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Introduction 

Vector criterion optimization problem: ar ise  when 
* -  several optimality cri teria a re  relevant to a physical situa- . - .-. - .c_ . . - 

tion and their relative importance is not obvious. 
formulation of such a problem was  give? by the economist 
Pareto in 1896 (l), - and since then discussions of vector 

operations research and, more recently, in control engi- 
neering. References (L), (?), (s), (z), (i), (L) form a re- 
presentative sampling of the related literature in  these 
fields. 

In this paper we extend some of the necessary con- 
ditions and theorems on "scalarizationI1 (i. e,  , the conver- 
sion of the problem into a family of optimization problems 
with a scalar criterion), which we gave in (7)  - for problems 
defined in Rn, to linear topological spaces. It wi l l  be ob- 
served that our derivation of necessary conditions follows 
the well trodden path established in  (8), - -  (9), (10). - 

The first 

I_ valued optimization have kept reappearing in economics, , -- 

c FSTI 
-+i,c, a 
N1,E rlll 
- _ _  - -~ 

The problem of scalarization is very important, 

_I . . ' *  

. . . . . .  .. -. .. . . .  . -. ..... y - . . . . . . . . . . . . .  
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since whenever scalarization is possible, standard non- 
linear programming algorithms become applicable. We 
concentrate on scalarization by weighting the components 
of the vector cost with strictly positive coefficients into a 
real  valued function, since this represents the physically 

.. -. - most meaningful case, Our major result in this a rea  i s  I ,  - 
theorem (4), for which we give a proof8suggested by Prof. 
H. Halkin-of University of California, San Diego, and which 

- -  
. . .  

is shorter than our original proof in (7) and (11). 

I. 

I - 
- -. - The Basic Problem and Necessary Conditions 

Let E , where s is a positive integer, be the s- 
& S 

dimensional Euclidean space with the u s ~ a l  norm topology. - d , ! ' S $ .  

Let X be a real, linear topological space; let h :x 3 Ep and 
r :%:Ern be continuous functions, and let R be a subset of3f. 
Furthermore, suppose that we a r e  given a partial ordering 
in  Ep with the property that for every y in  Ep there exists 

center. y a,nd radius E > 0 such that every jieB(~0, y) satis- 
fies y* 

Definition 1: We  shall call the index ?et J(y) and the 
ball B(E*, y), defined above, the critical index set  and the 

Examples: Suppose that y1 < y2 i f  and only if  y1 i i  < y2 for 

i = 1, 2, . . ., p, then we see that J (y)  = (1, 2, . . ., p} for 

. .  

an index se t  J ( y ) C  (1, 2, ..., p} and a-ball  B ( E ~ ,  y) with . _ .  

y' for all  ieJvy), i f  and only if 7 4 y and -- 
.~ - 

critical neighborhood for the point y, respectively. . a 4 -  

- 
all y EEP. Again, suppose that p > 1 >nd y1 .( y2 if  and 
only if Max{y; li = 1, 2, ..., p} < Max(yi = 1, 2, ..., p) .  
Now J(y) $ (1, 2, . . ., p} and i t  
to point in EP, 

cas t  in the following standard form. A 

Basic Problem: Find a point x i n x ,  such that: (i) E 52 

h(x) 4 h(2) implies that h(&) 4 h(x). 

u-.. 

. .  
~ -. 

seen to change from point 

The problems we wish to consider can always be 
.I- 

and r(2) = 0; (ii) for every x in st with r(x) = 0, the relation 

a point to be a solution to the Basic- Problem, we  intro- - .  

\ ?  

A s  a f i rs t  step in obtaining necessary conditions for 
_ .  

duce "linear" approximations to the set R and to the con- 
tinuous functions h and r at ;. 
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* 
Definition 2: We shall say that 

is a conical approximation to the constraint set  S2 at  the 
point ;E S2 with respect to the functions h and r, i f  there 
exist continuous linear functions h'(G):3(:+ Ep and r l ( G ) :  

+.Em such that for any finite collection 0. {xi, x2, . . , xk} 
of linearly independent vectors in C(x ,  $21, there exists a 
continuous 0. map rz from E s 4 co {Ex1, z-xz, . , , E x-k 1 I into - x ,  for each E, 0 < E 1, and continuous functions Oh 
x --+ Ep and or, X- Em, which satisfy (l), (2), ( 3 )  and 
(4) below: 

, E '  - 

(loh, &(EX) / / E  3 o as  E + o uniformly for X E S  

[[or, &!EX)[I/C. +. o a s  E -+ o uniformly for  X E S  

(1) 

(2)  

h(G f PEM) = h(G 1 t hl(G )(x) t oh, hx), 

fo r  all x EES, 0 - -  < E < 1 (3 )  

for all  x EES, 0 < E < 1 - -  
\ -  

* 
Theorem 1: If x is a solution to the Basic Problem, 

i f  C(2, S2) is a conical approximation t'o S2 at  2, and if  
J(h(2)) i s  the set  of critical indices f o r  h(;), then there 
exist a vector t . ~  in Ep and a vector q in Em such that 

(i) pi < 0 f o r  ieJ(h(G)) and I .  pi = # O  for  iEy(h(2)); 
(ii) (p,?) f 0 ;  

(iii) < p, hf(G)(x) > + <qI rf(G)(x)> - < 0 for all XE C(2, Q), 
where hl(s) ,  r1(2) a r e  the linear continuous maps appearing 
in the definition of C(G,C?). 
Proof:  Let be a solution to the Basic Problem. Let 
J(h(2)) and B(c0, h(2)) be, respectively, the critical index set 
and the critical neighborhaod of h(g) in Epo 
the cardinality of J(h(2)) and let f, f l ( G )  be continuous 
functions f om 
fl$)(x) = f 1  (2)(x), , ., f'q(fZ)(x)), where fJ = hlJ, f'J(2) = 
hi  J(x), with i s  E J(h(x^)) fo r  j = 1, 2, . . ., q and i, > i p  when J 
LY > p. Now let 

Also, let q be 

into Eq defined by f(x) = (ff(x), .. .. , f (x)),  q 
I 

-- . . - .  



MATHEMATICAL THEORY OF CONTROL 

A(;) = (YE EqIy = fl(G)(x), XE C(l,  s2) }, (5) 

Examining (i), (ii), and (iii), we observe that i f  we 
define pi = 0 for iES(h(f)), the complement of J(h(G)) in 
(1, 2, , . . , p 1, then the claim of the theorem is that the con- 
vex sets K(x) and R a r e  separated in Eq X E", 

Suppose 
that K(G) and R a r e  not * separated in Eq X Em. Then, 
(I) The convex sets K(x) and R a r e  not disjoint, i. e., 
R n K(G) $ 9, the empty set. 
(II) The convex cone B(2) in Em contains the origin'as an 
interior point and hence B(&) = Em. 

Statement (11) follows from the fact that i f  0 is not 
an interior point of the convex set  B(G), then by the sepa- 
ration theorem (12), there exists a nonzero victor qo in 
Em such that 

We now construct a proof by contradiction, 

- 

< T ~ ,  z> I < o for  all  z E B(;). (9) 

Clearly, the vector (0 ,  qo) in Eq X Em separates R from 
A(;) X B(G) and hence from K(G), since K ( 2 ) C  A(;) X B(Z), 
contradicting our assumption that R and K(G) a r e  not 
separated. 

ior  of B(2) we can construct a simplex 2 in B(g), with 
vertices zl, z2, .  . ., z 

Since the origin in Em belongs to the non-void inter- 

such that 
(i) 0 is in the interior of X ;  

mtl' 

A (ii) there exists a set  of vectors (xl, x2,. . ., Xmtl  3 
in C(x, S2) satisfying: 

A 

(a) zi = rt(x)(xi) f o r  i = 1, 2, , . ., m t 1; (10) 
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(b) Pl(x) E((Q - G) n N) for all x E co(xl, x2, . x 1 (11) mt l  

where P 1  is the map entering the definition of a conical ap- 
proximation and N is a neighborhood of 0 in such that 
h(& t N) C B(co, h(Gl), where B(co, h(G)) is the critical 
neighborhood for h(x). (Clearly, such an N exists since h 
is continuous). 

-. - 

( c )  yi = ff(G)(xi) < o for i = 1, 2, . . ., mt1. (12) 

Let I ,  12, . . ., Im be any basis in Em, and let . 

Z:Em -Em, X : Em +x be linear operators defined by 
zq = (Zi - Zmtl), x-ei = (Xi - xmtl), respectively, with 
i = 1, 2, . . ., m. 
2, . . , 
2 is nonsingular. Let Z- l  denote the inverse of Z .  

from 22 into . the map z +XZ-l(z - Zmtl)  + Xmt l  
co{xl, x2, . ..., x .  } is continuous. m t1  

For  0 < CY < 1, we now define a continuous map G 
from the simplex; X into Em by 

Since 0 E int 23, the vectors (zi - zmtl), i = 1, 
. are. linearly independent and hence the operator 

Clearly 

CY 

(13) 
-1 

GQ(4z) = r(2 t P CY (CY XZ ( z  - z m t l  ) +"xGtl)) , 

where Pi'is the map specified by Definition 1, 

(13) becomes 

* 
Since r(2) = 0, r'(2) X = Z, and rl(x)(xmtl) = z 

mtl' 

( 14) 
-1 _. . _  * 

mtl)*  G ( Q Z ) = U Z + O  ( Q X Z  ( z - z  ) + O X  
Q r m t l  

It now follows from ( 2 )  and Brouwer's fixed point 
such that for theorem (13) that there exists an ct0 c (0, l] 

every C Y E  (0, cy01 we can find a zCY €23 satisfying G,(a z 
Since by' construction 

- 
= 0. 

there exist by (1) a1 > 0, a2 > 0, . , , , CY - > 0 such that - _  
9 

r 
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cre(0,  ai], and i = 1, 2, ..., q, (16) 
a. 

Let rx*’*be the mizimun of {ao, cr , . .I, Q } , and let Z*E ’c 

+a xmtl) is in s t ,  r(x*) = 0, h(x”) 4 h(G), and h(2) -t? h(x’.), 
which contradicts our assumption that E, 
Hence the theorem is true, 

satisfy * G cr +:(cr*z’) = 0. Then, x* = x t ~,*(cu*XZrl(z*- ZrntJ) 

i s  a solution. 

11. An Application to Optimal Control 

We now illustrate the theory developed in the preced- 
ing section by obtaining a Pontryagin type maximum princi- 
ple for an optimal control problem with a vector valued cost 

-- ___ 

function. 
The Optimal Control Problem: 
Given a differential system 

n Let z = (y, x), with YE E‘, X E E  . 

. .  d*) = F(x(t), u(t), t c  [to, tf] ,- 
dt 

where u(t) E Em is the control and F =(c, f )  is a map from 

u and continuously differentiable in x. Find control G(t)  

that 
(i) For  t e  [ to, tf] , e is  a measurable, essentially bounded 
function whose range i s  contained in an arbitrary but fixed 
subset U of Em, 
(ii) 
(a) E ( t  
and (by g(;(tf)) = 0, where g : En -+ 

for all x satisfying g(x) = 0. 

z(t), t E I  to, tf] , satisfying (i) and (ii) above, the relation 
y(tf) y(tf) implies that y(tf) = g(tf)* 
form of the Basic Problem, we take 
- sp+n  = 3 x s x . .  .x 3 , where 3 is the space of a l l  real  
valued functions on [to, tf] , which a r e  either upper o r  lower 
semi-continuous a t  each point fx [to, tf] , with the pointwise 

x ~m into E P + ~  (c(x, u) 6 EP, f(x, u) E E ~ ) ,  continuous in 

and corresponding trajectory g(t)  determined by (17), such . 

The following boundary conditions a r e  satisfied: - 
= z = (0 ,  xo), where 2, is a given vector in En, 

is a continuously dif- 
. _ _  

ferentiable map whose Jacobian -&x’ a (x, has maximum rank 

(iii) For  every control u(t) and corresponding trajectory 1 -  

To transcribe the optimal control problem into the L L  

to be the product space 
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topology. We define S2 to be the set of all absolutely contin- 
uous functions z = (y, x) from [t tf] into EPtn, which for  
some u satisfying (i) above, sat isfy the differential equa- 
tion (17) for almost all t €[to, tf] , with z(to) = (0, XO]. Fi- 
nally, we define h(z) = y(tf) and r(z)  = g(x(tf)). It is easy 
to show that both h and r a re  continuous. 

Suppose * the control G(t)  and the corresponding trajec- 
tory z(t) solve the optimal control problem. To construct 
a conical approximation c ( ~ ^ , Q )  to a, we follow L. W. 
Neustadt's derivation ( 8 ) ,  which was based on a utilization 
of the cone of attainabiEty given in  (13) by Pontryagin et  al. 
Let I C  [to, t f ]  be the set of all  points t a t  which 6(t) is 
regular. 

fies the linear differential equation 

9' 

._ _- 

Let G(t, T) be the (ptn) X (ptn) matrix which satis- 
- - - 

for almost all t r [ t o 9  tf] with @(T,T) = Iptn, the (ptn) iden- 
t i ty  matrix. 

For  any S E I  and V E U  we define \ -  

(19) 
.-  . \ foY s - -  t < tf 

and 
k 

C(%Q) = (6  2 € 3 €  16 z(t) = 1 a. 62 (t) Y 
1 s., v. 

1 1  
i= 1 

('1, '2, . Sk} c 1, ("1; v29 0 9  Vk} '3 and 

CY.'> 0 for  i = 1, 2, . . , , k, where k is arbitrary finite} . 
Finally, for every 62  = (6y, ~ x ) ^ E  )f , we define 

It now follows from theorem 1 that there exist a vec- 

(20) 
1- 

.- - 
h'(G)(6z) = 6y(tf) and r'(g)(6z) = (g(s(tf)/ax) 6x(tf). 

tor p - < 0 in Ep and a vector q~ E , (p,q) $ 0, I such that 
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.- 
Substituting for 6z(tf) from (20) into (21) and making the 
usual identifications, we obtain the following maximum 
principle. 

ing trajectory g(t)  = (y(t), G(t))solve the optimal control prob- 
lem, then there exist a vector + < 0 in Ep and a vector 
valued function $2 : [to, tf] En, with (ql, +2(t)) f 0 such 
that 

Theorem 2': If the control G( t ) -  and the correspond- 

~ 

L. 

(iii) for every V E  U and almost all t c  [to, tf]  , 

111. Reduction of a Vector-Valued Criterion to a Family 
of Scalar-Valued Criteria 

We now examine the possibility of solving the Basic 
Problem by weighting the components of the vector cri ter-  
ion function into a scalar criterion, thus-reducing. the prob- 
lem to a family of scalar valued criterion problems. The 
weighting common in economics and in engineering is with 
strictly positive weights only. However, we shall also con- 
sider the degenerate case in which some of the weights can 
be zero. 
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In this section we restrict  ourselves to the partial 

yl 4 y2 

the critical index set J(y) is the 

ordering defined as-follows: Given yl, y2 in Ep, 
i f  and only i f  y; < y i  for i = 1, 2, . . ., p. With this ordering, 
for any vector y i n  Ep, 
s e t  (1, 2, . . .) p} 

In order to simplify our exposition, we combine the 
constraint set  Q with the set  {XE I r(x) = 0 )  into a set  
A = s1 {xe X Ir(x) = 0 )  I 

finding a point x in  A such that for every x in  A, the rela- 
tion h(x) < h(g) (componentwise) implies that h(x) = h(G). 

denote by P ( h )  the problem of finding a point ^x in A such 
that (X, h(2)) < <A, h(x)> for  all x in A. 

( X l Y  ...) Xp) in Ep such that Z= X1 = 1 and X1 > 0 for  i = 1, 2, 
* . . ,p ;  let  

Definition 3: We shall denote by P' the problem of 
A 

Definition 4: Given - any vector X in  Ep, we shall 

Definition-5: Let A be the set of all  vectors A =  

be the closure of A in  Ep. 
We shall consider the following subsets of : 

L =  {X € A I  x solves P} (25) 

M = { x E A I  x solves P(X) for some L E A  } 

N = {XE AI x solves P ( X )  for some X e K  } . 
(26) 

(27) 

Remark: It is trivially verified that M is contained in L and 
in N. Furthermore, i t  is easy to show by example that if h 
is a continuous function, then the closure of the set  M is 
contained in the set  N and that this inclusion may be proper. 
( s ee (  11 ). It can also be shown that (see( l1))  if for each 
A d  either P ( A )  has a unique solution or  e l s e  it has no solu- 
tion, then the set  L contains the set  N. 

Theorem 3: Suppose that h i s  a convex function 
(componentwise) and that A is a convex set. 
contains the set  L. 
Proof: 
problem P. Let 

Then the set  N 

Let x be a point in L, i, e., x is a solution to the 

1 2  P i  i i 
A = { a = ( ~ , a ,  ... a )  I h ( x ) - h ( g ) < a , ,  i = 1 , 2  ,..., p, 

for some x e A } .  (28) 
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Since 2 is a solution to P, A does 
origin. Furthermore, since- h is convex, 
set  in  Ep. By the separation theorem (12) - 
vector in  Ep, ;# 0 such that 

<Z, a> - > o for all  Q I E  A. . 

not contain the 
A is a convex 
there exists a 

(29) . . L  

i Since. each CY can be made as  large as  we wish, we 
must have 2 - > 0 and hence 72 > 0. F o r  any positive scalar 
E > 0, let CY = h(x) - h(G) t ~e for some x in  A and e = 

from (29) 
(1, 1, . . ., 1). The vector a, is in A by definition, and hence, - -, 

<Z, h(x) - h(G)> 2 -  E <Z, e > , (30) 

Relation (30) holds for every x in A, and since E is arbi- 
trary, 

(2, h(x) - h(2)) - > 0 for  all % Y E A .  

P 
If we define = Z/ ai, then EX and, 

_ -  i= 1 
\ -  <x, h(2)) - < < x, h(x)> for  a l l  xe A (32) 

But (32) implies that & E N .  
Corollary: If A is convex and h is strictly convex (com- 

Definition 6: We shall say that a solution of the 

- ponentwise), then L = N. 6 L- * 

problem P is regular if the relation h(&) = h(y) implies 
that 2 = y. 

solution of P is a regular solution. 
Remark: It is easy to verify that i f  h is  convex and one of 
its components is strictly convex then P is regular. 

Theorem 4: Suppose that the problem P is regular, 
that h is continuous and convex, and that the constraint set  
A is a closed convex subset of a Hausdorff, locally convex, 
linear topological space X , with the property that for some 
closed convex neighborhood V of the origin, the set An(V+x) 

We shall say that the problem P is regular i f  every 
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is compact f o r  every x in A. Then the set  L is contained 
in the closure of the set  M. 
Proof: Let k be any point in L, let A' = A n (V t G), and 
let L', MI be defined by (25), (26),  with A'  taking the place 
of A. F i r s t  we show that h(L') C h(M'), Since A' is com- 
pact and h is continuous, h(A') is closed, and for eve'ry 
E > 0, y - E X  is closed by construction, Let f be any point 
in h(L'). Then, clearly, the closed, convex sets h(A1) and 
(G - E X )  a r e  separated fo r  every E > 0. Consequently, fo r  
every E > 0, there exists a 6 ( ~ )  E ( 0 ,  E]  such that the closed 
convex sets  h(A') and N ( 7  - EA, 6 ( ~ ) )  a r e  disjoint, where 
N(G - EA , 6 ( ~ )  ) = (y  = y' t y f ' I y l ~  (y  - E X  ) and [ly''II< - 6(~)} 
C Ep. - Now, for every E > 0, ,let y, E h(A') and sE E 

N(Y - E A ,  6 ( ~ ) )  be such that IIy, - sE 11 is the minimum dis- 
these two closed and disjoint sets. 

a normal to a separating hyperplane through y,, 

- 
- 

Let X be 
such that 

* <A>. y - Y,) 2 0 f o r  all Y E hW')  ( 3 3 )  
- and 

<A, y - yE> < 0 for all  y E N ( 7  - E A ,  a(&,) (34) 

then, from (33) ,  <X, 
E( X ,  y> > < A ,  y -  y,> > 0. B u t  this means that X =  QX', with 
Q >: 0 and X EA. Hence we may choose a = 1, i. e., X = X', thus 

- yE> > 0, and hence foq.every y c x ,  
A 

A 

proving that y, E h(M'). We now show that lim y, = y, i.e., 
that y E h(M'). &*0+ * -  

W e  now prove that L C  M. be any point in L, 
and let A', L', MI, be defined as  above. Then, from the 
above, h(L1) C h(M') and, by inspection, & E L'. For 
i = 1, 2, 3, . . ., let yi E h(M1) be such that yi +h(%) and let 

xi E 
Since A' i s  compact, (Xi} 

contains a subsequence, (x. f which converges to a point 
x EA'. 
follows from the continuity of h that h(z) = h(G), and from 
the regularity of the problem P that P =  x. 

Again let 

L__ 

A' be such that h(xi) = y.. 

- 9 Since all  subsequences of (yi} converge to h(x^), it 

A 

Now, since , 
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A 

there exists an integer n 

3 -  

such that x. E int(V t 2) 
It now follows from the convexity of h that xij 3xa 0 lj for all i- > no . 

for i j  2 no xij E M and hence L C E. 

Conclusion 
- 

We should like to point out that our results-can 
easily be extended to other types of ordering. Fo r  exam- 
ple, consider cone orderings on Rp of the following type: 
y, 4 y2 if and only if (yl - y2) E C, where C is a given 
convex cone. When C has an interior, we let q = p and 
modify ( 8 )  to read R = { (y, 0) E Ep X Em I y E int C, 0 E Em} . 
W e  then find that theorem 4 remains valid for cone order- 
ings provided we replace the statement Itp 5 0" by t ty is 
in the cone polar to C. 'I The scalarization theoTems re- 
main valid for cone orderings provided we replace the set  
A by the set D = { h  I < h ,  y > < 0 for all  y E C v;ith 
y # 0}, assuming, of course, that-D ;is not the empty set. - A -  .. - .  
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