X 
	 Xb + (P HT + H QK/HH T ) ( Y - Yb )/(HPHT + Q)	 (52)

K in equation (52) is a control gain.

Now assume linearity prevails and therefore

A	 A

H X  = Y  = the computed measurement after the observation

Multiplying (52) by H gives:

A	 HPHT + QK
H Xa = H Xb +	 T	 Y - Yb

 (
HPH + Q

Note in (53) that for K = 1 the estimate of the observation is equal to the observation.

Hence, the error in this component of the estimate of state is no worse than the error

in the measurement. For K = 0 we have an optimal filter.

When processing mixed type measurements, for example range, azimuth, and elevation,

the control gain, K, shoLdd be different for the various observations, One reasonable

choice for this example is

K = Kr for range

2
K = Kaz or Kel /(range from station) for azimuth and elevation measurements

(53)
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Kr, Kaz , and Kel can all be different. Such a choice reduces the influence of angular

measurements in the non-optimal part of the filter as distances from the tracking

station increase,

The covariance matrix of errors in 'Xa is found by taking

E (X - X a ) (X - Xa )T = 
P11

This operation applied to equation (52^, gives

Pa	 b= P - P b	 b^HTHP (HFib HT + Q) + K2 Q 2 HT H/'(HPb H T + Q) (HHT)2

(54)

Comparison of equation (54) with equations (35) and (36) shows the degradation in

accuracy from optimal filtering caused by the control, gain, K.

Before proceeding further it is relevant to consider a simple example using this non-

optimal filter. This example is given in reference [2]. Let the actual and assumed

models be given by:

Actual Model
	

Assumed Model

x	 1 = scalar	 X=0

Y X
	 y=X

Let Q=1.

P ( 0+ ) = Q
	

(after first measurement)

x(04-) = 10
	

(after first measurement)

x(0+) = x(4+)

A
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Figure 4 shows the results for 3 values of K,:

20
• Observations = y	 0

d	 xx
10	

State estimate after observation
e-K = 1
O.K = . 5
.*K = 0 (Kalman)

0	 2	 4•	 6	 8	 10

t -► 	 .

Figure 4. Example Results Using Model Compensation in a Kalman Filter

The error in estimate of x for the Kalman filter grows indefinitely with time.

The growth arises because we have assumed x (t) = a constant, while in reality

x (t) = a constant + a time-dependent term. The modified filter (K ^ 0) has an

error growth between measurements. however, if K = 1 the error in x after the

measurement is included is no greater than the measurement error. For K < 1,

the error in estimate, after each measurement is processed, reaches a constant offset

from the measured value. Hence, use of this non-optimal filter tends to lock the

estimate of state to the recent obser;rations.

t
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Another advantage of this in, odr ification, is that errors in defining PO (t0 ) and Q

are not as significant in causing errors In the estimate as they are in 
the Kalman

filter,

Equivalent results to those given in Figure 4 could also have been obtained by introducing

a pseudorandom forcing function. This can readily be seen since random forcing functions

cause an added growth to P between measurements. Prior to including the n-th measurement

P n (-) = P n- 1 + Ur

If Ur were made extremely large compared to Q then the results corresponding to

K = 1 of Figure 4 would be obtained.

Another modification (see reference [2]) which might be used is to let

A	 A	 T	 A	 TX a - X b + S (Pb H )(Y - Y)/(Hp b H + Q)	 (55)

- (2s -	 T 	R T + Q)	 (56)P	 Pb	 sip H H Pb/(HP.a 	 b  

The scalar s of equations (55) and (56) is made a function of available quantities

such that it is, in general, larger than unity. Hence the more recent measurements

are weighted more heavily than in the optimal filter ( s = 1).

U, for example, s were selected as

s = 1 + KQ/HPH T	 (57)

Then for K = 1, the computed value of the measurement, HX a ) after the measurement

is includedis
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A	 A	 A

R X a = H Xb + Y- Y = Y

This result is identical to that given in equation (53) for K = I .

The writer is not aware of any studies of this modification of Kalman filtering.

The algorithm. (56) may be factored to obtain a modification of the square root matrix

implementation [equations (38)-(40)]. Hence, this type of model compensation in

square root mechanizations is permissible. The pseudo-random forcing function

method or equation (54) appear to require too many added calculations to make them

useful for the square root implementation.

Before leaving the subject of model compensation for sequential Kalman filters, it is

desirable to consider the general characteristics shown In Figure 5.

(58)

Number of Observation 3

Figure 5. General Characteristics of Model Compensation

If model errors do not exist and random forcing functions are negligible, the error in

the optimum solution asymptotically approaches zero as the number of data points

goes to infinity. Any of the compensation schemes discussed thus far for the same
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idealized situation gives the characteristic behavior shown in Figure 5. That is,

the orbit error asymptotically approaches some finite value which is dependent on the

control gains used in giving a higher weight to recent measurements.

This characteristic suggests the idea of using acceptable error tolerance levels as

a means of defining a model compe isation scheme for processing batched data. Thiri

idea will be investigated further in the next section.

Dynainic Model: Com.peasation for Batched Data Mechanizat ons

As was previously mentioned, batched data processing is a method where, in general,

a subset of the total number of measurements is simultaneously processed to determine

the estimated orbit, The subset or batch will be assumed to be defined such that the

beginning points of batches of data occur sequentially in time, It will be assumed that

the processing of batches will be carried out in a sequential. manner, A further

assumption is that once a batch is processed its influence on any subsequent batches

c	 will be contained in the estimate of state and the covariance matrix of errors of this

estimate,

No generality of the subsequent material is lost if we also consider a moving anchor

point implementation. That is, the estimate of state and the covariance matrix of

errors in estimate of this state are always updated between batches. The updating

is to some point close to a defined reference time of the new batch of data.

With the above definitions, the moving anchor point batched data filter is very similar

in operation to the Kalman filter. First, a batch of measurements is processed where

* The end point of the data within a batch may occur at a later time than the beginning
point of the newt batcn.. Factors such as the desire to include all measurements
available may, however, define the batch as all data from all sources over a given
time interval.
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the estimate of state Is referenced to a fixed time point. The covariance matrix of

the errors In this estimate is also calculated. Second, the estimate of state and

the covarlance, matrix of errors in this estimate are updated for processing the next

batch of measurements,

Dynamic model compensation using pseudo-random forcing functions or pseudo constant

uncertainties in some equation of motion parameters is readily implemented. This

implementation effects an added growth of the covariance matrix during the time

propagation.

The data in the newest batch is thus given a higher weighting in calculating the new

estimate of state than woad exist if the pseudo-variables were omitted. This method

is fundamentally sound if indeed one can define the correct growth of the covariance

matrix. Thai is, the pseudo-error sources are real. This is one of the difficulties

with use of this method, Control gains have to be ,selected which provide a realistic

growth of the covariance niatrix. Also, since the batch of data spans a given time
AinA-e,rval, such an implementation is an approximation. If the pseudo-var;,:. ,:.tiles were

real, then weighting of measurements within the batch must also be effected.

Let us consider the alternate method wilich overweights the data in the current batch.

The exact method used will depend ca the basic algorithm used in processing the

data. If, , for example, the Kalman formulation for batched data were used, then the

modifications discussed in the previous section are applicable. An implementation

of this type is under study; however, no results are available at this time.

It is the intent here to review the WLS mechanization equations and to show one way

by which a reasonable modification can be derived.
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E (X - Xk,)(X - T	 I-1.
Xk) - Pxk 

_ 
xo Hk 9-1 4 (60)

r

The unmodified WLS algoritban for estimating position and velocity is

X ^ = x * P " + H i a-1 H
	

- ( - 
Y) * P 

^`(	 -	 )

n	 n	 x	 -n	 --n	 —n	 n	 o o	 n0

In equation (59)

Px 
1 describes the information about X  , the a priori estin.,Ae of state,

0

Hn ^Q Hndescribes the information contained in the measurement vector, Y,

if Px
-1 
 is correct, no model errors exist, and the solution of (59) converges, then the

0
covariance matrix of errors after processing the batch is

(59)

The quantity, k, in equation (60) means the k-th trial where convergence was attain/ .

The basic philosophy of trusting the data tells us that we should in some manner force Y

to have a stronger .influence or. X  than that given it in (59) Theoretically, this type

of modification will also give a larger value of P xk than indicated by equation (60) .

In using pseudo.-variables we would compensate for both the above factors by making

P^	 te,I smaller, Instead of using pseudo variables to cause this reduction in P 1
o	 'o

let us example a procedure based on the idea of acceptable tolerance levels.

* A linear system i3,ust be assumed for this derivation. Equation (60) is an
approximation for the real situation.
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It appears reasonable from engineering considerations that one should be able to

define a ;level of accuracy which is adequate for current command and control

purposes. If the measurements it the current batch give a sufficiently accurate

orbit, then there is no need to let X o exert any influence on Xk . If, however, the

current batch only gives sufficient accuracy in certain components of X  , we must

use some of the information contained in X 0 to attain, 11 passible, the level of

accuracy desired. These considerations lead to the following steps for a modification

of equation (59).

1. Compute H _9 H and HT Q -1
(Y - Y)

2. Modify P	 P	 such that (P 1 + HT Q 1 
H) 1 

satisfies the tolerancex	 'M	 m	 '- -
0

levels

3. Compute the solution for X using equation (59) with P -1 replaced by P -1x	 m
0

4. Compute the solution for P using (60) with P 1 replaced by P
x	

x.
1^	 o

5. Update to the next batch of data.

Step #2 in the above sequence presents a problem.. The problem is in the definition

of tolerance levels such that a shriple algorithm can be used to carry out the calculations.

This problem has not been solved.

The subsequent paragraphs will discuss some material which, it is believed, is relevant

to finding a useful algorithm.
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To gain some insight on the problem, consider how pseuds variables effect a reduction

in P -1 during a time update,
0

P
0
 (t)= 0P(to) 0 T + Ur ^ Pn ( t ) + Ur	 (61)

If we write U in the formr

n
Ur = F aT b  a 	 (62)

i=1
where

a. = a row vector
1

b. = a scalar1

And if we compute

Pn 1 (t) = 4 T	 P -1 ( to )	1	 (63)

Then we may cap., Mate

-1

Po 1(t) = [ Pn + Ur ]	 (64)

by

Pk 
-1(t)	

Pk` 1 _ Pk 1 
a. 

( ak Pk - iak + 
1/ b k)- k Pk 1	 (65)

where

k = n, n-1, •	 • • 1

and Pn 1 is given by (63)
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The matrix identity

T "	
-

[ A + v s v 3 = A - -A v (v^	 -	 -A v + X/s) v A (66)

where

v =, a column vector

s = a scalar

is used in equation (65).

Equation (65) illustrates the manner in which pseudo-random forcing functions reduce

the information matrix for the a priori estimate of state. In this instance, the vectors

al, and scalars b  are defined by the manner in which the pseudo forcing functions enter

the equations for a time update.

As one step in solving the problem given in ►step #2, equation (66) provides a general

means of removing information as is required in forming P -^ from P -^ . Whatm
we need to investigate is. how to define a set of vectors, v  , and scalars, s i , such that

the desired amount of information is extracted from P -1 , It appears reasonable to
xo

select the vectors v. in accordance with
J

vT

vk ~
0 k

J

vjT

Vic I i	 f

(67)
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Since we are dealing with a 6-space (3 position components and 3 velocity components),

6 unit vectors, given by (67) ', will be selected.

The unit vectors can be arranged in a transformation matrix

6x6
T	 E v1 v2 v 3 , .. v6 1 	(68)

If we perform the operation

P 	 T C Pn + HT Q-1 H ] -1 T T	 (69)

then the diagonal elements of P are variances of the quantities

N	 ^	 ^

W = W - W	 (70)

where

T X	 (71)

We will consider the w space as the coordinate frame in which we wish to express

tolerance levels of orbit accuracy. This might, for example, be selected as a local

tangent plane defined at the anchor point. T, of course, could be the identity matrix.

In the latter case, we would select tol, ranee levels in the frame chosen for the

covariance matrix.

The remaining factor is how to select the scalars s i , One possibility is outlined

below.

Let

B	 HT Q-1 
H	

(72)

e
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If we consider the operation

0

T	 --1 T
Bl+, i Bl 	 Bl Vl (vk Bk Vk)	 VI{ Bk	 (7 3 )
k=1. 6

B1 = B

then we note that the matrix B may be expressed as a sum of vector outer products,

If we let

b  _ Bkvk	 Vk Bk^'k	 ( 7^)

then

G

(	 )B	 IZ 1 bk bk 	'7 5

One note in passing is that if T = I in equation (66), then if the vectors b are ordered

as shown in (76) , a triangular matrix is obtained

M - [b 1  b2 b3 . . . b6 1	 (76)

In this instance

B M MT
	

(77)

Hence, for this special case, the operation indicated by (73) and (74) provides a

simple means of obtaining a square root matrix for an arbitrary positive definite

symmetric matrix.

* The elements of the matrix above the diagonal are identically zero.
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A further note of importance is that v^T B vk mus t, be a positive number, if zero

(or some small negative values) are obtained, then the rank of the matrix B is less

than 6, Since B represents the information rr atrix in the current batch of data, we

have to add some .information about the a priori estimate in this case in order to

have a unique estimate of state. For this example, Pm of step #2 cannot be zero.

These factors suggest the following algorithm for defining Pml

Let

C  Lolerance levels on the quantity > k where

_ T	 T
dk vk Bk vk + vk 'k v k

That is, it is desired that

dit 
z 

^C

We define the quantity A  as

-1	 -1	 1 -1 'r	 r-1Ak - gk vk (vk Pk vk + sk) v  Pk

and

-1 _	 -1

Pk+1 Pk ^ Ak

«

(78)

(79)

(80)

(81)
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Using (78)-(80) we determine the scalar, sk , so that

( vk T Pk 'k,)2 ( vk ^ P	 ak vk +	 sk) + vk 13k v k	 k	 (82)

If S  from (82) is negative but

I 1 / sk 	 v1T Pk 
1 

vk	 (83)

we set 11si = 0 and define Ak and Pk +1 using equations (80) and. (81), This corresponds

to using all the information in the a priori estimate about the v  vector direction;

If s  from (82) is negative and

T	 -^.11/sk I > vk Pk vk

we set

A  = 0 and omit equation (81) .

This corresponds to sufficient information in the current batch for defining the v 

vector direction.

If sk is positive,then we use Al, and Pk defined by (79) and (80) respectively. This

corresponds to using some of the information about the v  detection in the a priori

estimate.
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Following these steps we define

G

P _ = L 
A M kw1

The algorithm outlined above does not make a direct test on the covariance matrix

of errors after the batch is included. Instead, tests are made about the information

matrix. A similar effect to that given in equation ( ,5) is obtained, The level of

information reduction in the a priori matrix is, however, governed by considering

the information in the batch of measurements.

The procedure outlined above for dynamic model compensation in WLS filters has

not, to the writer's knowledge, been tested. Intuitively speaking, some advantages

over the method which uses pseudo forcing functions are apparent. The primary

advantage is that the amount of information extracted from the a priori matrix is

governed by the information in the batch.

CerUdi my :m k^ay practical problem there will be difficulties associated with the

assignment'; of the tolerance levels, ck' Also, this is only one of many algorithms

which could be derived based on the same principles.

A more thorough investigation is obviously warranted before any definitive conclusions

can be given.

CONCLUDING REMARKS

One of the fundamental problems of real time orbit determination the retention

of accuracy in the presence of mathematical model errors, has been reviewed. This

review has shown the desirability of classifying the mathematical model errors

in the following two types:
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1. Dynamic (errors in the equations of motion)

2. Measurement ( errors in the computation of the estimated measurement)

The dynamic model errors have been shown to cause a divergence from error analysis

predictions in the errors iii 	 estimated orbit. The divergence is displayed by the

inability to find an orbit which fits the measurements over long time arcs.

The measurement model errors have the opposite effect on orbit determination accuracy.

That is, increasing the length of the data are and the number of measurements reduces

the errors in the estimated orbit. As a result of these factors it has been shown

possible to suppress the divergence caused by dynamic model errors by introducing

dynamic model compensation. This compensation imposes a higher influence ol:' the

most recent measurements in the data reduction process.

Dynamic model compensation can be derived by either of the following methods:

1. Introduction of pseudo-variables which cause the covariance, matrix of

errors in estimate to grow with time.

2. Introduce a non-optimal filter which deliberately weights the most

recent measurement heavier than that weighting obtained from optimal

filter theory.

Algorithms for processing data by both Kalman and weighted least squares procedures

have been outlined. The algorithms depend on both the type of filter (i. e., WLS or

Kalman) and the method used in obtaining the dynamic model compensation,

11
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Method (2) above appears to give algorithms which provide advantages over Method (1).

The advantage lies In the fact that the Wformation in the most recent data is used to

determine how much past data Is degraded. Li the use of Method (1) this degradation

4Is an a priori set val nr; and hence can also be an additional model error. That is

the settings can be too large or too small unless they are made a function of the many

variables of a tracking system.

Method (1) has the fundamental advantage of providing an optimal filter if the

statistical modeling of the pseudo-variables are models of the actual error sources.

The use of acceptable tolerance levels for setting non-optimal filter control gains

appears to have both theoretical and practical merits in state estimation problems.

From practical considerations, there is always a. finite level of accu,-,acy which is

adequate for the particular problem. From theoretical considerations ., this modification

hi the performance index opens the field for a new approach in filter design. It appears

reasonable to believe that filters designed with this new approach would be more

appropriate for practical problems than those derived with current optimal filter

theory.

The use of tolerance levels tends to remove some of the "black magic" in going from

theory to practice. The tolerance levels must be set in any practical problem and the

definition of appropriate values will depend on experimental results, In this sense,

it is no better than any other compensation method. The significance lies in knowing

what experiments need to be made. A methodical rather than pure cut and try approach

for conducting the experiments therefore appears possible,

The author would like to emphasize again that the material in this paper is not applicable

to poste-flight analysis or more generally to the model identificaion problem. Improvements

0
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in mathematical models and Improvements in theory for solving such problems are

definitely needed. The dynamic model compensation allows one to live with existL-qg

mathematical models It the attainable accuracy Is sufficient. Advanced missions

invariably demand increased accuracy, which justifies both Improvements in instrtu-nenta-

tion and impovements in data processing techniques.
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